
REDUCED-COMPLEXITY REINFORCEMENT LEARNING-BASED POLAR

CODE CONSTRUCTION

by

Ezgi Oral

B.S., Electronics and Communication Engineering, Istanbul Technical University,

2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical and Electronics Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to thank my thesis supervisor Prof. Ali Emre Pusane for his support

and mentoring. I would also like to thank my thesis co-supervisor Prof. İbrahim

Altunbaş for his guidance throughout this study. Besides my advisors, I would like to

thank Oğuzhan Aydoğan for his help and support.

Most importantly, I am thankful to my family for their endless support and

encouragement. If it were not for them, I would not be who and where I am today.

iv

ABSTRACT

REDUCED-COMPLEXITY REINFORCEMENT

LEARNING-BASED POLAR CODE CONSTRUCTION

Due to the increasing number of users in the communication systems, efficient

spectrum usage, high-speed data transfer, and better error performance became a ne-

cessity. Therefore, it is aimed to design error control codes that have low error rates

and have a capacity close to the Shannon’s limit. As a consequence of Erdal Arıkan’s

work, polar codes, a coding technique that is theoretically proven to achieve Shan-

non’s limit, are introduced. After polar codes are used in fifth-generation new radio

(5G NR) technology, more studies are done about the decoding of polar codes and the

polar code construction. The scope of the thesis is on reinforcement learning-based

polar code construction. Initially, the preliminaries of polar codes and reinforcement

learning are given. Then, several reinforcement learning-based polar code construction

methods are introduced. It is shown that a reinforcement learning-based method found

in the literature performs weakly for long block lengths due to high complexity and

therefore, two new methods are introduced to reduce the complexity. First, a method

that groups the channels into clusters and predetermines some channels as frozen or

information is proposed. For long block lengths, it had a better performance than the

one proposed in the literature, but its performance was unsatisfactory for much longer

block lengths. To further reduce the complexity, neighbor dependency is introduced to

the first method. It is shown that the performance of the neighbor dependent method is

better than both methods and its performance is satisfactory for longer block lengths.

v

ÖZET

DÜŞÜK KARMAŞIKLIKLI PEKİŞTİRMELİ ÖĞRENME

TABANLI KUTUPSAL KOD TASARIMI

Haberleşme sistemlerinden faydalanan kullanıcı sayısının artmasıyla birlikte spek-

trumun etkin kullanılması, yüksek hızlarda veri iletimi ve yüksek hata başarımlarına

sahip sistemler tasarlamak bir gereklilik haline gelmiştir. Bu sebeple yüksek hata

başarımına sahip ve Shannon sınırına yakın kodlar tasarlamak amaçlanmış ve bu

alanda literatürde birçok çalışma yapılmıştır. Erdal Arıkan’ın bu alandaki çalışmaları

sonucunda teorik olarak Shannon limitine ulaştığı ispatlanan bir kodlama türü olan

kutupsal (polar) kodlar ortaya çıkmıştır. Kutupsal kodların 5G NR teknolojisinde

kullanılmaya başlanmasıyla birlikte kutupsal kodların çözümü ve tasarımı hakkında

yapılan çalışmalarda artış olmuştur. Bu tez kapsamında pekiştirmeli öğrenme kul-

lanarak kutupsal kod tasarımı üzerine çalışılmıştır. İlk olarak kutupsal kodlar ve

pekiştirmeli öğrenme hakkında temel bilgiler verilmiş olup ardından kutupsal kod

tasarımını pekiştirmeli öğrenme kullanarak yapan yöntemler tanıtılmıştır. Literatürde

bulunan pekiştirmeli öğrenme kullanan bir kutupsal kod tasarım yönteminin uzun kod

blokları için artan karmaşıklık sebebiyle hata başarımının yetersiz kaldığı gösterilmiş

ve karmaşıklığı azaltmak için iki yeni yöntem önerilmiştir. Öncelikle kanalları kümelere

ayırıp önceden bazı kanalları dondurulmuş (frozen) veya bilgi (information) olarak be-

lirleyen bir yöntem önerilmiştir. Bu yöntemin sağladığı başarım her ne kadar uzun

kod blokları için literatürdeki yöntemden daha iyi olsa da daha uzun kod blokları için

yetersiz kalmaktadır. Karmaşıklığı daha da düşürmek için ilk önerilen yönteme komşu

kanallara dayalı bir eleme yöntemi eklenmiş ve uzun kod blokları için yüksek hata

başarımları elde edilmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

1.1. Purpose of the Thesis . 1

1.2. Literature Review . 1

1.3. Thesis Outline . 3

2. POLAR CODES . 5

2.1. Communication Channel Models . 6

2.1.1. Binary Discrete Memoryless Channel (B-DMC) 6

2.1.1.1. Binary Symmetric Channel (BSC) 7

2.1.1.2. Binary Erasure Channel (BEC) 9

2.1.2. Additive White Gaussian Noise (AWGN) Channel 10

2.2. Channel Polarization . 11

2.3. Polar Code Construction Methods . 16

2.3.1. Bhattacharyya Method . 16

2.3.2. Monte Carlo Method . 17

2.4. Decoding of Polar Codes . 18

2.4.1. Successive Cancellation (SC) Decoder 19

2.4.2. Successive Cancellation List (SCL) Decoder 21

2.4.3. CRC-Aided (CA) Decoding . 21

3. REINFORCEMENT LEARNING (RL) . 23

3.1. Definitions in RL . 26

3.2. Fundamentals of RL . 27

vii

3.3. Markov Decision Process . 29

3.4. RL Algorithms . 31

3.4.1. Monte Carlo . 32

3.4.2. Q-Learning . 32

3.4.3. State Action Reward State Action (SARSA) 33

3.4.4. Watkins’s Q(λ) . 34

3.4.5. SARSA(λ) . 35

3.5. Deep RL . 42

4. POLAR CODE CONSTRUCTION WITH REINFORCEMENT LEARNING 44

4.1. Maze Approach . 44

4.2. Reduced Cluster-Based Maze Approach 49

4.3. Reduced Cluster-Based Maze Approach with Neighbor Dependency . . 56

5. CONCLUSION . 60

REFERENCES . 62

APPENDIX A: CHANNEL INDICES PER CLUSTER WHEN N = 128 AND

N = 256 . 67

viii

LIST OF FIGURES

Figure 2.1. Block diagram for a communication system. 6

Figure 2.2. Binary symmetric channel. 8

Figure 2.3. Binary erasure channel. 9

Figure 2.4. AWGN channel. 10

Figure 2.5. Symmetric capacity for a BEC when N = 1024 and ε = {0.3, 0.7}. 12

Figure 2.6. Channel combination (W2). 12

Figure 2.7. Channel combination (W16). 14

Figure 2.8. Channel polarization evaluation for a BEC with ε = 0.3. 15

Figure 2.9. SC decoding tree for N = 16. 20

Figure 3.1. The relationship between ML and its subcategories. 24

Figure 3.2. A maze game. 27

Figure 3.3. RL mechanism. 28

Figure 3.4. An example environment for SARSA(λ) algorithm. 36

Figure 4.1. Environment of the maze game for P(16, 8). 45

ix

Figure 4.2. Evaluation of learning after 100 episodes. 47

Figure 4.3. Evaluation of learning after 2000 episodes. 47

Figure 4.4. FER performance of the maze approach. 49

Figure 4.5. Environment of the reduced cluster-based maze game for P(16, 8). 50

Figure 4.6. Environment of the reduced cluster-based maze game for P(16, 12). 51

Figure 4.7. FER performance of the reduced cluster-based maze approach. . . 55

Figure 4.8. Total number of episodes needed for convergence for several block

lengths. 56

Figure 4.9. FER performance of the reduced cluster-based maze approach with

neighbor dependency. 59

x

LIST OF TABLES

Table 2.1. Number of errors per channel for N = 16 at 1 dB. 18

Table 3.1. Q(s, a) and E(s, a) after Step 1. 38

Table 3.2. Q(s, a) and E(s, a) after Step 2. 39

Table 3.3. Q(s, a) and E(s, a) after Step 3. 41

Table 3.4. Q(s, a) and E(s, a) at the end of the first episode (after Step 5). . 42

Table 4.1. Parameter set of the maze game for various block lengths. 48

Table 4.2. Channel indices per cluster when N = 16. 52

Table 4.3. Channel indices per cluster when N = 64. 53

Table 4.4. Number of channel indices in every cluster for several code lengths. 54

Table 4.5. Channel indices per cluster when N = 512 (first 10 rows). 58

Table A.1. Channel indices per cluster when N = 128. 67

Table A.2. Channel indices per cluster when N = 256. 69

xi

LIST OF SYMBOLS

a Action

a′ Next action

A Action set

A The set of information channel indices

Ac The set of frozen channel indices

Ci Cluster i

Gt Total discounted reward at t

K Information bit length

N Code length

P State transition matrix

R Code rate

R Reward

s State

s′ Next state

S State set

t Time step

qπ(s, a) Value of state-action pair under π

Q(s, a) Estimate of qπ(s, a)

vπ(s) Value of s under π

W Channel

α Learning rate

ϵ Exploration rate

ε Erasure probability

γ Discount rate

λ Eligibility decay factor

π Policy

xii

LIST OF ACRONYMS/ABBREVIATIONS

5G Fifth-Generation

AI Artificial Intelligence

AWGN Additive White Gaussian Noise

B-DMC Binary Discrete Memoryless Channel

BEC Binary Erasure Channel

BPSK Binary Phase Shift Keying

BSC Binary Symmetric Channel

CA CRC-Aided

CRC Cyclic Redundancy Check

dB Decibel

DMC Discrete Memoryless Channel

FER Frame Error Rate

LDPC Low-Density Parity-Check

LLR Log-Likelihood Ratio

MDP Markov Decision Process

ML Machine Learning

NR New Radio

PM Path Metric

RL Reinforcement Learning

SARSA State Action Reward State Action

SC Successive Cancellation

SCL Successive Cancellation List

SNR Signal to Noise Ratio

1

1. INTRODUCTION

1.1. Purpose of the Thesis

In today’s communication systems, there is a demand for higher data rates and

better error performance. New error control codes are developed over time to meet

these demands. Since polar codes have achieved the Shannon’s limit, they gained

popularity over time. Many studies are found in the literature to further increase the

error performance of polar codes. These improvements are being done both in terms

of polar code construction and decoding of the polar codes.

In this thesis, the main focus is on polar code construction. A good performing

polar code construction method that uses reinforcement learning fails to construct

reliable codes for longer block lengths. This thesis aims to construct polar codes that

have low error rate performance for longer block lengths. Therefore, to further improve

the performance of the reinforcement learning-based polar code construction method,

new methods are proposed.

1.2. Literature Review

Polar codes are invented by Erdal Arıkan and they are proven to achieve the

Shannon’s channel capacity for binary discrete memoryless channels [1]. They have a

similar structure to Reed-Muller codes however, they have better error performance

than Reed-Muller codes [2].

Throughout the years, polar code construction evolved and the error performance

of the polar codes improved. The first proposed construction technique was based on

the Bhattacharya parameters with a Monte Carlo approach [1]. Afterward, several

different polar code construction methods like density evaluation [3–5] and Gaussian

approximation [6,7] were proposed for a successive cancellation decoder. Furthermore,

2

the construction of polar codes was also considered for non-binary discrete input chan-

nels in [8, 9].

The decoding method used for polar codes also affects the error correction perfor-

mance. When polar codes were first introduced, a successive cancellation decoder was

proposed [1]. However, the error correction performance of the successive cancellation

decoder was not sufficient for shorter block lengths. Therefore, new decoding methods

were proposed to obtain satisfactory error performance. In [10], a belief propagation

decoding was introduced. It is reported that the belief propagation based decoder

has a better performance than the successive cancellation decoder [10, 11]. In addi-

tion to belief propagation, linear programming decoders were also proposed and they

outperformed successive cancellation decoders [12]. Later, an enhanced version of the

successive cancellation decoder, the successive cancellation list decoder, was introduced

in [13]. It was observed that as the list size increases, the error performance of the polar

decoder gets better. To further improve the performance of the successive cancellation

decoder, cyclic redundancy check (CRC) was included to the successive cancellation list

decoder [14]. It was proven that the presence of CRC bits improves the performance of

the successive cancellation list decoder [13, 15]. Lastly, a stack decoder was presented

in [16]. The stack decoder had a similar performance as the successive cancellation list

decoder.

Studies in the literature on polar codes are designed for lower-order modulations

and for binary discrete memoryless channels or additive white Gaussian noise channels.

In [17] and [18] polar codes are examined for higher-order modulations. A modulation

strategy, displacement of balanced modulation, that reduces the complexity of the

Gaussian approximation is proposed in [17]. In [18], the design and analysis of po-

lar coded modulation schemes are introduced. As the satellite communication gained

popularity over the last decade, polar codes are being proposed for satellite communi-

cations as well. The performance of polar codes for satellite communication are studied

in [19–22].

3

Over time, the computational capabilities of computers have increased and the

machine learning techniques have developed. Machine learning is now being used in

many fields as well as in error control coding. There are several studies about the polar

codes that use machine learning methods. For example, in [23] deep learning is used for

channel decoding. The polar code decoding for shorter block lengths is studied in [24].

Also, belief propagation decoding of polar codes by using reinforcement learning is

studied in [25,26]. In [27] genetic algorithm and in [28] reinforcement learning is used

for polar code construction. Additionally, in [29], the polar code construction problem

was formulated as a maze game and solved by using reinforcement learning. Decoding

of polar codes for Rayleigh fading channel are examined in [30] by using deep neural

networks.

1.3. Thesis Outline

The next chapter gives the essential to understand polar codes. First, the place

of polar codes in the error control coding and their importance are explained. Then

several fundamental channel models like binary-discrete memoryless channels are ex-

plained. Chapter 2 mainly focuses on channel polarization, polar code construction,

and decoding of polar codes. Main polar code construction methods and several fun-

damental decoding techniques are introduced. Furthermore, the effect of using CRC

bits on the performance of polar codes are given.

Chapter 3 provides the necessary information about reinforcement learning. First,

the difference between reinforcement learning and machine learning is explained. Then,

fundamentals of reinforcement learning are given and key parameters are defined. Sev-

eral commonly used reinforcement learning algorithms are introduced. Additionally,

the calculation steps of a reinforcement learning algorithm are illustrated with an ex-

ample.

In Chapter 4, several methods that combine the polar code construction problem

with reinforcement learning methods are presented. Initially, a method found in the

4

literature that uses a maze game to construct polar codes is explained in detail. To

deal with the complexity problem that occurs when the block length increases, two new

approaches are proposed. First, a reduced cluster-based maze approach is presented.

Then, to construct polar codes with higher block lengths, a neighbor dependent method

is introduced. Lastly, the performance of the proposed approaches are compared to

the performance of polar code construction methods found in the literature.

Finally, in Chapter 5, the conclusion of the thesis is provided. Also, future work

recommendations to increase the error performance and handle the complexity problem

are given.

5

2. POLAR CODES

Coding approaches can be grouped into two main categories: source coding and

error control coding. In source coding, the goal is to reduce the size of transmitted

data by compressing it. For example, Huffman coding and Shannon’s source coding

algorithms can be typically used for data compression. In error control coding, the

main purpose is to protect the data against errors. So, unlike source coding, error

control codes add redundant bits to the messages to assure reliable communication.

For instance, when a message is sent from the transmitter, the signal that carries the

message goes through a channel and is then delivered to the receiver. In the channel,

the signal is affected by noise, fading, interference, etc. These effects cause bit errors

in the received message. To detect and correct errors, error control coding techniques

are applied.

Error control codes are also divided into two main categories: block codes and

convolutional codes [31]. In block codes, the message is divided into fixed-length mes-

sage blocks and then these message blocks are converted into codewords that include

redundancy. On the other hand, in convolutional codes, the sequence of the infor-

mation bits is maintained and continuously encoded. Redundant bits are included by

using linear shift registers. Reed-Muller codes, low-density parity-check (LDPC) codes,

and polar codes are some examples of linear block codes.

Lately, the number of users that benefit from wireless communication technolo-

gies has increased tremendously. To fulfill users’ demands, higher data rates, higher

capacity, and low error rates are required. New error control codes are designed over

time to meet these requirements and ensure reliable data transmission. As coding tech-

niques improved, their performance got closer to Shannon’s limit and even theoretically

achieved it. For example, LDPC codes’ performance is very close to Shannon’s limit

and polar codes have achieved Shannon’s limit. Today, in 5G NR technology, LDPC

and polar codes are used in traffic and control channels, respectively [32].

6

The performance of the communication system depends on the medium that the

signal is transmitted over. Therefore, the quality of the received messages/signals

changes depending on the channel model. In the following section, fundamental and

commonly used communication channel models are examined.

2.1. Communication Channel Models

Channel in information theory is defined as the medium that is used to send

a message/signal from a transmitter to a receiver [33]. In Figure 2.1, a basic block

diagram for a communication system is shown. In a digital communication system,

typically a message is first encoded and then it is modulated to build a waveform.

During the transmission, the waveform encounters distortions in the channel. The

effect of the distortions on the signal changes with the channel model. In the following

subsections, several fundamental communication channel models are introduced and

the channel capacities of those channels are given.

Figure 2.1. Block diagram for a communication system.

2.1.1. Binary Discrete Memoryless Channel (B-DMC)

A discrete channel has a discrete input alphabet X = {x1, x2, · · · , xj} and a

discrete output alphabet Y = {y1, y2, · · · , yk}. When the probability distribution is

independent from previous inputs, the discrete channel is considered as memoryless [34].

The transition probability distribution of a discrete memoryless channel (DMC) is

P (y|x) = P (Y = y | X = x). In a binary DMC (B-DMC), the input alphabet is finite

7

and discrete. Binary symmetric channel (BSC) and binary erasure channel (BEC) are

the most commonly utilized examples of B-DMCs.

The maximum information rate that can be reliably transmitted over channels

may differ. The channel capacity is defined as the maximum possible data rate that a

channel can have. For DMCs, the channel capacity is defined as

C = max
p(x)

I(X;Y), (2.1)

where I(X;Y) is the mutual information and p(x) is the input distortion [34]. For a

B-DMC, the channel W can be represented in terms of its input and output alphabets

as W : X −→ Y . The mutual information or the symmetric capacity, I(W), is defined

as

I(W)
∆
=

∑
y∈Y

∑
x∈X

1

2
P (y|x) log P (y|x)

1

2
P (y|0) + 1

2
P (y|1)

. (2.2)

I(W) indicates the maximum rate for reliable communication across the channel. Note

that I(W) is equal to the Shannon capacity when W is symmetric. In addition to

symmetric capacity, another channel parameter used for B-DMC is the Bhattacharya

parameter and it is denoted as

Z(W)
∆
=

∑
y∈Y

√
P (y|0)P (y|1). (2.3)

Z(W) defines the upper limit for maximum-likelihood decision error probability and is

a metric for reliability [1].

2.1.1.1. Binary Symmetric Channel (BSC). BSC is commonly used in the coding the-

ory. Since it is a binary channel, X = {0, 1} and Y = {0, 1}. The schematic of a BSC

is given in Figure 2.2. The probability of error in the channel is represented by ρ. In

other words, ρ is the probability of receiving 1 while 0 is transmitted and receiving 0

8

while 1 is transmitted.

Figure 2.2. Binary symmetric channel.

For a BSC, the transition probabilities are given as

P (Y = 0 | X = 0) = 1− ρ,

P (Y = 0 | X = 1) = ρ,

P (Y = 1 | X = 0) = ρ,

P (Y = 1 | X = 1) = 1− ρ.

The channel is symmetric because the columns and rows of the channel matrix

y1 y2[]
x1 1− ρ ρ

x2 ρ 1− ρ

involve the same set of values [34]. The channel capacity of a BSC is given as

C = 1−H(ρ), (2.4)

where H(ρ) is the marginal entropy and is defined as

H(ρ) = ρ log2

(
1

ρ

)
+ (1− ρ) log2

(
1

1− ρ

)
. (2.5)

9

2.1.1.2. Binary Erasure Channel (BEC). Another commonly used channel model in

the coding theory is BEC. In a BEC, if an error occurs during the transmission of

the symbol, the receiver receives the erasure symbol, “?”. Therefore, X = {0, 1} and

Y = {0, ?, 1}. The channel is called erasure because when it receives “?”, the decision

is erased. With the erasure, the receiver is protected from faulty transmissions. In

Figure 2.3, the schematic of a BEC is shown. Here, the parameter ε is defined as the

erasure probability.

Figure 2.3. Binary erasure channel.

For a BEC, the transition probabilities are given as

P (Y = 0 | X = 0) = 1− ε,

P (Y = 0 | X = 1) = 0,

P (Y = ? | X = 0) = ε,

P (Y = ? | X = 1) = ε,

P (Y = 1 | X = 0) = 0,

P (Y = 1 | X = 1) = 1− ε.

The channel capacity of a BEC is

C = 1− ε. (2.6)

10

2.1.2. Additive White Gaussian Noise (AWGN) Channel

AWGN is frequently used in communication theory. When a signal, s(t), goes

through an AWGN channel, a noise term, n(t), is added. The noise is considered as

white because it has a uniform power spectral density. The mean of the white Gaussian

noise is zero and the power spectral density is N0/2 [35].

The Gaussian distributed white noise, n(t), can be represented as N(µ, σ2). Pa-

rameters µ and σ2 stand for the mean and the variance of this random process, respec-

tively. The Gaussian probability density function is given as

f(x) =
1√
2πσ2

e

−(x− µ)2

2σ2 . (2.7)

When the transmitted signal s(t) goes through the AWGN channel, it is affected

from n(t) and the received signal, r(t), becomes different from s(t). The received signal,

r(t), is then given as

r(t) = s(t) + n(t). (2.8)

Figure 2.4. AWGN channel.

11

Block diagram of an AWGN channel is plotted in Figure 2.4. The channel capacity

for an AWGN channel is

C = B log2

(
1 +

P

N0B

)
, (2.9)

where B represents the channel bandwidth and P describes the received signal power

[35].

2.2. Channel Polarization

Polar codes made a great improvement in the coding theory by achieving Shan-

non’s channel capacity. They are the first provably capacity-achieving codes in the

literature for B-DMCs [10]. Erdal Arıkan introduced polar codes by first proposing

the channel polarization phenomenon [1]. Channel polarization is applied by taking N

duplicates of a B-DMC, to form a vector of W
(i)
N , 1 ≤ i ≤ N , by using linear transfor-

mations. In other words, it is a recursive operation of first combining and then splitting

N separate channels. As N −→ ∞, I(W) values get much closer to either 0 or 1. In

Figure 2.5, I(W) values with respect to sorted channel indices are given for a BEC

when N = 1024 and ε = {0.3, 0.7}. If the channel capacity is closer to 1, the channel

is considered to be suitable for data transmission. However, if the channel capacity is

closer to 0, it is considered not suitable for data transmission.

The number of component channels, N , value in the vector channel WN : XN −→

YN is N = 2n for n ≥ 0. At the beginning of the recursive combination, n = 0,

W1
∆
= W . At n = 1, W2 is calculated as

W2(y1, y2|u1, u2) = W (y1|u1 ⊕ u2)W (y2|u2). (2.10)

Here, the ⊕ operator denotes the exclusive-or (XOR) operation or modulo-2 addition.

Channel combination at n = 1 is illustrated in Figure 2.6.

12

0 100 200 300 400 500 600 700 800 900 1000

Sorted Channel Index

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S
ym

m
et

ri
c

C
ap

ac
it

y

Figure 2.5. Symmetric capacity for a BEC when N = 1024 and ε = {0.3, 0.7}.

Figure 2.6. Channel combination (W2).

The input vector u = {u1, u2, . . . , uN} is encoded into the channel input vector

x = {x1, x2, . . . , xN}. The channel input vector goes through a channel and the channel

output vector y = {y1, y2, . . . , yN} is formed. The relationship between u and x can

13

be given as

x = uGN , (2.11)

where GN is the generator matrix and it is defined as

GN = BNF
⊗n. (2.12)

Here, BN is the bit reversal operator, the ⊗ operator denotes the Kronecker product,

and F is the kernel matrix given as

F =

1 0

1 1

 .

For example, G2 = F and G4 is calculated as

G4 = F⊗2

G4 = G2 ⊗G2

G4 =

1 0

1 1

⊗

1 0

1 1

G4 =

1 0 0 0

1 0 1 0

1 1 0 0

1 1 1 1

 .

The transition probabilities can be written by using GN as

WN(y|u) = WN(y|uGN). (2.13)

For illustration purposes, in Figure 2.7, the channel combination (W16) at n = 4 is

depicted. Here, the recursive structure of the channel combination is discernible.

14

��

W

W

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

��

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

W

W

W

W

W

W

W

W

W

W

W

W

W

W

W��

��

��

��

��

��

��

��

��

��

���

���

���

���

���

���

���

Figure 2.7. Channel combination (W16).

After channel combination, channel splitting follows to obtain channel polariza-

tion. It is the process of separating WN into N channels. The transition probabilities

W
(i)
N : X −→ Y N ×X i−1 are defined as

W
(i)
N (y,ui−1|ui)

∆
=

∑
uN
i+1∈XN−i

1

2N−1
WN(y|u), (2.14)

where 1 ≤ i ≤ N [1]. The fundamentals of a polar code construction technique, Monte

Carlo based construction, depends on channel splitting and it is explained in detail in

Subsection 2.3.2.

B-DMCs, (W
(i)
N), become polarized when N is a power of 2 and N −→ ∞. During

the polarization process, for a constant δ ∈ (0, 1), I(W
(i)
N) ∈ [0, δ) converges to 1−I(W)

15

and I(W
(i)
N) ∈ (1− δ, 1] converges to I(W). In [1], I(W

(i)
N) for a BEC is given as

I(W
(2i−1)
N) = I(W

(1)
N/2)

2

I(W
(2i)
N) = 2I(W

(i)
N/2)

2 − I(W
(i)
N/2)

2. (2.15)

Recall from (2.6) that I(W) = 1− ε, therefore, I(W
(1)
1) = 1− ε.

In Figure 2.8, the polarization steps for a BEC with ε = 0.3 for 10 steps (n = 10)

are plotted. The I(W) values in each step are calculated using (2.15). From the figure,

it is seen that as the steps proceeds channels get more polarized, which means they are

getting closer to 0 or 1 in each step.

Figure 2.8. Channel polarization evaluation for a BEC with ε = 0.3.

16

2.3. Polar Code Construction Methods

Polar code construction depends on the channel model and the channel polar-

ization. The challenge in polar code construction is to determine how to design a

N -channel system so that the information can be delivered to the receiver with fewer

errors. It can simply be described as the selection of K reliable channels out of N

available channels. A polar code with a block length of N bits and information bit

length of K bits is represented as P(N,K). The ratio of useful information in polar

codes, the code rate, is denoted by R and calculated as R = K/N .

The set of information (non-frozen) indices is described by A and the set of

frozen indices is described by Ac. The size of A is K and the size of Ac is N − K.

Information channels are used for data transmissions and frozen channels do not involve

useful information. On the frozen channels, depending on the communication system,

a constant 0 bit or 1 bit is transmitted. The receiver has prior knowledge of these

constant bits and also knows A and Ac.

There are various polar code construction methods found in the literature. Several

fundamental polar code construction methods are given in the following subsections.

All these methods propose a rule for selecting the indices of the K reliable channels,

to ensure reliable communication with low error rates.

2.3.1. Bhattacharyya Method

Polar code construction with Bhattacharyya parameters was first proposed by

Arıkan [1]. It has a basic structure and because of this, it was commonly used in the

literature to construct polar codes [36]. Bhattacharyya based polar code construction

uses Bhattacharyya parameters to differentiate channel performances. Bhattacharyya

17

parameters can recursively be calculated as

Z(W
(2i−1)
N) ≤ 2Z(W

(i)
N/2)− Z(W

(i)
N/2)

2, (2.16)

Z(W
(2i)
N) = Z(W

(i)
N/2)

2, (2.17)

where 1 ≤ i ≤ N/2 [1]. After Bhattacharyya parameters are obtained for every channel,

K channels with the lowest Bhattacharyya parameter values are selected for informa-

tion channels and the remaining N −K channels are selected for frozen channels. The

complexity of this method is O(N logN). Here, O(·) is the big O notation.

2.3.2. Monte Carlo Method

Monte Carlo simulation based polar code construction was first proposed in [1].

The first step in this method is generating N information bits to obtain a codeword.

This method uses an all-zero codeword since polar codes are linear codes and all-zero

sequence is always a codeword in a linear block code. All-zero codeword is transmitted

through a channel under a predetermined signal to noise ratio (SNR) value. Then,

on the receiver side, the genie-aided decoder decodes the transmitted codeword. A

genie-aided decoder requires the knowledge of the actual codeword. For example,

considering a successive cancellation list decoder, if the actual codeword is on the list,

the genie-aided decoder decodes the codeword. Since a genie-aided decoder needs the

actual codeword, it is impractical and only used in the polar code construction steps.

After the decoding process, the decoded codeword is compared with the transmitted

codeword to detect channel indices that encountered an error. This process is repeated

until the maximum number of iterations defined for the simulation is achieved.

This method is applicable to a limited number of channels and the complexity

of this method is very high. The complexity of Monte Carlo simulation based polar

code construction is O(MN logN) [36]. Here, M denotes the number of iterations for

a Monte Carlo simulation. Since the complexity is high, this method is especially not

suitable for polar code construction at high SNR values, where the simulations need

18

much more data for statistical convergence.

In Table 2.1, the results obtained from a Monte Carlo based polar code con-

struction are given. This simulation was done for an AWGN channel when SNR is

1 dB, N = 16, and M = 106. From Table 2.1, it is seen that every channel has

different amount of errors. Channels with the most errors are considered for frozen

channels and the ones with the least errors are considered for information channels.

For example, to construct a code with R = 1/2, the frozen channels should be se-

lected as Ac = {1, 2, 3, 4, 5, 6, 7, 9} and the information channels should be selected as

A = {8, 10, 11, 12, 13, 14, 15, 16}.

Table 2.1. Number of errors per channel for N = 16 at 1 dB.

Channel Number of Channel Number of

Index Errors Index Errors

1 120887 9 74753

2 103876 10 25025

3 98245 11 17779

4 48469 12 1497

5 88880 13 11579

6 37078 14 671

7 28426 15 351

8 3595 16 1

2.4. Decoding of Polar Codes

Polar codes are channel dependent codes. Unlike other block codes (i.e., Reed-

Muller codes), they use channel dependent parameters like Bhattacharyya parameters.

In addition to the channel model, the performance of the polar codes also changes

depending on the decoding method. The performance of a constructed polar code can

be observed from the bit error rate (BER) or frame error rate (FER) obtained after the

19

decoding of polar codes. Preliminaries of successive cancellation decoder and successive

cancellation list decoder are given in the following subsections.

2.4.1. Successive Cancellation (SC) Decoder

Successive cancellation (SC) decoder is the first decoder proposed for polar codes

[1]. SC decoder knows the indices of N − K frozen channels. Before the decoding

begins, the receiver determines the log-likelihood ratio (LLR) vector [37]. The LLR

vector, ℓ = (ℓ1, . . . , ℓN), is calculated as

ℓi = ln

(
P (yi|xi = 0)

P (yi|xi = 1)

)
. (2.18)

There are n steps defined in the SC decoder and for each step LLR of every bit is

calculated by using two functions: f(l1, l2) and g(l1, l2, v) [37]. The f function is

denoted as

f(ℓ1, ℓ2) = 2 tanh−1

(
tanh

(
ℓ1
2

)
tanh

(
ℓ2
2

))
, (2.19)

and the g function is defined as

g(ℓ1, ℓ2, v) = ℓ1(−1)v + ℓ2, (2.20)

where v is the hard decision and v = [0, 1]. It is seen that the complexity of imple-

menting f and g functions is high. For physical implementations, the alternatives of

these functions are given in [37] as

f(ℓ1, ℓ2) ≈ (1− 2 · sign(ℓ1)) · (1− 2 · sign(ℓ2)) ·min{|ℓ1|, |ℓ2|} (2.21)

and

g(ℓ1, ℓ2, v) = ℓ2 + ℓ1(1− v). (2.22)

20

SC decoder sequentially decodes the information channels. If the channels are

frozen, decoding is not performed on those channels. This allows avoiding errors en-

countered on the frozen channels. The SC decoder tries to estimate the u vector. A

block error occurs when the estimate û is not equal to u.

Decoding structure of SC can be represented by a binary tree [38]. The SC

decoding tree forN = 16 is given in Figure 2.9. On the binary tree, there are log2(N)−1

stages and at every stage (m) for every node, LLR values are received from the parent

node. Then, the child nodes send the hard decision vector, v = {v1, v2, . . . , v2m}, back

to the parent node. The tree is analyzed starting from the left branches. The f function

is used for left nodes, and g function is used for right nodes. In every step, LLR vector

fm and gm are used as seen from Figure 2.9. Hard decision vector v can be computed

as

vi =

vlefti ⊕ vrighti , if i < 2m

vrighti−2m , otherwise.

(2.23)

In short, principals of the SC decoding depends on analyzing a binary tree sequentially

by f and g operators to make a hard decision.

Figure 2.9. SC decoding tree for N = 16.

21

2.4.2. Successive Cancellation List (SCL) Decoder

Successive cancellation list (SCL) decoder is designed to reduce the erroneous

decisions encountered during SC decoding, therefore it has a better decoding perfor-

mance than the SC decoder. It has a very similar decoding structure to the SC decoder.

However, the main difference compared to the SC decoder is in the decision of the leaf

nodes, ûi. In the SCL decoder, unlike the SC decoder, ûi is not determined immedi-

ately. If ûi is an information bit, it is estimated as 0 and 1 for different two paths.

This method increases the complexity exponentially. To control the complexity, a path

metric (PM) is introduced and the path is limited with a list size of L.

PM is used to determine which L paths are better and is calculated as

PMi =

PMi−1 + ℓi, if ûi ̸=

0, ℓi > 0

1, otherwise,

PMi−1, otherwise,

. (2.24)

where PM0 = 0 [38]. L paths that have the lowest PMs are kept in the decoding

process. It has been shown in [13] that, as the list size L increases, the performance of

the SCL decoder increases.

2.4.3. CRC-Aided (CA) Decoding

CRC-Aided (CA) decoding is introduced to increase the performance of the SCL

decoder. In [13], it is shown that CRC improves the SCL decoder performance. In

SCL decoding, there is a possibility of having an actual codeword that has a higher

PM value with respect to the other L paths. Because of this, the actual codeword

might be dropped from the list. CA decoding is expected to eliminate the poor paths

with low PMs cleverly to contain better paths on the list. In the CA-SCL decoding,

r bits are used for CRC. More specifically, the last r information bits hold the r-bit

CRC.

22

In the presence of CRC bits, the code rate R changes and becomes R = (K−r)/N .

Also, the polar code representation is now denoted as P(N, (K − r) + r). The value

of r can change depending on the N . For example, for N = 128 and L = 8, the CRC

bit size can be selected as r = 4 and for N = 2048 and L = 32, the CRC bit size can

be selected as r = 16. The CRC polynomial used for decoding can also be changed.

However, using different CRC polynomials does not make a noticeable difference in the

performance of the SCL decoder [21].

23

3. REINFORCEMENT LEARNING (RL)

Artificial intelligence (AI) is a branch of computer science. Systems or machines

that involve AI try to mimic human intelligence by collecting data over time. AI has

the ability to improve itself over the collected data. The main purpose of AI is to solve

tasks where human intelligence is required.

The basis of AI started in 1950 with Alan Turing’s question, “Can machines

think?”. In 1956, a group of mathematicians and scientists made a research project

on self-learning systems that can do tasks that depend upon human intelligence [39].

At the Dartmouth Conference, they presented this capability as artificial intelligence.

After several decades, in 1997, finally, a machine was able to win a chess game over a

chess master. As the technology improved over time, the memory capacity of devices

increased tremendously. This increase in capacity has led the AI algorithms to learn

faster and pave the way for the huge growth in AI techniques and their use in daily

life problems.

Today, AI is being used in various parts of daily life from marketing to security,

autonomous vehicles to telecommunications. Smart assistants, facial recognition algo-

rithms, email spam filters, object detection algorithms, self-driving cars, and medical

diagnosis algorithms are some examples of AI technology that are used in daily life.

Over the years, AI techniques have become more complex and comprehensive. As they

evolved, they have divided into subcategories like robotics, natural language process-

ing, machine learning (ML), and deep learning. In this study, a particular type of

machine learning algorithms are used.

ML is the ability to self-learn from experiences without having pre-programmed

instructions. ML algorithms generally require input data to further use during the

learning process. They are commonly used for predicting outcomes. Some fields of

data science use ML as a tool to forecast classification or regression problems.

24

ML has three main categories. These are supervised learning, unsupervised learn-

ing, and reinforcement learning (RL). In Figure 3.1, subcategories of ML and their

relations between AI and deep learning are illustrated. The subcategories of ML and

their differences are explained below.

Figure 3.1. The relationship between ML and its subcategories.

In supervised learning, a large amount of labeled input data is required so that

supervised algorithms can build a model and forecast outputs. During the learning

process, some instances are used as a training set and throughout trials, the algorithm

tries to find similarities between the labeled inputs in the training set. For example,

random forest, decision trees, k-nearest neighbors, and logistic regression are some

commonly used supervised learning algorithms. This machine learning method is often

used for generalization purposes. With supervised learning, both classification and

regression problems can be solved.

In contradiction to supervised learning, in unsupervised learning, a labeled input

is not required to forecast outputs. In other words, without having prior knowledge,

only by using the instances similarities based on several parameters, unsupervised

25

learning algorithms can predict the outcome. In unsupervised learning, the main goal is

to construct a model which groups the instances into categories. Principal components

analysis, singular value decomposition, and k-means clustering algorithms are some

examples of unsupervised learning algorithms. Like supervised learning algorithms,

unsupervised learning methods can also be useful to solve classification problems.

Before going into the details of RL, it is also important to mention deep learning.

Deep learning is a multi-layered artificial neural network. It is inspired by the human

brain and generally preferred for sophisticated problems. Its main goal is to make

a decision by observing patterns in the input data. Deep learning methods can be

used in supervised, unsupervised, and RL problems and they can be very effective for

high complexity classification and regression problems. They are also used in object

detection, image colorization, etc.

The final subcategory of ML is RL. The fundamentals of the RL rely on the inter-

actions with an environment. An agent interacts with the environment and depending

on the observations, it determines the following steps to reach the main goal. There

are several fundamental definitions in RL like agent, environment, etc., and they are

explained in detail in Section 3.1.

In supervised and unsupervised learning, there is a need for a huge amount of

data. These data are used for training purposes. However, RL does not require input

data, measurements, or examples. The agent in an environment gathers rewards by

observations and in this way it generates its own data throughout the learning process.

The theoretical difference between RL and other ML methods is that in those methods,

the patterns are learned from instances in the input data. On the other hand, in RL,

the learning is done by explorations and experiences.

26

3.1. Definitions in RL

There are some key elements and terms in an RL system. Their presence defines

the system and they play a crucial role in the learning process. Fundamental elements,

commonly used terms, and their definitions are given below.

• Environment: The world or a medium that an agent acts.

• Agent: An operator that moves in an environment.

• Observation: Inspection of an agent’s action in an environment.

• Action (a): Movement of an agent towards a direction.

• State (s): The current position or situation of an agent in an environment.

• Value Function: Predicting how much reward the agent will get in the forthcom-

ing steps.

• Policy (π): Deciding how to choose actions, decision-making process.

• Reward (R): Positive or negative feedback that the environment gives to the

agent depending on the observation.

• Goal: An objective that an agent tries to achieve within an environment with the

assistance of observations.

• Episode: A sequence of actions that starts from an initial state and ends at a

terminal state.

An environment can be a grid world, a chess platform, a street, etc. An agent can

be a robot, a chess piece, a self-driving car, etc. An agent can choose an action from

the action set, A, which includes the possible actions that an agent can make. In a

multi-agent system, the environment can have more than one action set. For example,

in a chess game, a knight can move north, south, west, and east, while a pawn can

move north, northwest, and northeast directions. When an agent takes an action based

on a policy and changes its state, the observer gives feedback, a reward. For instance,

a self-driving car receives a negative reward when it hits the sidewalk, other cars, or

pedestrians. An RL system aims to take actions over time to maximize the cumulative

reward. It can also have further goals like minimizing the number of steps taken in

27

a grid world to reach the terminal state. Throughout episodes, the agent gains more

information about the environment to accomplish the system’s goals.

A maze game is depicted in Figure 3.2. Here, the environment is a 4x6 grid

world. The game starts from the start point (represented in green) and the goal is

to reach the end point (represented in red) by taking the minimum amount of steps.

The agent (represented in blue) can move upwards, downwards, left, and right. In

the environment there are some obstacles (black boxes), and when the agent collides

with an obstacle, it receives a negative reward and when it reaches the end point (the

terminal state), it receives a positive reward. Throughout episodes, the agent tries to

learn from the rewards and finds the best path from the start point to the end point.

Figure 3.2. A maze game.

3.2. Fundamentals of RL

In RL, the desire is to learn by making mistakes. The agent discovers the en-

vironment by taking actions seeking the most reward. Since the agent is interacting

with the environment, RL is referred to as active learning. Also, the learning process

is sequential, which means that the future interactions may depend on the previous

interactions.

The main RL mechanism is shown in Figure 3.3. The agent takes an action in the

environment, and the feedback of the action is delivered to the agent by the observer.

28

Also, the state of the agent is changed depending on the taken action. This process

goes on until the goal is achieved.

Figure 3.3. RL mechanism.

RL is used when there are sequential decisions. The agent tries to understand the

environment by a trial and error approach to achieve the goal. At the beginning of the

learning process, it has hardly any information about the environment. So, it begins

with exploration. It takes an action, and from the rewards gained from the interactions

with the environment, the learning process starts. After many actions and rewards, it

reaches its goal and the learning procedure is complete.

In RL, two process models can be used. These are deterministic processes and

stochastic processes. In deterministic processes, policy implies that the agent must

choose an action with a higher reward [40]. However, in stochastic processes the policy

advises the agent to choose the action with the highest reward and there is a possibility

to take a different action than suggested to explore the environment [40]. For instance,

depending on the application of RL, the agent may also need to minimize the number

29

of actions. So, if the goal also includes minimizing the number of actions, stochastic

processes’ policy approach may be more helpful.

In this thesis, RL methods are used to provide an alternative and effective solution

for construction problems of polar codes. An RL approach for polar code construction

sequentially determines the information channels by maximizing the expected reward.

Maximizing the expected reward is equivalent to having a low FER. Therefore, using

an RL approach for polar code construction offers promising results.

3.3. Markov Decision Process

Almost every RL problem can be described by using a finite Markov decision

process (MDP). MDP is a stochastic process and it is a formalization of sequential

decision making. The fundamentals of MDPs and RL depend on the Markov property.

A Markov chain has Markov property and it is defined as a sequence of random variables

that have values in a finite state set [41]. A state st is a Markov if and only if

P [st+1|s1, · · · , st] = P [st+1|st] (3.1)

is satisfied. Markov chain assumes that the probability of taking an action at state s is

not affected from previous states, and it only depends on the current state. In a given

state, s, the probability of moving to the next state, s′, is named as the state transition

probability and it is defined as

Pss′ = P [st+1 = s′|st = s]. (3.2)

30

All state transition probabilities can be represented under a state transition matrix,

P , as

P =

P11 P12 P13 . . . P1m

P21 P22 P23 . . . P2m

...
...

...
. . .

...

Pm1 Pm2 Pm3 . . . Pmm

 , (3.3)

where s = {1, 2, · · · ,m} and m is the number of states.

When a state transition occurs, in other words, when an action is taken and

therefore the state changes, a reward, R, is received for that transition. In MDPs and

RL, the goal is to maximize the cumulative reward. In some cases, the effect of the

latest rewards can be more than the earlier rewards. This discount is controlled by a

parameter called the discount rate, γ, where γ ∈ [0, 1]. If γ = 1, all rewards have the

same amount of effect on the cumulative reward. Total discounted reward, or return,

at time step t, Gt, is defined as

Gt = Rt+1 + γRt+2 + · · · =
∞∑
k=0

γkRt+k+1. (3.4)

So far, rewards only gave an understanding of how good the process was until the

current state. A value function can be used to figure out how good the process will be

in the long term. The value function of s, v(s), is defined as

v(s) = E[Gt|st = s]

= E

[
∞∑
k=0

γkRt+k+1|st = s

]
, (3.5)

where E[·] is the expected value operator. To decide how to choose an action (a) in a

31

state (s), a policy π is used. It is defined as

π(a|s) = P [at = a, st = s]. (3.6)

The value state-action pair under a policy, qπ(s, a), can be described as

qπ(s, a) = Eπ[Gt|st = s, at = a]

= Eπ

[
∞∑
k=0

γkRt+k+1|st = s, at = a

]
. (3.7)

In MDPs, exploration is also crucial throughout the learning process. Therefore,

being allowed to choose the state that has less reward can help the agent to discover the

environment. This allowance of exploration is referred to as greediness. ϵ parameter,

where 0 ≤ ϵ ≤ 1, defines how greedy the system is. A greedy policy at state s, π(s),

can be described by using the estimate of qπ(s, a), Q(s, a), as

π(s) =

arg max

a
Q(s, a), with probability 1− ϵ

random a ∈ A, with probability ϵ.

. (3.8)

3.4. RL Algorithms

There are several different algorithms to solve RL problems. Some of these al-

gorithms are considered as offline learning, while some are online learning. In offline

learning, the values (e.g., π(s)) are updated at the end of the episode. However, in

online learning, the values are updated after every action. Also, the policy method

(off-policy or on-policy) may differ. In the off-policy method, the target policy does

not follow the behavior policy (a policy that is used for generating behavior) [40]. On

the other hand, in the on-policy method, the target policy and the behavior policy

are the same. Furthermore, some algorithms may also use eligibility traces to improve

algorithms’ performances. In the following subsections, the most commonly used RL

32

algorithms are explained and their differences are mentioned.

3.4.1. Monte Carlo

Monte Carlo is a method to find the optimal policy and evaluate the value func-

tion. This method does not need prior knowledge, it solely needs experience. Taking

actions significantly depends on randomness. This method is also called an offline

learning method because the reward is only received at the end of an episode. Monte

Carlo methods try to estimate the value function, v(·), on a policy π for a given state

s, vπ(s), by taking sample returns at the end of each episode. It takes the mean of the

cumulative reward, Gt, collected in each episode. It is assumed that all the episodes

terminate.

Monte Carlo methods require a high amount of episodes. For each state that is

visited in an episode, a Gt for that state is calculated. Then it is combined with the

average of returns at state s.

3.4.2. Q-Learning

Q-learning algorithm uses the off-policy method. In this algorithm, the aim is

to find the most desirable action for a given state. Q-learning algorithm uses the

state-action pairs and finds the one with the maximum expected reward.

The update rule for the value function of the state-action pair, Q(s, a), for Q-

learning is defined as

Qt+1(st, at) = Qt(st, at) + α
[
Rt+1 + γmax

a
Qt(st+1, a)−Qt(st, at)

]
, (3.9)

where α represents the learning rate [40]. It determines how much the incoming value

will affect Qt(s, a). The value of α, where α ∈ [0, 1], also affects the convergence of the

learning.

33

The Q-learning algorithm starts with arbitrarily initializing Q(s, a) for every

state-action pair. For the terminal state, the corresponding value function is set to

0. At the beginning of every episode, s is initialized and after that, for each step in an

episode, a is chosen by using π, the reward is observed, and the next state is located.

Then Q(s, a) and s are updated. When the agent reaches the terminal state, an episode

is considered as complete. This process goes on until the total number of episodes is

achieved.

3.4.3. State Action Reward State Action (SARSA)

In contradiction to Q-learning, the state action reward state action (SARSA)

algorithm uses the on-policy method [40]. SARSA contains the current state st, the

current action at, the reward gained from the action Rt, next state st+1, and the future

action at+1.

The update rule for the value function of state-action pair, Q(s, a), for the SARSA

algorithm is calculated as

Qt+1(st, at) = Qt(st, at) + α
[
Rt+1 + γQt(st+1, at+1)−Qt(st, at)

]
. (3.10)

SARSA follows a greedy policy and at+1 is selected based on that policy. However,

in Q-learning, the maximum value of Q(s, a) is chosen. Therefore, the Q-learning

algorithm does not pursue a greedy policy.

The SARSA algorithm starts with arbitrarily initializing Q(s, a),∀s ∈ S, ∀a ∈ A.

For the terminal state, the corresponding value function is set to 0. At the beginning

of every episode, s is initialized and a is chosen by using π. After that, for each step in

an episode, a is taken, the reward is observed, and the next state is located. The next

action, a′, is chosen by using π. Then Q(s, a), s, and a are updated. When the agent

reaches the terminal state, an episode is considered as complete. This process goes on

34

until the total number of episodes is achieved.

3.4.4. Watkins’s Q(λ)

Watkins’s Q(λ) algorithm combines the Q-learning method with eligibility trace.

Eligibility traces introduce a short-term memory to the system. The purpose of using

eligibility traces is to learn more efficiently [40].

Let Et(s, a),∀s ∈ S, ∀a ∈ A, denote the eligibility trace of a state-action pair.

The initial value of E0(s, a) = 0. Et(s, a), for Watkins’s Q(λ) method, is described as

Et(s, a) =

γλEt−1(s, a) + IsStIaAt , if Qt−1(st, at) = max

a
Qt−1(st, a)

IsStIaAt , otherwise.

, (3.11)

where λ ∈ [0, 1] demonstrates the eligibility decay factor and I represents the identity

matrix [40]. When λ goes towards zero, only the value function of the most recent

states is affected. On the other hand, when λ goes towards one, the value function of

much earlier steps is altered.

With the presence of eligibility trace, Q(s, a) is updated as

Qt+1(st, at) = Qt(st, at) + αδtEt(s, a), (3.12)

where δt is the temporal difference error [40] and it is defined as

δt = Rt+1 + γmax
a′

Qt(st+1, a
′)−Qt(st, at). (3.13)

The temporal difference error approximately shows the difference between the utmost

reward and the current prediction.

35

The Watkins’s Q(λ) algorithm starts with arbitrarily initializing Q(s, a),∀s ∈ S,

∀a ∈ A. At the beginning of every episode, E(s, a), ∀s ∈ S, ∀a ∈ A, is set to 0, s is

initialized and a is chosen by using π. After that, for each step in an episode, a is

taken, the reward is observed, and the next state is located. The next action is chosen

by using π. Then δ is calculated and E(s, a) is incremented by one. For all states and

actions, Q(s, a), s, and a are updated. If a non-greedy action is taken, E(s, a) is set

to zero, otherwise, it is updated as described in (3.11). When the agent reaches the

terminal state, an episode is considered as complete. This process goes on until the

total number of episodes is achieved.

3.4.5. SARSA(λ)

SARSA(λ) algorithm is the combination of the SARSA method and the eligibility

trace. For SARSA(λ) algorithm, the eligibility trace of a state-action pair is updated

as

Et(s, a) =

γλEt−1(s, a) + 1, if s = st and a = at

γλEt−1(s, a), otherwise.

for all s ∈ S, a ∈ A. (3.14)

Q(s, a) is updated as described in (3.12). However, the temporal difference error

in (3.12) is calculated differently. For SARSA(λ), δt is defined in [40] as

δt = Rt+1 + γQt(st+1, at+1)−Qt(st, at). (3.15)

The SARSA(λ) algorithm starts with arbitrarily initializing Q(s, a) for every

state-action pair. At the beginning of every episode, E(s, a), ∀s ∈ S, ∀a ∈ A, is set to

0, s is initialized and a is chosen by using π. After that, for each step in an episode,

a is taken, the reward is observed, and the next state is located. The next action is

chosen by using π. Then δ is calculated and E(s, a) is incremented by one. For all

36

states and actions, Q(s, a), E(s, a), s, and a are updated. When the agent reaches the

terminal state, an episode is considered as complete. This process goes on until the

total number of episodes is achieved.

The calculation process of the SARSA(λ) algorithm for some steps is given with an

illustrative example below. The agent acts in a 3x4 grid environment. The environment

and the steps for the first episode are shown in Figure 3.4. It is assumed that the agent

receives a reward only in two conditions: a “-1” reward when it goes through an

obstacle (black boxes) and a “+1” reward when it reaches the terminal state (red box).

The agent starts exploring the environment from the start point, s = (0, 0). When

the agent reaches the terminal state, s = (2, 3), an episode is completed. The agent

is allowed to move “up (U)”, “down (D)”, “left (L)”, or “right (R)”. In other words,

A = {U, D, L, R}.

To observe the changes in Q(s, a), it is initialized as Q(s, a) = 0,∀s ∈ S, ∀a ∈ A.

Since it is the first episode, the agent does not have information about the environment.

Hence, it takes actions randomly. It is assumed that in the first episode there are

five steps and the agent takes the following actions: “R”, “D”, “R”, “R”, and “D”.

Parameters are selected as: α = 0.5, λ = 0.4, and γ = 0.9. The evaluation of Q(s, a)

and E(s, a) can be observed from Tables 3.1 to 3.4.

Figure 3.4. An example environment for SARSA(λ) algorithm.

37

• Step 1: t = 0, a = “R”, a′ = “D”, s = (0, 0), s′ = (0, 1), and R1 = 0.

δ0 = 0 + (0.9) ·Q0((0, 1), “D”)−Q0((0, 0), “R”)

= 0 + (0.9) · (0)− 0

= 0.

First, E0((0, 0), “R”) is incremented by one, as in (3.14).

E0((0, 0), “R”) = 0 + 1

= 1.

Then for all state-action pairs, Q(s, a) and E(s, a) are updated. Since only

((0, 0), “R”) pair is visited, only ((0, 0), “R”) pair will be calculated.

Q1((0, 0), “R”) = Q0((0, 0), “R”) + (0.5) · (0) · (1)

= 0.

and

E0((0, 0), “R”) = (0.9) · (0.4) · (1)

= 0.36.

• Step 2: t = 1, a = “D”, a′ = “R”, s = (0, 1), s′ = (1, 1), and R2 = −1.

δ1 = −1 + (0.9) ·Q1((1, 1), “R”)−Q1((0, 1), “D”)

= −1 + (0.9) · (0)− 0

= −1.

38

Table 3.1. Q(s, a) and E(s, a) after Step 1.

Q(s, a) E(s, a)

State
Action Action

U D L R U D L R

(0,0) 0 0 0 0 0 0 0 0.36

(0,1) 0 0 0 0 0 0 0 0

(0,2) 0 0 0 0 0 0 0 0

(0,3) 0 0 0 0 0 0 0 0

(1,0) 0 0 0 0 0 0 0 0

(1,1) 0 0 0 0 0 0 0 0

(1,2) 0 0 0 0 0 0 0 0

(1,3) 0 0 0 0 0 0 0 0

(2,0) 0 0 0 0 0 0 0 0

(2,1) 0 0 0 0 0 0 0 0

(2,2) 0 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 0 0 0

First, E1((0, 1), “D”) is incremented by one.

E1((0, 1), “D”) = 0 + 1

= 1.

Then for all state-action pairs, Q(s, a) and E(s, a) are updated. Since only

((0, 0), “R”) and ((0, 1), “D”) pairs are visited so far, only those pairs will be

calculated.

Q2((0, 0), “R”) = Q1((0, 0), “R”) + (0.5) · (−1) · E1((0, 0), “R”)

= 0 + (0.5) · (−1) · (0.36)

= −0.18.

39

Q2((0, 1), “D”) = Q1((0, 1), “D”) + (0.5) · (−1) · E1((0, 1), “D”)

= 0 + (0.5) · (−1) · (1)

= −0.5.

and

E1((0, 0), “R”) = (0.9) · (0.4) · (0.36)

= 0.1296.

E1((0, 1), “D”) = (0.9) · (0.4) · (1)

= 0.36.

Table 3.2. Q(s, a) and E(s, a) after Step 2.

Q(s, a) E(s, a)

State
Action Action

U D L R U D L R

(0,0) 0 0 0 -0.18 0 0 0 0.1296

(0,1) 0 -0.5 0 0 0 0.36 0 0

(0,2) 0 0 0 0 0 0 0 0

(0,3) 0 0 0 0 0 0 0 0

(1,0) 0 0 0 0 0 0 0 0

(1,1) 0 0 0 0 0 0 0 0

(1,2) 0 0 0 0 0 0 0 0

(1,3) 0 0 0 0 0 0 0 0

(2,0) 0 0 0 0 0 0 0 0

(2,1) 0 0 0 0 0 0 0 0

(2,2) 0 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 0 0 0

40

• Step 3: t = 2, a = “R”, a′ = “R”, s = (1, 1), s′ = (1, 2), and R3 = 0.

δ2 = 0 + (0.9) ·Q2((1, 2), “R”)−Q2((1, 1), “R”)

= 0 + (0.9) · (0)− 0

= 0.

First, E2((1, 1), “R”) is incremented by one.

E2((1, 1), “R”) = 0 + 1

= 1.

Then for all state-action pairs, Q(s, a) and E(s, a) are updated. Only ((0, 0), “R”),

((0, 1), “D”), and ((1, 1), “R”) pairs are visited thus far, therefore, only those pairs

will be calculated.

Q3((0, 0), “R”) = Q2((0, 0), “R”) + (0.5) · (−1) · E2((0, 0), “R”)

= −0.18 + (0.5) · (0) · (0.1296)

= −0.18.

Q3((0, 1), “D”) = Q2((0, 1), “D”) + (0.5) · (0) · E2((0, 1), “D”)

= −0.5 + (0.5) · (0) · (0.36)

= −0.5.

Q3((1, 1), “D”) = Q2((1, 1), “D”) + (0.5) · (0) · E2((1, 1), “D”)

= 0 + (0.5) · (0) · (1)

= 0.

41

and

E2((0, 0), “R”) = (0.9) · (0.4) · (0.1296)

= 0.0467.

E2((0, 1), “D”) = (0.9) · (0.4) · (0.36)

= 0.1296.

E2((1, 1), “R”) = (0.9) · (0.4) · (1)

= 0.36.

Table 3.3. Q(s, a) and E(s, a) after Step 3.

Q(s, a) E(s, a)

State
Action Action

U D L R U D L R

(0,0) 0 0 0 -0.18 0 0 0 0.0467

(0,1) 0 -0.5 0 0 0 0.1296 0 0

(0,2) 0 0 0 0 0 0 0 0

(0,3) 0 0 0 0 0 0 0 0

(1,0) 0 0 0 0 0 0 0 0.36

(1,1) 0 0 0 0 0 0 0 0

(1,2) 0 0 0 0 0 0 0 0

(1,3) 0 0 0 0 0 0 0 0

(2,0) 0 0 0 0 0 0 0 0

(2,1) 0 0 0 0 0 0 0 0

(2,2) 0 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 0 0 0

42

Then, Step 4 and Step 5 follow. The agent reaches the terminal state, therefore

the first episode finishes. The final values of Q(s, a) and E(s, a) at the end of the first

episode are given in Table 3.4. For the second episode, the values in Table 3.4 are used

in the first step, and then it is updated depending on the sequences. This process goes

on until the maximum episode number is reached.

Table 3.4. Q(s, a) and E(s, a) at the end of the first episode (after Step 5).

Q(s, a) E(s, a)

State
Action Action

U D L R U D L R

(0,0) 0 0 0 -0.1716 0 0 0 0.006

(0,1) 0 -0.4767 0 0 0 0.0168 0 0

(0,2) 0 0 0 0 0 0 0 0

(0,3) 0 0 0 0 0 0 0 0

(1,0) 0 0 0 0.0648 0 0 0 0.0467

(1,1) 0 0 0 0.18 0 0 0 0.1296

(1,2) 0 0 0 0.5 0 0 0 0.36

(1,3) 0 0 0 0 0 0 0 0

(2,0) 0 0 0 0 0 0 0 0

(2,1) 0 0 0 0 0 0 0 0

(2,2) 0 0 0 0 0 0 0 0

(2,3) 0 0 0 0 0 0 0 0

3.5. Deep RL

Deep RL is the combination of artificial neural networks and RL. In some cases

the complexity of the environment can be huge, there can be numerous states, and there

may be a need for a large number of sequential decisions. In those cases, the traditional

RL methods cannot solve the task or accomplish the goal. The high complexity further

makes it hard to set up a system that can solve the problem.

43

Neural networks can be used for representing the model, the value function, or

the policy. When the agent interacts with the environment more, the performance of

the deep learning approach gets better. Daily life examples of deep RL are self-driving

cars, robot vacuums, some video games, etc.

44

4. POLAR CODE CONSTRUCTION WITH

REINFORCEMENT LEARNING

As mentioned in the previous chapter, RL can offer efficient solutions for various

problems. In [29], the polar code construction problem was correlated to a maze game

and an RL method was offered to solve the maze game. It was shown that using an

RL method for polar code construction gives promising and reliable solutions. In the

following subsections, first a model proposed in [29] is introduced, then several new

methods are proposed for polar code construction that uses RL methods. Weakness in

RL methods for polar code design with higher block lengths are also discussed.

4.1. Maze Approach

There are several ways to construct polar codes. When the performance and

feasibility are considered, reinforcement learning gives promising solutions. Consider-

ing computational limits, Monte Carlo based polar code construction offers a limited

performance due to the high number of simulations needed to sort channels depending

on the channel reliability. Unlike a channel sorting based method, the maze game ap-

proach proposed in [29] tries to design polar codes by sequentially deciding the frozen

and information channels.

The maze game uses the SARSA(λ) method to construct a polar code. The

agent sets the channel as information or frozen by taking an action. When the state

is changed, the path that the agent take is evaluated by an SCL-genie decoder, and

depending on the response of the decoder, the agent gets a reward. By pursuing the

path with the highest expected reward, which is equivalent to seeking a low FER, the

agent constructs a polar code. The details and the rules defined for the maze game are

given below. The environment of the maze game for P(16, 8) is shown in Figure 4.1.

45

Figure 4.1. Environment of the maze game for P(16, 8).

• Environment: (N −K +1)x(K +1) grid world. It is not allowed to exceed maze

boundaries.

• Actions: The action set is defined as A = {“down”, “right”}. The agent deter-

mines the type of the channel (frozen or information) by taking an action. So,

maximum N possible actions are allowed to be taken. Choosing to go “down”

is equivalent to setting the channel as frozen and going “right” is equivalent to

setting the channel as information.

• States: Start state is fixed and located at (0, 0) and the terminal (end) state is

fixed and located at (N −K,K). The states in the environment are denoted as

(row, column).

• Reward: When the codeword is dropped from the list of the SCL-genie decoder,

it receives a negative reward, and when it reaches the terminal state it receives a

positive reward. Therefore, the reward is determined by the SCL-genie decoder.

• Goal: The goal is to reach the “End” state without dropping the codeword from

the list and having the maximum expected return.

46

• Episode: Each episode starts with an arbitrary set of LLR values obtained for

a specific SNR level. The agent starts exploring the environment from the start

state (0, 0). If the agent gets a negative reward or reaches the terminal state, an

episode is considered as complete.

The agent follows a greedy approach. However, the level of greediness decreases

over episodes. The level of greediness at an episode is calculated using

ϵi = 1− i

Θ
, (4.1)

where i is the episode number and Θ denotes the total number of episodes. It is seen

from (4.1) that the agent follows a very greedy approach at the beginning of the game

and a less greedy approach when the game gets closer to the end.

As the agent explores the environment over episodes, the path that the agent

follows converges to the path with the highest expected reward. Therefore, the per-

formance of the constructed polar codes gets better throughout the episodes. Before

the game finishes, the agent is expected to build the path with the lowest FER. In

Figures 4.2 and 4.3, heat map plots for a P(16, 8) at 2 dB SNR are shown. Figure

4.2 is obtained after 100 episodes and Figure 4.3 is obtained after 2000 episodes. By

comparing the two figures, it is seen that the greediness level decreased and the path

that the agent follows converged into a single path.

It is seen that the constructed polar code after 100 episodes is different than the

one constructed after 2000 episodes. The constructed polar code after 100 episodes has

the set of frozen channel indices as Ac = {1, 2, 4, 5, 6, 7, 9, 10} and information channel

indices as A = {3, 8, 11, 12, 13, 14, 15, 16}. At the end of the 2000th episode, the set of

frozen channel indices becomes Ac = {1, 2, 3, 5, 6, 7, 9, 10} and the set of information

channel indices becomes A = {4, 8, 11, 12, 13, 14, 15, 16}. Since their information chan-

nel indices are different, their performances are different. At 2 dB, the FER value after

100 episodes is 0.1322 and after 2000 episodes it decreases to 0.0945.

47

Figure 4.2. Evaluation of learning after 100 episodes.

Figure 4.3. Evaluation of learning after 2000 episodes.

48

In Figure 4.4, the FER performance of the maze game based polar code con-

struction method is plotted for various SNR levels and block lengths. Additionally, for

comparison, the FER performance of the Monte Carlo based polar code construction

method is also shown. Here, the code rate is R = 1/2. Note that both Monte Carlo

and maze game methods are applicable for various code rates.

During the simulations, the AWGN channel model with binary phase-shift key-

ing (BPSK) modulation is used. Key parameters (learning rate α, discount rate γ,

eligibility decay factor λ, the total number of episodes Θ, and list size L) used during

the simulations of the maze game are given in Table 4.1. The CRC polynomial used

for 4-bit CRC is C(x) = x4 + x+ 1. As mentioned in Chapter 2, the CRC polynomial

does not significantly change the FER performance.

Table 4.1. Parameter set of the maze game for various block lengths.

Block Length (N)

Parameters (16) (64) (128) (256)

α 0.05 0.01 0.005 0.001

γ 1 1 1 1

λ 0.3 0.5 0.75 0.8

Θ 2000 100000 200000 250000

L 4 4 8 8

It is seen from Figure 4.4 that the maze game method performs better than the

Monte Carlo based polar code construction method for various SNR levels and block

lengths (N ≤ 128). As the SNR level increases, the gap between the two construction

methods widens. When N ≥ 256, the polar code constructed using the maze approach

performs poorly. This is due to the increased complexity in the SARSA(λ) method.

Recall from Chapter 3 that, as the number of states increases, the systems fail to

accomplish the goal. To achieve the complexity problem and construct codes with

higher block lengths, new methods that use a similar maze game approach are proposed

49

in the following subsections.

0 0.5 1 1.5 2 2.5 3 3.5 4

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

F
E

R

Figure 4.4. FER performance of the maze approach.

4.2. Reduced Cluster-Based Maze Approach

The maze method proposed in [29] fails to construct reliable codes when N > 128.

The main reason behind this poor performance is the complexity of the game. As the

block length increases, the number of states in the maze game increases exponentially.

The proposed reduced cluster-based maze approach aims to reduce the complexity and

construct polar codes with higher block code lengths.

50

The reduced cluster-based maze approach is similar to the maze approach pro-

posed in [29]. In the reduced cluster-based method, the environment changes, some

restricted areas are defined and new borders are added. The fundamentals of the re-

duced cluster-based maze approach depend on limiting the actions and the number of

states by setting some channels as frozen and information before the game begins. As

an illustration, the environment for R = 8/16, or in other words, P(16, 8) is shown

in Figure 4.5. Here, the shaded areas are restricted. Thus, the agent is not allowed

to enter these areas. Also, the dashed lines define the borders and it is not allowed

to cross the borders. Therefore, the agent’s actions are limited in some states. This

forces the agent to go down or right in some cells, essentially forcing it to declare the

corresponding channel frozen or information, respectively.

Figure 4.5. Environment of the reduced cluster-based maze game for P(16, 8).

As mentioned earlier, the maze game is applicable to various code rates. Envi-

ronment of an P(16, 12) construction, R = 12/16, is presented in Figure 4.6. After the

51

restrictions are applied to P(16, 8), there are 20 possible paths left. When the code

rate increases to R = 12/16, the total number of available paths decreases to 4. This

also means that there are 20 distinctive constructions for P(16, 8) and 4 distinctive con-

structions for P(16, 12). As seen from Figures 4.5 and 4.6, the reduced cluster-based

construction method decreases the complexity of the maze game.

Figure 4.6. Environment of the reduced cluster-based maze game for P(16, 12).

In the reduced cluster-based construction method, the channels are grouped based

on the number of channel combinations they have undergone (see Figure 2.7). This

clustering approach relies on the idea that if the channel has undergone more combi-

nations, it will become less reliable for data transmission. The reduced cluster-based

maze approach starts with grouping N channels into log2(N)+1 clusters. Each cluster

is denoted as Ci, where i is the number of combinations that the channels have gone

through and 0 ≤ i ≤ log2N . Tables 4.2 and 4.3 show the channel indices that the

clusters contain when N = 16 and N = 64, respectively. The channel indices per

cluster when N = 128 and N = 256 are given in Appendix A.

After the clusters are formed, depending on the code rate, they are divided into

three categories: frozen, information, or the set of interest. Before the maze game

starts, the clusters with more channel combinations will be set as frozen and the ones

with fewer channel combinations will be set as information. However, there will be at

52

least one cluster that belongs to the set of interest and the type of the channel (frozen

or information) will not be predetermined. Therefore, the maze game will only focus

on deciding on the type of the channels found in the set of interest. The rule for setting

the channels as frozen or information are explained below.

Table 4.2. Channel indices per cluster when N = 16.

Cluster

C4 C3 C2 C1 C0

1 2 4 8 16

3 6 12

5 7 14

9 10 15

11

13

Let Ωi denote the number of elements in Ci. The channels in cluster Ci are set as

frozen if

i >

⌊
log2(N) + 1

2

⌋

and

Ωi < N −K −
log2(N)−i∑

j=1

Ωi+j.

The channels in cluster Ci are predetermined as information if

i <

⌊
log2(N) + 1

2

⌋

53

and

Ωi < K −
i∑

j=1

Ωi−j.

Table 4.3. Channel indices per cluster when N = 64.

Cluster

C6 C5 C4 C3 C2 C1 C0

1 2 4 8 16 32 64

3 6 12 24 48

5 7 14 28 56

9 10 15 30 60

17 11 20 31 62

33 13 22 40 63

18 23 44

19 26 46

21 27 47

25 29 52

34 36 54

35 38 55

37 39 58

41 42 59

49 43 61

45

50

51

53

57

54

If Ci does not satisfy the conditions above, it is considered as a member of the

set of interest. Depending on the code rate and the block length, the set of interest

contains at least one and at most two clusters. The number of elements in every cluster

for various code lengths is given in Table 4.4. Due to the nature of polar codes, the

table forms a Pascal triangle. Thus, the number of channel indices in every cluster

for any block length can also be found by looking at the (log2N)th row of the Pascal

triangle.

Table 4.4. Number of channel indices in every cluster for several code lengths.

Cluster

(N) C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10
(2) 1 1 - - - - - - - - -

(4) 1 2 1 - - - - - - - -

(8) 1 3 3 1 - - - - - - -

(16) 1 4 6 4 1 - - - - - -

(32) 1 5 10 10 5 1 - - - - -

(64) 1 6 15 20 15 6 1 - - - -

(128) 1 7 21 35 35 21 7 1 - - -

(256) 1 8 28 56 70 56 28 8 1 - -

(512) 1 9 36 84 126 126 84 36 9 1 -

(1024) 1 10 45 120 210 252 210 120 45 10 1

For example, for P(16, 8), C0 and C1 satisfy the condition for information, and

the channels in those clusters will be set as information channels. C3 and C4 meet the

condition for being set as frozen. However, C2 does not satisfy any of the two conditions

and therefore it is considered as a member of the set of interest. Therefore, the maze

game will only focus on determining the type of those channels. For P(16, 12), channels

found in C0, C1, and C2 will be set as information channels and only the channels in C4
will be set as a frozen channel. The set of interest will include C3. When N = 128 and

R = 64/128, channels found in C0, C1, and C2 will be predetermined as information

channels. Channels found in C5, C6, and C7 will be determined as frozen channels, and

55

there will be two clusters (C3 and C4) in the set of interest. Notice that the number of

clusters found in the set of interest differs for N = 16 and N = 128.

The FER performance of the constructions obtained by using the reduced cluster-

based maze approach is given in Figure 4.7 for several SNR levels. The FER perfor-

mance of the maze approach in [29] and the polar construction method introduced

in [18] are also plotted for comparison. It is important to mention that the method

given in [18] has a better performance than both Monte Carlo based construction and

the construction method used in [5]. Firstly, when N = 128, the polar code construc-

tions obtained by using the maze approach in [29] are very similar to the proposed

reduced cluster-based maze approach. When N = 256, the maze approach fails to

generate a good polar code construction. However, the reduced cluster-based maze

approach performs well. Finally, when N ≥ 512, the performance of the reduced

cluster-based maze approach becomes incompetent with [18].

0 0.5 1 1.5 2 2.5 3

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

F
E

R

Figure 4.7. FER performance of the reduced cluster-based maze approach.

56

The reduced cluster-based maze approach not only differs in FER performance

(when N > 128), but also the total number of episodes, or the number of training

samples, needed for convergence varies. The total number of episodes per several block

lengths is depicted in Figure 4.8 for both the maze approach and the reduced cluster-

based maze approach. As the block length increases, the difference in the total number

of episodes also increases. The proposed reduced cluster-based maze approach requires

fewer training samples for convergence.

16 64 128 256

Block Length

102

103

104

105

T
o

ta
l N

u
m

b
er

 o
f

E
p

is
o

d
es

Reduced Cluster-Based Maze App.
Maze App.

Figure 4.8. Total number of episodes needed for convergence for several block lengths.

4.3. Reduced Cluster-Based Maze Approach with Neighbor Dependency

It is seen that both the maze approach and the reduced cluster-based maze ap-

proach fail to generate good performing polar code constructions when N ≥ 512.

Therefore, additional restrictions are introduced to the reduced cluster-based maze

approach to decrease the complexity of the maze game. Additional restrictions are

applied based on the neighbors of the channels in the set of interest.

57

Just like in the reduced cluster-based maze approach, the channels are divided

into log2(N) + 1 clusters. Then, clusters are grouped into three categories (frozen,

information, or the set of interest) and the set of interest is determined. To reduce the

complexity of the maze game, the reduced cluster-based maze approach with neighbor

dependency introduces new restrictions and rules. In this approach, the aim is to

decrease the number of channels found in the set of interest. To decrease this number,

each channel’s neighboring channels are examined. If a channel that belongs to the

set of interest has a frozen neighbor, it is set as frozen. Likewise, if the channel has

a neighbor which is an information channel, it is predetermined as an information

channel. However, if one of the neighbors is an information channel and the other one

is a frozen channel, or if both of the neighboring channels belong to the set of interest,

the channel stays in the set of interest. The implementation of the proposed reduced

cluster-based maze approach with neighbor dependency is explained below for several

cases.

For example, to construct P(512, 256), first, 512 channels will be split into 10

clusters. The first 10 rows of the channel indices per clusters table are presented in

Table 4.5. Since it is an R = 256/512 polar code, C0, C1, C2, and C3 will be considered

for information channels, C4 and C5 will belong to the set of interest, and the channels

in C6, C7, C8, and C9 will be set as frozen. Thus far, the method given in Section 4.2 is

applied. Now, to further reduce the complexity, the channels in the set of interest will

be examined. For instance, to determine the type of the first element of C5 (the 16th

channel), the 15th and the 17th channel will be examined. Since they are both frozen

channels, the 16th channel will also be set as frozen. Similarly, the 63rd channel will

be set as information because its neighbor (the 64th channel) is already predetermined

as information. When the 31st channel is considered, it will stay in the set of interest

since both of the neighbors (the 30th channel and the 32nd channel) are found in the

set of interest. If the neighbor dependent reduction method is applied to all channels

found in C4 and C5, the elements in the set of interest will decrease from 252 to 112.

58

Table 4.5. Channel indices per cluster when N = 512 (first 10 rows).

Cluster

C9 C8 C7 C6 C5 C4 C3 C2 C1 C0

1 2 4 8 16 32 64 128 256 512

3 6 12 24 48 96 192 384

5 7 14 28 56 112 224 448

9 10 15 30 60 120 240 480

17 11 20 31 62 124 248 496

33 13 22 40 63 126 252 504

65 18 23 44 80 127 254 508

129 19 26 46 88 160 255 510

257 21 27 47 92 176 320 511

25 29 52 94 184 352

The performance of the reduced cluster-based maze approach with neighbor de-

pendency for several SNR levels is shown in Figure 4.9. For comparison, the constructed

polar codes with the reduced cluster-based maze approach and the method given in [18]

are also presented. It is seen that the reduced cluster-based maze approach with neigh-

bor dependency has a close FER performance to the construction method in [18]. When

N = 256, the reduced cluster-based maze approach and the neighbor dependent maze

approach have a very similar FER performance. However, when N = 512, the neighbor

dependent maze approach outperforms the reduced cluster-based maze approach. As

the SNR level increases, the neighbor dependent maze method gets closer to the per-

formance of the construction obtained by using the method in [18] for N = 512. After

comparing the reduced cluster-based maze approach and the neighbor dependent maze

approach, to construct a polar code when N ≤ 256, the reduced cluster-based maze

approach and when N ≥ 512, the reduced cluster-based maze approach with neighbor

dependency can be used.

59

0 0.5 1 1.5 2 2.5 3

SNR [dB]

10-5

10-4

10-3

10-2

10-1

100

F
E

R

Figure 4.9. FER performance of the reduced cluster-based maze approach with

neighbor dependency.

Furthermore, the reduced cluster-based maze approach with neighbor dependency

requires fewer training samples than the maze approach. For example, when N = 512

for the reduced cluster-based maze approach with neighbor dependency, the total num-

ber of episodes, Θ, was chosen as 0.5x105. However, Θ was chosen as 0.75x105 and

3x105, for the reduced cluster-based maze approach and the maze approach, respec-

tively. To sum up, the reduced cluster-based maze approach with neighbor dependency

constructs much more reliable codes with fewer training samples when compared to

other maze approaches.

60

5. CONCLUSION

Polar codes gained popularity over time due to their promising error performance.

In the literature, many construction and decoding methods are proposed to improve

the error performance of the polar codes. A good performing polar code construc-

tion technique with an RL based maze game approach is proposed for short block

lengths. However, it performs poorly for longer block lengths and cannot construct

reliable codes due to the high complexity. In this thesis, the error performance of a

reinforcement learning-based polar code construction method is improved for longer

block lengths (N > 128). Several methods are proposed to increase the performance

of the constructed codes while decreasing the complexity.

First, a reduced cluster-based maze approach is proposed to reduce the complex-

ity of the maze game and to construct reliable codes for N > 128. When N ≤ 128,

the performance of the proposed reduced cluster-based maze approach is very simi-

lar to the performance of both the maze approach and other polar code construction

methods found in the literature. It is shown that the reduced cluster-based approach

outperformed the maze approach method when N = 256 and also had a similar FER

performance to other construction methods. However, the reduced cluster-based maze

approach failed to construct reliable codes when N > 512 due to the increased com-

plexity. To achieve the complexity problem, further restrictions are applied to the

maze game and the reduced cluster-based maze approach with neighbor dependency

is proposed. It is demonstrated that the reduced cluster-based maze approach with

neighbor dependency constructs reliable codes when N ≤ 512. Moreover, it is shown

that it has a close FER performance to the construction methods given in the liter-

ature. Therefore, it can be said that the reduced cluster-based maze approach with

neighbor dependency is an efficient polar code construction method for block lengths

smaller than 1024.

61

As the block length increases, the complexity of the system and the size of the Q-

table and the eligibility trace table increase. For polar codes with higher block lengths

(N > 512), the traditional RL algorithms perform weakly. They cannot achieve the

goal despite increasing the number of episodes in the learning process. Therefore, as

future work, the polar code construction problem can be modeled with deep reinforce-

ment learning methods such as deep Q-learning.

In addition to the deep learning-based polar code construction approaches, the

position of the CRC bits in the sequence can be changed. Since RL methods require

feedback to find the best path, separation of CRC bits along the sequence may be ben-

eficial for polar code construction, especially for higher block lengths. This separation

will let the agent get rewards earlier and therefore the convergence to a single path will

be faster. Also, changing the position of CRC bits will increase the frequency of the

rewards and thus the FER performance may also be improved.

62

REFERENCES

1. Arıkan, E., “Channel Polarization: A Method for Constructing Capacity-Achieving

Codes for Symmetric Binary-Input Memoryless Channels”, IEEE Transactions on

Information Theory , Vol. 55, No. 7, pp. 3051–3073, 2009.

2. Arıkan, E., “A Performance Comparison of Polar Codes and Reed-Muller Codes”,

IEEE Communications Letters , Vol. 12, No. 6, pp. 447–449, 2008.

3. Mori, R. and T. Tanaka, “Performance of Polar Codes with the Construction Using

Density Evolution”, IEEE Communications Letters , Vol. 13, No. 7, pp. 519–521,

2009.

4. Pedarsani, R., S. H. Hassani, I. Tal and E. Telatar, “On the Construction of Polar

Codes”, IEEE International Symposium on Information Theory Proceedings , pp.

11–15, 2011.

5. Tal, I. and A. Vardy, “How to Construct Polar Codes”, IEEE Transactions on

Information Theory , Vol. 59, No. 10, pp. 6562–6582, 2013.

6. Trifonov, P., “Efficient Design and Decoding of Polar Codes”, IEEE Transactions

on Communications , Vol. 60, No. 11, pp. 3221–3227, 2012.

7. Wu, D., Y. Li and Y. Sun, “Construction and Block Error Rate Analysis of Polar

Codes over AWGN Channel Based on Gaussian Approximation”, IEEE Commu-

nications Letters , Vol. 18, No. 7, pp. 1099–1102, 2014.

8. Şaşoğlu, E., E. Telatar and E. Arıkan, “Polarization for Arbitrary Discrete Mem-

oryless Channels”, IEEE Information Theory Workshop, pp. 144–148, 2009.

9. Gulcu, T. C., M. Ye and A. Barg, “Construction of Polar Codes for Arbitrary Dis-

crete Memoryless Channels”, IEEE Transactions on Information Theory , Vol. 64,

63

No. 1, pp. 309–321, 2017.

10. Hussami, N., S. B. Korada and R. Urbanke, “Performance of Polar Codes for Chan-

nel and Source Coding”, IEEE International Symposium on Information Theory ,

pp. 1488–1492, 2009.

11. Yuan, B. and K. K. Parhi, “Architecture Optimizations for BP Polar Decoders”,

IEEE International Conference on Acoustics, Speech and Signal Processing , pp.

2654–2658, 2013.

12. Goela, N., S. B. Korada and M. Gastpar, “On LP Decoding of Polar Codes”, IEEE

Information Theory Workshop, pp. 1–5, 2010.

13. Tal, I. and A. Vardy, “List Decoding of Polar Codes”, IEEE Transactions on

Information Theory , Vol. 61, No. 5, pp. 2213–2226, 2015.

14. Niu, K. and K. Chen, “CRC-Aided Decoding of Polar Codes”, IEEE Communica-

tions Letters , Vol. 16, No. 10, pp. 1668–1671, 2012.

15. Balatsoukas-Stimming, A., M. B. Parizi and A. Burg, “LLR-Based Successive Can-

cellation List Decoding of Polar Codes”, IEEE Transactions on Signal Processing ,

Vol. 63, No. 19, pp. 5165–5179, 2015.

16. Niu, K. and K. Chen, “Stack Decoding of Polar Codes”, Electronics Letters , Vol. 48,

No. 12, pp. 695–697, 2012.

17. Jia, X., F. Wang, Y. Sun and S. Zhang, “A Novel Modulation Scheme of Polar

Codes”, 14th International Wireless Communications & Mobile Computing Con-

ference, pp. 1385–1390, 2018.

18. Chiu, M.-C., “Analysis and Design of Polar-Coded Modulation”, IEEE Transac-

tions on Communications , Vol. 70, No. 3, pp. 1508–1521, 2022.

64

19. Bravo-Santos, A., “Polar Codes for the Rayleigh Fading Channel”, IEEE Commu-

nications Letters , Vol. 17, No. 12, pp. 2352–2355, 2013.

20. Niu, K. and Y. Li, “Polar Codes for Fast Fading Channel: Design Based on Polar

Spectrum”, IEEE Transactions on Vehicular Technology , Vol. 69, No. 9, pp. 10103–

10114, 2020.

21. Aydoğan, O., Polar Codes and Their Performance in Satellite Communication,

Master’s Thesis, Istanbul Technical University, 2022.

22. Zhou, D., K. Niu and C. Dong, “Construction of Polar Codes in Rayleigh Fading

Channel”, IEEE Communications Letters , Vol. 23, No. 3, pp. 402–405, 2019.

23. Gruber, T., S. Cammerer, J. Hoydis and S. ten Brink, “On Deep Learning-Based

Channel Decoding”, 51st Annual Conference on Information Sciences and Sys-

tems , pp. 1–6, 2017.

24. Cammerer, S., T. Gruber, J. Hoydis and S. Ten Brink, “Scaling Deep Learning-

Based Decoding of Polar Codes via Partitioning”, IEEE Global Communications

Conference, pp. 1–6, 2017.

25. Doan, N., S. A. Hashemi and W. J. Gross, “Decoding Polar Codes with Reinforce-

ment Learning”, IEEE Global Communications Conference, pp. 1–6, 2020.

26. Habib, S., A. Beemer and J. Kliewer, “Belief Propagation Decoding of Short Graph-

Based Channel Codes via Reinforcement Learning”, IEEE Journal on Selected

Areas in Information Theory , Vol. 2, No. 2, pp. 627–640, 2021.

27. Elkelesh, A., M. Ebada, S. Cammerer and S. Ten Brink, “Decoder-Tailored Polar

Code Design Using the Genetic Algorithm”, IEEE Transactions on Communica-

tions , Vol. 67, No. 7, pp. 4521–4534, 2019.

28. Huang, L., H. Zhang, R. Li, Y. Ge and J. Wang, “AI Coding: Learning to Construct

65

Error Correction Codes”, IEEE Transactions on Communications , Vol. 68, No. 1,

pp. 26–39, 2019.

29. Liao, Y., S. A. Hashemi, J. Cioffi and A. Goldsmith, “Construction of Polar Codes

with Reinforcement Learning”, IEEE Global Communications Conference, pp. 1–6,

2020.

30. Irawan, A., G. Witjaksono and W. K. Wibowo, “Deep Learning for Polar Codes

over Flat Fading Channels”, International Conference on Artificial Intelligence in

Information and Communication, pp. 488–491, 2019.

31. Lin, S. and D. J. Costello, Error Control Coding , Prentice Hall New York, 2001.

32. ETSI, 5G; NR; Multiplexing and Channel Coding (V15.2.0 Release 15), TS 138

212, 2018.

33. Shannon, C. E., “A Mathematical Theory of Communication”, The Bell System

Technical Journal , Vol. 27, No. 3, pp. 379–423, 1948.

34. Ash, R. B., Information Theory , Courier Corporation, 2012.

35. Goldsmith, A., Wireless Communications , Cambridge University Press, 2005.

36. Vangala, H., E. Viterbo and Y. Hong, “A Comparative Study of Polar Code Con-

structions for the AWGN Channel”, ArXiv Preprint ArXiv:1501.02473 , 2015.

37. Dizdar, O. and E. Arıkan, “A High-Throughput Energy-Efficient Implementation

of Successive Cancellation Decoder for Polar Codes Using Combinational Logic”,

IEEE Transactions on Circuits and Systems I: Regular Papers , Vol. 63, No. 3, pp.

436–447, 2016.

38. Condo, C., V. Bioglio and I. Land, “Generalized Fast Decoding of Polar Codes”,

IEEE Global Communications Conference, pp. 1–6, 2018.

66

39. Moor, J., “The Dartmouth College Artificial Intelligence Conference: The Next

Fifty Years”, AI Magazine, Vol. 27, No. 4, pp. 87–91, 2006.

40. Sutton, R. S. and A. G. Barto, Reinforcement Learning: An Introduction, MIT

Press, 2018.

41. Puterman, M. L., Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming , John Wiley & Sons, 2014.

67

APPENDIX A: CHANNEL INDICES PER CLUSTER

WHEN N = 128 AND N = 256

Table A.1. Channel indices per cluster when N = 128.

Cluster

C7 C6 C5 C4 C3 C2 C1 C0
1 2 4 8 16 32 64 128

3 6 12 24 48 96

5 7 14 28 56 112

9 10 15 30 60 120

17 11 20 31 62 124

33 13 22 40 63 126

65 18 23 44 80 127

19 26 46 88

21 27 47 92

25 29 52 94

34 36 54 95

35 38 55 104

37 39 58 108

41 42 59 110

49 43 61 111

66 45 72 116

67 50 76 118

69 51 78 119

73 53 79 122

81 57 84 123

97 68 86 125

70 87

71 90

68

Table A.1. Channel indices per cluster when N = 128. (cont.)

Cluster

C7 C6 C5 C4 C3 C2 C1 C0
74 91

75 93

77 100

82 102

83 103

85 106

89 107

98 109

99 114

101 115

105 117

113 121

69

Table A.2. Channel indices per cluster when N = 256.

Cluster

C8 C7 C6 C5 C4 C3 C2 C1 C0
1 2 4 8 16 32 64 128 256

3 6 12 24 48 96 192

5 7 14 28 56 112 224

9 10 15 30 60 120 240

17 11 20 31 62 124 248

33 13 22 40 63 126 252

65 18 23 44 80 127 254

129 19 26 46 88 160 255

21 27 47 92 176

25 29 52 94 184

34 36 54 95 188

35 38 55 104 190

37 39 58 108 191

41 42 59 110 208

49 43 61 111 216

66 45 72 116 220

67 50 76 118 222

69 51 78 119 223

73 53 79 122 232

81 57 84 123 236

97 68 86 125 238

130 70 87 144 239

131 71 90 152 244

133 74 91 156 246

137 75 93 158 247

145 77 100 159 250

70

Table A.2. Channel indices per cluster when N = 256. (cont.)

Cluster

C8 C7 C6 C5 C4 C3 C2 C1 C0
161 82 102 168 251

193 83 103 172 253

85 106 174

89 107 175

98 109 180

99 114 182

101 115 183

105 117 186

113 121 187

132 136 189

134 140 200

135 142 204

138 143 206

139 148 207

141 150 212

146 151 214

147 154 215

149 155 218

153 157 219

162 164 221

163 166 228

165 167 230

169 170 231

177 171 234

194 173 235

195 178 237

71

Table A.2. Channel indices per cluster when N = 256. (cont.)

Cluster

C8 C7 C6 C5 C4 C3 C2 C1 C0
197 179 242

201 181 243

209 185 245

225 196 249

198

199

202

203

205

210

211

213

217

226

227

229

233

241

