LOW POWER ADVANCED ENCRYPTION STANDARD (AES)
IMPLEMENTATION ROBUST AGAINST SIDE CHANNEL ATTACKS

by
Serdar Unal
B.S., Electrical & Electronics Engineering, Bogazici University, 2019

Submitted to the Institute for Graduate Studies in
Science and Engineering in partial fulfillment of
the requirements for the degree of

Master of Science

Graduate Program in Electrical & Electronics Engineering
Bogazici University

2022

il

ACKNOWLEDGEMENTS

I would like to thank Assist. Prof. Faik Baskaya for his support and guidance
throughout the thesis period. His experience helped me to correct my path and prepare

a professional thesis that also conforms to the academic guidelines.

This thesis is a cumulative result of all I have learned during my undergraduate
and graduate periods. Therefore, I also would like to thank Electrical & Electronics

Engineering department faculty members for their teaching.

My company, TUBITAK BILGEM, allowed me to use ASIC tools and equipped
me with the skills that made this thesis more professional. T hail my colleagues
from TUTEL whose friendship is very valuable for me. Special thanks to my friend
Muhammed Said Seferbey.

I would like to express my gratitude to my father, my mother, and my sister for
their all-life support. Finally, I thank my dear wife and companion, Serife, for her

understanding and assistance.

v

ABSTRACT

LOW POWER ADVANCED ENCRYPTION STANDARD
(AES) IMPLEMENTATION ROBUST AGAINST SIDE
CHANNEL ATTACKS

As the people around the globe become increasingly connected to each other, the
amount of information that flows becomes huge. Unfortunately, this vast information
network is vulnerable to harmful attacks. Encryption is a strong tool that has been
used for ages to act as a shield against these attacks. Among many algorithms utilized
for encryption, one of the most popular is AES. AES is an approximately 20-year old
algorithm that has been adopted by many organizations around the world to protect
classified and unclassified data. In line with the trend of low power and secure imple-
mentations, the main intent of this thesis is to show a low-power AES implementation
that is secure against power side-channel attacks. In the RTL, currently unused regis-
ters are kept constant to lower the power consumption. Choosing the LP ASIC process,
using clock-gating, and preferring standard cells with higher threshold voltages enable
more power saving. For the side-channel attack resistance, obfuscating and pipelining
are employed. The obfuscating disguises the relation between the processed bits and the
power consumption by modifying the processed information. On the other hand, the
pipelining mixes power consumption related to different inputs with each other. The
different versions of AES implementations are processed through FPGA and TSMC
65 nm ASIC flow to compare with each other. After the power traces are collected
and analyzed by ChipWhisperer the side-channel attack resistance is evaluated. The
effects of the obfuscating and pipelining in increasing attack resistance are proven after
predicting key bytes from power traces stemming from thousands of random inputs.

The area, power overheads in return for increased attack resistance are detected.

OZET

YAN KANAL SALDIRILARINA DAYANIKLI, DUSUK
GUC TUKETEN AES UYGULAMASI

Diinyadaki insanlarin birbirleriyle artan miktarda iletigim kurmalariyla birbir-
leri arasinda bilgi miktar1 devasa olmaktadir. Ne yazik ki bu devasa bilgi agi zararh
saldirilara aciktir. Sifreleme yiizyillardir bu saldirilara karsi kullanilan giiclii bir arac
olmaktadir. Sifreleme i¢in kullanilan pek ¢ok algoritma iginde en popiiler olanlardan
biri de AES’dir. AES yaklagik 20 yildir diinyadaki bir¢ok kurum tarafindan gizli ve
gizli olmayan bilgileri korumak igin kullanilmaktadir. Diigiik gii¢ tiiketen ve giivenli
uygulama egilimi dogrultusunda bu tezin temel amaci diigiik gii¢ tiikketen ve yan-kanal
saldirilarina dayanikli bir AES uygulamasi gostermektir. RTL seviyesinde anlik olarak
kullanilmayan register’larin sabit tutulmasi saglanarak giic¢ tiiketimi diisiiriilmektedir.
Bunun yaninda ASIC prosesleri iginden LP kullanmak, clock-gating kullanmak ve
yiikksek esik gerilimine sahip standart hiicreler tercih etmek daha fazla gii¢ tasar-
rufu saglamaktadir. Yan-kanal saldirilarina dayaniklilik icin karigtirma ve boru hatti
kullamilmaktadir. Karistirma islenen veriyi degistirerek islenen veri ile gii¢ tiiketimi
arasindaki iligskiyi gizlemektedir. Buna karsin, boru hatti farkl girdilerden kaynaklanan
gii¢ tiketimlerini birbirleriyle karistirmaktadir. Farki AES uygulamasi versiyonlar:
FPGA ve TSMC 65 nm ASIC akiglarindan gecirilerek birbirleriyle kargilagtirilmaktadir.
Giig izlerinin toplanmasindan sonra ChipWhisperer programina sokularak yan-kanal
saldirilarina dayaniklilik degerlendirilmektedir. Karistirma ve boru hattinin saldirilara
dayanikliligi arttirmasi, binlerce rassal girdiden kaynaklanan gii¢ izleriyle sifreleme
anahtarinin parcalarinin tahmin edilmesiyle ispatlanmigtir. Saldir1 dayaniklihginin art-

masina karsin artan alan ve gii¢ tiikketimi bilgileri tespit edilmektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iii
ABSTRACT . . . e iv
OZET . . oo v
LIST OF FIGURES ix
LIST OF TABLES s xi
LIST OF SYMBOLS e xiv
LIST OF ACRONYMS/ABBREVIATIONS XV
1. INTRODUCTION e 1
2. BACKGROUND 4
2.1. Cryptology 4
2.1.1. Cryptography 4

2.1.1.1. Ciphers)

2.1.1.2. Symmetric vs Asymmetric Ciphers 5

2.1.1.3. Block vs Stream Ciphers 6

21.14. Hash. 6

2.1.2. Cryptanalysis 7

2.2, Galois Field 8
2.3. AES Algorithm 9
2.3.1. History 10

2.3.2. Algorithm Definition 10

2.3.2.1. AddRoundKey, 12

2.3.2.2. SubBytes 12

2.3.2.3. ShiftRows oo 15

2.3.24. MixColumns 15

2.3.3. Key Expansion 18

2.3.3.1. SubWordo 18

2.3.3.2. RotWord 19

2.3.4. Confidentiality Operation Modes 19

vii

2.3.5. Security of AES 20

2.4. AES Validation 20
2.5. Side Channel Attack (SCA) 21
2.5.1. Power Analysis Attacks 22

2.5.1.1. Simple Power Analysis (SPA) 22

2.5.1.2. Differential Power Analysis (DPA) 22

2.5.1.3. Correlation Power Analysis (CPA) 23

2.5.2. Power Analysis Countermeasures 23

3. RTL CODING OF DESIGN 25
3.1, Structure 25
3.2. Low Power Techniques 32
3.3. Side Channel Attack Countermeasures 33

4. FPGA DESIGN FLOW 35
4.1. Behavioral Simulation L oL 35
4.2. Synthesis 35
4.3. Implementation L L 37

5. ASIC DESIGN FLOW 41
5.1. Synthesis 41
5.2. Place & Route 43
5.3. Signoff RC Extraction 47
5.4. Signoff Timing Analysis L. 48
5.5. Gate-Level Simulation00 49
5.6. Signoff Power Analysis 50

6. EXPERIMENTS AND RESULTS 52
6.1. Side-Channel Attack Resistance Evaluation. 52
6.2. CompariSon 61

7. CONCLUSION s 64
REFERENCES o 66
APPENDIX A: FPGA FLOW CONSTRAINTS 70
APPENDIX B: KAT TEST BENCH 72

APPENDIX C: TEST BENCH (NO PIPELINE) 79

viil

APPENDIX D: TEST BENCH (PIPELINE) 82

Figure 2.1.

Figure 2.2.

Figure 2.3.

Figure 2.4.

Figure 2.5.

Figure 2.6.

Figure 2.7.

Figure 2.8.

Figure 2.9.

Figure 2.10.

Figure 2.11.

Figure 2.12.

Figure 2.13.

Figure 3.1.

LIST OF FIGURES

Symmetric Encryption.o o000
Asymmetric Encryption. Lo
Hashing.

(a) Encryption. (b) Encryption Round.

(a) Decryption. (b) Decryption Round.

AddRoundKey.

Key Expansion
RotWord.

Side Channel Attacks.

Top Level Connections.

X

11

Figure 3.2.

Figure 3.3.

Figure 3.4.

Figure 3.5.

Figure 3.6.

Figure 3.7.

Figure 4.1.

Figure 4.2.

Figure 5.1.

Figure 5.2.

Figure 5.3.

Figure 5.4.

Figure 5.5.

Figure 6.1.

LESR. . . . 26
(a) Pipeline (32-bit). (b) Pipeline Main Round. 28
Pipeline (32-bit) Scount Module. 29
Pipeline (64-bit) Scount Module. 30
(a) Pipeline (64-bit). (b) Pipeline Main Round. 31
Boolean Masking. Lo 33
FPGA Resources. 36
FPGA Implementation. 37
P&RFlow. o 44
Placed Design.o 45
Layout (Final). 47
Power Trace File. o1
Current Trace Graph. 51
Side-Channel Attack Results. 59

Table 2.1.

Table 2.2.

Table 2.3.

Table 2.4.

Table 2.5.

Table 4.1.

Table 4.2.

Table 4.3.

Table 4.4.

Table 5.1.

Table 5.2.

Table 5.3.

Table 5.4.

Table 5.5.

LIST OF TABLES

GF (2') Addition.

GF (2') Multiplication.

GF (21) Inverses.

AES Versions.

re; Values (hex). 0 o

FPGA Utilization (Implementation).

FPGA Utilization Primitives (Implementation).

FPGA Timing (Implementation).

FPGA Power Consumption (Implementation).

Synthesis Results.

Process, Voltage, Temperature (PVT) Corners.

Design Statistics (Innovus Final).

Timing Violations (Setup).,

Timing Violations (Hold).

xi

19

44

xii

Table 5.6. Power Consumption (Total). 50
Table 6.1. Target Cipherkey. 53
Table 6.2. Byte Prediction Results (Rolled, 10,000 Traces). 54
Table 6.3. Byte Prediction Results (Rolled, 50,000 Traces). 54
Table 6.4. Byte Prediction Results (Rolled, 100,000 Traces). 54
Table 6.5. Byte Prediction Results (Rolled Obfuscated, 10,000 Traces). 55
Table 6.6. Byte Prediction Results (Rolled Obfuscated, 50,000 Traces). 55
Table 6.7. Byte Prediction Results (Rolled Obfuscated, 100,000 Traces). . . . 55
Table 6.8. Byte Prediction Results (32-bit Pipeline, 10,000 Traces). 56
Table 6.9. Byte Prediction Results (32-bit Pipeline, 50,000 Traces). 56
Table 6.10. Byte Prediction Results (32-bit Pipeline, 100,000 Traces). 56
Table 6.11. Byte Prediction Results (64-bit Pipeline, 10,000 Traces). o7
Table 6.12. Byte Prediction Results (64-bit Pipeline, 50,000 Traces). 57
Table 6.13. Byte Prediction Results (64-bit Pipeline, 100,000 Traces). 57
Table 6.14. Byte Prediction Results (Unrolled, 10,000 Traces). 58

Table 6.15. Byte Prediction Results (Unrolled, 50,000 Traces). 58

xiil

Table 6.16. Byte Prediction Results (Unrolled, 100,000 Traces). 58

Table 6.17. Partial Guessing Entropy (PGE) (100,000 Traces). 61

Table 6.18. Comparison to the Literature. 62

LIST OF SYMBOLS

Galois Field with order p*
Threshold voltage

Multiplicative inverse of x

Population mean

Standard deviation

Multiplication in Galois Field
XOR operation

Xiv

LIST OF ACRONYMS/ABBREVIATIONS

AES Advanced Encryption Standard

AESAVS Advanced Encryption Standard Algorithm Validation
Suite

ANSI American National Standards Institute

ASIC Application Specific Integrated Circuit

BBL Bridge Boost Logic

BC Best Case

BRAM Block RAM

CBC Cipher Block Chaining Mode

CFB Cipher Feedback Mode

CMOS Complementary Metal Oxide Semiconductor

CPA Correlation Power Analysis

CTR Counter Mode

CTS Clock Tree Synthesis

DES Data Encryption Standard

DPA Differential Power Analysis

DRC Design Rule Check

DSP Digital Signal Processing

ECB Electronic Codebook Mode

EDA Electronic Design Automation

EM Electromagnetic

FIPS Federal Information Processing Standards

FPGA Field Programmable Gate Array

GDSII Graphic Design System

GF Galois Field

HLS High-Level Synthesis

I2R Input-to-Register

IBUF Input Buffer

XV

/O
[oT

P

IV
KAT
LEF
LFSR
LIB
LP

LT
LUT
MATLAB
MCT
MI5
ML
MMMC
MMT
MOSFET
MTD
NBS
NIST
OBUF
OFB
PGE
P& R
PVT
RC4
RC6
ROM
RSA
RSM

Xvi

Input / Output

Internet of Things

Intellectual Property
Initialization Vector

Known Answer Test

Library Exchange Format
Linear Feedback Shift Register
Liberty Timing File

Low Power

Low Temperature

Look-up Table

Matrix Laboratory

Monte Carlo Test

Military Intelligence, Section 5
Maximum Leakage
Multi-Mode Multi-Corner
Multi-block Message Test
Metal Oxide Semiconductor Field Effect Transistor
Measurements-to-Disclosure
National Bureau of Standards
National Institute of Standards and Technology
Output Buffer

Output Feedback Mode
Partial Guessing Entropy
Place and Route

Process, Voltage, Temperature
Rivest Cipher 4

Rivest Cipher 6

Read Only Memory
Rivest-Shamir-Adleman

Rotating S-box Masking

RTL
S-box
SCA
SDF
SHA
SOBER
SPA
SPEF
SPICE
SRAM
STA
TC
TCF
TRNG
TSMC
VCD
WC
WCL
WCZ
WHS
WNS
WPWS
US

Register Transfer Level

Substitution Box

Side Channel Attack

Standard Delay Format

Secure Hash Algorithm

Seventeen Octet Byte Enabled Register
Simple Power Analysis

Standard Parasitic Exchange Format
Simulation Program with Integrated Circuit Emphasis
Static Random Access Memory

Static Timing Analysis

Typical Case

Toggle Count Format

True Random Number Generator
Taiwan Semiconductor Manufacturing Company
Value Change Dump

Worst Case

Worst Case Low Temperature

Worst Case Zero Temperature

Worst Hold Slack

Worst Negative Slack

Worst Pulse Width Slack

United States

xvii

1. INTRODUCTION

The people are communicating with each other at ever-increasing rate & speed.
This communication revolution enables us to get our job done in a second which would
take a much longer time compared in the past. The benefits are threatened by ma-
licious people who can damage our lives while living far from us. The importance of
communication security shifted far beyond the borders of the military realm. Personal
information is disclosed, social media accounts are accessed to spread false informa-
tion, bank accounts are emptied, and confidential details are compromised. Security is

critical to prevent these activities and ensure the health of the communication.

The information is encrypted to prevent intruders from getting the secrets. If an
intruder gets access to the data flowing in the communication channel, he only sees
garbage-looking data, not the initial secret. there are two main branches of encryption
from the key perspective: symmetric encryption, and asymmetric encryption. The
main difference is that the same key is used to encrypt and decrypt the message in
symmetric encryption. On the other hand, the decryption key is different from the en-
cryption key in asymmetric encryption. The topic of this thesis, Advanced Encryption
Standard (AES) belongs to the symmetric encryption branch. There is also the dis-
tinction between block ciphers and stream ciphers. Stream ciphers operate on smaller
units and therefore faster. On the contrary, the block ciphers deal with large blocks at
a time. The AES is an example of the block ciphers.

The AES was chosen after a competition, organized by the National Institute
of Standards and Technology (NIST). The goal of the competition was to select a
royalty-free, publicly open algorithm which is capable to protect sensitive data well
in the new century. The Rijndael algorithm, developed by Belgian cryptographers
Vincent Rijmen and Joan Daemen, was selected as AES and officially published as
Federal Information Processing Standards (FIPS) 197 in 2001. Since then, AES has
been used extensively worldwide and replaced Data Encryption Standard (DES) which

was the previous standard adopted by National Bureau of Standards (NBS) in the
past. NBS is the previous name of the NIST.

AES algorithm consists of rounds whose number depends on the key length. In
rounds, four essential operations are performed: SubBytes, ShiftRows, MixColumns,
and AddRoundKey. The plaintext undergoes a series of operations involving the round
keys and the ciphertext is obtained in the end. Round keys are obtained with the Key
Expansion routine using the initial cipherkey. Three key length options are available:
128-bit, 192-bit, and 256-bit. There are also different confidentiality operation modes

of AES to improve security by associating encryption of independent data blocks.

Numerous papers have been published about improving and breaking AES, [1]
but AES was able to be resistant against any practical algebraic attack. However, the
implementations turned out to be vulnerable to side-channel attacks. The side-channel
attacks break the algorithms by analyzing leaks stemming from implementations in-
stead of attacking directly to the cipher. Thereby, they bypass the mathematical
foundations of the algorithms. Analyzing fluctuations in the power consumption, Elec-
tromagnetic (EM) radiations, difference in operation time, emitted sounds can give

clues about the secret and can result in disclosure of the cipherkey.

We propose a special AES implementation in this thesis. One of the two main tar-
gets is having a low-power design. In general, low power consumption and side-channel
resistance are contradictory objectives. Therefore, the low-power objective should be
interpreted as relatively low-power. Techniques in the RTL and in the Application
Specific Integrated Circuit (ASIC) / Field Programmable Gate Array (FPGA) flows
were employed to reduce power consumption and to offset power consumption stem-
ming from the introduction of the side-channel attack countermeasures. The second
target is resistance to the power side-channel attacks. Obfuscating and pipelining are
introduced to prevent power side-channel attacks. The AES was passed through the
Taiwan Semiconductor Manufacturing Company (TSMC) 65 nm ASIC flow, from RTL

to GDSII. The efficiency of the countermeasures was analyzed with ChipWhisperer

tool after power traces corresponding to the different inputs were collected from the
Cadence Voltus program. To sum up, the contributions from thesis can be summarized

as:

e The effect of the pipelining as a countermeasure against power side-channel at-
tacks was examined and compared with regular AES implementations and obfus-
cating. It has been shown that pipelining improves side-channel attack resistance
in addition to performance improvement.

e The side-channel attack resistances of different AES implementations were eval-
uated using simulation programs after they had gone through the ASIC imple-
mentation flow. This enables evaluating side-channel attack resistance before a

costly and long tape-out process.

The thesis is constructed as follows. Chapter 2 summarizes the background of the
thesis topic. Chapter 3 describes the RTL blocks of the design and some RTL tricks
used to reach the objectives of thesis. FPGA design flow steps in Xilinx Vivado and
their details are explained in Chapter 4. ASIC counterpart of Chapter 4 is discussed in
Chapter 5 using Cadence Electronic Design Automation (EDA) tools. Chapter 6 eval-
uates the design according to the defined metrics and compares this work with existing

literature. Chapter 7 concludes by giving a summary of what has been achieved.

2. BACKGROUND

In this chapter, some important concepts regarding this thesis are explained so

that the following chapters will be easier to understand.

2.1. Cryptology

Cryptology is the science of the secret, in basic terms. The term is confused with
“Cryptography” but Cryptology is a broader term that includes both Cryptography
and Cryptanalysis, which are explained in Section 2.1.1 and Section 2.1.2; respectively.
So, Cryptology is concerned with both hiding and revealing. On the other hand,
Cryptography is on the “hiding” side. Throughout history, many “hiding procedures”

were developed and many people tried to break these procedures to obtain the secret.

2.1.1. Cryptography

Cryptography is the study of techniques for secure communication between dif-
ferent parties. The origin of the word goes back to Greeks, to the word “kryptos”
meaning hidden. Cryptography is an old field that people used for ages to hide their
secrets. One of the best-known examples in history is the Caesar cipher. It is named
after Roman general and statesman Julius Caesar. In Caesar cipher, every character is
replaced with another character with a fixed distance between them according to the
alphabet. For example, C is replaced with A, D with B, E with C, etc. Caesar cipher
can be regarded as a member of cyclical-shift substitution ciphers. It was effective in
securing military messages in its era when a limited number of people were literate. As
time passed, the ciphers became more and more sophisticated [2]. Today, cryptogra-
phy is essential in a world through which confidential information flows continuously.
The important applications include e-commerce activities, chip-based payment cards,
military messages, digital currencies, confidential company data, etc. The following

sections present a classification for different types of cryptographic algorithms.

2.1.1.1. Ciphers. There are three essential terms in the definition of a cipher: plaintext,

key, and ciphertext. Cipher is the algorithm that converts plaintext to ciphertext
using a key. The way the ciphertext is decrypted results in two main branches in two
different categories: symmetric ciphers - asymmetric ciphers, block ciphers - stream
ciphers. There are also hash algorithms whose purpose is different from the symmetric

& asymmetric ciphers.

2.1.1.2. Symmetric vs Asymmetric Ciphers. The same key is used to encrypt and de-

crypt messages in symmetric algorithms as depicted in Figure 2.1. On the other hand,
different keys are used for encryption & decryption in asymmetric algorithms as visible
in Figure 2.2. Though asymmetric ciphers have a more complex and slower implemen-
tation, they solve the main burden in symmetric ciphers, namely key distribution. In
asymmetric ciphers, there are one public key and one private key for each party in the
communication. If party A wants to send information to party B, it encrypts using
the public key of party B which is freely available on the internet. Party B decrypts
it using its own private key. For authentication purposes in asymmetric encryption,
the document is encrypted with the private key of party C and anyone with the public
key of party C can be sure that the document was signed by party C [3]. In practice,
the keys of symmetric ciphers are distributed with asymmetric encryption. One of the
most popular symmetric algorithm is the AES is the main focus of this thesis and is

explained in detail in Section 2.3.

W P
Same
Key

g == @M= g—3

Plain Encryption Cipher Decryption Plain
Text Text Text

Figure 2.1. Symmetric Encryption.

g g

Different
Keys

g == @M= g3

Plain Encryption Cipher Decryption Plain
Text Text Text

Figure 2.2. Asymmetric Encryption.

2.1.1.3. Block vs Stream Ciphers. The main distinction between block and stream

ciphers is the operand size. A large data block consisting of many “unit”s is converted
to the ciphertext in block ciphers. On the other hand, in stream ciphers, only one
“unit” at a time is converted. The size of the “unit” may vary but it is mostly 8-bit.
Processing smaller blocks enables stream ciphers to operate faster and isolate errors
between different units. Block ciphers are slower as in general they collect all units
to start encryption/decryption. Errors can be propagated to other units. However, in
block ciphers, it is harder to infiltrate between units without being detected. Block
ciphers are also stronger in encryption as the result is dependent on many units [4].
Examples for stream ciphers include Rivest Cipher 4 (RC4), Seventeen Octet Byte
Enabled Register (SOBER), and A5/1. On the other hand, AES, DES, Rivest Cipher
6 (RC6), MISTY-1, and Camellia can be given as instances for block ciphers [5].

2.1.1.4. Hash. Hashing is different from encryption in a sense that a hashed message
is not intended to be decrypted. Its simplified block diagram can be seen in Figure 2.3.
A famous example is Secure Hash Algorithm (SHA), which digests input plaintext into
a small, fixed-sized output. A good hash function returns completely different results
for slightly different inputs (avalanche effect) and is infeasible to deduce input value
from the hash value. These algorithms are used in application arcas such as databases
where critical information is stored as hashed values and compromised data give no
information about the owner of the plaintext. On the other hand, the users, whose

credentials are authenticated with the hash value, can access the system easily.

Text Algorithm Text

Figure 2.3. Hashing.

2.1.2. Cryptanalysis

Cryptanalysis is a field interested in breaking protections set by Cryptography.
Cryptographic algorithms are tested and secrets are compromised by Cryptanalysis.
The term encompasses finding the weakness in both the mathematical properties of the
algorithm and the implementation of the algorithm. The side-channel attacks stay on
the implementation side and they are examined in detail in Section 2.5. There are many
different attacks against cryptographic algorithms. The amount of time, storage, and
data required to perform an attack are used to characterize the attacks. The attacks
that require an infeasible amount of time and storage might have been infeasible in
the past but they may be feasible now due to technological advancements. Therefore,
a sccure algorithm thay may be insecure in the future may need to be replaced by
another algorithm. The attacks can be classified into five groups with respect to the

amount of information the attacker has.

e Ciphertext-only: The attacker has only access to the collection of ciphertexts.

e Known-plaintext: Collection of arbitrary plaintexts and their corresponding ci-
phertexts are known.

e Chosen-plaintext (chosen-ciphertext): Similar to the known-plaintext attacks but
the collection is chosen by the attacker, i.e not arbitrary.

e Adaptive chosen-plaintext: The collection is again chosen by the attacker but
chosen adaptively according to previously obtained information.

e Related-key attacks: The attacker can obtain ciphertexts from the chosen plain-
texts under different keys. Keys are not known to the attacker but the relation

between keys is known, such as there is only a single bit difference between keys.

2.2. Galois Field

The Galois field is a field with a finite number of elements. The name comes
from French mathematician Evariste Galois. The fields support addition, subtraction,
multiplication, and division on their finite number of elements. There are different
Galois fields with order p* where p is a prime number and % is a positive integer. p is
called the characteristic of the field. The field is used in AES operations, hence it was
added as a separate section in Chapter 2. The simplest example of the Galois field is
GF (2'). Tt has two elements: zero and one. Addition and multiplication in the GF
(2') are given in Table 2.1 and in Table 2.2, respectively. Addition is basically XOR
operation and subtraction is also equal to addition because x = -x by definition in GF
(2'). For multiplication, operands are multiplied and modulo 2 operation is performed
on the product to give the final result [6]. In the GF (2'), multiplication turns out to
be AND operation.

The additive inverse of an element is an element where these two elements are
added and the addition result modulo p* becomes 0. The multiplicative inverse of an
element is an element where the two elements are multiplied and the multiplication
result modulo p* becomes one. So, these values can be extracted directly from addition
and multiplication tables. The Extended Euclidean algorithm can be used to find the
multiplicative inverse of an element in the Galois field [6]. Inverses for GF (2!) are in

Table 2.3. There is no multiplicative inverse of zero.

Table 2.1. GF (2') Addition.

Table 2.2. GF (2') Multiplication.

e | 0|1
0|00
101

Table 2.3. GF (2') Inverses.

Element (x) 01
Additive Inverse (-x) 0|1
Multiplicative Inverse (z71) | - | 1

Another example for Galois field is GF (2%) that is widely used in cryptography
as the elements can be represented by 8 bits, i.e bytes. Representing the data as a
vector in the Galois field allows casily manipulating the data mathematically. AES
SubBytes and MixColumns operations utilize GF (2®). How they utilize is explained

in more detail in Section 2.3.2.2 and in Section 2.3.2.4.

2.3. AES Algorithm

AES is the algorithm made by Belgian cryptographers Vincent Rijmen and Joan
Daemen for the competition organized by NIST. After its victory in the competition,
it has been used extensively worldwide. AES is a symmetric encryption algorithm
and involves sub-algorithms called repeatedly. The key, which is often generated using
random number generators (RNG), is utilized after processing by the Key Expansion
algorithm. The original version of AES processes data block by block independently.
Later, new operation modes were added to improve security. After nearly 20 years, AES
with proper implementation is still considered secure according to the cryptography

community.

10

2.3.1. History

National Institute of Standards and Technology (NIST) was secking an algorithm
that would be used by the United States (US) government and voluntarily by others.
The algorithm had to be open so that the security would not rely on the secrecy of the
operations. Its mathematical background needed to be strong so that the openness of
the algorithm would not pose a security threat. In 1997, NIST made an official call
to develop Advanced Encryption Standard (AES). Fifteen algorithms were qualified
for the first round. After the first round, five algorithms remained: MARS, RC6,
Rijndael, Serpent, and Twofish. After the second round, Rijndael was chosen to become
AES. The AES was published as Federal Information Processing Standards (FIPS) in
2001. The NIST develops standards and guidelines called FIPS to be used by the US

government.

2.3.2. Algorithm Definition

AES has four main operations: AddRoundKey, SubBytes, ShiftRows, and Mix-
Columns. These operations repeatedly applied with an amount determined by the

version AES, as given in Table 2.4. This thesis focuses on only AES-128.

Table 2.4. AES Versions.

AES-128 | AES-192 | AES-256
Key Length (bits) 128 192 256
Block Size (bits) 128 128 128
Number of Rounds (NR) 10 12 14

Apart from the complete rounds, which contains all of the four operations, there
are also individually applied operations as depicted in Figure 2.4. In total, there are
11 AddRoundKey operations, 10 SubBytes operations, 10 ShiftRows operations, and
9 MixColumns operations for AES-128 encryption.

11

PlainText
‘ AddRoundKey

‘_
}

Y sworen
4

. 4

' AddRoundKey

4
Y swaye
4
WS

‘ ShiftRo

o—m

./

‘ AddRoundKey
¥

(a) (b)

Figure 2.4. (a) Encryption. (b) Encryption Round.

CipherText
‘ AddRoundKey

| A—
}

. InvShiftRows

. InvSubBytes

‘ AddRoundKey

PlainText

(a) (b)

¥

‘ InvShiftRows

‘ InvSubBytes

‘ AddRoundKey

‘ InvMixColumns

Figure 2.5. (a) Decryption. (b) Decryption Round.

12

Decryption contains the inverse of the mentioned operations as can be seen in
Figure 2.5. The inverse of the AddRoundKey is also AddRoundKey since it merely in-
volves XOR. This thesis implements only encryption. Therefore, the remaining inverse

operations were not explained here.

2.3.2.1. AddRoundKey. The round key is bitwise XOR’ed with the state array to give

the result. Round keys are obtained by the Key Expansion routine from the initial
key as explained in Section 2.3.3. The round key and the state array have the same
number of bytes. The formula of the operation is given as

b,; =a;; Dk, (2.1)

whose operands can be seen in Figure 2.6.

ko0 = ko1 | ko2 | ko3 ap,0 | ap,1 | ap2 @ ap,3 bpo | boq bo2 | bg3
k1,0 | k1,1 | k12 | k3 a10 | a1,1 | a2 a3 b0 | b1 b12 | b3
k0 | ka1 | ka2 | ka3 a0 azq | a2 a3 b20 | b2 | b22 | b3
k3o | k31 k32| k33 ago agq | |az2 | a33 b3o b3q |b32 | b33

Figure 2.6. AddRoundKey.

2.3.2.2. SubBytes. The SubBytes stage is the main source of nonlinearity in AES.

The operation is depicted in Figure 2.7. The bytes from the state array are substituted
according to the table called Substitution Box (S-box) as visible in Figure 2.8 with the
information from [7]. The least significant part of the input byte determines the column
and the most significant part of the input byte determines the row of the S-box. The

value at the intersection of the relevant row and column is used. For example, 0x83

13

is replaced by 0xEC which is at the intersection of the eighth row and third column.

S-box can directly be implemented as a Look-up Table. The size of the 16x16 Look-up

Table with one-byte entries becomes 2048 bits.

ag,0

a1,0

a2,0

aszo

ap,1

a1,1

a1

az1

ag,2

a1,2

a2

az2

ao,3

a1,3

a3

az3

S-Box

bo,0

b1,0

b20

b3,0

Figure 2.7. SubBytes.

bo 1

bq,1

b2 1

b3 1

bo,2

bq,2

b2 2

b3,2

bo 3

bq3

b2 3

b33

63

7c

77

7b

f2

6b

6f

c5

30

67

2b

fe

d7

ab

76

ca

82

c9

7d

fa

59

a7

fo

ad

d4

a2

af

9c

ad

72

c0

b7

fd

93

26

36

3f

f7

cc

34

a5

e5

fi

71

d8

31

15

c/

23

c3

18

96

9a

12

80

e?

eb

27

b2

75

83

2c

1a

1b

be

5a

a0

52

3b

dé

b3

29

e3

2f

84

53

dl

ed

20

fc

bl

5b

ba

ch

be

39

4a

4c

58

do

ef

ad

b

43

4d

33

85

45

f9

7f

50

3c

of

a8

51

a3

40

8f

92

9d

38

5

bc

b6

da

21

10

3

d2

cd

Oc

13

ec

5f

97

44

17

c4

a7l

7Te

3d

64

5d

19

73

60

81

af

dc

22

2a

90

88

46

ee

b8

14

de

S5e

Ob

db

el

32

3a

0a

49

24

5¢

c2

d3

ac

62

91

95

ed

79

e7

c8

37

6d

8d

d5

de

a9

6c

56

f4

ea

65

7a

ae

ba

78

25

2e

1c

ab

b4

cb

e8

dd

74

1f

4b

bd

8b

8a

70

3e

b5

66

48

f6

Oe

61

35

57

b9

86

cl

1d

9e

el

f8

98

11

69

d9

8e

94

9b

le

87

e9

ce

55

28

df

=D | Q|0 |T(V (O 0NN WN =IO

8c

al

89

od

bf

eb

42

68

41

99

2d

of

b0

54

bb

16

Figure 2.8. S-box.

14

Operations in the Galois field are used to populate the S-box. So, instead of
using look-up tables, the conversion operation can be implemented. Implementation
is more difficult compared to the look-up tables but there is a room for optimizations.
In fact, this is an important research area where S-box implementation is tried to be

optimized. Conversion operation consists of two steps:

e Finding multiplicative inverse: Multiplicative inverse of the byte is found accord-
ing to the GF (2®) where 00 is mapped to itself as there is no multiplicative
inverse of zero in Galois field as mentioned in Section 2.2.

e Applying affine transformation over GF (2%): Multiplicative inverse of the byte

goes through the affine transformation over GF (2%). The affine transformation,

b; = b; @ b(itaymods B Ditsymods D b(itmymods © Ci (2.2)

is employed to convert byte to transformed byte. b; is the i"* bit of the output.
b; is the " bit of the input. ¢; is the i bit of the 8'h63.

The matrix representation of the affine transformation is as

by 10001111 bo 1
b, 11000111 by 1
b, 11100011 b 0
by 11110001 b3 0
Pl = + (2.3)
b, 11111000 by 0
by 01111100 b 1
b 00111110 b 1
\ b7 00011111 br 0

where second added vector is (01100011)s = (99)19 = (63)16.

15

2.3.2.3. ShiftRows. The bytes in the state array are cyclically shifted in this operation

as given in Figure 2.9. The first row of the 4x4 matrix stays the same. The second row
is cyclically shifted to the left by one byte, the third row by two bytes, and the fourth

row by three bytes. This stage prevents AES from operating on different columns

independently.
a0,0 ao,1 ao,2 a0,3 a0,0 a0,1 ap,2 a0,3
a0 | a1,1 | a2 a3 a11 | a1,2 a,3 | a0
a2,0 a1 a2,2 a3 a2,2 a3 a2,0 a1
a3,0 az1 a3,2 a33 a3;3 a3,0 as1 a3,2

Figure 2.9. ShiftRows.

2.3.2.4. MixColumns. MixColumns is the key source of diffusion in the algorithm.

The operation in the state array format is in Figure 2.10. Each of the four columns is

multiplied by the array,

02 03 01 01
01 02 03 01
01 01 02 03
03 01 01 02

to give the output. However, the matrix multiplication is not ordinary multiplication,
instead, multiplicands are elements of Galois field GF (2°). Addition changes to XOR
operation in GF (28).

16

ag,0 a1 a0,2 = a0,3 a'0,0 201 @02 | 20,3
a10 a1 212 213 a0 a411 (@12 a3
a0 | azq1 a2 | az3 a'20 a2 |a'22 | a'23
azgo a3q1 a32 a33 a'30 a'3q @32 a'33

MixColumns
Conversion

Figure 2.10. MixColumns.

The operations are summarized for one column as follows:

gy = ({02} @ ag) @ ({03} @ a1 2) @ ({01} @ az2) & ({01} @ a3)
ayy = ({01} @ ag) @ ({02} @ ay2) @ ({03} @ as2) & ({01} @ a3

yo = ({01} @ ags) & ({01} @ a1) & ({02} @ azs) © ({03} @ a35)
g, = ({03} @ agy) @ ({01} @ 1) ® ({01} @ azs) B ({02} @ a3,).

4x4 matrix is multiplied by 4x1 vector to give 4x1 vector. The first row of the array
(2.4) is multiplied by the vector to give the first element of the 4x1 vector. The rest

follows the suit. & is XOR operation and e shows multiplication in the Galois field.

An example for MixColumns operation is given as

02 03 01 01 d4 e0 b8 le 04 €0 48 28
01 02 03 01 bf b4 41 27 66 cb f8 06 25
01 01 02 03 54 52 11 98 81 19 d3 26 '

03 01 01 02 30 ae f1 eb ed 9a Ta 4c

17

Here, the first element of the output matrix (04);¢ is calculated for demonstration:

g = ({02} @ agy) & ({03} @ a1) ® ({01} @ azs) © ({01} @ az5)
— ({02} @ d4) @ ({03} e bf) @ ({01} & 5d) & ({01} @ 30)
=((z)edd) @ ((x+1)ebf) ®((1)e5d) @ ((1)e30)
= ((x) o dd) & ((x+ 1) o bf) & (5d) & (30)
—(ze(z"+a2°+ 2t +)@ ((z+ 1D e (@ +2°+2* + 28+ 27 + 2t +2°))0
(2% +2* + 2% + 22 + 2°) © (25 + 1)
=@+ + 2+)P (@ 2"+ 2 4225 220 + 20 + 227 + 22+ 1)@
(2 + 2t + 2% + 22 +1) @ (2° + 2?)
=@+ +2+)o@+ + 2+ D) @+t + P+ 2P+ 1) @ (2° + 2t
=@+ +2'+22 +r+ 1)@ (@ + 2%+ 2t + 2%+ 2)
O @+t + 2P+ 2?4+ 1) @ (2° + 2t
=@+ +2'+r+)o@+ 2+t + P+) (P + 2t + 2P+ 2P+ 1)
® (z° + 2%
= (10110011) @ (11011010) & (01011101) & (00110000)
= (0000100) = (04)0
(2.6)

[02 03 01 01] vector is multiplied by [d4 bf 5d 30] elementwise and the products are
XOR’ed. 02 is replaced by x, 03 is replaced by x+1, and 01 is replaced by 1. Elements
from [d4 bf 5d 30] are replaced by their polynomial equivalent where ff means z* + %+
20+ ot + 23 + 2% + 2! + 2°. The polynomials are multiplied. Multiplying by 02 shifts
the element to the left by a bit. 03 shifts by a bit and adds the initial element. 01 does
not change the element. Terms with a coefficient of 2 are eliminated and coefficient
terms with coefficient -1 are replaced by 1 throughout the process. Then the terms are
divided with the special polynomial 2% + z* + 23 4+ 2! 4+ 2° to obtain a remainder, i.e
modulo operation. By doing this, products are reduced to bytes. The resulting terms

are converted again to binary representation and XOR’ed to obtain the result.

18

2.3.3. Key Expansion

Key Expansion routine is used to obtain round keys from the initial cipher key.
These round keys are required to use in AddRoundKey operations during the encryp-
tion process. The process is explained with the help of the pseudo-code formed using
the information from [7] for AES-128 and depicted in Figure 2.11. SubWord and
RotWord functions can be seen in the following subsections. Rcon is a 32-bit round

constant array [rc; 0016 0016 0016] with the r¢; values given below in Table 2.5.

KeyExpansion (byte key[16], word w[44]) begin
word temp
1 =10
while ¢ < 4 do
wli] = word(key[4 x 7], key[4 x i + 1], key[4 x 7 + 2], key[4 x i + 3])
1=1+1
end while
1 =4
while i < 44 do
temp = wli — 1]
temp = SubWord(RotWord(temp)) xor Reon[i/Nk]
wli] = wli — 4] xor temp
1=1+1
end while

end

Figure 2.11. Key Expansion.

2.3.3.1. SubWord. Four-byte input is taken and bytes are converted individually to

outputs using S-box table in Figure 2.8 similar to the SubBytes operation.

19

Table 2.5. r¢; Values (hex).

re; | 0110210408 |10|20|40|80 | 1B | 36

2.3.3.2. RotWord. RotWord takes four-byte input and performs one-byte cyclical shift

on it. The operation is depicted in Figure 2.12.

A[31:24] | A[23:16] A[15:8] = A[7:0] A[23:16] A[15:8] = A[7:0] | A[31:24]

Figure 2.12. RotWord.

2.3.4. Confidentiality Operation Modes

There are different confidentiality operation modes as specified in NIST Special
Publication 800-38A. According to the document [8], these are not specific to AES, they

can be used with any of the FIPS-approved symmetric key block cipher algorithms.

Electronic codebook mode (ECB)
Cipher block chaining mode (CBC)
Output feedback mode (OFB)
Cipher feedback mode (CFB)
Counter mode (CTR)

ECB corresponds to the essential AES implementation. Data blocks are processed
independently from each other. Therefore, parallel processing is possible. If the key
is the same, the same input always gives the same output. This may be a security

problem for particular use cases. It is not mandatory to use other modes but they

20

are recommended by NIST. CBC, OFB, and CFB relate encryption of a data block
to encryption of the previous block. The security is improved but parallel processing,
like ECB, is prevented. CBC, OFB, and CFB use unpredictable Initialization Vector
(IV) in the encryption process in addition to the key. In the CTR, counter blocks go
through the cipher and its output is XOR’ed with the plaintext to give ciphertext. If

the counter blocks are known, the data blocks can be processed independently.

2.3.5. Security of AES

AES is fairly secure in terms of algorithmical foundations. It has good linear and
differential cryptanalysis resistance [9]. Its minimum 128-bit key makes brute-force
attacks infeasible. There have been papers about related-key attacks on AES but they
do not undermine the security of AES since a properly implemented algorithm would
not allow related keys to be used. The first key-recovery attack reduced needed opera-
tions to approximately (;)th but still a huge number of operations, ~ 226 for a 128-bit
key, are needed [10]. Therefore, attacks targeting the algorithm itself are infeasible.
However, the side-channel attacks pose threat to the security of AES implementations
and reduce the number of operations to a much smaller number. The side-channel

attacks and countermeasures are presented in Section 2.5

2.4. AES Validation

The AES implementations must be verified before going into products. NIST The
Advanced Encryption Standard Algorithm Validation Suite (AESAVS) is an important
test suite used for validation purposes. The completion of the tests in the suite indicates
that the implementation conforms to the “FIPS 197: Advanced Encryption Standard”.
There are more than 5700 validated AES algorithm implementations, as of 2020. The
list of implementations validated by NIST can be found in [11]. The test suite consists
of three main parts: the Known Answer Test (KAT), the Multi-block Message Test
(MMT), and the Monte Carlo Test (MCT). For KAT, The document contains hun-
dreds of plaintext-key-ciphertext groups separated into different key lengths. GFSbox,

21

KeySbox, Variable Key, and Variable Text types are joined to give KAT. The values
are selected to test the algorithm at the corner cases. The multi-block input processing
capability of the implementation is measured with the MMT but little detail is given
in AESAVS for it compared to the other ones. In contrast to the KAT, plaintext-key-
ciphertext groups are obtained using an algorithm in MTC. The algorithm starts with
an initial plaintext and key values. Then encryption is performed many times using

the output of the encryption as input. Periodically the key is updated [12].
2.5. Side Channel Attack (SCA)

In side-channel attacks, the attacker tries to obtain leaked information from the
implementation of the algorithm. For cryptographic algorithms like AES mathematical
properties are strong enough to make brute-force attacks infeasible due to limitations on
time and computational power. In such cases, side-channel attacks are more dangerous
and effective on the improper implementations. The attacker can make inferences from
the power consumption of the circuit, the radiated electromagnetic waves, emitted
sounds, and lights, etc as shown in Figure 2.13. A famous example is the spying on the
Egyptian embassy in London by British domestic intelligence agency MI5. MI5 placed
a microphone near to rotors used in the crypto device and this additional information
coming from the rotor clicks helped them to break cipher used by Egyptians [13]. Power

side-channel attacks were examined and executed as a part of this thesis.

Power Consumption
Electromagnetic Radiation
Acoustic Emanation
Light Radiation

S5

—= @ —> ™

Plain Encryption Cipher
Text Text

Figure 2.13. Side Channel Attacks.

22

2.5.1. Power Analysis Attacks

Power analysis attacks are interested in power consumed by the circuit imple-
menting the cryptographic algorithm. The power is proportional to a which is the

activity factor as shown in,

Pstatic = IstaticVDD (27)
denamic = aCV2DDf (28)
Ptotal = Pstatic + denamic (29)

where P = power, [= current, VpD = supply voltage, a = activity factor, C = load
capacitance, f = switching frequency. The activity factor is basically a toggle rate.
If the circuit consumes higher power, that means more bits are switching. Compar-
ing between different time instants and traces gives insight into the processed secret

information.

2.5.1.1. Simple Power Analysis (SPA). Simple Power Analysis (SPA) primarily deals

with major power fluctuations and visual inspection is employed. If the effect of the
data is clearly visible on the power trace, then SPA is enough to break the algorithm.
The attack does not work well in noisy traces as noise veils difference between time
instants. SPA is easy to implement and a low-cost attack but can also be countered
easily. Key dependent Rivest-Shamir-Adleman (RSA) multiply and square operations

can be an example for to be a victim of SPA [14].

2.5.1.2. Differential Power Analysis (DPA). Differential Power Analysis (DPA) is a

more sophisticated attack compared to the SPA and introduced to the literature by
Kocher in [15]. The attacker uses hypothetical model of the device to predict the side
channel information at the relevant stage. Then, the predictions are compared with
the real measurement values by means of statistical methods [16]. When many traces

exist, the attack can reveal the secret after analyzing tiny differences between traces.

23

Signal processing is used to improve traces so that the attack works also for noisy traces

in contrast to SPA. There are also many published DPA attacks on AES.

2.5.1.3. Correlation Power Analysis (CPA). Correlation Power Analysis (CPA) is a
technique initially developed by Brier [17]. It is the attack type employed for this
thesis and utilizes the Pearson correlation function for differentiating traces [18]. The
function can be shown as

C(T. P) = w(TP) — p(T)u(P) (2.10)

o (T)a*(P)

where T = set of power traces, P = set of estimated power values from the power model,
1 = population mean, o = standard deviation. The power model is used to model power
consumption theoretically. One of the simplest power models is the Hamming Distance
(HD) model. The number of bit changes, both from zero to one and one to zero, is
summed to find HD. Another model is the Hamming Weight (HW) in which the number
of one’s is calculated. After the model is chosen, the Pearson correlation function is
utilized to calculate the correlation coefficient of every point in traces. By doing this,
the model and the actual traces are compared. This procedure is repeated for different
predicted subkeys. Important point is that not all possible key combinations are tried.
Key is predicted as part by part. For example, for AES, key is attacked byte by byte.
Because for some parts of the AES, key bytes are processed separately, and hence they
can be revealed separately. The total number of combinations is reduced from 2!2® to

16228, In the end, the best subkey predictions are collected to give the secret key [18].

2.5.2. Power Analysis Countermeasures

As side-channel attacks proved to be dangerous for the algorithms that are as-
sumed to be secure, countermeasures gained more popularity. Different methods were
proposed to make the attacks infeasible. Random operations are added among the nor-
mal operations to loose the correlation between power traces and the processed values.

Keys are changed periodically in order to prevent the collection of enough traces with

24

the same key and prevent decryption of the new data even if the old key is exposed.
Special analog circuitry shows the power consumption nearly constant by supplying the
cryptographic circuit from itself. Algorithm operations are shuffled to cause confusion.
Power traces are deceived by obfuscating processed data during the operations [13].
The attacker is forced to implement demanding synchronization in order to correct the

clock signal which is messed with random jitter [19)].

25

3. RTL CODING OF DESIGN

Register Transfer Level (RTL) coding is the first stage in both FPGA & ASIC
flows. There are two main languages for describing hardware, namely VHDL and
Verilog. SystemVerilog can be viewed as an extended version of Verilog, especially
for verification purposes. Since it is backward compatible, Verilog files can be used
with SystemVerilog after just changing the extension from .v to .sv. In this project,
SystemVerilog was used. Columns on which the RTL was constructed are explained
in the following section. Subsequently, what was done in RTL to achieve the main

objectives of the project are given.

3.1. Structure

The top-level connections in the RTL can be summarized as in Figure 3.1. The
key expansion routine takes the CipherKey as an input and calculates the RoundKeys
that are used in encryption rounds. KeyReady signal is used to notify the Encryption
module so that it can use the incoming RoundKeys in the encryption process. This
prevents the generation of unnecessary intermediate results when the CipherKey has

been modified but new RoundKeys have not been computed yet.

Seed Mask
LFSR —‘L—}
PlainText L o . CipherText
{ | Encryption p——>
CipherKey Key RoundKeys
' Expansion [__ _J

KeyReady

Figure 3.1. Top Level Connections.

26

Linear Feedback Shift Register (LFSR) is used for obtaining the Mask, which
is utilized as a side-channel countermeasure. A 128-bit shift-register was utilized to
implement the shift register as can be seen in Figure 3.2. The taps are on 99, 101, 126,
and 128. The shift register is fed from the combinational processing of the outputs
of the tap registers. The numbers were chosen to maximize the repeat period of the

LFSR [20]. Obfuscating using the Mask, is explained in more detail in Section 3.3.

99 100 124 125 126 127

YOO OO -

A A

Figure 3.2. LFSR.

There are five different implementation cases in this thesis. The first one is the
most compact one, the rolled, which uses hardware of only one round for all middle
rounds. The round output is registered and fed back to the input of the round to
continue the multi-round process. This version results in little hardware usage but,
it takes 17 clock cycles after beginning of the loading of plaintext and before the last
bytes of ciphertext become visible. Both the loading of plaintext and the extraction
of ciphertext from the 32-bit interface need four cycles, which is the case for all ver-
sions except the 64-bit pipelined version. The next version is the obfuscated version
of the first case. The latency in terms of clock cycles does not change but hardware
resource usage and power consumption increase as additional operations are performed
to prevent side-channel attacks. The next two versions are 32-bit and 64-bit pipelined
versions. The difference between the pipelined and non-pipelined versions is that the
pipelined hardware does not stay idle as new inputs are taken to the processing before

the previous one is completed. This increases the throughput. In addition, the pipelin-

27

ing complicates the relationship between the input and the power trace as multiple
different inputs are processed at the same time such that their power consumption
mix with each other. The last version is the unrolled version, where again plaintext is
received and ciphertext is returned from the 32-bit interface but the encryption process
is combinational. In the unrolled version, each round is expanded as a separate block.
17 clock cycle latency of rolled version becomes eight cycles with this version. However,
since more operations are completed in the same clock cycle, the period must be larger
compared to the other versions. The block diagrams of the rolled, rolled obfuscated,

and unrolled versions are:

AddRoundKey
Round x (NR-1)
— SubBytes
— ShiftRows

— MixColumns

— AddRoundKey
SubBytes
ShiftRows
AddRoundKey

The structures of the pipelined versions are different. The structure of the 32-bit
pipelined version can be examined in Figure 3.3. The middle nine rounds are combined
into three main round hardware blocks. The incoming plaintext passes four times
through two of them, and one time through the last one. The remaining AddRoundKey,
SubBytes, ShiftRows, and RoundKey operations are performed again at the end.

Input (32-bit)

PlainText (128-bit)

S .
<=
= S

out

/””’////

&\\\\\

Main Round

Rout

——

Main Round » ////////
Rout
|
Main Round N % ///
Rout

‘ AddRoundKey
‘ SubBytes / ShiftRows

\4
or===n
:

CipherText (128-bit)

Output (32-bit)

(a)

clk
‘ AddRoundKey

‘ SubBytes / ShiftRows

. MixColumns /

Figure 3.3. (a) Pipeline (32-bit). (b) Pipeline Main Round.

28

29

Components of the main round are also visible in Figure 3.3b. This round is
slightly different from the original round in a sense that it starts with AddRoundKey
and finishes with MixColumns. However, this is just an implementation issue as the first
AddRoundKey was incorporated into the first round and the remaining ones shifted
due to the initial round. The main round module has a multiplexer in front of it which
takes new input from the former stage every four clock cycles, and round output value
(Rout) at the remaining cycles. Mout represents the output of the multiplexer and
only used in the last main round. Since the last main round block works just once
during the four cycles, the last main round keeps its input fixed via Mout. Keeping
the 128-bit result of AES fixed for four clock cycles also gives enough time to transfer

the 128-bit ciphertext output to the 32-bit bus.

Scount is generated basically by rotating “1000” sequence through four flip-flops
to divide the main frequency into four as can be seen in Figure 3.4. There is only one

scount module that supplies select bits of the all input MUX modules.

D Q—b Q—p QaF—p Q1> Scount
> > > >
LT

Figure 3.4. Pipeline (32-bit) Scount Module.

The 64-bit pipelined version is slightly modified compared to the 32-bit pipelined
version. Since it takes the whole plaintext in two clock cycles instead of four, it can
process more inputs simultaneously if the hardware allows. Here, there are five main
rounds instead of three. Each of the five main rounds are operating on different inputs.

When the former input finishes its two turn around, it goes to the latter main round

30

and its former place is filled with the new input. The last main round block works
again once for every different input. In this way, it is possible to have an encrypted
text output every two cycles. Scount module of the 64-bit pipelined version and overall
block diagram can be seen below in Figure 3.5 and Figure 3.6, respectively. The main

round is the same as before.

“>»|D Q D Q » Scount

—>> |—>>

clk

Figure 3.5. Pipeline (64-bit) Scount Module.

PlainText (128-bit)

v v

10 K]
out
Main Round
Reut

N

57/

\\\\\
N

Y]

out

0
9,

‘o

\\\\\

Main Round

out

2
’/”///,

V4

\\\%

Main Round

#
-

10 "
out /% ’/////
Main Round //
Rout

["
“y,
out /7 1%
X
Main Round / //
k thut

l

‘ AddRoundKey
or==m r

¥
. SubBytes / ShiftRows
v v
or==xn :
:

CipherText (128-bit) *
Output (64-bit) m

clk

(a) (b)

Figure 3.6. (a) Pipeline (64-bit). (b) Pipeline Main Round.

32

3.2. Low Power Techniques

Several RTL techniques were applied to reduce power consumption. One of them
is stopping the data switching when unnecessary. The AES Intellectual Property (IP)
encrypts the plain text only when it takes the start flag and the key is ready. Therefore,
it does not encrypt the same plain text again and again. With the help of relevant if-
else statements, the registers maintain the combinational logic inputs constant resulting
in no activity in the combinational circuit. An example from the encryption module
is as follows: the state machine works according to the value of the counter. After
the encryption operation is completed, the counter value becomes fixed, and the same

else-if branch is executed repeatedly. Therefore, the other register values stay the same.

There are also techniques related to the ASIC flow that are explained in detail
in Chapter 5 but summarized here to give low-power techniques together with the
techniques in the RTL at a glance. The first of them is the selection of the Low-
Power (LP) process for the TSMC 65 nm purpose. There is also General Purpose
(GP) process available with faster standard cells that consume more power. So, the
possible increase in operating frequency and the throughput are sacrificed in favor of
lower power consumption. The second technique is the usage of standard cells whose
transistors have high threshold voltage. Higher threshold voltage cells need higher
voltage to turn on and this results in lower operating current as can be seen from the
Metal Oxide Semiconductor Field Effect Transistor (MOSFET) current formula,

. W

)(Vas — Vi)? (3.1)

N | —

ip =

where ip is the MOSFET current in saturation, k;l is the process transconductance
parameter, % is the transistor aspect ratio, Vg is the gate-to-source voltage, and V; is
the threshold voltage [21]. Therefore, they consume less power but they are slower. On
the other hand, low threshold voltage cells are faster but consume more power. The
ASIC tools are set to use high threshold voltage cells as much as possible. The third

technique is using clock gating in ASIC flow. The clock is suppressed when unnecessary.

33

3.3. Side Channel Attack Countermeasures

In order to prevent or complicate side-channel attacks, obfuscating operation,
which utilizes the Boolean Masking depicted in Figure 3.7, was employed. As not
whole round is masked including linear and nonlinear operations, the method was
called as obfuscation instead of masking. In the RTL the obfuscation was obtained by
masking only ShiftRows and MixColumns operations with a mask obtained from LFSR
whose 128-bit seed is the cipherkey. Assuming linear function f converts the input to
output, XOR’ing two outputs where one comes from f(mask) and the other one comes
from f(input @ mask) yields the same output as before. The mentioned operation can

be explained mathematically as
finput) = f(input @ mask ® mask) = f(input © mask) & f(mask) = output (3.2)

where the associative property of the XOR is used.

input m » output

WV,
mask @—
:D‘ output
input j ; |
mask

Figure 3.7. Boolean Masking.

34

The advantage of obfuscating is that it complicates the correlation between input
and output. Therefore, the attacker needs more traces to discover the key. It is
important to note that the mask value is unimportant and it does not need to be
stored. Hence, the mask value can be changed at every cycle which is the case in this
thesis. So, every 128-bit input can be processed at every round with a different 128-bit
mask. The modules were parametrized so that changing the parameter from the top

enables and disables obfuscating.

In addition to the obfuscating, pipelining is used. As the operating principle is
explained in Section 3.1, the details are not repeated here. Pipelining allows different
inputs to be processed at the same time instead of being processed one-by-one. Number
of processed blocks inside rounds are the same as the number of main round blocks.
Therefore, three different inputs for 32-bit version and five different inputs for 64-bit
version are processed simultaneously preventing the hardware from staying idle. The
addition of power consumption values due to different inputs give a total consumption
value which is dependant on all inputs. From the perspective of the attacker, it becomes
harder to analyze inputs individually and more traces become necessary to disclose the

cipherkey. Hence, the side-channel attack resistance is improved.

35

4. FPGA DESIGN FLOW

The RTL code was added to the FPGA flow using Vivado Design Suite (version
2020.2) tool developed by Xilinx. There is RTL at the beginning of the FPGA flow. No
IP was needed for this design, RTL was custom designed. Then, the implementation
stage starts, and the RTL is converted to the logical gates implemented on the FPGA
by resources such as Look-up Table (LUT), Block RAM (BRAM), Digital Signal Pro-
cessing (DSP) slice, etc. In the end, the bit file becomes ready to be put into FPGA.

Various stages of the flow are given below.

4.1. Behavioral Simulation

The RTL code needs to be verified in order to function properly. Behavioral
simulation is the first step as it does not consider real delays between the circuit gates.
The simulation is used to verify the functionality of the design, but it is less accurate
compared to the simulations at the later stages. In this thesis, a test bench that receives
128-bit random inputs from a text file is used in the simulation. The random inputs

were generated on MATLAB.

In addition, KAT vectors and Monte Carlo Test of the AESAVS, as mentioned
in Section 2.4, are used to validate the results. The ciphertext results are written into
the file and compared with the reference values that are generated using American

National Standards Institute (ANSI) C reference code in [22].

4.2. Synthesis

In the synthesis, RTL is converted to the standard subcells used by the FPGA
such as LUTSs, flip-flops, BRAMs, etc. FPGA uses LUTSs to implement logical func-
tions. For example, for a three-input logical function, there are eight possible cases.

Regardless of the function’s complexity, the output of this function can be implemented

36

with 3-input LUTs. There are preplaced LUTS and the tool maps the functions to these
LUTs. Flip-flops can be used for storage units, i.e registers. BRAM’s are convenient
for replacing large register arrays. The RTL is converted to FPGA primitives explained

above, but their places on the FPGA fabric is not known yet.

_
7y o

b5 s
By e

€3]
=
Y
I

RS

T

[
D
=

<7
B
Lo

IIIL||
]
z
g
=

SLICE_x¥68v2a (SLICEL)

Figure 4.1. FPGA Resources.

In Figure 4.1, inside of one slice can be seen. There are four LUT’s, two F7
MUZXes, one F8 MUX, eight flip-flops, and one carry chain for the Xilinx 7-series archi-
tecture. There are two different types of slices: SLICEL and SLICEM. The difference
is that LUT’s of SLICEM can be used as distributed RAM or shift registers. The syn-
thesis tool optimizes the design to use fewer resources, consume less power, and work
as intended. For these objectives, the tool takes the constraints, which are given by
the designer, into account. The clock period was chosen as 50 ns for unrolled version,
12 ns for 64-bit pipelined version, and 11 ns for other versions, which are reasonable
values after trial and error. The interface of the input ports (rst_ni, plain_text) was
modeled with the minimum 0 ns and maximum 1 ns input and output delays using

set_input_delay and set_output_delay. That means the inputs can arrive up to 1 ns

37

after the clock, hence there is less space in the clock period for Input-to-Register (I2R)
paths. Output ports were loaded with 1.4 pF with the set_load command.

4.3. Implementation

The target board for the implementation was chosen as ZedBoard, which contains

T-series programmable logic. The device appearance of the design, unrolled version, is

as in Figure 4.2. The aqua cells indicate the elements used by the design.

Figure 4.2. FPGA Implementation.

Main utilization parameters can be seen in Table 4.1. LUT’s and registers are
frequently reported in the literature for the area comparison between different de-
signs. The obfuscated design has 12.5% higher LUT’s and 18.13% higher registers
than the rolled design. The important part of the additional logic comes from the
LFSR. Pipelined versions have higher resource utilization since additional hardware is

allocated to allow the processing of different data. The unrolled version has the highest

38

LUT usage since its rounds are all different hardware blocks. However, it uses fewer
registers as the rounds are combinationally connected. For LUTs and registers, the

values are increased as we go from the first version to the last version.

Table 4.1. FPGA Utilization (Implementation).

FPGA Resources | Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled
Slice LUTs 4504 5067 5796 7350 9653
Slice Registers 2162 2554 2646 3148 1805
F7 Muxes 608 472 1120 1632 2656
F8 Muxes 288 152 544 800 1312

Detailed utilization results involving primitives can be seen in Table 4.2 . FDRE
is a D Flip-Flop with clock enable and synchronous reset. BUFG is a “General Clock
Buffer”. IBUF is an “Input Buffer”, and OBUF is an “Output Buffer”. IBUF and
OBUF numbers come from the number of input & output ports, respectively [23].
Every external Input / Output (I/O) is connected to these buffers to help them deal
with the large off-chip capacitances. IBUF includes clk_i, rst_ni, start_plain_text, and
start_key signals in addition to the 32-bit/64-bit input data. On the other hand, OBUF
includes only 32-bit/64-bit output data.

Timing and power results at synthesis stage can be seen in Table 4.3 and Table
4.4, respectively. Zeroing Worst Negative Slack (WNS) and Worst Hold Slack (WHS)
ensures that every signal flows from its source to its target in the allowed time. If the
signal goes too early or too late, the flip-flops would pick up false values and the data
would be corrupted. Worst Pulse Width Slack (WPWS) is the worst slack based on
collection of checks, namely min low pulse width, min high pulse width, min period,
max period, and max skew [24]. That means the clocks are not allowed to go beyond
a particular frequency & duty cycle. AC and DC characteristics of the FPGA fabric
affect these pulse width checks. As given in Table 4.3, the design have no negative

slack values at the implementation stage. Therefore, they are timing clean.

Table 4.2. FPGA Utilization Primitives (Implementation).

FPGA Primitives

Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled
FDRE 2162 2554 2646 3148 1805
LUT6 2685 2992 3781 4648 6829
LUT5 1065 1066 892 1043 1659
LUT4 471 476 456 462 308
LUT3 343 519 299 1362 1435
LUT2 322 490 684 904 850
LUT1 10 10 14 10 17
MUXF7 608 472 1120 1632 2656
MUXFS8 288 152 044 800 1312
IBUF 36 36 36 68 36
OBUF 32 32 32 64 32
CARRY4 0 11 0 0 0
BUFG 1 1 1 1 1
Table 4.3. FPGA Timing (Implementation).
Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled
Frequency (MHz) | 90.909 | 90.909 90.909 83.333 20
Period (ns) 11 11 11 12 50
WNS (ns) 0.125 | 0.028 | 0.028 0.178 1.442
WHS (ns) 0.062 0.074 0.050 0.057 0.060
WPWS (ns) 5.000 5.000 5.000 5.500 24.500

39

40

The power consumption values are calculated at commercial temperature grade,
typical process, and 25 °C board temperature. Most of the total on-chip power is
attributed to the device static power. Device static power is consumed even if there is
no consumption in our design as the FPGA uses many components to work properly.
As an example, for the rolled version, 70.43% of the total power comes from static
power. 31% of the dynamic power is due to the clocks. The I0’s cause the highest
percentage, 31.5%. The logic results in 14.2% and finally signals use 23.3% of the total

dynamic power.

Table 4.4. FPGA Power Consumption (Implementation).

Device Static Dynamic Total On-Chip Junction
Power (mW) | Power (mW) | Power (mW) | Temperature

Rolled 105.005 44.086 149.091 26,7 °C
Obfuscat. 105.095 50.196 155.290 26,8 °C
Pipe. 32 105.753 94.573 200.326 27,3 °C
Pipe. 64 106.122 119.112 225.234 27,6 °C

Unrolled 108.343 262.304 370.647 29,3 °C

41

5. ASIC DESIGN FLOW

In ASIC flow, RTL is converted to standard cells that come with the design kits of
process technologies. Intellectual Properties (IPs) created by foundries or third-party
companies can also be added to improve functionality. After Place and Route (P & R)
of these submodules, signoff checks are carried out to ensure that the design complies
with the rules imposed by foundries. Designs that do not comply with these rules
may not function as intended or may be rejected by the foundry. At the end of the
ASIC flow, design is converted to Graphic Design System (GDSII) format and sent
to foundries for fabrication. In this work, no third-party IP was used. The layouts
were generated for TSMC 65 nm process, but they were not fabricated. TSMC 65 nm
gives two essential choices, Low Power (LP) and General Purpose (GP). LP, which is
slower than GP, was chosen to lower power consumption. For ASIC flow, proprietary
tools from Cadence, namely Genus Synthesis Solution (v19.11), Innovus Implementa-
tion System (v19.11), Quantus Extraction Solution (v19.1.3), Tempus Timing Signoff
Solution (v19.11), Voltus IC Power Integrity Solution (v19.11), and Xcelium Logic

Simulation (v19.03) were used.

5.1. Synthesis

Synthesis is the first stage after RTL code is written and simulated behaviorally.
Cadence Genus was used for this step of flow. The RTL is converted to standard cells
provided by the foundry. Addition of constraints determines the boundaries for the
design. The tool optimizes the design and tries to comply with the constraints given
by the designer. The tool gives a synthesized netlist to be passed to the next stage
of the flow, which is Place and Route (P & R). Inputs to the synthesis tool are: RTL
files (.vhd, .v, .sv), constraint files (.sdc), standard cell timing libraries (.1ib), standard
cell physical libraries (.lef), and RC extraction libraries (QRC tech file). The results
obtained at the synthesis stage can be found in Table 5.1.

Table 5.1. Synthesis Results.

42

Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled

Period (ns) 8 8 8 8 40

Frequency (MHz) 125 125 125 125 25

WNS (ns) 0 0 0 0 0
Sequential Instances 2,147 2,519 2,633 3,155 1,757
Total Instances 23,791 | 25,172 37,931 51,830 80,450
Total Area (mm?) 0.150 | 0.162 0.232 0.312 0.468
Leakage Power (mW) | 0.005 0.005 0.020 0.023 0.089
Total Power (mW) 8.473 9.793 17.517 23.097 25.156
SVT (%) 1.0 0.6 12.4 9.2 32.1
HVT (%) 99.0 99.4 87.6 90.8 67.9

WNS is similar to its FPGA counterpart described in Section 4.2. Hold analysis
results were not included here as the hold optimizations were not done at this stage.
Instances in the table correspond to the number of standard cells. Total instances
include both combinational and sequential instances. The last line in the table gives
the percentage of standard threshold and high threshold standard cells. The process
contains three types of standard cells: low Vi (LVT), standard Vi (SVT), and high Vi
(HVT). Low threshold cells have low V; transistors that can be turned on and off faster,
but leakage currents are higher since there is an exponential relationship between the
subthreshold current and the threshold voltage, leakage power increases considerably
as the threshold voltage is decreased [25]. So, these cells are faster but consume more
power. On the other hand, HVT cells consume less power but they are slower. The
tool tries to trade-off between timing and power consumption. It puts HVT cells where
timing is not critical and avoids them for timing critical paths. SVT is between LV'T
and HVT. During the synthesis stage, LVT cells were not allowed, since LVT cells need
to be used during the P & R stage where issues due to the physical layout become more

visible. Therefore, the synthesis tool used SVT cells for timing critical paths.

43

As can be seen in Table 5.1, the largest design is the unrolled version. Since its
rounds are expanded, it is built from many standard cells, which results in high leakage
& total power. The sequential instances of the unrolled version are fewer compared to
the other versions since registers between the rounds are eliminated by combinationally
connecting the rounds. Pipelined versions are intermediate designs between rolled and
unrolled versions in terms of number of instances, area, and power consumption. They
have a higher number of logical cells compared to the rolled version but a lower number
compared to the unrolled version. Generally, HV'T cells have an overwhelming majority
which means most of the nets in the designs have no problem for satisfying the timing
constraints. The unrolled version has the lowest frequency since its combinationally

connected rounds need a large time period to fit in.

5.2. Place & Route

Place & Route stage is where the final locations of the standard cells are deter-
mined and the actual wires between them are laid out. The stage receives synthesized
netlist and constraints from Genus as its inputs. For the design corners, Multi-Mode
Multi-Corner (MMMC) analysis was carried out in Innovus tool. The designs were
implemented so that they work at different corners. The standard cell libraries in the

TSMC 65 nm LP process are characterized according to the corners in Table 5.2.

The process column in Table 5.2 stems from the intra-wafer variations during the
fabrication step. Because of the slight fabrication parameter differences between the
location of the different dies within the wafer, some chips work faster and some chips
work slower than nominal. These different chips are modeled as FF (Fast-Fast), TT
(Typical-Typical), SS (Slow-Slow). The letters correspond to the NMOS and PMOS
corners, respectively [26]. FF means both NMOS & PMOS are faster while F'S would
mean fast NMOS and slow PMOS. Values in the voltage column are set up according
to the typical core voltage, which is 1.2V and this is the voltage used in our design.

Higher voltage means faster circuits but higher power consumption.

44

Table 5.2. Process, Voltage, Temperature (PVT) Corners.

Corners Process | Voltage (Volts) | Temp. (°C)
Best Case (BC) FF 1.32 0
Low Temperature (LT) FF 1.32 -40
Maximum Leakage (ML) FF 1.32 125
Typical Case (TC) TT 1.2 25
Worst Case (WC) SS 1.08 125
Worst Case Low Temp. (WCL) SS 1.08 -40
Worst Case Zero Temp. (WCZ) SS 1.08 0

Apart from PVT corners, there are also RC extraction corners. For older tech-

nologies, cell delay dominates the total delay, and the effect of the interconnects remains

small. However, with the advanced technology nodes, the interconnects become more

and more important and their contribution to the total delay increases [25]. Therefore,

more detailed modeling of the interconnect delay, roughly R*C, becomes necessary.

For the 65 nm LP node, there are five different RC extraction corners: Cmin, Cmax,

RCmin, RCmax, and typical. The combination of the PVT corners and RC extrac-

tion corners is used during analysis. In the flow, the tool tries to maintain timing in

different cases. The remaining flow can be summarized as in Figure 5.1.

o

Floorplanning Clock Tree Synthesis

Detail Routing

OJO\O

GDSII export

Figure 5.1. P & R Flow.

45

When the libraries, synthesized netlist, and constraints are given, the floorplan-
ning stage starts. The area of the layout was determined according to 60% standard
cell density so that the tool can route easily, but the area is not unacceptably high. So,
a minimum area layout with a clean Design Rule Check (DRC) and clean timing was
targeted. 60% standard cell density means the total area of the individual standard
cells are multiplied by 17? to give the total floorplan area. By keeping the floorplan size

flexible value enables observing area differences between different versions.

The standard cells in the netlist are placed into the layout at the placement stage.
The appearance of the rolled obfuscated version at this stage without nets is in Figure

5.2. The gray cloud contains many gray boxes representing the standard cells.

-
-
-
b
-
-
-
-
8

0 0 A A A

Figure 5.2. Placed Design.

46

Clock Tree Synthesis (CTS) is another major step in the backend flow. Clock,
which is a high fanout net, needs special attention. Special clock cells are used in the
clock network in order to distribute the clock efficiently. The clock nets are chosen to
be wider than the other nets in the same metal layer in order to lower the resistance of
the nets. The clock nets are separated farther away from other nets compared to the
separation between regular nets in the same metal layer. This measure protects clock
signals from other switching nets, i.e it maintains signal integrity. Both widening the
clock nets and increasing the separation were used in this thesis. This way, the clock

signals are preserved at the expense of additional routing resources.

At the detail routing stage, the real nets are laid out. The most comprehensive
violation fixing happens there. Timing violations (setup, hold, etc.), DRC violations,
Design Rule Violations (maximum fanout, maximum transition, etc.) are addressed.
This stage is one of most time consuming steps in the IC flow. The design statistics
are provided in Table 5.3. All designs are timing clean as can been with positive WNS
& WHS. The layout of the rolled version is depicted in Figure 5.3 after the nets are

laid out.

Table 5.3. Design Statistics (Innovus Final).

Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled

Logical Instances | 20,808 | 22,498 35,986 50,809 80,062
Area (mm?) 0.134 | 0.149 0.208 0.278 0.415
Period (ns) 8 8 8 8 40
Frequency (MHz) 125 125 125 125 25
WNS (ns) 0.297 0.255 0.086 0.264 0.124
WHS (ns) 0.094 0.076 0.090 0.080 0.056
LVT (%) 4.3 6.6 11.5 10.0 20.1
SVT (%) 2.2 2.0 10.2 7.9 21.4
HVT (%) 93.4 91.3 78.3 82.1 58.4

47

Figure 5.3. Layout (Final).

After the design is completed the layout was exported as Graphic Design System
(GDSII) file. It is a binary file that describes the geometric shapes along with other
information about the layout [27]. The GDSII file is then sent to the foundry for
fabrication. In our case, the GDSII file was generated but the design was not fabricated

due to high fabrication costs.

5.3. Signoff RC Extraction

Signoff parasitics were extracted at this stage using Cadence Quantus tool. Stan-
dard Parasitic Exchange Format (SPEF) files, which shows parasitic RC values, are
generated and parasitic values are used in other signoff tools to accurately model the

interconnect delays. Signal integrity is also closely associated with parasitics.

48

5.4. Signoff Timing Analysis

Static Timing Analysis (STA) was executed with Cadence Tempus for the signoff
timing analysis. The tool takes the design netlist and placement information from In-
novus, and RC extraction information (.spef files) from Quantus as inputs. It analyzes
all paths and checks for possible timing violations. Innovus also makes timing analyzes
but Tempus performs the analysis at the signoff quality by using signoff quality RC
extraction results. STA results of the design can be examined below in Table 5.4 and
in Table 5.5. As can be seen, all slack values except wcl_cworst - unrolled, which fails
slightly, are greater than zero, which means that the designs meet the setup & hold
timing at every PVT corner mentioned in Table 5.2. Finally, .sdf file was generated to
be used at the gate-level simulation. Standard Delay Format (SDF) is a format that
contains timing information such as interconnect delays, constraints, and cell path

delays [28].

Table 5.4. Timing Violations (Setup).

Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled
Period (ns) 8 8 8 8 40
Frequency (MHz) 125 125 125 125 25
Views Slack Values (ns)
tc_typical 3.664 3.739 3.359 3.374 16.346
wc_cworst 0.352 0.474 0.054 0.164 0.177
wcl_cworst 0.083 0.092 0.031 0.060 -0.165

Table 5.5. Timing Violations (Hold).

Slack Values (ns)

Rolled | Obfuscated | Pipe. 32 | Pipe. 64 | Unrolled

bc_cbest 0.097 0.082 0.098 0.078 0.058
bc_cworst | 0.097 0.076 0.100 0.088 0.062
It_cbest 0.092 0.074 0.091 0.081 0.055
It_cworst 0.064 0.079 0.096 0.089 0.058
tc_typical | 0.215 0.194 0.199 0.204 0.174
wc_cworst | 0.355 0.367 0.372 0.357 0.361
wcl_cworst | 0.328 0.385 0.334 0.401 0.385

5.5. Gate-Level Simulation

49

The gate-level netlist, obtained from Innovus, was functionally simulated at this

stage using the Xcelium tool from Cadence. The .sdf file generated from Tempus was

used to annotate the delays in the design for a more accurate model, compared to the

behavioral simulation model. As a test bench at the signoff, the files in Appendix C

and D were used. The results were checked so that the design still works correctly after

the ASIC flow.

For each of the different inputs that were simulated, switching information was

dumped in Value Change Dump (VCD) files, which report the nets that switch and their

switching times. These files are used in the signoff power analysis tool to accurately

predict power consumption according to the particular scenario. Another file called

Toggle Count Format (.tcf) file reports the number of times a particular net switches

without specifying when they switch. Both files were used in this work.

90

5.6. Signoff Power Analysis

Signoff power analysis was completed using Voltus tool from Cadence. Similar
to the Tempus tool, netlist and placement information from Innovus, RC extraction
information (.spef files) from Quantus are taken as inputs. Several different power
analyses were completed in this step. Static power analysis assumes a default switching
activity for nets, i.e. every net switches once every five clock cycles. It gives a rough
estimation of the design. In the dynamic power analysis with vectors, the activity
information received from .tcf and .ved files were used. Results from the mentioned

power analyzes at typical case are summarized in Table 5.6.

Table 5.6. Power Consumption (Total).

Power (mW) | Rolled | Obfuscated | Pipe. 32 | Pipe. 64 | Unrolled
Static 8.313 9.503 12.9 17.92 4.26

Dyn. (.tcf) 5.049 7.091 16.01 32.15 21.49

Dyn. (.ved) 5.051 7.097 16.85 32.16 21.47

Since the test bench contains many different inputs, power analysis using .ved
files was executed many times. By doing this, current traces for different inputs were
obtained. The format of the trace file can be seen in Figure 5.4. It contains three
columns: point number, time of the point (second), and the current value (ampere).
Traces were obtained in 50 ps time steps. These traces were transferred to the Chip-
Whisperer tool for side-channel analysis. It should be noted that the mentioned current
traces will be called power traces in the rest of the thesis. Since the voltage can be

assumed as nearly constant, a current trace can be interpreted as a power trace.

51

0 0.0000e+00 0.00114845
1 5.0000e-11 0.00392821
2 1.0000e-10 0.00516825
3 1.5000e-10 0.0125037
4 2.0000e-10 0.0141497
5 2.5000e-10 0.0054537
6 3.0000e-10 0.00347611
7 3.5000e-10 0.0109725
8 4.0000e-10 0.0428358
9 4.5000e-10 0.0607904
10 5.0000e-10 0.058673

Figure 5.4. Power Trace File.

Figure 5.5 presents the current trace graph, for the rolled version. The peaks
correspond to the clock edges. The circuit exhibits significantly lower power consump-
tion between the clock edges, which is expected in digital Complementary Metal Oxide
Semiconductor (CMOS) circuits. Initial and final points in the graph stem from re-
ceiving the plaintext and giving the ciphertext. They result in higher peaks as the
interface is connected to the high load capacitances. The middle points correspond to

the power consumption during the actual encryption operation.

Trace Graph

D.08

0.07 1

0.06

0.051

0.04

0.031

Current (A)

0.02

0.01 Iil ' :
] 1

-0.01

1] 500 1000 1500 2000 2500 3000
Trace Points

Figure 5.5. Current Trace Graph.

52

6. EXPERIMENTS AND RESULTS

After the protected and unprotected implementations are completed, the designs
were subjected to the side-channel attack analysis. The effectiveness of the protection

schema was compared to the literature using key metrics.

6.1. Side-Channel Attack Resistance Evaluation

Side-channel attack resistance was evaluated using ChipWhisperer, Windows en-
vironment version 5.5. ChipWhisperer is an open-source toolchain that has a complete
setup, namely target hardware, capture hardware, firmware, software. For example,
ChipWhisperer-Lite board has Atmel XMEGA as a target. The algorithms are run
on the target and the capture part is used with analog circuitry to capture the power
consumption data. The board is designed so that special circuitry provides clear power
traces. In this way, power and glitch side-channel attacks can be run easily with its
specialized setup [29]. Though analyzed data come from the ChipWhisperer devel-
oped boards, it is also possible to analyze traces obtained from other places. The
second approach was used during the thesis. Since it is very expensive to tape out our
custom AES implementation and it is harder to extract relevant power traces when
implemented in FPGA, the analyzer module of the ChipWhisperer (cwa) was mainly

used.

There are different leakage models available to be used during the attack. They
focus on different stages of the AES to extract the secret key. They come to different
conclusions with different correlation values. The results were obtained after 100,000
random inputs, which were generated on MATLAB, were encrypted using the same
key. Traces have data points separated by 50 ps to give the total period per trace.
Total period changes according to the version analyzed. Target cipherkey is in Table

6.1. The most significant bytes in the tables are the bytes with the number 15.

93

Table 6.1. Target Cipherkey.

Bytes of the 128-bit Target Cipherkey

15|14 (13|12 |11 (10| 9 | 8 | 7|6 | 5|4 |3 |2|1]0
2b | Te | 15 | 16 | 28 | ae | d2 | a6 |ab | {7 | 15| 88|09 | cf | 4f | 3¢

Subkey predictions depending on the leakage model that is more successful in
revealing the key for particular version, are given in Tables 6.2 to 6.16. Different
models were tried with 10,000 traces and selected ones were used for 50,000 and
100,000 traces. Chosen leakage model for rolled version is after_key_mix, which uses
the Hamming Weight of the output of the first AddRoundKey operation as an attack
point. mix_columns_output, which attacks the first round MixColumns using Hamming
Weight model, was chosen for rolled obfuscated and pipelined versions. sbox_output
model was chosen for unrolled version. It attacks the first round SubBytes operation
using Hamming Weight model. The software compares the actual traces with the pre-
dictions obtained using all possible key combinations and the chosen model. The key
prediction that is more compatible with the actual traces has a higher correlation value.
The order of the results follows the version order in Section 3.1. The 100,000-input
attack took approximately one hour and 29 minutes for the rolled version, one hour
and 34 minutes for the obfuscated version, one hour and 32 minutes for 32-bit pipelined
version, one hour and 20 minutes for 64-bit pipelined version in a computer that has
AMD Ryzen 5 3600 6-Core Processor and 16.0 GB RAM. They are approximately
around one hour and thirty minutes as background applications also affect the result.
In the tables below, there are five subkey predictions for every byte position. The
uppermost ones are the ones with the highest correlation with the traces. The bytes
that matched the target have their cells highlighted. Three different trace numbers are
selected: 10,000, 50,000, and 100,000. Analyzing different trace numbers gives insight
into how the results change as the attack continues. In addition, the reliability of the

comparison is increased as the comparison is repeated with different trace numbers.

Table 6.2. Byte Prediction Results (Rolled, 10,000 Traces).

00

81

00

c4

00

00

20

00

Te

00

00

00

00

00

3b

00

00

df

00

08

00

ea

e9

d7

ae

bt

29

00

10

t7

38

eb

30

af

e9

t7

15

16

28

51

40

ab

ef

08

7

19

cf

b0

16

U k= W N (=

15

cl

fe

a9

t7

fe

01

40

d4

30

04

f2

00

04

c3

Table 6.3. Byte Prediction Results (Rolled, 50,000 Traces).

00

81

00

00

00

00

20

Te

00

00

00

00

00

00

00

df

00

00

15

00

ca

e9

d7

ae

fd

ab

c4d

01

38

eb

30

Af

16

ca

15

16

28

ol

02

99

3b

fe

04

7

19

cf

b0

e9

U= | W N =

35

cl

fe

a9

o7

59

d4

02

02

80

0d

00

fd

3¢

Table 6.4. Byte Prediction Results (Rolled, 100,000 Traces).

Te

00

20

00

81

00

00

00

00

00

00

00

00

00

00

df

00

00

15

00

ca

e9

d7

ae

fd

99

o4

08

80

88

19

cf

Af

3¢

ca

15

16

28

51

02

ab

ab

f7

7t

7

eb

30

b0

c3

U [| W N -

35

76

ef

a9

o7

ef

bf

bf

d4

01

08

02

0d

02

16

54

Table 6.5. Byte Prediction Results (Rolled Obfuscated, 10,000 Traces).

2b

28

40

09

4a,

le

a7

3b

e’

fd

08

td

ab

ad

8t

fc

£3

fc

ab

19

U | | W [N |-

t6

af

od

bb

Table 6.6

2b

28

ab

09

e’

fe

fe

fe

o6

fe

fe

fe

ef

fe

fe

fe

0d

fe

fe

fe

44

fd

fd

fd

99

fd

fd

fd

ab

fd

fd

fd

23

fd

fd

fd

97

fe

fe

fe

40

fc

fe

fc

db

fe

fc

fe

3t

fc

fc

fe

U= | W N =

25

13

ad

45

Table 6.7.

2b

28

ab

09

25

fe

56

ef

0d

eb

fd

fd

40

fd

fd

ab

fd

45

fd

fd

37

fc

fc

2e

fc

fc

a8

fc

08

fc

fc

U [| W N -

67

34

ac

9d

95

Table 6.8. Byte Prediction Results (32-bit Pipeline, 10,000 Traces).

2b

28

ab

09

a4

fe

ed

db

b4

07

td

fd

67

a9

ds

3¢

fe

fc

29

73

00

CU Wk | W DN =

76

cH

03

7

2b

28

ab

09

de

fe

fe

fe

25

fe

fe

fe

ab

fe

fe

fe

85

fe

fe

fe

79

fd

fd

fd

5%¢

fd

fd

fd

1b

fd

fd

fd

65

fd

fd

fd

2f

fc

fc

fc

{0

fe

fc

fe

99

fc

fc

fc

2¢

fe

fc

fc

O | = | W N (=

50

2c

19

96

2b

28

ab

09

2f

fe

25

3t

04

45

fd

fd

fd

2c

fd

8d

fd

fd

20

fd

fd

c7

fc

fc

fc

e8

fc

9b

fc

fc

b4

fc

fc

CU |k | W | N |+

39

8b

bd

28

o6

Table 6.11. Byte Prediction Results (64-bit Pipeline, 10,000 Traces).

2b

28

ab

09

b3

67

72

cl

46

fd

el

3¢

ed

£5

fc

9d

be

b3

U | | W [N |-

bt

74

el

31

2b

28

ab

09

3a

fe

fe

fe

25

fe

fe

fe

13

fe

fe

fe

bd

fe

fe

fe

87

fd

fd

fd

2a

fd

fd

fd

ad

fd

fd

fd

ec

fd

fd

fd

40

fc

fc

fe

45

fc

fc

fc

39

fc

fc

fc

11

fe

fe

fe

O = | W N =

2f

db

19

a7

2b

28

ab

09

2f

fe

86

ca

ee

20

fd

fd

50

fd

fd

13

fd

Ob

fd

fd

da

fc

fc

7t

fc

fc

78

fc

10

fc

fc

U [| W N -

48

22

f7

c9

o7

Table 6.14. Byte Prediction Results (Unrolled, 10,000 Traces).

d7

af

af

f0

Af

09

f4

b0

b0

b4

b0

6f

09

Ob

f4

af

2a

b0

09

cf

2f

Af

b2

Af

0f

b0

f4

Ob

f4

f4

b2

b2

5b

f4

f4

09

92

2d

2b

cl

Oa

Af

4f

f0

2b

09

af

d2

2¢

b4

4b

b6

Ob

f4

09

fe

2

2d

0f

f4

0f

d2

09

b4

GU [k | W DN =

29

2f

ab

f4

f0

2f

do

Af

6f

92

t6

f0

2d

2f

f4

Table 6.15. Byte Prediction Results (Unrolled, 50,000 Traces).

22

f4

af

b0

f4

09

f4

09

f4

b0

b0

f4

f4

f4

f4

Af

db

0f

b0

f4

Ob

af

09

f4

ab

Ob

Af

09

09

Ob

09

f4

of

af

09

09

b0

f4

2f

Af

b0

09

f4

b0

b0

b0

Af

09

£3

b0

f4

0f

d6

b4

£2

0f

0f

f4

09

Af

Af

09

b0

b0

Ol = | W N =

d7

Ob

b4

f0

4f

a2

b0

do

4b

4f

Ob

of

of

af

f0

0f

Table 6.16. Byte Prediction Results (Unrolled,

100,000 Traces).

97

f4

af

f4

f4

Af

f4

09

f4

f4

b0

09

f4

f4

f4

f4

9t

of

09

b0

b0

f4

09

f4

b0

b0

f4

f4

09

Ob

09

4f

14

b0

b0

09

4f

09

4f

4f

ab

Ob

Af

b0

af

09

b0

09

22

2f

f4

0f

Ob

b0

f0

b0

f0

09

Ob

af

b0

af

Af

b0

O = | W N (-

bb

4f

f0

f0

09

a2

b0

b2

09

af

09

fO

of

b0

f0

of

o8

99

16-byte Key Prediction

14

w 12

]

por

-

£ 10

o

Q@

o 8

>

£

5 6

g,

E

S

o II
: [

Rolled Obfuscated Pipe. 32 Pipe. 64 Unrolled
Versions

M 10,000 Traces M 50,000 Traces ™ 100,000 Traces

Figure 6.1. Side-Channel Attack Results.

The results from the tables can be seen at a glance in Figure 6.1 and the inferences

can be summarized as follows:

e The most revealing one is the first version, i.e. rolled one.

e Effect of obfuscating is clearly visible when Table 6.3 and Table 6.6 are compared.
The obfuscated version has a better revealing rate as 10 bytes are visible for the
rolled version but four bytes are visible for the obfuscated version.

e Though both rolled and 32-bit pipelined versions take the input from the 32-
bit interface, the pipelined version reveals much less information with 100,000
traces as can be seen in Table 6.10 and Table 6.4. This is consistent with the
expectations as only one input is processed at a time in the rolled version, and
hence there is no interference from other inputs.

e (64-bit pipelined version has similar revealing performance compared to the 32-bit
pipelined version when Table 6.9 and Table 6.12 are compared. This is contrary

to the expectations because more inputs are processed at the same time in the

60

64-bit pipelined version which is expected to increase side-channel resistance.

e Pipelined versions reveal four bytes with 10,000, 50,000, and 100,000 traces. As
far as the attack point is concerned, which is the MixColumns step, the location
of the revealed bytes implies that the attack is effective in the particular 32-bit
block. This attack point reveals four bytes in all versions except the unrolled
version, which implies that MixColumns is less protected compared to the other
attack points. The reason can be the compute-intensive nature of MixColumns,
which contains multiple vector multiplications in the Galois field that can give
larger power fluctuations.

e Pipelined versions have better performance compared to the rolled version as
visible in Table 6.4, Table 6.10, and Table 6.13.

e The unrolled version performs better compared to all other versions. This can be
attributed to the combinational nature of the unrolled version since transitions
between are not visible as clear as the spikes at the clock edges. Therefore, it
is hard to distinguish power consumption differences between operations where
different operations occur one after another with just a couple of gates delay.

e (Collecting more traces reveals in general more subkeys as nine bytes are revealed
with the analysis of 10,000 traces for the rolled version. 50,000 traces reveal
10 bytes as in Table 6.3. However, this assumption does not hold for 32-bit
pipelined version as shown between Table 6.8 and Table 6.9 as both reveal four
bytes. Some bytes are revealed with fewer traces but some bytes may be revealed
after collecting much more traces. So, 10,000 and 50,000 may not be a good
comparison window. The equal byte disclosure between pipelined and obfuscated

versions can also be attributed to the mentioned reason.

Partial Guessing Entropy (PGE) gives the number of wrong byte predictions
above the correct byte in the correlation list. For example, if the correct byte is the
second most correlated prediction, the PGE becomes one. The results with 100,000
traces are tabulated in Table 6.17. Total PGE is the sum of the PGE values that
belong to the 16 different bytes. Having a low PGE means more bytes are close to

being revealed and hence the design has lower side-channel attack resistance.

61

Table 6.17. Partial Guessing Entropy (PGE) (100,000 Traces).

PGE Values for the 128-bit Cipherkey Prediction
Bytes | Rolled | Obfus. | Pipe. 32 | Pipe. 64 | Unrolled
f 31 0 0 0 178
0 129 129 129 5
d 3 234 234 234 56
c 3 233 233 233 40
b 3 0 0 0 29
a 2 81 81 81 82
9 9 45 45 45 15
8 3 89 89 89 15
7 3 0 0 0 2
6 3 8 8 8 23
5 16 234 234 234 29
4 2 119 119 119 47
3 6 0 0 0 1
2 2 48 48 48 17
1 2 176 176 176 3
0 2 195 195 195 61
Total 90 1591 1591 1591 603

6.2. Comparison

In Table 6.18, the proposed designs are compared against previous work. The
design [9] was implemented in TSMC 22 nm CMOS process. It simulates the RC
annotated post-layout netlist with CustomSim, a tool from Synopsys. Then, CPA is
performed on the design. Masking on both linear and non-linear transformations is
employed to prevent the side-channel attack. The design in [30] was fabricated on 65

nm process. DPA is performed on the power traces that are directly collected from the

62

hardware. A charge-recovery logic family, Bridge Boost Logic (BBL) is utilized to make
energy dissipation independent of the switching. The design in [31] was fabricated on
130 nm process. Switched capacitor block is employed to equalize the current drawn
by the sensitive blocks. The traces are again collected from the hardware. The target
AES step is MixColumns in [30] and [31]. [32] was also implemented on 130 nm process.
True Random Number Generator (TRNG) is used to provide random key values for
the encryption and this TRNG calibrates itself according to the PV'T variations. For
side-channel attack resistance, Rotating S-box Masking (RSM) is utilized in which two
barrel shifters are placed before and after the SubBytes stage and the masked data go
through the S-box. Power traces are obtained using HSpice and the correlations are
calculated with MATLAB OpenSCA. First byte of the SubBytes in the last round is
targeted.

Table 6.18. Comparison to the Literature.

Pipe. 32 | Pipe. 64 | [9] | [30] | [31] 32]
Technology (nm) 65 65 22 65 130 130
Area (mm?) 0.208 0.278 0.0169 | 0.291 1.37 N.A
Gates 36K 51K 16K N.A N.A | 183.29K
Power (mW) 16.0 32.2 41.6 98 44.34 N.A
Clock Cycles 4 2 10 10 11 1
Frequency (MHaz) 125 125 400 | 1320 110 100
Throughput (Gbps) 4 8 512 | 16.9 | 1.28 12.8
MTD > 100K > 100K N.A | 940K | > 10M N.A

The pipelined designs from this thesis have the lowest power consumption val-
ues compared to the other ones. [9] has lower area but since it is a more advanced
technology, its smaller size is expected as transistors are also smaller. But it also has
fewer gates, so it is more area efficient compared to this thesis. Throughput of the

64-bit pipelined design is greater compared to the [9]. Both 32-bit and 64-bit pipelined

63

designs have greater throughput compared to the [31] with higher operating frequency
and lower power consumption. Both pipelined versions are much smaller in terms of
gate count in contrast to [32]. Measurements-to-Disclosure (MTD) value is here taken
as the number of traces required for the disclosure of all bytes. The correct byte should
be distinguished from all the other wrong byte predictions as defined in [33]. The MTD
values for this thesis are given with > sign because not all bytes were disclosed as a
first prediction. Collecting much higher traces would solve the issue but collecting
traces from simulation programs needs much more time compared to collecting from
hardware. In addition, MTD values are not properly documented for some papers.

Therefore, MTD comparison is not clearly conclusive.

64

7. CONCLUSION

In this thesis, low power and power side-channel attack resistant AES IP is pre-
sented. Today, the attacks are becoming more and more diversified and intimidating.
Security is threatened and continuously upgraded solutions are necessary. The design-
ers face the challenge of preparing faster and more secure designs with a low power
budget. Especially for battery-powered devices, power consumption is an important
consideration. In the age of the Internet of Things (IoT), these two targets become

critical, hence the topic of this thesis is relevant to the current demands.

Improvement to the side-channel resistance is provided by the obfuscating and
pipelining. For obfuscating, a mask value, generated from LFSR, is XOR’ed with the
plaintext. XOR output and mask are passed through ShiftRows and MixColumns oper-
ations independently. Then the outputs are XOR’ed again and the obtained value goes
into AddRoundKey. The seed of the LFSR comes from the cipherkey. For pipelining,
both 32-bit and 64-bit versions were constructed. At the same time, different inputs
are processed at the different hardware blocks. Power consumption due to different
inputs add up and result in complex total power consumption which complicates the
side-channel attack by requiring more inputs to disclose the key. Both methods showed

better side-channel attack resistance compared to the unprotected base design.

In total, five different versions were used and compared with each other. The
rolled version uses single hardware for all rounds. So, at the rising edge of the clock,
the output of the round is fed back to the same hardware. The obfuscated version
uses the same approach as the rolled version but the round contains obfuscating. The
third and fourth versions utilize pipelining by introducing additional hardware to the
rolled version. The most area-consuming version unrolls all rounds. So, it is possible

to encrypt the plaintext in one clock cycle excluding the delay in the interface.

65

The versions were designed using both FPGA and TSMC 65 nm ASIC flow.
Their speed, area, power consumption, latency, and other statistics were compared.
The total area, power consumption, utilization values showed that there is a consis-
tent increase when we go from rolled version, to obfuscated, 32-bit pipelined, 64-bit
pipelined, and unrolled version. The clock frequency of the ASIC flow is chosen as equal
for all versions, 8 ns, except unrolled version, 40 ns. The latencies between consecutive
encryption operations are 17 cycles, 17 cycles, 4 cycles, 2 cycles, and 8 cycles, respec-
tively. The unrolled design has 0.415 mm? area, 80K standard cells, 21.5 mW power
consumption, 25 MHz operating frequency, and 3.2 Gbps throughput. 64-bit pipelined
design has 0.278 mm? area, 51K standard cells, 32.2 mW power consumption, 125 MHz
operating frequency, and 8 Gbps throughput. 32-bit pipelined design has 0.208 mm?
area, 36K standard cells, 16.0 mW power consumption, 125 MHz operating frequency,
and 4 Gbps throughput. The side-channel attack resistance was evaluated by doing sta-
tistical analysis on simulation outputs which enables testing countermeasures before a
costly tapeout process. According to the evaluation results unrolled version performed
better against power side-channel attack but its high area and lower throughput com-
pared to the pipelined versions make it infeasible in compact applications. Pipelining

increases both side-channel attack resistance and throughput.

As a future work, fixing the power consumption can be stated. Though this
is a known method, the setup can be established as follows: Cadence Voltus tool
outputs are exported as a text file, the same as the file shown in Figure 5.4. Then
the values are imported to the Simulation Program with Integrated Circuit Emphasis
(SPICE) tool where they will represent current values pulled by a black box block.
Then analog circuitry whose job is to stabilize current consumption is connected to the
load. In this way, the attacker would see the input of the analog circuitry, instead of the
actual power consumption of the cryptographic block. This scheme would harden the
side-channel attack by loosening the correlation between executed operations and seen
power consumption. The obfuscating method can also be improved with faster mask
refreshing and more adaptive seed changing. More complex schemes would improve

side-channel attack resistance.

66

REFERENCES

. Courtois, N. and J. Pieprzyk, “Cryptanalysis of Block Ciphers with Overdefined
Systems of Equations”, Cryptology ePrint Archive, p. 2, 2002.

. Simmons, G. J., Encyclopedia Britannica Cryptology, 2016,
https://www.britannica.com/topic/cryptology, accessed in February 2022.

. Kehrer, P., Cryptography.io Asymmetric Algorithms, 2019,
https://cryptography.io/en/latest /hazmat /primitives/asymmetric/index.html,
accessed in February 2022.

. Young, B., Foundations of Computer Security Lecture 45: Stream and Block En-
cryption, University of Texas at Austin Department of Computer Sciences, Austin,

2020.

. Domnitser, L., N. Abu-Ghazaleh and D. Ponomarev, “A Predictive Model for
Cache-Based Side Channels in Multicore and Multithreaded Microprocessors”,
Proceedings of the 5th International Conference on Mathematical Methods, Mod-

els and Architectures for Computer Network Security, p. 70-85, Springer-Verlag,
Berlin, Heidelberg, 2010.

. Benvenuto, C. J., Galois Field in Cryptography, University of Washington Depart-
ment of Mathematics, Seattle, 2012.

. National Institute of Standards and Technology (NIST), FIPS 197 Advanced En-
cryption Standard (AES), NIST, 2001.

. National Institute of Standards and Technology (NIST), NIST Special Publication
800-38A Recommendation for Block Cipher Modes of Operation, NIST, 2001.

. Chou, Y.-H. and S.-L.. L. Lu, “A High Performance, Low Energy, Compact Masked

10.

11.

12.

13.

14.

15.

16.

17.

67

128-Bit AES in 22nm CMOS Technology”, International Symposium on VLSI De-
sign, Automation and Test (VLSI-DAT), pp. 1-4, 2019.

Bogdanov, A., D. Khovratovich and C. Rechberger, “Biclique Cryptanalysis of
the Full AES”, D. H. Lee and X. Wang (Editors), Advances in Cryptology — ASI-
ACRYPT, pp. 344-371, Springer, Berlin, Heidelberg, 2011.

National Institute of Standards and Technology Computer Security Re-
source Center, Cryptographic Algorithm Validation Program CAVP, 2022,
https://csre.nist.gov/projects/cryptographic-algorithm-validation-program/

validation-search, accessed in February 2022.

Bassham, L. E., The Advanced Encryption Standard Algorithm Validation Suite
(AESAVS), National Institute of Standards and Technology, 2002.

Zhou, Y. and D. Feng, “Side-Channel Attacks: Ten Years After Its Publication
and the Impacts on Cryptographic Module Security Testing”, Cryptology ePrint
Archive, pp. 2, 22-23, 2005.

Kocher, P.; J. Jaffe and B. Jun, “Introduction to Differential Power Analysis and
Related Attacks”, Cryptography Research, p. 3, 1998.

Kocher, P., J. Jaffe and B. Jun, “Differential Power Analysis”, M. Wiener (Editor),
Advances in Cryptology — CRYPTO, pp. 388-397, Springer, Berlin, Heidelberg,
1999.

Ors, S., F. Gurkaynak, E. Oswald and B. Preneel, “Power-Analysis Attack on
An ASIC AES Implementation”, Proceedings of the International Conference on
Information Technology: Coding and Computing, Vol. 2, pp. 546-552, IEEE, Las
Vegas, NV, 2004.

Brier, E., C. Clavier and F. Olivier, “Correlation Power Analysis with a Leak-

age Model”, M. Joye and J.-J. Quisquater (Editors), Cryptographic Hardware and

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

68

Embedded Systems - CHES, pp. 1629, Springer, Berlin, Heidelberg, 2004.

NewAE Technology, Correlation Power Analysis, 2018,
https://wiki.newae.com/Correlation_Power_Analysis, accessed in February

2022.

INVIA, Clock Randomization against Side Channel Attacks, INVIA, Paris, 2021.

Alfke, P., Efficient Shift Registers, LFSR Counters, and Long Pseudo- Random

Sequence Generators, 1.1st edition, p. 5, Xilinx, San Jose, 1996.

Sedra, A. S. and K. C. Smith, Microelectronic Circuits, 6th edition, pp. 362-366,
Oxford University Press, New York, 2011.

National Institute of Standards and Technology, Cryptographic Standards and
Guidelines AES Development, 2021, https://csre.nist.gov/projects/cryptographic-
standards-and-guidelines/archived-crypto-projects/aes-development, accessed in

February 2022.

Xilinx, Xilinz 7 Series FPGA and Zynq-7000 All Programmable SoC Libraries
Guide for Schematic Designs, 14.7th edition, Xilinx, 2013.

Xilinx, UG906 Vivado Design Suite User Guide: Design Analysis and Closure
Techniques, 2nd edition, Xilinx, 2019.

Weste, N. H. and D. Harris, CMOS VLSI Design: A Clircuits and Systems Per-
spective, 3rd edition, pp. 189, 196, Pearson Education, 2005.

Igbal, M. A., N. K. Macha, B. T. Repalle and M. Rahman, “Designing
Crosstalk Circuits at Tnm”, IEEE International Conference on Rebooting Com-

puting (ICRC), pp. 1-4, IEEE, San Mateo, CA, 2019.

DiBartolomeo, S., All About Calma’s GDSII Stream Format, 2011,

28.

29.

30.

31.

32.

33.

69

https:/ /artwork.com /gdsii/gdsii/index.htm, accessed in February 2022.

IEEE Computer Society, IEEE Std 1497-2001, IEEE Standard for Standard Delay
Format (SDF) for the Electronic Design Process, IEEE, 2001.

O’Flynn, C., CW1173: ChipWhisperer-Lite, NewAE Technology, Dartmouth,
2018.

Lu, S., Z. Zhang and M. Papaefthymiou, “1.32GHz High-Throughput Charge-
Recovery AES Core with Resistance to DPA Attacks”, Symposium on VLSI Cir-
cuits (VLSI Circuits), pp. C246-C247, IEEE, Kyoto, Japan, 2015.

Tokunaga, C. and D. Blaauw, “Secure AES Engine with A Local Switched-
Capacitor Current Equalizer”, IEEFE International Solid-State Circuits Conference
- Digest of Technical Papers, pp. 64—65,65a, IEEE, San Francisco, CA, 2009.

Peng, Y., H. Zhao, X. Sun and C. Sun, “A Side-Channel Attack Resistant AES
with 500Mbps, 1.92pJ/Bit PVT Variation Tolerant True Random Number Genera-
tor”, IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 249-254,
IEEE, Bochum, Germany, 2017.

Tiri, K., D. Hwang, A. Hodjat, B. cheng Lai, S. Yang, P. Schaumont and I. Ver-
bauwhede, “Prototype IC with WDDL and Differential Routing - DPA Resistance
Assessment”, Cryptographic Hardware and Embedded Systems — CHES, 7th Inter-
national Workshop, pp. 354-365, Springer, Edinburgh, Scotland, 2005.

APPENDIX A: FPGA FLOW CONSTRAINTS

13 7

below it are normally written in the same line.

#set period 50; # for unrolled version.

set period 12; # for 64-bit pipelined version

#set period 11; #for rolled, obfuscated, 32-bit pipelined versions

create_clock -name main_clock -period ${period} -waveform ...

"0 [expr $period/2.0]" [get_ports

clk_i]

is put to show the line break. The line which contains

set_clock_transition 0.2 [get_clocks main_clock]

set_input_delay -clock main_clock
[get_ports rst_ni]
set_input_delay -clock main_clock
[get_ports rst_ni]
set_input_delay -clock main_clock
[get_ports start_plain_text]
set_input_delay -clock main_clock
[get_ports start_plain_text]
set_input_delay -clock main_clock
[get_ports start_key]
set_input_delay -clock main_clock
[get_ports start_key]
set_input_delay -clock main_clock
[get_ports plain_textx*]
set_input_delay -clock main_clock

[get_ports plain_textx]

set_output_delay -clock main_clock -add_delay -max 1.0 ...

-add_delay

-add_delay

—-add_delay

-add_delay

-add_delay

-add_delay

-add_delay

-add_delay

—max

-min

—max

-min

—max

-min

—max

-min

70

and the one

[get_ports cipher_textx]
set_output_delay -clock main_clock -add_delay -min O ...

[get_ports cipher_text*]

set_load 1.4 [get_ports cipher_textx]

set_units -capacitance pF -current mA -voltage V -power mW ...

-resistance Ohm

71

APPENDIX B: KAT TEST BENCH

‘timescale 1ns / 1ps

import parameters_pkg: :*;

module aes_kat_tb #(

) (

);

‘ifdef EXPANDED

localparam PERIOD = 60;
‘else
localparam PERIOD = 10;

‘endif

localparam HALF_PERIOD = PERIOD/2;

// Inputs

reg rst_ni;

reg clk_i;

reg start_plain_text;
reg start_key;

reg [31:0] plain_text;

// Outputs

logic [31:0] cipher_text;

aes #(

) uut (
.rst_ni (rst_ni),
.clk_i (clk_1i),

.start_plain_text (start_plain_text),

72

.start_key (start_key),

.plain_text (plain_text),
.cipher_text (cipher_text)
);
integer i,

integer file_id;

reg [31:0] plain_text_memory [0:1135];
reg [31:0] cipher_key_memory [0:1135];

initial begin
$readmemh ("kat_plaintext.mem", plain_text_memory) ;
$readmemh ("kat_cipherkey.mem", cipher_key_memory) ;
file_id = $fopen("output.txt", "w");

end

initial begin
plain_text = 32°h0;
clk_i = 1;
rst_ni = 1;
start_plain_text = O;
start_key = O;
i=0;
#100;

rst_ni 0;

#100;

rst_ni 1;
#100;
// GFSbox Know Answer Test Values

start_key = 1’bl;

plain_text = cipher_key_memory[0];
#PERIOD;

start_key = 1°b0;

plain_text = cipher_key_memory[1];

#PERIOD;

plain_text = cipher_key_memory[2];
#PERIOD;

plain_text = cipher_key_memory[3];
#(15%PERIOD) ;
for (i = 0; 1 < 7; i = i+1) begin

start_plain_text = 1’bi;

plain_text = plain_text_memory[0 + 4%i];
#PERIOD;

start_plain_text = 1’b0;

plain_text = plain_text_memory[l + 4x*i];

#PERIOD;

plain_text = plain_text_memory[2 + 4xi];

#PERIOD;

+

plain_text = plain_text_memory[3 + 4x%i];
“ifdef EXPANDED

#(2+PERIOD) ;
‘else

#(11xPERIOD) ;
‘endif
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);
#1; $fwrite (file_id, "%x", cipher_text);
(PERIOD-1);
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);

#1; $fwrite (file_id, "%x\n", cipher_text);

#(PERIOD-1);
end
// KeySbox Know Answer Test Values

start_plain_text = 1’bi;

plain_text = plain_text_memory[0 + 4*(i+1)];
#PERIOD;

start_plain_text = 1’b0;

plain_text = plain_text_memory[1l + 4*(i+1)];
#PERIOD;

plain_text = plain_text_memory[2 + 4*(i+1)];
#PERIOD;

plain_text = plain_text_memory[3 + 4*(i+1)];
#(15%PERIOD) ;

for (i = 7; i < 28; i = i+1) begin
start_key = 1°bil;
plain_text = cipher_key_memory[0 + 4%i];
#PERIOD;

start_key = 1°b0;

plain_text = cipher_key_memory[1 + 4x*i];
#PERIQOD;
plain_text = cipher_key_memory[2 + 4x*i];
#PERIOD;
plain_text = cipher_key_memory[3 + 4x*i];

“ifdef EXPANDED
#(14+PERIOD) ;
‘else
#(23*xPERIOD) ;
‘endif
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);

#1; $furite (file_id, "%x", cipher_text);

5

#(PERIOD-1);
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);
#1; $furite (file_id, "%x\n", cipher_text);
#(PERIOD-1);
end
// VarTxt Known Answer Test Values
start_key = 1’bl;
plain_text = cipher_key_memory[0 + 4*(i+1)];
#PERIOD;

start_key = 1°b0;

plain_text = cipher_key_memory[1 + 4*(i+1)];
#PERIOD;
plain_text = cipher_key_memory[2 + 4*(i+1)];
#PERIOD;

plain_text = cipher_key_memory[3 + 4*(i+1)];
#(15%PERIOD) ;
for (1 = 28; 1 < 156; i = i+1) begin
start_plain_text = 1°bl;
plain_text = plain_text_memory[0 + 4%i];
#PERIOD;
start_plain_text = 1’b0;

plain_text = plain_text_memory[1l + 4%i];

#PERIOD;

plain_text = plain_text_memory[2 + 4x*i];
#PERIOD;

plain_text = plain_text_memory[3 + 4%i];

“ifdef EXPANDED
#(2%PERIOD) ;
‘else

#(11*PERIOD) ;

‘endif

#1; $furite (file_id, "%x", cipher_text);

#(PERIOD-1);

#1; $furite (file_id, "%x", cipher_text);

#(PERIOD-1);

#1; $fwrite (file_id, "%x", cipher_text);

#(PERIOD-1);

#1; $fwrite (file_id, "%x\n", cipher_text);

#(PERIOD-1);
end
// VarKey Known Answer Test Values
start_plain_text = 1’bil;
plain_text = plain_text_memory[0 +
#PERIOD;
start_plain_text = 1’b0;
plain_text = plain_text_memory[1l +
#PERIOD;
plain_text = plain_text_memory[2 +
#PERIOD;
plain_text = plain_text_memory[3 +

#(15%PERIOD) ;

4% (i+1)];

4% (i+1)];

4% (i+1)]1;

4% (i+1)];

for (i = 156; i < 284; i = i+1) begin

start_key = 1’bil;

plain_text = cipher_key_memory [0
#PERIOD;

start_key = 1°b0;

plain_text = cipher_key_memory[1
#PERIOD;

plain_text = cipher_key_memory[2
#PERIOD;

plain_text = cipher_key_memory[3

+ 4%i];

+ 4xi];

+ 4xi];

+ 4xi];

7

“ifdef EXPANDED
#(14xPERIOD) ;
‘else
#(23*PERIOD) ;
‘endif
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);
#1; $fwrite (file_id, "%x", cipher_text);
#(PERIOD-1);
#1; $fwrite (file_id, "%x\n", cipher_text);
#(PERIOD-1);
end
$fclose (file_id);

end
always begin
#HALF_PERIOD clk_i = “clk_i;

end

endmodule

78

APPENDIX C: TEST BENCH (NO PIPELINE)

‘timescale 1ns / 1ps
import parameters_pkg: :*;
module aes_tb #(

parameter NumInputs = 100000
) (

);

‘ifdef EXPANDED

localparam PERIOD = 40;
‘else
localparam PERIOD = 8;

‘endif

localparam HALF_PERIOD = PERIOD/2;
// Inputs

reg rst_ni;

reg clk_i;

reg start_plain_text;

reg start_key;

reg [31:0] plain_text;

// QOutputs

wire [31:0] cipher_text;

aes #(
) uut (

.rst_ni(rst_ni),

79

30

.clk_i(clk_i),
.start_plain_text (start_plain_text),
.start_key (start_key),
.plain_text(plain_text),
.cipher_text(cipher_text)

)5

integer i,

reg [31:0] test_memory [0:(4*NumInputs -1)];
initial begin
$readmemh ("../DATA/SIM/input_hex_100000_matlab.mem", test_memory);

end

initial begin
plain_text = 32’h0;
clk i = 1;
rst_ni = 1;
start_plain_text = 0;
start_key = 0;
i=0;
#(10*PERIOD) ;
rst_ni = 0;
#(10+PERIOD) ;
rst_ni = 1;
#(10%PERIOD) ;
start_key = 1°bl;
plain_text = 32’h2b7e1516;
#PERIOD;

start_key = 1’b0;

plain_text
#PERIOD;
plain_text
#PERIOD;

plain_text

#(10%PERIOD) ;

for (i = 0; i < NumInputs; i

32’h28aed2ab;

32°habf71588;

32°h09cf4f3c;

i+1) begin

start_plain_text = 1°bil;

plain_text = test_memory[0 + 4xi];

#PERIOD;

start_plain_text = 1°b0;

plain_text

#PERIOD;

plain_text

#PERIOD;

plain_text

test_memory[1 + 4*i];

test_memory[2 + 4%i];

test_memory[3 + 4xi];

‘ifdef EXPANDED

#(6*PERIOD) ;

‘else

#(15%PERIOD) ;

‘endif
end

end

always begin

#HALF_PERIOD clk_i = "clk_i;

end

endmodule

81

APPENDIX D: TEST BENCH (PIPELINE)

‘timescale 1ns / 1ps

import parameters_pkg: :*;

module aes_tb #(

‘ifdef BIT_64

parameter BusWidth = 64,
‘else
parameter BusWidth = 32,

‘endif
parameter NumInputs = 100000
) (

);

‘ifdef EXPANDED

localparam PERIOD = 40;
‘else
localparam PERIOD = 8;

‘endif

localparam HALF_PERIOD = PERIOD/2;
// Inputs

reg rst_ni;

reg clk_i;

reg start_plain_text;

reg start_key;

reg [BusWidth-1:0] plain_text;

// Outputs

82

33

logic [BusWidth-1:0] cipher_text;

aes #(

) uut (
.clk_1i (clk_1i),
.rst_ni (rst_ni),

.start_plain_text (start_plain_text),

.start_key (start_key),
.plain_text (plain_text),
.cipher_text (cipher_text)
)
integer i,

reg [31:0] test_memory [O:NumInputs*4-1];
initial begin
$readmemh ("../DATA/SIM/input_hex_100000_matlab.mem", test_memory);

end

initial begin
plain_text = ’0;
clk_i = 1;
rst_ni = 1;
start_plain_text = 0;
start_key = O;
#(10*PERIOD) ;
rst_ni = 0;
#(10*PERIOD) ;

rst_ni = 1;

#(10%PERIOD) ;

‘ifdef BIT_64

start_key = 1°bil;

plain_text = 64°h2b7e151628aed2afb;

#PERIOD;

start_key = 1°b0;

plain_text = 64’habf7158809cf4f3c;

#(12xPERIOD) ;

[11771717717717777777777

for (i = 0; i < NumInputs; i = i+1) begin
start_plain_text = 1°bl;
plain_text = {test_memory[0 + 4*i], test_memory[1l + 4%i]};
#PERIOD;
start_plain_text = 1°b0;
plain_text = {test_memory[2 + 4*i], test_memory[3 + 4%i]};
#PERIOD;

end

‘else

start_key = 1’bil;

plain_text = 32’h2b7e1516;

#PERIOD;

start_key = 1°b0;

plain_text = 32’h28aed2a6b;
#PERIOD;
plain_text = 32’habf71588;

#PERIOD;

plain_text 32°h09cf4f3c;
#(11xPERIOD) ;
/1111111117117111177717

for (i = 0; i < NumInputs; i = i+1) begin

start_plain_text = 1°bl;
plain_text = test_memory[0
#PERIOD;

start_plain_text = 1°b0;

plain_text = test_memory[1l

#PERIOD;

plain_text = test_memory[2

#PERIOD;

plain_text = test_memory[3
#PERIOD;
end
‘endif

end
always begin
#HALF_PERIOD clk_i = “clk_i;

end

endmodule

4xi];

4xi];

4%i];

4xi];

85

