
LOW POWER SECURE SOC FOR IOT DEVICES USING LIGHTWEIGHT

CRYPTOGRAPHY ACCELERATION

by

Hikmet Seha Öztürk

B.S., Electronics and Communication Engineering, Istanbul Technical University,

2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Electrical & Electronics Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to present my thanks to Assistant Professor Faik Başkaya for his

motivation and guidance during the course of this thesis.

I want to thank my colleagues from TUTEL for their friendship. Working

amongst them rekindled my passion for research and allowed me to obtain the skills

that make this dissertation possible.

Finally, I would like to express my gratitude to my family for their unconditional

support.

iv

ABSTRACT

LOW POWER SECURE SOC FOR IOT DEVICES USING

LIGHTWEIGHT CRYPTOGRAPHY ACCELERATION

In recent years, the proliferation of the Internet of Things (IoT) has led to a

major increase in the quantity and type of devices involved in digital communications.

Various Lightweight Cryptography (LWC) algorithms have been proposed to answer

the need of cryptography in constrained devices. Although using separate algorithms

for products with varying capacities is advantageous for optimization, it creates the

risk that a single product may need to support multiple cryptographic primitives.

This thesis aims to find an efficient way of providing hardware acceleration for

multiple cryptography algorithms in lightweight System-on-Chips (SoC). For this pur-

pose, we present a design methodology that identifies the common portions across LWC

algorithms and uses them to increase shared resources in the hardware. We explore two

approaches to accelerator design: A fully-hardware approach and a hardware-software

approach. Our observations indicate that the second approach, which employs an

accelerator with a custom ISA, is more effective when designing for versatility.

We leverage the open-source PicoRV32 processor to construct a lightweight SoC

which employs various accelerators supporting Ascon, TinyJAMBU, and PHOTON-

Beetle LWC algorithms. To enable multi-algorithm support, we utilize hardware multi-

plexing of unshared resources, as well as Dynamic Partial Self-Reconfiguration (DPSR)

on FPGA. These implementations are compared with each other and with dedicated ac-

celerators in terms of energy efficiency, area, and throughput. The associated tradeoffs

and the conditions in which each variant is useful are determined.

v

ÖZET

NESNELERİN İNTERNETİ İÇİN HAFİF KRİPTOGRAFİ

HIZLANDIRICILI DÜŞÜK GÜÇ TÜKETİMLİ YONGA

ÜSTÜ SİSTEM TASARIMI

Son yıllarda yaygınlaşan Nesnelerin İnterneti (IoT), sayısal haberleşmeye dahil

olan aygıtların sayısında ve çeşitliliğinde önemli miktarda artışa sebep olmuştur. Özel-

likle güç ve donanım kabiliyetleri sınırlı cihazların haberleşme esnasında kriptografiye

ihtiyaç duyması, son yıllarda birçok Hafif Kriptografi (LWC) algoritmaları önerilmesine

yol açmıştır. Farklı kapasiteye sahip ürünler için farklı algoritmaların kullanılması her

ne kadar optimizasyon için yararlı olsa da, sahadaki bir ürünün birden fazla kriptografi

algoritması kullanmak durumunda kalması ihtimalini doğurmaktadır.

Bu tezin amacı, düşük güç tüketimli Yonga Üstü Sistemlerde (SoC) birden çok

kriptografi algoritması destekleyecek donanım hızlandırıcıların tasarımını araştırmaktır.

Ana fikir, farklı LWC algoritmalarının arasındaki benzerlikleri tespit ederek bu kısım-

ların aynı donanımda gerçeklenmesini sağlamaktır. Hızlandırıcıların tasarımında tama-

men donanıma dayalı ve donanım-yazılım işbirliği olacak şekilde iki yaklaşım denenmiş,

hibrit yöntemin esnekliğe dayalı tasarımlar için daha uygun olduğu gözlemlenmiştir.

Açık kaynak kodlu PicoRV32 işlemcisi kullanılarak yaptığımız SoC tasarımı üze-

rinde Ascon, TinyJAMBU ve Photon-Beetle olmak üzere üç algoritma destekleyebilen

farklı hızlandırıcı tasarımları enerji verimliliği, donanım alanı kullanımı ve hız açısından

karşılaştırılmıştır. Çoklu algoritma desteği için donanımsal çoklama ve FPGA üzerinde

Dinamik Kısmi Yeniden Kendini Belirleme (DPSR) yöntemleri kullanılmış, bu yöntem-

ler birbiriyle ve tekil hızlandırıcılarla karşılaştırılarak her birinin faydaları belirlenmiştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xii

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

2. BACKGROUND . 4

2.1. Cryptography . 4

2.1.1. Modern Cryptography . 4

2.1.1.1. Modern Ciphers . 5

2.1.2. Lightweight Cryptography . 7

2.1.2.1. Authenticated Encryption with Associated Data . . . 8

2.1.3. NIST LWC Competition . 9

2.1.3.1. Motivation . 9

2.1.3.2. Scope . 9

2.1.3.3. Desired Features of AEADs 10

2.1.3.4. Metrics . 11

2.1.3.5. Benchmarking . 12

2.1.4. Sponge Function . 12

2.1.4.1. Duplex Construction 14

2.2. LWC Algorithms . 15

2.2.1. ASCON . 16

2.2.1.1. Permutation . 17

2.2.1.2. Versions . 18

2.2.2. TinyJAMBU . 18

2.2.2.1. Permutation . 20

vii

2.2.2.2. Versions . 20

2.2.3. PHOTON-Beetle . 20

2.2.3.1. Linear Function . 22

2.2.3.2. Permutation . 22

2.2.3.3. Versions . 23

2.3. Partial Reconfiguration . 23

2.3.1. Dynamic Partial Self-Reconfiguration 25

3. LWC ACCELERATOR DESIGN . 26

3.1. Fully-Hardware Approach . 27

3.1.1. Register Interface . 28

3.1.1.1. Control-Status Registers 29

3.1.1.2. Data Registers . 30

3.1.1.3. Program Registers . 31

3.1.1.4. Bus Adapter . 31

3.1.2. Controller . 31

3.1.3. Cipher . 33

3.1.3.1. Permutation . 34

3.1.3.2. Event Table . 35

3.1.3.3. Round Counter . 35

3.1.4. Direct Memory Access Interface 36

3.2. Hardware-Software Co-Design Approach 36

3.2.1. ISA Specification . 37

3.2.1.1. Memory Access Instructions 37

3.2.1.2. Immediate Instructions 39

3.2.1.3. Control Flow Instructions 40

3.2.1.4. Permutation Instruction 41

3.2.2. Top-Level Design . 41

3.2.2.1. Instruction Decoder 42

3.3. System-on-Chip Integration . 43

3.3.1. PicoRV32 . 44

3.3.2. ICAP Controller . 44

viii

3.3.3. ROM Programmer . 46

3.4. Software Support . 47

4. IMPLEMENTATION OF LWC ACCELERATORS 49

4.1. FPGA Implementation . 49

4.1.1. Partial Reconfiguration Flow 51

4.2. Design Verification . 54

4.2.1. Behavioral Verification . 54

4.2.2. Hardware Verification . 55

4.3. Power Analysis . 56

5. EXPERIMENTS AND RESULTS . 57

5.1. Benchmarking Results . 57

5.2. Evaluation . 64

5.3. DPSR Overhead . 67

6. CONCLUSION . 69

REFERENCES . 72

APPENDIX A: Partial Reconfiguration Flow Commands 77

ix

LIST OF FIGURES

Figure 2.1. Overview of (a) Symmetric, (b) Asymmetric Cryptography. 6

Figure 2.2. Cryptography Device Spectrum. 8

Figure 2.3. Generic Sponge Function. 13

Figure 2.4. Duplex Construction. 15

Figure 2.5. Ascon Encryption. 16

Figure 2.6. TinyJAMBU AEAD Mode of Operation. 19

Figure 2.7. The NLFSR Used in TinyJAMBU’s 128-bit Permutation. 20

Figure 2.8. PHOTON-Beetle AEAD Mode Operation. 21

Figure 2.9. PHOTON256 permutation. 23

Figure 2.10. Partial Reconfiguration. 24

Figure 2.11. Partial Reconfiguration Using (a) PCAP, (b) External Agent, (c)

ICAP. 25

Figure 3.1. Top-Level Block Diagram of the Accelerator. 28

Figure 3.2. FSM Transitions for (a) Seven NIST LWC Algorithms, (b) Ascon. 32

Figure 3.3. Controller Block Diagram. 33

x

Figure 3.4. Cipher Module Block Diagram. 34

Figure 3.5. Round Counter Block Diagram. 35

Figure 3.6. Add Load Value (ADD) Instruction. 37

Figure 3.7. Write Load Value (WRT) Instruction. 38

Figure 3.8. Store Read Value (RD) Instruction. 39

Figure 3.9. (a) Add Immediate (ADDI). (b) Write Immediate (WRTI). 39

Figure 3.10. (a) Branch (BRN). (b) Branch-Immediate (BRNI). 40

Figure 3.11. Permutation (PERM) Instruction. 41

Figure 3.12. Top-Level Block Diagram of the Accelerator. 42

Figure 3.13. Top Level Connections. 44

Figure 3.14. ICAP Controller Diagram (a) Single Mode, (b) Stream Mode. . . 46

Figure 3.15. C Wrapper For AEAD Modes of LWC Algorithms. 47

Figure 4.1. Design flow for partial reconfiguration. 52

Figure 4.2. Post-Implementation FPGA Layout. 53

Figure 5.1. Energy efficiency comparison between versionM and versionH. . . 64

Figure 5.2. Resource utilization comparison between versionM and versionH. . 65

xi

Figure 5.3. Energy efficiency comparison between DA, MUX, and DPSR im-

plementations. 66

Figure 5.4. Resource utilization comparison between DA, MUX, and DPSR

implementations. 67

xii

LIST OF TABLES

Table 2.1. 5-bit S-box used in Ascon’s permutation. 18

Table 2.2. Recommended parameter sets for Ascon. 18

Table 2.3. Recommended parameter sets for TinyJAMBU. 21

Table 2.4. Linear function used in PHOTON-Beetle during output generation. 22

Table 3.1. List of Control-Status Registers. 29

Table 3.2. List of Data Registers. 30

Table 5.1. Progressive Comparison of ASCON Implementation versionH. . . . 58

Table 5.2. Progressive Comparison of TinyJAMBU Implementation versionH. 60

Table 5.3. Progressive Comparison of PHOTON-Beetle Implementation ver-

sionH. 60

Table 5.4. Progressive Comparison of ASCON Implementation versionM. . . . 62

Table 5.5. Progressive Comparison of TinyJAMBU Implementation versionM. 63

Table 5.6. Progressive Comparison of PHOTON-Beetle Implementation ver-

sionM. 63

xiii

LIST OF SYMBOLS

⊙ Multiplication in Galois Field

⊕ Bitwise XOR operation

|| Concatenation of bitstrings

≫ Bitwise right rotation

xiv

LIST OF ACRONYMS/ABBREVIATIONS

AD Associated Data

AE Authenticated Encryption

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

ASIC Application-Specific Integrated Circuit

BRAM Block RAM

CBC Cipher Block Chaining Mode

DES Data Encryption Standard

DFX Dynamic Function eXchange

ECB Electronic Codebook Mode

FPGA Field Programmable Gate Array

FF Flip-Flop

GF Galois Field

GUI Graphical User Interface

ICAP Internal Configuration Access Port

ISA Instruction Set Architecture

I/O Input / Output

IoT Internet of Things

IV Initialization Vector

KAT Known Answer Test

LFSR Linear Feedback Shift Register

LUT Look-up Table

NIST National Institute of Standards and Technology

NLFSR Nonlinear Feedback Shift Register

PnR Place and Route

PRR Partially-Reconfigurable Region

RAM Random Access Memory

ROM Read Only Memory

xv

RTL Register Transfer Level

S-box Substitution Box

SAIF Switching Activity Interchange Format

SHA Secure Hash Algorithm

SPN Substitution-Permutation Network

SoC System-on-Chip

1

1. INTRODUCTION

The volume of communication being carried out worldwide has increased drasti-

cally with the globalization brought about by technology. While this increasing flow

of information has proved convenient and beneficial in multiple aspects of our lives,

the necessity to safeguard data has never been greater. Consequently, communication

security is no longer a concept limited to critical applications in the modern world. It

now constitutes a substantial concern in our daily lives, whether it is about securing

digital transactions in commerce, identity verification on online services, or preserving

the privacy of personal information on social media.

In the past decade, especially with the proliferation of the Internet of Things

(IoT), communication across diverse agents has grown increasingly prevalent. Con-

strained devices now play an active role in digital communication, and a significant

number of them are not in a position to support standard cryptography primitives or

unwilling to trade off performance for security. Lightweight cryptography (LWC) has

emerged as a field to make cryptography accessible to all devices. The development

and integration of lightweight cryptography primitives has become an active area of

research in both industry and academia.

The National Institute of Standards and Technology (NIST) recognized the lack

of standardization in this area and started the LWC project in 2013, followed by a call

for algorithms for standardization in 2018. The process is an open-source round-based

competition whose final stage is ongoing as of August 2022. Due to the extensive

application range covered by LWC, it is expected that there will be multiple remaining

algorithms at the end of the competition, approved to be used under varying conditions.

In this thesis, we design a low-power System-on-Chip (SoC), using hardware

acceleration of LWC algorithms. We investigate whether the hardware acceleration can

be used effectively in constrained and IoT devices, even though there could be multiple

2

LWC algorithms in use in the environment. In particular, we explore the feasibility

and tradeoffs associated with providing hardware support for multiple algorithms in

a single SoC. Instead of having a separate hardware accelerator for each algorithm,

we take the similarities in operation flow for different LWC algorithms as a starting

point and devise a design methodology that would allow us to accelerate multiple LWC

algorithms on a single hardware. Our implementations focus on three of the NIST LWC

finalists to provide a proof of concept, but the design methodology can be generalized

to other LWC algorithms in the literature as well. We target Field-Programmable

Gate Arrays (FPGA) for this thesis, which has a wide adaptation in the industry due

to its configurability. Our designs aim to exploit partial reconfiguration in FPGAs, a

technique that can be used to reduce the power consumption and implementation area.

The contributions of this thesis can be summarized as follows:

• We construct and present two generic Loosely-Coupled Accelerators (LCA) that

can accelerate different LWC algorithms by utilizing partial reconfiguration. Their

implementations for three of the NIST LWC Competition finalists: TinyJAMBU,

Ascon, and PHOTON-Beetle, are presented and evaluated.

• We compare two different approaches used during the design of these accelera-

tors: hardware-controlled and hardware-software codesign. Their compatibility

to support multiple algorithms, as well as variants of a single algorithm, is dis-

cussed.

• We explore the feasibility of accelerating multiple cryptography algorithms in a

lightweight SoC. The tradeoffs associated with having more than one hardware

for different algorithms or having a single reconfigurable accelerator is elaborated,

and the conditions in which using the partial reconfiguration would be beneficial

are determined.

The thesis is constructed as follows. Chapter 2 provides background for the con-

cepts and topics referred to in this thesis. The design methodology for the proposed

accelerators and the SoC is described in Chapter 3, accompanied by a detailed expla-

3

nation of their operation. The design implementation and the Vivado flow to allow

partial reconfiguration is explained in Chapter 4. Chapter 5 evaluates and compares

the performances of various versions of the design, and reveals tradeoffs between dif-

ferent implementations. Finally, the conclusions of the dissertation are summarized in

Chapter 6.

4

2. BACKGROUND

2.1. Cryptography

Cryptography is the study of manipulating a message such that any intercepting

party cannot understand it without the knowledge of the algorithm and the key [1].

The message that is intended to be conveyed is referred to as the plaintext, and the

altered version of this message is referred to as the ciphertext. The key refers to the

information required to encrypt or decrypt the message. The algorithm that converts

plaintext to ciphertext, or vice versa, using the key is defined as the cipher.

Throughout the course of history, numerous ciphers have been invented for the

purpose of cryptography. However, its use was never as commonplace as it is now.

As we enter the information era, the proliferation of computing systems and digital

communications has made cryptography more crucial and its applications more ubiq-

uitous. To cater to these newfound use cases, cryptography techniques have changed

drastically in the last decade. As a result, modern cryptography differs significantly

from the conventional meaning, as we will explain in the following subsection.

2.1.1. Modern Cryptography

Modern cryptography is the cornerstone of advanced computing and information

security. Perhaps one of the most obvious differences between modern and traditional

encryption is how they operate on the message. Unlike traditional methods that manip-

ulate a set of characters (such as the characters in an alphabet), current cryptographic

primitives operate on binary bit sequences. The algorithms in use are entirely depen-

dent on mathematical principles like number theory, computational complexity theory,

and probability theories, and there is no concept of security through obscurity [2]. Fur-

thermore, traditional encrypted communication required an entire ecosystem of trusted

agents, which is no longer the case in modern systems.

5

Despite the prevalent misconception that cryptography is synonymous with en-

cryption, modern cryptography promises to provide the following four core information

security services: Confidentiality, authentication, non-repudiation, and data integrity.

• Confidentiality: Confidentiality (also referred to as secrecy) is the ability to ensure

that the message can be only disclosed by the intended recipient.

• Authentication: Authentication is the capacity to establish that a person or pro-

gram is the intended sender of a communication, or who they claim to be.

• Non-repudiation: Non-repudiation is the guarantee that the sender of information

is supplied with proof of delivery and that the recipient is provided with proof of

the sender’s identity.

• Data integrity: Integrity is the protection of a communication against unautho-

rized information alteration or deletion. Typically, the word incorporates assur-

ances of validity and non-repudiation [3].

2.1.1.1. Modern Ciphers. Modern ciphers can be distinguished into two branches by

the method they carry the encryption and decryption as symmetric and asymmetric

ciphers. Symmetric ciphers are algorithms that use the same key for encryption and

decryption. Asymmetric ciphers, on the other hand, require the use of multiple keys,

namely one public key and one private key for each agent in communication. The

messages are encrypted by the public key, which is known to all agents, but they

can only be decrypted by the private key. Since each agent only has the information

of their respective private keys, only the intended receiver can decrypt the message,

guaranteeing confidentiality. A comparison of symmetric and asymmetric algorithms

can be seen in Figure 2.1.

6

Plaintext PlaintextCiphertext

Secret Key

Encryption Decryption

Public Key Private Key

Plaintext PlaintextCiphertext

Encryption Decryption

(a)

(b)

Figure 2.1. Overview of (a) Symmetric, (b) Asymmetric Cryptography.

The symmetric algorithms are significantly simpler and faster than asymmetric

ones, but they require sharing a secret key. Such a secure channel may not be present

between the agents in most cases. In practice, asymmetric algorithms are used to share

this secret key; then, the communication is carried out using the more efficient symmet-

ric encryption. This thesis will focus on symmetric cryptography and its lightweight

applications, as explained in Section 2.1.2.

Two of the most prevalent types of symmetric ciphers are block ciphers and stream

ciphers. A block cipher is a cryptographic scheme where the input message is processed

in blocks of a pre-determined size [1]. They are widely employed in symmetric cryptog-

raphy. The most prominent example is the NIST-recommended Advanced Encryption

Standard (AES) algorithm [4], which uses blocks of 128-bits. AES lies within the

class of Substitution Permutation Networks (SPN) category of block ciphers. Feistel

network is another cryptographic scheme from which numerous block ciphers can be

7

derived. Data Encryption Standard (DES) is one such popular example. Both SPNs

and Feistel Networks provide the confusion and diffusion required for security against

statistical attacks [5]. The alternative to the block ciphers is the stream cipher, in

which the input message is processed one bit at a time. After receiving an input bit

and generating an output bit by a series of processes, the procedure is repeated for all

bits of the message [1].

2.1.2. Lightweight Cryptography

Small computing devices, including RFID tags, sensor nodes, medical implants,

smart cards, and industrial controllers, are becoming increasingly prevalent with the ex-

pansion of the IoT. The transition from desktop computers to mobile devices introduces

numerous new security and privacy concerns. Implementing traditional cryptography

protocols on small devices is often difficult because the tradeoff between security, speed

and resource consumption are usually tuned for desktop and server implementations.

Even if they are applied in resource-constrained devices, their performance will likely

be unsatisfactory [6].

Lightweight cryptography is a branch of cryptography dedicated to developing

solutions for devices with limited resources. As shown in Figure 2.2, it targets devices

on the lower end of the spectrum. Various constraints in these devices include the

limited amounts of memory space available in small microcontrollers, RFID tags with

significantly small power budgets, sensor nodes with timing requirements, area-cost

constraints, and so on.

It’s worth noting that in many cases, high-end devices will also need to implement

these lightweight algorithms. For example, many IoT and sensor nodes transfer data

to an aggregator or a centralized device with higher computing capabilities. Therefore,

the need for lightweight cryptography does not only arise from the limitations of a

particular device but all agents in the network.

8

Conventional
Cryptography

Servers

Desktops

RFID

Embedded
Systems

Smart
Phones

Sensor
Nodes

Lightweight
Cryptography

Figure 2.2. Cryptography Device Spectrum.

2.1.2.1. Authenticated Encryption with Associated Data. Authenticated encryption

with associated data (AEAD) refers to encryption systems that offer confidentiality

and integrity [7]. In addition to the traditional plaintext and key inputs, AEAD struc-

tures have Associated Data (AD) and nonce inputs [8]. The output ciphertext is also

paired with an authentication tag. The tag is the message authentication code (MAC)

that provides authenticity and can be generated using any of the authenticated en-

cryption schemes: Encrypt-then-MAC, Encrypt-and-MAC, or MAC-then-encrypt.

AD is separated from the message input because, in several application configu-

rations, we desire to not only encrypt and authenticate messages but also to contain

auxiliary data that should be authenticated but not encrypted [8]. A network packet

in which the data payload should be encrypted (and authenticated) but the header

should be unencrypted is one such example [9].

The nonce input is used in AEAD protocols to accomplish semantic security. It

is the sender’s obligation to never reuse a nonce. The sender must maintain a counter

or comparable state with a lengthy repetition time. The receiver is not required to

have a replay-detection mechanism.

Both the nonce and the AD are required for decryption, despite not being con-

sidered part of the key or the ciphertext. How the receiver is made aware of the AD

content lies outside the scope of the AEAD scheme.

9

2.1.3. NIST LWC Competition

National Institute of Standards and Technology (NIST) launched a lightweight

cryptography project in 2013 to investigate the performance of existing cryptographic

standards on restricted devices, determine the need for specialized lightweight cryptog-

raphy standards, and host a transparent standardization procedure if one is needed.

In August 2018, NIST issued a call for algorithms for consideration in lightweight

cryptography standards. They received 57 proposals for consideration; all except one

were chosen as Round 1 Candidates after an initial examination. Thirty-two candidates

were selected to advance to Round 2 from a pool of 56 in Round 1. NIST revealed ten

finalists on March 29, 2021 [10].

Unlike the AES process carried out between 1997 and 2000, NIST has declared

that they are planning to announce multiple winners to create a portfolio of lightweight

cryptography algorithms. Another key difference is that the winners of the LWC com-

petition will be recommended for use under specific constraints instead of being ap-

proved for general use. In other words, it does not have a goal of replacing AES and

setting a new encryption standard. While having more than one winner may appear

to be unfavorable from a common implementation perspective, it is argued that there

are various devices with different constraints under the lightweight category, and it is

not possible for a single algorithm to perform optimally in all implementations.

2.1.3.1. Motivation. The LWC project aims to address the lack of standardization

for cryptographic applications in constrained environments that are not well served by

existing standards.

2.1.3.2. Scope. Block ciphers, authenticated encryption techniques, hash functions,

message authentication codes, cryptographic permutations, and stream ciphers can be

considered within the scope of the lightweight cryptography project. However, for

10

this competition, NIST specifically required each submission to implement the AEAD

functionality using a single or a group of algorithms. The desired features of AEADs

are explained in the following subsection. Each submission is required to include:

• Complete algorithm specification with all the necessary mathematical operations,

equations, tables, and diagrams.

• Justification of important design decisions, such as constants and look-up tables

utilized in the algorithm, if any.

• Realistic values for all adjustable parameters, as well as a study of how these

settings affect algorithm performance and security.

While asymmetric cryptography is not within the focus of this competition, it can

be considered within the broader context of NIST’s LWC project [6]. It is mentioned

that future lightweight public key cryptography schemes will have to rely on lightweight

primitives to achieve known public key cryptography methods. They should also be

resilient against attacks that are enabled by quantum computing.

2.1.3.3. Desired Features of AEADs. Desired characteristics of AEAD modes can be

summarized as follows:

• Single-Pass: Makes only one pass over the data, doing everything necessary to

preserve privacy and authenticity at the same time.

• Low State-size: Internal state that corresponds to the size of memory required

should be kept small.

• Inverse-Free: Decryption algorithm does not require an inverse implementation

of underlying primitives.

• On-line: Each plaintext can be encrypted on the fly without requiring the knowl-

edge of subsequent plaintext blocks.

• High Rate: The number of message blocks processed on each primitive invocation

is described as the rate. Constructions with a greater rate minimize latency and

are especially useful for achieving higher speed.

11

• Optimal: Uses the smallest number of non-linear invocations possible to increase

the efficiency for short messages and reduce the latency.

• Nonce Misuse Resistance: Security is preserved even if the nonce is reused or

absent. Ideal for light-weight applications where keeping a counter or producing

a random number is a challenge.

• Integrity under RUP: Limited resources may force the decryption algorithm to re-

lease plaintext before verification. If possible, exploitation of unverified plaintext

for forgery should be prevented.

2.1.3.4. Metrics. Can be categorized as hardware and software. Software implemen-

tations of LWC algorithms are evaluated on the following criteria:

• Code size (bytes): Algorithm size is calculated by subtracting the code size of the

empty wrapper from the total code size. Encryption-only and decryption-only

versions compared separately.

• Timing (cycles/byte): Comparison between AEAD modes algorithms done for

varying input sizes for plaintext and AD, from a few bytes up to 2 kB.

Hardware implementations of LWC algorithms and their various modes are eval-

uated using the following metrics:

• Area: Resource utilization of the LWC algorithm hardware, constructed in com-

pliance with the NIST Application Programming Interface (API) [11]. Unit of

measurement varies between Look-Up Tables (LUT), Flip-Flops (FF), Logic El-

ements (LE), and FPGA slices.

• Energy-per-bit (nJ/b): Energy consumption of LWC algorithm operation per a

single bit of message/AD.

• Maximum Frequency (MHz): Maximum operating frequency comparison. Cal-

culated from the critical path on each LWC hardware.

• Throughput (Kbit/s): The absolute maximum throughput that hardware can

support. Calculated using the cipher’s maximum frequency and cycles-per-bit.

12

2.1.3.5. Benchmarking. For performance analysis, benchmarks have been executed in

software [12, 13] and hardware [14, 15] by the cryptography community. NIST has

published benchmarking frameworks for both areas in order to enable efficient and

fair comparison across algorithms, or various implementations of the same algorithm

carried out by different parties. This wrapper is in the form of a header file and a

common function wrapper in software [12], and an API description in hardware [11],

both provided with example designs.

Software benchmarks are further classified by various processors, microcontrollers

[12], and instruction set architectures (ISA) [13]. Hardware benchmarks are separated

into two groups: FPGA implementations [14], and ASIC digital design flow results [15].

2.1.4. Sponge Function

Typically, encryption algorithms such as AES use block ciphers. Block ciphers

encrypt plaintext by splitting it into fixed-length blocks and using a secret key to

encrypt each block. Various modes of operations determine the relation between these

blocks. For example, in the Electronic Code Book (ECB) mode of AES, different blocks

are encrypted and decrypted independently of each other. In contrast, in the Cipher

Block Chaining (CBC) mode, blocks are used to form a chain where the ciphertext

of the previous block is used to generate the initialization vector of the next block.

Recently, sponge structures have begun to be utilized as a substitute for the block

cipher modes.

Sponge constructions are a class of cryptographic algorithms. Historically, they

have been incorporated into hashing algorithms, with Secure Hash Algorithm (SHA-3)

being the most prevalent example [16]. The fundamental building block of a sponge is

a function f that maps bitstrings of a specified length to bitstrings of the same length,

such that each different input results in a unique output.

13

f

padM

r

c

f f f f

trunc Z

absorption squeezing

0

0

Figure 2.3. Generic Sponge Function.

Figure 2.3 shows the operation of a standard sponge function. The state is divided

into the bitrate and capacity sections, denoted with r and c, respectively. The initial

state goes through absorbing and squeezing phases (hence the name, sponge) to produce

the output [17]. The input message is partitioned into blocks of r bits each. The first

block of the input message is XORed with the first r bits of the state during the

absorbing phase. The state is then modified using the function f . This procedure is

repeated until all message blocks have been absorbed. If the message size is not an

integer multiple of the bitrate, it is padded so it can be parsed into equal-sized blocks.

In the squeezing phase, the first r bits of the state are extracted, and the state

is updated with the function f . This process is repeated until the desired number

of output bits is received. The concatenation of all the extracted bits is the sponge

function’s output (i.e., the message digest). If the desired number of output bits is not

an integer multiple of the bitrate, the output message can be truncated by discarding

the excess bits [17].

One of the most advantageous characteristics of the sponge construction for hash

functions is that it can take an arbitrary-length input and generate a message digest

of any specified length. However, it was discovered that the sponge structure is highly

adaptable and may be utilized to create a variety of cryptographic tools. In particular,

14

its suitability for AEAD modes, in addition to hashing, made it a preferred cryptog-

raphy scheme for many NIST LWC contestants. Various implementations of sponges

with additional features and tweaks are featured among algorithms in Section 2.2.

2.1.4.1. Duplex Construction. Similar to the sponge construction, the duplex con-

struction employs a transformation or permutation with a defined length, bitrate and

capacity parameters, and a padding rule to construct a cryptographic system [18] as

shown in Figure 2.4. Instead of having separate absorb and squeeze phases, the duplex

system is made up of duplex objects. Duplex construction is particularly useful for

AEAD modes because it can return output blocks before the entire input message is

absorbed, analogous to the operation modes in block ciphers.

The security of the duplex construction is mathematically shown to be equivalent

to the security of the sponge function with the same components [18]. In addition, it

only uses a single call of function f per input block. It should be noted that unlike

the sponge function, the duplex construction outputs a digest that is the same size

with the input message. In addition, similar to the sponge function, the parametric

structure of the duplex construction allows simple tradeoffs on the algorithm level.

While increasing the bitrate improves throughput, increasing the capacity enhances

security. Due to these characteristics, it is used for the encryption of the message by

many LWC algorithms, as we will explore in Section 2.2.

15

f

pad

M0

r

c

duplexing

0

0

trunc

Z0

f

pad

M1

duplexing

trunc

Z1

f

pad

M2

duplexing

trunc

Z2

Figure 2.4. Duplex Construction.

2.2. LWC Algorithms

The NIST LWC competition has 10 submissions remaining as finalists as of Au-

gust 2022. In particular, we focus on three of these algorithms in this thesis: AS-

CON [19], TinyJambu [20], and Photon-BEETLE [21]. While the proposed unified

reconfigurable accelerator schemes in Chapter 3 are expected to work for many other

finalists, we believe that implementation of these three algorithms is sufficient for proof-

of-concept purposes. Our justification for selecting these algorithms are:

• Diversity: These algorithms are selected to be on the different regions of the

performance-cost curve on both software and hardware implementations. Ac-

cording to the NIST LWC Round 2 Benchmarking Results, TinyJambu is the

finalist with the lowest hardware and software footprint. ASCON implementa-

tions perform close to the top in terms of throughput and throughput per area.

Finally, PHOTON-Beetle performs mediocre in state size, area, and performance

compared to other applicants in hardware [14,15].

• Compatibility: The selected algorithms are similar in their operation modes. In

particular, their AEAD modes closely resemble sponge and duplex constructions,

16

cryptographic primitives which are widely adopted by NIST LWC Competition

finalists.

2.2.1. ASCON

The Ascon cipher suite comprises a family of authenticated encryption plans,

hash functions, and extendable output functions. Ascon’s AEAD mode of action is

based on Duplex Construction with a 320-bit state size. The encryption process is

depicted in Figure 2.5.

pa pb

A1

pa

M1

IV || K || N

pb

Aa C1

pb

K || 0*

T

0* || K 0* || 1

Mm CmM2 C2

pb

K

Figure 2.5. Ascon Encryption.

The initial state of Ascon is produced by concatenating K and N together with

an Initialization Vector (IV) that specifies the algorithm parameters (key size k, the

bitrate r, round numbers a and b, each allocating an 8-bit space). The initial state is

updated with a rounds of permutation (pa) followed by the addition of the secret key.

Ascon processes the AD and the message by dividing them into r-bit blocks,

starting with the AD. At each step, a block of AD is XORed with the most significant

bits of the state, and the state is updated using pb. After processing the final AD

block, a 1-bit constant is XORed to the state to separate the AD from the subsequent

17

message. This addition is done even if the AD is empty. Encryption and decryption

are similarly performed by adding the message block to the bitrate portion of the state.

The ciphertext then becomes a part of the new state in both cases. The resulting state

is updated using pb for each block apart from the final one. If the AD or the message

is not divisible to r-bit blocks, they are padded by appending a single 1, followed by

the least number of 0s to generate a multiple of r bits.

In the finalization stage, the secret key K is XORed to the internal state, followed

by the permutation pa. The authentication tag T is derived from the least significant

128 bits of the state XORed with the key.

2.2.1.1. Permutation. Ascon’s permutation is defined on five 64-bit words and can

be implemented by using only bitwise rotations and Boolean functions within words.

The permutations repeatedly apply an SPN-based round transformation consisting of

a round constant addition, a substitution layer, and a linear layer.

• Add round constant: adds round constant to the least significant bits of the

middle word of the state. The round constants can be easily calculated using the

current round number i, and total round numbers a and b.

• Substitution layer: Updates the state S with 5-bit S-boxes shown in Table 2.1.

Each input bit is taken from the same position of a different 64-bit word, allowing

parallel application of all S-boxes.

• Linear diffusion layer: Applies the linear functions

L(x0) = x0 ⊕ (x0 ≫ 19)⊕ (x0 ≫ 28)

L(x1) = x1 ⊕ (x1 ≫ 61)⊕ (x1 ≫ 39)

L(x2) = x2 ⊕ (x2 ≫ 1)⊕ (x2 ≫ 6)

L(x3) = x3 ⊕ (x3 ≫ 10)⊕ (x3 ≫ 17)

L(x4) = x4 ⊕ (x4 ≫ 7)⊕ (x4 ≫ 41)

(2.1)

to each 64-bit word of the state to provide diffusion.

18

Table 2.1. 5-bit S-box used in Ascon’s permutation.

S(x) 0 1 2 3 4 5 6 7 8 9 a b c d e f

0 4 b 1f 14 1a 15 9 2 1b 5 8 12 1d 3 6 1c

1 1e 13 7 e 0 d 11 18 10 c 1 19 16 a f 17

2.2.1.2. Versions. Recommended parameter sets for AEAD mode of Ascon is given in

Table 2.2 in the priority order, Ascon-128 being the primary recommendation.

Table 2.2. Recommended parameter sets for Ascon.

Variant
size (bits) rounds

key nonce tag rate a b

Ascon-128 128 128 128 64 12 6

Ascon-128a 128 128 128 128 12 8

Ascon-80pq 160 128 128 64 12 6

2.2.2. TinyJAMBU

The TinyJAMBU is a lightweight AEAD mode with a state of 128 bits. A 128-bit

keyed permutation is used, and the message block size is 32 bits [20]. While it resembles

a sponge construction with 3-bit constant additions (referred to as FrameBits) between

blocks, it has been shown to provide marginally stronger security than the Duplex

mode [20]. The FrameBits takes the hexadecimal values 1, 3, 5, and 7 for initialization,

AD processing, plaintext processing, and finalization (tag generation) stages of the

algorithm, respectively.

Figure 2.6 demonstrates the encryption with TinyJAMBU mode. Initially, the

128-bit state is set to zero and updated with Pa (by applying the permutation for a

rounds). This is followed by the nonce setup. The Framebits of the nonce (binary value

1) is added to the state; then, we update the state using the keyed permutation Pb,

19

then 32 bits (a block) of the nonce are added to the most significant word of the state.

This is repeated three times for the 96-bit nonce to be absorbed. The processing of

AD is identical to the nonce absorption with two differences. The FrameBits value is

3, and the round number is changed to a. If the last block of AD is less than 32-bits,

its number of bytes is added to the state.

P1

A1

0*

P1

Aa

3

P1

N3

P1

N2

1 3

P1

N1

1

P2

1

P2

M1 C1

P2

5

Mm Cm

P2

5 7

T1

P1

7

T2

Process AD

Generate Tag

Process Msg.

Nonce Setup

Figure 2.6. TinyJAMBU AEAD Mode of Operation.

The message encryption stage adds FrameBits to the state, updates it with Pb,

then adds the message block to the state. Critically, ciphertext is not taken directly

from the bitrate portion of state, instead it is calculated separately by XORing the

plaintext with the second most significant word of the state. This, along with the

20

addition of FrameBits, separates this stage from the standard Duplex Construction.

The number of bytes is again XORed to the state if the last block is partial.

Finally, the tag is generated by adding Framebits, updating the state with Pb,

then reading the 2nd most significant word of the state. This is repeated again to

gather a tag of 64-bits total, using a number of permutation cycles on the second step

instead.

2.2.2.1. Permutation. TinyJAMBU uses a 128-bit keyed permutation. The 128-bit

nonlinear feedback shift register (NLFSR) shown in Figure 2.7 uses a different bit of

the input key at each round to update the state. The permutation is designed in a way

such that 32 rounds can be computed in parallel.

127 91 85 70 47 0

Ki (mod klen)

NAND

Figure 2.7. The NLFSR Used in TinyJAMBU’s 128-bit Permutation.

2.2.2.2. Versions. Recommended parameter sets for TinyJambu is given in table 2.3.

The primary variant is TinyJAMBU-128. Bitrate is fixed to r = 32 for all variants.

2.2.3. PHOTON-Beetle

PHOTON-Beetle is a series of authenticated encryption and hash functions that

employs a sponge-based mode Beetle with the PHOTON256 being the internal permu-

tation [21]. Figure 2.8 summarizes the operation of the AEAD mode.

21

Table 2.3. Recommended parameter sets for TinyJAMBU.

Variant
size (bits) rounds

key state nonce tag a b

TinyJAMBU-128 128 128 96 64 1024 640

TinyJAMBU-192 192 128 96 64 1152 640

TinyJAMBU-256 256 128 96 64 1280 640

f f

A1

ρ

f

M1N

K

f

Aa

1/2

C1

f

1/2

ρ

Mm Cm T

Figure 2.8. PHOTON-Beetle AEAD Mode Operation.

During encryption, the initial state is established by the concatenation of the

nonce N and the key K. The AD is then processed in the same way as the origi-

nal sponge mode: State is updated using PHOTON256 at each step, followed by the

absorption of the AD block by XORing it with the first r bits of the state. This is

repeated for all AD blocks.

After processing the AD, a similar operation is carried on the message. To pro-

duce the ciphertext block, the rate portion of the permutation output is shuffled and

then XORed with the message block. This phase distinguishes PHOTON-Beetle from

Sponge Duplex, in which the rate component of the next permutation input is out-

22

putted as the ciphertext block. During message processing, this state update and ci-

phertext creation are handled by the function ρ. The rate part of the state is returned

as the authentication tag after processing the final message block.

In order to distinguish processing of AD and the plaintext, 3-bit constants are

added to the state after the AD and message processing. These constants are different

under empty AD and/or empty message cases. The decryption differs from the encryp-

tion only due to the fact that it uses the inverse of the linear function ρ to generate

the plaintext from the ciphertext.

2.2.3.1. Linear Function. ρ is the linear function used during the message absorption.

Its inputs are an r-bit state S and an r-bit input data U (padded to r-bits for partial

blocks). It updates the state by XORing it with the input data, and returns an output

V by XORing the input with the shuffled state. ρ−1 is the inverse function of ρ that

is used for decryption, and reproduces the plaintext block U and the original state S

from the current state and the ciphertext block V . Table 2.4 provides the descriptions

for ρ and ρ−1 functions.

Table 2.4. Linear function used in PHOTON-Beetle during output generation.

ρ(S, U) ρ−1(S, U) Shuffle(S)

V = Trunc(Shuffle(S), |U |)⊕ U

S = S ⊕Ozsr(U)

return (S, V)

U = Trunc(Shuffle(S), |V |)⊕ V

S = S ⊕Ozsr(U)

return (S, U)

S1||S2 = S

return (S2||(S1 ≫ 1))

2.2.3.2. Permutation. PHOTON-Beetle uses PHOTON256 as the underlying permu-

tation. This 256-bit permutation is performed on the state, which is represented as 64

4-bit cells, organized as an 8-by-8 matrix, as shown in Figure 2.9. PHOTON256 con-

tains AddConstant, SubCells, ShiftRows and MixColumnSerial layers, and operates by

iterating all four layers in order [21].

23

• AddConstant: XORs pre-defined constants to the first column of the matrix.

• SubCells: Applies a 4-bit S-box to each element of the matrix.

• ShiftRows: Rotates the position of each cell in a row by the amount equal to its

row number.

• MixColumnSerial: Applies a matrix multiplication on a 4th degree Galois Field

(GF) on all columns to linearly mix them. The irreducible polynomial is x4+x+1.

S S
S
S

S
SS

S S
S
S

S
SS
S

S

S S
S
S

S
SS
S

S
S S

S
S

S
SS
S

S

S
S
S

S
S

S
S

S

S
S
S

S
S

S
S

S
S

S
S

S
S

S
S

S

S
S
S

S

S
S

AddConstants SubCells ShiftRows MixColumnSerial

Figure 2.9. PHOTON256 permutation.

2.2.3.3. Versions. Key, nonce, and tag length are fixed to 128-bits in the PHOTON-

Beetle AEAD family. The rate of absorption r is modified depending on the target

cipher version:

• PHOTON-Beetle-AEAD[128]: Primary implementation with r = 128. This de-

sign aims to achieve high throughput while allowing implementations with a low

hardware footprint.

• PHOTON-Beetle-AEAD[32]: Reduces bitrate to r = 32 to trade off throughput

for increased security while further reducing the hardware cost.

2.3. Partial Reconfiguration

Partial reconfiguration is the capacity to reconfigure specified regions of an FPGA

at any moment after its initial configuration. Figure 2.10 shows the partial reconfigura-

tion process, where mutually exclusive implementations of the reconfigurable module

24

are referred as modes. Using partial reconfiguration grants the design the following

advantages:

• Enhanced system functionality. While a specified segment of the design is being

modified, the remainder of the system may continue to function normally.

• Partial reconfiguration enables maintenance, service, and upgrade of hardware in

the field with relative ease.

• The hardware sharing enables the execution of different applications on a single

FPGA, hence decreasing the overall number of devices. This decreases total

system energy consumption and device expenses.

Reconfigurable
Region

Mode 1

Mode 2

Mode 3

FPGA

Figure 2.10. Partial Reconfiguration.

Partial reconfiguration has various degrees. The baseline is Static Partial Re-

configuration (SPR), where the device operation is suspended during reconfiguration.

Dynamic Partial Reconfiguration (DPR) allows the static components of the design

to be uninterrupted during the reconfiguration process. This function is supported by

more recent Xilinx devices under the term Dynamic Function Exchange (DFX) [22].

In its simplest form, Partial Reconfiguration can be carried by the standard means of

configuring the FPGA, i.e., by connecting the programming cable to the FPGA device

and using the vendor-provided software. This requires an external connection with the

programmable fabric to be present.

25

2.3.1. Dynamic Partial Self-Reconfiguration

Dynamic Partial Self-Reconfiguration (DPSR) is a more sophisticated form of

partial reconfiguration in which the FPGA can reconfigure its programmable region

at runtime without the need for external agents. Figure 2.11 compares several partial

reconfiguration methods discussed.

MemoryHard
Processor

External
Agent

PCAP PRR

Processing System (PS)

Programmable Logic (PL)

AXI
PRR

FPGA

JTAG

Memory

Soft
Processor /

Custom
Logic

ICAP

Programmable Logic (PL)

PRR

(a) (b) (c)

Figure 2.11. Partial Reconfiguration Using (a) PCAP, (b) External Agent, (c) ICAP.

Self-reconfiguration requires specific hardware resources to be present in the

FPGA. Processor Configuration Access Port (PCAP) is one such primitive, which

exists in some FPGAs with hard Processing Systems (PS), such as Zynq devices. It

allows the PS to access and program the Programmable Logic (PL). A more ubiquitous

resource is the Internal Configuration Access Port (ICAP), which enables the configu-

ration of the PL from within the FPGA. Altera FPGAs employ a dedicated IP block

called the Partial Reconfiguration IP (PR-IP) for this purpose [23]. It allows partial

reconfiguration from the internal PR controller as well as external hosts when provided

with adequate interfacing.

In this thesis, we will be using ICAP to maintain generality. The constructed

ICAP controller hardware is explained in Section 3.3.2, and the Implementation details

of the DFX flow is explained in Section 4.1.1.

26

3. LWC ACCELERATOR DESIGN

An accelerator is a specialized architectural substructure that is engineered for

a particular category of applications. This design rationale allows them to improve

performance and/or reduce the energy consumption of systems when integrated into

general-purpose hardware [24]. Due to various types of hardware accelerators’ avail-

ability, they have a variety of use cases ranging from high-performance computing and

data centers to mobile and IoT devices. We investigate the hardware accelerators under

two categories: Tightly-coupled accelerators (TCA) and loosely-coupled accelerators

(LCA) [25].

TCAs are comprised of dedicated hardware computing units which can accel-

erate critical sections of a program, often integrated into the CPU’s pipeline. This

tight integration allows them to be used without any runtime overhead and effectively

share the resources the CPU already has, such as the register file and the hierarchical

memory access. However, from a hardware perspective, the integration of TCAs can

prove to be a challenge. They often have no standardized interfacing due to the close

integration and require the modification of the processor core itself. This may cause

further complications in the design flow as the verification, and the timing analysis

should be remade.

On the other hand, LCAs are external hardware that is often memory-mapped

and can be accessed by the CPU via the on-chip interconnect. Since they are not

constrained by the space and timing available within the CPU pipeline, they can have

more sophisticated datapath structures, internal controllers, and even their own in-

struction set architectures (ISA). Although the term LCA is inclusive to the complex

architectures that partially reside off-chip, or have their own memory hierarchy or

scratchpad [26], we will be using this term to refer to structures that are similar to

peripheral devices on a System-on-Chip (SoC) within the context of IoT.

27

In this thesis, we will be constructing a reconfigurable lightweight cryptography

accelerator that can support different modes of an algorithm; or entirely different algo-

rithms with the use of dynamic runtime partial reconfiguration on FPGA. We prefer an

LCA structure because of its ease of integration to the readily deployed systems. Also,

they do not require ISA modifications and are more in line with the theme of multi-

purpose reconfigurability in general. Additionally, we realize that the data transfer

overhead can be resolved in favor of the loosely-coupled accelerators if a proper direct

memory access (DMA) structure is used to manage the data flow from the memory to

the accelerator and vice versa.

In the following sections, we propose two different LCAs for LWC. The first one is

a more hardware-oriented approach, where the accelerator is controlled by a number of

control-status registers. The second approach is closer to hardware-software codesign,

as we will propose an accelerator with its own custom ISA. We follow a similar process

in designing both accelerators: Isolate the sections in LWC algorithms that are different

from each other. This is primarily the controller part in the hardware approach and

software in the ISA-based approach. The remaining common parts are constructed to

support as many current and future LWC algorithms as possible.

3.1. Fully-Hardware Approach

For the design of this reconfigurable accelerator, we start by determining charac-

teristics shared by different LWC algorithms, using the NIST competition finalists as

our primary point of reference. The key observations we make are:

• All algorithms undergo the phases of initialization, AD processing, message pro-

cessing, and finalization. Although there are minor differences in how they move

across these stages, we anticipate that their hardware implementations will have

similar finite state machines (FSM).

• All algorithms revolve around a fixed permutation with at most two different

round numbers.

28

• All algorithms have the same I/Os per the competition rules, meaning they could

have the same data I/O, control, and status registers if made into a bus-accessible

accelerator.

Based on these points, we characterize accelerator hardware components as fully

shared, partially shared, or not shared across algorithms. From a modular perspective,

the accelerator consists of the register interface, controller, and cipher, as shown in

Figure 3.1. The following subsections explore how these submodules are classified

according to these criteria.

REGISTER FILE

CIPHER

CONTROLLER
FSM

State
Regs.

Round
Counter

Event
TablePermutation

Bus Adapter

Registers
State
LogicState

Counter

Fully Shared

Partially Shared

Not Shared

control

trigger

status

data in

data out

prog. state
info

perm.
info

System
Bus

Figure 3.1. Top-Level Block Diagram of the Accelerator.

3.1.1. Register Interface

This is the accelerator component that interacts with the system bus. It consists

of a bus adapter, CSRs, read and write data registers, and metadata registers. The

entirety of the register interface is considered fully shared.

29

3.1.1.1. Control-Status Registers. The list of CSRs in the accelerator is provided in

Table 3.1. Each 32-bit register is accessible by the CPU as a single memory location.

Still, the underlying bit slices are used to monitor or control different aspects of the

accelerator, as explained below. The following are the read-only status registers:

Table 3.1. List of Control-Status Registers.

Control Regs. Control2 Regs. Status Regs.

Bit Slice Register Bit Slice Register Bit Slice Register

[0] Mode [15:0] AD length [0] Idle

[3:1] Key length [31:16] Message len. [1] Stalled

[6:5] - [2] Tag valid

[11:6] Round num. a [3] Output valid

[17:12] Round num. b [4] Input ready

[19:18] Rate [5] Fault Alert

[21:20] Nonce length

[23:22] Tag length

• Idle: The accelerator is in the idle state.

• Tag valid: The encryption/decryption is completed and waiting for the authen-

tication tag to be read.

• Output valid: An output block is generated and ready to be read. The accelerator

is not allowed to process the next block until all words of the output block are

read.

• Input ready: The accelerator is waiting for data inputs.

• Fault alert: Two or more erroneous read/write attempts have been made in

succession.

Next, we have the control registers, which can be read at any time but can only

be written when the accelerator is in the idle state:

30

• Mode: Select operation mode (encryption/decryption).

• Key length: Size of the secret key in words (between 32-256 bits with 32-bit

increments).

• Round numbers (a,b): Number of rounds of permutation.

• Rate: Rate of absorption, i.e., The number of data or AD words absorbed in each

step.

• Nonce length: Size of the public nonce input in words.

• Tag length: Size of the output authentication tag in words.

• AD length: Size of the AD input that will be processed in this accelerator run,

in bytes.

• Text length: Size of the input plaintext/ciphertext in bytes.

3.1.1.2. Data Registers. Table 3.2 provides a list of data registers together with their

respective read/write permissions. In addition to their directions, a read-write of these

registers is restricted to specific intervals during the control flow of the accelerator. An

AD input register, for instance, cannot be written until the accelerator has completed

processing the previous AD block and is awaiting the next one. Similarly, output

data can only be read if the processing of a message block is recently completed.

Unauthorized read-write operations result in an error message being returned by the

bus, and repeated attempts will trigger a fault.

Table 3.2. List of Data Registers.

Register Bit Size Permissions

Nonce In 128 Write-only

Key In up to 256 Write-only

Text In 128 Write-only

AD In 128 Write-only

Text Out 128 Read-only

Tag Out 128 Read-only

31

Additionally, each data register is accompanied by metadata registers, which

track the accesses to these registers on a word basis. This information is utilized to

generate internal trigger signals to the accelerator. For example, an algorithm with a

block size (bitrate) of 128-bits requires four input words to be written before processing

and four output words to be read from data output registers before starting to process

the next block.

3.1.1.3. Program Registers. Program registers, similar to control registers, can only be

written before the start of the accelerator run. They allow re-programming of partially

shared blocks in the accelerator without requiring FPGA reconfiguration.

• Counter: Indicates which of the round numbers (a, b) should be used for which

permutation.

• FSM: Programs state transitions of the FSM (see Section 3.1.2).

• Events: Programs the content of events between permutations (see Section 3.1.3).

3.1.1.4. Bus Adapter. This module is the interface between the system bus and the

accelerator registers. It translates the requests from the bus into read/write signals

native to the registers and converts the responses from the accelerator into the ap-

propriate bus format. Changing this module allows the accelerator to interface with

different bus protocols (AXI [27], TileLink [28], etc.) in the design time.

3.1.2. Controller

The controller is considered partially shared, in the sense that the states are

consistent across algorithms, but there are minor differences between state transitions.

We exploit this by fixing the states and the trigger signals that induce state transitions

while permitting the actual state transitions to be configured via the program registers.

32

In hindsight, this looks like a lot of resources should be allocated to keep a

record of all possible state transitions. But upon analyzing LWC algorithms, we reveal

that state transitions are severely limited, even across different algorithms. Figure 3.2

shows all state transitions required to realize seven different algorithms out of 10 LWC

competition finalists, where each color denotes an algorithm-specific state transition,

and the black connections indicate state transitions used in all algorithms. This limited

mobility allows us to represent an algorithm’s entire state transition table with only

48 bits, requiring only one and a half words of write overhead in operation.

AD
PERM

TEXT
PERM

TEXT
OUT

TEXT
IN

NONCE
IN

5

FINAL
PERM

FINAL
DONE

TAG
OUT

IDLE INIT
PERM

INIT
IN

AD
IN

(a)

AD
PERM

TEXT
PERM

TEXT
OUT

TEXT
IN

NONCE
IN

FINAL
PERM

FINAL
DONE

TAG
OUT

IDLE INIT
PERM

INIT
IN

AD
IN

(b)

Figure 3.2. FSM Transitions for (a) Seven NIST LWC Algorithms, (b) Ascon.

The controller hardware is shown in Figure 3.3. As an example, the state tran-

sition table in the figure is filled for Ascon. The states are implemented in a one-hot

fashion to reduce the power consumption and allow simple transitioning between stages

with the help of a shifter. The shift amounts after each trigger are determined by the

FSM program registers (see 3.1.1.3).

33

 init_input_rw_true
 init_perm_last
 nonce_width_over
 ad_input_rw_true
 ad_input_rw_over
 ad_perm_last
 ad_perm_over
 text_input_rw_true
 text_input_rw_over
 text_perm_last
 text_perm_over
 text_output_rw_true
 text_output_rw_over
 final_perm_last
 tag_output_rw_true
 tag_output_rw_over

Trigger Timing Shift
001
010
000
001
001
111
001
010
010
111
111
111
001
010
111
111

prog.

en / R

>>>
(rotate)

state

trig.
is_triggered

en / R

Count count

en/R

state

next
state

Figure 3.3. Controller Block Diagram.

The underlying permutation is marked not shared across algorithms. It needs

to be reconfigured at the runtime using FPGA resources (see Section 2.3) to support

multiple algorithms. For the remainder of the computing logic, we capitalize on the

fact that there is still some shared logic for different ciphers, thanks to the similarities

in their operation flow.

3.1.3. Cipher

The cipher module block diagram is given in Figure 3.4. This module is the

computation engine of the accelerator. It consists of internal state registers, a per-

mutation module, an event generator, a counter, and the connection logic including

various multiplexers.

34

Round
Counter

State Permu-
tation

Event
Table

perm_run

key
nonce

 NONCE_add
 INIT_perm_first
 INIT_perm_all
 AD_add
 AD_perm_first
 AD_perm_all
 TEXT_add
 TEXT_first
 TEXT_perm_all
 FINAL_perm_first
 FINAL_perm_all

Event Timing Source

001*
001
111

010*
000
111

011*
101
111
000
000

Target

0000
0000
0000
0110
0000
0000
0110
0000
0000
0010
0000

AD
text

const0
const1
const2

nop ('0)

prog.
round
count

source

target

out
data

perm.
init / done

state info

event

Figure 3.4. Cipher Module Block Diagram.

3.1.3.1. Permutation. This is the only compute-intensive part of the accelerator. It is

also the module that is subjected to partial reconfiguration. The main idea is that by

dynamically reconfiguring this part alone into an LWC permutation hardware, we are

able to obtain an accelerator that is suitable for that particular algorithm. This allows

the entire permutation round (or, depending on the logic depth, multiple rounds) to

be completed in a single cycle, which is a massive improvement compared to using

multiple generic micro-operations.

As explained in Section 2.3, partial reconfiguration requires module I/O’s to be

fixed. The permutation module inputs are the internal state registers, current round

count, and an optional mode input to allow different modes of operations within one

configuration. The output of the permutation is written back to the state registers if

the permutation is running.

35

3.1.3.2. Event Table. For any given LWC algorithm, we define the addition or ab-

sorption of any input or a constant value as an event. Our observation is that for the

majority of the finalists in the NIST LWC competition, the entire algorithm definition

can be expressed as a combination of events and permutation invocations. Furthermore,

each event can be uniquely characterized by its event timing and its event action, where

an event action is XORing some value (any one of the data inputs, or a constant) to

a specified portion of the internal state. Note that event timings depend strictly on

state transitions and can be calculated by a fixed logic. Consequently, we can charac-

terize all events of an LWC algorithm by programming source and target registers for

all possible event timings, which are less than a dozen. The event table is the piece

of hardware that keep the information of event actions. The table within the block

diagram depicted in Figure 3.4 is programmed for Ascon as an example.

+1
perm_init
perm_AD
perm_text
perm_final count (3)

perm_state
LUT5

output determines which
round_max value will be

used (a, b)

=?

=?
step_last

step_init (i_perm_first)

'0

PERM
CONTIDLE

round_num

perm_cont

round numbers
(a, b)

Figure 3.5. Round Counter Block Diagram.

3.1.3.3. Round Counter. Finally, the cipher includes a counter to keep track of rounds

processed by the permutation. It starts counting when initialized by the controller and

causes the state to be updated until the target number of rounds is reached. This

total round number is a or b, depending on the current state information. When the

permutation is complete, the controller is notified, and the counter is reset. The round

counter’s block diagram is shown in Figure 3.5.

36

3.1.4. Direct Memory Access Interface

Direct Memory Access (DMA) Interface is a separate module added between the

system bus and the LWC accelerator. The motivation for this module is to reduce the

indirection in data movement. The input data moves from the memory to the CPU,

and then to the accelerator, which is also in a memory-mapped region. In addition,

the instructions to carry this data movement also indirectly causes memory accesses

themselves. The DMA module integrates the accelerator to the system bus as a master

(see Section 3.3), allowing it to access the main memory directly, saving a significant

amount of time and energy.

The CPU writes the start addresses of AD, plaintext, and the ciphertext in the

main memory. The DMA controller keeps track of the internal state of the accelerator,

and sends read/write commands to the accelerator whenever it is awaiting, reads/writes

to the memory, and increments the address after each memory access. The effect of

DMA in terms of performance and resource utilization is discussed in Chapter 5. The

key and nonce inputs of the cipher should be provided to the accelerator as usual

without the use of a DMA.

3.2. Hardware-Software Co-Design Approach

For this approach, we try to balance the workloads of hardware and software in

the acceleration of the LWC algorithm. Our observation is that the previous design

allocated a considerable amount of hardware resources, even outside the reconfigurable

region, to allow flexibility on the controller.

Instead of programming some memory-mapped registers in obscure ways to de-

scribe a control flow, we propose using a set of instructions tailored for this purpose.

The algorithm is described in this instruction set, and the binary is placed into any

readable memory region. The accelerator may begin operating by executing instruc-

tions starting from a specified address. This allows us to handle the control flow in

37

software without occupying the CPU and reduces the costly message traffic between

the processor core and the accelerator.

A formal description of our ISA for this accelerator is made in Section 3.2.1,

accompanied by the design rationale and use cases of the instructions. Section 3.2.2

explains the hardware resources that execute these instructions to realize LWC algo-

rithms.

3.2.1. ISA Specification

The instruction set defined in this section consists of eight 32-bit instructions,

classified as memory access instructions, immediate instructions, control flow instruc-

tions, and a permutation instruction. Note that the accelerator does not have tradi-

tional general-purpose registers. Instead, each 32-bit portion of the state is treated as

a separate register when reading from and writing, avoiding loss of time and energy

due to internal data transfers. This requires some internal resources to be allocated for

control flow variables that normally reside in a software-accessible register file. These

resources are explained in Section 3.2.2.

3.2.1.1. Memory Access Instructions. The data transfer between the accelerator and

the memory is carried out by the memory access instructions.The instruction set defines

three such instructions: Add load value (ADD), write load value (WRT), and store read

value (RD) as shown in Figures 3.6, 3.7, and 3.8.

Figure 3.6. Add Load Value (ADD) Instruction.

38

The ADD instruction reads the memory address specified by src, XORs the 32-

bit value read from memory with the target (trg) register, and writes the result to

the same target register. If the add flag is set to 1, the value of the block counter is

added to the src field to calculate the memory read address. If the inr field is set to

a non-zero value, block counter is incremented by inr amount when the execution of

the instruction is completed. If the rst bit is set, the block counter is reset to zero

instead. Finally, the repeat amount uses a subblock counter to additionally repeat the

instruction by rpt amount, incrementing the src and decrementing the trg value after

each repetition.

This instruction is useful for the addition/absorption of cipher inputs, such as

the AD or the message. The block counter and repeat mechanisms allow the reading

and processing of successive words from the memory without calling a new instruction.

Repeat mechanisms are particularly useful when the algorithm needs to digest more

than one word at a time, for example, for reading four consecutive memory addresses

for the 128-bit AD block of Ascon. The block counter, on the other hand, is often used

when the instruction is nesting in a loop (see 3.2.1.3). It allows the same instruction

binary to target vastly different memory addresses by an accumulating value, which is

mostly helpful for incrementally targeting different input data blocks.

Figure 3.7. Write Load Value (WRT) Instruction.

WRT instruction operates similar to the ADD instruction, but the value read

from the memory is directly written to the target register. This is useful when setting

initialization vectors or decryption cases where the ciphertext input overwrites some

state words. The block counter and repeat bitfields are identical to those of the ADD

instruction.

39

Figure 3.8. Store Read Value (RD) Instruction.

RD instruction reads the src register and writes the result into the trg memory

address. The control flow is identical to ADD and WRT instructions.

3.2.1.2. Immediate Instructions. Instructions in this class, add immediate (ADDI)

and write immediate (WRTI), are shown in Figure 3.9.

(a)

(b)

Figure 3.9. (a) Add Immediate (ADDI). (b) Write Immediate (WRTI).

ADDI and WRTI instructions add and overwrite the 16-bit immediate value in

the instruction (imm) to the target register (trg), respectively. ADDI instruction is

useful for constant additions to the state (such as the domain separation in Ascon),

whereas WRTI is more frequently used for initialization purposes.

The inr and rst bitfields can be used to modify the block counter without causing

any memory accesses, and the repeat amount is useful for applying the same operation

to multiple registers. Because the immediate values are 16-bits, immediate instructions

40

modify the registers in a half-word granularity. Target register bitfield (trg) has an

extra bit on the least-significant end to allow separate accesses to the lower and upper

half-words of a register.

3.2.1.3. Control Flow Instructions. This class of instructions include branch (BRN)

and branch-immediate (BRNI), displayed in Figure 3.10.

(a)

(b)

Figure 3.10. (a) Branch (BRN). (b) Branch-Immediate (BRNI).

BRN reads the source memory address (src) and compares the value with the

block counter. If the condition evaluates to true, the program counter is incremented

by imm2 (sign-extended). Possible conditions are: Less than or equal to (LTE), less

than (LT), equal to (EQ), and greater than (GRT); and the block counter value is

always the first operand. BRNI instruction uses the 16-bit immediate value embedded

into the instruction binary for comparison instead of reading the value from the main

memory. Both instructions can be used for conditionally executing or repeating certain

portions of the code. BRN instruction is particularly useful when the repetition amount

is a variable that is not deterministic at the programming time (for example, AD or

message length) or for fixed values that require more than 16-bits. On the other hand,

BRNI is faster for a fixed number of iterations or simple jumps because it does not

require a memory access.

41

3.2.1.4. Permutation Instruction. Permutation instruction (PERM) shown in Figure

3.11 runs the permutation block in the cipher.

Figure 3.11. Permutation (PERM) Instruction.

PERM instruction updates the internal state by executing the permutation and

writing the result back to the state. This is repeated for the number of rounds specified

in the instruction, starting with cnt min and finishing when the round counter equals

cnt max. The dir flag indicates the direction of the count. The mode bitfield offers

flexibility in the use of the permutation block. It is used to select different modes of

the same permutation on execution time without requiring dynamic reconfiguration.

Alternatively, if the algorithm requires another computational block in addition to the

permutation (such as the linear function in PHOTON-Beetle, explained in 2.2.3.1, it

can be implemented into the permutation block as a new mode (see Section 3.2.2).

3.2.2. Top-Level Design

The accelerator’s block diagram is depicted in Figure 3.12. As mentioned earlier,

there is no general-purpose register file. The data transfers are efficiently performed

directly into the state registers of the cipher and constitute no complications. However,

the lack of a general-purpose register file necessitates the placement of specialized

hardware in order to store different pointer values and loop variables. These variables

are, thankfully, limited in number and consistent across all LWC algorithms. We

determine three loop variables that need to be placed in order to describe an LWC

algorithm: round number, block number, and subblock number. Each one of these

variables is maintained using a dedicated counter within the controller, as explained in

Section 3.2.2.1.

42

State Permu-
tation

src/trg

PC

Master
Intf.

Slave
Intf.

Inst.
Decoder

Round
Counter

Repeat
Counter

Block
Counter

Instr.
Register

Figure 3.12. Top-Level Block Diagram of the Accelerator.

For address pointers, the accelerator has three memory-mapped registers that

can be written to by the processor via the slave interface:

• Instruction start address register.

• Data read base address register.

• Data write base address register.

Base address registers only keep the upper half of the data addresses. The lower

half of the data location in memory is indicated by the src and/or trg bitfields of the

memory access instructions (3.2.1.1). When all three of these registers are written, the

accelerator begins operation by reading instructions from the start address register.

3.2.2.1. Instruction Decoder. The instruction decoder is the main controller of the

accelerator. It consists of decoder logic, a 32-bit instruction register, and various

counters:

43

• Decoder logic: Decodes the instruction and generates various control signals for

the accelerator. Controls the data flow and handles memory transactions through

the master interface if the instruction requires memory access.

• Instruction register: Stores the instruction word received from the memory until

the execution is completed.

• Round counter: Counts the permutation rounds based on the minimum and

maximum counter values specified by the PERM instruction.

• Block counter: Keeps a counter value that is optionally incremented with mem-

ory access and immediate instructions. This value is used as a loop variable in

programming, allowing branches using BRN(I) (see 3.2.1.3). It is also added to

the memory address during read/write operations, allowing adjacent addresses to

be accessed with the same instruction. The block counter does not reset unless

an instruction explicitly makes this call using the rst flag.

• Repeat counter: Counts the number of times the current instruction is repeated,

and alerts the controller when the repetition is completed. Used by memory

access (Section 3.2.1.1) and immediate (Section 3.2.1.2) instructions. Repeat

counter value is added to the address during memory accesses.

3.3. System-on-Chip Integration

We propose a simple, lightweight SoC structure for the complete design, as shown

in Figure 3.13. The SoC consists of a lightweight processor core, an I/O device pe-

ripheral, a general-purpose main memory, two Read-Only Memories (ROM), a ROM

programmer module to allow software updates, an ICAP controller to handle DPSR,

and one of the proposed LWC accelerators. Our structure is based on PicoSoC, an

open-source SoC equipped with PicoRV32 CPU [29]. The SRAM and Universal Asyn-

chronous Receiver Transmitter (UART) modules are taken from the PicoRV32 reposi-

tory. Our additions to this SoC structure include the accelerator, the boot ROM, the

DPSR ROM, ROM programmer, ICAP controller, and modifications to the system bus

(a PicoRV32-native interface) to enable multi-master support, allowing the accelerator

to access memory without needing the CPU.

44

PicoRV32

DPR
ROMICAP

Controller

LWC
Accelerator

On-Chip
Memory

Master
Slave
Optional

External
Memory

System Bus

rx

tx
UART

Boot
ROM

ROM Programmer rx

Figure 3.13. Top Level Connections.

3.3.1. PicoRV32

PicoRV32 is a free and open-source CPU core provided under the ISC license [29].

It implements the RV32IMC instruction set. It is intended for use as an auxiliary

processor in FPGA and ASIC designs, with a tiny hardware footprint and a configurable

native memory interface. Due to its high maximum frequency, it can be included in the

majority of current designs without crossing clock domains. It can also be optimized

for power consumption when run at lower frequencies, thanks to the ease of timing

closure. Although its Cycles per Instruction (CPI) average is roughly 4, this core is

suitable for lightweight environments that do not require significant computing power.

The core is supplied with various configurable parameters, including an optional co-

processor interface. Nevertheless, we avoid using such core-specific structures in order

to maintain generality.

3.3.2. ICAP Controller

As explained in Section 2.3.1, we will be using ICAP to accomplish DPSR. Vivado

Design Suite provides an ICAP controller IP that can be incorporated into Register-

45

Transfer Level (RTL) designs. However, several works in the literature demonstrated

that it is possible to construct a substantially quicker and more efficient ICAP controller

by manually instantiating the hardware primitive (ICAPE2) in a custom controller

[30, 31]. Our ICAP controller permits the bitstream to be written at the theoretical

maximum throughput of 32 bits per cycle.

Typically, reading from or writing to ICAP is accomplished by issuing a series

of commands to configuration registers of the FPGA. Specific packet formats used in

communication to the configuration registers are explained in [32]. Usually, a transac-

tion starts with bus width detection and synchronization words, continues by issuing

read/write commands, and finishes with a termination of communication using a desyn-

chronization command. In the case of reconfiguring a region in FPGA fabric, write

instructions involve a number of operations, including setting configuration options and

frame registers, writing the configuration binary, and performing a Cyclic-Redundancy

Check (CRC) to validate the correctness of the written configuration.

We design a simple ICAP controller with two modes. In the single-transaction

mode, the processor issues a simple read or write request to a memory location ded-

icated to ICAP Controller. The least significant bits of the address are used to de-

termine the target configuration register. A read/write operation is carried out by

executing the steps explained in Figure 3.14. The timing of the ICAP inputs (chip

enable, read/write select, and 32-bit data) are managed by a finite state machine in

hardware, and a response is returned when the ICAP output is valid.

The stream mode is more straightforward in its operation and is used to partially

reconfigure the FPGA. The processor initiates reconfiguration by writing the bitstream

length, and the ICAP controller starts writing the data in the DPSR memory to the

ICAP as a stream. The partial bitstream already contains all the necessary commands

in the correct sequence to complete a transaction, so no further control is required.

46

INIT

send SYNC word
wait

IDLE

read?

DESYNC

write DESYNC
to CMD register

wait

1

0

WRITE

send write cmd.
wait

READ

send read command
switch to RD mode

return value
switch to WR mode

(a)

IDLE

INIT

STREAM

read DPSR mem
write to ICAP

increment counter

over?
1 0

(b)

Figure 3.14. ICAP Controller Diagram (a) Single Mode, (b) Stream Mode.

The implementation of DPSR flow is explained in detail in Section 4.1.1.

3.3.3. ROM Programmer

This module is used as the boot mechanism of the SoC. It uses a UART inter-

face to receive data from outside of the SoC and update Boot Memory and the DPSR

Memory. These modules are read-only from the CPU’s perspective, but they are im-

plemented as BRAMs in FPGA and can be updated. ROM Programmer consists of a

simple FSM that constantly checks the value of the serial input. If the pre-designated

input sequence is detected, the succeeding data is written to either one of the read-only

memories. On the software side, we use a simple python script to start the transaction

by sending the ASCII sequence ”LWC THESIS”, then read binary data from a file and

stream it through the serial interface.

47

The boot mechanism is not integral to the engineering purpose of our SoC;

therefore, it can be safely replaced with any other boot mechanism such as SPI flash

during the design time.

3.4. Software Support

A number of elements are needed on the software side of the stack to make this

SoC work in a user-friendly manner. These allow software written in C language to be

compiled with a RISC-V compiler in such a way that it utilizes different components

on the SoC:

• A linker script that describes memory regions, their origin and lengths, permis-

sions, and various attributes.

• A start assembly code to handle the system initialization and pointer assignments

based on memory regions.

• UART driver containing the C functions required for serial terminal communica-

tion with the SoC. These primarily consist of print, scan, and datatype conversion

(AXII hexadecimal string to integer, or vice versa) functions.

• LWC drivers that enable the utilization of accelerators from the software. It com-

prises small C functions that initiate reads/writes to memory-accessible registers

and more extensive functions that execute the complete encryption/decryption

process by calling these smaller functions in correct succession.

Figure 3.15. C Wrapper For AEAD Modes of LWC Algorithms.

48

The top functions for the LWC drivers are formatted identically to the AEAD

encryption wrapper provided by the NIST specification shown in Figure 3.15. This al-

lows any previous software using LWC functions to be migrated into the accelerator use

without causing any complications. The drivers are presented separately for different

LWC algorithms. The addition of a new algorithm will require drivers to be re-written.

As discussed earlier, this process is simple and extremely intuitive for the codesign ap-

proach, thanks to the ISA definition. On the other hand, the fully-hardware solution

will require some hand-calculated values to be entered into a few registers. Still, we ar-

gue that this is a negligible non-recurring engineering effort compared to the hardware

design.

49

4. IMPLEMENTATION OF LWC ACCELERATORS

The RTL design of the lightweight SoC with hardware acceleration is carried

out using the Verilog and SystemVerilog hardware description languages. Xilinx Vi-

vado Design Suite (v2020.1) is utilized for the implementation. The following section

explains various implementation steps when converting the RTL codes into a func-

tioning design in the FPGA, including the partial reconfiguration flow for dynamically

switching between different ciphers.

4.1. FPGA Implementation

The hardware target for the implementation is Nexys A7 board, featuring 7-series

programmable logic Artix-7 XC7A100T. The complete implementation setup consists

of RTL design files, test benches, and a simple constraints file which includes clock and

IO constraints. The clock frequency is set to 50 MHz for the SoC, and it is generated

in the RTL from the 100 MHz internal clock of the FPGA by a simple clock divider.

The frequency is kept at a reasonable but low value in order to allow tool optimizations

to focus on reducing area and energy consumption without being tightly constrained

by the timing budget. We differentiate our implementation flow from Vivado Design

Suite’s usual GUI-based bitstream creation to allow partial reconfiguration. A de-

tailed explanation of the implementation flow with partial reconfiguration is provided

in Section 4.1.1.

In this thesis, we make numerous implementations on slightly different SoC struc-

tures to enable the comparison of various use cases of LWC algorithms and isolate the

benefits of proposed architectures. The implemented versions of the SoC are:

• Software-only: This is the SoC structure with no hardware acceleration. It is

used as a baseline for evaluating the benefits of the accelerators in the following

SoC versions. LWC algorithms are executed on software using PicoRV32.

50

• Dedicated accelerator: This SoC version includes a non-configurable hardware ac-

celerator for a single LWC algorithm. This implementation is exclusively carried

for Ascon, TinyJAMBU, and PHOTON-Beetle. The same accelerator structure

is implemented without running the partial reconfiguration flow for all three algo-

rithms. Partially shared portions of accelerators are also fixed for their algorithm-

specific values (such as the program registers or event table in Section 3.1.1.3)

to allow further optimizations. The comparison of this version with later ones

reveals the true overhead of supporting multiple algorithms, covering both design

and implementation aspects.

• Multiplexed-accelerator: This is the SoC version that can accelerate all three

LWC algorithms without partial reconfiguration. Instead of designating the per-

mutation block for partial reconfiguration, this design instantiates permutations

from all three algorithms and allows their selection via multiplexers. The in-

clusion of this variant aims to articulate the tradeoff of having all permutation

modes present in hardware at all times instead of using partial reconfiguration.

• Reconfigured accelerator: This is the final SoC structure we propose in this the-

sis, including the PicoRV32 CPU, an on-chip memory, two ROMs, UART device,

one of the proposed LWC accelerators, and an ICAP module with DMA func-

tionality. Allows acceleration of all three LWC algorithms by utilizing DPSR on

the permutation block.

All three variants except the software-only mode are replicated for both accel-

erators that were proposed in Section 3. Other parameters are kept consistent across

implementations to maintain fairness. The sizes for the main memory and the boot

ROM are fixed at 16 kB, which is sufficient to accommodate the software implementa-

tion with the largest code size among the three algorithms.

51

4.1.1. Partial Reconfiguration Flow

The modification of the Vivado design flow for partial reconfiguration is outlined

in Figure 4.1. It begins with hierarchically distinguishing the parts that are intended to

be reconfigurable and contain them into a reconfigurable module. Initially, this module

is designated as a black-box, and the design is synthesized. This step produces a netlist

(.dcp) for the static region.

Next, variants of the reconfigurable module (modes) are subjected to out-of-

context synthesis individually. This is a method used for synthesizing sub-modules

of a design and allows post-synthesis netlists to be generated without the presence

of IO buffers. The Partially-Reconfigurable Region (PRR) is then floorplanned by

designating a p-block into the reconfigurable module. The mode with the highest

resource utilization should be taken into consideration when designating a p-block.

It is crucial to note that the partial reconfiguration bitstream size will be directly

proportional to the size of the PRR, meaning larger PRRs require more time and

energy to reconfigure and more memory space to store. For the FPGA we use, a PRR

needs to have the height of at least one clock region in the FPGA layout. We designate

a p-block that contains 400 slices, hence 1600 LUTs for the permutation module.

A combination of the static region and a valid mode for all PRR regions is re-

ferred to as a configuration. Since we only have a single PRR region, the number of

configurations is equal to the number of modes. To generate a valid configuration,

the netlist of the static region is opened in a Vivado project, and the netlist of one of

the modes is imported to replace the black-box. We designate the module as reconfig-

urable, and the combined netlist is subjected to Place-and-Route (PnR) steps, going

through timing closure. The obtained post-PnR netlist is our first configuration.

52

Synthesis static region post-
syn netlist

prr constraints

prr mode post-syn
netlist

configuration post-
syn netlist

Implementation

set prr black-box

fix place & route

static region post-
impl netlist

RTL Design

implement
combined netlist

configuration post-
impl netlist

insert new mode
netlist

Generate bitstream

generate partial
bitstream

set prr black-box

set prr black-box

out-of-context
synthesis

floorplanning

repeat for new configurations

St
an

da
rd

 D
es

ig
n

Fl
ow

Pa
rti

al
 R

ec
on

fig
ur

at
io

n
Fl

ow

Figure 4.1. Design flow for partial reconfiguration.

To allow the implementation of other nodes, PRR is once again set as a black-box,

this time on the post-PnR netlist. The resulting post-PnR netlist of the static region

53

is locked in the routing level, meaning any subsequent implementation runs will not

modify the placement and routing of the static region’s hardware resources. The black-

box may now be replaced by a post-synthesis netlist of one of the modes. Running

PnR on the combined netlist generates a valid configuration, as long as the new mode

can be routed to meet the timing constraints. Figure 4.2 displays the FPGA layout at

this step of the flow, where the orange cells are the fixed static region, and the PRR

region is depicted with purple boundaries. Finally, we generate FPGA programming

bitstreams for all configurations and partial bitstreams for all subsequent modes. A

complete bitstream is only needed when programming the FPGA for the first time

because the partial reconfiguration only needs the partial bitstreams.

Figure 4.2. Post-Implementation FPGA Layout.

In order to dynamically reconfigure PRR, the partial bitstream should be written

to the ICAP primitive. First, we transfer the partial bitstream into the DPSR memory

using the ROM programmer module explained in 3.3.3. This process is analogous to

remotely making a software update to the SoC, but does not halt the CPU operation.

The CPU then starts DPSR by writing to the ICAP controller, which directly accesses

the DPSR data to reconfigure the PRR using the stream mode (see 3.3.2).

54

4.2. Design Verification

For the verification of the implemented LWC algorithms, we use cryptotvgen. It

is a suite of python scripts designed to iteratively run C implementations of the LWC

algorithms with different inputs, write the input/output values of the runs to text files

in a specific format, and compare them with the outputs of the NIST-recommended

hardware API [11]. We use cryptotvgen solely for the generation Known-Answer Tests

(KAT).

There are two steps to the verification process: behavioral verification and hard-

ware verification.

4.2.1. Behavioral Verification

The behavioral verification consists of running a behavioral full-system simulation

over a SystemVerilog testbench. As previously stated, both LWC accelerator drivers

and reference C implementations of algorithms have the same input/output (IO) struc-

ture in which all inputs (key, nonce, ad,message) are supplied as char pointers, and

their sizes (mlen, adlen) as integers. For simulation, we initialize input values into

fixed memory addresses and pass these addresses into the functions as C pointers to

execute encryption. This aims to imitate a real-world scenario where the inputs are ob-

tained as a consequence of some computation or retrieved from some peripheral device

and saved into the memory prior to the encryption. This approach also eliminates the

overhead of writing data into memory at each program startup, allowing us to focus

our benchmarks solely on the LWC algorithm execution.

We separately compile C codes using different drivers and the reference imple-

mentations, using the software setup explained in Section 3.4. The outputting program

code is used to initialize boot ROM in hexadecimal format. We use a custom Sys-

temVerilog testbench to run encryption using accelerators with different input values.

The correctness of the outputs are verified by comparing them with KAT values.

55

4.2.2. Hardware Verification

The hardware verification is done by loading the bitstream into the Nexys A7

Board. The rx and tx pins of the SoC are assigned to the FPGA pmod IO using a

constraints file (.xdc), and the UART peripheral is used for external communications.

The UART baud rate is set to 115200, the maximum value supported by our setup in

default configurations. An FTDI cable is used to establish a connection between the

USB port of the computer and the serial IO of the FPGA. We use a serial terminal

to access the processor via this link. UART driver functions allow us to control the

processor through this terminal and observe the contents of any readable memory

location.

We use slightly modified versions of LWC accelerator drivers, which allow the

algorithm inputs to be taken from the terminal as hexadecimal strings. The hardware

tests are performed manually by writing all input values from the terminal or passing

locations (pointers) of the initialized values in the main memory into the driver. The

contents of the output location are printed out on the terminal and compared with

KAT results.

Note that the hardware implementation is made for verification and demonstra-

tion purposes and is not used for benchmarking. Accurate real-time power consumption

measurements often require specialized hardware, such as the SAKURA-G board [33]

or the products from the NewAE ChipWhisperer series [34], which are widely adopted

for the generation of power traces and side-channel analyses. Newer FPGA boards,

such as the Xilinx Ultrascale series, also employ a dedicated Power Management Bus

for this purpose [35], which is not the case in our FPGA. In addition, the performance

is impacted significantly by the communication overhead in a real-world scenario. Not

only is the data transfer through the UART substantially slower than the operation

of the CPU or the accelerator, but there are also intermediate steps that degrade per-

formance, such as prints, scans, and various data conversion functions used for ease of

communication. As explained in the following section, performance and power mea-

56

surements are carried out using post-implementation simulations on Vivado Design

Suite.

4.3. Power Analysis

For power assessments, we utilize the power analysis tool in Vivado Design Suite.

To increase accuracy, Vivado allows the incorporation of a Switching Activity Inter-

change Format (SAIF) file into its power report functionality. A SAIF file is exported

after a simulation and used to estimate the power consumption of the design for that

particular test case. It contains toggling counts of the underlying signals and their

timing information like the time spent on logic high, logic low, or unknown states.

SAIF files can be generated for specific timing intervals during the simulation, which

allows us to investigate the power consumption of the design when different hardware

components are engaged in operations. The power consumption values for various ar-

chitectures and test cases presented in Chapter 5 are obtained using individual SAIF

files and simulation runs for each configuration. Only the dynamic power consumption

is considered, as the device static depends more on the FPGA chip than the imple-

mented design.

57

5. EXPERIMENTS AND RESULTS

In this chapter, we compare the various designs described in Section 4.1. In

each scenario, we utilize a single execution of an LWC algorithm as a benchmark. As

comparative metrics, we use hardware area, code size, throughput, and energy per

bit. The timing and power consumption information displayed is generated from the

Vivado simulator, as explained in Section 4.3. The area and resource utilization values

are obtained from the Vivado implementation reports. Code size refers to the size of

the encryption function in memory, excluding firmware related to the rest of the SoC.

The partial bitstream size is also included in the DPSR variant.

The test cases used during comparisons are selected to be similar to the NIST

benchmarks [15]. For each algorithm, we use three distinct message lengths for en-

cryption: A short message containing 16 bytes of plaintext and AD, a medium-sized

message containing 64 bytes of plaintext and AD, and a long message with 1536 bytes

of plaintext and AD.

5.1. Benchmarking Results

This section compares all four implementations (see 4.1) for three LWC algo-

rithms. Among these implementations, CPU is the implementation of the PicoRV32

processor without hardware acceleration. Dedicated accelerator (DA) refers to the

acceleration of a single algorithm. Multiplexed (MUX) refers to the implementation

variant where all three permutations are simultaneously present in hardware and can

be selected at runtime. Finally, DPSR refers to the mode in which the permutation

blocks can be reconfigured at runtime. Finally, we repeat the comparisons for both

accelerator designs in Chapter 3. The hardware approach is referred to as versionH,

whereas the mixed approach (HW-SW codesign) is referred to as versionM.

58

Note that the results reported in this section should not be used to compare

algorithms with each other but rather to compare different SoC versions and accel-

erator design approaches. This is because the designs are not made and optimized

for individual algorithms but for the entire SoC. For example, a single round of Ascon

permutation requires substantially less timing and power budget than a round of PHO-

TON, but they are both limited by a critical path in the SoC. Similarly, a significant

amount of time is spent between data transfers, which may conceal the performance

differences between individual accelerators.

For a comparison of hardware performance between algorithms that uses differ-

ent implementations, including several rolled versions of permutations, refer to NIST

Benchmarking Reports [14, 15].

Table 5.1. Progressive Comparison of ASCON Implementation versionH.

Msg. Len. CPU DA MUX DPSR

Area (LUTs) - 2123 4029 5998 4569

Area (FFs) - 1416 2571 2768 2884

Code Size (bytes) - 40996 624 728 210388

Throughput (Mbit/s)
Short

0.402 5.267 4.547 4.547

Energy/bit (nJ/bit) 84.46 3.796 4.618 4.178

Throughput (Mbit/s)
Medium

0.661 8.974 8.386 8.386

Energy/bit (nJ/bit) 51.26 2.228 2.742 2.265

Throughput (Mbit/s)
Long

0.837 11.63 11.59 11.59

Energy/bit (nJ/bit) 40.60 1.890 2.156 1.181

Table 5.1 compares various implementations of versionH accelerator on Ascon,

from least developed to most complex. It can be observed that resource utilization

rises as complexity increases in general. The MUX version of the SoC uses more

resources than the DPSR version, meaning that the additional permutations in the

MUX version are significantly more hardware-costly than the ICAP controller and the

59

DPSR memory added in the DPSR version. The multiplexed variant can support

three LWC algorithms for the cost of a 50% increase in LUT count and less than 10%

increase in Flip-Flops compared to the DA implementation. It is significantly more

efficient than having three separate accelerators, thanks to the reusability of common

hardware provided by our design methodology.

Comparing the DA and DPSR versions reveals that supporting DPSR incurs a

hardware overhead of approximately 10% in terms of LUT and FF count. This includes

DPSR memory, the ICAP controller, their bus connections, and any additional resource

overhead that the DFX flow may have produced. While this is a relatively small price,

one must consider the significant overhead in code size (memory requirement) required

to store the partial bitstream.

In terms of throughput and energy efficiency, accelerator versions provide 10

to 20 times improvement for medium and long-sized messages, as anticipated from

specialized hardware. Even for the minor message and AD sizes of 16 bytes, hardware

acceleration is at least an order of magnitude faster and more power-efficient than

the CPU. The DA version has a slightly higher throughput for short and medium-

sized messages because it takes fewer instructions to set up the accelerator (due to the

lack of various program registers), but this advantage diminishes for longer messages.

The MUX variant has the highest power consumption between the accelerators due

to switching caused by unused permutations’ hardware. It is possible to prevent this

unnecessary logic switching by integrating additional hardware for masking. There is

no significant difference in power consumption between the DA and DPSR modes in

this version as the DPSR version also only has a single permutation active at a time.

Tables 5.2 and 5.3 present comparison of SoC versions for TinyJAMBU and

PHOTON-Beetle respectively. We recognize that the majority of our observations

regarding Ascon also apply to these two algorithms, with PHOTON-Beetle benefit-

ing slightly more from hardware acceleration due to its computation-intensive round

permutation.

60

Table 5.2. Progressive Comparison of TinyJAMBU Implementation versionH.

Msg. Len. CPU DA MUX DPSR

Area (LUTs) - 2123 3708 5998 4519

Area (FFs) - 1416 2482 2768 2884

Code Size (bytes) - 7630 724 828 210488

Throughput (Mbit/s)
Short

0.263 4.383 4.155 4.155

Energy/bit (nJ/bit) 125.0 4.790 7.046 4.616

Throughput (Mbit/s)
Medium

0.377 7.757 7.534 7.534

Energy/bit (nJ/bit) 87.52 2.707 3.981 2.521

Throughput (Mbit/s)
Long

0.436 10.27 10.26 10.26

Energy/bit (nJ/bit) 75.53 2.140 3.215 1.949

Table 5.3. Progressive Comparison of PHOTON-Beetle Implementation versionH.

Msg. Len. CPU DA MUX DPSR

Area (LUTs) - 2123 4452 5998 5223

Area (FFs) - 1416 2567 2768 2884

Code Size (bytes) - 13012 624 728 210388

Throughput (Mbit/s)
Short

0.068 5.099 4.555 4.555

Energy/bit (nJ/bit) 479.1 4.510 4.829 4.829

Throughput (Mbit/s)
Medium

0.092 8.819 8.386 8.386

Energy/bit (nJ/bit) 356.8 2.607 2.742 2.742

Throughput (Mbit/s)
Long

0.103 11.66 11.63 11.63

Energy/bit (nJ/bit) 317.6 2.229 2.235 2.149

In the case of PHOTON-Beetle, the overhead associated with adding support

for various algorithms to the SoC (whether by multiplexing or DPSR) is substantially

smaller. This is expected because it has the highest hardware footprint among all three

algorithms. The power overhead for the multiplexed version is minimal in PHOTON-

Beetle because the other two permutation blocks spend substantially less power than

61

PHOTON. Finally, the difference between DA and MUX versions is most remarkable

in TinyJAMBU because it has the lowest-hardware dedicated implementation cost. Its

high permutation round count also increases the power consumption in MUX versions

by an excessive amount if the logic gates of the unused permutations are allowed to

switch freely.

Next, we evaluate the performance of the accelerator versionM, starting with

ASCON. We observe that the accelerator reduces the energy per bit processed by

around 100 times for medium and long encryptions compared to the CPU-only imple-

mentation. Similarly, the throughput is increased by two orders of magnitude, which

is significantly more improvement than versionH. Because the mixed accelerator has

master access to the bus, a significant amount of time and energy is saved on the in-

put/output data transfer. Additionally, it can operate without waiting for read-writes

from the core, reducing idle time. The increase in energy efficiency and throughput

as the message length increases is also more apparent in this version. The codesign

approach (versionM) takes slightly longer to set up but is much more efficient once

programmed.

We observe that almost all metrics follow a similar trend to versionH as the com-

plexity increases. Multiplexed implementation has the highest resource utilization and

spends significantly more power than the DA mode. DPSR mode introduces around

10% area overhead but requires more than 209 kB extra memory space compared to

the DA version. All accelerator variants have more or less the same throughput for

long messages.

One notable difference is that versionM presents a significant power consumption

overhead in the case of DPSR, consuming more than twice as much energy as the

dedicated accelerator version. Using a hierarchical power report, we confirm that this

difference is, indeed, caused by the accelerator itself. It is not surprising that the

increased complexity caused by routing a permutation to a pre-fixed static region results

in increased power consumption, but the difference is more prominent in the mixed

62

Table 5.4. Progressive Comparison of ASCON Implementation versionM.

Msg. Len. CPU DA MUX DPSR

Area (LUTs) - 2123 3340 4925 3716

Area (FFs) - 1416 2072 2072 2189

Code Size (bytes) - 40996 392 392 210052

Throughput (Mbit/s)
Short

0.402 19.10 19.10 19.10

Energy/bit (nJ/bit) 84.46 1.099 1.570 2.407

Throughput (Mbit/s)
Medium

0.661 62.43 62.43 62.43

Energy/bit (nJ/bit) 51.26 0.352 0.608 0.768

Throughput (Mbit/s)
Long

0.837 219.6 219.6 219.6

Energy/bit (nJ/bit) 40.60 0.118 0.314 0.264

approach. A contributing factor is that in the mixed approach, the energy consumption

is more dominantly determined by the accelerator, whereas the CPU and bus constitute

a greater portion of total energy in the hardware-only accelerator. Additionally, the

state registers of the cipher permutation are connected to the system bus to enable

faster communication with the memory in the mixed approach. The same registers

also serve as I/Os to the PRR region. It is possible that this overloading of internal

state registers complicated placement and routing in the mixed approach, resulting in

increased dynamic power.

Finally, it should be noted that the code sizes for the mixed version of the accel-

erator are smaller than the hardware-only version despite the adoption of a proprietary

ISA.

63

Table 5.5. Progressive Comparison of TinyJAMBU Implementation versionM.

Msg. Len. CPU DA MUX DPSR

Area (LUTs) - 2123 3231 4925 3653

Area (FFs) - 1416 2072 2072 2189

Code Size (bytes) - 7630 416 416 210076

Throughput (Mbit/s)
Short

0.263 12.61 12.61 12.61

Energy/bit (nJ/bit) 125.0 1.506 3.647 1.823

Throughput (Mbit/s)
Medium

0.377 27.97 27.97 27.97

Energy/bit (nJ/bit) 87.52 0.714 2.180 0.893

Throughput (Mbit/s)
Long

0.436 45.76 45.76 45.76

Energy/bit (nJ/bit) 75.53 0.437 2.010 0.568

Table 5.6. Progressive Comparison of PHOTON-Beetle Implementation versionM.

Msg. Len. CPU DA MUX DPSR

Area (LUTs) - 2123 4079 4925 4283

Area (FFs) - 1416 2072 2072 2189

Code Size (bytes) - 13012 316 316 209976

Throughput (Mbit/s)
Short

0.068 23.27 23.27 23.27

Energy/bit (nJ/bit) 479.1 1.203 1.417 2.449

Throughput (Mbit/s)
Medium

0.092 70.62 70.62 70.62

Energy/bit (nJ/bit) 356.8 0.566 0.679 1.118

Throughput (Mbit/s)
Long

0.103 191.1 191.1 191.1

Energy/bit (nJ/bit) 317.6 0.355 0.455 0.685

Tables 5.5 and 5.6 demonstrate the results obtained using the algorithms Tiny-

JAMBU and PHOTON-Beetle respectively. Their performances exhibit a similar pat-

tern across versions. In TinyJAMBU, the power consumption of the multiplexed ver-

sion is exceedingly high due to an increased number of rounds in permutation. As noted

before, it can be reduced with the addition of masking logic. In contrast, the MUX

64

variant consumes less energy than the DPSR version in Photon-BEETLE because it

has the most complex permutation block of all three.

5.2. Evaluation

In this section, we overview comparisons of the accelerator versions using the

measurement results in the previous section. Figure 5.1 compares the average energy

consumption of the fully-hardware (versionH) and mixed (versionM) accelerator archi-

tectures. Error bars indicate the least and most energy per bit values across algorithms.

Figure 5.1. Energy efficiency comparison between versionM and versionH.

Evidently, the mixed approach is much more energy-efficient than the fully-

hardware approach. We already mentioned that a significant portion of this advantage

could be attributed to decreased data transfer overhead and reduced dependency on

CPU triggers. Figure 5.2 compares the accelerator variants in terms of resource utiliza-

tion. The provided values are for the complete SoC implementations. The CPU-only

implementation of the SoC is included for reference.

65

Figure 5.2. Resource utilization comparison between versionM and versionH.

The mixed approach uses significantly fewer resources than the fully-hardware

approach. The information related to the control flow of the algorithm is kept in

hardware registers (see Section 3.1.1.3) in versionH, which significantly increases the

number of FFs. In contrast, this information is embedded into the program code in

the mixed approach, which is stored in the main memory (BRAM) at no extra cost.

The FF count in the mixed approach is further reduced because of its access to the

memory, which allows the elimination of the memory-mapped IO registers by directly

interacting with the state registers. The reduced number of registers automatically

reduces the number of LUTs, because each register or register word is accompanied by

LUTs that control read-writes to those registers. The LUT count has decreased further

in the mixed approach thanks to its simple instruction decoder-based structure.

Next, we compare the dedicated, multiplexed, and reconfigurable accelerator im-

plementations of the mixed approach. Figure 5.3 compares the energy efficiency of

implementations ,and Figure 5.4 compares the hardware area. In this comparison, the

MUX version is accompanied by a masking logic to reduce the power consumption.

66

Figure 5.3. Energy efficiency comparison between DA, MUX, and DPSR

implementations.

A dedicated accelerator is significantly more efficient regarding area and energy. The

multiplexed mode also consumes substantially less power than the DPSR implementa-

tion when used with masking, although it is still not as low as a DA implementation.

Nonetheless, it offers a significant improvement over having individual accelerators for

algorithms and should be preferred if support for multiple algorithms is required. Note

that the MUX approach is only viable because of the lightweight nature of algorithms:

It would be troublesome to employ three hardware with implementation sizes similar

to that of AES. Different parameter sets of LWC algorithms are supported by both DA

and MUX versions, so long as the underlying permutation block remains unchanged.

The DPSR implementation provides maximum flexibility at the expense of en-

ergy efficiency. It permits the adjustment and updating of both algorithm parameters

as well as the permutation, which may improve the life-cycle of a product after its

deployment. Despite being outperformed by other implementations, DPSR mode is

still orders of magnitude better than having no accelerator. It can also be preferred

67

over the multiplexed mode if the area constraint is severe. Additionally, the leftover

area in the PRR in smaller algorithms can be used for performance improvement using

aggressive parallelization. However, the overhead caused by the reconfiguration process

should also be considered when using the DPSR approach, which is addressed in the

following section.

Figure 5.4. Resource utilization comparison between DA, MUX, and DPSR

implementations.

5.3. DPSR Overhead

Comparisons should account for the time and energy necessary to reconfigure an

FPGA fabric, which is the greatest drawback of the DPSR approach. In our case, the

designated PRR p-block contains 400 slices, causing the bitstream size to be fixed at

205 kB. ICAPE2 primitive takes 32-bits at each cycle, so DPSR completes after 52415

cycles, taking slightly longer than 1ms at 50MHz frequency. The power consumption

overhead is more tricky to compute because it cannot be directly extracted from the

Vivado Simulator. While the simulator calculates the power consumption for moving

68

the data from BRAM to the ICAPE2 primitive, the power consumed by the logic that

is being reconfigured needs to be estimated separately. For the estimation, we use the

Medium-Grained Model provided in [36], and average out the power consumption for

the duration of the reconfiguration is calculated as

PMG = PFPGA + Pcontroller +
Pbefore + Pafter

2
(5.1)

where PFPGA is the idle power consumption of the FPGA, Pcontroller is the power con-

sumed by the ICAP controller, and Pbefore and Pafter are the idle power consumption

of the PRR before and after reconfiguration. The total on-chip power when the SoC is

idle is 104 mW. From the hierarchical power reports, we obtain the value 20 mW for

Pcontroller, and 1 mW for Pbefore and Pafter. Low power consumption in the PRR region

is expected because its inputs are connected to static registers, which are unchanged

during DPSR. Other related works [37, 38] confirm that the power consumption over-

head of the DPSR process does not exceed 20% on average.

The total energy consumption is calculated as 125mW×1048µs = 131µJ . Results

presented in the previous section indicate that using the DPSR accelerator saves at

least 40 nJ/bit energy compared to using the CPU, meaning single long encryption or

a few medium-sized encryptions are enough to prefer running DPSR over the CPU.

The difference in throughput is even more apparent: A medium-sized encryption takes

longer than 1.5 µs for all algorithms, which is enough time to set up the reconfigurable

region and use the accelerator. The difference between the CPU and the accelerators

is so substantial that the overhead of the DPSR pales in comparison for most cases.

69

6. CONCLUSION

The spreading of IoT and small computing devices has caused constrained devices

to take an active role in digital communications, hence cryptography. LWC emerged as

a field in response to the demand for cryptographic primitives tailored for such devices.

To solve the vast variance in solutions from academia and industry, NIST has initiated

a standardization process: But it is still expected that multiple algorithms will be

recommended for adoption to various environments. While this provides flexibility in

optimization, it can also become a problem if the same agent is required to execute

separate algorithms at different times.

In this thesis, we analyze and evaluate different methods of providing hardware

acceleration for multiple cryptography algorithms in a single SoC. Our design method-

ology identifies the common components of different LWC algorithms and promotes

resource sharing in hardware. Using this concept, two unique accelerator architec-

tures are carried out for three LWC algorithms. Each combination is used on three

distinct implementation variants (Dedicated, multiplexed, and reconfigurable acceler-

ator) to generate an SoC. With the addition of the non-accelerated version, a total of

19 SoC implementations were compared. The designs are implemented on an Artix-7

XC7A100T FPGA with a clock frequency of 50 MHz, using the Vivado Design Suite.

SAIF files generated from post-implementation timing simulations are utilized to in-

crease the accuracy of power consumption reports. Each implementation is tested on

three different encryption message and AD lengths, using the same metrics for evalu-

ation with NIST benchmarking of hardware implementations.

We compare two accelerator design approaches under various conditions: The first

is a hardware-only solution in which the accelerator is controlled by the CPU using

the memory-mapped IO, program, and control registers. The second approach relies

on hardware-software codesign and defines a custom ISA for the accelerator. Once

initiated, the accelerator is capable of operating independently of the core. Our mea-

70

surements and analysis revealed that the mixed approach is significantly more efficient

than the hardware approach when designing for flexibility. Not only is designing a re-

configurable hardware FSM costly, but it also relies on an obscure set of register writes

to allow re-programming of the controller. On the other hand, a bespoke instruction

set provides a simple and intuitive interface for programming. It is also substantially

more versatile than the fully-hardware approach because its control flow is not limited

to a set of pre-determined states and events. In fact, the mixed accelerator versions are

so adaptable that they can be used to accelerate the hash modes of LWC algorithms

despite the fact that they are initially designed for AEAD modes.

Next, we investigate the tradeoffs associated with supporting hardware accel-

eration for multiple algorithms in an SoC. We compare three accelerator modes in

particular. The dedicated accelerator mode has a hardware accelerator for a single

LWC algorithm. The multiplexed implementation also employs a single accelerator,

but it can support three LWC algorithms using hardware multiplexing of the unshared

resources. Finally, the DPSR version allows the dynamic modification of the entire

accelerator, including the unshared permutation block.

The results indicate that the DA mode is the most efficient and should be pre-

ferred if the SoC will strictly utilize a single LWC algorithm in its lifetime. The MUX

mode is significantly more area-efficient than having multiple accelerators but consumes

slightly more power than a dedicated accelerator, even with masking. It should be con-

sidered if a few pre-determined LWC algorithms may need to be accelerated during the

SoC operation. Lastly, the DPSR version of the system offers unequaled versatility.

It enables the complete modification of accelerated algorithms using a similar method

to provide a software update, which is a significant advancement in forward compat-

ibility. It is less efficient if additional flexibility is not necessary; however, it may be

preferable over the MUX version if the environment is severely area-constrained. The

DPSR overhead should also be evaluated when reconfiguring the accelerator for a new

algorithm.

71

Future work includes using this design methodology to develop side-channel resis-

tant accelerators. Numerous side-channel countermeasures described in the literature

rely on the adjustment of algorithm permutation hardware to conceal power usage,

which DPSR can perform during the runtime. Another idea is to utilize the unused

permutation hardware in the multiplexed version to generate noise, which, in turn,

should obfuscate the power trace of the used algorithm, although it requires a thor-

ough analysis.

72

REFERENCES

1. Easttom, C., Modern Cryptography: Applied Mathematics for Encryption and In-

formation Security , McGraw-Hill Publishing, New York, 2015.

2. Petitcolas, F. A. P., “Kerckhoffs’ Principle”, H. C. A. van Tilborg and S. Jajodia

(Editors), Encyclopedia of Cryptography and Security , p. 675, Springer, 2011.

3. Paulsen, C. and R. Byers, “Glossary of Key Information Security Terms”, National

Institute of Standards and Technology, 2018.

4. NIST FIPS PUB, “197: Advanced Encryption Standard (AES)”, Federal Informa-

tion Processing Standards Publication, Vol. 197, No. 441, p. 311, 2001.

5. Shannon, C. E., “Communication Theory of Secrecy Systems”, The Bell System

Technical Journal , Vol. 28, No. 4, pp. 656–715, 1949.

6. McKay, K., L. Bassham, M. Sönmez Turan and N. Mouha, “Report on Lightweight

Cryptography”, National Institute of Standards and Technology, 2016.

7. Rogaway, P., “Authenticated-Encryption with Associated-Data”, Proceedings of

the 9th ACM Conference on Computer and Communications Security , pp. 98–107,

Washington D.C., USA, 2002.

8. Kehrer, P., “Authenticated Encryption”, 2019,

https://cryptography.io/en/latest/hazmat/primitives/aead/, accessed on June 15,

2022.

9. Black, J., “Authenticated Encryption”, Encyclopedia of Cryptography and Secu-

rity , Springer, 2005.

10. Turan, M. S., K. McKay, D. Chang, C. Calik, L. Bassham, J. Kang and J. Kelsey,

73

“Status Report on the Second Round of the NIST Lightweight Cryptography Stan-

dardization Process”, National Institute of Standards and Technology Internal Re-

port , Vol. 8369, No. 10.6028, 2021.

11. Kaps, J.-P., W. Diehl, M. Tempelmeier, E. Homsirikamol and K. Gaj, “Hardware

API for Lightweight Cryptography”, George Mason University, 2019.

12. Calik, C., M. Hasan and K. Jinkeon, “Benchmarking Round 2 Candidates on

Microcontrollers”, NIST Lightweight Cryptography Workshop, 2020.

13. Campos, F., L. Jellema, M. Lemmen, L. Müller, D. Sprenkels and B. Viguier, “As-

sembly or Optimized C for Lightweight Cryptography on RISC-V?”, International

Conference on Cryptology and Network Security , pp. 526–545, Springer, Vienna,

Austria, 2020.

14. Mohajerani, K., R. Haeussler, R. Nagpal, F. Farahmand, A. Abdulgadir, J.-P.

Kaps and K. Gaj, “FPGA Benchmarking of Round 2 Candidates in the NIST

Lightweight Cryptography Standardization Process: Methodology, Metrics, Tools,

and Results”, Cryptology ePrint Archive, 2020, https://eprint.iacr.org/2020/1207,

accessed in June 2022.

15. Mohajerani, K., R. Haeussler, R. Nagpal, F. Farahmand, A. Abdulgadir, J.-P.

Kaps and K. Gaj, “Hardware Benchmarking of Round 2 Candidates in the NIST

Lightweight Cryptography Standardization Process”, Design, Automation & Test

in Europe Conference & Exhibition (DATE), pp. 164–169, 2021.

16. Dworkin, M., “SHA-3 Standard: Permutation-Based Hash and Extendable-Output

Functions”, Federal Information Processing Standards, National Institute of Stan-

dards and Technology, Gaithersburg, MD, 2015.

17. Guido, B., D. Joan, P. Michaël and V. Gilles, “Cryptographic Sponge Functions”,

Citeseer, 2011.

74

18. Bertoni, G., J. Daemen, M. Peeters and G. V. Assche, “Duplexing the Sponge:

Single-Pass Authenticated Encryption and Other Applications”, International

Workshop on Selected Areas in Cryptography , pp. 320–337, Springer, Toronto,

Canada, 2011.

19. Dobraunig, C., M. Eichlseder, F. Mendel and M. Schläffer, “Ascon

v1.2”, Submission to the NIST Lightweight Cryptography Standardiza-

tion Process , 2021, https://csrc.nist.gov/CSRC/media/Projects/lightweight-

cryptography/documents/finalist-round/updated-spec-doc/ascon-spec-final.pdf,

accessed in June 2022.

20. Wu, H. and T. Huang, “TinyJAMBU: A Family of Lightweight

Authenticated Encryption Algorithms (version 2)”, Submis-

sion to the NIST Lightweight Cryptography Standardization Pro-

cess , 2021, https://csrc.nist.gov/CSRC/media/Projects/lightweight-

cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-

final.pdf, accessed in June 2022.

21. Bao, Z., A. Chakraborti, N. Datta, J. Guo, M. Nandi, T. Peyrin and

K. Yasuda, “PHOTON-Beetle Authenticated Encryption and Hash Fam-

ily”, Submission to the NIST Lightweight Cryptography Standardization

Process , 2021, https://csrc.nist.gov/CSRC/media/Projects/lightweight-

cryptography/documents/finalist-round/updated-spec-doc/photon-beetle-spec-

final.pdf, accessed in June 2022.

22. “UG909 Vivado Design Suite User Guide: Dynamic Function eXchange, version

2021.2”, Xilinx, 2022.

23. UG-Partrecon, “Partial Reconfiguration IP Core”, Intel , 2019,

https://www.intel.com/content/www/us/en/docs/programmable/683404/

current/partial-reconfiguration-ip-core.html, accessed on August 24, 2022.

75

24. Patel, S. and W. H. Wen-mei, “Accelerator Architectures”, IEEE Micro, Vol. 28,

No. 4, pp. 4–12, 2008.

25. Cota, E. G., P. Mantovani, G. Di Guglielmo and L. P. Carloni, “An Analysis of

Accelerator Coupling in Heterogeneous Architectures”, 52nd ACM/EDAC/IEEE

Design Automation Conference (DAC), pp. 1–6, San Francisco, California, USA,

2015.

26. Shao, Y. S. and D. Brooks, Research Infrastructures for Hardware Accelerators ,

Springer International Publishing, Cham, 2016.

27. “AMBA AXI and ACE Protocol Specification”, ARM Cambridge, UK, 2011.

28. Cook, H. M., Productive Design of Extensible On-Chip Memory Hierarchies , Uni-

versity of California, Berkeley, 2016.

29. Clifford, W., “PicoRV32- A Size-Optimized RISC-V CPU”, 2017,

https://github.com/YosysHQ/picorv32, accessed on 24 August, 2022.

30. Vipin, K. and S. A. Fahmy, “ZyCAP: Efficient Partial Reconfiguration Manage-

ment on the Xilinx Zynq”, IEEE Embedded Systems Letters , Vol. 6, No. 3, pp.

41–44, 2014.

31. Duhem, F., F. Muller and P. Lorenzini, “Farm: Fast Reconfiguration Manager for

Reducing Reconfiguration Time Overhead on FPGA”, International Symposium

on Applied Reconfigurable Computing , pp. 253–260, Springer, Belfast, UK, 2011.

32. “7 Series FPGAs Configuration User Guide, version 1.13.1”, Xilinx, 2018.

33. Guntur, H., J. Ishii and A. Satoh, “Side-Channel Attack User Reference Architec-

ture Board SAKURA-G”, IEEE 3rd Global Conference on Consumer Electronics

(GCCE), pp. 271–274, Tokyo, 2014.

76

34. O’flynn, C. and Z. D. Chen, “Chipwhisperer: An Open-Source Platform for Hard-

ware Embedded Security Research”, International Workshop on Constructive Side-

Channel Analysis and Secure Design, pp. 243–260, Springer, Paris, 2014.

35. “UltraScale Architecture SystemMonitor User Guide, version 1.10.1”, Xilinx, 2021.

36. Bonamy, R., D. Chillet, S. Bilavarn and O. Sentieys, “Power Consumption Model

for Partial and Dynamic Reconfiguration”, International Conference on Reconfig-

urable Computing and FPGAs , pp. 1–8, Cancun, Mexico, 2012.

37. Nafkha, A. and Y. Louet, “Accurate Measurement of Power Consumption Over-

head During FPGA Dynamic Partial Reconfiguration”, International Symposium

on Wireless Communication Systems (ISWCS), pp. 586–591, Poznan, 2016.

38. Rihani, M. A., F. Nouvel, J.-C. Prévotet, M. Mroue, J. Lorandel and Y. Mo-

hanna, “Dynamic and Partial Reconfiguration Power Consumption Runtime Mea-

surements Analysis for ZYNQ SoC Devices”, International Symposium on Wireless

Communication Systems (ISWCS), pp. 592–596, Poznan, 2016.

77

APPENDIX A: Partial Reconfiguration Flow Commands

Below are the tcl commands used in Vivado during the partial reconfiguration

flow. The comments in the below code specify the functionality of respective code

snippets, combined with some intermediate steps that are handled using the GUI.

synth_design

update_design -cell [get_cells coproc/PERMUTATION] -black_box

save netlist after synthesizing (prr as black box)

write_checkpoint <prjdir>/dfx/netlists/static/syn.dcp

#synthesize desired mode(s) as out of context

synth_design -mode out_of_context -top permutation_reconfig

write_checkpoint \

<prjdir>/dfx/netlists/prr/<mode1>/permutation_reconfig.dcp

#PBLOCK properties

set_property RESET_AFTER_RECONFIG 1 [get_pblocks pblock_PERMUTATION]

set_property SNAPPING_MODE ON [get_pblocks pblock_PERMUTATION]

#open netlist of the static region.

#read a netlist of a prr mode, and combine it with current netlist.

read_checkpoint -cell [get_cells coproc/PERMUTATION] \

<prjdir>/dfx/netlists/prr/<mode1>/permutation_reconfig.dcp

#set the merged netlist reconfigurable

set_property HD.RECONFIGURABLE 1 [get_cells coproc/PERMUTATION]

save combined netlist (optional)

write_checkpoint <prjdir>/dfx/netlists/config/syn_<mode1>.dcp

78

#run physical flow.

opt_design

place_design

route_design

#save combined routed netlist

write_checkpoint <prjdir>/dfx/netlists/config/impl_<mode1>.dcp

#write full bitstream

write_bitstream -raw_bitfile <prjdir>/dfx/bitstreams/<mode1>.bit

#remove the netlist of the prr block.

update_design -cell [get_cells coproc/PERMUTATION] -black_box

#save netlist of the remaining (static portion only).

lock_design -level routing

write_checkpoint <prjdir>/dfx/netlists/static/impl.dcp

#now we generate other configurations.

#<loop>

read_checkpoint -cell [get_cells coproc/PERMUTATION] \

<prjdir>/dfx/netlists/prr/<mode2>/permutation_reconfig.dcp

opt_design

place_design

route_design

write_checkpoint <prjdir>/dfx/netlists/config/impl_<mode2>.dcp

write_bitstream -raw_bitfile <prjdir>/dfx/bitstreams/<mode2>.bit

update_design -cell [get_cells coproc/PERMUTATION] -black_box

#</loop>

