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ABSTRACT

STRESS MEASUREMENT AND REGULATION IN

REAL-LIFE USING AFFECTIVE TECHNOLOGIES

Stress has become one of the main contributors to serious mental and physical

health issues in today’s world. Existing works in the literature have used Psychophysi-

ological measures and proposed numerous mechanisms to detect stress and administer

feedback to help users regulate it. Unobtrusive wearables’ popularity is increasingly

growing, intertwined with digital health notions, making them efficient, inexpensive,

and easily accessible affective self-help technologies. This thesis first aims to investigate

and implement stress detection mechanisms in the laboratory and everyday environ-

ments using unobtrusive wearable devices. In this regard, we investigate various sce-

narios, such as how to design and deploy stress measurement models that can efficiently

use multi-modal data coming from different types of wearables used in the laboratory

and real-life settings. We also study low-cost and practical methods for emotion regula-

tion in stressful conditions of everyday life. In the next step, a mixed-methods study is

conducted. For this, signals from multiple wearables and users’ subjective opinions re-

garding different aspects of wearability were analyzed quantitatively and qualitatively.

The next step is an in-depth study in cooperation with HCI researchers, in which we

demonstrate the effects of haptic feedback on emotion regulation. As a next step for

helping users choose the right device, we evaluate several wearables under completely

identical conditions to compare the stress detection quality in wearables with differ-

ent technologies. Finally, we utilize Explainable AI (XAI) to make our models more

understandable for the end users, and in particular for the psychology and clinical

experts. The results of our studies indicate that an integrated detection, notification,

and intervention cycle is required to ensure a reliable system for regulating stress in

daily life.
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ÖZET

DUYGUSAL TEKNOLOJILERLE GERÇEK HAYATTA

STRES ÖLÇÜMÜ VE REGÜLASYONU

Stres, günümüz dünyasında ciddi zihinsel ve fiziksel sağlık sorunlarına ana katkıda

bulunanlardan biri haline gelmiştir. Literatürdeki mevcut çalışmalar, psikofizyolo-

jik önlemleri kullanmış ve stresi tespit etmek ve kullanıcıların stresi düzenlemesine

yardımcı olmak için geri bildirimi yönetmek için çok sayıda mekanizma önermiştir.

Göze batmayan giyilebilir cihazların popülaritesi giderek artıyor, dijital sağlık kavram-

larıyla iç içe geçiyor ve onları verimli, ucuz ve kolay erişilebilir etkili kendi kendine

yardım teknolojileri yapıyor. Bu tez ilk olarak laboratuvar ve günlük ortamlarda stres

algılama mekanizmalarını araştırmayı ve uygulamayı amaçlamaktadır. Bu bağlamda,

laboratuvarda ve gerçek yaşam ortamlarında kullanılan farklı türde giyilebilir cihazlar-

dan gelen çok modlu verileri verimli bir şekilde kullanabilen stres ölçüm modellerinin

nasıl tasarlanacağı ve konuşlandırılacağı gibi çeşitli yolları araştırdık. Ayrıca günlük

yaşamın stresli koşullarında duygu düzenleme için düşük maliyetli ve pratik yöntemler

üzerinde çalışdık. Bir sonraki adımda, karma yöntemli bir çalışma yürütüldü. Bunun

için birden fazla giyilebilir cihazdan gelen sinyaller ve kullanıcıların giyilebilirliğin farklı

yönlerine ilişkin öznel görüşleri nicel ve nitel olarak analiz edildi. Bir sonraki adım,

dokunsal geribildirimin duygu düzenleme üzerindeki etkilerini gösterdiğimiz derinleme-

sine bir çalışmadır. Kullanıcıların doğru cihazı seçmelerine yardımcı olmak için, farklı

teknolojilerle giyilebilir cihazlarda stres algılama kalitesini karşılaştırmak için birkaç

giyilebilir cihazı tamamen aynı koşullar altında değerlendirdik. Son olarak, modellerim-

izi son kullanıcılar ve özellikle psikologlar ve klinik uzmanlar için daha anlaşılır kılmak

için Açıklanabilir Yapay Zeka’yı kullanıyoruz. Çalışmalarımızın sonuçları, günlük yaşamda

stresi düzenlemek için güvenilir bir sistem sağlamak için entegre bir tespit, bildirim ve

müdahale döngüsünün gerekli olduğunu göstermektedir.
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1. INTRODUCTION

Failure to timely diagnose psychological and affective problems such as stress and

being exposed to them for an extended period of time can lead to the emergence of

more severe problems such as cardiovascular and physical health problems, depression,

and becoming prone to other mental problems [1,2]. The long-term costs of these prob-

lems will be significant for both individuals and society, as well as healthcare systems

and governments. Considering that millions of people suffer from these problems in

today’s advanced societies, it is easy to conclude that governments spend billions of

dollars to deal with problems caused by stress. The most prevalent methods of man-

aging stress revolve around finding ways to mitigate its adverse effects by identifying

and alleviating it during and even before it takes place. In an efficient stress man-

agement system, the first and most crucial step is to detect the occurrence of stress

and measure its fluctuations. Making any intervention, like informing the individual

(awareness) to manage their stress (regulation) via specific instructions, comes next.

A growing number of ubiquitous sensing devices have enabled monitoring of the vital

body signals that allow human behavior, actions, and emotions to be predicted. It is

now possible to record the physiological signals of the human body in order to analyze

the biosignals representing the mental and emotional states with the help of ubiqui-

tous mobile devices and wearables. It is noteworthy that most of these devices have

relatively straightforward functionality and are easy to use for the end-user. There

is, however, a significant challenge in identifying the meaning and concept of these

signals and recognizing the types of affect they represent. There is a continuous effort

among researchers to achieve the best possible results with more optimal algorithms

and provide fully functional systems that can be presented to the end-user.

Affective computing emerged as an interdisciplinary field spanning cognitive sci-

ence, psychology, and computer science. It involves the study of systems and devices

that recognize, interpret, process, and simulate human emotion [3]. Computer science

and engineering provide a full spectrum of tools and features to the area of “Affective
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Computing”. This includes designing and developing software and applications for

subjective and objective data acquisition, data analysis, design and implementation

of Ecological momentary assessment (EMA) and Ecological momentary intervention

(EMI) tools, machine learning, and artificial intelligence, all essential for conducting

evaluations and researches to improve affective health and mental well-being. Using

the technologies offered by computer engineering, users can fill out EMA’s and receive

EMI’s, receive biofeedback, practice emotion regulation and mindfulness, and most im-

portantly, obtain the automatic diagnosis and prediction of their affective states, such

as stress.

1.1. Research Questions

One of the main components of an affective health model can be outlined as a

biofeedback mechanism that relies on the acquisition of physiological signals to evaluate

a state of mind and convey that information to the user to facilitate its management.

In biofeedback, biosignals are captured, and feedback is delivered using an output

medium [4]. Through it, individuals can learn ways to adjust some of their body

functions related to affective conditions such as stress to improve their affective well-

being [5, 6]. A traditional approach to biofeedback relies mainly on audio and visual

feedback in a controlled laboratory setting, where the user with sensors attached to

their body is required to take a seat in front of a monitor screen [5]. However, as

sensing technologies have matured and mobile devices have become more prevalent,

biofeedback can now be provided using the actuators on mobile and wearable devices,

such as visual, vibration, and even thermal actuations on unobtrusive wearable devices.

The key challenges this thesis attempts to address include how self-help technolo-

gies can help individuals capture, detect, comprehend and manage their emotions. We

encountered many challenges in our quest to find reliable solutions to this problem.

In order to find the right solution for these challenges, it was necessary to conduct

repeated and additional testing and investigations both in the laboratory as well as in

the real world. The questions and challenges are as follows:
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• How to measure stress levels in real life with the help of wearable devices.

• How can contextual information be used for measuring the stress level in real-life

using wearable devices?

• How to engage users in emotion regulation using smart stress detection mecha-

nisms.

• Using a smart system, how can we overcome stress through affordable and con-

venient emotion regulation practices?

• How can we engage the end-users in the design and selection of sensors and

actuators?

• How can we explain our stress detection model’s decision-making process to the

end user?

1.2. Thesis Outline

An introductory explanation of the causes and factors influencing stress and its

adverse impacts on individuals’ physical and mental well-being are presented in this first

chapter, along with the thesis outline and its contribution to the body of knowledge.

In the second chapter, affects and emotions are defined. We explain the affect

recognition using biosignals and describe the most effective biosignals used in our works

and other types of signals utilized in similar works. Later, we briefly explain biofeedback

and some of its common forms. Furthermore, the emotion regulation process and

the impacts of utilizing methods such as yoga, mindfulness, and haptics for emotion

regulation and stress reduction are also discussed in Chapter 2.

In the fourth chapter, we describe the standard methods and methodologies used

in most of our research in detail. We discuss quantitative and qualitative data through-

out this section, along with subjective and objective data types. In order to explain

the subjective data, we examine the stress questionnaires used in our studies. In a

comprehensive explanation of quantitative data, we describe how to collect informa-

tion in the laboratory and daily-life environments and mention their advantages and
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disadvantages. We also examine the differences between physical and mental stress

in laboratory settings and explain several methods of stress induction. Moreover, we

describe the third-party programs we use to analyze the raw signals and conclude the

methodology chapter by describing the types of sensors we use.

In Chapter 5, we present an unobtrusive smart stress detection mechanism suit-

able for daily life, capable of suggesting appropriate relaxation methods such as yoga

practices or mobile relaxation applications for emotion regulation.

In the sixth chapter, we explain our experiment on the potentials of using vibra-

tion and heat haptics for emotion regulation. We also explain how users were engaged

in personalizing their haptic patterns. The chapter concludes with a statistical analysis

of the quantitative results in terms of the feeling perceived by the users, as well as the

differences between vibration and thermal haptics.

In Chapter 7, several different wearables are analyzed in detail in a mixed-

methods approach, both qualitatively and quantitatively. In Chapter 8, more wearables

are examined in stress detection and measurement application. In Chapters 7 and 8,

we describe how to minimize the effect of environmental noise on PPG sensors in this

chapter after reviewing various data preprocessing techniques. Next, we discuss how

to prevent conditions that can lead to unrealistic and biased results and data leakage.

Additionally, we examine how multimodality affects model accuracy in a significant

manner. To increase the human-centric nature of our study, we use SHAP to interpret

our machine learning models and explain how our final models become understandable

for end users, clinicians, and psychologists.
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2. BACKGROUND

2.1. Detecting Affect using Biosignals

An overview of sensing technologies for detecting affect is provided in this section.

The works presented in this dissertation have exclusively employed wearable sensors,

mostly with skin conductance, such as Electrodermal activity (EDA) and heart rate

variability (HRV) sensors, to investigate the development and regulation of emotions.

All of the employed wearables equipped with these two types of sensors must be in close

contact with the skin in order to properly capture biosignals from key body locations.

Due to the fact that these wearable and unobtrusive devices do not entail multiple

electrodes, they are almost effortless and straightforward to wear and take off and can

be utilized in a daily context.

2.1.1. Autonomic Nervous System (ANS)

The autonomic nervous system carries out control of the body’s unconscious ac-

tions. The autonomic nervous system (ANS) is a branch of the peripheral nervous

system that influences the activities of the body’s internal organs [7]. A large num-

ber of involuntary bodily functions are controlled by the autonomic nervous system,

including heart rate, blood pressure, respiration, and pupillary response. It consists

of three anatomically distinct components: sympathetic, parasympathetic, and enteric

nervous systems. However, depending on the source, the last one may be considered a

part of the autonomic nervous system or an independent system. It is often believed

that the sympathetic nervous system (SNS) is responsible for the hormonal and neu-

ronal stress response, commonly referred to as the “fight or flight”. In contrast, the

parasympathetic nervous system (PNS) is responsible for “rest and digest”. These two

systems often work in opposite directions where one activates physiological responses,

and the other inhibits them (see Figure 2.1).
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Figure 2.1. Sympathetic and parasympathetic components of the ANS.

2.1.2. Cardiovascular Activity

For electrocardiography (ECG) or photoplethysmography (PPG) sensors to work,

it has to sense electrical impulses generated by the heart’s beating and blood flow

within the body. The process of recording the heart’s electrical activity is referred to

as an electrocardiogram (ECG). Electrograms indicate the heart’s electrical activity by

graphing the voltage versus time using electrodes attached to the skin surface. These

electrodes detect small electrical changes caused by cardiac muscle depolarization and

repolarization during each heartbeat [8, 9].

The term “ECG” is traditionally used to refer to a 12-lead ECG taken while

in a supine position. However, there are also other devices that can record ECG,

such as Holter monitors and even smartwatches capable of recording ECG. Signals

from ECGs can also be recorded with other devices in other contexts. An ECG has

three main components: the P and T waves, and the QRS complex, representing the

depolarization of the atria, repolarization of the ventricles, and depolarization of the

ventricles, respectively. Heart activity is a prominent signal for distinguishing affect

due to the direct influence the autonomous nervous system (ANS) has on heart rate.
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2.1.2.1. Heart Rate Variability (HRV). When the heart beats, it triggers an electrical

impulse which can be captured by biosensors. In order to capture the HRV, PPG

and ECG biosensors incorporate technologies that are totally different. A heartbeat

is measured by an ECG sensor using electrodes on the body, whereas blood flow is

measured by a PPG sensor using light-based technology [10]. These sensors measure

heart rate in beats per minute (BPM), which are not always at a constant frequency.

The measure of the variation in the time interval between two consecutive heart-

beats is called heart rate variability (HRV) [11]. Inter-beat interval (IBI), NN inter-

val, and peak-to-peak interval, with the last belonging to PPG and the first three

belonging to ECG, are also terms used to describe these variations, which all are mea-

sured in milliseconds. HRV can be measured in the frequency, time, and nonlinear

domains [10], [12]. The most common frequency-domain features consist of HF (high-

frequency component), LF (low-frequency component), and LF/HF (the ratio of LF to

HF). Time-domain features consist of STD RR (standard deviation of the inter-beat

interval), Mean RR (mean value of the inter-beat intervals), NN50 (the number of pairs

of consecutive NNs that differ by more than 50 ms), pNN50 (percentage of consecutive

beat-to-beat intervals that vary by more than 50 ms), and, RMSSD (root mean square

of successive differences of the R-R intervals). Nonlinear features include sample and

approximate entropy and multiple components of Poincaré plots. HRV is reported to

be an indicator of the activity of both the parasympathetic and sympathetic nervous

systems. Its measurement can be done from a single sensor, allowing it to be used

in daily life to regulate autonomic balance [11], [13]. In general, a high HRV reflects

effective emotion regulation. In contrast, a low HRV reflects states of stress and anxi-

ety. However, these assumptions are different for distinct components and features of

HRV. For instance, high anxiety, stress, and excessive time pressure have been shown

to decrease high-frequency (HF) activity [14,15].

2.1.2.2. Blood Volume Pulse (BVP). Using a photoplethysmography (PPG) sensor,

BVP measures the heart rate based on the blood volume that passes through the

tissues in a localized site with each heartbeat. There is a potential measurement site
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wherever a pulse can be easily accessed, but fingertips and earlobes are more commonly

used. Biofeedback training often uses BVP rather than ECG. The latter is likely more

preferable in some clinical situations or situations where the subject is prone to make

lots of movements. There are some potential measurement errors with the BVP sensor,

which makes it less precise than the ECG but easier to apply for biofeedback training

applications.

The PPG sensor shines infrared light onto the body surface, primarily by a light-

emitting diode (LED). A PPG sensor transmits this light through the tissues that

backscatter and reflect it to the PPG sensor’s photodetector [16]. Hemoglobin in the

red blood cells selectively absorbs red light while other tissues reflect it, which explains

why the technology works. As the relative blood volume in the tissue increases, so does

the amount of light returning to the PPG photodetector. Blood flow is represented by

the BVP amplitude, which is derived from the raw BVP signal. Despite the fact that

BVP features captured by PPG sensors can be used independently, they are generally

used to derive heart rate variability (HRV) features that can be utilized to detect stress

levels [17–19].

2.1.3. Electrodermal Activity (EDA)

Although the idea of using Electrodermal Activity (EDA) in psychological re-

search has been around for a long time [20], it is still among the top biosensing mea-

sures employed in the subject area of affective computing using ubiquitous and wearable

devices [21,22].

Electrodermal activity (EDA) is an umbrella term for Galvanic skin response

(GSR), which measures the skin’s electrical properties related to the autonomic ner-

vous system’s activation. Electrodermal activity is a phenomenon when physiologically

provoking events result in improved electrical conductivity of the human skin. An EDA

sensor measures the electrical conductivity of the skin, which is a result of SNS activity

that can be triggered by either internal or external emotional stimuli [23].
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Skin resistance is believed to vary with the state of sweat glands in the skin

according to the traditional theory of EDA. Psychological or physiological arousal in-

fluences sweating through the sympathetic nervous system [24]. In response to highly

aroused sympathetic nerves, sweat gland activity will increase, thereby increasing skin

conductance. Hence, skin conductance can be used to measure emotional and sympa-

thetic responses [25]. Tonic sympathetic activity and fast phasic sympathetic activity

are both evident in the EDA. The electrodermal level (SCL) is a unit of tonic activ-

ity, while the electrodermal response (EDR) is a unit of phasic activity [26]. Phasic

parameters determine tonic changes (EDL). Tonic EDA can be evaluated based on

spontaneous fluctuations of nonspecific EDR. In particular, the frequency of nonspe-

cific EDR during a particular time period can be used as an indicator of EDA. In

studies of general alertness and arousal, tonic EDA is found to be beneficial [26]. As

part of the EDA (Phasic), Skin Conductance Responses (SCR) represent the faster

and event-related components. Tonic (SCL) is used for calculating the baseline and

extracting statistical features such as standard deviation, percentile, and mean, as it

does not contain peaks that will affect the calculation of the baseline.

It has been found that EDA, along with the heart rate signal, is one of the best

discriminating signals in affective computing and emotion detection research. Various

methods in the literature have been used to measure stress in an individual using

EDA. The most common EDA features utilized in studies such as stress detection

include standard deviation, minimum and maximum values, mean amplitude, the delay

between the application of stimuli to the user and the response, number of peaks and

their height, and rising and recovery times [27]. Some examples of biosensor devices

that are primarily wearables and have been used in the literature for EDA measurement

are Empatica E4, Microsoft Band 2, BITalino biosensing platform, and Shimmer3

GSR+ [28,29].
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2.1.4. Respiratory System Activity

Sensors that monitor respiration (or breathing) are used to measure the number

of inhalations and exhalations during a breathing cycle, which facilitates the gas ex-

change in the lungs during the process of breathing. As soon as the lungs are filled with

air, the air is forced out of the lungs at the end of every breathing cycle. Breathing

signals reveal the dynamics of respiration, that is, the process regulating gas exchanges

in the lungs and supporting speech and sound. Through monitoring this fundamental

function of breathing, we can achieve insight into problems related to apnea, oxygen

intake, metabolic changes associated with physical activity, and breathing responses

to psychological stress. There is a close connection between respiration and the car-

diovascular system. Anxiety, for instance, can cause a shallower and faster respiration

rate, and breathing rates can be influenced by stress and excitement [30]. Also, there is

a close relationship between respiration and HRV, which is one of the essential biosig-

nals in identifying stress and emotions. The results of existing studies show that slow

breathing, which occurs at a rate of 5.5-8 breaths per minute, is related to a higher

heart rate variability (HRV), which is an essential indicator of calmness [31]. Respi-

ration sensors record the inhalation and exhalation cycles of breathing. A respiration

sensor attached to a subject’s body is referred to as a contact-based measurement. A

piezoelectric abdominal band is one of the most commonly used contact-based meth-

ods. During abdominal breathing, the sensor produces a signal as a result of stretching

an elastic material.

Additionally, other contact-based methods can be used to collect different mea-

surements such as humidity and temperature of the air, respiratory airflow, and sounds

to assess an individual’s inhalation and exhalation cycles [32]. Unlike the contact

method, the non-contact method measures chest displacement using an infrared or

proximity sensor. It is crucial to keep the subject still during data collection since

both types of sensors are prone to noises caused by body movement, coughing, and

talking. Breathing signals are analyzed for features such as respiration rate, breathing

amplitude, and duration of inspiration and expiration.
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2.1.5. Other Physiological Signals Used for Affect Recognition

While almost all of the aforementioned physiological signals or a combination

of some are utilized in our studies, there are also other physiological signals, such

as Electroencephalography (EEG) and Electromyography (EMG), that are used in

emotion recognition studies. However, we did not include these signals in our studies

simply because the commercially available wearables equipped with these sensors are

not sufficiently unobtrusive and cannot be easily used in daily life, while one of our

research’s main objectives is to provide mechanisms that can be used in daily life and

on a regular basis.

2.1.5.1. EEG (ElectroEncephaloGraphy). Electrical activity in the brain is measured

by electroencephalography (EEG). Using EEG, a complex overview of neural activity

oscillations is obtained by non-invasively collecting signals from various standard scalp

locations. Single and multiple channel electrodes are used in EEG bands to measure

electrical signals corresponding to neural activity. For the purpose of maintaining

the electrical connection, the electrodes of an EEG sensor require direct and close

contact with the skin, which is achieved using headbands or adhesive gel. An EEG

band records changes in neural activity in response to stimuli. Two stages of signal

analysis are performed regularly on EEG signals: preprocessing and postprocessing.

Raw signals are cleaned through preprocessing, which removes artifacts by filtering the

data. As a next step Fourier Transform (FT) can be used to extract features that

machine learning algorithms will utilize for classification [33]. In addition to being

complex and generally fast, EEG signals are also prone to head and eye movements.

A reduced channel wearable headset is usually lightweight and easy to wear and

take off of the head, making it less obtrusive. However, it lacks the signal resolution

and precision of a traditional multichannel headset. Behavioral or psychological states

are reflected in the EEG using delta, theta, alpha, which indicates a balanced and calm

state of mind and a reduction in stress, and beta waves, associated with cognitive and

emotional processes and an increase in response to stress. There are different frequency
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bands for each of these waves (0.1 to 100 Hz). Stress can be detected by analyzing

EEG mean amplitude, mean of Event-Related Potential (ERP) amplitudes, and theta,

beta, and alpha frequency bands.

2.1.5.2. sEMG (Surface Electromyography). The contraction of human muscles is caused

by electrical stimulation by neural signals. Surface Electromyography (sEMG) refers

to recording the electrical activity produced by skeletal muscles. By using surface

electrodes that capture the potentials of the fibers they lay upon, the electrical activ-

ity of the muscles (voltage over time) can be easily recorded, a procedure that was

traditionally performed by an invasive needle electrode (intramuscular EMG). An elec-

tromyographic signal (sEMG) is produced by this measurement, which provides infor-

mation on the motion and biomechanics of the contracted muscles. Signals generated

by electromyography provide information about the contraction of specific muscles of

the body. Signals generated by electromyography represent rapid voltage oscillations

in time, with the approximate amplitude range of 5 mV.

As a result of a common EMG signal analysis, different aspects can be assessed,

such as the duration of muscle contractions, the specific timing in which movements or

contractions are occurring, and fatigue or muscle tensions. In examining affect, startle

reflexes have been used as an example of the body’s reaction to strong and intense

stimuli. The trapezius and facial muscles are particularly relevant when measuring

muscle activity for emotion recognition. An EMG electrode placed on the face can be

used to measure the human body’s responses to an unexpected and strong stimulus in

the form of actions such as quickly blinking and contracting different muscles across

the body. For instance, Sioni et al. utilized an electromyogram (EMG) sensor to detect

stress by measuring facial muscle activity [34]. Firm contact is essential for accurate

EMG measurements. Motion artifacts can be introduced to the EMG signal when

muscle movement is present, and activities such as talking or coughing can impair the

assessment of muscle activity.
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2.2. Detecting Affect Using Non-biological Signals

2.2.1. Accelerometer

Researchers have demonstrated that different emotional states can be detected

by observing movements of the human body and postures. Castellano et al. used

multimodal data to examine the dynamics of body movement in order to identify hu-

man affective behaviors. Several movement metrics were used to determine emotions,

and the amounts of movement, intensity, and fluidity were shown to be key factors

in determining the type of emotion [35]. Melzer et al. examined whether movements

comprised of collections of Laban movement components could be interpreted as rep-

resenting basic emotions [36]. Their study confirms that, even when the subject has no

intention of expressing their emotions, specific movements can aid in the perception of

bodily expressions of emotions. Therefore, movements and affects may be detected by

accelerometer sensors.

2.3. Feedback to Affect

Mechanisms for generating actuation as a form of feedback to humans play an

essential role in creating a complete feedback interaction mechanism. This includes

sensing the physiological and psychological states of the individuals’ bodies and making

them aware. There are several different types of actuators, but in general, they are

comprised of mechanical components that are mechanically driven in response to input

signals for the purpose of controlling a system or providing information about it. We

believe that it is essential to emphasize that when it comes to studies related to affect

recognition and emotion regulation, the focus must be on actuation technologies that

can be conveniently implemented and coupled with the human body. A variety of

modalities can be used to provide feedback on affective states [37–39]. Nowadays,

biofeedback is provided to users through visual and shape-changing feedback or sound,

temperature, and vibrotactile haptics [29]. In affective computing, a similar approach

can be utilized to explain biosignals and their indications to the user and employ
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effective mechanisms to control actuators to provide biofeedback to the users. In a

fully functional architecture for identifying emotion and performing its regulation, a

complex set of mechanisms must work together to decide on how to interpret the

biosignals and when, how, and where this feedback must be issued. Since addressing

all actuators in detail is beyond the scope of this thesis, we will only briefly explain those

we have already employed in parts of our research. It must be noted that in a part

of our studies where we did close collaborations with researchers from the Human-

Computer Interaction (HCI) community, only vibration and temperature actuators

were used. Therefore, in this part, we will introduce only these two cases as well as

display actuators that are the most widely used actuators in biofeedback.

2.3.1. Visual Biofeedback

The purpose of a biofeedback system based on a screen is to provide information

regarding changes in the body that have occurred over time. Its purpose is to provide

the researcher with a way of assessing the dynamics of the changes mentioned above,

therefore providing a means of gaining a better understanding of and tracking the inner

state of a particular subject. Typically, these types of techniques are used to track

health metrics or sports performance. Examples include ECG feedback, respiration

feedback, and movement tracking. Biosensors based on screens are commonly used in

clinical settings and in hospitals as a means of providing feedback. The psychology

field has adopted biofeedback as a technique to self-regulate emotions, as research

shows that the technique contributes to the improvement of emotional self-regulation.

Traditional visual biofeedbacks that are based on screen commonly utilize two-

dimensional graphics and incorporate elements such as colors, patterns, and lights to

display a signal that is constantly changing over time [40,41]. Whenever the represen-

tation is updated along the time axis, the peak and trough of the signal appear in an

axis showing the measurement magnitude in a particular range so that both sharp and

gradual dynamics can be observed. Currently, the research direction has begun explor-

ing alternative visual technologies that are not based on traditional screens and displays
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by utilizing materials’ experiential qualities and aesthetics [42]. Visual displays that

do not rely on screens include ambient light, electroluminescent, and thermochromic

displays [43]. Unlike screen-based technologies, both are flexible and thin and can be

fabricated in a wide range of shapes through multilayer fabrication [44].

2.3.2. Haptic and Temperature Actuation

The term haptic technology refers to any technology which can give the user a

tactile experience using vibrations or motions. Electronics that provide haptic feed-

back typically utilize vibrations, and most employ an eccentric rotating mass (ERM)

actuator comprised of an unbalanced weight connected to a motor shaft. This irreg-

ular mass spins as the shaft spins, causing the actuator and the coupled component

to vibrate [39]. Such tactile vibrations coupled to a biosensor can be used to provide

information about a biosignal being tracked. Researchers have also used temperature

(Heat/Cool) to give haptic feedback alongside vibrotactile feedback. For instance,

when a current is applied to a heat-resistive material, it produces heat, which can be

used as temperature feedback [45].

2.4. Emotion Regulation

2.4.1. Affects and Emotions

The perception, interpretation, and interaction with the environment around us

are profoundly influenced by a vital part of our everyday lives i.e. affect [46]. Affect is

the psychological term used to describe the underlying perception of moods, feelings,

and emotions. The process of effectively managing your emotional responses is referred

to as affect (emotion) regulation [47]. An individual who is able to regulate their high

arousal negative affect, for example, by reducing their arousal, will be able to improve

their overall psychological well-being and affective health. Similarly, the inability to

moderate an individual’s emotional responses can lead to its deterioration [48].
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Managing one’s emotions is a multifaceted procedure that relies on initiating,

inhibiting, or modulating individuals’ state of mind in a particular condition. Emotion

regulation aims to increase pleasant emotions (joy and happiness) while decreasing

unpleasant emotions (sadness, fear, anger). Additionally, emotion regulation refers to

mechanisms such as the ability to concentrate on a task and the capability to restrain

inappropriate behavior.

2.4.2. Emotion Regulation Process Model

Emotion regulation occurs in five phases (see Figure 2.2) in the following order:

• Situation selection

• Situation modification

• Attentional deployment

• Cognitive change

• Response modulation

The “situation selection” refers to making a decision regarding whether to avoid

or approach a situation that is emotionally relevant. Whenever a person avoids or

disengages from such a situation, they decrease the likelihood that they will experience

an emotion [47]. By contrast, individuals who choose to approach or engage with an

emotionally relevant situation increase their chances of experiencing an emotion. The

concept of “situation modification” is the process of modifying a situation to change

Situation Attention Appraisal 

Response

Situation Selection Attentional 
Deployment



Change



Modulation





Figure 2.2. James Gross’s emotion regulation model for stress management.
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that situation’s emotional impact, for instance, adding humor to a conversation in or-

der to induce laughter. This term specifically refers to the alteration of the individual’s

external circumstances, while alteration of an individual’s internal environment in or-

der to change the person’s perception of a situation to alter its impact is referred to

as “cognitive change” [49]. An attentive deployment involves directing the person’s

attention toward or away from an emotional event. Last but not least, “Response

modulation” is concerned with attempting to influence the behavioral, physiological,

and experiential elements of the affective response systems directly [47].

2.4.3. Emotion Regulation and Stress

Whenever faced with stressful events, people respond by making autonomic and

coordinated efforts to minimize the negative consequences and maximize the positive

effects. It can influence what emotions they have when they have them and how

they experience and express those emotions. An individual’s ability to influence what

emotions they feel, when they feel, and how they experience and express them is known

as emotion regulation, which may be defined as the act of regulating emotions [47].

Various studies have suggested that the concept of emotion regulation is a broad term

that encompasses the regulation of all emotional reactions that are triggered, from

the simplest emotions to various mood states, in addition to regulating daily living

[47]. It is possible to minimize stress through a variety of interventions, depending

on the individuals’ preferences. A number of stress alleviation practices have been

cited as being helpful in combating stress, including ancient practices such as yoga

[50], and other physical activities. In the same way, meditation, meditative awareness

(mindfulness) [51], breathing exercises, relaxation techniques, and cognitive behavioral

therapy (CBT) [52] are all proven to be beneficial [53, 54]. However, some of these

techniques cannot be used in offices, social settings, or most daily activities. Thus, a

stress management application based on a smart device may be of great use.

In recent years, several smartphone applications have been developed for this

purpose, including but not limited to Calm, PAUSE, Heartmath, and Sway. However,
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these applications do not include biofeedback and are not customizable for personal-

ization, and only a limited number of studies have validated their effectiveness [55].

Many psychological scientists have studied perceived stress. When contextual

demands and perceived resources fail to match constantly (as opposed to occurring at

a specific moment), an individual is said to be experiencing chronic stress. The effects

of chronic stress can be seen not only in people’s well-being and quality of life but

also in the onset and progression of several physical and mental diseases [56]. Conse-

quently, researchers have been exploring how people alleviate perceived stress’s physical

and cognitive burden through different mechanisms. Coping mechanisms, stress man-

agement strategies, self-regulation, or emotion regulation practices are different terms

that describe the methods by which people implement specific behavioral, cognitive,

or emotional methods for allosteric regulation [57].

Individuals’ ability to regulate emotion is directly related to their response to

stress. In spite of the fact that stress management and emotion regulation differ in

numerous ways, both concepts require modulation of affect and appraisal of emotion

[58]. In a 2022 study, Griffin et al. showed that physiological responses to stress

in laboratory settings have also been associated with emotion regulation [59]. Self-

regulating activities can also be used to reduce psychological stress in various situations,

such as academic examinations [60]. For instance, when self-regulatory actions are

employed before a school exam, levels of emotional strain are significantly reduced,

which may lead to better academic results.

2.4.3.1. Emotion Regulation Through Yoga and Mindfulness. Yoga was developed in

ancient India more than 2000 years ago. It is a discipline or group of physical and

mental practices aiming to manage, calm, and regulate emotions and the mind. Over

time, yoga evolved to incorporate physical movements in the form of postures, which

were integrated into its traditional breathing and relaxation practices. Yoga’s primary

goal is to improve human well-being by creating physical flexibility and alleviating pain

and unpleasant thoughts and feelings. Both mental and physical health conditions,
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such as anxiety, depression, and cardiovascular disease, have been reported to benefit

from yoga. It is widely practiced in many different forms around the world and has

become a global trend. Relaxation is an integral part of all types of yoga. Furthermore,

some forms focus primarily on pranayama (focusing on the breath), while others are

more physical. Yoga practices such as vinyasa (individual poses linked by flowing

movements) involve using the breathing pattern to move through various postures.

These movements become meditative when done correctly. The practice commonly

includes pranayama, standing postures, and vinyasa. In addition to increasing fitness

and flexibility and maintaining their linkage to breath, vinyasa helps to keep the body

moving. Besides seated postures, the practice may also include inversions, and a final

relaxation referred to as savasana [61].

Being mindful involves paying attention to the here and now rather than focusing

on the past or future. It is often referred to as being present. In addition to being

aware of what we consume as food, as well as physical stimuli such as feeling the wind

on our hair, being present can include paying attention to our surrounding environ-

ment. As part of mindfulness, we acknowledge our thoughts and bodies. Thousands of

thoughts pass through the minds of humans each day, many of them without any con-

sequence. Sometimes, these thoughts are repetitive and negative in nature, leading to

increased stress and unpleasant physical symptoms like anxiety. In order to be mindful,

we must be aware of our thoughts and whether we are caught up in them rather than

being present in the moment. Additionally, being mindful involves becoming more

connected to the sensations in the body by becoming more aware of the physical body

on a daily basis. This experience may include sensing the legs swaying while walking

or sensing the ground beneath the feet. Mental and physical health have both been

demonstrated to benefit from mindfulness. The National Institute for Clinical Excel-

lence recommends it as an adjunct therapy to Cognitive Behavioural Therapy (CBT)

for preventing depression relapses [62]. However, there are various distractions around

us that may make this difficult for some individuals. In such a case, individuals can

choose a convenient time and location to start becoming aware of their breathing and

body sensations as they sit in a comfortable position.
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2.4.3.2. Mobile Applications for Emotion Regulation. Excessive use of smartphones

can harm individuals’ mental health [63], which is utterly contrary to our goal of

emotion regulation and developing mindfulness. The prevalence of smartphones in

the modern world has raised questions about the feasibility of their use in regulating

emotions and practicing mindfulness. Therefore, rather than being pessimistic about

smartphone use and considering it always harmful, we should consider how we can

employ our smartphones to benefit from mindfulness exercises. While it is impossible

to practice physical emotion regulation practices like yoga anywhere and anytime,

individuals can reduce stress and anxiety by utilizing their mobile phones to perform

mindfulness exercises. Several mindfulness apps are available for smartphones that can

be used to guide people in their daily mindfulness practice. One of them used in a

part of studies related to this thesis is PAUSE. Utilizing the PAUSE application, users

can practice focused attention while on their mobile phones. Mindfulness and Tai Chi

principles are the basis for how PAUSE works, and its users can easily start practicing

relaxation whenever and wherever they want. While using PAUSE, in addition to

receiving calming audiovisual feedback from it, users must also move their fingertips

slowly and continuously across the mobile phone screen. These practices help the

body’s parasympathetic nervous system to stimulate rest and digest responses and

help the users quickly reduce their stress levels.

2.4.3.3. Haptics for Emotion Regulation. The use of haptics to modulate response

includes vibrations imitating a slower heartbeat or vibrations generated at a rate of

60 bpm to assist users in regulating their response during stressful situations [64, 65].

Researchers have found that vibration administered 30% below baseline heart rate

can reduce an individual’s anxiety and stress and elevate their HRV under a stressful

situation. In contrast, an increase in HRV and subjective anxiety was observed when

fast feedback was offered at frequencies 30% greater than the baseline heart rate. [66].

As well as vibrations mimicking the heart rate, there are existing researches that use

vibrations to regulate emotions by means of slow breathing, which helps improve heart

rate variability, which is a key indicator of adaptability [67,68].
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This growing interest in haptics in the human-computer interaction community

has primarily focused on vibrotactile actuators as a means of helping users with emotion

regulation [64, 65], [69]. Nonetheless, emotion regulation with thermal feedback has

been less studied regarding its material and experiential aspects. In a study by Jonsson

et al., heat is investigated experientially as a material for design, and its use has been

explored through a user study [70]. They reported that thermal cues have a subjective

nature, as different people report different levels of sensitivity and appreciation of it

with totally different acceptable ranges. Additionally, the authors indicate that heat,

as opposed to other haptic modalities such as tactile or vibration modalities, can be

perceived deep within the body and as comfortable and subtle [70].
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3. RELATED WORK

3.1. HRV and Biofeedback

There is an increasing interest in research on affective health and well-being, and

affective technologies are being developed to treat stress-related disorders in adults,

youth, caregivers, healthcare workers, and students [29], [71]. These technologies aim

to prevent, diagnose, triage, intervene, self-manage, and maintain affective disorders in

clinical and non-clinical settings. HRV biofeedback is one of the essential functions of

interactive systems for affective well-being (see Figure 3.1).

The HRV is influenced by activities such as physical exercise, eating, and sleep-

ing. Additionally, it is strongly linked to emotional arousal and decreases during emo-

tional stress. In particular, this is of significance because parasympathetic activity,

also known as vagal tone, is involved in processes of self-regulation needed for psycho-

logical, emotional, and affective well-being [72]. It is possible for both High and Low

frequency (HF, LF) features of HRV to be influenced by various circumstances. HF

is thought to be affected by parasympathetic activity based on existing research on

Haptic feedback

Audiovisual
feedback

Capturing
physiological signals

Figure 3.1. Monitoring biosignals and providing biofeedback via visual, auditory or

haptic mechanisms.
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Table 3.1. Heart rate variability features and their definitions.

Feature Description

Mean RR Mean value of the inter-beat (R-R) intervals

STD RR Standard deviation of the inter-beat interval

RMSSD Root mean square of successive differences of the R-R intervals

pNN50
Percentage of the number of successive R-R intervals

varying more than 50ms from the previous interval

SDSD Related standard deviation of successive R-R interval differences

TINN Triangular interpolation of R-R interval histogram

LF Power in low-frequency band (0.04-0.15 Hz

HF Power in high-frequency band (0.15-0.4 Hz)

LF/HF Ratio of LF-to-HF

pLF Prevalent low-frequency oscillation of heart rate

pHF Prevalent high-frequency oscillation of heart rate

VLF Power in very low-frequency band (0.00-0.04 Hz)

HRV components [73,74]. At the same time, LF is considered to be indicative of both

sympathetic and vagal activity [10]. Boonnithi et al. investigated the HRV features

and found the LF, mean RR, and the difference between LF and HF to be the most

distinctive features for detecting stress [75]. Time-domain features such as RMSSD

and pNNx are more closely correlated with parasympathetic activity compared to the

standard deviation of NN intervals (SDNN) [12]. Table 3.1 lists some of the HRV

features most commonly used in stress detection and biofeedback studies. Through

biofeedback, HRV can not only be utilized to measure regulatory efficiency but also

used to restore regulatory flexibility [11]. A biofeedback system uses biosensors to

monitor internal bodily processes and provide feedback to individuals so they can ac-

tively control their physiological functions [76]. Few exemplary systems include those

for self-awareness and reflection [77, 78], emotion regulation [64, 79], as well as those

focused on the role of the body for relaxation or mindfulness exercises [80, 81]. As

a result of its effectiveness, HRV biofeedback has been employed in various applica-

tions [82], [13]. Research on stress biofeedback has shown that SDNN decreases during

stress and RMSSD increases during biofeedback-assisted breathing [43].
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There is a wide range of modalities for providing HRV biofeedback. In most cases,

feedback is given through visual [79], auditory [83], or haptic [77], [64] changes, which

have been shown to regulate bodily functions and improve well-being in stress-related

and affective situations [84, 85]. As illustrated in Figure 3.1, HRV biofeedback can be

delivered visually either via a smartwatch or a mobile phone screen, while the haptic

feedback can be provided through a vibrotactile actuator present in some devices. An

external actuator can be used to deliver HRV biofeedback if the feedback modality is

not present in the device [77]. In order to provide reliable HRV biofeedback, the sensor

data must be accurate, and the device should be appealing to the user in terms of

unobtrusiveness, wearability, and comfort.

3.2. Emotion Regulation

In a study by Ahani et al., the physiological impacts of mindfulness were in-

vestigated. Their experiments were conducted using the Biosemi device that acquires

electroencephalograms (EEGs) and respiration signals. With machine learning algo-

rithms, they were able to distinguish control states (non-meditative) from meditation

states [86]. A wearable EEG measurement device (Muse headband) was used by Kary-

dis et al. to identify the post-meditation perception states [87]. Mason et al. studied

how yoga affects physiological signals [88]. They measured respiration signals and blood

pressure using a PortaPres Digital Plethtsmograph. Through the use of these signals,

they were also able to demonstrate the positive effects of yoga. Another study validated

yoga’s positive effects with physiological signals; researchers used a piezoelectric belt

and a pulse sensor to monitor breathing, and heart rate signals [54]. Their study showed

the beneficial impact of different yoga breathing patterns on helping subjects relax. Us-

ing physiological signals in mobile mindfulness apps has also been shown to be effective

in several studies. A few variables were monitored by Svetlov et al., including heart rate

variability (HRV), electrocardiographic activity (EDA), salivary alpha-amylase (sAA),

and electroencephalography (EEG) [53]. The effect of mobile mindfulness apps has also

been validated using EEG and respiration signals [89]. Upon reviewing the literature,

it is possible to observe that traditional relaxation practices and mobile mindfulness
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methods are investigated individually in separate studies. Since people spend more

time in office-like environments in the modern age, traditional methods are not suit-

able for most people due to their out-of-office environment requirements. In contrast,

some smartphone applications, such as PAUSE, HeartMath, and Calm, can be used

in an office setting. These apps do not require any additional equipment or hardware,

which makes them ideal choices for indoor settings.

3.3. Comparison and Validation of HRV Monitoring Devices

The purpose of this section is to summarize the quantitative and qualitative

studies that have been conducted for the purpose of comparing HRV data quality and

usability of wearable devices employed to measure HRV.

3.3.1. Quantitative Comparison Studies

Medical-grade types of equipment were used as the reference golden standard

in the first experimental practices conducted in laboratory settings. These devices

delivered ground truth data and functioned as the foundation for building blocks of

comparative studies for assessing the usability, reliability, and validity of wearable

biosignal tracking devices.

There have been many experimental and survey studies investigating the accuracy

of photoplethysmography (PPG) as an estimate of HRV, and how it could be used as

a surrogate of electrocardiography (ECG) [90–93]. In one of the earliest comparative

studies conducted in a 2006 study performed for the validation of PPG and ECG

readings, Yu et al. [92] proposed a system for automatically identifying the reliability

of heart rate measurements using a combination of PPG and ECG signals. Reliability

is expressed quantitatively using a quality index (QI) for each reference heart rate.

The physiological waveforms were evaluated using an SVM classifier, and the heart

rate was computed using an adaptive peak identification technique that cleaned any

noise produced by motion.
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As part of a pioneering study investigating whether PPG devices were feasible for

HRV monitoring and whether movement affected PPG reading quality and accuracy,

Gil et al. concluded that PPG devices did not differ statistically significantly from the

ECG reference device, and there was a strong positive correlation between them [91].

In [94], Renevey et al. propose a comfortable and easy-to-use wrist-worn device scheme

that relies on the use of PPG sensors for the estimation of R-R intervals and HRV

analysis during sleep. Their study showed that R-R interval measurements from wrist

devices were in agreement with the ECG measured by the polysomnograph.

PPG and ECG recordings were taken before and after exercise on eight healthy

subjects by Lin et al. [95]. In their study, the PPG-derived HRV closely matched

the HRV derived from ECG signals. Moreover, the authors showed that in order

to analyze frequency-domain features of the HRV, at least three minutes of cardiac

biosignal recordings were necessary, and the HRV power spectrum distribution for

three-minute data was similar to that for five-minute data. According to their report,

the correlations between ECG and PPG-based HRV were found to be acceptable for

individuals at rest and decreased after they performed physical exercises.

Binsch et al. studied heart rate and step count measurements of three different

PPG wrist-worn wearables and compared their measurements with the ground truth

[96]. According to their findings, wearable PPG wristbands could provide reliable heart

rate measurements while the subjects were in idle and resting states. In contrast, the

sensor readings become less accurate when the body moves during more active tasks.

Ge et al. examined the accuracy of heart rate readings of two commercially available

wristbands, i.e. an Apple watch and a Polar chest strap equipped with PPG and ECG

sensors, respectively. These devices were used to measure heart rate data from 50

healthy participants. Their experiment was conducted in three stages, sitting for two

minutes as a state of resting, walking with a speed of two km/h for two minutes as a

mild physical exercise, and finally, jogging for two minutes with a speed of four km/h

for the simulation of a situation with a more severe cardio activity [97].
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They found that in normal conditions, when subjects were at rest without any

physical activity, the results were almost identical, with a maximum error of around

2%. Nevertheless, during higher intensity physical exercises like walking, there was a

difference of around 10% between the two devices. Overall, chest bands that use ECG

tend to be more accurate than Apple Watch’s PPG for heart rate monitoring during

physical activity.

A comparison study was conducted by Ollander et al. on both time and fre-

quency domain HRV features computed from the Empatica E4 and a reference ECG

device during a Trier Social Stress Test (TSST) stress induction session. The IBI ob-

tained from the Empatica E4 wristband displayed a substantial degree of degradation,

especially when the individual was instructed to carry out a task. Despite this, time-

domain features of HRV, which are widely utilized in stress detection experiments, are

accurate enough to be used [98].

A recent study carried out by Mej́ıa-Mej́ıa et al. compared the accuracy and

quality of HRV measurements using ECG and PPG devices. They administered a

whole-body cold exposure while collecting PPG measurements from various body loca-

tions. They applied Bland-Altman, and analysis of variance to demonstrate that PPG

not only responds differently to cold exposure in comparison to ECG but also responds

differently across different body parts [93].

3.3.2. Qualitative Comparison Studies

Qualitative analysis techniques have been commonly used alongside quantitative

methods of analysis in existing research [99]. Qualitative analysis involves transcribing

study participants’ views, opinions, or experiences. It is possible to conduct struc-

tured or semi-structured interviews. The interviewer follows a set of predetermined

questions in structured interviews, while in semi-structured interviews, the interviewer

is free to probe beyond those questions. Qualitative data are typically evaluated us-

ing thematic analysis [100], involving two approaches. A typical analysis approach
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involves coding the qualitative data and generating themes. During coding, texts from

the document are highlighted, labeled to describe their content, and then merged to

generate different themes. Thematic analysis can be performed inductively or deduc-

tively. An inductive approach focuses on data to generate the themes, whereby a

deductive method refers to identifying preconceived themes based on existing theories

and knowledge [101]. Various software tools are available for qualitative data analysis,

which support coding and theme development [102,103]. Key examples of research on

affective biofeedback interfaces using qualitative analysis include Affective Diary for

identifying bodily experiences [104], Affective Health for managing stress [105, 106],

and Affective Chronometry for reflecting on and regulating affective experiences [77].
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4. METHODOLOGY

The purpose of this chapter is to provide an overview of the research methodolo-

gies used in this thesis. This includes the steps taken to design and implement efficient

mechanisms for detecting stress and emotions and the exploratory study of designing

effective intervention mechanisms to help users regulate their emotions and reduce their

psychological stress.

Since the ultimate goal of stress detection and coping mechanisms is their de-

ployment for the general public, in the studies carried out to complete this thesis, we

tried to place the system’s end users in the center of the design as much as possible.

Accordingly, in many stages of the design methodology, it was the needs and expec-

tations of end users and their final satisfaction that were given special priority. These

steps include choosing the proper wearable devices to record the physiological signals,

making the artificial intelligence in the stress detection mechanism interpretable, and

finally, choosing and adjusting haptic feedback. This must be noted that we will com-

prehensively explain all the details mentioned above in the following sections.

4.1. Mixed-Methods Research

Existing research suggests that by combining qualitative and quantitative meth-

ods, more profound and broader information can be obtained, which cannot be ob-

tained when using a single approach alone [107, 108]. The combination of qualitative

and quantitative data and methods in a research study is known as mixed-methods

research. The integration is often accomplished with the help of a team composed of

quantitative and qualitative researchers.
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4.1.1. Subjective and Objective Data

The term “subjective” refers to someone’s personal opinion or feelings about

a subject. Subjective views or opinions are not based on truth or fact. In other

words, they are one individual’s personal interpretation of an idea, affected by their

feelings, thoughts, and background. The level of pain and discomfort experienced by

a patient and their description of their symptoms are examples of subjective data.

On the other hand, information that is “objective” is based on factual and data-driven

information. Even though personal opinions and sentiments are not objective, objective

data like facts or statistical information can form the basis for subjective feelings and

ideas. Empirical and indisputable data and shreds of evidence are used to formulate

an objective assessment of a subject.

4.1.2. Qualitative and Quantitative Data

Qualitative data and the process of analyzing these data, which is referred to as

qualitative research, relies on data collected by the researchers coming from the origi-

nal sources or personal experiences, learned or gained directly [109]. Qualitative data

are usually non-numerical and can be of multiple forms, such as questionnaires (with

descriptive responses), participants’ subjective observations, and interviews. Research

using qualitative data enables researchers to explore in-depth questions about areas of

interest that are difficult to quantify. It also provides researchers with insights into how

users interact with a particular technology and what their practices and experiences

are [109,110]. Contrary to quantitative data, research outcomes from qualitative data

cannot be easily generalized to a broader population, as they are limited to the subjec-

tive interpretations of the participants. This issue especially becomes critical when the

number of subjects is small. Quantitative data includes statistical data, percentages,

and other numerical data. They are generally produced by mathematical models and

experiments conducted in the laboratory or real-life settings. The purpose of quantita-

tive research is usually to uncover patterns and relationships between data points and

to test hypotheses about the interrelationships between them [111]. For this, statistics
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are used to analyze the data and to produce an unbiased result that can be generalized

to a larger group of people. More specifically, descriptive and inferential statistics are

utilized to make sense of data features in a coherent manner and form predictions based

on the data on hand, respectively [112].

4.2. Surveys and Questionnaires for Subjective Measurement of Stress

Measures of stress can be obtained from a variety of clinical subjective tests.

The purpose of these tests is to collect subjective data from subjects by utilizing ques-

tionnaires. These questionnaires generally revolve around perceptions of stress and its

frequency, taking into account a variety of contexts and scenarios. Almost all such

surveys use Likert scales to collect users’ subjective responses. Below are the question-

naires that we have used in our studies. It is worth noting that these are among the

most popular and widely used questionnaires used in the literature.

4.2.1. NASA Task Load Index (Nasa-TLX)

NASA-TLX is originally categorized into two sections: In the first part, users are

asked to rate six subjective sub-scales within a 0-100 range. These sub-scales are Mental

Demand, Physical Demand, Temporal Demand, Performance, Effort, and Frustration.

The second part of the NASA-TLX is designed to establish individual weightings of the

sub-scales mentioned above. In this part, users are asked to choose the most relevant

measurement by comparing the sub-scales from the last part in a pairwise manner.

For this, the user must choose which sub-scales are most relevant for that particular

workload. Descriptions for every sub-scale are provided before the questions to help

participants understand the motive and respond accurately (see Figure 4.1). Since

some of the questions in the second part are not relevant to psychological stress, for

instance, the problem of physical workload becomes insignificant in the identification of

mental stress, in studies in which there is only psychological stress, we use a modified

version of Nasa-TLX which does not include non-necessary questions.
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Figure 4.1. Nasa task load index (NASA-TLX).

4.2.2. The State-Trait Anxiety Inventory (STAI)

The State-Trait Anxiety Inventory (STAI) refers to a psychological survey com-

posed of 40 self-report questions, which are on a 4-point Likert scale. There are two

types of anxiety measured by the STAI, state anxiety and trait anxiety. The higher

the scores, the greater the level of stress and anxiety. It is available in more than 40

different languages, and its latest version is called STAI-Y [113]. Anxiety can be char-

acterized by feelings of stress, as well as worry and tension [114]. This test is usually

administered to adults, and it evaluates how strong a person’s subjective perceptions

of stress and anxiety are. Various situations perceived as potentially dangerous can

arouse the autonomic nervous system in “states of anxiety”, such as fear, discomfort,

and nervousness. As a result of perceived threats, this type of anxiety is more about

how a person feels at the onset of the perceived threat and is generally viewed as a

temporary condition [115].
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Alternatively, “Trait anxiety” is usually interpreted as how individuals feel dur-

ing typical situations such as discomfort, worry, and stress that every individual may

encounter and experience on a daily basis [116]. Our studies have utilized the Y-1

version of the STAI questionnaire, which consists of 20 items to measure state anxiety,

which is a momentary emotional response resulting from situations such as examina-

tions, cognitive challenges, and especially stressful tasks such as TSST and SCWT

(see Figure 4.2). A four-point Likert scale was used to rate each response, where high

STAI-Y-1 scores indicated higher stress levels.

Figure 4.2. The state-trait anxiety inventory, version Y-1 (STAI-Y1).
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4.2.3. Perceived Stress Scale (PSS)

Perceived Stress Scale (PSS) measures the degree to which a person perceives a

situation as stressful. It is one of the most extensively employed psychological ques-

tionnaires for measuring overall perceived stress since it was first introduced in 1983

by Cohen et al. [117, 118]. The PSS reveals both objective physiological indicators of

stress and a heightened risk for health problems among individuals with higher per-

ceived stress levels. For instance, people with higher PSS scores (which suggests chronic

stress) were more prone to depression [119]. Answer alternatives are straightforward,

and the items are clear and concise. The questions are also of a general nature, so

they do not address any particular target population. The PSS asks about individu-

als’ feelings and thoughts during the past month. In each question item, subjects are

questioned about how often they had particular feelings.

4.3. Participants

In all the studies we have carried out in this thesis, subjects have volunteered to

participate, and we have used similar methods to find the participants for our studies.

For instance, for the study in [19], campus flyers and a mailing list were used to promote

the experiment and recruit participants. Many interested participants contacted us

through e-mail, and we were able to schedule a suitable time for them to participate in

the study. In order to participate in the study, participants were instructed to follow a

usual sleep routine the night before [120]. They were also instructed to avoid drinking

caffeinated and alcoholic drinks and also to avoid eating two hours before the study

began [121,122].

4.4. Ethics

Before starting the data collection sessions in all of the research we have con-

ducted, the ethics review board of Boğaziçi University approved the studies, and we

ensured that the procedure of the methodologies used in our studies complied with
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the 1964 Declaration of Helsinki [123]. Each subject signed an informed consent form

before data collection began. Following that, they received an information sheet ex-

plaining the study procedures. Additionally, each participant was informed that their

participation is voluntary and that they are free to opt out of the study at any time

during the data collection until seven days after its completion. They were told that

by doing so, all data relating to them would be destroyed after the completion of the

data collection sessions. An anonymous identification number was assigned to each

participant, and all relationships between the participants’ names, subject numbers,

and data were removed.

4.5. Data Collection

4.5.1. Laboratory settings

During the data acquisition sessions in laboratory settings, all subjects were sub-

jected to identical one-on-one sessions during a one-time visit to our laboratory. Any

participant who reported serious mental or physical health issues, such as anxiety, de-

pression, hypertension, or cardiovascular disorders, was excluded from the study. In all

of our studies, participants were provided with biosensors at the beginning of the study,

along with instructions on how to wear them. The experiments were conducted in the

laboratory in a completely silent room without any visual or auditory distractions. We

assisted the participants with wearing the sensors. Participants were instructed to take

a seat that was positioned in front of a table facing the wall. Behind the participants,

on another table, there were also two notebook computers that were being used for

data collection. Participants were able to get used to the surrounding environment

during this process, which took about 15-20 minutes.

During measurements of the vagal tone and psychophysiological processes, it is

recommended that body movements be avoided to obtain clear and accurate readings

[72]. Generally, baseline recordings are conducted while the subject is seated, and it

is recommended that the body position be as close to the baseline as possible during
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stressor and recovery sessions [72]. Therefore, in our studies, we followed the same

protocol for data acquisition. We instructed participants to sit calmly with their hands

on the table and avoid making any large movements following the sensor attachment.

In data collection, we (researchers) did not take turns, and the study setup was the

same for all participants.

4.5.2. Data Labeling

After the data collection stage, labeling them is one of the most important and

challenging steps for training efficient machine learning models [124]. Depending on

the nature of the data and the subjects under study, data labeling can be done during

data collection or after its completion. The difficulty of labeling also depends on the

type of data. For example, in medical studies related to medical imaging, the image

data taken by an MRI machine needs to be labeled by an expert (a radiologist) [125].

The idea of having an expert from related scientific backgrounds, such as psychol-

ogy in our case, label the data brings the ground truth closer to reality. It increases the

value of the collected data set, the analysis performed on that data, and the final results

obtained. However, we believe that the absence of an expert for labeling did not affect

our data quality for the reasons explained below. First of all, in the data collected in

the studies related to this thesis, which have been conducted in both laboratory and

daily life settings, it is almost impossible for an expert to be constantly present in the

daily life of each user and to monitor them constantly. Secondly, in the data collected

in the laboratory environment, wholly standard and identical procedures have been

applied to induce mental and physical stress. We believe utilizing these widely used

standard procedures makes the study not need to be interpreted by experts. It must be

noted that similar studies in the literature as well have not employed experts for data

labeling when using the same standard methods for stress induction. In the following,

the standard methods of stress induction used in this thesis are explained.
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4.6. Stress induction

4.6.1. Psychological Stressors

4.6.1.1. Trier Social Stress Test (TSST). Trier Social Stress Test (TSST) is a well-

established, widely used, and reliable method to induce stress in subjects. This method

is designed for laboratory settings and consists of a combination of several procedures

that have previously been known to induce stress. However, previous procedures did

not seem to be able to accomplish this reliably. Clemens Kirschbaum and colleagues

created this method in 1993 at the University of Trier [126].

The TSST has been implemented in a variety of ways (for instance, the original

version was slightly longer), yet most current versions follow a similar pattern. The

stress induction procedure lasts about 15 minutes and is composed of three components,

each lasting five minutes. During the test, either an intravenous (IV) line for the

purpose of collecting blood or a heart rate monitor for collecting cardiovascular signals

is attached to the subject. In order to induce stress, the participant is taken to a

room where three judges are waiting for the participant to begin the procedure. The

room is usually equipped with a video camera or audio recorder [126]. In the first

five minutes, the subject is asked to give a five-minute presentation. In the course

of the test, the judges maintain a calm and non-judgmental expression. The judges

observe the subject without commenting during the five minutes of the presentation

component. In the event that the participant does not use all five minutes, they will be

asked to continue, and this process continues until all five minutes have been completed.

A mental arithmetic component follows the presentation, during which the subject is

asked to count backward, for instance, from 707 in steps of 14. This part lasts for five

minutes, followed by a recovery phase. Following the test, participants are informed

that the test was designed to create stress and that the results are not indicative of

their mathematics and presentation abilities.
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Figure 4.3. Stroop color and word test.

4.6.1.2. STROOP Color and Word Test (SCWT). The Stroop Color Test is a color

and word neuropsychological test widely utilized in the literature and clinical pur-

poses [127]. The Stroop Color and Word Test (SCWT) is based on the principle that

humankind can read words more quickly than they can identify and recognize colors.

During the Stroop Color Test (see Figure 4.3), the names of the colors ( e.g., green, red,

or blue) appear in different colors (e.g., the word “blue” in green, instead of in blue).

The subject is asked to identify the color words displayed in a discrepant color (for

example, the term “Green” is shown by a blue color). The processing of the distinct

feature (word) impedes the simultaneous processing of the second feature (color), tak-

ing longer time and effort, making the subjects susceptible to more misinterpretation.

SCWT has been widely exploited in the literature as a mental stressor [127,128].

4.6.2. Physical Stressors

4.6.2.1. Cycling. The reason for choosing cycling as the physical activity in some of

our studies is that due to limitations in laboratory environments, moderate to intense

physical activity is only possible using equipment such as a stationary bike or a tread-

mill. HRV represents the activities of both SNS and PNS components. When an



39

individual engages in exercise and physical activity, it affects their HRV, as physical

demands are met by both components [129]. HRV has been used in the literature

for measuring physical stress [130–132] with cycling as the exercise method or even

psychological stress during the cycling [133]. Generally, the Cycling activities in our

studies [19], lasted for 5 minutes, where participants started with low resistance (60W)

and then gradually moved to medium (90W) and ended up performing intense cycling

exercise (120W). After the cycling activity, subjects underwent a five-minute recovery

period, and data collection stopped after the last recovery.

4.7. Third-party Tools for Signal Analysis

4.7.1. Kubios HRV

In order to preprocess the data obtained from cardiovascular biosensors, we em-

ployed an HRV analysis tool named “Kubios” [134]. Kubios HRV is scientifically val-

idated and is one of the most widely utilized robust HRV analysis software in the

research community. Kubios can be used solely for analyzing HRV data or even for

measuring stress’s impact on human health using its built-in algorithms.

4.7.1.1. RR Detection. With Kubios HRV software, QRS values are accurately de-

tected from ECG signals and pulse waves from PPG signals. Kubios detects the R peaks

for any raw ECG signal using a Pan-Tompkins-based QRS detection algorithm [135].

In the studies we have conducted, only the BITalino (r)evolution board saved cardio-

vascular data as raw ECG, which needs to be converted to HRV using an HRV analysis

software. The sampling rate for this device was set to 1000 Hz. Although sampling at

this frequency is sufficient for HRV analysis, in order to provide even more accurate

detection accuracies, the R peaks in the QRS detection algorithm are interpolated at

a sampling rate of 2000 Hz. If ECG devices that sample at a lower rate are used, this

technique enhances the temporal resolution of R peaks even more. A matched filtering

technique is used by Kubios for the detection of the pulse waves from the raw PPG

signals. A maximum of first derivatives is used to predict the initial pulse position.
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This first derivative corresponds to the steepest part of the pulse. In the next stage, a

matched filter is built using the correlation of the first pulse located in the earlier stage

as the template to detect the existence and locations of a matching template (pulses) in

the approaching signal parts. In most of our studies, we utilized Kubios to extract the

IBI values from devices that record PPG data in its raw form, such as the Empatica

E4 wristband. As for the remainder of the devices, the IBI values are automatically

calculated inside the device, which can be downloaded as their output file.

4.7.1.2. HRV Artifact Removal. As we mentioned earlier in this section, data must be

preprocessed before they can be analyzed. In the preprocessing stage, artifact removal

is one of the most critical steps. Any signal, including biomedical or psychophysio-

logical, is susceptible to noise and artifacts. Cardiovascular and PPG signal artifacts

needed for HRV analysis usually result from poor data quality due to subjects’ invol-

untary physical movement or environmental factors during data acquisition. They can

affect various sensors differently based on the sensor kind and the location where they

are attached. These factors can cause more negative impacts while the HRV is being

collected in ambulatory and real-life conditions. PPG sensors, for instance, are highly

susceptible to noise, and multiple factors can negatively affect their signal-to-noise ra-

tio. It is, therefore, essential to employ reliable methods for detecting and removing

artifacts from all HRV signals, especially those from wristwatch-recorded PPG signals.

In order to minimize the possibility of severe deformities in HRV analysis that can

result from artifacts in RR time series, the task force of the European Society of Car-

diology recommends that all artifacts must be either corrected or removed [10]. In

several cases of our studies, we have applied two different forms of artifact correction

algorithms [19], [39]. The first one, also referred to as the “automatic correction” in

the Kubios HRV software, identifies and corrects the artifacts detected on the data of

a time series signal based on a procedure proposed in [136]. There are also threshold

values in Kubios HRV software referred to as Very Low, Low, Medium, Strong, and

Very strong for the 0.45s, 0.35s, 0.25s, 0.15s, and 0.05s threshold values, respectively.

While the application of automatic correction was sufficient for the ECG devices in

our studies, such as the Firstbeat Bodyguard 2, Zephyr HxM, and Polar H10, for PPG
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devices, there was a need to apply threshold-based artifact corrections with medium

and strong settings. This was due to the fact that the PPG devices are more sensitive

to noise and artifacts and have lower data quality compared to ECG devices.

4.7.2. cvxEDA and NeuroKit2

As described in Subsection 2.1.3, skin sweat gland activity increases following the

occurrence of high arousal in the sympathetic branch of the autonomic nervous system

(ANS). This increased sweat gland activity increases the skin conductance. Emotional

arousal and stress cause the body to sweat, which increases skin conductance [137].

Therefore, skin conductance acts as a measure of sympathetic and emotional responses.

As a result, EDA is a promising candidate for detecting stress levels.

4.7.2.1. Artifact Correction and Feature Extraction. SC (Skin Conductance) signals

are contaminated by intense physical activity and temperature fluctuations. Filter-

ing out affected segments (artifacts) from the original signal is, therefore, necessary.

Using an EDA toolkit, in the Skin Conductance signal (SC), we were able to detect

the artifacts with 95% accuracy [138]. The artifacts were manually labeled by techni-

cians during the development of this tool. By using the labels, the machine learning

model was trained. Additionally, skin temperature and 3D acceleration signals were

employed for artifact detection. From our signals, we discarded the pieces that Kubios

recognized as artifacts. We further enhanced this tool by adding batch processing and

segmentation. In addition, we have also utilized NeuroKit2, a Python toolbox designed

for neurophysiological biosignal processing [139] in some of our studies.

A feature extraction phase followed the phase of removing artifacts from EDA

signals. The signal consists of two components, phasic and tonic; features were ex-

tracted from both components (see Table 4.1). The signal was decomposed into these

components using the cvxEDA tool [140]. Based on Bayesian statistics, this tool uses

convex optimization to estimate the activity of the Autonomic Nervous System (ANS).
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Table 4.1. EDA features and their definitions.

Feature Description

Quartdev Tonic Quartile deviation (75 percentile–25 percentile) of the phasic component

Strong Peaks Phasic The number of strong peak per 100s

Peaks Phasic The number of peaks per 100s

Perc20 20th percentile of the phasic component

Perc80 80th percentile of the phasic component

Mean Tonic Mean of the phasic component

SD Tonic Standard deviation of phasic component

4.8. Data Analysis

This section provides descriptions of the quantitative and qualitative data and

the methods and tools utilized to analyze these data. These analyses consist of data

preprocessing for HRV, and EDA signals, followed by qualitative analysis of the ques-

tionnaires and interview data related to participants’ perceived data.

4.8.1. Preprocessing

4.8.1.1. Windowing. According to [10], short-term HRV recordings are recommended

to last five minutes. Other researchers have studied even shorter R-R intervals, called

ultrashort-term recordings (three minutes, two minutes, one minute, 30 seconds) [141].

They concluded that ultra-short-term analysis of HRV can become a new alternative

to the standard five-minute analysis [141–143]. Before preprocessing the quantitative

data, raw cardiovascular and EDA data must be separated into the experienced ses-

sions, i.e., the Baseline, Event, and Recovery, based on annotations of time and context

information acquired and taken note of throughout the data recording sessions.

4.8.1.2. Signal Synchronization. In case using multiple wearables for the purpose of

multimodality or while conducting a comparative study, signal synchronization be-

comes one of the critical steps. This procedure is particularly critical when making a
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comparison of signals of the identical or even similar kind captured from various devices

attached to a single individual to ensure that there are no significant time lags and drifts

between all of the recordings of each session. In our studies, we performed the data

synchronization step automatically and manually to guarantee the most accurate data

alignment. One of the widely utilized approaches in signal synchronization is cross-

correlation [144–146]. We employed cross-correlation to find and rectify any potential

time shift between the signals from multiple devices while taking one of the devices as

the reference point. In this procedure, the cross-correlation maximum corresponds to

the time-point in which the signals are most adequately synchronized. Furthermore, we

tried inspecting and synchronizing the data by visually examining the HRV signals in

Kubios and manually aligning the raw peaks in Kubios’s signal data browser window.

This approach is also utilized in the literature and discovered to be as accurate as the

traditional widely accepted cross-correlation procedure [147,148].

4.9. Wearables and Biosensors

This section briefly introduces the wearables used to collect data in our studies. It

should be noted that the degrees of wearability of these commercially available devices

are different, and some of them may not even be used continuously in everyday life due

to their obtrusiveness. However, since their size and physics are portable and wearable

to some extent (regardless of the level of acceptance by users), we will introduce them

in this section. Detailed comparisons of these devices and user reviews are available

in Chapters 7 and 8. Table 4.2 shows a list of wearables used in our studies and a

summary of the technical specifications of each.

4.9.1. Single Sensor Wearables for HRV

• Firstbeat Bodyguard 2 serves as one of the ECG devices in several of our exper-

iments. This lightweight wearable sensor for measuring cardiac signals and R-R

intervals is validated in [177] and has been used in many studies in recent years.

Once the Firstbeat Bodyguard 2 is connected to the skin, it begins recording
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Table 4.2. Heart monitoring sensors used in this thesis, their placements, technical

details, and a list of studies conducted using these devices.

Article Device Sensors Sampling

rate

Placement Connectivity Realtime

streaming

Cloud

storage

Actuator/

Display

Price

[149–152] Empatica E4 PPG, EDA, ACC, IR Thermopile 64 Hz Wrist Bluetooth ✓ ✓ ✗ $1,690

[153–155] Samsung Gear S2 PPG, ACC, Barometer, Gyro 100 Hz Wrist Bluetooth ✓ ✗ Display $149

[156–159] Firstbeat Bodyguard 2 ECG, ACC 1000 Hz Chest USB ✗ ✗ ✗ $330

[160–163] BITalino (r)evolution ECG, EEG, EDA, EMG, ACC 1000 Hz Chest Bluetooth ✓ ✗ Buzzer, Led $190

[164–168] Polar H10 PPG 130 Hz Chest Bluetooth ✓ ✓ ✗ $75

[169–172] Zephyr HxM PPG 250 Hz Chest Bluetooth ✓ ✗ ✗ $55

[173–176] CorSense PPG 500 Hz Finger Bluetooth ✓ ✓ ✗ $165

the data automatically. The ECG signals are processed inside the device with a

sampling rate of 1000 Hz. The RR data are captured as offline data that can be

accessed later via a USB connection.

• The Polar H10 chest strap is an ECG chest strap that can provide an accurate

heart rate measurement at a frequency of 130 Hz. Using the Polar H10, the RR

data can be recorded in real-time on a smartphone and saved in cloud storage as

well.

• Zephyr HxM is another ECG device employed in our studies. It is very similar

to Polar H10 in performance and almost identical in appearance and aesthetics.

It can only transmit its data to the computer using a live Bluetooth connection.

4.9.2. Multisensor Wearables

• The BITalino (r)evolution board kit is a board kit produced by PLUX Wireless

Biosignals. It includes multiple types of sensors and actuators and measures the

ECG at a speed of 1000 Hz. Acquisition of the ECG signal in the BITalino kit is

performed live via Bluetooth connection using a computer.

• With an average battery life of 32 hours with a single charge, and a charging

time of fewer than 120 minutes, the Empatica E4 is capable of holding up to

60 hours of recorded data. Furthermore, it supports real-time data transfer via

Bluetooth in addition to a USB connection. Considering the Empatica E4 is de-
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signed exclusively for research, its continuous PPG recording capabilities are sig-

nificantly improved over traditional smartwatches. Empatica E4 provides Blood

Volume Pressure (BVP), Skin Temperature (ST), Electrodermal Activity (EDA),

Interbeat Interval (IBI), and 3D Acceleration data through its set of integrated

onboard sensors. A 64 Hz sampling rate is used to record the raw BVP signal

using its PPG sensor [178].

• The Samsung Gear S2 is a commercially available and widely used smartwatch

that can produce the IBI with the help of its PPG sensors. We developed an

application for Samsung’s Tizen OS, which allows the selection of sensors to

be employed for acquiring IBI data from the Samsung Gear S2. In continuous

recording mode, the Gear 2’s battery can last no longer than three hours. It is

also equipped with an accelerometer sensor.

• The Polar OH1 is another device used only in one of our studies. This arm-worn

device monitors heart rate using a PPG sensor. In [174], its accuracy for heart

rate monitoring is validated, and the results indicate reasonable agreement with

the reference device. There are no options for extracting R-R interval or raw PPG

data in Polar’s OH1. As a result, HRV analysis is not possible with the device.

Consequently, it is not subjected to quantitative analysis and is only included

in qualitative analyses involving usability and acceptance by users explained in

Chapter 7.

• CorSense is designed to detect heart rate signals from the fingertip of the user

and provides live biofeedback for training. Using a PPG sensor at 500 Hz, it

measures heart rate variability.

The details mentioned above were only a part of the on-paper specifications of

these devices advertised by the manufacturers. As we proceed through the chapters, we

will share the hands-on experience gained with all devices, with complete comparisons

of most of the devices mentioned above in Chapters 7, and 8.
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5. HOW TO RELAX IN STRESSFUL SITUATIONS: A

SMART STRESS REDUCTION SYSTEM

We implemented a scheme for stress detection using physiological sensor data,

which was integrated with a physical activity sensor to detect the context information.

Using this mechanism, either a traditional or application-based stress management

method is suggested to the user in response to the detection of high stress levels. Ad-

ditionally, we compare the physiological effects of both methods on 15 international

early-stage researchers (ESRs) from the AffecTech project during their eight days of

training at Bogazici University. Established by the European Commission, AffecTech

was a program funded by Horizon 2020 (H2020). During this training event, 15 Em-

patica E4 smartbands were employed to record 1440 hours (equal to 60 days) of phys-

iological data. In order to alleviate the participants’ stress levels, emotion regulation

approaches based on James Gross’ model [47] were put into practice (see Figure 2.2).

We believe that this is the first study to suggest stress reduction approaches with re-

gard to context information. A system like this can be utilized in real-time biofeedback

applications to help detect stress levels offline. Individuals could benefit from feedback

pertaining to high stress levels and instructions for relaxation strategies by employing

our stress level detection algorithm in a real-world setting. An individual may also ben-

efit from additional continuous monitoring in order to better understand the efficiency

of their stress reduction practice. However, our stress detection mechanism relies on

smartbands in order to be functional in everyday life.

As further explained in Section 2.4.3.1, ideally, it is the individual’s context that

determines the most appropriate emotion regulation solution. It would be beneficial for

society if there were a system that monitored stress levels, analyzed the context of indi-

viduals, and offered appropriate relaxation methods during times of high stress. Mobile

as well as traditional emotion regulation techniques, should be applied in stressful real-

life situations, and their effectiveness should be compared by analyzing physiological

signals.
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Table 5.1. Comparison of our work with the literature studies utilizing different forms

of meditation methods for stress regulation.

Article Yoga Mindfulness Mobile

Relaxation

Device Signal Suitable for

Daily-life

Ahani et al. [86] ✗ ✓ ✗ Biosemi EEG and Respiration ✗

Mason et al. [88] ✓ ✗ ✗ Digital Plethysmograph (PortaPres) Virtual Blood Pressure Respiration ✗

Svetlov et al. [53] ✗ ✗ ✓ Several HRV, EDA, sAA and EEG ✗

Puranik et al. [54] ✓ ✗ ✗ MPU 6050+Piezoelectric Belt+Pulse Sensor Heart Rate + Respiration EEG ✗

Karydis et al. [87] ✗ ✓ ✗ Muse Headband EEG ✗

Cheng et al. [55] ✗ ✗ ✓ Emotiv wireless headset EEG ✗

Ingle et al. [89] ✗ ✗ ✓ 8-channel Enobio EEG + piezoelectric belt EEG + Respiratory ✗

This work ✓ ✓ ✓ Empatica E4 wristband PPG, EDA, ACC, ST ✓

Studies that compare the performance and effectiveness of these methods in real-

life situations are not found in the literature (see Table 5.1). Ideally, these methods

must be implemented with unobtrusive wearables so that they can be worn in daily

life as a wearable biofeedback system. Many people are hesitant to use a system that

contains cables, electrodes, and boards on a daily basis. With such systems, comparing

different states would not be possible in daily life. By using algorithms that can run

on unobtrusive devices, traditional and mobile emotion regulation practices can be

suggested and evaluated. An ideally designed solution must be able to detect stress,

recommend relaxation methods, and monitor compliance using unobtrusive devices.

We propose a system architecture and algorithm suitable for embedding in such daily

life applications utilizing physiological signals such as skin temperature (ST), heart rate

variability (HRV), Electrodermal Activity (EDA), and accelerometer (ACC). Here in

this chapter, we present the findings of a pilot study in which our system was put to

the test for regular daily activities, stress alleviation activities, as well as an event that

would be stressful.

5.1. Unobtrusive Mechanism for Detecting Stress Using Smartbands

Through the implementation of our stress detection system explained in [18], users

will be able to monitor their stress levels during their daily activities in an unobtrusive

manner. Wearing a smartband is the only requirement for using this system. A total of
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15 Empatica E4 wristbands were used in this section, where subjects wore each on their

non-dominant hand. It must be noted that detailed descriptions of Empatica E4 can be

accessed in Section 4.9. After proper detection and handling of the physiological signals

artifacts (see Subsection 4.7.1.2), features were extracted from the sensory data and

passed to the machine learning model for classification. The models were trained using

feature vectors and class labels collected from the data. EDA preprocessing, artifact

removal, and feature extraction were conducted in accordance with the details described

in Section 4.7.2. Additionally, accelerometer and body temperature data have also been

used in the research conducted in this chapter. Our system uses accelerometer sensor

data for two different purposes. We started by identifying stress levels from features

derived from the accelerometer. EDAExplorer Tool also uses this sensor to clean the

EDA signal. EDAExplorer Tool uses a skin temperature signal to detect artifacts in

EDA signals [138]. Once we divided our data into segments, multiple modalities were

merged into a single feature vector.

5.1.1. Relaxation Method Suggestion Based on Physical Activity Context

The term context refers to a wide range of information which may include cal-

endars, types of activities, locations, and intensities of activities. It is possible to

infer contextual information from physical activity intensity. A lower physical activity

intensity could be observed in environments with fewer restrictions, such as offices,

classrooms, and public transportation, while a higher intensity could be observed out-

doors. Thus, individuals will require different relaxation methods depending on their

context. We used the EDAExplorer tool to calculate physical activity intensity. This

is accomplished using the stillness metric and expressing an individual’s stillness or

motionlessness as a percentage. In order to count as still, the total acceleration must

be less than a threshold (default being 0.1) for 95% of a minute. It is then possible

to calculate the ratio of still minutes in a session [138]. According to the ratio of still

minutes in a session, sessions below 20% were considered still, while sessions above 20%

were considered active, with relaxation methods recommended accordingly. A diagram

of the entire system is shown in Figure 5.1.
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Figure 5.1. By analyzing the physical activity context, the system suggests the most

appropriate method for reducing stress when a high level of stress is experienced.

5.2. An Overview of the Data Collection Procedure

The proposed mechanism for monitoring stress levels in real-world settings was

fully evaluated during an eight-day training event for the AffecTech project in Istan-

bul, Turkey. The AffecTech project was an international collaborative research network

involving 15 PhD students (Early Stage Researchers (ESR) with the aim of develop-

ing low-cost, effective wearable technologies for individuals who suffer from affective

disorders. During the training event, ESRs participated in workshops, lectures, and

training with clearly defined tasks and activities to ensure that they had developed the

necessary skills, knowledge, and values. At the end of the eight-day training, ESRs

were expected to give a presentation about their PhD research to two panel members

from H2020, where they received feedback about their progress. A certified instructor

conducted yoga, guided mindfulness, and mobile-based mindfulness sessions to study

the effects of emotion regulation on stress. During the training, objective physiological

data and subjective questionnaires (Nasa-TLX, See Section 4.2) were collected from the

16 subjects (15 ESRs and one of the AffecTech project academics). All participants

gave informed consent to participate in the study as described in Section 4.4. One

Empatica E4 device malfunctioned, preventing data from being included from one par-

ticipant. As for the remaining 15 participants, all stages of the study were successfully

completed. Figure 5.2 shows the timeline of events.
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Figure 5.2. An overview of the training event over eight days. Lectures,

presentations, and relaxations are highlighted.

5.2.1. Physiological Stress Data

Recorded physiological data included IBI, EDA, ACC, and ST, all saved in mul-

tiple CSV files. Additionally, 27.39% of the data comes from free time (free day and

after training until subjects went to sleep at 17:00 –10:00), 43.83% from lectures in

training, 11.41% from presentations, and 17.35% from relaxing sessions. In order to

overcome the problem of class imbalance, we randomly undersampled the data. In

order to demonstrate whether the participants’ stress levels were modified prior to and

after each stress reduction event (yoga and mindfulness), participants’ blood pressure

(BP) was also measured using a Medical-grade sphygmomanometer by a technician.

Each time the participants’ blood pressure was recorded, the mean of three measure-

ments was used as the final value. Reduced blood pressure and/or pulse rate may

indicate reduced stress levels, as evidenced by lower blood pressure and/or pulse rate.

Since the study of the relationship between blood pressure and human psychological

states is out of the scope of this thesis, we will not cover it in this chapter.

5.2.2. A Yoga and Mindfulness-based Stress Management Scheme

It was assumed that participants’ stress levels increased over the eight-day train-

ing as they had to present to the H2020 project evaluators their progress during the

PhD training (perceived as a stressful event). We offered yoga and mindfulness ses-

sions on days three and four in order to help participants manage their stress levels.
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Some of the questions surrounding the research conducted in this chapter were how

far we can reduce users’ stress by providing methods for emotion regulation and which

of these methods will be more effective. To answer these questions, we presented two

different approaches to stress management: a traditional method, i.e., yoga, and a

modern approach using a mobile phone application, i.e., PAUSE, (see sections 2.4.3.1,

and 2.4.3.2).

5.3. Validation of the Perceived Stress Levels Using Subjective Reports

In order to validate that the participants experienced varying perceived stress lev-

els in three contexts (lecture, relaxation, presentation), we used the frustration scale

in the Nasa-TLX questionnaire to assess perceived stress. Figure 5.3 shows how the

answers were distributed. We aim to demonstrate that perceived stress levels (obtained

from self-report answers) differ considerably between relaxation and presentation ses-

sions (high stress). Therefore, we compared perceived stress self-report answers from

yoga versus presentation, mindfulness versus presentation, and PAUSE (mobile mind-

fulness) versus presentation sessions using a t-test. For evaluating the separability of

each session, paired t-tests are used. Each session tuple was subjected to the variance

test; none of the sessions had equal variance. As a result, we selected unequal variance.

Confidence intervals of 99.5% were used. For all tuples, the null hypothesis stating

Figure 5.3. Barplots illustrating frustration scores collected in various sessions.
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that the perceived stress of the relaxation method was not less than the presentation

session was rejected. Participants’ perceived stress levels during all meditation sessions

are significantly lower than those during the presentation session (high stress).

5.4. Stress Level Detection Using Context as Class Labels

In order to test our system in this section, we used the known context of the

sessions to label the classes. By examining perceived stress self-report answers, we

used Lecture (mild stress), Yoga and Mindfulness (relax), and Presentation in front of

judges (high stress) as class labels. It was then examined whether relaxation meth-

ods were effective, whether different modalities were beneficial, and how to find the

presenter. The performance of two and three-class classification was evaluated using

the interbeat-interval, skin conductance, and accelerometer signals separately and in

combination. Classes include mild stress, high stress, and relaxation from mindfulness

and yoga sessions. Tables 5.2, 5.3, and 5.4 illustrate the results. The most challenging

part of the classification task was similar physiological responses to relaxing and mild

stress scenarios. However, since our study is primarily concerned with differentiating

high stress classes from other classes and offering relaxation techniques in this state, it

did not have an impact on our system. Furthermore, we examined the 2-class classifi-

cation performance of high-mild stress and high-relax. HRV was able to discriminate

between high and mild stress with 98% accuracy when used in with Multi layer Percep-

tron (MLP) (see Table 5.3). In the high-relax 2-class case, only Random Forest (RF)

achieved a maximum accuracy of 86% using HRV features, whereas MLP achieved a

maximum of 94% accuracy with ACC features. Table 5.4 shows that the combination

of all signals with RF achieved 92% accuracy, which is the best among all classifiers.
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Table 5.2. System performance as a result of combining different modalities. Note

that the number of classes is 3 (high stress, mild stress and relax).

Algorithm
Accuracy (%)

HRV EDA ACC Combined

MLP 72.14 36.61 74.29 82.68

RF 67.86 36.96 86.61 85.18

kNN 65.00 29.82 70.89 78.39

LDA 69.82 31.96 73.39 85.36

SVM 47.14 30.54 58.57 46.96

Table 5.3. System performance as a result of combining different modalities. Note

that the number of classes is 2 (high stress, and mild stress).

Algorithm
Accuracy (%)

HRV EDA ACC Combined

MLP 98.00 60.00 64.00 98.00

RF 98.00 42.00 72.00 98.00

kNN 94.00 44.00 58.00 94.00

LDA 94.00 40.00 54.00 94.00

SVM 66.00 54.00 54.00 66.00

Table 5.4. System performance as a result of combining different modalities. Note

that the number of classes is 2 (high stress, and relax).

Algorithm
Accuracy (%)

HRV EDA ACC Combined

MLP 82.00 66.00 96.00 90.00

RF 86.00 60.00 94.00 92.00

kNN 82.00 66.00 88.00 90.00

LDA 78.00 64.00 92.00 88.00

SVM 78.00 62.00 52.00 74.00
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As seen in Tables 5.2, and 5.3, using multi-modal data compared to data from

single modalities does not always lead to better classification results. This is especially

the case when one of the modalities has parts with more severe intensities than the

others for some reason. For example, since there are strong differences in the amount of

physical activity between different sessions in certain parts of the data, the accelerom-

eter data leads to perfect classification results. But when we added the rest of the data

that included less intense physical activity, the impact of the accelerometer data be-

comes lower. The fact is, models trained by partly high-intensity data, which is caused

by specific environmental conditions, may not generalize well. Furthermore, regard-

ing the results shown in Tables 5.2, and 5.3, where some models show a classification

accuracy of 98%, it should be emphasized that, firstly, our data was collected from a

controlled environment. Secondly, while we considered the hands-on lectures as mild

stress and the final presentations as high stress, it is not difficult to distinguish between

the two since the subjects had very high stress levels in the presentation session. How-

ever, their stress levels were not as high when listening to the lectures. Nevertheless,

it is impossible to solve this problem so easily in real life, and it is still open to new

solutions.

5.5. Effectiveness of Yoga, Mindfulness and Mobile Mindfulness

The stress levels of individuals were managed using three different relaxation

methods. The effectiveness of each method was measured by how easily physiological

signals in relaxation sessions could be separated from those in high stress situations.

Those who perform better at classification could be inferred to be more successful in

reducing stress if they can be differentiated from those with high stress levels. Table

5.5 shows that mobile mindfulness reduces stress levels less effectively than desktop

mindfulness. Yoga, however, has the best classification performance and therefore is

the most efficient emotion regulation method in this study.
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Table 5.5. The classification accuracy of the relaxation sessions using stress

management methods - (using HRV).

Algorithm
Accuracy (%)

Guided Mindfulness Yoga Mobile Mindfulness

MLP 90.00 97.50 93.94

RF 97.50 95.00 87.89

kNN 90.00 90.00 93.93

LDA 87.50 87.50 75.75

SVM 85.00 80.00 81.82

5.6. Summary and Final Thoughts

This chapter aims to detect high stress levels and suggest suitable relaxation

methods (e.g., traditional or mobile) when high stress levels were experienced. We

designed a stress detection framework that is unobtrusive, comfortable, and suitable

for daily use. We also developed a relaxation method suggestion system that uses

the physical activity context of the user to suggest relaxation methods. The majority

of studies in the literature only measure individual stress levels without offering any

intervention for emotion regulation. However, in this chapter, we monitored partici-

pants’ stress levels and helped them manage their stress levels using yoga, mindfulness,

and a mobile mindfulness application. Our results suggest that yoga and traditional

mindfulness perform better than mobile application-based mindfulness.
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6. PERSONALIZATION OF THERMAL AND

VIBROTACTILE PATTERNS FOR EMOTION

REGULATION

The purpose of this chapter is to explore the use of haptic stimuli for emotion reg-

ulation. We investigated how users engaged with the technology and explored its effec-

tiveness for emotion regulation. In this experiment, participants created temperature

and vibration-based haptic patterns. After applying a set of standard stress-inducing

methods, we evaluated how these patterns affected subjects’ emotion regulation.

The key objective of the study is to address the following research questions:

• How can emotion regulation be achieved using vibrotactile and thermal patterns?

• How do these haptic patterns help subjects to regulate their emotions?

The above-mentioned research questions were addressed through an exploratory

research involving 23 subjects. Subjects were randomly divided into two groups. One

of the groups designed either thermal or vibrotactile patterns for emotion regulation.

Following that, they were given these personalized patterns via haptic actuators during

a stress induction session. In the other group, the subjects only completed the stress

session without experiencing any haptic feedback. We also collected self-reported sub-

jective stress measures from all participants using STAI inventory, as well as HRV data

using the Empatica E4 wearable. The State-Trait Anxiety Inventory indicated that

subjects in the vibration and thermal haptic groups had significantly lower subjective

levels of stress compared to participants who did not receive haptic patterns. A similar

change, although not significant, was observed in subjects’ HRV levels who underwent

haptic patterns as well, which indicated a reduction in their stress levels, especially

when exposed to vibrations with low frequency. In addition, STAI scores indicated

that cold temperatures and low-frequency vibrations might have a more substantial

beneficial impact on experiences of perceived stress.
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Figure 6.1. Study methodology: (a) Participants creating personalized haptic

patterns (b) Stress induction procedure (both groups).

Individual sessions lasted about 60 to 70 minutes for each subject, and the method

of data collection and research methodology was entirely in accordance with the method

described for the studies conducted in the laboratory environment described in Sub-

section 4.5.1. A total of 23 volunteers were enrolled, 12 females and 11 males, with

an average age of 25.4 years. Participants were randomly assigned to vibrotactile (7

subjects), thermal (8 subjects), or no haptic patterns (8 subjects). There was an equal

chance that each participant would be assigned to one of the three groups. In the

haptic group, participants’ first step was to create their own personalized patterns

to regulate their emotions. The patterns were created either through vibrotactile or

thermal modalities, and the participants then utilized the corresponding actuators to

experience their customized patterns during the stress induction sessions. Participants

in the no-haptic group only engaged in the stress induction session in the absence of any

haptic patterns and personalization. The study procedure is demonstrated in Figure

6.1.

6.1. User-Personalized Haptic Patterns for Emotion Regulation

Subjects were engaged with haptic actuators in this part to investigate and cus-

tomize haptic patterns in order to regulate their emotions. As seen in Figure 6.1, in the

“technology introduction” stage, the haptic interfaces were demonstrated to subjects.

For this, two commercially available wrist-worn wearables depicted in Figure 6.1 were
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utilized for the temperature [179], and vibration [180] haptics. A number of previous

studies in the literature have used both of these actuators to produce haptic patterns

based on vibration, and temperature [65], [181]. Slides were shown to the participants

that described how the actuators worked and how to operate them. Only the subjects

in the haptic group participated in this phase, which lasted 10 minutes. Each par-

ticipant was then randomly assigned to one of the two subgroups, so they could only

experiment with either vibration or temperature haptic actuators. The purpose of this

decision was to limit subjects’ time exposed to the stress session, prevent their physical

and mental exhaustion, and keep the study duration as close as possible to 60 minutes.

Following the introduction, the haptic group participated in the main exercise, which

was to design haptic patterns for emotion regulation. In order to accomplish this,

using the provided actuators, subjects were taught to investigate the tools and make

vibrotactile or temperature-based patterns on their wrists for the purpose of calming

themselves when experiencing stress. Participants explored and changed the actua-

tors’ settings via a mobile application connected to each haptic actuator via Bluetooth

connection. Depending on user preferences, either type of actuator could be worn on

the inside or outside of the wrist. With the vibratory actuator, subjects were able to

change the frequency as well as the intensity of vibrations (from 30 bpm to 185 bpm)

and (5% to 100%), respectively.

Figure 6.2 shows the settings selected by all subjects in the vibration group.

Subjects were able to adjust the temperature intensity of the thermal actuators, which

ranged from -11° to +16° (Celsius) from their baseline temperature, using the de-

vices’ custom-built application. By doing so, they could create thermal patterns with

increases up to +16° Celsius or decreases down to -11° C. This actuator provided

thermal patterns every seven seconds for the purpose of preventing heat build-up and

maintaining a constant temperature, followed by another seven-second gap to avoid

overheating. It should be noted that only the remaining subjects in the haptic group

attended this stage, which lasted 10 minutes.
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Figure 6.2. Participants create their own frequency and intensity of vibration.

6.2. Emotion Regulation Under Induced Stress: The Influence of

Personalized Haptic Patterns

Following the design of haptic patterns, a stress induction session involving base-

lines, stress, and recovery exercises was used to evaluate their impact on emotion

regulation. In the first part of the study, subjects in the haptic group were exposed to

thermal or vibrotactile patterns which were designed by themselves. In contrast, no

actuators or haptic patterns were provided to subjects in the no haptic group. There

were three phases to this procedure. In the first phase, the stress level was measured at

baseline. Neither the haptic nor no-haptic groups wore actuators at this phase. Both

groups were instructed to sit comfortably for ten minutes without moving and to keep

their hands on the table. After this stage was completed, the stressor task was initi-

ated by the induction of stress using standard methods, TSST, and Stroop color test,

as described in Subsection 4.6.1.2. Using two different stressors for five minutes each,

stress inductions were applied to both participant groups for ten minutes. As soon as

the stressor tasks were completed, haptic actuators were switched off, and a five-minute

rest was given to provide the opportunity for recovery. State-Trait Anxiety Inventory

(STAI) was employed to measure subjective stress. Following baseline and stressor

tasks, subjects were instructed to submit their responses to the STAI questionnaires

on paper. In order to estimate the objective assessment of stress, the HRV, a widely

employed indicator of stress and emotion regulation, was recorded for further analysis.
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HRV data has been used to extract a wide range of features using the Kubios HRV tool

as described in Subsection 4.7.1. This chapter employs a widely-utilized time-domain

feature of the heart rate variability, namely the RMSSD. Studies support the notion

that RMSSD is closely linked with PNS activity [12], and a decrease in RMSSD indi-

cates elevated stress, while rest and recovery are reflected in the increase in RMSSD.

In order to record the HRV data, the Polar H10 sensor was used for all subjects. The

Polar H10 chest strap studied in Chapter 7 records heart rate variability with a level

of quality matching that of medical-grade devices. It was stated to participants that

physiological signals are measured by the device, yet not specifically how and which

signals. This was because there should be no bias in how haptic feedback would be per-

ceived, such as heartbeats being associated with vibration. Findings of the study [39]

presented in this section describe the effects of subjects’ personalized haptic patterns

on their emotion regulation by analyzing their subjective and objective stress levels.

Furthermore, their perspective on using haptic technologies for emotion regulation in

daily life as a result of analyzing the series of interviews conducted with the subjects

was also investigated in this work [39]. Since the latter part of the study is out of the

scope of this thesis, we will not cover it in detail.

6.2.1. Personalized Vibrotactile Haptic Patterns on the Wrist

6.2.1.1. Haptic Vibration Frequency. As part of their exploration and personalization,

most subjects first began by changing the vibration frequency between the lowest and

the highest values allowed by the device, 30 and 185 beats per minute, respectively. As

depicted in Figure 6.2, most subjects preferred vibrations at a 30 bpm frequency. It is

interesting to note that out of seven subjects, five of them related the vibrations to heart

rate. Since an ideal heart rate would be 65 bpm when experiencing high arousal and

negative emotions, these subjects created a vibration pattern with a low frequency to

simulate a slow heartbeat at 30 bpm. The literature has demonstrated that vibrations

with frequencies between 40 and 65 bpm can help users reduce their stress and anxiety

levels [65,66]. Subjects in our experiment chose frequencies with the same upper value

and one with a lower frequency, namely 30 bpm. The lowest frequency level that our
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wearable devices could support was 30 bpm, which indicates the benefit of even lower-

paced vibrations for emotion regulation in stressful situations. It was reported by the

subjects who selected 30 bpm that higher frequencies were more stressful, intense, and

anxiety-provoking. One subject, for instance, reported feeling panicked with higher

frequencies and calmed at 30 bpm. These participants were able to link the patterns of

the low-frequency vibrations they experienced with their target heart rate, which is in

line with the previous results in the literature [64]. Only two subjects appreciated the

slow rhythms and did not relate the vibrations to heartbeats. As well as manipulating

vibration intensity, subjects also modified vibrotactile sensations.

6.2.1.2. Haptic Vibration Intensity. While vibration frequency refers to the rhythm

of vibration, its intensity refers to the strength of the vibration. There are two main

preferences based on the findings, the majority opting for intensities below or up to

20% and the other two subjects preferring intensities above this level. Five subjects

who opted for lower intensities expressed the desire to avoid intense vibrations while

trying to relax and calm down. According to one of the subjects, vibrations of low

intensity on their wrist were “soft”. Likewise, another one stated that while a high

intensity made them nervous, lower values produced a gentle sensation of touch and

made them less anxious. The results suggest that it is crucial to experiment with

different levels directly to discover what works for each participant. People experience

physical perceptions in different ways. Research indicates that people have different

perceptions of stimuli depending on their expectations, and experiences, emotions [182].

6.2.2. Personalized Thermal Patterns on the Wrist

6.2.2.1. Heat Thermal Patterns. Subjects explored different locations on and near

their wrists while designing the thermal patterns. Subjects placed the actuators both

on the inside and outside of their wrists. At the same time, they actuated both cool and

warm with high and low temperatures were actuated. Hence, regardless of the selected

same temperature being low or high, all subjects experienced the same temperature

in a different way depending on the devices’ placement on their wrists. Participants
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Figure 6.3. Absolute temperature values (cool/warm) in Celsius.

report preferring higher temperature intensities on the wrist’s outer surface due to the

inner side’s greater sensitivity to temperature fluctuations. It illustrates how different

parts of the wrist have varying sensitivity to temperature and the benefit of adjusting

the temperature to take this into account. There is, in fact, no uniformity in thermal

sensitivity across the body [183]. There are different numbers and densities of ther-

moreceptors across the skin, resulting in distinct nerve conduction velocities (NCV) of

the cool and warm, giving rise to differences in perception [184]. According to most

subjects, the inner side of the wrist that was chosen by the most number of subjects

was more sensitive and easier to feel the thermal patterns than the outer side. The tem-

perature actuator device could be operated at temperatures ranging from -11° to 16°,

which subjects wore on their skin, at a standard indoor temperature (21°). According

to the findings, there are two main inclinations for either increasing or decreasing the

temperature. As seen in Figure 6.3, fifty percent of subjects preferred thermal patterns

by raising the temperature by 7°, 5°, 2°, and 10°, whereas the remaining four preferred

to bring down the temperature by -8°, -11°, -10°, and -11° (all °C). It is interesting

to note that all subjects who selected higher temperatures described heat as warmth

and did not exceed 10 degrees since they believed it to be quite hot. The experience

of warmth was reported as comforting by all those who preferred higher degrees. The

sensation of warmth was found to be relaxing and comfortable for most subjects ac-

cording to a previous research on its experiential properties [70]. Warmth on the wrist

was also described as comforting by the subjects in our study as well.
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6.2.2.2. Cold Thermal Patterns. There were different reasons given by the other group

of subjects for selecting the thermal patterns with reduced temperatures. According to

them, feeling cool on a specific body part, such as on the wrist, is rather uncommon and

strange since they are used to feeling heat instead of cool in daily life. Heat as a thermal

modality has been explored in the literature, however, there are not sufficient studies

exploring cool as a thermal modality. As reflected in their reasoning and expression,

this group of subjects preferred cool temperatures over cold, comparable to the previous

group that favored warmth over hot. They all found that cool felt more comfortable

than warm, which is why they all selected values below -8° C. All subjects who selected

lower temperature levels indicated that in addition to its pleasing nature, they prefer to

experience cool since the temperature of their bodies rises when faced with a stressful

situation. Therefore, the actuator’s contrasting thermal patterns will assist them in

noticing the situation and trying to cool down.

6.3. Impacts of Haptics for Emotion Regulation on Objective Measures of

Stress

6.3.1. Between-subject Analysis

A between-subject analysis will be presented in this chapter with the aim of

further investigating the effects of both types of thermal and vibrotactile haptics on

the objective and subjective levels of stress. In order to limit the carryover effect

and minimize subjects’ exposure to the stressors, we decided to use a between-subject

approach rather than a within-subject one [185]. The hypotheses were tested using the

ANOVA test. ANOVA is one of the most popular statistical models used to study the

differences among group means in a sample. It is a parametric approach and susceptible

to errors on ordinal and not normally distributed data. We performed Shapiro-Wilk

and Levene’s tests on dependent variables before selecting the analysis type. While

the first tests whether the sample populations are normally distributed, the latter test

for assessing the equality of variances between samples. Both tests failed to prove

the normality of the data and homogeneity of the variances. When these assumptions
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for the one-way ANOVA are not met, ANOVA might be inappropriate and produce

incorrect results [186,187]. In this case, the non-parametric methods can be used which

do not rely on the population parameters, i.e., assume the necessity of the normal

distribution of the data and are more appropriate for a small number of samples.

We decided to conduct our statistical analysis using a non-parametric ANOVA test,

i.e., Kruskal-Wallis one-way ANOVA. We used Kruskal-Wallis one-way ANOVA with

intervention as an independent variable and its five levels: control, temperature and

its subgroups (i.e., warm and cool), and vibration.

Kruskal-Wallis (K-W) is an omnibus test widely used in the literature to detect

whether there are at least two groups among all groups that have statistically significant

differences. Applying multiple pairwise K-W tests after the main effect, instead of a

posthoc test, increases the amount of type-I errors, making error correction methods

such as Bonferroni inevitable [188]. We executed the K-W test only once, making us

in need of no Bonferroni adjustment to account for multiple uses of K-W. After finding

significance in the main effect, we proceeded with posthoc tests using Dwass-Steel-

Critchlow-Fligner (DSCF) [189]. It is applicable for samples of varying sizes [189] and

is more suited for comparing sets with unequal variances that are also not normally

distributed [190]. In order to automatically control the error rate for all comparisons,

DSCF is equipped with built-in family-wise error rate protection [186], [189], [191,192].

Accordingly, DSCF does not require Bonferroni corrections. All statistical analyses in

this part of the study were conducted using the Scikit Posthocs library in Python

3.9 [193], and the statistically significant conclusions were set to a significance level of

0.05.

6.3.1.1. Subjective Results. For the subjective assessment of stress and anxiety, a sig-

nificant main effect of haptic patterns on participants’ stress was observed via the STAI

measurements (p < 0.001). The post-hoc analysis conducted with DSCF demonstrated

that the subjects were under considerably less stress, as assessed by the STAI question-

naires’ responses, with either thermal (µ = 35.5, σ = 12.5, p = 0.003) or vibrotactile

patterns (µ = 38.7, σ = 9.16, p = 0.004), in comparison to the subjects who were given
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no haptic patterns (µ = 56.8, σ = 3.11). While it is important to confirm the results

with future research since the number of participants was rather small, a significant

finding was that the STAI scores for both haptic patterns suggest that cool tempera-

tures (µ = 29.00, σ = 10.4) and vibrations at lower frequencies (30 bpm) (µ = 36.4,

σ = 9.04) may potentially hold more positive impacts on the subjective perception of

anxiety and stress, in comparison to warm temperatures (µ = 42.00, σ = 12.1) and

vibrations with higher frequencies (over 30 beats per minute) (µ = 44.5, σ = 9.19).

6.3.1.2. Objective Results. For the objective assessment of stress and anxiety, the

main effect of haptic patterns measured by RMSSD (p = 0.067) was observed to be

approaching traditional significance level (p = 0.05): the mean values of RMSSD with

the temperature haptics (µ = 32.4, σ = 10.7) or with the vibration patterns (µ =

48.2, σ = 37.6) were higher than the RMSSD in the absence of any haptic pattern (µ

= 18.5, σ = 4.58), yet again indicating lower stress level for the subjects undergoing

haptic patterns. Variations in RMSSD levels under cool-warm temperature patterns

and low-high frequency vibrotactile patterns were less pronounced on this objective

measure of stress compared to those observed on the subjective measures. These find-

ings demonstrate discrepancies in the levels of stress measured during the stressor and

recovery tasks, respectively. Nonetheless, low-frequency vibrotactile patterns seem to

be the most effective approach for emotion regulation.

6.4. Summary and Final Thoughts

This part briefly highlights the importance of users personalizing their emotion

regulation patterns as a final point. Our study shows that it is indeed possible to

increase the expressiveness and hedonic experience of users by entraining patterns’

modality or bodily rhythm. In order to provide real-time dynamic actuation, the

patterns’ actuators can also be integrated with biosensors and form real-time biofeed-

back for emotion regulation with actuation capabilities. It must be noted that rather

than being always ON and continuous, such a dynamic actuation must adjust with

users’ stress levels to eliminate the likelihood of overstimulation and habituation, thus
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enhancing the efficiency of emotion regulation. Using thermal and vibrotactile haptic

patterns (with warm/cold settings, and high/low intensity and frequency, respectively),

23 subjects explored haptic modalities for emotion regulation. These haptic patterns

were evaluated for their impact on emotion regulation during stress induction tasks

that were measured using self-reported stress and objective HRV features. The results

showed that subjective and objective measures of stress were decreased while using hap-

tic patterns compared to those who did not use them. It also showed that vibration

actuation with lower frequency levels was the most efficient actuation type for emo-

tion regulation. As a result of the limitations of both types of devices, which permits

for changing the vibrotactile frequency/intensity, and temperature of thermal patterns

solely within fixed ranges, personalization of the patterns was limited to a certain de-

gree. However, even these narrow sets of parameters are a reasonable starting point

for our exploratory research. Our findings suggest new avenues for designing emotion

regulation methods for affective well-being through personalized and dynamically ad-

justable patterns. We believe that future work building on our research findings should

look at a more comprehensive set of factors and variables. In addition, the results and

findings of our study were confined to controlled laboratory environments and are thus

required to be verified in real-life stressful conditions.
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7. COMPARING WEARABLES FOR BIOFEEDBACK

AND STRESS DETECTION USING A MIXED-METHODS

STUDY

There is a growing body of work on HRV assessment using a variety of mo-

bile, primarily unobtrusive wearable sensors. Each of these devices uses a differ-

ent technology [18], and it’s intended to be placed at a different location on the

body [18], [93], [145]. Additionally, these devices vary in the quality of HRV data

they produce and are also accepted differently by users based on wearability, aesthet-

ics, and ease of use. When choosing a sensor for measuring HRV, the quality of the

data sensing and its user acceptance are key factors to consider. A number of existing

studies have compared different sensing approaches and argued for the use of either one

or both [92], [194]. The majority of such studies only performed quantitative analysis to

assess the correlation and agreement between methods of measurement by comparing

sensing devices to a gold standard reference device [146], [149], [195]. In contrast, only

a handful of studies conducted qualitative analysis for usability and acceptability [196].

As data quality and user acceptance of HRV sensing devices are equally impor-

tant, this chapter extends existing studies by introducing a mixed-methods approach

combining data quality and user acceptance. Combining qualitative and quantitative

methods can yield greater depth and breadth of information, which is often not possible

while applying a singular approach [107, 108]. We argue that combining quantitative

and qualitative data would help unpack a holistic understanding of the critical factors

involved in choosing a particular HRV monitoring device. This chapter explores HRV

data quality concerning its features and user acceptance of different HRV wearables.

In particular, we address the following research questions:

• What are the differences between the HRV measurement quality of wearable

sensors and a reference device in terms of correlation and agreement levels of

HRV features such as RMSSD, pNN50, Mean RR, HF, LF, and LF/HF?
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• What are users’ opinions of these wearables in terms of how comfortable they are

to wear for daily or long-term use and how aesthetically and socially accepted

they are?

Using six heart rate monitoring devices worn on key locations of the body, we

combined quantitative and qualitative analyses to investigate these research questions.

All of these wearables have been validated in prior research [147], [177], [197], and are

widely used in the literature for HRV analysis [18], [166], [198–201]. We recruited 32

volunteers and instructed each of them to wear the six wearables at the same time.

All participants were subjected to an individual data collection session, which included

Baseline, Stress, and Relaxation stages, and quantitative analysis of the HRV data col-

lected from five of these heart rate monitors were conducted using the most common

and well-known agreement and correlation tests. Furthermore, in order to examine

the destructive effects of artifacts on HRV data quality and how appropriate artifact

removal thresholds can impact the effective recovery of noisy data, we applied three

levels of artifact removal thresholds, i.e. (automatic, medium, and strong) to data col-

lected from five HRV monitors, followed by Pearson and Spearman’s correlation and

Bland-Altman agreement analysis. Moreover, semi-structured interviews were con-

ducted with participants, and thematic analysis was performed on the interview data

to extract subjects’ opinions and experiences regarding the sensors’ wearability and

comfort, long-term use, aesthetics, and social acceptance.

HRV measurement wearables are chosen based on a variety of factors. A device’s

efficiency and quality are influenced by several factors regardless of its application. For

instance, suitability for long-term usage is always one of the sought-after character-

istics. Other factors, however, are determined solely by the target application type.

For most research-oriented applications, achieving results similar to the gold standard

in terms of accuracy is crucial. However, such accuracy levels are not always neces-

sary in everyday applications. Among the most desired functionalities demanded in

daily life are lighter and smaller weights, ease of use along with fancy designs [196].

Simonnet and Gourvennec [202] investigated the acceptability of different heart rate
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Figure 7.1. Single session individual data collection procedure for each subject.

sensors, smartwatches, chest belts, and ECG electrodes by having 11 subjects wear

them for 24 hours and fill out questionnaires about the devices. These data were used

to compare devices in terms of acceptability, usability, and how data reliability affects

their acceptability. Accordingly, we believe that a comparison study between HRV

monitoring devices should include both quantitative and qualitative factors. An exten-

sive comparison of the six most widely used heart rate monitoring devices for multiple

body locations is presented in this thesis as a contribution to existing work. Addi-

tionally, our work explores users’ experiences and opinions regarding wearability and

comfort, long-term usage, aesthetics, and social acceptance of HRV devices, in addition

to quantitative analysis of HRV features. We conducted the study in this chapter in

order to evaluate these devices so that researchers could decide on the most suitable

HRV monitoring device for their research.

7.0.1. Methodology

Our study procedure comprised a 70-minute course that consisted of three main

phases, as depicted in Figure 7.1. After participants consented to the study, the sensors

were worn and set up in the first stage of the study. A second stage involved collecting

HRV data from Baseline, Stress, Resting 1, Cycling, and Resting 2, using sensors

attached to different body locations. Interviews based on subjects’ observations and

experiences with different wearables followed the removal of all sensors in the final

stage.
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7.0.1.1. Sensors. Comprehensive descriptions of the wearable biosensors utilized for

capturing psychophysiological measures of stress and the software tools employed for

preprocessing and analyzing these biosignals are explained in Subsections 4.9 and 4.7.

For the study in this chapter, six off-the-shelf wearables were employed, including Bital-

ino (r)evolution kit, Firstbeat Bodyguard 2, Empatica E4, Samsung Gear S2, Polar

H10, and Polar OH1. During data acquisition, we used self-adhesive silver/silver chlo-

ride (Ag/AgCl) electrodes made for medical applications to prevent artifacts mainly

induced by physical movement and poor sensor-to-skin contact. Furthermore, we rec-

ommended that all participants wear the devices according to the guidelines provided

to them and avoid any abrupt and unnecessary moves throughout the biosignal record-

ing. For example, we constantly tested whether PPG devices were properly contacting

participants’ skin and whether they were not too loose or uncomfortably tight.

7.0.1.2. Tasks and Logged Data. In our study, we followed the same procedure de-

scribed in previous studies, which involved a Baseline stage, followed by a sequence

of short Stressor events followed by a Resting period [72]. In order to collect baseline

data, participants sat still for ten minutes during an initial resting period. In this

initial data acquisition procedure, time-synchronized heart rate data were collected for

each participant. The next task involved participants completing stressor tasks for

ten minutes, followed by five minutes of each of the following activities: Resting 1,

Cycling, and Resting 2. There were two phases to the stressor task. In the first phase,

subjects were subjected to the Stroop color and word test (SCWT) to be performed

on a tablet. The SCWT was followed by the second phase of the stressor task, which

consisted of arithmetic tasks, a component of the stress protocol Trier Social Stress

Test (TSST) [126]. It must be noted that both types of stressors are comprehensively

explained in Subsection 4.6.1. Subjects were instructed to perform backward counting

for five minutes (e.g., counting backward in steps of 13 from any given 3-digit number)

while one of the researchers pretended to keep track of correct and incorrect answers.

Subjects were asked to engage in stationary cycling for the physical stressor part of

the study, starting with low (60W resistance), medium (90W), and vigorous (120W)

for five minutes. Data were continuously acquired during a five-minute resting period
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following both mental and physical stressors. The collection of data was ended after

the final resting stage following the cycling activity.

The last phase of the experiment consisted of a ten-minute semi-structured in-

terview in which the subjects were asked their opinions on ease of wearing and con-

venience, long-term usability, visual appeal, and social acceptability of the wearable

biosensors, followed by a 5-point Likert scale survey on these factors. Even though

our data acquisition approach incorporates both mental, i.e., Stroop and TSST, and

physical stressors, i.e., cycling, in this chapter of the thesis, we only analyze the data

collected throughout the Baseline, Stress, and the first Resting phases and leave the

data obtained from cycling and the second Resting sessions for the subsequent chap-

ter. A group of 32 healthy subjects (10 Females and 22 Males, age=28.4±5.98 years,

BMI=25.61±6.49) volunteered for this study.

7.1. Analyzing and interpretation of the mixed-methods data

This section presents quantitative evaluation composed of data-prepossessing,

correlation, and analysis of agreement of the HRV data, as well as qualitative evalu-

Figure 7.2. Mixed-methods approach for comparison of wearable heart rate sensors.
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ation on the interview data pertaining to subjects’ opinions and observations on the

sensors’ aesthetics, wearability, social acceptance, comfort, and long-term use as shown

in Figure 7.2. Prior to conducting the final analysis of the acquired data, different pre-

processing steps, including signal synchronization, RR detection, artifact removal, and

feature extraction, were performed on the data. Since the majority of phases are stan-

dard procedures and thus nearly identical between several of our studies, in order to

avoid repeating the explanation in each chapter, we have explained the aforementioned

steps in Chapter 4. In this section, we analyzed the HRV data from short-term (5 min-

utes) and basic (10 minutes) recordings. Before preprocessing the data, we segmented

the raw ECG and PPG data into three successive segments, i.e., Baseline, Stress, and

Resting, based on timestamps recorded during the data collection, and then performed

signal synchronization. Data collected from all wearables were preprocessed using the

Kubios HRV analysis toolkit [134] version 3.3., described in Subsection 4.7.1.

7.1.1. Artifact Removal

For this study, we applied multiple levels of artifact removal thresholds to all data

from five HRV monitoring wearables in order to investigate the destructive influences of

artifacts on HRV data quality. Furthermore, we investigated how to effectively recover

noisy data using reliable artifact correction mechanisms. As depicted in Figure 7.3,

Figure 7.3. The amount of artifacts in each device during three consecutive sessions

detected by the automatic correction method.
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stacks of area charts are presented to visualize artifact levels of the five different devices

being used concurrently by all 32 subjects throughout three successive sessions. The

horizontal axis indicates the index of subjects. Due to the combination of all sessions

as a whole, minimum and maximum values of x refer to the first subject in the Baseline

session and the last subject in the last Relaxation session, respectively. The y-axis (in

%) indicates the volume of artifacts accounted for by the automatic artifact removal

procedure for each subject acquired by each wearable.

While Figure 7.3 shows the magnitude of the automatic correction approach’s

usage, Figure 7.4 illustrates the percentage of beats corrected by employing all artifact

correction types. In order to accomplish this, we used an unsupervised clustering

algorithm, K-Means, on the percentage of beats corrected in the aggregation of three

sessions in each row. The number of clusters was set to equal the number of subjects

(32) to visualize the aggregated sessions as summaries for all subjects. Rows were

then clustered hierarchically. It is interesting to note that as a result of hierarchical

clustering, the patterns of similarity between wearables and the type of applied artifact

correction method are clearly evident in clusters. Only two devices belong to the same

cluster: the Polar H10 and the reference device. The rest of the devices are either

grouped with variants of themselves that have undergone a higher artifact correction

threshold or with other equivalent families of devices.

Figure 7.4. Percentage of beats corrected for each device and hierarchical clustering

for grouping the devices.
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The following section compares different devices across all sessions with corre-

lation analysis. Additionally, it presents the influence of different artifact correction

thresholds on the correlation values of the results derived from different devices.

7.1.2. Correlation Analysis

Application of Correlation analysis on two sets of quantitative variables is per-

formed to evaluate whether there is a relationship between them and what is the

strength of such a relationship. While a high correlation indicates that two or more

variables hold a strong relationship with each other, a weak correlation suggests that

the variables are hardly related. The correlation analysis is a statistical method for

analyzing the relationship between two variables and is closely linked to the linear

regression analysis, which is a technique for interpreting the relationship between two

quantitative variables [203]. Variables selected for correlation analysis can be two

columns of any given data set. In our case, we have sets of observations recorded by

multiple devices. These observations are also called samples. Each column of this

sample corresponds to the values from a particular device.

There are several types of correlation coefficients, each with functionalities and

usability of its own. In all correlation coefficients, the strength of the correlation is

assumed to be a value ranging from -1 to 1, where -1 indicates the strongest negative

correlation, 1 indicates the strongest positive correlation, and 0 indicates no correla-

tion. The Pearson correlation coefficient is one of the most widely used techniques

utilized in method comparison studies. For instance, during an investigation to vali-

date the data quality and PPG sensor efficacy of Empatica’s E4 model under various

scenarios, Menghini et al. utilized Pearson product-moment correlation (r) to evaluate

the strength of the linear association between the measurements from the Empatica

E4 wristband, and a reference ECG device [149]. Vescio et al. used it to compare

HRV measurement between the Kyto earlobe PPG sensor and an eMotion Faros ECG

device [145]. In [146], Barrios et al. use Pearson’s correlation as a part of their anal-

ysis to evaluate the accuracy of PPG sensors for HR and HRV measurements in the
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wild. Last but not least, in [204], Lier et al. have conducted a comprehensive study

on validity assessment protocols for physiological signals from wearable technology.

They suggest using cross-correlation as a generalization of Pearson’s correlation for the

validity assessment of PPG and ECG devices at the signal level.

Despite the popularity and widespread use of Pearson’s Correlation, some re-

searchers are against employing it in method comparison studies since this method

is very sensitive to non-normality in the distribution of the variables. However, we

can argue that time-series data related to medical measurements such as heart rate

and HRV are prone to have non-gaussian distributions. Therefore, we should use this

method only to represent the strength of the linear relationship between our variables

and without using the p-value for statistical significance since it assumes that data

is normally distributed. So, the adverse effects of the samples that are not normally

distributed would impact only the significance test rather than the correlation itself.

When the samples are not normally distributed, data has strong outliers, and the

relationship between the variables is not linear, it is recommended to use the Spearman

rank correlation method. The Spearman rank correlation method makes no assump-

tions about the distribution of the data. It evaluates monotonous relationships between

two variables, whether it is linear or not, and it is equivalent to the Pearson correlation

between the rank values of those two variables. In [205], Bulte et al. analyzed the

association between HRV and PRV using Spearman’s rank correlation coefficient for

assessing the level of agreement between heart rate variability and pulse rate variabil-

ity. Gilgen-Ammann et al. used Spearman to assess the correlations between the RR

values from Polar H10, and an ECG holter [147] and Schrödl et al. utilized it to analyze

the correlations between HRV features recorded by earlobe PPG and chest ECG [206].

There are also research cases in which both methods have been used [207].

In our study, we applied both methods to the time domain and frequency domain

features of the HRV values recorded from five heart monitoring devices, namely, three

ECG (Firstbeat Bodyguard 2, Polar H10, and BITalino) and two PPG sensors (Empat-
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Table 7.1. Correlation values with different levels of artifact removal thresholds.

Artifact Correction Firstbeat Bodyguard 2 (Reference Device)

Device
Type Corrected Method RMSSD Mean RR pNN50 HF LF LF/HF

A
U

T
O

M
A

T
I
C

Pearson’s r 1.000 1.000 1.000 0.994 0.998 0.957
Polar H10 0.12%

Spearman’s rs 1.000 1.000 0.998 0.999 0.999 0.998

Pearson’s r 0.484 0.847 0.777 0.342 0.546 0.810
BITalino (r)evolution 3.10%

Spearman’s rs 0.660 0.871 0.804 0.716 0.771 0.757

Pearson’s r 0.521 0.993 0.936 0.227 0.321 0.672
Empatica E4 3.21%

Spearman’s rs 0.809 0.983 0.928 0.862 0.759 0.782

Pearson’s r 0.412 0.993 0.759 0.362 0.540 0.589
Samsung Gear S2 2.58%

Spearman’s rs 0.580 0.991 0.722 0.685 0.743 0.725

M
E

D
I
U

M

Pearson’s r 0.667 0.832 0.850 0.524 0.865 0.616
BITalino (r)evolution 7.58%

Spearman’s rs 0.748 0.883 0.833 0.780 0.910 0.735

Pearson’s r 0.884 0.997 0.961 0.873 0.769 0.798
Empatica E4 4.78%

Spearman’s rs 0.891 0.989 0.938 0.916 0.902 0.840

Pearson’s r 0.603 0.996 0.787 0.656 0.846 0.461
Samsung Gear S2 3.26%

Spearman’s rs 0.585 0.993 0.722 0.696 0.814 0.645

S
T

R
O

N
G

Pearson’s r 0.836 0.832 0.938 0.694 0.807 0.688
BITalino (r)evolution 12.26%

Spearman’s rs 0.882 0.887 0.886 0.859 0.917 0.793

Pearson’s r 0.904 0.997 0.971 0.860 0.821 0.830
Empatica E4 7.77%

Spearman’s rs 0.931 0.989 0.947 0.935 0.907 0.877

Pearson’s r 0.720 0.995 0.831 0.749 0.792 0.526
Samsung Gear S2 6.94%

Spearman’s rs 0.730 0.993 0.774 0.797 0.836 0.703

ica E4 and Samsung Gear S2). Correlation analysis was performed on the aggregation

of sessions to reduce the susceptibility of Pearson’s correlation to the presence of strong

outliers in small samples. Analysis of the correlation between the reference device and

five other devices was performed with three different thresholds of the artifact correc-

tion on the devices with a higher amount of noisy data. Results of the correlation

analysis for all features under study are shown in Table 7.1. The averages of corrected

artifacts of all participants in the aggregation of three consecutive sessions expressed

as the percentage of corrected beats are also presented in Table 7.1.

When the artifact correction was set to automatic, Polar H10 showed the highest

possible correlation for all features with r values of 1 in the time domain, and r values

higher than 0.95 for the frequency domain features. In the rest of the devices, although
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Fig. 6. Scatterplots with linear regression line and standard error depicting the result of artifact removal on the increasing of the
correlation values Manuscript submitted to ACM
Figure 7.5. Scatter plots with linear regression line and standard error depicting the

effects of artifact removal on the increase in correlation values. (a) and (b) illustrate

two time-domain features. (c) and (d) represent two frequency-domain features.
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there were high correlations for MeanRR and pNN50, correlation values dropped dra-

matically in other features, mainly in the frequency domain. It was evident from these

results that further artifact corrections were necessary. In “Medium artifact Correc-

tion”, we could see meaningful rises in all r values. As an instance, compared to the

“Automatic” results, Pearson’s r value became more than double for the Empatica E4,

showing a high correlation in all features. Since the Samsung Galaxy Gear and the

BITalino (r)evolution board still suffered from low correlation rates, we further intensi-

fied the artifact correction to the Strong threshold. At this level, Empatica E4 showed

an even higher correlation for all features, with an average of 0.957 for the time domain

and 0.837 for the frequency domain, which showed a very high correlation with the ref-

erence device. The BITalino (r)evolution board and Samsung Gear S2 also achieved

higher correlations compared to previous thresholds, with averages of 0.868 and 0.848

for the time domain and 0.729 and 0.689 for the frequency domain, respectively.

Figure 7.5 shows the scatter plots with regression lines (lines of best fits) and

the standard error. This line minimizes the squared difference between the line of

best fit and each data point. The X-axis represents the reference device (Firstbeat

Bodyguard 2), and the Y-axis represents the device being compared to the reference.

These plots are similar to Pearson’s correlation results, which show a positive and linear

relationship between two variables. The strongest possible linear relationship occurs

when the regression line’s slope equals 1, and this only happens when the line of best

fit lies at a 45-degree angle. By visual inspection of the plots, it is clearly visible that

only Polar H10 shows a correlation almost equal to 1 in all feature types, each depicted

in Figures 7.5a, b, c, and d. In other devices, the regression line moves towards 1, and

error rates decrease after the application of artifact removal.

7.1.3. Bland-Altman Agreement Analysis

A clinical measurement device, in our case, heart rate monitors, must have suffi-

cient agreements with the reference golden standard devices in the quality of measure-

ment. Correlation and regression analysis performed in the previous section are among
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the most popular and widely used methods in the literature. However, there is a de-

bate that the correlation analysis only evaluates the relationship between one variable

and another, not their differences, and it is not sufficient for thoroughly assessing the

comparability between two different devices [208].

In a series of articles by J. M. Bland and D. G. Altman, an alternative analysis

was proposed based on the quantification of the agreement between two quantitative

measurements by studying the mean difference and constructing the limits of agree-

ment [209–212]. The Bland-Altman plot and analysis, which is also called the limits of

agreement or the mean-difference, is a comparison technique used for making a com-

parison between two measurements of the same variable. For instance, an obtrusive

and expensive heart rate measurement system might be compared with a low-cost and

unobtrusive one. The Bland-Altman (BA) method is a graphical approach in which

the discrepancies between the two methods are plotted against their means [210]. Any

systematic variations between the two pairwise measurements, such as fixed or propor-

tional bias and the intensity of possible outliers, can be identified using Bland-Altman

plots. While y-values depict the differences between the two measurements, the pair-

wise measurements’ averages are assigned to the x-axis. There are also other horizontal

lines parallel to the x-axis, representing the average of differences (estimated bias) and

the limits of agreement. Limits of agreement (LoA) in a Bland-Altman plot are the

averages of the differences ±1.96 times its standard deviation. Computing the 95%

limits of agreement (LoA) helps us understand how far apart the HRV feature mea-

surements recorded by two different devices are more likely to be for most subjects.

The Bland-Altman only depicts the ranges between the upper and lower limits of the

agreement without asserting whether these limits should be considered acceptable. If

a predefined a priori exists as the acceptable limits, it should be verified whether the

limits of agreement on the Bland-Altman plot exceed this allowed difference or not. If

the LoA are within the acceptable limits, we can state that the values inside the mean

±1.96 standard deviation of the differences are not clinically significant, and the two

measurement techniques (devices) are in agreement and can be used interchangeably.

To the best of our knowledge, there is no a priori acceptable limit defined for HRV fea-
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tures hitherto. Some researchers have proposed their own methods, such as accepting

±50% of the mean of the reference value as an acceptable limit or creating acceptable

ratios by calculating the ratio of half the range of limits of agreement and the mean

of averages. We believe that acceptable limits of accuracy and acceptability for HRV

measurements must be issued from professional organizations specialized in this field.

For example, the American National Standard for the advancement of medical instru-

mentation (ANSI/AAMI) accepts heart rate monitors as accurate if their measuring

error does not exceed ±5 bpm or ±10% [213].

Accordingly, we interpret our Bland-Altman results based on visual inspection

of the relevant plots and compare our devices against each other and to the reference

device. Bland-Altman plots are represented in Figures 7.6, 7.7, and 7.8. These plots

represent six HRV features in three different sessions. The artifact correction levels for

the Bland-Altman analysis are automatic for the reference device and Polar H10. For

the rest of the devices, this value is set to Strong. Quantitative results of the BA plots

with two more features (eight in total) are depicted in Tables 7.2, 7.3, and 7.4. In most

of our Bland-Altman plots, the scattered points’ density is higher on the left side of the

plots. Such a problem can easily be solved by performing a log transformation on the

samples. However, we can reveal any possible relationship between the measurement

differences of both methods and the magnitude of measurements by plotting the actual

values of the HRV features. Except for the Polar H10 and the reference device, a

maximum of two strong outliers were removed from the rest of the devices in order

to prevent the serious negative effects of influential outliers on BA results. Since the

number of devices in this study is four (five, including the Firstbeat Bodyguard 2 as

the reference device), instead of showing all 96 BA plots, we decided to bring only

the most important ones. However, detailed statistics of all 96 cases are presented in

Tables 7.2, 7.3, and 7.4.

In the subsequent paragraphs, we will analyze the results of the Bland-Altman

plots based on visual observation and comparison between the multiple wearables under

each individual scenario. The Polar H10 chest band consistently shows the greatest lev-
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els of agreement with the reference device across all features, and its mean bias is close

to zero across all features. We anticipated obtaining similar high-quality data levels

based on our experience through previous data collections using BITalino (r)evolution

kit. Despite high expectations, however, it did not live up to expectations. Due to the

fact that it is a board kit, it is highly susceptible to getting contaminated with arti-

facts when the subject moves. Since the device is not wearable, poor skin contact and

attenuated signal reading can also result from incorrect sensor placement by subjects.

We experienced the same issue in our study as well. Nevertheless, when we examine

the correlation values and Bland-Altman levels of agreement results for the BITalino

(r)evolution kit, we clearly observe the positive effects of appropriate artifact removal

applied to its noisy data. Except for the Stress session in which BITalino (r)evolution

displays indications of systematic errors by producing mean shifts that are significantly

lower or higher than zero, it performs much better than the Samsung Gear S2 PPG

wristband in time-domain features of the Baseline and Recovery sessions, especially in

the normalized LF and HF features. BITalino (r)evolution’s poor results in the Stress

session are consistent with its greater artifact values in that session, as depicted in

Figure 7.3. It is worth mentioning that in the next chapter, we will demonstrate the

remarkable effects of proper noise reduction and data normalization on the stress mea-

surement results using the data obtained from the BITalino (r)evolution kit. While the

Empatica E4 exhibits proportional error in RMSSD only during the Baseline session,

there is no indication of this trend in the two subsequent sessions. The Empatica E4

displays good agreement levels in the Baseline session, even with both PPG wearables

exhibiting errors in the pNN50 time-domain feature. Polar H10 is the only device that

does not exhibit systematic errors in the time-domain features of the Stress session.

The Empatica E4 shows generally good performance for the rest of the stress and rest-

ing session features with a modest proportional error in time-domain features. Among

all the devices studied, the Samsung Gear S2 offers the poorest performance. In almost

all time-domain features, it displays systematic errors. As all errors in time-domain

features have similar patterns, they can be adjusted. However, there are also numerous

errors in the frequency domain, which makes this device the least accurate one, with

the lowest level of agreement with the reference device.
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Table 7.2. Bland-Altman results for the “Baseline” session.

B A S E L I N E

Polar H10 BITalino (r)evolution Empatica E4 Samsung Gear 2

95% Confidence Interval 95% Confidence Interval 95% Confidence Interval 95% Confidence Interval

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

RMSSD

Bias -0.154 -0.348 0.0395 -1.81 -4.83 1.21 -5.76 -7.79 -3.73 -19.9 -27.53 -12.2

Lower LoA -1.172 -1.507 -0.8370 -16.47 -21.71 -11.24 -16.22 -19.73 -12.71 -59.3 -72.49 -46.1

Upper LoA 0.863 0.528 1.1984 12.85 7.62 18.09 4.70 1.19 8.21 19.5 6.29 32.7

Mean RR

Bias 0.0330 -0.0920 0.158 4.67 1.58 7.77 -1.30 -4.63 2.02 0.491 -1.05 2.04

Lower LoA -0.6232 -0.8392 -0.407 -10.66 -16.01 -5.30 -19.09 -24.84 -13.34 -7.467 -10.14 -4.80

Upper LoA 0.6891 0.4730 0.905 20.00 14.65 25.36 16.48 10.73 22.23 8.450 5.78 11.12

pNN50

Bias 0.0664 -0.0607 0.193 -0.103 -1.27 1.07 -2.22 -3.30 -1.15 -9.40 -12.98 -5.82

Lower LoA -0.6007 -0.8203 -0.381 -5.788 -7.82 -3.76 -7.86 -9.72 -6.00 -28.17 -34.35 -21.99

Upper LoA 0.7335 0.5138 0.953 5.582 3.55 7.61 3.42 1.56 5.27 9.37 3.19 15.55

HF (ms2)

Bias 0.389 -3.86 4.64 53.3 -203 310 12.5 -49.1 74.0 -147 -244 -51.1

Lower LoA -21.500 -28.85 -14.16 -1217.8 -1662 -774 -304.6 -411.0 -198.2 -644 -811 -477.6

Upper LoA 22.278 14.93 29.62 1324.4 880 1768 329.6 223.2 436.0 349 183 516.1

LF (ms2)

Bias 3.46 -4.33 11.2 58.7 -45.1 163 67.5 -23.7 159 62.3 -43.6 168

Lower LoA -36.65 -50.10 -23.2 -434.2 -614.0 -254 -393.6 -551.4 -236 -473.3 -656.5 -290

Upper LoA 43.56 30.10 57.0 551.6 371.8 731 528.7 370.9 686 598.0 414.7 781

LF/HF

Bias 0.00960 -0.00863 0.0278 0.222 -0.0462 0.49 0.229 -0.182 0.640 0.275 -0.435 0.984

Lower LoA -0.08432 -0.11584 -0.0528 -1.053 -1.5182 -0.588 -1.968 -2.679 -1.258 -3.450 -4.676 -2.223

Upper LoA 0.10353 0.07201 0.1350 1.498 1.0325 1.963 2.427 1.716 3.137 3.999 2.773 5.226

Figure 7.6. Bland-Altman plots for the “Baseline” session.
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Table 7.3. Bland-Altman results for the “Stress” session.

S T R E S S

Polar H10 BITalino (r)evolution Empatica E4 Samsung Gear 2

95% Confidence Interval 95% Confidence Interval 95% Confidence Interval 95% Confidence Interval

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

RMSSD

Bias -0.185 -0.424 0.0542 -5.22 -7.97 -2.47 -8.69 -11.70 -5.69 -13.20 -17.59 -8.80

Lower LoA -1.392 -1.805 -0.9789 -18.57 -23.33 -13.81 -24.20 -29.40 -19.00 -35.84 -43.44 -28.25

Upper LoA 1.023 0.610 1.4359 8.12 3.36 12.88 6.81 1.61 12.01 9.45 1.85 17.05

Mean RR

Bias 0.0877 -0.0769 0.252 35.8 8.57 63.0 -2.61 -4.30 -0.920 -1.98 -4.70 0.735

Lower LoA -0.7761 -1.0605 -0.492 -99.1 -146.22 -52.0 -11.49 -14.42 -8.569 -15.99 -20.69 -11.289

Upper LoA 0.9515 0.6671 1.236 170.7 123.57 217.8 6.27 3.35 9.195 12.02 7.32 16.723

pNN50

Bias 0.0811 -0.0580 0.220 -2.29 -4.27 -0.306 -2.24 -3.84 -0.633 -9.85 -13.56 -6.13

Lower LoA -0.6492 -0.8897 -0.409 -11.90 -15.33 -8.470 -10.65 -13.41 -7.876 -29.36 -35.78 -22.93

Upper LoA 0.8114 0.5710 1.052 7.33 3.90 10.756 6.17 3.41 8.943 9.66 3.24 16.09

HF (ms2)

Bias -2.23 -10.1 5.60 -259 -379 -139 -130 -245 -14.1 -518 -747 -289

Lower LoA -41.80 -55.3 -28.26 -841 -1048 -633 -725 -925 -525.6 -1674 -2070 -1278

Upper LoA 37.34 23.8 50.88 322 115 530 466 266 665.9 638 243 1034

LF (ms2)

Bias -0.0773 -6.73 6.57 -131 -296 34.4 42.2 -59.0 143 24.7 -109 159

Lower LoA -33.6827 -45.18 -22.18 -916 -1203 -629.7 -469.2 -644.2 -294 -665.8 -897 -434

Upper LoA 33.5281 22.03 45.03 654 368 940.8 553.5 378.6 729 715.3 484 947

LF/HF

Bias -0.00339 -0.0253 0.0185 0.557 0.222 0.893 -0.262 -0.688 0.164 0.881 0.549 1.213

Lower LoA -0.11845 -0.1563 -0.0806 -1.106 -1.686 -0.525 -2.539 -3.275 -1.803 -0.860 -1.433 -0.287

Upper LoA 0.11167 0.0738 0.1496 2.220 1.639 2.801 2.014 1.278 2.750 2.622 2.049 3.195

Figure 7.7. Bland-Altman plots for the “Stress” session.
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Table 7.4. Bland-Altman results for the “Resting” session.

R E S T I N G

Polar H10 BITalino (r)evolution Empatica E4 Samsung Gear 2

95% Confidence Interval 95% Confidence Interval 95% Confidence Interval 95% Confidence Interval

Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper Estimate Lower Upper

RMSSD

Bias -0.471 -0.964 0.0226 -2.69 -6.23 0.845 -0.644 -4.14 2.85 -4.07 -10.3 2.12

Lower LoA -2.963 -3.816 -2.1103 -19.86 -25.98 -13.734 -18.985 -25.02 -12.95 -36.60 -47.3 -25.89

Upper LoA 2.022 1.169 2.8751 14.47 8.35 20.599 17.698 11.66 23.74 28.45 17.7 39.16

Mean RR

Bias -0.0618 -0.507 0.384 8.12 -1.64 17.9 -4.67 -7.56 -1.77 1.01 -3.55 5.57

Lower LoA -2.3571 -3.127 -1.587 -38.22 -55.13 -21.3 -19.57 -24.57 -14.57 -22.04 -29.92 -14.15

Upper LoA 2.2336 1.463 3.004 54.46 37.55 71.4 10.24 5.23 15.24 24.06 16.18 31.95

pNN50

Bias -0.0906 -0.267 0.0860 -1.42 -3.57 0.737 -0.508 -2.50 1.48 -6.20 -9.24 -3.16

Lower LoA -0.9833 -1.289 -0.6778 -11.87 -15.60 -8.141 -11.135 -14.57 -7.70 -21.55 -26.81 -16.30

Upper LoA 0.8021 0.497 1.1076 9.04 5.31 12.766 10.120 6.68 13.56 9.16 3.90 14.41

HF

Bias -11.4 -27.4 4.68 -96.8 -257 63.0 52.0 -57.7 162 -45.4 -191 99.9

Lower LoA -92.5 -120.2 -64.72 -872.7 -1149 -595.9 -513.2 -702.8 -324 -794.1 -1045 -542.9

Upper LoA 69.7 42.0 97.49 679.0 402 955.8 617.2 427.5 807 703.3 452 954.5

LF

Bias -2.45 -8.64 3.75 -57.2 -215 101 118 -109 345 189 -20.0 397

Lower LoA -33.16 -43.88 -22.43 -808.9 -1083 -535 -1072 -1463 -680 -845 -1205.4 -484

Upper LoA 28.27 17.54 38.99 694.5 420 969 1308 916 1699 1222 860.9 1583

LF/HF

Bias 0.0472 -0.00795 0.102 0.284 -0.0510 0.619 -0.00197 -0.210 0.206 0.669 0.265 1.073

Lower LoA -0.2372 -0.33260 -0.142 -1.342 -1.9227 -0.762 -1.07493 -1.435 -0.715 -1.373 -2.072 -0.675

Upper LoA 0.3317 0.23623 0.427 1.911 1.3304 2.491 1.07099 0.711 1.431 2.711 2.012 3.410

Figure 7.8. Bland-Altman plots for the “Resting” session.
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Some of the plots depict samples tending toward limits of agreement, mainly on

the right side of the plot. Accordingly, we can conclude that the variation of mea-

surement on that particular feature strongly relies on the magnitude of measurements.

In addition, the concentration of samples on the left side of the plot also contributes

to some of the proportional errors. It is possible to eliminate these problems in two

ways: by log transformation or by shortening the window size, resulting in an increase

in sample size. Furthermore, it should be noted that a consistent measurement bias

can be corrected by subtracting the mean difference from the second method.

7.1.4. Users’ Views and Experiences: Wearability, Comfort, Aesthetics, So-

cial Acceptance, and Long-term Use

Descriptions of interviews conducted in the last phase of the study are presented

in this section. Specifically, we describe participants’ experiences regarding wearability,

comfort, aesthetics, long-term use, and social acceptance of the wearable sensors. The

Atlas.ti, which is a software tool for qualitative analysis of textual data, was employed

for transcription of the interview data for thematic analysis [100], [102]. Atlas.ti, facili-

tates importing documents, marking quotes from the text, and transforming them into

codes that are subsequently used in theme development. A total of over 100 codes in-

volving participants’ interpretations and experiences were generated, which were later

put to use to develop themes.

Subjects referred to wrist-worn wearables such as Galaxy Gear 2, Empatica E4,

and also the Polar OH1 armband as more comfortable to wear compared to other

devices: “I find wristbands easier to wear on a daily basis.” - S14 (Subject 14). Devices

worn on wrists were described as comfortable and lightweight: “These wearables were

incredibly comfortable to wear.” - S3. Likewise, the Polar OH1 armband was also

reported to be very comfortable, and almost all subjects stated that they did not

realize they were wearing one until when it was time to remove it: “I did not even

notice this armband, that is most likely the comfiest, and easiest to put on and take off.”.

However, since the electrodes of the Empatica E4 constantly press on the skin, some
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participants found it quite sore and heavy after a while: “I felt the Empatica E4 quite

heavy after some time.” - S16. Unlike wrist and arm-worn devices, participants found

Polar H10 chest band ECG wearable more challenging to wear since the bands must be

tightly wrapped around the chest. Furthermore, subjects reported that the chest band

caused discomforting pressure on the abdomen, making them feel uncomfortable when

seated: “While the chest straps are not very tight, they can make breathing difficult

in a seated position.” - S5. Bodyguard 2 and BITalino (r)evolution need three self-

adhesive Ag/AgCl electrodes which attach to the skin at specific locations for accurate

signal acquisition. During the removal of these electrodes, all participants said they

felt uncomfortable: “It hurts when you take off the electrodes.” - S15. Furthermore,

subjects reported that these devices are not convenient for daily use since they need

multiple wires: “I felt something hanging around my body when I used devices with

electrodes.” - S21.

Subjects preferred the Samsung Gear S2 smartwatch over Empatica E4 smart-

watches primarily for its design and aesthetics. They pointed out that in addition

to providing features to measure heart rate data, smartwatches also come with vari-

ous functionalities for daily use. They referred to it as “aesthetically pleasing”, and

“stylish” - S7, S18, S31. In addition, subjects also stated that smartwatches are per-

ceived as more acceptable than other wearables and will be more likely to be worn in

the long term. However, chest straps were hidden underneath clothes, so they could

not be regarded as socially unacceptable by other people. Subjects characterized them

as being mostly sporty in nature: “Wearing these may be limited to specific things,

such as training or gauging fitness levels because they are not as comfortable.” - S10.

Moreover, subjects viewed First Beat Bodyguard 2 and Bitalino (r)evolution as med-

ical equipment. According to them, it is obtrusive, bulky, and would attract people’s

attention and create the impression that the wearer has a medical condition if worn

in public places and over long periods of time: “I imagine they look like the sensors

patients wear in the hospitals and wearing it would give people the impression that you

are wearing it for medical purposes rather than for recreational purposes.” - S23.
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Figure 7.9. Wearability factors based on subjects’ opinions and feedbacks.

A 5-point Likert scale questionnaire was administered to the subjects at the end

of the interview. The results of the questionnaire are shown in Figure 7.9. Results

corroborate the qualitative analysis emphasizing that subjects’ choice of wrist and

arm-worn devices in terms of wearability, comfort, aesthetics, long-term use, and social

acceptance.

7.2. Summary and Final Thoughts

As part of our controlled laboratory study, we utilized six widely used wearable

biosensors to record heart rate variability data during baseline, stress, and relaxation

sessions. Five of these devices were evaluated for their data validity and quality using

quantitative analysis of HRV data. The results indicate that in all sessions, Polar H10

demonstrated the most positive correlation and agreement levels with the reference

device (First beat bodyguard 2), as well as having the lowest artifact levels. It was

followed by the Empatica E4 wristband, BITalino (r)evolution kit, and Samsung Gear

S2 smartwatch. In the agreement analysis, it was found that the wrist-worn wear-

ables exhibited symptoms of systematic and moderate proportional errors along with

much lower correlation levels when compared to the reference device and the Polar

H10, in particular when it came to frequency domain features. Considering that the

data acquisition was conducted in a controlled lab environment, we did not expect to

see excessive amounts of artifacts in any device. In addition, all devices were worn

simultaneously, ensuring that all of them were almost equally susceptible to noise con-
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tamination caused by movement or environmental factors. Despite this, many artifacts

were seen with BITalino (r)evolution kit, Samsung Gear S2, and the Empatica E4.

How these artifacts affect the correlation and agreement analysis was investigated, and

it was concluded that taking proper measures to remove artifacts, such as proper selec-

tion of artifact removal thresholds, could diminish their adverse effects to a minimum.

Thematic analysis was also conducted to analyze the views and experiences of partic-

ipants regarding user acceptance of wearable biosensors. Study results indicate that

when it comes to aesthetics, wearability, and comfort, subjects opt for Samsung Gear

S2, Empatica E4, and Polar OH1, followed by Polar H10, First beat bodyguard 2, and

BITalino (r)evolution kit. In addition, subjects reported that First beat bodyguard

2, BITalino (r)evolution followed by Polar H10 are more likely to provoke negative

comments from other people, which would discourage them from wearing it in public.

Polar H10 was preferred for short-term use, followed by Samsung Gear S2, Empatica

E4, and Polar OH1 for long-term use.

Over the past few years, there has been an increase in the utilization of mobile

and unobtrusive wearable sensors for the measurement and analysis of heart rate vari-

ability. These wearables utilize ECG and PPG biosensors to collect the HRV data and

incorporate lightweight and compact components that can be worn effortlessly and un-

obtrusively. The study in this Chapter provides additional contributions to the body

of knowledge by presenting a mixed-methods design incorporating both quantitative

and qualitative data analysis techniques using six HRV monitoring devices at various

body locations.

In order to choose a suitable device, it is crucial to determine what type of

activity you will be performing and what your predetermined goals are. Researchers

working with affective biofeedback technologies for stress measurement could use the

quantitative data analysis presented in our study to help them choose a sensing device

that is optimal in terms of both usability and user acceptance. For use cases with

low physical movements and activity, where there is no need for extreme accuracy,

wrist-worn wearables i.e. Empatica E4 and Samsung Gear S2, provide a good balance
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between accuracy, wearability, and comfort. For a level of accuracy that is close to

medical grade, we vouch for Polar H10 and Firstbeat bodyguard 2. However, they

cannot be worn for extended periods of time due to limited comfort and wearability.

Multi-modal biosignal analysis can be explored with BITalino because it offers highly

customizable settings and usage.

Certain limitations exist in the wearables that can lead to shortcomings in sit-

uations requiring longer HRV recordings. For example, the relatively short battery

lifespan of the Samsung Gear S2 makes it impractical to record continuously for more

than three hours. One additional example of a drawback is the necessity for contin-

uous Bluetooth connectivity to a third-party mobile or computer application for data

recording in devices such as BITalino (r)evolution kit, which makes such wearables less

suited for recording outside the lab settings.

We obtained our study results in the laboratory settings under identical 70-minute

sessions comprised of baseline, stress, and relaxation sessions, all administered while

the subjects were sitting. We argue that researchers should be aware of the strengths

and limitations of HRV measurement wearables prior to conducting studies. As users

choose devices to monitor their heart rates and HRV, we hope the research in this

Chapter will provide guidance to help them make an informed decision about the

trade-off between data accuracy and usability.
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8. APPLICATION LEVEL PERFORMANCE

EVALUATION OF WEARABLE DEVICES FOR STRESS

CLASSIFICATION WITH EXPLAINABLE AI

We evaluated the performance of different wearables for identifying mental stress

and physical activity. We also employed a state-of-the-art explainable AI (XAI) method

to investigate and demonstrate the importance of features and data preprocessing tech-

niques and their impact on the output of various classification algorithms. Comparisons

of different wearables were performed regarding accuracy and sensitivity of diagnosis.

In addition, several factors, such as differences in the impact of features, were examined

and compared, which will be explained in detail in the following sections.

Data collection and research methodology of this chapter is completely in accor-

dance with the method described for the studies conducted in the laboratory envi-

ronment described in Section 4.5.1. Seven different off-the-shelf heart rate monitoring

wearable devices were utilized in this study (see Figure 8.1): BITalino (r)evolution

board, Firstbeat Bodyguard 2, Polar H10, Zephyr HxM, Empatica E4, Samsung Gear

S2, and CorSense. The technical details of the devices used are listed in Table 4.2.
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Figure 8.1. A brief outline of our system architecture demonstrating several steps.



91

In addition, the first column of this table represents a number of studies in the

literature that have used these devices in the research related to stress detection and

measurement. Moreover, since the price can be one of the important criteria for choos-

ing a wearable device, the price of each wearable device at the time of writing this

thesis is also mentioned in the last column of this table. Further information on the

sensors and data acquisition are detailed in Chapter 4.

8.1. Data Preprocessing for Classification

The importance of data preparation always precedes their analysis, and any form

of neglect at this point can negatively affect the study results. Since real-world data

is not always perfect, it may contain strong outliers and missing values. In the data

preprocessing stage, we first need to replace the missing data caused by some technical

and software problems using imputation. The total amount of incomplete values in

our data was negligible, and the number of missing values due to technical problems

was also insignificant. We performed the imputation only in sporadic cases, where a

small part of a particular session was lost for a specific device. It is a fact that the

normal ranges of physiological signals of different people are not in the same exact

range [214]. Since the intensities and strengths of signals differ and the accuracy with

which different devices record the signals, this means that the features are not in the

same ranges and do not have the same weight. Using such data in machine learning

can lead to misleading results. Scaling is necessary for several ML algorithms to bring

all features to the same level and ensure that a single number with its large magnitude

does not negatively impact the model. Therefore, as part of data preprocessing, we

need to scale the data, meaning that the data need to be transformed to fit within

a specific scale. In many ML classifiers, if features were not in an approximately

standard normally distributed fashion, ML algorithms would not behave well. One of

the common requirements to resolve this issue is the data standardization process.

Except for classifiers based on decision trees, many classification algorithms are

developed in line with the hypothesis that features must obtain values near zero and
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that all feature values fluctuate on equivalent scales. If features are not presented to

these algorithms as a standard normally distributed set, their prediction performance

can be impaired. For example, a Support Vector Machine with an RBF kernel is not

able to properly learn from feature values that exhibit much smaller variances than

others, and it would be dominated only by the features with very large variances. One

of the common requirements to resolve this issue is the process of standardizing the

data. Using robust scalers is ideal if the data contains outliers. There are several types

of scaling algorithms, each employing its own method for estimating the parameters

for shifting and scaling the data. In this study, we tested several different algorithms

to achieve the best results.

The StandardScaler (Z-score Standardization), MinMaxScaler (min-max normal-

ization), and RobustScaler in scikit-learn were used in the preprocessing step. When

the data is distributed in a Gaussian manner, StandardScaler may be more appropri-

ate. It performs the standardization by subtracting the mean and then scaling to Unit

Variance or dividing all the values by the standard deviation. MinMaxScaler subtracts

the minimum value of the feature from each individual value and then divides the result

by the range, which is the difference between the maximum and minimum values of the

feature. Despite preserving the shape of the original distribution, MinMaxScaler does

not alter the information embedded in the features meaningfully. However, it is vulner-

able to the effects of outliers and cannot mitigate their influence. The MinMaxScaler

returns values between zero and one as its default range. RobustScaler applies the

same scaling principle as MinMaxScaler. However, instead of using the minimums and

maximum of a feature, it uses the interquartile range, making it more robust against

outliers.

8.2. Preprocessing Pipeline

The machine learning pipeline is one of the best solutions to make ML models

optimized, scalable, and automated. It is a process that enables ML workflows to be

automated by transforming and correlating data in a model that can later be evaluated
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for results. ML pipeline is an iterative process involving several steps to train a model,

in which each step is repeated in an attempt to improve the results continuously.

Multiple estimators can be chained together using a pipeline. This method is helpful

because there is generally a fixed sequence of operations for data preprocessing, for

instance, standardization, feature selection, and classification.

Furthermore, pipelines ensure that the same samples are used to train transform-

ers and predictors in cross-validation, thus preventing statistics from the test data from

leaking into the trained model. Information leakage from test data to a trained model

may lead to unrealistic and overly optimistic results far from the truth.

8.2.1. Feature Selection

Feature selection is a crucial concept that can significantly impact a model’s

performance by removing irrelevant features. In order to reduce the complexity and

the time required for the execution of computations, which has been greatly increased

due to the utilization of nested cross-validation, feature selection becomes one of the

essential steps in constructing our stress detection model. Following the selection of

a set of popular feature selection algorithms, in order to achieve the best results, a

preliminary comparison was made between the impact of using each of them on model

accuracy (See Figure 8.2).

In order to make fair comparisons, it is essential that all conditions be identical,

especially the quantity and the nature of the data being compared. Considering that

the primary objective of this study is to compare the accuracy of stress detection in

different devices using the same models, all comparison conditions should be the same

for all devices. The final comparison results will not be fair if the number and type of

the features selected vary between each device. Following the initial implementations

of different feature selection algorithms on all training data sets, we found out that

the set of features selected by the Recursive Feature Elimination with Cross-Validation

(RFECV) led to the best classification results. In addition, according to RFECV, the
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Table 8.1. List of the features selected by RFECV*.

Feature type Feature name Description

Mean RR (ms) The Mean of RR intervals

STD RR (ms) Standard Deviation of RR intervals

Time-domain
TINN (ms) Baseline width of the RR interval histogram

HR Max - HR Min Difference of the Minimum and Maximum HR

HRVti The integral of the RRI Histogram divided by the Height of the Histogram

RMSSD (ms) Square root of the mean squared differences between successive RR intervals

VLF power (log) Absolute powers of Very Low-Frequency Power of HRV

Frequency-domain HF power (log) Absolute powers of High-Frequency Power of HRV

LF/HF ratio Ratio between LF and HF band powers

SD2/SD1 Ratio between SD2 and SD1

Nonlinear ApEn Approximate Entropy

SampEn Sample Entropy

*Features in this table are not ordered by importance.

number of features selected to achieve the best classification results was between 12

and 15 out of a total of 25 features for different devices, as seen in Figure 8.2a, and

Table 8.1. Additionally, the list of the top 12 features selected by four different feature

selection algorithms is presented in Table 8.2.

Figure 8.2. (a) Number of features selected by RFECV, (b) Effects of different

methods and the number of optimal features selected by each algorithm.
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Table 8.2. List of the features selected by four different algorithms.

Feature Selection Algorithms

Order RFECV RFE Boruta [215] K-Best

1 Mean RR (ms) Mean RR (ms) Mean RR (ms) Mean RR (ms)

2 STD RR (ms) STD RR (ms) STD RR (ms) STD RR (ms)

3 RMSSD (ms) RMSSD (ms) RMSSD (ms) RMSSD (ms)

4 HRVti HRVti HRVti HRVti

5 TINN (ms) TINN (ms) TINN (ms) TINN (ms)

6 VLF power (log) VLF power (ms2) VLF power (ms2) VLF power (log)

7 HF power (log) LF power (log) LF power (ms2) LF power (log)

8 LF/HF ratio HF power (log) HF power (ms2) HF power (log)

9 SD2/SD1 LF power (%) VLF power (log) VLF power (%)

10 ApEn SD1 LF power (log) SD1

11 SampEn SD2 HF power (log) SD2

12 HR Max - HR Min SD2/SD1 VLF power (%) DFA a2

Ideally, it is better to select the features inside the ML pipeline. However, running

RFECV inside the pipeline could lead to the selection of very distinct sets of features

for every model. Therefore, in order to keep the comparison conditions equal in terms

of the number and the type of features selected for all devices, the selection of 12

features was performed outside the pipeline by Recursive Feature Elimination (RFE).

The decision to choose RFE with 12 features as the feature selection algorithms for

all models was made after comparing the classification accuracy using several different

algorithms with sets of 12 and 15, as depicted in Figure 8.2b.

8.2.2. Grid Search

Grid search is one of the most efficient ways for testing several hyperparameter

settings and finding the model’s optimal hyperparameters. However, it is computation-

ally expensive when the number of combinations in the search space is very high. It

becomes even more problematic when dealing with multiple estimators, each requiring

different hyperparameter optimization. With nested cross-validation, the computation
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Figure 8.3. Hyperparameter optimization in SVM for (a) Polar H10, (b) Empatica E4.

time increases even further. Most studies use random search for tuning the hyperpa-

rameters since it is less expensive. However, we did not want to compromise the quality

and reliability of our results to achieve quick results and much higher speeds of opera-

tions. Figure 8.3 illustrates the effects of different combinations of hyperparameters on

the SVM classifier’s output accuracy for two different devices. These two devices are

Polar H10, and Empatica E4 depicted in Figures 8.3a, and 8.3b respectively. Despite

the overall similarity in both schemes, contour areas are marginally different, and even

these slight differences can result in significant changes in the final accuracies. There-

fore, by defining device-specific personalized ranges for the parameter grids of each

model, we are more likely to achieve the most optimized results for each device. In

other words, it is preferable to configure the hyperparameters for each device separately

due to the fact that a general model that covers all devices may not show the maximum

performance of some of the devices. It should be noted that certain unwritten rules

must be taken into account for defining the parameter grid ranges. For instance, using

an overly broad range that can significantly increase the chances of wasting time and

resources with not much gain in return, and also using specific ranges of values that

can cause overfitting must be strictly avoided.
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8.2.2.1. Nested Cross-validation. Using the k-fold cross-validation method, we can es-

timate how well ML models perform when it makes predictions on data not seen during

training. Both hyperparameter optimization and model comparison and selection can

be achieved using this procedure. However, cross-validation uses the same set of data

when tuning the hyperparameters and evaluating model performance. This can result

in data leakage and lead to unintended overfitting of the model and overly optimistic

biased results [216]. As we have already emphasized the importance of preventing data

leakage and ensuring the fairness and reliability of the results, necessary steps had to be

taken accordingly. The data leakage problem and the optimistic bias caused by it can

be avoided by nesting the hyperparameter optimization procedure beneath the model

selection [217]. This procedure is known as nested cross-validation. A nested cross-

validation strategy allows for a more robust and generalized assessment of the model

performance [218]. It consists of two nested loops, the inner cross-validation loop re-

sponsible for hyperparameter optimization, and model selection is nested within the

outer CV loop responsible for estimating the generalization error. The inner loop is

used for GridSearchCV object and the cross val score object uses the outer loops.

8.3. Classifier Selection

Based on initial experimentation with eight different algorithms, we chose four

that showed the most promising results in stratified cross-validation. The first classifier

used in this study for stress classification is the Support Vector Machine (SVM) with

the radial basis function (RBF) kernel. SVMs are among the most reliable methods

in supervised learning algorithms. In the SVM classifier, a point is plotted in the n-

dimensional space (n = number of features) for each data item, with each feature’s

value representing a value of a specific coordinate. As well as being effective in high-

dimensional settings, SVMs are versatile since they allow different Kernel functions to

be customized for the decision function. SVMs perform best when C and gamma are

chosen appropriately. In addition to the utilization of GridSearchCV for choosing the

best C and gamma values, we carefully examined CV scores and selected the search

space values to prevent overfitting and efficiently combine the parameters. The sec-
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ond classifier selected to be employed, a random forest classifier, fits many decision

tree classifiers on different subsamples of the dataset and combines the averages of the

results in order to prevent overfitting and improve prediction accuracy. The random

forest output is the class chosen by the majority of trees [219, 220]. As the name sug-

gests, randomness is the prime feature of Random Forests. The concept of randomness

was introduced to increase the generalization as a successful attempt to address the

problem of decision trees tending to overfit. Randomization is achieved by training

each tree solely on a random subspace of samples with a random subset of features

pulled from the training set (with replacement).

An additional randomization step results in Extremely Randomized Tree (Extra-

Tree), which is the third classifier we have employed in this study. Being ensembles of

decision trees, both RF and ExtraTree are based on individual decision trees. However,

they differ primarily in two ways. In the ExtraTree classifier, the whole learning sample

is used to train the tree, and no replacement is done, as opposed to RF, which boot-

straps the samples. Moreover, instead of optimum splits, which are commonly done

based on the Gini impurity or information gain in RF, in the ExtraTree, a randomized

top-down split is used [221].

Gradient boosting is a powerful ML method built as an ensemble of weak learning

models. This method relies on the idea of sequentially building models, and those

models must try to reduce the errors of the preceding model [222]. Individual decision

trees are the weak learners in gradient boosting decision trees. All individual decision

trees are connected in series, and each tree attempts to minimize the error of the

preceding one. Light Gradient Boosting Machine (LightGBM) is the fourth algorithm

used in our study. It is an open-source gradient boosting framework that increases

the model’s speed and efficiency. It reduces its memory consumption by following a

leaf-wise tree growth approach and utilization of two additional novel methods, One-

side sampling and exclusive feature bundling [222, 223]. Faster training speed, and

lower resource requirements, make LightGBM one of the best choices when frequent

retraining or fast evaluation of large datasets are required.
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This chapter primarily aims to assess and compare stress detection performance

between different wearable devices using supervised ML algorithms. At first, we decided

to perform the study only with SVM and RF. However, after observing promising

results with RF, we decided to add two additional, more robust decision tree-based

methods to the study.

8.3.1. Reproducibility and Hyperparameter Optimization

Considering that this study was conducted to compare the performance of differ-

ent devices on stress detection accuracy, all comparisons are expected to be fair. As

mentioned earlier, a fair comparison requires identical conditions between all models.

A key component in fulfilling this fairness was to keep the random state equal in all

models. To accomplish this, we used an identical random state value globally through-

out all operations, from primary data shuffling to splitting the data to training and

test sets, as well as the randomness of internal operations of each classifier (e.g., for

generation of pseudo-random number for shuffling the data in support vector machine,

or for controlling the randomness of the bootstrapping of the samples in use while

building the trees in random forest classifier).

In order to achieve the best results, the grid search in our machine learning

model pipeline searched for hyperparameters for all seven wearable devices individ-

ually. Due to the fact that we utilized four different machine learning algorithms,

we obtained a total of twenty-eight different sets of hyperparameters. For exam-

ple, the hyperparameters obtained by the Random Forest classifier using the data

collected with BITalino (r)evolution kit were: ’bootstrap’: False, ’criterion’: ’gini’,

’max depth’: 50, ’max features’: ’auto’, ’max leaf nodes’: None, ’min samples leaf’:

1, ’min samples split’: 2, ’n estimators’: 100 , and finally, the type of data scaler

selected was MinMax.
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8.4. Classification Results

It is common in the literature that many studies only report the test accuracy

results. However, there are studies in which decisions must be taken regarding issuing

intervention instructions or even a simple notification. When such decision-making is

directly related to human health, which is “stress” in our case, it is essential to know

the model performance in terms of true/false positives and negative reports as well.

For this reason, we have reported several metrics, including accuracy, precision, recall,

and F1 score. Furthermore, results of the cross-validation accuracy on training data

are also reported.

Table 8.3 represents the classification results. When we do not have a large

dataset, it is feasible to evade splitting the data into train and test and only perform

cross-validation on the whole data [224]. However, as already described in Subsection

8.2.2.1, by using the regular cross-validation, the same dataset will likely be used to tune

and select a model, which will lead to a biased assessment of the model performance.

In order to minimize this bias, model selection should be treated as an integral element

of the model fitting procedure, and independent trials should be conducted to avoid

selection bias and to exhibit best practices. For this reason, a nested CV is preferred

over a non-nested CV to overcome the performance evaluation bias [224]. In the case of

using nested cross-validation, applying it to the whole data would be sufficient to report

an unbiased estimation of the model performance. Nevertheless, we still retained parts

of the data as our holdout test set. This was done to observe the performance of all of

our 28 models faced with completely new data that did not exist during the training

process and to eliminate any uncertainty regarding the validity of the reported results.

These test sets were utterly intact from the onset and had no role neither in model

selection and tuning nor in feature selection. The split of our training and testing

data in a stratified manner consisted of eighty and twenty percent of the total data,

respectively. It should be noted that by the experimental implementations of the nested

cross-validation on the whole data, we could achieve an average of three to six percent

increased performance in all models. This was due to the fact that in that case, since no
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Table 8.3. Classification results using four algorithms for all seven wearables.

SVM Random Forest ExtraTree LightGBM

Device Session Precision Recall F1 Precision Recall F1 Precision Recall F1 Precisio Recall F1

Firstbeat

Bodyguard 2

Baseline 80.73 78.72 79.71 83.58 79.43 81.45 86.57 82.27 84.36 82.85 80.50 81.65

Stress 86.55 84.40 85.46 82.13 84.75 83.42 83.28 88.30 85.71 81.44 84.04 82.72

Relaxation 73.27 79.48 76.25 79.30 81.11 80.19 81.55 82.08 81.82 77.42 78.18 77.80

Cycling 94.33 86.93 90.48 90.73 89.54 90.13 92.57 89.54 91.03 93.96 91.50 92.72

CV Accuracy 79.40% +/- 3.28 80.96% +/- 1.86 83.30% +/- 2.26 80.67% +/- 2.30

Test Accuracy 79.69% 82.81% 86.72% 82.03%

Polar H10

Baseline 78.80 79.08 78.94 80.57 80.85 80.71 83.88 81.21 82.52 82.26 77.30 79.71

Stress 85.56 81.91 83.70 84.23 83.33 83.78 84.25 87.23 85.71 81.23 84.40 82.78

Relaxation 75.08 80.46 77.67 78.90 79.15 79.02 84.04 84.04 84.04 79.05 81.11 80.06

Cycling 99.30 92.16 95.59 93.51 94.12 93.81 96.05 95.42 95.74 97.35 96.08 96.71

CV Accuracy 80.47% +/- 2.06 81.84% +/- 2.23 84.47% +/- 1.89 82.23% +/- 3.33

Test Accuracy 80.86% 84.38% 84.38% 83.98%

Zephyr HxM

Baseline 79.41 76.60 77.98 83.21 79.08 81.09 85.82 83.69 84.74 82.80 81.91 82.35

Stress 86.14 81.56 83.79 84.01 87.59 85.76 86.71 87.94 87.32 85.46 85.46 85.46

Relaxation 70.99 82.08 76.13 81.43 81.43 81.43 85.25 84.69 84.97 80.07 79.80 79.93

Cycling 96.92 82.35 89.05 94.19 95.42 94.81 93.04 96.08 94.53 92.36 94.77 93.55

CV Accuracy 80.27% +/- 2.51 83.50% +/- 2.32 84.47% +/- 1.87 82.13% +/- 0.87

Test Accuracy 81.25% 84.38% 87.89% 84.38%

Bitalino

Baseline 74.44 80.16 77.19 81.32 89.88 85.38 86.79 93.12 89.84 82.54 84.21 83.37

Stress 83.40 80.78 82.07 85.89 83.53 84.69 91.09 88.24 89.64 86.06 84.71 85.38

Relaxation 78.10 76.98 77.54 87.21 80.94 83.96 88.52 85.97 87.23 79.93 80.22 80.07

Cycling 93.94 89.21 91.51 92.14 92.81 92.47 94.89 93.53 94.20 91.97 90.65 91.30

CV Accuracy 79.00% +/- 2.08 84.88% +/- 2.94 87.16% +/- 2.40 84.01% +/- 2.13

Test Accuracy 80.43% 84.78% 88.26% 85.65%

Empatica E4

Baseline 78.97 75.89 77.40 82.35 79.43 80.87 84.36 82.27 83.30 78.82 80.50 79.65

Stress 81.25 78.37 79.78 82.44 81.56 82.00 79.66 83.33 81.46 82.48 80.14 81.29

Relaxation 68.34 75.24 71.63 76.71 80.46 78.54 79.80 79.80 79.80 77.24 78.50 77.87

Cycling 92.31 86.27 89.19 94.70 93.46 94.08 95.24 91.50 93.33 93.33 91.50 92.41

CV Accuracy 75.78% +/- 0.82 80.28% +/- 3.45 81.35% +/- 3.11 79.88% +/- 2.67

Test Accuracy 81.25% 83.98% 82.42% 81.25%

Samsung

Gear S2

Baseline 77.06 76.24 76.65 82.56 82.27 82.42 85.47 87.59 86.51 81.36 80.50 80.93

Stress 78.76 72.34 75.42 83.15 82.27 82.71 86.13 83.69 84.89 78.32 79.43 78.87

Relaxation 69.54 78.83 73.89 80.00 84.69 82.28 82.54 84.69 83.60 79.10 80.13 79.61

Cycling 87.68 79.08 83.16 94.24 85.62 89.73 91.10 86.93 88.96 89.86 86.93 88.37

CV Accuracy 75.30% +/- 2.08 79.40% +/- 1.93 83.01% +/- 0.92 78.12% +/- 2.80

Test Accuracy 80.08% 83.59% 83.98% 79.30%

CorSense

Baseline 78.86 83.63 81.17 79.74 86.83 83.13 80.72 87.90 84.16 81.19 87.54 84.25

Stress 81.82 83.27 82.54 81.72 84.34 83.01 83.28 86.83 85.02 85.36 85.05 85.20

Relaxation 81.06 69.48 74.83 80.83 62.99 70.80 85.47 64.94 73.80 79.70 68.83 73.87

CV Accuracy 79.74% +/- 3.63 79.05% +/- 3.25 81.98% +/- 3.47 80.17% +/- 3.34

Test Accuracy 84.44% 82.22% 80.56% 80.56%

data was reserved for the test, consequently, more data was available for training. Since

this study is primarily devoted to the comparison of the stress detection performance

across multiple wearables, we will not be focusing on the models and comparing the

algorithms in great detail. However, a cursory glance at Table 8.3 suggests that,
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overall, ExtraTree shows promising results and is proving to be more effective than

the other algorithms. On the other hand, SVM appears to be the least effective of the

four classifiers in this study. Further visual inspection of the table indicates that the

Random Forest and LightGBM algorithms appear to have performed almost equally

well as the ExtraTree algorithm. As described in Section 8.3, since the ExtraTree can

be considered as an enhanced version of Random Forest, in order to avoid increasing

the number of detailed comparisons, we will continue this section by closer inspection of

device performances with two algorithms, namely LightGBM, and ExtraTree classifiers.

As expected, wearables equipped with ECG sensors that can record raw data with

higher quality [19] maintained their superiority in stress classification applications as

well. In the ExtraTree classifier, the average test accuracy of ECG and PPG wearables

is 86.81% and 82.32%, respectively. Similarly, for LightGBM, it is 84.01% and 80.37%.

These results indicate that ECG wearables performed 5.45% and 4.52% better than

PPG wearables with ExtraTree and LightGBM models. In order to examine the results

of the different classes in more detail, the Precision, Recall, and F1 Scores for each class

are also accessible using this table. These results are obtained by averaging the values

of these metrics obtained from the outer folds of the nested cross-validation and are

a valid criterion for presenting the performance of models on a large portion of the

data. The class-wise comparison of these metrics in the top two algorithms shows that

almost all devices score above 80% on all three metrics. We observe excellent results

in the physical stress class (Cycling). It proves that the magnitudes of changes in the

HRV features while performing rigorous physical activity are so intense that nearly all

metrics for this class achieve scores above 90%. It was anticipated that all models would

face difficulty choosing between recovery and baseline classes because of the remarkable

similarity. However, despite the fact that compared to other classes, we can see slightly

lower performances in these two classes in all models, our two top-performing models

classify these two classes with excellent scores.

The results in Table 8.3 provide a brief overview of the overall differences be-

tween our seven devices. Moreover, the normalized confusion matrix for all models is

depicted in Figure 8.4. However, we need to take further steps to make a valid judg-
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Figure 8.4. Normalized confusion matrices using four classifiers for all devices.

ment and a final statement. Since comparing all of the 28 models with at least five

metrics in each can cause unnecessary confusion and create a new perplexing prob-

lem, we make a statistical comparison of all the metrics of the two top algorithms

cumulatively. Following Shapiro-Wilk and Levene’s tests to examine the normality of

distributions and equality of variances in our results, since the assumptions of normal-

ity were not met, we decided to utilize the Kruskal-Wallis test [186, 187]. As seen in

Figure 8.5, in the LightGBM models, Kruskal-Wallis showed a significant main effect

(p = 0.009). Hence we continued with posthoc analysis. For this, pairwise comparisons

were performed with Dunn’s test, and p-value adjustment following multiple pairwise

comparisons was carried out using Holm’s method [225]. For the results obtained with

LightGBM for all classes, posthoc analysis showed significant differences only between

BITalino (r)evolution and Samsung Gear S2 wearables (p = 0.028) (See Figure 8.5a).

A similar result was repeated in the stress class (p = 0.024). Simply put, using Light-

GBM, the only statistically significant difference exists between the ECG device with

the best results (BITalino (r)evolution) and the PPG wearable with the lowest results
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Figure 8.5. Kruskal-Wallis comparison followed by Dunn’s test for all devices in (a)

All sessions with LightGBM classifier, (b) Stress session with LightGBM classifier, (c)

All sessions with ExtraTree classifier, and (d) Stress session with ExtraTree classifier.

(Samsung Gear S2), and there exists no statistically significant difference between other

devices (See Figure 8.5b). Repeating the same statistical approach to analyze the re-

sults obtained from the ExtraTree classifier results in more conservative results (See

Figure 8.5c). Here, in the all-classes comparison, there are significant differences be-

tween BITalino (r)evolution and two other PPG devices (Empatica E4 and CorSense,

and between Zephyr HxM and Empatica E4 as well. In the stress class, similar to the

LightGBM, there is only a statistically significant difference between the two ECG and

PPG devices (BITalino (r)evolution and the Empatica E4) (See Figure 8.5d).
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8.4.1. Effects of Multimodality

Wearable devices in this study showed great potential for producing reliable stress

detection and classification results, especially those equipped with ECG sensors. How-

ever, up until this point, all comparisons in this study were made solely based on HRV

data calculated from cardiac signals. Considering the fact that HRV is a valid criterion

for detecting psychophysiological changes, a critical question to address is whether col-

lecting the data solely from a single modality (cardiac signals in our case) would be

sufficient for stress detection. Since user expectations from different applications may

differ, an appropriate answer can be that it would be best for the end-user to decide

on this issue, keeping both the pros and cons of utilizing multimodality in mind. For

instance, by employing multimodality, depending on the availability of multiple sensors

on a device, we will be limited to using a particular type of device or even a combination

of two or more devices simultaneously. In addition to bringing unobtrusiveness, this

will lead to extra computational load and higher energy consumption. In this section,

we will investigate the effect of multimodality by comparing the classification results

with and without multimodality.

Among all devices employed in this study, only the Empatica E4 is equipped

with an EDA sensor capable of capturing EDA biosignals at a rate of 4 Hz. To bring

another modality into the study, we first performed the necessary preprocessing and

feature extraction on this EDA data (see section 4.7.2). As seen in Figure 8.6, the

Tonic and Phasic components of the EDA signals were extracted using NeuroKit2, and

a closer look at the EDA data from five subjects is demonstrated at the bottom of the

exact figure.

Based on the results reported in Table 8.4 and displayed in Figure 8.7, we achieved

a significant improvement in classification results with the addition of a single additional

modality (EDA). The Empatica E4 (with EDA) shows the highest accuracy of all

devices. This record-breaking increase includes all models, with a staggering 90.62%

accuracy with the ExtraTree algorithm. These results indicate that a wearable with
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Table 8.4. Classification results for the Empatica E4 with and without EDA.

SVM Random Forest ExtraTree LightGBM

Device Precision Recall F1 Precision Recall F1 Precision Recall F1 Precisio Recall F1

Baseline 78.97 75.89 77.40 82.35 79.43 80.87 84.36 82.27 83.30 78.82 80.50 79.65

Relaxation 68.34 75.24 71.63 76.71 80.46 78.54 79.80 79.80 79.80 77.24 78.50 77.87

Empatica E4
Stress 81.25 78.37 79.78 82.44 81.56 82.00 79.66 83.33 81.46 82.48 80.14 81.29

Cycling 92.31 86.27 89.19 94.70 93.46 94.08 95.24 91.50 93.33 93.33 91.50 92.41

CV Accuracy 75.78% +/- 0.82 80.28% +/- 3.45 81.35% +/- 3.11 79.88% +/- 2.67

Test Accuracy 81.25% 83.98% 82.42% 81.25%

Baseline 76.35 80.14 78.20 83.99 83.69 83.84 85.05 84.75 84.90 85.92 86.52 86.22

Relaxation 74.92 73.94 74.43 80.19 81.76 80.97 82.79 83.06 82.93 81.41 82.74 82.07

Empatica E4

HRV + EDA

Stress 79.20 76.95 78.06 86.28 84.75 85.51 86.11 87.94 87.02 86.45 83.69 85.05

Cycling 91.39 90.20 90.79 93.46 93.46 93.46 95.24 91.50 93.33 90.97 92.16 91.56

CV Accuracy 77.15% +/- 1.90 83.40% +/- 3.46 84.67% +/- 3.86 83.40% +/- 4.23

Test Accuracy 82.81% 89.84% 90.62% 88.28%

a single type of sensor (ECG), regardless of how well it records high-quality HRV

data and leads to high classification accuracy, is still not a silver bullet. Moreover,

with respect to the fact that HRV is a robust criterion for detecting stress, bringing

a second type of sensor to the table, and exploiting multimodality can lead to much

better results.

Figure 8.6. Sample of electrodermal activity for five participants.
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Figure 8.7. Comparison of (a) Test accuracy and (b) F1-Score performance using four

classification algorithms on data from seven devices.

8.5. Model Explainability

In many applications, understanding why a model reaches a particular prediction

is just as essential as its accuracy. Nowadays, achieving high accuracies with very

complex models is often possible. However, the model behavior and identifying the

factors involved in the outcome becomes very hard to interpret [226] (see Figure 8.8).

The ever-growing application of black-box machine learning models leads to the crucial

need for justifying and interpreting their decisions. This challenge is a significant

barrier to ML adoption in critical applications, such as healthcare. Even though ML

models have made it considerably easier to predict the feature health conditions of an

individual, they still fall short in interpretability [227]. Identifying and interpreting

which features contribute most to a particular prediction in different models can be

very useful, mainly if such analysis can be applied to specific classes and individuals.

Therefore, model interpretability can become crucial in ML problems related to early

detection and intervention in human health [228]. An essential aspect of investigating

the models’ explainability in the context of this study is to determine whether the
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Figure 8.8. Explainibility of AI, helping clinician, psychologists, and-users better

understand the model.

same features from devices with different sensing technologies (ECG vs. PPG) have

similar effects on model outputs and classification results. Lime, Dalex, and SHAP

are examples of analytical tools in the area of Explainable Artificial Intelligence (XAI)

[226], [229, 230]. These tools have evolved for model interpretation and demystifying

black-box models over the last few years and are becoming more popular each day.

8.5.1. SHapley Additive exPlanations (SHAP)

In this study, we utilize SHapley Additive exPlanations (SHAP) for explaining

our models. SHAP is an open-source game-theoretic approach for explaining the results

of ML models. It can probably be considered state-of-the-art in XAI. Shapley value is

a term used in game theory. It is a solution concept named in honor of Nobel Prize-

winning economist Lloyd Shapley. Derived from the Shapley values of the original

model’s conditional expectation function, SHAP values are unified measures of feature

importance [226]. Applying SHAP analysis to our data and model outputs results in

the production of matrices containing the SHAP values. These matrices are in the

same dimension as the original data matrix. To provide a better comprehension of
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Figure 8.9. Feature influences with SHAP on all classes, with (a) ExtraTree, and (b)

LightGBM models using the Firstbeat Bodyguard 2 wearable device.

the subject for the readers who may not be familiar with the game theory and the

above concepts, it would be beneficial to provide a brief example for the whole concept

and extend it to its application in this study [231]. The game theory requires at

least two elements: a game and its players. Assuming we have a classification model,

the “game” would be responsible for producing the model’s results. In this example,

the “players” have the role of features in our model. Shapley quantifies each player’s

contribution to the game, while SHAP quantifies each feature’s contribution to the

prediction made by the model. For instance, in our case, SHAP values can show the

effects of the RMSSD feature on each class, and this interpretation can be performed

either globally or locally. For the global interpretation, SHAP can show how much each

feature impacts the prediction of each class, either negatively or positively. Unlike the

traditional feature importance plot, SHAP can generate plots that can demonstrate

each feature’s positive or negative impacts on the target. In the local interpretation,

each observation receives its own respective set of SHAP values [232]. By this means,

the interpretation of individual subjects becomes possible. This is a significant increase

in transparency compared to the conventional feature importance algorithms that only

display the results of the whole population. Using stacked bar plots, Figure 8.9 shows

the mean of SHAP values for all features. This is equivalent to the average impact of

each feature on the output of two top-performing models, ExtraTree, and LightGBM,
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depicted in Figures 8.9a, and b, respectively. Data for these two models came from

Firstbeat Bodyguard 2. As seen in both plots, the time-domain feature, Mean RR,

shows the highest impact on the overall output of the model in both models. While the

nonlinear feature ApEn is in second place with the ExtraTree classifier, it is in third

place using LightGBM. Positions of the second and third-ranked features in the two

models are in the opposite order. Although we can see changes in several steps in the

ranking order of some of the features, from the top of the list to its bottom, there is

a high overall similarity between the importance of the features in both models. From

a further extensive and class-wise perspective, we can interpret these plots as follows.

While in the ExtraTree, Mean RR influences the prediction of each class in almost the

same magnitude, in LightGBM, this influence is doubled for the Baseline and Cycling.

ApEn has the most significant influence on predicting Stress in both models, and the

frequency-domain feature LF/HF has little to no impact on predicting the physical

stress (Cycling) session.

As a final example for Figure 8.9, the effect of the SampEn nonlinear feature on

the estimation of the Stress class is almost twice the sum of its influences on the other

three classes. In summary, these plots allow us to gain an understanding of what our

machine learning model has learned from the features. These analyses demonstrate that

two different models behave very similarly on the same device and that the identical

features in two different models have more or less the same effects on the model output.

Nonetheless, there are also some differences in the order of importance of the features

in the overall output of the two models and the extent to which they influence these

two models in choosing a particular class as an output. This shows that regardless of

the type of device used, an in-depth interpretation of the stress level measurement and

the importance of the features involved can be strongly influenced by the type of the

employed model.

It was theoretically possible to select the best features through SHAP by embed-

ding it in the machine learning pipelines. We could achieve even better classification

results by adopting such an approach, but we avoided doing this for two reasons.
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Firstly, in that case, we would obtain sets of features that may be different to certain

degrees for each classification algorithm and different wearables. Since we arranged all

the comparison conditions to be equal to achieve a fair comparison, the set of features

used should have been the same as well. Secondly, due to the high computational cost

of SHAP, if it was embedded inside our pipelines that were equipped with nested-CV

and grid search, which both are very time-consuming on their own, achieving the result

in a reasonable time would become beyond the computing power of our equipment.

In Figure 8.10, we present a different analogy, comparing two devices with a single

classifier. In this comparison, we have two devices of the type ECG and PPG, in Figures

8.10a, and b, respectively. In Figure 8.10c, we present the effect of multimodality on

the model’s output. There are differences in the order of feature impact rankings in

all three plots. The amount of differences seen in 8.10a are naturally greater due to

the presence of EDA features. However, a similar pattern can be seen both in the

order of the features and in the influence of individual features on the model’s output.

For example, ApEn has the greatest impact on stress class prediction in all three

models, and frequency-domain features are in the last of the rankings. This shows that

even similar models behave differently with devices of different types (ECG, PPG, and

EDA), and feature importances also show higher differences.

In order to examine the effects of features on each class more precisely, it is

necessary to zoom in to a more detailed view. Figure 8.11 shows horizontal scatter

plots for each feature with different color gradients. Feature importances and feature

effects are aggregated in these two class-wise summary plots. Each point represents a

Shapley value for a feature and an observation on these scatter plots. While features

are positioned on the y-axis, Shapley values of their instances are positioned on the

x-axis. For better visualization, overlapping points are jittered.

The Intensity and gradient of the colors for each instance indicate the feature

values from low (blue) to high (pink), as shown in the color bar on the left side of

the plots. We already examined the behavior of ApEn in Figure 8.10. ApEn had the
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Figure 8.10. Feature influences with SHAP on all classes, with ExtraTree classifier

using the (a) ECG (Firstbeat Bodyguard 2), (b) PPG (Empatica E4), and (c) PPG

+ EDA (Empatica E4 + EDA) data.
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Figure 8.11. Feature influences with SHAP for the Stress class, with ExtraTree

classifier using (a) Firstbeat Bodyguard 2, and (b) Empatica E4 data.

most impact on predicting the stress class in both devices. We can now investigate the

same behavior in a more detailed and class-wise perspective, using Figures 8.11a, and

b for Firstbeat Bodyguard 2, and Empatica E4 wearables, respectively. Upon close

investigation of the plots in Figure 8.11 we can realize that with higher (more pink)

values of ApEn, the model is more likely to classify the class as stress, whereas with

lower (more blue) values, it is less likely to do so. In other words, a high (more pink

dots) level of ApEn has a high and positive (more towards the right dots) effect on the

class, being predicted as stress. In a similar fashion, we can say that (HR Max - HR

Min) is negatively correlated with the class being predicted as stress.

In another example of using SHAP to gain a deeper understanding of the results

from various models, we examined the effects of different data scaling methods on the

outputs obtained from different models. As seen in Figure 8.12, The Random Forest

classifier applied to the same sets of data scaled with two distinct types of scalers

produces almost identical results in all devices (See Figures 8.12a, and b). There

are no visible differences in the classification results, features’ importances, or their

impact on the classification result. Although not shown in this figure, the ExtraTree

classifier is no different and follows the same behavior as well. However, as seen in
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Figure 8.12. Effects of using different types of scaling in model output with (a)

Random Forest - Robust scaling, (b) Random Forest - MinMax scaling, (c)

LightGBM - Robust scaling, and (d) LightGBM - MinMax scaling.

Figures 8.12c, and d, the LightGBM classifier shows different results for the data

scaled with different types of scalers. This is due to the fact that the MinMaxScaler

is exceptionally sensitive to the presence of outliers. However, in the RobustScaler

procedure, scaling and centering calculations are based on percentiles, and as a result,

outliers of a considerable magnitude do not affect the outcome much. Since boosting

methods make trees fix the errors made by their predecessors and build each tree on

the residuals of previous trees, outliers will have a much larger residual than non-

outliers, making LightGBM and other boosting methods, in general, more sensitive to

outliers. This shows that such behavior may be caused by combining MinMaxScaler



115

with a boosting algorithm. In this case, it would be sufficient to minimize the effects of

outliers as much as possible, for example, by using a scaling method that is robust to

outliers. This shows that some models may also be sensitive to certain preprocessing

steps. In such a case, even if accurate classification results were obtained, detailed

analysis and study of the effects of different features based on this model will not be

very reliable. Prior to implementing ML models, it is necessary to be aware of their

possible weaknesses, shortcomings, and compatibilities to avoid any factors that may

lead to undesirable predictions by a particular algorithm. All these details have been

carefully taken into account in this study, and appropriate measures have been taken

to overcome all potential challenges.

In line with the primary objective of this study to compare the performance of

wearable devices in stress measurement and to achieve a more robust conclusion, we

employed SHAP for model explainability. By doing so, we were able to gauge the

performance of the devices more accurately and make much more fair decisions when

choosing between them. Furthermore, the purpose of using SHAP for the explainability

of our models was to analyze our results and demonstrate the hidden potentials XAI

can offer to studies related to affective computing. The highly functional and unique

capabilities of SHAP in examining the factors involved in model decision-making and

the comprehensiveness of SHAP values as being unified measures of feature importance

can provide new opportunities for researchers. Using SHAP, researchers can scrutinize

the factors involved in the occurrence, increase, or decrease of mental stress in the

general study population or even in a particular individual.

8.6. Summary and Final Thoughts

In this chapter, a total of seven wearable sensors were selected for stress de-

tection in four classes, namely Baseline, Stress, Relaxation, and Cycling. With four

traditional machine learning models, precise tunings were carried out to ensure un-

biased results. Results showed that statistically significant differences exist between

some of the devices in the classification performance. It is a fact that a statistically
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significant difference may prove useful for researchers who want to achieve the highest

performance in stress level measurement applications and wish to gain insight into the

importance and influences of different features. Nonetheless, as far as the end-user

is concerned, all devices deliver very similar results, and there is not much difference

in the stress measurement performance for the end-user. Consequently, they are all

acceptable for daily use. As shown in the previous study [19], the end-users’ ultimate

decision may be influenced more by wearability and unobtrusiveness than by seemingly

minor differences in performance.

As part of this study, we also used SHAP to make our machine learning models

explainable. Using SHAP, we showed that there could be differences between models

in the way they prefer one class over another. This was because there were differences

in the amount of influences that features had on model output in different models. In

some respects, this proves that the effects of HRV features on stress reported in similar

studies must be taken with a grain of salt. In addition, we also examined the effect of

different preprocessing methods on the output of some models.

Our results showed that ECG wearables demonstrate slightly better performance

in all our sessions. Nonetheless, since the ultimate goal of this article is to study the

comparison of different devices in the context of stress detection; thus, readers might

expect specific devices to be announced as the winner of this analysis. However, we

must be cautious in announcing the study’s findings in order to avoid creating a biased

opinion that could lead to a far-fetched theory. It would be possible to render a final

verdict on the superiority of a particular device if, under all conditions, very consistent

and similar results were obtained. However, this was not the case. We found that the

choice of classifier, and even differences in the data normalization and scaling methods,

can influence the model’s outcome and change the feature’s importance.

Furthermore, we found that multimodality improves stress detection performance

in a very significant way. While this is true, it still remains difficult to say definitively

whether using the best performer single-sensor ECG device or a multi-sensor device
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like the Empatica E4 with PPG and EDA sensors is more effective. Last but not least,

we observed that all of the devices used in this study showed relatively high and nearly

similar performance in the stress detection application. As a result, the final decision

for choosing a particular wearable device over another can be based on the inclusion

of additional factors such as personal preferences, expectations, and the pros and cons

of each device.
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9. CONCLUSION

In the first chapters of this thesis, we explained in detail the basics such as

terms related to emotion and affect recognition and their regulation. In addition, we

explained concepts such as the types and properties of sensors and actuators used in

emotion detection, biofeedback, and reregulation. In the following, in order to further

reveal the objectives of this thesis and help the reader gain a better understanding of the

subject, we listed some of the similar studies in the literature. Our methodology, which

included the types of devices we used, how we collected data, and how we processed

data, was explained in Chapter 4 in detail.

An unobtrusive and smart mechanism was implemented in Chapter 5 to detect

high stress levels and suggest appropriate relaxation methods (e.g., traditional or mo-

bile) when users face high levels of stress in their daily lives. Also, we developed a

system to suggest relaxation methods based on the user’s physical activity and envi-

ronment. While the majority of studies in the literature only detect individuals’ stress

levels and have no mechanism to recommend regulation techniques as an intervention,

our proposed mechanism measures participants’ stress levels and helps them regulate

their stress levels using a series of popular practices such as yoga, mindfulness, and

mobile-based mindfulness apps. The results of this study indicate that yoga and tra-

ditional mindfulness perform better than application-based mindfulness methods that

are based on mobile phones.

Chapter 6 was the result of a study in cooperation with HCI researchers, in

which users’ priorities and preferences were put first by letting them develop patterns

for regulating emotions based on their preferences. By involving the subjects in the

design and personaliziation of haptic patterns, Chapter 6 examined haptic modalities

for emotion regulation. During the stress induction tasks, where stress and heart rate

variability were evaluated, it reports on the perceived characteristics of these haptic

patterns as well as their influence on emotion regulation. The study indicates that
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subjective and objective measures of stress were decreased under haptic patterns than

without them. Low-frequency vibrations were the most effective at regulating stress.

Due to the constraints of the two devices, the ability to personalize vibrotactile and

thermal patterns was limited to a certain extent. The experiment, however, was con-

ducted in a laboratory setting and should be evaluated in a real-life stressful scenario.

These findings offer new design possibilities for affective well-being regulation technolo-

gies, including designs for thermal and vibrotactile biofeedback with personalized and

dynamically adjusting patterns.

Having introduced several factors contributing to a reduction in signal quality,

we conducted a quantitative and qualitative analysis of different wearables in Chapter

7. We showed that if researchers and end-users intend to use wearable devices for daily

use or research, they need to be aware of the strengths and limitations of each wearable

and consider the trade-offs between their preferences and the actual capabilities of each

device. Additionally, we showed that environmental noises could have a very destruc-

tive effect on signals and make the data recorded by some devices useless. However,

researchers can dispel the myth that PPG wearables are unreliable for recording and

analyzing HRV data by choosing appropriate noise reduction techniques.

In Chapter 8, we discussed critical issues regarding ethical concerns from the

data point of view, the confidentiality of human health data, and the great importance

of the accuracy and fairness of the diagnoses issued by machine learning models in

applications related to mental well-being. We also discussed the methods to avoid

biased conclusions and showed how even minor things such as choosing the type of

data normalization algorithm and choosing the model’s hyperparameters can affect

the model’s output dramatically.

Furthermore, we showed how we can make our black box ML model understand-

able for the end users, clinicians, and psychologists so that they can easily understand

the cause and effect relationships of different features and classes by utilizing a state-

of-the-art explainable AI method.
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Finally, and following the various studies that we have done in the scope of this

thesis, we believe that by properly aggregating a combination of ideas and mechanisms

implemented in this thesis, it would be possible to implement a fully functional and

efficient stress detection mechanism that is unobtrusive in terms of hardware and reli-

able and always available in terms of software. The final product would definitely be a

combination of things such as proper knowledge regarding the selection of the type of

sensor and wearable, selection of biosignals and features with the greatest impact on

ML model output, optimal utilization of the system-labeled data extracted from the

context information and the labels set by users, implementation of an accurate and

precise stress detection model with the ability to adapt to the environment and the

user, implementing effective feedback and intervention system to suggest both tradi-

tional practices like yoga, and newer technologies such as haptics, integrating the last

two, and finally encouraging the users and public to use such devices. It must be noted

that encouraging people to use such a system will ultimately lead to the main goal

of the research and investment in this area. We believe that by motivating the users

to participate in the design of different stages of the detection and intervention sys-

tems, the final product will become more user-friendly, more wearable, and eventually

be used more. Moreover, to close the gap between psychologists, computer scientists,

and HCI experts and to help them increase their mutual understanding of each other

and their interdisciplinary collaborative projects in affective computing, a common and

more understandable language should be put into use. We believe that the use of ex-

plainable artificial intelligence by us, that is, computer science researchers, will be a

big step towards achieving this goal.

One of the limitations regarding the studies conducted in this thesis, which is

also prevalent in similar works, is that the number of subjects and devices available

for data collection is limited due to financial, human, and time constraints in academic

research groups. This issue can lead to specific problems in the future. For instance,

the amount of collected data is not sufficient for applying deep learning algorithms,

and in case of data loss from any user or their withdrawal from participation, it will be

almost impossible to compensate for the lost data. Another limitation of our study in
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Sections 7, and 8 is that it was impossible to collect data in real life due to the variety

of devices. No matter how unobtrusive our wearables are, users could not carry out

their daily life routine with seven devices simultaneously connected to their bodies.

The main purpose of some of the studies in this thesis, which were conducted

in a laboratory environment, was to compare different wearables. Therefore, in order

to achieve a fair comparison, a level playing field must be provided for all users and

devices. Since it was almost impossible to achieve such conditions in uncontrolled

environments outside the laboratory, we had to choose the laboratory to conduct the

experiments. The other models used in this thesis (apart from the models in Chapter 8)

have all passed their tests in everyday life. In order to check the daily life effectiveness

of the laboratory models mentioned in Chapter 8 of this thesis, they need to be tested

in daily life, which can be an interesting topic for a future study.
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Health: Taking Stock of a Decade of Studies and Charting Future Research Direc-

tions”, Proceedings of the 2019 CHI Conference on Human Factors in Computing

Systems , p. 1–17, Glasgow, Scotland UK, 2019.

72. Laborde, S., E. Mosley and J. F. Thayer, “Heart Rate Variability and Cardiac

Vagal Tone in Psychophysiological Research - Recommendations for Experiment

Planning, Data Analysis, and Data Reporting”, Frontiers in Psychology , Vol. 8,

p. 213, 2017.

73. Lane, R. D., K. McRae, E. M. Reiman, K. Chen, G. L. Ahern and J. F. Thayer,

“Neural Correlates of Heart Rate Variability during Emotion”, Neuroimage,

Vol. 44, No. 1, pp. 213–222, 2009.

74. Akselrod, S., D. Gordon, F. A. Ubel, D. C. Shannon, A. Berger and R. J. Cohen,

“Power Spectrum Analysis of Heart Rate Fluctuation: A Quantitative Probe of

Beat-To-Beat Cardiovascular Control”, Science, Vol. 213, No. 4504, pp. 220–222,

1981.

75. Boonnithi, S. and S. Phongsuphap, “Comparison of Heart Rate Variability

Measures for Mental Stress Detection”, Computing in Cardiology , pp. 85–88,



131

Hangzhou, China, 2011.

76. Frank, D. L., L. Khorshid, J. F. Kiffer, C. S. Moravec and M. G. McKee, “Biofeed-

back in Medicine: Who, When, Why and How?”, Mental Health in Family

Medicine, Vol. 7, No. 2, pp. 85–91, 2010.

77. Umair, M., C. Sas and M. H. Latif, “Towards Affective Chronometry: Explor-

ing Smart Materials and Actuators for Real-Time Representations of Changes in

Arousal”, Proceedings of the 2019 on Designing Interactive Systems Conference,

DIS ’19, p. 1479–1494, San Diego, USA, 2019.

78. McDuff, D., A. Karlson, A. Kapoor, A. Roseway and M. Czerwinski, “AffectAura:

An Intelligent System for Emotional Memory”, Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems , p. 849–858, Austin, Texas,

USA, 2012.

79. Umair, M., C. Sas and M. Alfaras, “ThermoPixels: Toolkit for Personalizing

Arousal-based Interfaces through Hybrid Crafting”, Proceedings of the 2020 on

Designing Interactive Systems Conference, p. 1017–1032, Eindhoven, Nether-

lands, 2020.

80. Thieme, A., J. Wallace, P. Johnson, J. McCarthy, S. Lindley, P. Wright, P. Olivier

and T. D. Meyer, “Design to Promote Mindfulness Practice and Sense of Self for

Vulnerable Women in Secure Hospital Services”, Proceedings of the SIGCHI Con-

ference on Human Factors in Computing Systems , p. 2647–2656, Paris, France,

2013.

81. Vidyarthi, J., B. E. Riecke and D. Gromala, “Sonic Cradle: Designing for an

Immersive Experience of Meditation by Connecting Respiration to Music”, Pro-

ceedings of the Designing Interactive Systems Conference, p. 408–417, Newcastle

Upon Tyne, United Kingdom, 2012.



132

82. Lehrer, P. M. and R. Gevirtz, “Heart Rate Variability Biofeedback: How and

Why Does It Work?”, Frontiers in Psychology , Vol. 5, p. 756, 2014.

83. Ghandeharioun, A. and R. Picard, “BrightBeat: Effortlessly Influencing Breath-

ing for Cultivating Calmness and Focus”, Proceedings of the 2017 CHI Conference

Extended Abstracts on Human Factors in Computing Systems , p. 1624–1631, Den-

ver, Colorado, USA, 2017.

84. Brown, B. B., Stress and the Art of Biofeedback , Harper & Row, Oxford, 1977.

85. Schoenberg, P. L. A. and A. S. David, “Biofeedback for Psychiatric Disorders: A

Systematic Review”, Applied Psychophysiology and Biofeedback , Vol. 39, No. 2,

pp. 109–135, 2014.

86. Ahani, A., H. Wahbeh, M. Miller, H. Nezamfar, D. Erdogmus and B. Oken,

“Change in Physiological Signals during Mindfulness Meditation”, 2013 6th Inter-

national IEEE/EMBS Conference on Neural Engineering (NER), pp. 1378–1381,

San Diego, USA, 2013.

87. Karydis, T., S. Langer, S. L. Foster and A. Mershin, “Identification of Post-

Meditation Perceptual States Using Wearable EEG and Self-Calibrating Proto-

cols”, Proceedings of the 11th Pervasive Technologies Related to Assistive Envi-

ronments Conference, p. 566–569, Corfu, Greece, 2018.

88. Mason, H., M. Vandoni, G. Debarbieri, E. Codrons, V. Ugargol and L. Bernardi,

“Cardiovascular and Respiratory Effect of Yogic Slow Breathing in the Yoga Be-

ginner: What Is the Best Approach?”, Evidence-Based Complementary and Al-

ternative Medicine, Vol. 2013, 2013.

89. Ingle, R. and R. Awale, “Impact Analysis of Meditation on Physiological Signals”,

International Journal on Informatics Visualization, Vol. 2, pp. 31–36, 2018.
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APPENDIX A: USE OF COPYRIGHTED MATERIAL

All figures and tables in Chapters 1, 2, and 8 are illustrated and plotted by Niaz

Chalebianloo and have not previously been used in any other article or sources. The

rest of the figures used in this thesis are also all illustrated by Niaz Chalabianloo and

have previously been used in our papers in [19], [39], and [61]. We have published all

these papers as open access articles distributed under the Creative Commons Attri-

bution License. The copyright status for these papers is CC BY, meaning that the

journal is not the copyright holder of these materials. Under CC BY, reuse for com-

mercial purposes or to create derivative works is permitted, and readers can copy and

redistribute the material in any medium or format.
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