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I thank to Dr. Özlem Çetinoğlu whom I had the chance to work with at the

University of Stuttgart. I am grateful to her for enriching my knowledge in the notion

of code-switching, and also for being a cheerful friend during our working days together.

I thank my labmates in TABILAB for insightful discussions and for answering all

of my questions. I owe a huge thank to Hakime Öztürk for being my support system.
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and as BİDEB 2211 graduate scholarship.



vi

ABSTRACT

DEEP LEARNING-BASED DEPENDENCY PARSING FOR

TURKISH

Dependency parsing is an important step for many natural language processing

(NLP) systems such as question answering and machine translation. Turkish, being a

morphologically rich language and having a complex grammar, is challenging for au-

tomatic processing. Limited NLP tools and resources for Turkish make the task even

more challenging. Data-driven deep learning models show promising performance in

dependency parsing. Yet, the amount of data to train a data-driven dependency parser

directly affects performance, and deep learning-based systems require extensive data

to achieve good performance. In this thesis, we focused on Turkish dependency parsing

and proposed two solutions to the challenges this task poses. First, we increased the

size and quality of labeled data for Turkish dependency parsing. In this respect, we cre-

ated the BOUN Treebank by annotating 9,761 sentences. In addition, we re-annotated

the IMST and PUD treebanks using the same annotation scheme. As a result, we

presented the largest collection of Turkish treebanks with consistent annotation. Sec-

ond, we developed novel state-of-the-art dependency parsing models for Turkish as

well as other low-resource languages. As our first parsing approach, we introduced a

hybrid dependency parser where Turkish grammar rules and morphological features

of words are integrated into the deep learning model. Despite the limited training

data, the hybrid parser achieved higher success than the current methods for Turkish

dependency parsing. As our second parsing approach, we proposed a deep dependency

parser with semi-supervised enhancement. By conducting experiments on a number

of low-resource languages besides Turkish, we achieved state-of-the-art results on all

datasets. We have shown that deep learning-based models can be improved not only

by additional training data, but also by integrating intelligently extracted information.



vii

ÖZET

DERİN ÖĞRENME TABANLI TÜRKÇE BAĞLILIK

AYRIŞTIRMASI

Bağlılık ayrıştırma, otomatik soru cevaplama ve makine çevirisi gibi birçok doğal

dil işleme (DDİ) sistemi için önemli bir adımdır. Zengin morfolojisi ve karmaşık gramer

yapısıyla Türkçe dili otomatik işlenmesi oldukça zor bir dildir. Türkçe DDİ araçlarının

ve kaynaklarının kısıtlı olması bu işi daha da zorlaştırmaktadır. Veri güdümlü derin

öğrenme modelleri, bağlılık ayrıştırma alanında etkili performans göstermektedir. Veri

güdümlü bir bağlılık ayrıştırıcıyı eğitmek için gereken verinin miktarı ayrıştırıcının per-

formansını doğrudan etkilemektedir. Ayrıca, derin öğrenme tabanlı sistemlerin yüksek

başarı göstermesi için büyük miktarlarda veriye ihtiyaç duyduğu gözlemlenmiştir. Bu

tezde, Türkçe bağlılık ayrıştırmadaki zorlukların üstesinden gelmek için iki tip çözüm

önerdik. İlk olarak, Türkçe metinleri ayrıştırmak için gereken veri miktarını ve kalitesini

artırdık. Bu bağlamda, 9.761 yeni cümleyi manuel olarak etiketleyerek BOUN ağaç

yapılı derlemini oluşturduk. Aynı etiketleme şemasıyla IMST ve PUD ağaç yapılı der-

lemlerini de yeniden etiketledik. Bu sayede Türkçe için dil bilgisi kurallarına göre

tutarlı en büyük ağaç yapılı derlem koleksiyonunu kullanıma sunduk. İkinci olarak,

Türkçe ve diğer az kaynaklı diller için özgün ve son teknoloji bağlılık ayrıştırıcılar

geliştirdik. Önce, Türkçe dil bilgisi kurallarının ve kelimelerin morfolojik özelliklerinin

derin öğrenme modeline entegre edildiği bir hibrit bağlılık ayrıştırma mimarisi önerdik.

Sınırlı eğitim verisine rağmen, hibrit ayrıştırıcıyla Türkçe bağlılık ayrıştırmada mevcut

yöntemlerden daha yüksek başarı elde ettik. Ayrıca, yarı denetimli geliştirmeye dayalı

bir derin öğrenme tabanlı bağlılık ayrıştırıcı önerdik. Türkçe’nin yanı sıra kaynak

yetersizliği olan başka dillerde de deneyler yaparak son teknoloji sonuçlar elde ettik.

Derin öğrenme tabanlı modellerin yalnızca fazla miktarda eğitim verisiyle değil, aynı

zamanda akıllıca çıkarılan bilgilerin entegrasyonuyla da geliştirilebileceğini gösterdik.
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1. INTRODUCTION

1.1. Problem Statement

Dependency grammar is a way of representing syntactic dependencies between

words in sentences. Words are linked to each other with directed links. These links

between words are called dependencies. Usually, the main verb in a sentence is the root

node in the dependency tree of the sentence. Each dependency is directed from the

node of the dependent word towards the node of the head word. Figure 1.1 depicts the

dependency tree of an example sentence. Each word in a dependency tree is dependent

to another word with its corresponding dependency relation type.

Dependency parsing is useful for many natural language processing tasks such as

relation extraction, machine translation, and question answering. Using dependency

tree representations of sentences, structural information can easily be extracted. Since

a dependency tree of a sentence consists of a set of dependent-head pairs, the order of

words in the sentence is not important and does not alter construction of the tree. With

this advantage, dependency grammars are more suitable than constituency grammars

for languages with free word order such as Turkish, Czech, and Finnish [1].

Figure 1.1. Dependency tree of the sentence “Palmiye diğer ağaçlara hiç

benzemiyor.” (Sentence translation: Palm tree is not like any other tree.)
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There are a number of challenges in Turkish dependency parsing. The most

prominent of these challenges are stated below:

• Turkish is a morphologically rich language. Theoretically there is no limit for

adding derivational suffixes to a Turkish word. So, one word in Turkish language

may correspond to a whole sentence in other languages like English. The complex

structure of such words makes the task of dependency parsing more complex for

Turkish.

• Natural language processing (NLP) of Turkish is not counted as rich in terms

of resources available. For a very long time, the largest dataset used for train-

ing and evaluation of dependency parsers was the ITU-METU-Sabancı (IMST)

Turkish Treebank [2] which consists of 5,635 grammatically parsed sentences and

is currently [3] ranked as the 88th out of 217 treebanks in terms of the number of

annotated sentences in the Universal Dependencies (UD) project [4]. The amount

of data to train a data-driven dependency parser directly affects the performance

of the parser. It is observed that deep learning based systems need large amounts

of data to be able to show good performance [5]. So, there is a need to increase

the amount of syntactically annotated data for a deep learning-based dependency

parser to reach the state-of-the-art performance.

• Turkish treebanks include substantial amount of non-projective dependencies. Ex-

amples 1 and 2 show a projective dependency tree and a non-projective depen-

dency tree, respectively. In the non-projective example, the dependency edges

cannot be drawn in the plane above the sentence without any two edges crossing

each other. However, in the projective example, the dependency edges can be

drawn in this manner with no edges crossing. Most of the previous systems for

Turkish dependency parsing make the projectivity assumption, that is there are

no crossing relations in a dependency tree. Yet, it is stated in [6] that more than

20% of the sentences in Turkish have non-projective dependency trees. We need

to handle both the projective and non-projective dependency trees in order to

increase the success rates.
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(1) Siyah kedi nihayet süt-ü iç-ti
black cat finally milk-acc drink-pst

root

obj

advmod

nsubj

amod

‘Black cat finally drank the milk’

(2) Ses-in-i sev-iyor-um yağmur-un ben
sound-poss-acc love-prog-1sg rain-gen I

root

obj
nmod:poss

nsubj

‘I love the sound of the rain’

• Accuracy of morphological analyzers affects the performance of dependency parsers.

A study on the impact of using automatic morphological analysis and disambigua-

tion tools in Turkish dependency parsing states that usage of these tools instead

of manually performing morphological analysis and disambiguation causes a sig-

nificant decline in the performance of the parser [7]. Another study observed that

using a morphological disambiguator trained with more accurate data increases

the success rates of dependency parsing for Turkish [8]. Accuracies of morpho-

logical analysis and disambiguation tools also pose a challenge for dependency

parsing of Turkish.

This thesis aims to improve the dependency parsing of Turkish language. We

approach the problem in two ways: first by developing a successful parsing system to

increase the performance in dependency parsing of Turkish texts, and second by in-

creasing the quality and quantity of training data with a new comprehensive treebank

manually annotated in Turkish. By making the tools and resources we develop publicly

available, we hopefully enable many language processing applications that need depen-

dency parsing to be able to achieve better performance for Turkish. We anticipate that

this work will be a base for many new natural language processing studies in Turkish.
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1.2. Motivation and Objective

Many applications we use in our daily lives from search engines to recommenda-

tion systems utilize natural language processing techniques in background to analyze

natural texts. In order for these applications to work successfully in real life, the

underlying NLP techniques must achieve high performance.

Automatic syntactic parsing of natural texts is the first main step in the struc-

tural analysis of text data. Syntactic parsing of a sentence is finding the correct parse

tree that shows the syntactic relations between words, given a grammar. Recently,

dependency parsing gains much more attention in NLP studies due to its being com-

putationally more efficient than constituency parsing.

Turkish, being a morphologically rich and free word order language, is not a

widely studied language unlike frequently studied ones such as English. The amount of

NLP resources for Turkish is restricted and performance of the current state-of-the-art

dependency parsers is far from the desired level for Turkish.

Our main objective is creating a state-of-the-art dependency parsing architecture

for Turkish to be used in a wide range of NLP applications. Although we give priority

to Turkish language and desire to handle the NLP problems of Turkish in the first

place, our proposed parsing approaches can easily be adapted to be able to work on

other languages.

We also aim to enrich Turkish NLP resources by building a dependency treebank

that is superior than the existing Turkish treebanks in terms of quality and quantity.

To achieve this aim successfully, collaborating with linguists is essential. As there

are only a handful of annotation tools all having their own drawbacks, developing an

annotation tool that will exactly meet the demands of annotators for a faster and easier

annotation is also one of the requirements of this aim.
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Finalizing the end products of scientific researches and releasing them as publicly

available is a step that is often neglected. We intend to create a downloadable and

online tool for the developed dependency parser and make our treebank and software

publicly available for academic use. By this way, natural language processing appli-

cations that need dependency parsing will be able to achieve better performance for

Turkish.

1.3. Publication Notes

Some parts of this thesis have appeared in the following publications:

(i) “A morphology-based representation model for LSTM-based dependency parsing

of agglutinative languages.” Özateş, Ş. B., Özgür, A., Güngör, T., and Öztürk,

B. In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from

Raw Text to Universal Dependencies, (2018), pp. 238-247. (Chapter 4)

(ii) “Resources for Turkish dependency parsing: Introducing the BOUN treebank

and the BoAT annotation tool.” Türk, U., Atmaca, F., Özateş, Ş. B., Berk,

G., Bedir, S. T., Köksal, A., Öztürk Başaran, B., Güngör, T., and Özgür, A.

Language Resources and Evaluation 56, no. 1 (2022): 259-307. (Chapter 5)

(iii) “A Hybrid Deep Dependency Parsing Approach Enhanced with Rules and Mor-

phology: A Case Study for Turkish.” Özateş, Ş. B., Özgür, A., Güngör, T., and

Öztürk, B. ACM Transactions on Asian and Low-Resource Language Information

Processing (TALLIP), under review. (Chapter 6)

(iv) “Improving Code-Switching Dependency Parsing with Semi-Supervised Auxiliary

Tasks.” Özateş, Ş. B., Özgür, A., Güngör, T., and Çetinoğlu, Ö. Findings of the

Association for Computational Linguistics: NAACL 2022, (2022). (Chapter 7)

Some of our other works that are not part of this thesis are:

(i) “Improving the annotations in the Turkish universal dependency treebank.” Türk,

U., Atmaca, F., Özateş, Ş. B., Başaran, B. Ö., Güngör, T., and Özgür, A. In Pro-
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ceedings of the Third Workshop on Universal Dependencies (UDW, SyntaxFest

2019), (2019), pp. 108-115.

(ii) “Turkish treebanking: Unifying and constructing efforts.” Türk, U., Atmaca,

F., Özateş, Ş. B., Köksal, A., Başaran, B. Ö., Güngör, T., and Özgür, A. In

Proceedings of the 13th Linguistic Annotation Workshop, (2019), pp. 166-177.

(iii) “A Language-aware Approach to Code-switched Morphological Tagging.” Özateş,

Ş. B. and Çetinoğlu, Ö. In Proceedings of the Fifth Workshop on Computational

Approaches to Linguistic Code-Switching (CALCS), Association for Computa-

tional Linguistics, (2021), pp. 72–83.

(iv) “Enhancements to the BOUN Treebank Reflecting the Agglutinative Nature

of Turkish.” Marşan, B., Akkurt, S. F., Şen, M., Gürbüz, M., Özateş, Ş. B.,

Üsküdarlı, S., Özgür, A., Güngör, T., Öztürk, B. International Conference on

Agglutinative Language Technologies as a challenge of Natural Language Pro-

cessing (ALTNLP), (2022), accepted.

1.4. Thesis Overview

In this thesis, we focused on improving dependency parsing of Turkish. To achieve

this purpose, we advanced our efforts in two directions.

On the one hand, we annotated a new comprehensive corpus for Turkish depen-

dency parsing as a solution to the problem of insufficient data. This new treebank

further benefits the parsing performance, promising to be a new base for many new

natural language processing studies in Turkish.

On the other hand, we developed novel parsing methods by utilizing deep learning-

based techniques and the linguistic structure of the language. This hybrid parsing ap-

proach obtained state-of-the-art parsing performance on Turkish, proving the positive

effect of morphology on Turkish dependency parsing. Furthermore, we did not only

focus on Turkish dependency parsing but we also expanded the focus of the thesis by

proposing a novel parsing method with semi-supervised enhancement for low-resource
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languages. We experimented with this parser on both Turkish and low-resource code-

switching language pairs and reached state-of-the-art performance on all datasets.

In the course of this thesis, we achieved the following contributions:

(i) A novel hybrid dependency parsing model for Turkish is developed. For this

purpose, deep learning techniques and linguistics-based approaches are employed

to predict the possible parse trees. State-of-the-art dependency parsing scores

are reached on Turkish (Chapter 6) [9].

(ii) Within the hybrid parsing model, a novel rule-based enhancement method that can

be integrated to any neural dependency parser and a morphology-based enhance-

ment method with three different ways of including morphological information

to the parser are presented. In addition, a simple yet useful integration method

that allows to combine the proposed enhancement methods with any neural de-

pendency parser is introduced (Chapter 6.3) [9].

(iii) An advanced semi-supervised dependency parser is created that shows state-of-

the-art performance especially for low-resource languages. For this purpose, an

LSTM-based state-of-the-art dependency parser is enhanced with novel auxiliary

tasks trained in a semi-supervised scheme. This parser is evaluated on code-

switching language pairs and on Turkish. The proposed approach is also adapted

to a transformer-based parser. A comparative study elaborating the effectiveness

of both models are presented through several experiments (Chapter 7) [10].

(iv) A large syntactically annotated corpus consisting of the dependency parse trees

of Turkish sentences is created and made publicly available. This corpus has

morphologically analyzed sentences of different genres of texts. A large Turkish

corpus consisting of dependency parse trees of sentences is beneficial in developing

solutions to various NLP problems. In addition, this treebank can be useful for

researchers of linguistics in identifying different aspects of the language grammar

(Chapter 5) [11].

(v) The treebank annotation guidelines that are followed to create our dependency

treebank are provided and made publicly available. These guidelines explain our
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linguistic decisions and annotation scheme that are based on the UD framework.

They also demonstrate examples for the challenging issues that are present in the

newly created treebank as well as other existing treebanks that we re-annotated.

This guideline will hopefully be useful for the creation and enhancement of the

treebanks of other languages as well as Turkish.

(vi) An annotation tool for dependency parsing named BoAT [12], an online tool for

the hybrid parser [13], as well as the source codes and trained models for both the

hybrid parser [14] and the semi-supervised deep parser [15] are made available

for public use.
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2. LINGUISTIC BACKGROUND

In this thesis, we apply dependency parsing both to Turkish and to a number of

code-switching language pairs as low-resource languages. Sections 2.1 and 2.2 present

brief background information on these languages.

2.1. Turkish

This section is based on the Turkish Section of our collaborative work published

as [11].

Turkish is a Turkic language spoken mainly in Asia Minor and Thracia with

approximately 75 million native speakers. As an agglutinative language, Turkish makes

excessive use of morphological concatenation. According to Bickel and Nichols [16], a

Turkish verb may have up to 8-9 inflectional categories per word, such as number,

tense, or person marking. This number is about twice of the average of the maximum

number of inflectional categories in the other 145 languages covered in [16]. The number

of morphological categories increases further when considering derivational processes.

Kapan [17] states that Turkish words may host up to 6 different derivational affixes at

the same time. The complexity of morphological analysis, however, is not limited to

the sheer number of inflectional and derivational affixes. In addition to such affixes,

allomorphies, vowel harmony processes, elisions, and insertions create a difficult task

for researchers in Turkish NLP. Table 2.1 lists the possible morphological analyses of

the surface word alın. Despite the shortness of the word, the morphological analysis is

complicated; even such a short word may be parsed to have different possible roots.
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Table 2.1. Possible morphological analyses of the word alın from [18]. The symbol

‘&’ in the Features column indicates derivational morphemes and ‘+’ indicates

inflectional morphemes.

Root
Category

of the root
Features Gloss Translation

alın [Noun] +[A3sg]+[Pnon]+[Nom] forehead ‘forehead’

al [Noun] +[A3sg]+Hn[P2sg]+[Nom] red-poss ‘your red color’

al [Adj] &[Noun]+[A3sg]+Hn[P2sg]+[Nom] red-poss ‘your red color’

al [Noun] +[A3sg]+[Pnon]+NHn[Gen] red-gen ‘belonging to the color red’

al [Adj] &[Noun]+[A3sg]+[Pnon]+NHn[Gen] red-gen ‘belonging to the color red’

alın [Verb] +[Pos]+[Imp]+[A2sg] offend-2sg.imp ‘Get offended!’

al [Verb] +[Pos]+[Imp]+YHn[A2pl] take-2sg.hnr-imp ‘(Please) take it!’

al [Verb] &Hn[Verb+Pass]+[Pos]+[Imp]+[A2sg] take-pass[2sg] ‘Get taken!’

With respect to syntactic properties, Turkish has a relatively free word order,

which is constrained by discourse elements and information structure [19–26]. Even

though SOV is the base word order, other permutations are highly utilized, as exem-

plified in Example 3.1 The percentages were determined by Slobin and Bever [27] from

500 utterances of spontaneous speech.

(3) a. Fatma
Fatma

Ahmet-i
Ahmet-acc

gör-dü.
see-pst

(SOV 48%)

‘Fatma saw Ahmet.’

b. Ahmet’i Fatma gördü. (OSV 8%)

c. Fatma gördü Ahmet’i. (SVO 25%)

d. Ahmet’i gördü Fatma. (OVS 13%)

e. Gördü Fatma Ahmet’i. (VSO 6%)

f. Gördü Ahmet’i Fatma. (VOS <1%) Adapted from [20]

1Conventions used in this thesis are as follows: 1 = first person, 2 = second person, 3 = third
person, abl = ablative, acc = accusative, aor = aorist, caus = causative, cl = classifier, com =
comitative, cond = conditional, cop = copula, cvb = converb, dat = dative, emph = emphasis, fut
= future, gen = genitive, hnr = honorific, imp = imperative, loc = locative, neg = negative, nmlz
= nominalizer, pass = passive, pl = plural, poss = possessive, prog = progressive, pst = past, q
= question particle, sg = singular. The dash symbol (-) in linguistics examples marks morpheme
boundary, the equal sign (=) is used when the morpheme attached to a base is a clitic. The tilde ∼ is
used to indicate partial replication. The asterisk * at the beginning of a sentence shows the sentence’s
ungrammaticality, and the percentage symbol (%) shows the marginal acceptability of the sentence.
Additionally, we presented the analytic words within a box when they are segmented for annotation.
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As for the case system, every argument in a sentence needs to host a case according

to its syntactic role, semantic contribution, or the lexical selection of the phrasal head

[28]. These groupings, however, are not clear cut and there is not always a one-to-one

correspondence between cases and their roles.

Moreover, Turkish is a pro-drop language in which the subject can be elided

when it is retrievable from the given discourse [29, 30]. Overt subjects are used only

to convey certain discourse and/or pragmatic effects, such as a change in context or

focus. However, the subject is also retrievable from the agreement marker on the verb.

In addition to these properties, Turkish is also a null object language, even though the

language does not have an overt agreement marker available for this process [31]. If

the object of a sentence is retrievable from the given discourse, speakers may omit the

object without any overt marking on the verb. The final issue with Turkish syntax

lies in the fact that it frequently makes use of nominalization processes for embedded

clauses [32]. With certain nominalizer suffixes, the embedded sentences may function

as an adverbial, an adjectival, or a nominal [11].

2.2. Code-Switching

Code-switching (CS) is the process of generating utterances by combining phrases

and word forms from multiple languages. This is a phenomenon observed frequently

in utterances of bilingual speakers [33]. Figure 2.1 shows an example to this type of

utterance formation.

Within a sentence, code-switching can occur intra-sentential or intra-word. Intra-

sentential CS means that words, phrases, or clauses from more than one language are

used together in a sentence. Intra-word CS is the mixing of two or more languages in

a single word. The example in Figure 2.1 has both intra-sentential and intra-word CS.

There are a number of challenges in performing computational analysis of CS

language pairs [34, 35]. Some of them are listed below:
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• The source of code-switched data are usually spoken text or social media [36].

Hence, processing CS data requires solving additional problems that arise from

the non-canonical nature of the data.

• CS language pairs are quite low-resource. Annotated data is usually inadequate

for most of the NLP tasks, it is even absent for some of them. Besides, CS

language pairs suffer from the shortage on resources required by deep neural

models such as pretrained embeddings, language models, or even raw data.

• Code-switched texts include words from at least two different languages and each

language composing the CS language pair inherits its own structural difficulties.

The challenge amplifies as the linguistic difference between the composing lan-

guages increases.

• In the presence of intra-word code-switching in the data, out-of-vocabulary prob-

lem arises as the probability of the created CS word being an unknown word

becomes very likely.

Realschule’den sonra Gymnasium yaptım .
MIXED TR DE TR OTHER

Secondary school after high school made .

root

obl

case obj punct

‘After secondary school I went to high school.’

Figure 2.1. Dependency tree of a code-switched sentence from the Turkish-German

SAGT Treebank. Language ID of each token is located below the token. TR stands

for Turkish, DE for German, MIXED for tokens with intra-word code-switching, OTHER

is for punctuation. German tokens and token parts are shown in bold.
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3. THEORETICAL BACKGROUND

3.1. Dependency Parsing Approaches

There have been different approaches for dependency parsing. They are classified

mainly into two categories, namely grammar-driven methods and data-driven methods.

3.1.1. Grammar-driven Methods

Grammar-driven dependency parsing relies on a formalization of a dependency

grammar. These parsing methods usually have complex grammars and parsing strate-

gies. According to Nivre [37], they can be divided into two categories.

3.1.1.1. Context-free-based Methods. These grammar-driven dependency parsing meth-

ods use a lexicalized context-free grammar, and so can use standard context-free parsing

algorithms for dependency parsing. However, these methods are restricted to generate

projective and unlabeled dependency trees only.

3.1.1.2. Constraint-based Methods. These methods consider parsing as a constraint

satisfaction problem and define the grammar using constraints. The parsing problem

is NP-complete, but can approximately be solved using eliminative parsing methods.

3.1.2. Data-driven Methods

Due to the availability of large amount of annotated data in recent years, data-

driven dependency parsing has become more popular for parsing natural language texts.

These approaches have two main subcategories.
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3.1.2.1. Transition-based Methods. Transition-based methods induce a model to pre-

dict the next transition in a state machine, given the parse history. The model

chooses the highest-scored transition at every step until the transition sequence is

completed [38]. Generally, a transition-based model starts with an empty stack and a

buffer of all input words. Then, at every step either a word is shifted from buffer to

stack or an arc is defined between two words in the stack. This procedure continues

until the buffer is empty. These parse actions are decided by a learning model.

3.1.2.2. Graph-based Methods. Graph-based methods first create a set of candidate

dependency graphs for the target sentence. Then a model is induced to score these

candidate graphs and finally the highest-scored dependency graph is searched to be

the dependency parse of the sentence [38].

In graph-based dependency parsing approaches, dependency trees of sentences are

represented using directed connected graphs. Formally, the directed connected graph

GS of a sentence S is defined as follows:

GS = (VS, ES,W ) such that VS = {S0 = ROOT, S1, ..., Sn} and

ES = {(i, j) : i 6= j, (i, j) ∈ [0 : n]× [1 : n]} ,

where VS is the set of nodes representing words in S, ES is the set of directed edges

between the nodes, and W is a function that assigns a weight to every directed edge

in ES. W (i, j) denotes the probability of word j being dependent of word i [39].

Given a sentence, graph-based parsing approaches aim to find the highest scoring

dependency tree of the sentence, which is equivalent to finding the Maximum Spanning

Tree (MST) of the directed connected graph of the sentence.

3.2. Related Deep Learning Methodologies

Deep learning recently has become one of the most preferred data-driven ap-

proaches to dependency parsing task. In the following sections, we give information

about the deep learning techniques used in this thesis.
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3.2.1. Long Short-Term Memory Networks

Long short-term memory (LSTM) networks are a kind of recurrent neural net-

works (RNN) which can learn long-term dependencies. LSTMs are one of the most

frequently used deep learning methods in dependency parsing. Different versions of this

method are utilized and have shown good performance in dependency parsing [40–42].

An LSTM has one input layer, one recurrent LSTM layer, and one output layer.

Input layer is connected to the LSTM layer. Each LSTM cell consists of three types

of multiplicative gates. These are the input gate, the output gate, and the forget gate.

The task of the input gate is to learn new information from the input to this LSTM

cell. The forget gate decides whether the information that comes from the previous

time step is to be remembered or unimportant and therefore can be omitted. The

output gate passes the updated information to the next time step. Formally, an LSTM

network maps an input sequence x to an output sequence y for each time step t as

follows:

it = σ(Wixxt +Wihht−1 +Wicct−1 + bi)

ft = σ(Wfxxt +Wfhht−1 +Wfcct−1 + bf )

ct = ft � ct−1 + it � tanh(Wcxxt +Wchht−1 + bc)

ot = σ(Woxxt +Wohht−1 +Wocct + bo)

ht = ot � tanh(ct)

yt = g(ht) ,

where W denotes the weight matrices, b vectors are the bias vectors, i, f , o, and c are

the input gate, forget gate, output gate, and cell activation vectors. ht is the hidden

state and yt is the output of the current time step t. σ and g are the logistic sigmoid

function and an arbitrary differentiable function, respectively [40,43].

3.2.1.1. Stack-LSTM. A modified version of the standard LSTM architecture is the

stack-LSTM model [40] which adjusts LSTM’s strict left-to-right order in the processing

of the input. Different from the standard implementation, the current location of the
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stack pointer in a stack-LSTM controls which LSTM cell’s ct−1 and ht−1 values are

used in new memory cell computations [40].

3.2.1.2. Bidirectional LSTMs. Bidirectional LSTM (BiLSTM) is another extension of

the standard LSTM architecture. As its name suggests, BiLSTMs handle the input

sequence in both directions, i.e., from past to future (forward) and future to past

(backwards). BiLSTMs have two separate hidden layers for each direction which are

then combined and fed to the same output layer. This way, additional context can be

learnt by the network [42].

3.2.2. Transformer-based Language Models

3.2.2.1. BERT. BERT (Bidirectional Encoder Representations from Transformers) is

an encoder-based language representation model presented by Devlin et al. [44]. The

architecture of a BERT model is a multilayer bidirectional Transformer encoder [45]

and BERT uses WordPiece embeddings [46] for input representation. The two steps

in training BERT includes pre-training and fine-tuning. In the pre-training phase,

the BERT model is trained on unlabeled data over two unsupervised tasks: Masked

Language Modeling (MLM) and Next Sentence Prediction (NSP). In MLM, the task is

predicting the masked input tokens that are randomly chosen. In the NSP scheme, the

model is given a pair of sentences as input and learns to predict if the second sentence

is originally the subsequent sentence of the first sentence. In fine-tuning, the pretrained

parameters of the model are fine-tuned using labeled data from a downstream task.

3.2.2.2. XLM-R. XLM-R stands for Cross Lingual Model - Roberta. Like BERT,

it uses the Transformer model in [45] and is trained only using the MLM objective.

Input is represented with Sentence Piece subword tokenizer [47]. The main difference

between XLM-R and BERT relies in the size of the pretraining data. While XLM-R

is pretrained on 2.5TB of unlabeled text data across 100 languages extracted from

CommonCrawl Corpus [48], the multilingual version of BERT is pretrained on a much
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smaller Wikipedia Corpus for 104 languages. Another difference of XLM-R from the

BERT model is the better representation of low-resource languages in its pretraining

data which makes XLM-R a frequently preferred model for such languages [49].

3.3. Evaluation Metrics

In order to evaluate our dependency parsers, we use the attachment score metric.

Attachment score is the most commonly used evaluation metric in dependency parsing.

There are different types of attachment scores. The metrics we used in the experiments

throughout the thesis are explained below.

Unlabeled Attachment Score (UAS). UAS metric is defined as the percentage of

words that are attached to the correct head.

Labeled Attachment Score (LAS). LAS is defined as the percentage of words that

are attached to the correct head with the correct dependency type.

Morphology-aware Labeled Attachment Score (MLAS). MLAS is similar to the

LAS metric, however it mainly focuses on dependencies between content words and

treats function words as features of content words. It also takes the POS tags and

morphological features into account [50].

Bi-lexical Dependency Score (BLEX). BLEX is similar to MLAS in focusing

on relations between content words. However it includes lemmatization instead of

morphological features to the evaluation [50].

All metrics are defined as F1 scores. We compute precision (P) as the number of

correct dependency relations divided by the number of system-produced word nodes

and recall (R) as the number of correct relations divided by the number of gold-standard

word nodes. Then we define each metric listed above by calculating the F1 measure:

F1 score =
2PR

P +R
.
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4. THE BOUN TREEBANK: A NEW AND HIGH

QUALITY CORPUS FOR TURKISH DEPENDENCY

PARSING

4.1. Introduction

The field of natural language processing has seen an influx of various treebanks

following the introduction of the treebanks in [51], [52], and [53]. These treebanks

paved the way for today’s ever-growing NLP framework, consisting of NLP applications,

treebanks, and tools. Even though the value of a treebank cannot be judged solely by

its number of sentences, previous research has shown that the size of a treebank may

affect its utility in downstream NLP tasks [54]. Among the many languages with a

growing treebank inventory, Turkish has been one of the less fortunate languages. As

of the UD version 2.9 [3], the largest UD treebank is the UD German-HDT Treebank

which consists of 190,000 sentences [55], yet the most frequently used Turkish treebank

IMST includes only 5,635 sentences. Turkish has posed an enormous challenge for

NLP studies due to its complex network of inflectional and derivational morphology, as

well as its highly flexible word order. One of the first attempts to create a structured

treebank for Turkish was initiated in the studies of Atalay et al. [56] and Oflazer et al.

[57]. Following these studies, many more Turkish treebanking efforts were introduced

[58–60]. However, most of these efforts contained a small volume of Turkish sentences,

and some of them were re-introduced versions of already existing treebanks in a different

annotation scheme.

In this chapter, we aim to contribute to the limited NLP resources in Turkish by

annotating a part of a brand new corpus that has not been approached with a syntactic

perspective before, namely the Turkish National Corpus (TNC) [61]. TNC is an online

corpus that contains 50 million words. The BOUN Treebank, which is introduced

in this chapter, includes 9,761 sentences extracted from five different text types in

TNC, i.e. essays, broadsheet national newspapers, instructional texts, popular culture
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articles, and biographical texts. These sentences have not been introduced within a

treebank previously. We manually annotated the syntactic dependency relations of the

sentences following the up-to-date UD annotation scheme.

Through a discussion of the annotation decisions made in the creation of the

BOUN Treebank, we present our take on the annotation of Turkish data, including

the challenges that the copular clitic, embedded constructions, compounds, and lexical

cases pose. Turkish treebanking studies present an inconsistent picture in the annota-

tion of such constructions, even though these linguistic phenomena are observed and

studied extensively within Turkish linguistic studies.

In addition, we report the results of the dependency parsing experiments we made

on the newly introduced BOUN Treebank together with previous Turkish treebanks.

The results show that increasing the size of the training set has a positive effect on the

parsing success for Turkish. We observe that using the UD annotation scheme more

faithfully and in a unified manner within Turkish UD treebanks offers an increase in

the UAS and LAS scores. We also report individual parsing scores for different text

types within our new treebank.

This chapter is based on the collaborative work with the Department of Lin-

guistics at Boğaziçi University published as [11] and supported by the Scientific and

Technological Research Council of Turkey (TÜBİTAK) under grant number 117E971

and as BİDEB 2211 graduate scholarship.

4.2. Related Work

The initial groundwork for Turkish treebanks was laid in [56] and [57] following

the studies on treebanks for languages such as English, German, Dutch, and many

more [51–53,62,63]. The first of its kind, the METU-Sabancı Treebank (MST) consists

of 5,635 sentences, a subset of the METU corpus that reportedly includes 16 different

text types such as newspaper articles and novels [64]. Oflazer et al. [57] encoded
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both morphological complexities and syntactic relations. Due to the productive use of

derivational suffixes, they explicitly spelled out every inflection and derivation within

a word. As for the syntactic representation, Atalay et al. [56] used a dependency

grammar in order to bypass the problem of constituency in Turkish, which arises from

the relatively free word order of the language.

Branching off the works in [56] and [57], a small treebank with the name of ITU

Validation set for MST was introduced. It contains 300 sentences from 3 different

genres. The treebank was introduced as a test set for MST in the CoNLL 2007 Shared

Task [65]. The treebank was annotated by two annotators using a cross-checking pro-

cess. Following this work, MST was re-annotated by Sulubacak et al. [2] from ground

up with revisions made in syntactic relations and morphological parsing. The latest

version was renamed as the ITU-METU-Sabancı Treebank (IMST). Due to certain lim-

itations, Sulubacak et al. [2] employed only one linguist and several NLP specialists.

The annotation process was arranged in such a way that there was no cross-checking

between the works of the annotators. Moreover, inter-annotator agreement scores, de-

tails regarding the decision process among annotators, and the adjudication process

have not been reported. Nevertheless, this re-annotation solved many issues regarding

MST by proposing a new annotation scheme. Even though problems such as semantic

incoherence in the usage of annotation tags and ambiguous annotation were resolved

to a great extent, the non-communicative nature of the annotation process led to a

handful of inconsistencies.

The inconsistencies in IMST were also carried over to its latest version, which

utilizes automatic conversions of the tags from IMST to the UD framework [60]. Map-

pings of syntactic and morphological representations were also included. Consequently,

IMST was made more explanatory and clear thanks to the systematically added ad-

ditional dependencies. While its previous version had 16 dependency relations, 47

morphological features, and 11 part of speech types, the latest version of IMST upped

these numbers to 29, 66, and 14, respectively. Yet, the erroneous dependency tagging

resulting from morpho-phonological syncretisms lingered long after the publication of
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the treebank. Moreover, no post-editing effort has been reported. There have been four

updates since the first release of the IMST Treebank in UD scheme, but there are still

mistakes that can be corrected through a post-editing process, such as the punctuation

marks tagged as roots, reversed head-dependent relations, and typos in the names of

syntactic relations.

Apart from the treebanks originating from MST, many other treebanks have

emerged. Some of these treebanks can be grouped under the class of parallel treebanks.

The first of these parallel treebanks is the Swedish-Turkish Parallel Treebank (STPT).

Megyesi et al. [66] published their parallel treebank containing 145,000 tokens in Turk-

ish and 160,000 tokens in Swedish. Following this work, Megyesi et al. [58] published the

Swedish-Turkish-English Parallel Treebank (STEPT). This treebank includes 300,000

tokens in Swedish, 160,000 tokens in Turkish, and 150,000 tokens in English. All the

treebanks utilized the same morphological and syntactical parsing tools. For Swedish

morphology, the Trigrams‘n’Tags tagger [67] trained on Swedish [68] was used. On the

other hand, Turkish data were first analyzed using the morphological parser in [69], and

its accuracy was enhanced through the morphological disambiguator proposed in [70].

The Turkish and Swedish treebanks were annotated using the MaltParser [71] that was

trained with the Swedish treebank Talbanken05 [72] and MST [57], respectively.

Another parallel treebank introduced for Turkish is the Turkish PUD Treebank,

which adopts the UD framework. The Turkish PUD Treebank was published as part

of a collaborative effort, the CoNLL 2017 Shared Task on Multilingual Parsing from

Raw Text to Universal Dependencies [73]. Sentences for this collaborative treebank

were drawn from newspapers and Wikipedia. The same 1,000 sentences were trans-

lated into more than 40 languages and manually annotated in line with the universal

annotation guidelines of Google. After the annotation, the Turkish PUD Treebank was

automatically converted to the UD style.

Moreover, there are three treebanks that consist of informal texts. One such

treebank was introduced by Pamay et al. [74] under the name of ITU Web Treebank
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(IWT). In IWT, non-canonical data were included such as the usage of punctuations

in emoticons, abbreviated writing such as kib that stands for kendine iyi bak (take care

of yourself), and non-standard writing conventions as in saol instead of sağol (thanks).

Later on, the UD version of IWT was also introduced [75]. Another web treebank

has recently been presented by Kayadelen et al. [76], which is larger than the previous

Turkish treebanks in terms of word count, but still smaller than the BOUN Treebank

that we introduce in this thesis. Kayadelen et al. [76] used a set of dependency labels

similar to the UD framework. However, they diverge from the UD framework in certain

issues such as postpositions, indirect objects, and oblique arguments. The Turkish-

German Code-Switching Treebank [77] is another treebank, in which they did not

use formal texts. The Turkish-German Code-Switching Treebank consists of bilingual

conversation transcriptions as well as their morphological and syntactic annotation.

This treebank includes 48 unique conversations and 2,184 Turkish-German bilingual

sentences that have been annotated with respect to the language in use.

There is also one grammar book-based treebank introduced in [78]. The Grammar

Book Treebank (GB) is the first UD attempt in Turkish treebanking. In this treebank,

data were collected from a reference grammar book for Turkish written by Göksel and

Kerslake [32]. It includes 2,803 items that are either sentences or sentence fragments

from the grammar book. It utilized TRMorph [79] for morphological analyses and

the proper morphological annotations were manually selected amongst the suggestions

proposed by TRMorph. The sentences were manually annotated in the native UD-style.

In addition to these treebank initiatives, in one of our previous works, we manually

corrected the syntactic annotations in the Turkish PUD and IMST treebanks [80, 81]

with the aim of unifying syntactic annotation scheme in Turkish treebanking. In these

works, we selected the treebanks that were not annotated natively in the UD style

and unified the annotation scheme. This process improved the UAS score for the

IMST Treebank from 72.49 to 75.49 and caused only a 0.9 point decrease in the LAS

score (from 66.43 to 65.53) in our experiments with the Standford’s neural dependency

parser [82], despite the number of unique dependency tags increasing from 31 to 40 with
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the newly included dependency types [80]. On the other hand, there was a decrease

in the parsing accuracy for the re-annotated version of the PUD Treebank in terms of

the attachment scores. While the parser achieved an UAS score of 79.52 and a LAS

score of 73.81 on the previous version of the PUD Treebank, its attachment scores

for the re-annotated version were 78.70 UAS and 70.01 LAS [81]. We want to note

that, we used 5-fold cross validation for the evaluation of the PUD Treebank due to

its small size. In each fold, the parser had only 600 sentences for training, and 200

sentences were used as the development set. The evaluation was done on the remaining

200 sentences. The small size of the PUD Treebank, which was originally used only for

evaluation purposes (not for training) in the CoNLL 2017 Shared Task [73], renders the

results less reliable. Following these studies, with the annotation scheme we unified, we

manually annotated the BOUN Treebank, which we present in this thesis. In Table 4.1,

we present basic statistics about the BOUN Treebank and compare it to the previous

monolingual Turkish treebanks. If both UD and non-UD versions are available for a

treebank, we only included the UD version in the table.2

Table 4.1. Comparison of the BOUN Treebank to previous monolingual Turkish

treebanks.

IMST IWT-UD GB PUD BOUN

Num. of sentences 5,635 5,009 2,880 1,000 9,761

Num. of tokens 56,396 44,463 16,803 16,536 121,214

Avg. token count per sentence 10.01 8.88 5.83 16.53 12.41

Avg. dependency arc length 2.71 2.13 1.77 2.91 2.86

Num. of unique POS tags 14 15 16 16 17

Num. of unique features 66 54 79 59 56

Num. of unique dependencies 32 28 41 40 41

2UD version number of these treebanks is 2.7. Turkish PUD version 2.7 is our re-annotated version.
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4.3. The BOUN Treebank

We introduce a treebank [83] that consists of 9,761 sentences which form a subset

of the Turkish National Corpus (TNC) [61]. TNC includes 50 million words from

various text types, and encompasses sentences from a 20 year period between 1990

and 2009. The principles of the British National Corpus were followed in terms of the

selection of the domains. Table 4.2 shows the percentages of different domains and

media used in TNC.

Table 4.2. Composition of the written component of TNC using words as the

measurement unit, adapted from [61].

Domain % Medium %

Imaginative 19 Books 58

Social Science 16 Periodicals 32

Art 7 Miscellaneous published 5

Commence/Finance 8 Miscellaneous unpublished 3

Belief and Thought 4 Written-to-be-spoken 2

World Affairs 20

Applied Science 8

Nature Science 4

Leisure 14

In our treebank, we included the following text types: essays, broadsheet national

newspapers, instructional texts, popular culture articles, and biographical texts. Ap-

proximately 2,000 sentences were randomly selected from each of these registers. All of

the selected sentences were written items and were not from the spoken medium. Our

motivation for using these registers was to cover as many domains as possible using as

few registers as possible, while not compromising variations in length, formality, and

literary quality. The basic statistics for the BOUN Treebank and its different sections

are provided in Table 4.3.
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Table 4.3. Sentence and word statistics for the different sections of the BOUN

Treebank. The difference between the number of tokens and words is due to

multi-word expressions being represented with a single token, but with multiple

words.

Treebank Num. of sentences Num.of tokens Num. of word forms

Essays 1,953 27,007 27,557

Broadsheet National Newspapers 1,898 29,307 29,386

Instructional Texts 1,976 20,442 20,625

Popular Culture Articles 1,962 21,067 21,263

Biographical Texts 1,972 23,391 23,553

Total 9,761 121,214 122,384

Before the manual annotation of the BOUN Treebank, the sentences were first

automatically annotated using an end-to-end parsing pipeline tool that parses raw

texts to UD dependencies in CoNNL-U format with POS and morphological tagging

information [84]. The manual syntactic annotation of sentences were then performed

on this automatically generated CoNNL-U versions of the corpus sentences. In the

manual annotation process, we followed the UD syntactic relation tags. Before the

annotation process started, we first reviewed the dependency relations in use within

the UD framework. Upon reviewing the definitions, we created and annotated a list of

unique sentences that we believe are representative of the UD dependency relations in

Turkish. Later on, we compared our sentences for certain dependency relations with

the examples from already existing Turkish UD treebanks. If our examples and the

UD examples were not parallel, we first discussed whether or not our interpretation

was correct. We then discussed whether or not there should be any inclusions to the

UD guidelines. These discussion were also brought up within the UD community.

After settling on the definitions of dependency relations, two Turkish native

speaker linguists manually annotated the BOUN Treebank using our annotation tool

presented in Section 8.1. Following the annotation process, two other linguists who did

not participate in the manual annotation process cross-checked syntactic annotations

of the two linguists. When a problematic sentence or an inconsistency was encountered,
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discussions on the sentence and related sentences were held among the team members.

After a decision was made, the necessary changes were applied uniformly.

In addition to the cross-checking process, we performed a partial double annota-

tion in order to have a consistent annotation scheme before the annotation process of

the BOUN Treebank started. For this purpose, the annotators performed an additional

annotation task independently for the same set of 1,000 randomly selected sentences.

The disagreements were discussed and resolved with the entire team of linguists and

NLP specialists. The Cohen’s Kappa measure of inter-annotator agreement for finding

the correct dependency label of the relations is found to be 0.82. The unlabeled and

labeled attachment scores between the annotations are 0.83 and 0.75, respectively.

4.3.1. Levels of Annotation

4.3.1.1. Morphology. Turkish makes use of affixation much more frequently than any

other word-formation process. Even though it adds an immense complexity to its

word level representation, patterns within the Turkish word-formation process allowed

previous research to formulate morphological disambiguators that dissect word-level

dependencies. One such work was introduced by Sak et al. [85]. Their morphological

parser is able to run independently of any other external system and is capable of

providing the correct morphological analysis with 98% accuracy using contextual cues,

such as the two previous tags.

In the morphological annotation of the BOUN Treebank, we decided to use the

morphological analyzer and disambiguator of Sak et al. [85]. For this purpose, the

tokenized sentences were first given to the morphological parser. The output of the

parser was converted to the corresponding UD features automatically. In rare cases

where the morphological parser did not return a morphological analysis for a token, the

morphological features column from the Turku pipeline [84] for this token was used.

The same operation was done for the lemmas of the tokens as well.
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Our preference for the morphological tagger of Sak et al. [85] instead of the mor-

phological tagger of the Turku parsing pipeline [84], which we used for the automatic

processing of the treebank in the first step, is due to their comparison in terms of the

token-based accuracy, and the feature-based recall, precision, and f-measure metrics.

After randomly selecting 50 words from every text type in the BOUN Treebank (a total

of 250 unique tokens excluding punctuations for the five text types), we encoded the

errors made by the morphological parsers. The results are shown in Table 4.4. Token

Accuracy column represents the token-based accuracy, namely the percentage of words

for which correct morphological analyses are produced. Recall column represents the

ratio of the number of correct morphological features to the number of morphological

features in the gold standard. Precision column encodes the ratio of the number of

correct morphological features to the total number of morphological features predicted

by the morphological parser. The F1-measure column is the harmonic mean of preci-

sion and recall. Our scores align with the scores reported in the original study of Sak

et al. [85], even though their test set and our set here consist of different text types.

While they only used newspaper corpora in the test set, we tested the parser using dif-

ferent text types including broadsheet national newspapers, essays, instructional texts,

biographical texts, and popular culture articles.

Table 4.4. The performance of morphological taggers of Sak et al. [85] and Turku

pipeline [84] on BOUN Treebank.

Morphological Tagger Token Accuracy Recall Precision F1-measure

Sak et al. [85] 0.91 0.94 0.95 0.94

Turku pipeline 0.82 0.89 0.83 0.86

The morphological parser of Sak et al. [85] does not provide morphological tags

in UD format. So, we automatically converted its output to the UD format. In this

process, we maximally used the morphological features from the UD framework. When

there is no clear-cut mapping between the features that we acquired from the morpho-

logical parser in [85] and features proposed in the UD framework, we used the features
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previously suggested in the works of Çöltekin [86], Tyers et al. [87], and Sulubacak and

Eryiğit [75]. These features were already stated in the UD guidelines. Table 4.5 shows

the automatic conversion from the results of the morphological disambiguator of Sak

et al. [85]

Table 4.5. Mappings of morphological features from the notation of Sak et al. [85] to

the features used in the UD framework.

Sak et al. [85] UD Sak et al. [85] UD

A1sg Number=Sing|Person=1 ByDoingSo VerbForm=Conv|Mood=Imp

A2sg Number=Sing|Person=2 Pos Polarity=Pos

A3sg Number=Sing|Person=3 Neg Polarity=Neg

A1pl Number=Plur|Person=1 Past Aspect=Perf|Tense=Past|Evident=Fh

A2pl Number=Plur|Person=2 Narr Tense=Past|Evident=Nfh

A3pl Number=Plur|Person=3 Fut Tense=Fut|Aspect=Imp

P1sg Number[psor]=Sing|Person[psor]=1 Aor Tense=Aor|Aspect=Hab

P2sg Number[psor]=Sing|Person[psor]=2 Pres Tense=Pres|Aspect=Imp

P3sg Number[psor]=Sing|Person[psor]=3 Desr Mood=Des

P1pl Number[psor]=Plur|Person[psor]=1 Cond Mood=Cnd

P2pl Number[psor]=Plur|Person[psor]=2 Neces Mood=Nec

P3pl Number[psor]=Plur|Person[psor]=3 Opt Mood=Opt

Abl Case=Abl Imp Mood=Imp

Acc Case=Acc Prog1 Aspect=Prog|Tense=Pres

Dat Case=Dat Prog2 Aspect=Prog|Tense=Pres

Equ Case=Equ DemonsP PronType=Dem

Gen Case=Gen QuesP PronType=Ind

Ins Case=Ins ReflexP PronType=Prs|Reflex=Yes

Loc Case=Loc PersP PronType=Prs

Nom Case=Nom QuantP PronType=Ind

Pass Voice=Pass Card NumType=Card

Caus Voice=Cau Ord NumType=Ord

Reflex Voice=Rfl Distrib NumType=Dist

Recip Voice=Rcp Ratio NumType=Frac

Able Mood=Abil Range NumType=Range

Repeat Mood=Iter Inf VerbForm=Vnoun

Hastily Mood=Rapid FutPart VerbForm=Part|Tense=Future|Aspect=Imp

Almost Mood=Pro PastPart VerbForm=Part|Tense=Past|Aspect=Perf

Stay Mood=Dur PresPart VerbForm=Part|Tense=Pres

While VerbForm=Conv|Mood=Imp
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As it is clear from the table, depth of the morphological representation in [85] and

that in the UD framework do not align perfectly, and there is no one-to-one mapping.

For example, an output from [85] may include both Narr and Past features. In the

automatic conversion, we would end up with Tense=Past twice and conflicting values

for Evident feature. To resolve cases similar to these, we made use of simple rules

that detect conflicting features due to our conversion and return appropriate features.

Moreover, we used the morphological cues provided by the morphological parser to

decide on the UPOS and lemma. All elements of our conversion and post-processing

can be found at [88].

Table 4.6. An example sentence from our treebank encoded in CoNNL-U format.

# sent id = ins 167

# text = Sözü uzatıp seni merakta bıraktım galiba.

# trans = Probably, I beat around the bush and kept you in suspense.

ID FORM LEMMA UPOS XPOS FEATS HEAD DEPREL DEPS MISC

1 Sözü söz NOUN Noun Case=Acc|Number=Sing|Person=3 2 obj

2 uzatıp uza VERB Verb Polarity=Pos|VerbForm=Conv|Voice=Cau 5 advcl

3 seni sen PRON Pers Case=Acc|Number=Sing|Person=2 5 obj

4 merakta merak NOUN Noun Case=Loc|Number=Sing|Person=3 5 obl

5 bıraktım bırak VERB Verb

Aspect=Perf|Evident=Fh|Number=Sing

0 rootPerson=1|Polarity=Pos|VerbForm=Fin

Tense=Past

6 galiba galiba ADV Adverb 5 advmod SpaceAfter=No

7 . . PUNCT Punc 5 punct SpacesAfter=\n

In our treebank, in addition to the words, we encoded the lexical and grammatical

properties of the words as sets of features and values for these features. We also encoded

the lemma of every word separately, following the UD framework. Table 4.6 shows an

example sentence encoded with the CoNNL-U format.

4.3.1.2. Syntax. In the BOUN Treebank, we decided to represent the relations among

the parts of the sentences within a dependency framework. This decision has two main

reasons. The main and the historical reason is the fact that the growth of Turkish

treebanks has been mainly within the frameworks where the syntactic relations have
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been represented with dependencies [69,89]. The other reason is the fact that Turkish

allows for phrases to be scrambled to pre-subject, post-verbal, and any clause-internal

positions with specific constraints, which makes building constituency grammars quite

difficult [90–93]. With these in mind, we wanted to stick with the conventional de-

pendency framework and use the recently rising UD framework [94]. One of the main

advantages of the UD framework is that it creates directly comparable sets of treebanks

with regards to their syntactic representation due to its very nature.

Table 4.7. The dependency relation set of the BOUN Treebank.

Relation Type Count Percentage Relation Type Count Percentage

acl 3,494 2.85% det 4,938 4.03%

advcl 2,595 2.12% discourse 381 0.31%

advcl:cond 269 0.22% dislocated 28 0.02%

advmod 5,278 4.31% fixed 12 0.01%

advmod:emph 1,724 1.41% flat 2,039 1.67%

amod 7,869 6.43% goeswith 4 0.002%

appos 506 0.41% iobj 164 0.13%

aux 39 0.03% list 40 0.03%

aux:q 269 0.22% mark 117 0.10%

case 3,290 2.69% nmod 1,371 1.12%

cc 2,800 2.29% nmod:poss 10,393 8.49%

cc:preconj 134 0.11% nsubj 8,499 6.94%

ccomp 1,512 1.24% nummod 1,568 1.28%

clf 122 0.1% obj 7,381 6.03%

compound 2,381 1.95% obl 12,015 9.82%

compound:lvc 1,218 1.0% orphan 84 0.07%

compound:redup 457 0.37% parataxis 209 0.17%

conj 7,250 5.92% punct 20,116 16.44%

cop 1,289 1.05% root 9,761 7.97%

csubj 546 0.45% vocative 88 0.07%

dep 9 0.01% xcomp 125 0.01%
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By following the UD framework, we implicitly encode two different syntactic

information for each dependent: the category of the dependent and the function of

this dependent with regards to its syntactic head. This is due to the grouping of the

dependency relations introduced by the UD framework. The selection of the syntactic

dependency relation for each dependent is mainly based on the functional category of

the dependent in relation to the head and the structural category of the head. In terms

of the functional category of the dependent, the UD framework differentiates the core

arguments of clauses, non-core arguments of clauses, and dependents of nominal heads.

As for the category of the dependent, the UD framework makes use of a taxonomy that

distinguishes between function words, modifier words, nominals, and clausal elements.

In addition to this classification, there are some other groupings which may be listed

as coordination, multiword expressions, loose syntactic relation, sentential, and extra-

sentential. Table 4.7 shows the dependency relations that we employed in the BOUN

treebank with their counts and percentages.

Every dependency forms a relation between two segments within the sentence,

building up to a non-binary and hierarchical representation of the sentence. In this

way, nodes can have more than two child nodes and every node is accessible from the

root node. This representation is shown in Example 4 using the sentence in Table 4.6.

(4) Söz-ü uza-t-ıp sen-i merak-ta bırak-tı-m galiba .
word-acc strech-caus-nmlz you-acc curiosity-loc leave-pst-1sg probably .

root

advmod
punct

compound:lvcobj
advcl

obj

‘Probably, I beat around the bush and kept you in suspense.’

4.3.2. Different Conventions Adopted in the Annotation Process

In the annotation process of the BOUN Treebank, we stayed faithful to the UD

main tag set and the previous conventions of Turkish annotation schemes for the most

part. However, there were some instances where we diverged from these conventions or

made the linguistic reasoning behind them more explicit. In this section, we provide

the justifications of our linguistic decisions for these instances. Our decisions are in the
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same spirit of unifying the annotation scheme within Turkish UD treebanks, which was

done in our previous works [80,81]. Our main concern is to reflect linguistic adequacy

in the BOUN Treebank following the Manning’s Law [95]. During all this work, we

paid great attention to follow the previous discussion within the UD framework, such

as the discussion on the copular clitic and the objecthood-case marking relation. In

the following sections, we will first touch upon the issues where we believe the previous

conventions in Turkish UD treebanking were erroneous according to UD. These issues

include the annotation of the embedded sentences, the treatment of copular verb, the

analysis of compounds, and the annotation of classifiers. Next, we will discuss the issue

of objecthood and the case marking relation in Turkish, where we adopt a simpler

analysis that has been used in other dependency grammars instead of the recently

discussed UD alternatives.

4.3.2.1. Annotation of Embedded Clauses. The first issue where we diverged from the

previous annotation conventions is the annotation of embedded clauses. In the previ-

ous Turkish treebanks, the annotation of embedded clauses did not reflect the inner

hierarchy that a clause by definition possesses. This is mostly due to the morphological

aspect of the most common embedding strategy in Turkish: nominalization. Due to

nominalization, embedded clauses in Turkish can be regarded as nominals since they

behave exactly like nominals: They can be marked with an accusative case, can be

substituted with any other nominal, and can carry genitive-possessive cases as person

marking. This phenomenon is shown in Example 5. The embedded clause in the given

sentence is shown with square brackets. The whole square bracket can be replaced

with a simple noun, like otobüs (bus), or a complex noun phrase like senin otobüsün

(your bus) as in Example 6.

(5) [
[

Sen-in
you-gen

otobüs-ü
bus-acc

sür-düğ-ün
drive-nmlz-poss

]-ü
]-acc

gör-dü-m.
see-pst-1sg

‘I saw that you drove the bus.’

(6) Sen-in
you-gen

otobüs-ün-ü
bus-poss-acc

gör-dü-m.
see-pst-1sg

‘I saw your bus.’
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Due to these surface level morphological and syntactic similarities, previous Turkish

treebanks in the UD framework, with the exception of the Grammar Book Treebank

[78], used dependency relation obj instead of ccomp, nsubj instead of csubj, amod

instead of acl, and advmod instead of advcl to mark the relation of the embedded

clause with the matrix verb. In our annotation process, we emphasized the clausal

nature of these embedded sentences and their syntactic derivation by focusing on their

internal structure reflecting the existence of a temporal domain in the embedded clause.

For instance, Example 5 would be nonsensical if we had the time adverb tomorrow

within the embedded clause. This ungramaticality is due to the tense information

introduced by the nominalizer ‘-düğ’ in the example sentence. If there were an adverb

like tomorrow in an embedded clause marked with ‘-düğ’, the previous annotation

scheme would not be able to detect the ungrammaticality. However, our annotation

scheme is able to detect this ungrammaticality.

The same argumentation applies to converbs, as well. Converbs are verbal ele-

ments of a non-finite adverbial clause [32]. They may act as adverbial adjuncts or as

discourse connectives. In the previous annotation processes of Turkish, they were an-

notated as nmod. The reason behind this annotation is again the fact that they behave

like nominals; they may be marked with inflectional and derivational suffixes that nor-

mally nouns bear. Considering their clausal properties, such as their temporal domain,

their ability to host a subject, an object, and a tense/aspect/modality information, we

annotated them as advcl as in Example 7.3

(7) Bira-lar-ı devir-dik-çe merak-ım az-dı .
beer-pl-acc topple-nmlz-cvb curiosity-1sg.poss get.wild-pstw .

root

obj punct
advcl

nmod

nsubj

‘As I finish my beers, my curiosity peaked.’

In addition to the annotation of the whole embedded clause, dependents within the em-

bedded clause were erroneously annotated in the previous Turkish annotation schemes.

3Throughout this chapter, changes in the annotation convention introduced by us are shown with
bold arcs, whereas the dashed arcs suggest previous annotations. The solid arcs represent unaltered
dependencies. Every annotated tree that contains a bold arc in this thesis is taken from previous
Turkish Treebanks, that is either the IMST Treebank or the Turkish PUD Treebank.
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For example, an oblique of an embedded verb used to be attached to the root since the

embedded verb is seen as a nominal, and not as a verb as in Example 8.

(8) Tünel-e gir-me-den önce geç-tiğ-im . . . bam˜başka .
tunnel-dat enter-neg-nmlz before pass-nmlz-1sg . . . emph˜different .

root

nmod

obl
advcl

case acl punct. . .

‘The scenery that I passed before I entered the tunnel was completely different

from here.’

Likewise, the genitive subjects of embedded clauses were wrongly marked as a posses-

sive nominal modifier, whereas they are one of the obligatory elements of the embedded

structures. This wrong annotation in the previous treebanks is due to the fact that

Turkish makes use of genitive-possessive structure for marking the agreement in an

embedded clause as in Example 9 [32]. Despite the morphology, the word senin here

serves as the subject. Example 10 shows the causativized version of the embedded verb

in Example 9. When we causativize the subject of an intransitive verb, we expect the

subject to be marked with an accusative case and act as a direct object. As seen in

Examples 9 and 10, the word sen reflects the morphological reflex stemming from a

syntactic voice change. Thus, it cannot be a modifier and it has to be an argument.

(9) Sen-in de gel-me-n-i iste-r-di-m .
you-gen too come-nmlz-poss-acc want-aor-pst-1sg .

root

ccomp punct

advmod:emph

nsubj
nmod:poss

‘I would have wanted you to come, as well.’

(10) O-nun
he/she-gen

sen-i
you-acc

de
too

getir-me-si-ni
come.caus-nmlz-poss-acc

iste-r-di-m.
want-aor-pst-1sg.

‘I would have wanted him/her to bring you, as well.’

Due to the reasons explained above, in the annotation of embedded clauses we used

the dependency relations that emphasize the clausal nature of the nominalized verbs,

i.e., csubj, ccomp, advcl, instead of the dependency relations that emphasize the final

product of the local derivations, i.e., nsubj, obj, advmod, respectively.
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4.3.2.2. Copular Clitic. One inconsistent issue within the Turkish treebanks was the

annotation of the copular clitics. Copular clitics attached to the verbal bases and

nominal bases were treated differently although they are essentially the same. While

the copular clitics on verbal bases were not segmented, the copular clitics on nominal

bases were segmented in previous Turkish treebanks. In this section, we will provide

our analysis for the copular clitics where we segment all of them regardless of their

bases.

The Turkish copular clitic is the grammaticalized version of the verb “be” which

can be indicated as i-. This clitic i- has three allomorphs in Turkish: (i) analytic

i-, (ii) suffixal -y, and (iii) zero-marked (Ø). The allomorphy of the analytic form is

idiosyncratic, meaning the analytic copula form can be used in place of the suffixal

copula forms most of the time. The analytic form can surface if suffixes -di (pst),

-se (cond), and -ken (when or while) come atop a verb that already hosts a TAM

(Tense/Aspect/Modality) marker. The analytic form can also surface in nominal sen-

tences that are marked for tense other than the aorist (-Ar/Ir). However, the analytic

form cannot surface with the suffix -mIş (prf), except for its use with the aorist as in

yapar imiş, meaning he/she used to do. Examples 11a and 11b illustrate some examples

of the analytic form.

(11) a. analytic cop i-

Okul-a var-acak i-di-m .
school-dat reach-fut be-pst-1sg .

root

obl cop
punct

‘I was going to arrive to school.’

b. analytic cop i-

Okul-a var-acak i-ken .
school-dat reach-fut be-when .

. . .

obl cop
punct

‘I was about arriving to school. . . . ’

When both the base and the copular verb surface as a single syntactic word indicated

with a box in the following examples, either -y (Examples 12a and 12b) or Ø (Examples

13a and 13b) is used.

(12) a. zero-marked cop (Ø)

Okul-a gel-ecek =ti-m .
school-dat come-fut =pst-1sg .

root

obl cop
punct

‘I was going to come to school.’

b. zero-marked cop (Ø)

Okul-da öğretmen =di-m .
school-loc teacher =pst-1sg .

root

obl cop
punct

‘I was a teacher in the school.’
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(13) a. suffixal cop -y

Okul-a gel-se =y-di-m .
school-dat come-cond =cop-pst-1sg .

root

obl cop
punct

‘If I went to school.’

b. suffixal cop -y

Okul-da öğrenci =y-se-m .
school-loc student =cop-cond-1sg .

root

obl cop
punct

‘If I was a student in the school...’

The selection between the Ø and -y is governed by the phonological characteristics of

the previous sound; if the previous segment is a consonant Ø is used, otherwise -y is

used. What is important for us is that the contribution of these copular clitics is the

same for both nominal and verbal bases. In both cases, these copular clitics host the

TAM information that cannot be carried by the base [96]. Hence, the TAM information

itself also does not change according to the category of the stem.

Additionally, the stress patterns of the clitics that attach to nominal and verbal

bases are identical. Most of the verbs and common nouns are stressed in the final

syllable. When they are marked with a copular clitic, instead of the final syllable

which is the copular clitic, the preceding syllable is stressed [96]. This property as well

applies regardless of the base the clitic attaches to.

In addition to these characteristics, the copular clitic also has a clitic-like be-

haviour when it co-occurs with other clitics such as the question clitic -mI. In Example

14, the question clitic comes between the TAM marker and the copula.

(14) Bu
this

kitab-ı
book-acc

oku-yacak
read-fut

mı=y-dı-n?
q=cop-pst-2sg

‘Were you going to read this book?’

Another clue for the clitic status of the copula is its interaction with vowel harmony.

When detached, it has its own phonological domain; thus vowel harmony processes do

not percolate from the main verb to the copula as seen in Example 11a.

However, semantic contributions of TAM markers and their interaction with each

other provides a counterpoint for segmenting the copular clitic. On a first look, verbs

with a copular clitic seem to carry two different tense information. However, two

consecutive TAM markers in Turkish do not imply two tenses. While one of them
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still provides tense information, the other one implies additional aspect. Consider the

verb gelecektim in Example 15. When either suffix (-ecek or -ti) is attached to a verb

without any additional TAM marker, they mainly provide the tense information. When

they are used together as in Example 15, the suffix -ti implies the tense information,

and the suffix -ecek provides the prospective aspect information. This aspect of the

copular clitic points towards a solution in which verbs with a copular clitic should be

analyzed as a single unit.

(15) Okul-a
school-dat

gel-ecek=ti-m
come-fut=pst-1sg

ama
but

fikri-m-i
mind-poss.1sg-acc

değiştir-di-m.
change-pst-1sg

‘I was going to come to the school, but I changed my mind.’

After exchanging ideas on this issue within the UD community and considering points

mentioned in this section, we decided to segment all instances of the copular verb i-

as a copula (cop). With this change, we unified the treatment of all clitics that may

attach to a root which include the question particle =mı, focus particles like =da, and

copular verb particles; thus, we followed the UD dependency relations more faithfully.

4.3.2.3. Compound. Another inconsistent annotation in the previous Turkish tree-

banks was compounds and their classification. The UD framework suggests that

compound should be tailored to each language with its particular morphosyntax. Mostly

in Turkish PUD, also in other Turkish UD treebanks, constituents that carry a morpho-

logical marker for possessive-compounds are annotated as compound like in Example

16. The name ‘possessive-compounds’ is how the linguistic literature refers to it, but

for our purposes we take it as a compositional structure and separate it from the UD

dependency type ‘compound’. This means that our criteria for compound-hood are

syntactic composition properties. We have modified cases with -(s)I(n) morphological

marker as nmod:poss, which is already a convention in use in UD.

(16) Bun-lar-ın elli-si pazar alan-ı =y-dı .
this-pl-gen fifty-poss market place-poss =cop-pst .

root
nsubj

nmod:poss cop
punctnmod:poss

compound

‘50 of these were marketplaces.’
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Turkish employs different strategies for compounding. These strategies can display

differences in their morphological and phonological forms. For our purposes, we divide

them into two: (i) compounds with the compound marker -(s)I(n) and (ii) compounds

without the compound marker -(s)I(n). Some compound types without the compound

marker are given in Example 17. These compounds are formed with different types of

lexical inputs and can have varying degrees of morpho-phonological properties, none of

which employs a compound marker. We annotated the compounds that do not employ

a marker as compound.

(17) a. Noun + Noun

şiş
skewer

kebap
kebab

‘shish kebab’

b. Non-word + Non-

word

abur
. . .

cubur
. . .

‘junk food’

c. Noun + Non-Word

kitap
book

mitap
emph˜book

‘book and whatnot’

d. Adverb + Adverb

bugün
today

yarın
tomorrow

‘soon’

e. Verb + Verb

in-di
on-pst

bin-di
off-pst

‘stopover’

f. Adjective + Adjec-

tive

kırık
broken

dökük
dowdy

‘scrap’

The important distinction for our purposes is the existence of the compound marker

-(s)I(n). This marker is only observed in Noun+Noun compounds and most of these

compounds can be turned into genitive-possessive constructions as in Example 18.

(18) a. Noun + Noun

okul
school

bina-sı
building-3sg

‘school building’

b. Possessive construction

okul-un
school-gen

bina-sı
building-3sg

‘the school’s building’

We annotated Noun+Noun compounds that employ the compound marker -(s)I(n) as

nmod:poss. There are three reasons behind this decision. The first one is that the

marker does not survive in possessive constructions, it is replaced by the possessive

markers. If the possessor is 1sg or 2sg, the marker is replaced with first person

singular possessive -(I)m or the second person singular possessive -(I)n, respectively.

If the possessor is 3sg the marker stays the same. The second reason is that any plural

marking precedes the marker -(s)I(n) as opposed to following it, just like in possessive
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constructions (Example 19). The third reason is that compounds formed with the

marker -(s)I(n) can have their modifier be subject to questions, whereas compounds

without it cannot (Example 20). Questions are considered to be extractions out of

syntactic structures which cannot target parts of a word form.

(19) a. ders
course

kitap-(lar)-ı
book-pl-3sg

‘coursebook(s)’

b. ders
course

kitap-(lar)-ım
book-pl-1sg

‘my coursebook(s)’

c. ders
course

kitap-(lar)-ın
book-pl-2sg

‘your coursebook(s)’

d. (o-nun)
(s/he-gen)

ders
course

kitap-(lar)-ı
book-pl-3sg

‘his/her coursebook(s)’

(20) a. i. adana
A

kebap
kebab

‘Adana kebab’

ii. *Ne
what

kebap
kebab

ye-di?
eat-pst[3sg]

Intended ‘What type of kebab did (s/he) eat?’

b. i. adana
A

kebab-ı
kebab-3sg

‘Adana kebab’

ii. Ne
what

kebab-ı
kebab-3sg

ye-di?
eat-pst[3sg]

‘What type of kebab did (s/he) eat?’

As a result, (i) the marker -(s)I(n) not surviving possessive constructions and the

ability to transition from a compound to genitive-possessive construction shows that

the marker -(s)I(n) and possessive markers are in a disjunctive blocking relation. This

suggests that they are competing for similar grammatical functions. (ii) The plural

marker linearizes before the marker -(s)I(n). If -(s)I(n) was part of the word form,

the plural marking should have linearized to the right of it. This shows that the

marker -(s)I(n) is not part of the word form. (iii) Parts of the construction formed

by -(s)I(n) can be targeted by questions. Question formations only target syntactic

constituents and not part of word forms. This indicates that structures with -(s)I(n)

do not constitute an indivisible word form. All these three reasons make constructions

involving -(s)I(n) more syntactic (compositional) than morphological. This does not
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unilaterally rule out the constructions with -(s)I(n) as compounds, but within the

framework of UD they are more suited to be classified as nmod:poss than compound.

There is a robust linguistics discussion about the status of the marker -(s)I(n)

as being classified either as a compound or as an agreement marker. The word forms

produced by it are actually referred to as ‘possessive compounds’ [97–100], introducing

a dilemma even in its own name.

4.3.2.4. Classifier. The use of the classifier syntactic dependency (clf) was also incon-

sistent within the already existing Turkish UD treebanks. In the UD guidelines, the use

of clf is limited to languages with highly grammaticized classifier systems. The differ-

ence between classifier languages and non-classifier languages is depicted with Chinese

(classifier) and English (non-classifier). However, this distinction is not always clear-cut

in other languages like Turkish [101]. According to Göksel and Kerslake [32], numerals

can be followed by certain elements such as the enumerator tane (piece), measurement

denoting words such as dilim (slice) and şişe (bottle), and membership/identity denot-

ing words like örnek (example) and kopya (copy). They show that even though these

elements are optional between a numeral and a noun, in partitive constructions with

ablative cases, they are obligatorily used. The examples below show that the classifier

tane (piece) is optional in sentences like Example 21a. However, when the classifier

is in inflected form, deleting it makes the sentence ungrammatical as in Example 21b.

The sentence becomes marginally acceptable when the inflection is concatenated to the

numeral as in Example 21c.

(21) a. Dört
four

(tane)
piece

elma
apple

al-dı-m.
buy-pst-1sg

‘I bought four apples.’

b. Küçük-ler-den
small-pl-abl

on
ten

*(tane-si)
piece-poss

yeter
enough

mi?
q

‘Will ten of the little ones be enough?’

c. % Küçük-ler-den
small-pl-abl

on-u
ten-poss

yeter
enough

mi?
q

‘Will ten of the little ones be enough?’
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Apart from the Turkish PUD Treebank, no previous Turkish treebank has used the

clf syntactic dependency. In the Turkish PUD Treebank, both measure words and

enumerators are annotated using clf dependency. As for the other Turkic treebanks,

a measure word bötelke (bottle) in the Kazakh UD Treebank is annotated using clf.

On the other hand, in the Uyghur UD Treebank, no clf is used. In addition to the UD

Treebanks, other recent treebanks such as Kayadelen et al. [76] that use dependency

grammar framework in their annotation, make use of the classifier dependency relation

for both enumerators and measurement denoting words.

In the BOUN Treebank and our re-annotated versions of PUD and IMST, we

annotated enumerators like tane (piece) and adet (piece) as classifiers and used the

clf dependency relation. A slightly modified example sentence from our treebank

can be seen in Example 22. One of the UD framework’s core ideas is to create a

typologically comparable set of treebanks. In this direction, it is important to reflect

the use of classifier words in Turkish, even if they are optional.

(22) Üç adet yumurta-yı karış-tır-ın .
three cl egg-acc mix-caus-imp.2sg .

root

obj
nummod

clf punct

‘Mix three eggs.’

4.3.2.5. Core Arguments. Turkish also poses a problem with regards to the detection

of core arguments. This problem stems from mainly two reasons: core arguments

marked with a lexical case and object drop of the core arguments. Like Czech, Turkish

allows its direct object to be marked with oblique cases. In addition to the structural

accusative case, Turkish also makes use of dative, ablative, comitative and locative

on objects, which are the cases that adjuncts can also take. Both the adjunct in

Example 24 and the core argument in Example 23 are marked with the same case:

com (comitative). When there is no appropriate context that introduces the object

earlier, a com-marked NP becomes obligatory as in Example 23. However, Example

24 is completely fine regardless of the context and the existence of the com-marked

NP. This is because the com-marked NP is a core argument in Example 23, whereas
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it is an adjunct in Example 24. As it can be seen from the examples, Turkish can drop

its object without any marking on the verb when it is available in the discourse or

it is not contradictory within a given context. Since it is impossible to drop the new

information or correction in the case of Example 23 without a context that introduces

the direct object earlier, we conclude that the NP kız kardeşiyle (with her sister) is a

core argument. If it were just an adjunct, the phrase could be omittable.

(23) Serap
Serap

*(kız
girl

kardeş-i-yle)
sibling-poss-com

hep
always

dalga geç-er.
make.fun-aor.

‘Serap always makes fun of her sister.’

(24) Serap
Serap

okul-a
school-dat

(abla-sı-yla)
big.sister-poss-com

gid-er.
go-aor

‘Serap goes to school (with her elder sister).’

Oblique case marking of the core arguments together with the optionality of the con-

textually available core arguments yields a problem for the annotation process within

a framework where the difference between core arguments and non-core arguments is

a morphologically-apparent case marking as in the UD framework. Recent discussions

in the UD framework also acknowledge this problem [102, 103]. They propose a new

dependency relation: obl:arg. In our annotations, we used the obj dependency re-

lation as in Example 25. The UD guidelines state that even though obj often carries

an accusative case, it may surface with different case markers when the verb dictates

a different form, in our case lexical cases like com (Example 23) and abl (Example

25). This approach is also utilized within the most recent Turkish treebank in which

they did not distinguish between the objects with accusative case and the objects with

non-accusative cases [76].

(25) Ütü-den anla-ma-m .
ironing-abl understand-neg-1sg .

root

obj

obl

punct

‘I do not know anything about ironing.’

Another core argument specified in the UD guidelines is the iobj argument. In their

assessment of Turkic treebanks, Tyers et al. [87] suggest using case promotion or de-

motion in passivization or causativization as a clue for determining argumenthood.
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When sentences are passivized in Turkish, the structural case accusative on the object

is deleted in the transformation whereas oblique cases such as the ablative case is not

deleted. They use this asymmetry to argue for a non-core analysis of oblique case

marked objects. In their proposed annotation scheme, only tokens with non-oblique

cases should be annotated as a core argument since only non-oblique cases go through

case promotion or demotion. However, as we have previously shown in this section,

objects marked with oblique cases behave the same as the objects marked with the

accusative cases. Turkish can have oblique cases as a marker of objects even though

they do not go through case demotion in passive sentences as in Example 26.

(26) Ütü-den
ironing-abl

de
emp

anla-n-ma-z
understand-pass-neg-3sg

mı?
q?

‘How can one not know anything about ironing?’

Following the reasons specified in this section, we did not make use of case clues in

the annotation of iobj, instead we utilized the effects born out of context. Following

our annotation process, we should annotate the dative marked noun bana (to me)

in Example 27 using the iobj dependency relation if we cannot omit it when the

information is already available in the discourse. Without any existing prior context,

one cannot omit the dative marked noun in sentences like Example 27 where the main

predicate is ditransitive.

(27) Deniz kitab-ı ban-a ver-di .
Deniz book-acc 1sg-dat give-pst

root

iobj
obj

nsubj

‘Deniz gave me the book.’

In addition to our treebank, the iobj dependency relation is also used in other Turkish

and Turkic treebanks. Prior to our re-annotation, the Turkish PUD Treebank already

made use of this dependency relation. With our re-annotation, the IMST Treebank

also utilizes the iobj dependency. The iobj relation is also used in a Turkic treebank:

the UD Kazakh Treebank [87, 104]. We believe that the non-optionality of cases like

bana (to me) in Example 27 and its already existing use in other Turkish and Turkic

treebanks justify our usage as well.



44

4.3.2.6. Summary of the linguistic considerations. The points made through the lin-

guistic considerations are based on the idea that a language phenomenon needs to be

evaluated with regards to its interactions with other phenomena in the same language.

There could be opaque processes which require referring to the derivational history

of a construction such as nominalization in embeddings, argument dropping (subject,

object, indirect object), compound making strategies, or grammatical functions of a

clitic. Additionally, a language does not need to employ a structural property uni-

formly in its grammatical system. Classifiers in Turkish could be an example for this.

Example sentences for the UD tagset could already exist in the provided guidelines, but

they lack linguistic diagnostics which are crucial to differentiate between the closely

related constructions and the mostly opaque processes in a given language. We hope

explicitly stating the diagnostics used for an annotation scheme becomes a practice so

that the unification process of the treebanks does not follow from standalone examples

but rather from testable predictions.

4.4. Experiments

We performed parsing experiments on the BOUN Treebank as well as on its

different text types, which will serve as a baseline for future studies. In addition to the

brand-new BOUN Treebank, we experimented with our re-annotated versions of the

IMST [80] and PUD [81] treebanks, in order to observe the effect of using additional

training and test data.

Most prior studies [2, 6, 60, 75, 105, 106] on Turkish dependency parsing evaluate

the treebanks they use (mostly versions of the IMST Treebank) using MaltParser [71].

However, the definition of a well-formed dependency tree for MaltParser is different

than the conventions of UD such that the root node may have more than one child

in the output of the MaltParser. UD defines a dependency tree with exactly one root

node, and it is not possible to have MaltParser produce dependency trees that follow

the UD convention. For this reason, we use a state-of-the-art graph-based neural

parser [82] in the experiments. This parser uses unidirectional LSTM modules to
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generate character-based word embeddings and bidirectional LSTM modules to create

possible head-dependency relations. It uses ReLu layers and biaffine classifiers to score

these relations. For more information, see [82].

As stated in Section 4.3, the BOUN Treebank consists of 9,761 sentences from five

different text types. These text types almost equally contribute to the total number

of sentences. For the parsing experiments, we randomly assigned each section to the

training, development, and test sets with 80%, 10%, and 10% percentages, respectively.

Table 4.8 shows the number of sentences in each set of the BOUN Treebank.

Table 4.8. Division of the BOUN Treebank and its different sections among training,

development, and test sets for the experiments.

Treebank Training set Development set Test set Total

Essays 1,561 196 196 1,953

Broadsheet National Newspapers 1,518 190 190 1,898

Instructional Texts 1,580 198 198 1,976

Popular Culture Articles 1,568 197 197 1,962

Biographical Texts 1,576 198 198 1,972

BOUN 7,803 979 979 9,761

In order to observe the parsing performance for different types of text, we first

evaluated the dependency parser for each section separately. Then, we measured the

performance of the parser on parsing the entire BOUN Treebank. As a final set of

experiments, we trained the parser on the training sets of the BOUN Treebank and

the re-annotated version of the IMST Treebank separately and together, and tested

them on five different settings. With that set of experiments, we aim to measure the

difference in performance between the BOUN Treebank and the IMST Treebank and

to observe the effect of increasing the training data size on performance for Turkish

dependency parsing.
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In our experiments, we did not perform pre-processing actions such as removing

sentences that include non-projective dependencies from the training or test sets. All

sentences in the treebanks were included in the experiments. As for the pretrained word

vectors used by the dependency parser, we used the Turkish word vectors supplied by

the CoNLL-17 organization [107]. For the evaluation of the dependency parser, we used

the unlabeled attachment score (UAS) and labeled attachment score (LAS) metrics.

In the experiments, we used gold POS tags instead of automatic predictions of them.

4.5. Results

4.5.1. Parsing Results on the BOUN Treebank

Table 4.9 shows the parsing results of the test sets for each section in the BOUN

Treebank and the BOUN Treebank as a whole in terms of UAS and LAS. In these

experiments, the parser has been trained by using the entire training set of the BOUN

Treebank. We observed that the highest and lowest LAS were obtained on Broadsheet

National Newspapers and Essays sections of the BOUN Treebank, respectively. The

parser achieved more or less similar performance on the remaining three sections.

Table 4.9. UAS and LAS scores of the parser on the BOUN Treebank.

Treebank UAS F1-score LAS F1-score

Essays 68.73 59.18

Broadsheet National Newspapers 81.59 76.04

Instructional Texts 79.22 72.65

Popular Culture Articles 77.69 71.13

Biographical Texts 80.28 73.68

BOUN Treebank 77.36 70.37

To understand the possible reasons behind the performance differences between

the parsing scores of the five sections of the BOUN Treebank, we compared the sections
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with respect to the average token count and the average dependency arc length in a

sentence. Figure 4.1 demonstrates these statistics for the five sections of the BOUN

Treebank.4 We observed that both the average token count and the average dependency

arc length metrics are the highest in the Broadsheet National Newspapers section. The

second highest in both metrics is the Essays section. The averages for the Instructional

Texts, Popular Culture Articles, and Biographical Texts sections are close to each other.

Training Development Test

10

12

14

16

Average Token Count

Training Development Test
2.8

3

3.2

3.4

3.6

3.8

Average Dependency Arc Length

Essays B. National Newspapers Instructional Texts

Popular Culture Articles Biographical Texts

Figure 4.1. The average token count and the average dependency arc length in a

sentence for the five sections of the BOUN Treebank.

Note that, the average token count metric, which shows the length of a sentence,

and the average dependency arch length metric, which depicts the distance between the

nodes of the dependency relations in a sentence, can sometimes correlate, although not

all long sentences include long range dependencies. We anticipate that the higher these

two metrics are in a sentence, the harder the task of constructing the dependency tree

of that sentence will be. In Figure 4.1, we observe that all of the sections except the

Broadsheet National Newspapers conform with this hypothesis. However, the Broad-

sheet National Newspapers, which has the highest numbers of these metrics holds the

best parsing performance in terms of the UAS and LAS metrics. We believe that these

4The images within the scope of this thesis whose copyrights were transferred to the publishing
companies were used in accordance with the publishing policies of publishers about the reuse of the
text and graphics produced by the author.
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high scores in this section are due to the lack of interpersonal differences in writing in

journalese and the editorial process behind the journals and magazines.

4.5.2. Parsing Results on Combinations of Treebanks

In Table 4.10, we present the success rates of the parser trained and tested on

different combinations of the three Turkish treebanks: the BOUN Treebank and the

re-annotated versions of the IMST and Turkish PUD treebanks. We chose to include

only these two treebanks that we re-annotated because we wanted to measure the effect

of our unification efforts for Turkish treebanking on the parsing accuracy.

Table 4.10. The performance of the parser on five different test sets according to UAS

and LAS metrics. On each test set, performance of the parser in the following settings

is measured: when trained using only the IMST Treebank, when trained using only

the BOUN Treebank, and when trained using these two treebanks together.

Training Training Test Test UAS LAS

set size set size F1-score F1-score

IMST 3,685 BOUN 979 69.38 58.65

BOUN 7,803 BOUN 979 77.36 70.37

BOUN+IMST 11,488 BOUN 979 77.57 70.50

IMST 3,685 IMST 975 75.49 65.53

BOUN 7,803 IMST 975 73.63 62.92

BOUN+IMST 11,488 IMST 975 76.86 66.79

IMST 3,685 PUD 1,000 65.28 49.50

BOUN 7,803 PUD 1,000 72.33 59.57

BOUN+IMST 11,488 PUD 1,000 72.76 60.39

IMST 3,685 BOUN+IMST 1,954 71.89 61.62

BOUN 7,803 BOUN+IMST 1,954 75.67 66.99

BOUN+IMST 11,488 BOUN+IMST 1,954 77.25 68.82

IMST 3,685 BOUN+IMST+PUD 2,954 69.03 56.37

BOUN 7,803 BOUN+IMST+PUD 2,954 74.22 63.78

BOUN+IMST 11,488 BOUN+IMST+PUD 2,954 75.30 65.17
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The parser is trained separately on the training sets of the IMST and BOUN

treebanks, and then, by combining these two training sets (denoted as BOUN+IMST

in the first column of Table 4.10). Originally created for evaluation purposes [73], the

PUD Treebank is not used in the training phase of these experiments due to its smaller

size compared to the other two treebanks; instead, it is used as an additional test set

in the evaluations.

Five different test sets are provided in the third column of Table 4.10: the test

set of the BOUN Treebank (BOUN), the test set of the IMST Treebank (IMST), the

Turkish PUD Treebank (PUD), the combined test sets of the BOUN and IMST tree-

banks (BOUN+IMST), and the combined test sets of the BOUN and IMST treebanks

and the PUD Treebank (BOUN+IMST+PUD).

Each of the trained models is tested on these five test sets. We observe the

following:

• The parser model trained on the BOUN Treebank outperforms the one trained

on IMST by at least 10% in LAS on the first and third test sets (and ∼5% on

the fourth and fifth sets). Not surprisingly, the parser trained on IMST performs

better on its own test set (the second test set) than the parser model trained

on the BOUN Treebank. However, the performance difference here is smaller

than the one when these two models are tested on the BOUN Treebank’s test

set. To make a comparison, the parser trained on BOUN outperforms the parser

trained on IMST by ∼8% in UAS and by more than 10% in LAS when tested on

the BOUN test set. On the other hand, for the case of the IMST test set, the

parser trained on IMST outperforms the parser trained on BOUN by only ∼2%

in UAS and LAS. Having less amount of training data and a more inconsistent

annotation history might be the cause of the inferior performance of the IMST

Treebank when compared to the BOUN Treebank.

• Joining the training sets of the BOUN and IMST treebanks improves parsing

performance in terms of the attachment scores. The increase in the training size
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resulted in better parsing scores, contributing to the discussion on the correlation

between the size of the corpus and the success rates in parsing experiments [54,

108].

• The worst results by all the models were obtained on the PUD Treebank used

as a test set. The different nature of the PUD Treebank compared to the other

Turkish treebanks may have an effect on this performance drop. This treebank

includes sentences translated from different languages by professional translators

and hence, the sentences have different structures than the sentences of the other

two treebanks. This difference in structures is a result of the different environ-

ments in which these texts were brewed, namely a living corpus (BOUN and

IMST) and well-edited translations (PUD).

4.5.3. Changes in Dependency Label Distribution

In order to investigate the differences in the percentages of certain dependency

relations between the treebanks used in the experiments, we present the distribution of

the dependency relation types across the previous5 as well as the re-annotated versions

of the IMST and PUD treebanks, and the BOUN Treebank in Table 4.11.

When comparing the BOUN Treebank and the re-annotated version of the IMST

Treebank, we observed that the percentages of the case, compound, and nmod types

were lower by more than 1% in the BOUN Treebank. The percentage of the root

type was also lower in the BOUN Treebank by almost 2%, which indicates that the

average token count in sentences is higher in this treebank with respect to the re-

annotated version of the IMST Treebank. However, the percentage of the nmod:poss

type was higher by more than 2% and the obl type was higher by more than 3% in

the BOUN Treebank. We believe that these differences are due to the text types we

utilized. Unlike IMST, the BOUN Treebank includes essay and autobiography text

types. These types make frequent use of postpositional phrases such as bana göre (in

my opinion) or 1920’ye kadar (until 1920), which are encoded with case dependency

5The re-annotation process was performed on the UD 2.3 versions of these treebanks.
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relations. Additionally, the language is less formal compared to the non-fiction and

news text types, which are the main registers that the IMST Treebank incorporates as

indicated in the UD Project. This formality difference explains the lower usage of the

compound relation type.

When comparing the BOUN Treebank with the re-annotated version of the Turk-

ish PUD Treebank, we observed that the highest percentage difference was for the obl

type which is higher in the BOUN Treebank by more than 7%. This difference is again

a result of using different text types. The Turkish PUD Treebank consists of Wikipedia

articles in which the adjuncts are expected to be used less than the text types we uti-

lized. The other relation types whose percentages are higher in BOUN by more than

1% were the root type which indicates that the average token count is lower in the

BOUN Treebank, and the conj type indicating that the BOUN Treebank has more

conjunct relations which sometimes increased the complexity of a sentence in terms of

dependency parsing.

In the comparison of the previous and re-annotated versions of the IMST Tree-

bank with respect to the distribution of dependency relation types, we see that the

percentages of the advmod, cc, ccomp, and nsubj types increased by approximately

1% in the re-annotated version. In contrast, the percentage of nmod is reduced by

more than 3% in the re-annotated version. The reason behind this decrease lies in

the fact that in the previous version of the treebank, nominalized verbs which behave

like converbs [32] are considered nominal modifiers. However, these nominalized verbs

actually construct embedded clauses and therefore are treated as clausal modifiers in

the re-annotated treebank. In addition, the obl percentage decreased by more than

1% in the re-annotated version.

The vocative type no longer exists in the re-annotated version and the newly

introduced types that are absent in the previous version are the advcl, advcl:cond,

aux, cc:preconj, clf, dislocated, goeswith, iobj, orphan, and xcomp rela-

tion labels.
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Table 4.11. Dependency label distribution of the BOUN Treebank together with

previous and re-annotated versions of IMST and PUD treebanks. Black and gray

numbers show counts and percentages, respectively.

Relation type IMST IMST PUD PUD BOUN

(previous) (re-annotated) (previous) (re-annotated)

acl 1,455 (2.5%) 1,538 (2.65%) - 515 (3%) 3,494 (2.85%)

acl:relcl - - 514 (3.04%) - -

advcl - 926 (1.59%) 405 (2.4%) 435 (2.6%) 2,595 (2.12%)

advcl:cond - 110 (0.19%) - 13 (0.07%) 269 (0.22%)

advmod 1,872 (3.2%) 2,422 (4.17%) 1,716 (10.16%) 1,624 (9.6%) 5,278 (4.31%)

advmod:emph 973 (1.67%) 976 (1.68%) 145 (0.86%) 143 (0.8%) 1,724 (1.41%)

amod 3,451 (5.94%) 3,337 (5.74%) 1,224 (7.25%) 1,318 (7.8%) 7,869 (6.43%)

appos 51 (0.09%) 136 (0.23%) 36 (0.21%) 166 (1%) 506 (0.41%)

aux - 1 (0.002%) 21 (0.12%) 4 (0.02%) 39 (0.03%)

aux:q 209 (0.36%) 211 (0.36%) - 1 (0.01%) 269 (0.22%)

case 2,183 (3.76%) 2,242 (3.86%) 694 (4.1%) 697 (4.1%) 3,290 (2.69%)

cc 870 (1.5%) 879 (3.1%) 519 (3.1%) 520 (3.1%) 2,800 (2.29%)

cc:preconj - 3 (0.005%) 8 (0.05%) 8 (0.05%) 134 (0.11%)

ccomp 36 (0.06%) 626 (1.08%) 30 (0.18%) 171 (1%) 1,512 (1.24%)

clf - 8 (0.01%) 10 (0.06%) 10 (0.06%) 122 (0.1%)

compound 2219 (3.82%) 1,977 (3.40%) 2012 (11.91%) 314 (1.9%) 2,381 (1.95%)

compound:lvc 512 (0.88%) 522 (0.90%) - 186 (1.1%) 1,218 (1.0%)

compound:redup 199 (0.34%) 219 (0.37%) - 9 (0.05%) 457 (0.37%)

conj 3,718 (6.40%) 3,529 (6.07%) 640 (3.79%) 696 (4.1%) 7,250 (5.92%)

cop 813 (1.40%) 851 (1.46%) 517 (3.06%) 496 (2.9%) 1,289 (1.05%)

csubj 7 (0.01%) 82 (0.14%) 115 (0.68%) 93 (0.5%) 546 (0.45%)

dep 1 (0.002%) 1 (0.002%) 3 (0.02%) 3 (0.02%) 9 (0.01%)

det 2,040 (3.51%) 1,975 (3.39%) 671 (3.97%) 680 (4%) 4,938 (4.03%)

det:predet - - 10 (0.06%) 8 (0.05%) -

discourse 154 (0.27%) 150 (0.26%) 5 (0.03%) 5 (0.03%) 381 (0.31%)

dislocated - 20 (0.03%) 2 (0.01%) 5 (0.03%) 28 (0.02%)

fixed 40 (0.07%) 25 (0.04%) 204 (1.21%) 1 (0.01%) 12 (0.01%)

flat 910 (1.57%) 902 (1.55%) 4 (0.02%) 409 (2.4%) 2,039 (1.67%)

flat:name - - 247 (1.46%) - -

goeswith - 3 (0.005%) 1 (0.01%) 1 (0.01%) 4 (0.002%)

iobj - 354 (0.61%) 90 (0.53%) 138 (0.8%) 164 (0.13%)

list - - - - 40 (0.03%)

mark 76 (0.13%) 86 (0.15%) 6 (0.03%) 5 (0.03%) 117 (0.10%)

nmod 3,780 (6.51%) 1,870 (3.22%) 161 (0.95%) 174 (1%) 1,371 (1.12%)

nmod:arg - - 110 (0.65%) - -

nmod:poss 3,534 (6.08%) 3,598 (6.19%) 722 (4.27) 1,881 (11%) 10,393 (8.49%)

nsubj 3,747 (6.45%) 4,430 (7.63%) 1,023 (6.05%) 1,238 (7.3%) 8,499 (6.94%)

nummod 621 (1.07%) 567 (0.98%) 207 (1.22%) 263 (1.6%) 1,568 (1.28%)

obj 4,307 (7.41%) 3,743 (6.44%) 816 (4.83%) 945 (5.6%) 7,381 (6.03%)

obl 4,444 (7.65%) 3,824 (6.58%) 148 (0.88%) 412 (2.4%) 12,015 (9.82%)

obl:tmod - - 232 (1.37%) - -

orphan - 12 (0.02%) 12 (0.07%) 8 (0.05%) 84 (0.07%)

parataxis 11 (0.02%) 11 (0.02%) 74 (0.44%) 15 (0.09%) 209 (0.17%)

punct 10,228 (17.61%) 10,257 (17.65%) 2,150 (12.72%) 2,148 (12.7%) 20,116 (16.44%)

root 5,635 (9.69%) 5,635 (9.69%) 1,000 (5.91%) 1,000 (5.91%) 9,761 (7.97%)

vocative 1 (0.002%) - 1 (0.001%) - 88 (0.07%)

xcomp - 39 (0.07%) 381 (2.26%) 125 (0.7%) 125 (0.1%)

Total 58,097 58,098 16,886 16,886 122,384
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When we analyze the differences between the previous and re-annotated versions

of the PUD Treebank, we observe that the biggest difference is in the compound relation

with a 10% reduction. On the other hand, the biggest increase in the percentage of a

relation is in the nmod:poss relation with a more than 6% increase in the re-annotated

version. This is because in the previous annotation of the PUD Treebank, some con-

structions that involve genitive-possessive suffixes are marked with the compound de-

pendency label. Such relations have been corrected as nmod:poss. Other noteworthy

differences are in the fixed and xcomp relations with a more than 1% decrease and in

the flat, nsubj, and obl relations with a more than 1% increase in the re-annotated

treebank.

4.6. Conclusion

In this chapter, we presented the largest and the most comprehensive Turkish

treebank with 9,761 sentences: the BOUN Treebank. In the treebank, we encoded

the surface forms of the sentences, the universal part of speech tags, lemmas, and

morphological features for each segment, as well as the syntactic relations between

these segments. We explained our annotation methodology in detail. We also gave an

overview of other Turkish treebanks. Moreover, we explained our linguistic decisions

and annotation scheme that are based on the UD framework. We provided examples for

the challenging issues that are present in the BOUN Treebank as well as other treebanks

that we re-annotated. Our treebank with a history of the changes we applied and our

annotation guidelines are provided online.

Lastly, we evaluated our new treebank on the task of dependency parsing. We

reported UAS and LAS F1-scores with regards to specific text types and treebanks.

We also showcased the results of the experiments where our new treebank was used

with the re-annotated versions of the IMST and PUD treebanks. All the tools and

materials that are presented in this chapter are available in [13].
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5. A MORPHOLOGY-BASED REPRESENTATION

MODEL FOR DEEP DEPENDENCY PARSING

5.1. Introduction

In this chapter, we present our initial study on dependency parsing. We in-

troduce morphologically enhanced character-based word embeddings to improve the

parsing performance especially for agglutinative languages. We apply our approach

to a transition-based dependency parser by Ballesteros et al. [109] that uses stack-

LSTM structures to predict the parser state. This parser uses character-level word

representation, which has been shown to perform better for languages with rich mor-

phology [82, 109]. We conducted experiments on UD version 2.2 datasets [110] which

comprise 82 test sets from 57 languages. We observe that including morphological

information to a character-based word embedding model yields a better learning of

relationships between words and increases the parsing performance for most of the

agglutinative languages with rich morphology.

This chapter is based on the work published as [111] which describes our sub-

mission to the CoNLL 2018 shared task [112] on parsing of Universal Dependencies

(UD) [4].

5.2. The Parsing Model

We use the LSTM-based parser by Ballesteros et al. [109]. This parser is an

improved version of a state-of-the-art transition-based dependency parser proposed

by Dyer et al. [40] and uses stack-LSTM structures with push and pop operations to

learn representations of the parser state. Instead of lookup-based word representations,

BiLSTM modules are used to create character-based encodings of words. With this

character-based modeling, the authors obtain improvements on the dependency parsing

of many morphologically rich languages.
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5.2.1. Character Embeddings of Words

The character-based word embedding model using BiLSTMs in [109] is depicted in

Figure 5.1. The authors compute character-based vector representations of words using

BiLSTMs. Their embedding system reads each word character by character from the

beginning to the end and computes an embedding vector of the character sequence,

which is denoted as ~w in Figure 5.1. The system also reads the word character by

character from the end to the beginning and the produced embedding is denoted as

←−w . These two embedding vectors and the learned representation of the POS tag t of

the word are concatenated to produce the vector representation of the word. A linear

mapping of POS tag words to integers is used to create a representation of the POS

tags as in [109].

Figure 5.1. Vector representation of the word travel with the character-based

embedding model in [109].

5.2.2. Morphology-based Character Embeddings

To improve the parsing performance of the LSTM-based parser [109] through the

character-based word embeddings mentioned in Section 5.2.1, we include the morpho-

logical information of words to this embedding model. In agglutinative languages like

Turkish, a stem usually takes different suffixes and by this way, different meanings
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are created using a single root-word. Words that share the same suffixes tend to have

similar roles in a sentence. For instance, gerunds in Turkish are a kind of derivational

suffixes. Verbs that take the same gerund as a suffix have usually the same role in

sentences. Table 5.1 shows some statistics of verbs with gerunds in the development

dataset of the Turkish IMST Treebank for demonstration purposes. The first column

shows some example suffixes that attach to verbs and turn them to adverbs. The second

column shows the number of verbs with the corresponding suffix in the development

set. The third column shows the statistics of the dependency labels of these verbs.

As it can be seen from the table, these suffixes help determining the role of the word

they attach to. Therefore, representing each word using its corresponding lemma and

suffixes separately and utilizing the morphological information of words can improve

the parsing performance in agglutinative languages.

Table 5.1. Number of occurrences of some example suffixes and the corresponding

dependency labels of verbs with these suffixes in the development data of the IMST

Treebank.

Number of

Suffix Occurrences Dependency Label

-Ip 41 23 nmod 8 compound 5 conj 4 obj 1 root

-ArAk 32 26 nmod 3 conj 2 compound 1 root

-ken 20 18 nmod 1 conj 1 acl

-IncA 8 7 nmod 1 compound

-mAdAn 7 4 nmod 2 compound 1 obj

-DIkçA 3 3 nmod

5.2.2.1. Lemma-Suffix Model. For agglutinative languages where the stem of a word

is not modified in different word forms, we created a model that uses lemma and

suffix information of words in character-based embeddings. In this model, each word

is separated to its lemma and suffixes. Then, the embedding system first reads the

lemma of the word character by character from the beginning to the end and computes
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an embedding vector of the character sequence of the lemma which is denoted as

~r. Secondly, the system reads the lemma character by character from the end to the

beginning and the produced embedding is denoted as←−r . A similar process is performed

for the suffixes of the word and the produced vectors are denoted as ~s and ←−s . These

four embedding vectors and the vector representation of the POS tag t of the word

are then concatenated to produce the vector representation of the word. POS tag

representations are created by linearly mapping the POS tags to integers as in [109].

Vector representation of an example word using this model is depicted in Figure 5.2.

Figure 5.2. Character-based word embedding of a Turkish word gitti (“he/she/it

went” in English) using Lemma-Suffix Embedding Model.

5.2.2.2. Morphological Features Model. The Lemma-Suffix Model is suitable only for

agglutinative languages which make use of suffixes to create different word forms. For

languages that do not have this type of grammar, we created another model where the

specific morphological features of each word are embedded to the dense representations

of the words. The reason behind this choice is that some morphological features have a

direct impact in identifying the dependency labels of words. For instance, if a word has

a case feature and its value is accusative, then it is usually an object of the sentence.

By extracting and utilizing such morphological features, we can improve the parsing

accuracy for languages that suit this model.

In this model, the embedding of a word is created character by character as in

Section 5.2.1. Then, the embedding vector of each of its selected morphological features
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are created by reading the feature value character by character from the beginning to

the end. Finally, these embedding vectors and the vector representation of the POS

tag of the word are concatenated to produce the vector representation of the word.

The vector representation of an example word using its morphological features is

shown in Figure 5.3.

Figure 5.3. Character-based word embedding of a German word war (“was” in

English) when the Morphological Features Embedding Model is used. The

morphological features of the word war are: Mood=Ind, Number=Sing, Person=3,

Tense=Past, and VerbForm=Fin. Since the Morphological Features Embedding

Model utilizes only the Case, Mood, Tense, and VerbForm features for German, only

the values of these features are embedded. Note that the Case feature is represented

with an empty string in the word vector of war as there is no Case feature in its

morphological features.

5.3. Experiments

To evaluate our models, we performed a set of experiments on the test data of

UD version 2.2 treebanks. The purpose of these experiments is to investigate the effect

of our embedding models on parsing performance. Instead of parsing raw texts, we

used the gold-standard CoNNL-U files [113] in the experiments. The following sections

give details of the experimental setup.
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5.3.1. Extracting Lemmas and Suffixes

The Lemma-Suffix Embedding Model needs to have lemma and suffix information

for each input word. For this purpose, we have two approaches. The classic and

more accurate approach is to use a morphological analyzer and disambiguator tool

to find lemmas and suffixes of words. The other more simpler approach is using the

lemma column of the CoNNL-U files of the treebanks and removing the corresponding

lemma from each word to find the suffix information. These two methods are shown

on an example sentence in Table 5.2. We compared these two approaches on the

development set of the IMST Treebank. For this purpose, we utilized the Turkish

morphological parser and disambiguator by Sak et al. [85]. We observed that finding

suffixes by removing lemmas from the words gives the same parsing performance as

using a morphological analyzer tool to find the lemma and suffixes of a word. So, we

opted not to use a morphological analyzer and disambiguator for the languages with

the lemma-suffix embedding model due to additional costs of these tools.

Table 5.2. Lemma and suffix separation example without using morphological

analyzer and disambiguator and with using morphological analyzer and

disambiguator on the Turkish sentence “Her şeyden önce sanatçıydı.” (Sentence

translation: “She was an artist before anything else.”)

No morp.parser With morp.parser

Word Lemma Suffix Lemma Suffix

Her her - her -

şeyden şey den şey DAn

önce önce - önce -

sanatçıydı sanat çıydı sanat CHY DH

5.3.2. Embedding Model Selection for Different Languages

For each language, we decided which embedding model to apply according to the

characteristics of that language.
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Table 5.3. List of morphological features used for the languages with the

Morphological Features Embedding Model.

Language Morphological Features

Afrikaans Aspect Case Tense VerbForm

Ancient Greek Aspect Case Tense VerbForm

Arabic Aspect Case Mood VerbForm

Armenian Aspect Case Tense VerbForm

Basque Aspect Case Tense VerbForm

Bulgarian Aspect Case Tense VerbForm

Catalan AdpType Mood Tense VerbForm

Croatian Case Mood Tense VerbForm

Czech Aspect Case Tense VerbForm

Dutch Degree Case Tense VerbForm

English Case Mood Tense VerbForm

Estonian Case Mood Tense VerbForm

French Mood Tense VerbForm

Finnish Case Mood Tense VerbForm

Galician Case Mood Tense VerbForm

German Case Mood Tense VerbForm

Gothic Case Mood Tense VerbForm

Greek Aspect Case Tense VerbForm

Hebrew HebBinyan HebSource Tense VerbForm

Hindi Aspect Case Tense VerbForm

Indonesian PronType Degree

Irish Case Mood Tense VerbForm

Italian PronType Mood Tense VerbForm

Kurmanji Case Mood Tense VerbForm

Latin Case Mood Tense VerbForm

Latvian Aspect Case Tense VerbForm

North Sami Case Mood Tense VerbForm

Norwegian Case Mood Tense VerbForm

Old Church Slavonic Case Mood Tense VerbForm

Old French Tense VerbForm

Polish Aspect Case Tense VerbForm

Portuguese PronType Mood Tense VerbForm

Romanian Case Mood Tense VerbForm

Russian Aspect Case Tense VerbForm

Serbian PronType Mood Tense VerbForm

Slovak Aspect Case Tense VerbForm

Slovenian Aspect Case Tense VerbForm

Spanish Case Mood Tense VerbForm

Swedish Case Mood Tense VerbForm

Ukrainian Aspect Case Tense VerbForm

Upper Sorbian Case Mood Tense VerbForm

Mixed Language Case Mood Tense VerbForm
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We applied the Lemma-Suffix Model in 5.2.2.1 to Buryat, Hungarian, Kazakh,

Turkish, and Uyghur languages because these languages have agglutinative morphology,

take suffixes, and the stem of a word usually does not change in different word forms.

We also applied this model to Danish to observe the effect in parsing performance of a

language with little inflectional morphology.

For the languages that do not follow this scheme, we applied the Morphological

Features Embedding Model in 5.2.2.2. Table 5.3 shows the morphological features

selected for these languages. We selected four morphological features from the input

CoNNL-U files for most of the languages. For French, Indonesian, and Old French, we

used less than four features because there are less than four common morphological

features in the CoNNL-U files of these languages.

For Persian, Japanese, Korean, Vietnamese, and Chinese, we used the baseline

embedding model due to the lack of representative morphological features in their

corresponding CoNNL-U files.

Languages without Training Data. We trained a mixed language parser model

with the Morphological Features Model for languages with no training data. To train

the model, we used a mixed language data which includes the first 200 sentences of

each treebank. This model is applied to the Buryat KEB, Czech PUD, English PUD,

Faroese OFT, Japanese Modern, Naija NSC, Swedish PUD, and Thai PUD treebanks.

5.3.3. Training Specifications

Our model mostly uses the same hyper-parameter configuration with the original

settings in [109] with a few exceptions. We used stochastic gradient descent trainer with

a learning rate of 0.13. We replaced the base embedding model with our embedding

models. In the Lemma-Suffix Model, the forward and backward word vectors of the

lemma of a word both have 50 dimensions. The forward and backward word vectors of

the suffix of a word also have 50 dimensions each. In the Morphological Features Model,
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each of the forward and backward vectors of a word have 50 dimensions. Each of the

four morphological feature vectors have 25 dimensions. If a morphological feature is

absent in a word, an embedding vector of an empty string is created for that feature.

So, we increased the dimension of the character-based representations to 200 in total.

The original parser is not compatible with UD parsing. We adapted it to be

able to take input and produce output in CoNNL-U format. The source code of our

modified version of the LSTM-based parser in [109] can be found at [114].

5.4. Results

Table 5.4 shows a comparison of our models with the baseline model [109] in

terms of LAS, MLAS, and BLEX scores on these datasets.

From the comparative results shown in Table 5.4, we observe that out of 62

datasets, our models outperform the baseline on 37 of them. We notice that the

Morphological Features Model outperforms the baseline model on the languages that

have rich inflectional and derivational processes mostly by adding suffixes to words.

This is the case for the Bulgarian, Croatian, Czech, Basque, Gothic, Latin, Polish,

Russian, Slovak, Slovene, North Sami, and Ukrainian languages.

The Morphological Features Model is not suitable for the grammatical structure

of Arabic, which has derivational morphology. It also fails to outperform baseline

in Romanic languages like French, Spanish, Catalan, Galician, and Portuguese. The

possible reason for this might be the analytic structure of these languages where ev-

ery morpheme is an independent word. English, Hebrew, Hindi and Urdu are also

categorized as mostly analytic languages which do not use inflections and have a low

morpheme-per-word ratio [115]. Dutch, Norwegian, and Swedish have a simplified

inflectional grammar and cannot be represented well using our model. Besides, our

model is not the best choice for languages that have high ratio of morphophonological

modifications to the root word like Old Church Slavonic.
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Table 5.4. Comparison of our models with the baseline. MF and LS stand for the

Morphological Features and Lemma-Suffix models, respectively. Green(Red) rows

show scores of treebanks on which our models outperform(fall behind) the baseline.

Treebank Emb. LAS MLAS BLEX

model Baseline Our model Baseline Our model Baseline Our model

af-afribooms MF 82.16 82.80 73.17 74.35 75.48 76.37

ar-padt MF 78.80 78.60 73.59 73.33 74.66 74.39

bg-btb MF 86.52 87.41 80.88 82.00 81.33 82.38

ca-ancora MF 87.21 87.03 80.56 80.23 81.07 80.79

cs-cac MF 87.37 87.85 84.12 84.94 84.78 85.49

cs-fictree MF 83.49 86.03 77.80 81.64 78.58 82.34

cs-pdt MF 86.66 88.47 83.39 85.89 83.91 86.38

cu-proiel MF 75.73 75.59 69.85 69.62 72.09 71.97

da-ddt LS 77.34 78.04 71.45 71.48 72.97 73.33

de-gsd MF 77.45 77.79 69.79 70.26 72.40 73.24

el-gdt MF 83.22 83.98 74.83 76.69 75.57 77.53

en-ewt MF 83.88 83.58 79.44 78.95 79.96 79.51

en-gum MF 80.34 81.46 73.30 74.34 73.87 75.03

en-lines MF 75.89 73.83 71.06 67.75 72.53 69.28

es-ancora MF 86.71 85.55 80.65 78.97 81.17 79.61

et-edt MF 80.25 81.49 76.59 78.28 77.40 78.98

eu-bdt MF 74.07 74.65 69.97 71.21 71.69 72.74

fi-ftb MF 82.76 83.88 77.86 79.02 78.54 79.89

fi-tdt MF 80.39 80.46 76.33 76.60 76.96 77.31

fr-gsd MF 84.69 83.77 78.56 77.59 79.13 78.39

fr-sequoia MF 83.16 82.49 76.75 75.96 77.38 76.40

fr-spoken MF 67.99 68.70 57.82 58.19 58.68 59.04

fro-srcmf MF 83.01 82.54 76.90 76.44 77.78 77.43

ga-idt MF 61.02 63.23 45.21 47.98 48.68 51.90

gl-ctg MF 81.56 80.70 70.76 69.41 75.38 74.25

got-proiel MF 71.88 74.95 64.13 67.99 66.78 70.78

grc-perseus MF 61.22 60.10 50.75 49.95 53.92 52.79

grc-proiel MF 79.26 79.28 64.54 64.12 67.09 67.16

he-htb MF 80.06 79.80 71.56 70.97 72.02 71.52

hi-hdtb MF 92.11 91.51 87.64 86.72 88.38 87.46

hr-set MF 80.12 81.36 74.75 76.45 76.22 77.90

hu-szeged LS 64.00 68.33 56.44 62.55 59.75 66.11

hy-armtdp MF 29.60 28.56 21.65 25.14 24.04 28.56

it-isdt MF 88.91 89.23 82.77 83.34 83.20 83.79

it-postwita MF 79.19 79.10 72.30 72.26 72.84 72.91

kk-ktb LS 35.92 35.34 25.89 25.19 30.09 30.18

la-ittb MF 83.86 85.37 79.06 80.93 80.02 82.10

la-perseus MF 47.48 51.82 41.00 46.56 44.56 51.79

la-proiel MF 68.81 70.95 62.15 64.66 64.95 67.11

lv-lvtb MF 73.48 75.43 66.19 68.67 67.37 69.66

nl-alpino MF 80.60 79.11 72.53 70.60 73.25 71.44

nl-lassysmall MF 81.15 79.19 74.84 72.37 75.52 73.26

no-bokmaal MF 88.53 88.22 84.48 83.87 84.96 84.46

no-nynorsk MF 86.64 85.42 82.00 80.39 82.94 81.21

no-nynorsklia MF 66.27 64.76 58.40 56.92 60.12 58.55

pl-lfg MF 92.02 92.68 88.93 89.80 89.16 90.01

pl-sz MF 85.86 89.56 81.34 86.50 82.02 87.17

pt-bosque MF 83.28 83.20 75.64 74.85 76.95 76.28

ro-rrt MF 81.22 80.84 74.26 74.03 75.55 75.36

ru-syntagrus MF 88.01 88.14 84.35 84.86 84.72 85.24

ru-taiga MF 48.95 56.57 40.82 50.74 42.74 52.33

sk-snk MF 78.49 82.66 73.94 79.61 74.58 80.46

sl-ssj MF 86.23 88.82 81.84 85.33 82.23 85.80

sl-sst MF 64.47 65.41 57.67 59.38 59.31 61.22

sme-giella MF 66.21 71.55 58.73 66.87 61.22 69.03

sr-set MF 80.71 80.36 75.36 74.84 76.74 76.38

sv-lines MF 76.86 77.43 72.98 73.75 74.13 74.72

sv-talbanken MF 83.03 82.39 78.36 77.68 79.27 78.58

tr-imst LS 55.45 56.74 49.29 50.42 50.45 51.97

ug-udt LS 58.02 56.97 47.47 45.52 50.18 47.86

uk-iu MF 76.10 78.87 70.57 74.66 70.77 74.95

ur-udtb MF 86.07 86.04 79.43 79.77 80.75 81.02
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The Lemma-Suffix Embedding Model is applied to the Danish, Hungarian, Kazakh,

Turkish, and Uyghur languages. The best performance is reached in the Hungarian

language with more than 4% increase in LAS score. Our model also outperforms the

baseline in Turkish. These languages are highly agglutinative languages where words

may consist of several morphemes and the boundaries between morphemes are clearcut.

In this type of languages, there is a one-to-one form-meaning correspondence and shape

of a morpheme is invariant [115]. An example word-morpheme relationship in Hungar-

ian and Turkish languages is shown in Table 5.5. As it can be seen from the table, this

structure is very suitable to the Lemma-Suffix Embedding Model.

Table 5.5. Word-morpheme structure of the Hungarian word ember and the Turkish

word adam (English translation of these words: man).

Singular Plural Singular Plural

Hungarian Hungarian Turkish Turkish

Nominative ember ember-ek adam adam-lar

Accusative ember-et ember-ek-et adam-ı adam-lar-ı

Dative ember-nek ember-ek-nek adam-a adam-lar-a

Locative ember-ben ember-ek-ben adam-da adam-lar-da

Yet, the Lemma-Suffix Model fails to reach better performance than the baseline

on the Kazakh and Uyghur treebanks. A possible reason might be that our embedding

model increases the system complexity unnecessarily for these low-resource languages.

The Lemma-Suffix Model outperforms the baseline for Danish, although it can be

considered as an analytic language with a simplified inflectional grammar.

Table 5.6 shows the parsing scores of the parser with Lemma-Suffix Embedding

Model on the test data of the Turkish IMST Treebank. We compared the parsing

performance when the parser does not use pretrained word embeddings additional to

the character embeddings, when it uses pretrained embeddings from CoNLL-17 UD

word embeddings, and when it uses pretrained embeddings from word vectors trained
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on Wikipedia by Facebook [116]. From the results, we observe that the usage of pre-

trained word vectors increases the parsing performance by great extent for Turkish.

We also observe that Facebook word vectors outperform the CoNLL-17 UD word vec-

tors [107], although the number of words in the Facebook vectors data set is much

smaller than the number of words in the CoNLL-17 UD word vectors data set.

Table 5.6. Effect of using pretrained word embeddings on the parsing success of

Turkish IMST test set.

Treebank Number Embedding LAS MLAS BLEX

of words dimension

tr-imst w/o pretrained embeddings - - 56.74 50.42 51.97

tr-imst with CoNLL-17 UD word embeddings 3,633,786 100 59.11 53.02 54.51

tr-imst with Facebook word embeddings 416,051 300 59.69 53.56 54.98

5.5. Conclusion

In this preliminary study, we introduced two morphology-based adaptations of

the character-based word embedding model in [109] and experimented with these mod-

els on the UD version 2.2 treebanks. The experimental results suggest that our models

utilizing morphological information of words increase the parsing performance in ag-

glutinative languages.
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6. A HYBRID DEEP DEPENDENCY PARSER

ENHANCED WITH RULES AND MORPHOLOGY

6.1. Introduction

Current state-of-the-art dependency parsers usually rely solely on deep learning

methods, where parsers try to learn the characteristics of the language from available

training data [40, 117]. As expected, this approach works well when the training data

size is big enough. However, these pure deep learning-based approaches cannot reach

the desired success levels when the data size is insufficient [118]. It was observed

that deep learning-based systems need large amounts of data to be able to reach high

performance [119]. For languages with small data sets, there is a need for developing

additional methods that meet the characteristic needs of these languages.

Following our initial study in Chapter 5 on the use of morphology in dependency

parsing, we propose to take into account the language grammar and integrate the

information extracted from the grammar to a deep learning-based dependency parser.

We propose two approaches for the inclusion of the grammar to the neural parser

model. Our first approach is to integrate linguistically-oriented rules to a deep learning-

based parser for dependency parsing of languages especially with restricted amount of

training data. The rules are created to deal with the problematic parts in the sentences

that are hard to predict. In our second approach, we give morpheme information as

an additional input source to the parsing system. We experimented with different

methods for inclusion of the morpheme information. We applied the proposed methods

to Turkish and the experimental results suggest that both approaches improve the

parsing performance of a state-of-the-art dependency parser for Turkish.

The proposed methods were evaluated on both projective and non-projective

sentences and currently hold the state-of-the-art performance in parsing the Turkish

IMST Treebank. To the best of our knowledge, this is the first study that integrates
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the parsing actions of a rule-based method and morphological elements into a deep

learning-based dependency parsing system and may serve as a base for other low- or

mid-resource languages.

The main contributions presented in this chapter are as follows:

• A novel rule-based enhancement method that can be integrated to any neural

dependency parser.

• A morphology-based enhancement method with three different ways of including

morphological information to the parser.

• A simple yet useful integration method that allows to combine the proposed

enhancement methods with any neural dependency parser.

• State-of-the-art dependency parsing scores on the IMST Treebank.

This chapter is based on our work in [9] and supported by the Scientific and

Technological Research Council of Turkey (TÜBİTAK) under grant number 117E971

and as BİDEB 2211 graduate scholarship.

6.2. Related Work

Purely rule-based approaches to NLP problems have been very popular in the

past, from part of speech tagging [120] to aspect extraction in sentiment analysis [121].

Rule-based methods have also been applied to dependency parsing. There have been

studies on rule-based parsing using grammar rules for Turkish [122] and for other

languages [123–126].

Deep learning methods show promising performance in predicting the depen-

dency parses of sentences [40,41,117]. In 2017, a state-of-the-art LSTM-based biaffine

parser [82] achieved the best performance in 54 treebanks including the IMST Tree-

bank at the CoNLL-17 shared task on multilingual parsing from raw text to Universal

Dependencies [73]. This parser together with its enhanced versions [84,127] presented
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at the CoNLL-18 shared task on multilingual parsing from raw text to Universal De-

pendencies [112] show state-of-the-art performance on the dependency parsing of many

languages. However, these parsers do not have language specific features that can boost

the parsing performance, especially for morphologically rich and under-resourced lan-

guages like Turkish.

Morphologically rich languages (MRLs) pose problems when state-of-the-art NLP

models developed for the most widely studied languages like English and French are

applied directly to them [128]. There are studies that include rule-based knowledge to

data-driven parsers in order to increase parsing accuracy. Zeman and Žabokrtský [129]

experimented with different voting mechanisms to combine seven different dependency

parsers including a rule-based parser. Another study applied a rule-based mechanism

on the output of a dependency parser to create collapsed dependencies [130].

There have also been several approaches that use morphological information in

the dependency parsing of the MRLs. Similar to Ambati et al. [131] and Goldberg

and Elhadad [132], which utilize morphological features for the dependency parsing

of Hindi and Hebrew respectively, Marton et al. [133] measured the effects of nine

morphological features extracted from an Arabic morphological analysis and disam-

biguation toolkit [134] on the parsing performance of the MaltParser [71] for Arabic.

These studies show that usage of some morphological features works well for the de-

pendency parsing of MRLs. Vania et al. [135] compared the strength of character-level

modelling of words with an oracle model which has explicit access to morphological

analysis of words on dependency parsing and observed that combining words with their

corresponding morpheme information using a BiLSTM structure in the word represen-

tation layer outperforms the character-based word representation models. Dehouck

and Denis [136] proposed a multi-task learning framework that makes use of language

philogenetic trees to represent the shared information among the languages. They

used gold morphological features for dependency parsing by summing the created vec-

tors of each morphological attribute given in the treebanks and add this vector to the

representation of the word, similarly to [111].
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However, to the best of our knowledge, there does not exist any prior research

on a hybrid approach for dependency parsing, where parsing decisions of hand-crafted

rules together with morphological information are integrated into a deep learning-

based dependency parsing model. Our inclusion of morphology also differs from the

previous works in terms of extracting the morphological information. Instead of using

morphological features of a word, our models utilize its suffixes explicitly. While two of

the proposed morphology-based methods include the suffixes of each word to the word

representation model directly, the third one represents each word with the suffixes

which can and cannot bind to the root of that word.

Turkish Dependency Parsing. In this study, we propose both rule-based and

morphology-based enhancement methods for dependency parsing and integrate our

methods to a state-of-the-art dependency parser [82]. We applied the proposed ap-

proaches to Turkish. Because, unlike frequently studied languages such as English, the

resources for Turkish NLP in general are restricted, which makes it suitable for such

enhancements. Until very recently the only data sets used for training and evaluation

of the systems for Turkish were the IMST Treebank [60] which consists of 5,635 anno-

tated sentences and the Turkish UD Parallel (PUD) Treebank [73] of 1,000 annotated

sentences that is used for testing purposes.

Turkish is not a well-studied language in natural language processing, and depen-

dency parsing is no exception to this. Following the initial work in [122], another study

presents a word-based and two inflectional group-based input representation models

for dependency parsing of Turkish [137] which use a version of backward beam search

to parse the sentences. They used a subset of 3,398 sentences of the Turkish Depen-

dency Treebank [57] with only projective (non-crossing) dependency relations to train

and test the proposed parsers. Later, a data-driven dependency parser for Turkish

was proposed, which relies completely on inductive learning from treebank data for

the analysis of new sentences, and on deterministic parsing for disambiguation [105].

The authors use a variant of the transition-based parsing system MaltParser proposed

in [71], a linear-time, deterministic, classifier-based parsing method with history-based
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feature models and discriminative learning.

Eryiğit et al. [138] extracted different multi-word expression classes as a pre-

processing step for a statistical dependency parser. Only the projective dependencies

are considered. Hall et al. [6] and Durgar El-Kahlout et al. [106] are other notable

studies that are based on optimized versions of the MaltParser system. Later, a graph-

based approach was proposed in [139], where a discriminative linear model is trained

and a lattice dependency parser is created that uses dual decomposition. All these stud-

ies on Turkish dependency parsing used the first version [57] of the Turkish Treebank

annotated in non-UD (non-Universal Dependencies) style.

The UD version of the Turkish Treebank, IMST, was evaluated using MaltParser

in [75], however only a subset of the treebank was used by eliminating the non-projective

dependencies in training and development sets. In our study, we included both pro-

jective and non-projective dependencies in IMST as the proportion of non-projective

sentences in Turkish is too high to be ignored [6].

6.3. Methods

In order to improve the parsing performance of deep learning-based parsers, we

design hybrid methods where the grammar-based information is fed into the deep

network of a data-driven parser. We propose two different approaches for supplying

the information extracted from the language grammar, the first one is via hand-crafted

grammar rules for detecting dependency relations between words and the second one

is by analyzing the underlying morphological structure of words.

We first give a brief description of the state-of-the-art neural parser used in this

study in Section 6.3.1. We then explain our rule-based parsing method in Section 6.3.2

and show how these two methods are integrated to get a better parsing mechanism in

Section 6.3.3. Finally, we describe our morphology-based enhancement method and its

integration to the parser in Section 6.3.4.
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6.3.1. Stanford’s Neural Dependency Parser

Stanford’s graph-based neural dependency parser [82] is the leading system in

the CoNLL-17 shared task on UD parsing [73]. For the representation of input words,

the model sums learned word embeddings, pretrained word embeddings, and character

embeddings and then concatenate the resulting word vector with their corresponding

part-of-speech (POS) tag embeddings. The parser includes three BiLSTM layers with

100-dimensional word and tag embeddings. It uses two biaffine classifiers: the arc

classifier takes 400-dimensional head-dependent vectors produced by ReLU layers on

top of the final BiLSTM layer to decide the head of a given token, and the label classifier

uses 100-dimensional vectors to decide its label. For more information, see [82]. In this

study, we use this parser as the baseline system.

6.3.2. A Rule-based Unlabeled Parsing Approach

We aim at enhancing the baseline parser by supplying linguistic information to

the neural model. For this purpose, we design linguistically oriented rules for the

dependency parsing of the Turkish language. These hand-crafted rules that are not

completely free from false positives determine the head of the words in a sentence

without assigning a label for the created dependency relation. Rather than applying

them as a post-processing step that directly modifies the predictions made by the

baseline parser, we integrate these rules to the parser via the dense representation of

words in order to make them have an implicit effect on the decision of the parser (see

Section 6.3.3).

Instead of a complete parser that creates a fully connected dependency graph, our

rule-based system deals with the most difficult cases in predicting dependency relations

in a sentence according to the parsing errors of the baseline system, such as complex

predicates or multiple adverbs. The rules are created by considering the structural

components of a sentence. We consider the relations between verbs, nouns, adverbs,

and adjectives in a sentence as having the main importance and generate rules that deal
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with these relations. The rules are based on the grammar rules extracted from [32].

Figure 6.1 shows the general mechanism of our rule-based parsing system. Our

model takes a tokenized sentence as its input. Then the rules are applied in sequential

order, considering the grammatical structure of Turkish. First, the ConsecAdv rule

creates a list of the consecutive adverbs that are related to each other in the sentence,

and sends this list to AdvAdj and AdvVerb rules as an input. Similarly, the ConsecAdj

rule creates a list of the consecutive adjectives in the sentence that are related to each

other and sends this list to the AdjNoun rule. After that, CmpxPred and NounComp

rules are applied to the words of the sentence sequentially. Then, PossConst, AdvAdj,

AdvVerb, AdjNoun, and NounVerb rules are applied to the remaining words in an

iterative manner. This process continues until the heads of all the words in the sentence

are associated with a dependency relation or no more dependency relations can be found

in the sentence. The following subsections explain each rule in detail.

Figure 6.1. Our rule-based dependency parser.

Complex Predicates and Verbal Idioms (CmpxPred) Rule. This rule handles

complex predicates (e.g., kabul et (accept), sebep ol (cause) etc.) and verbal idioms

(e.g., göz yum (condone) etc.) in a sentence. Complex predicates in Turkish are made

up of a bare nominal followed by one of free light verbs ol, et, yap, gel, dur, kal, çık,

düş, buyur, eyle (page 143 in [32]). Yet, verbal idioms can have verbs in a wide range

of words and the meaning of these verbs are changed when they are used in an idiom.
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In complex predicates, head is the nominal part of the predicate. This is because

light verb constructions in Turkish are not fully in parallel to their counterparts in

languages like Persian where the light verb is considered as the source of all syntactic

properties. In Turkish, the nominal part of the noun can still retain its argument

structure and case-frame even within the absence of a light predicate as well observed

in the literature [140–143]. Since the nouns not only make a semantic contribution but

also determine the case and argument structure properties of the complex predicate,

we take the nominal part of the complex predicate as the head of the construction.

Yet, due to insufficient amount of training data, parsers usually fail to detect these

multi-word predicates [144] and consider the verb of such predicates as the head of

the relation. Example 28 shows such a false annotation done by the trained baseline

deep learning-based parser.6 The parser falsely predicts that the verb getir (bring)

is the root word and yerine (to its place) is an oblique of the root word. In fact,

yerine getir (fulfill) is a verbal idiom and the verb getir is the verbal component of the

complex predicate.

(28) Her istediğini yerine getiriyordum

root

root

det compound

obl

obj

obj

Her
every

iste-di-ği-ni
want-pst-3sg.poss-acc

yer-in-e
place-poss-dat

getir-iyor-dum.
bring-prs-pst-1sg

‘I have been doing whatever he/she wants.’

This rule correctly constructs the dependency relations between the words of such pred-

icates. In order to detect such verbal compounds however, it needs a dictionary that

lists complex predicates and idioms in Turkish. We collected approximately 8K com-

plex predicates [14] using the Turkish Proverbs and Idioms Dictionary supplied by the

Turkish Language Association (TDK) [145] and from various online Turkish resources.

The CmpxPred rule searches for complex predicates and idioms in a sentence. When

such a predicate is found, the second word of the predicate is set as a dependent of

6All examples in this chapter that include dotted lines (false annotations) are taken from the
output of the baseline parser.
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the first word and given cmp as the rule-encoding. Since the head of the second word

is found, it is eliminated from the remaining words list.

Noun Compounds (NounComp) Rule. In Turkish, there are two types of noun

compounds: bare compounds that are treated as head-level (X0) constructions and

-(s)I(n) compounds where the first noun has no suffixes while the second noun in

the compound takes the 3rd person possessive suffix -(s)I(n) (page 94 in [32]). In

terms of dependency grammar representations, in (X0) constructions the head word

of the compound is the first noun, whereas in -(s)I(n) compounds the first noun is

dependent on the second noun. Note that, (X0) constructions are not head-initial but

considered as head-level constructions where there is no syntactic difference between

words of the compound. In head-level compounds, two heads come together to form

a new complex word. Syntax cannot treat head-level compounds as having a phrasal

internal structure.

Differentiating between these two noun compound types is not easy for parsers

in the absence of large amount of training data. Examples 29 and 30 show an (X0)

compound kuru yemiş (dried nuts) and a -(s)I(n) compound ev yemeği (homemade

food), respectively. In Example 29, both of the words are in their bare forms with no

suffixes and form a noun compound with the head word being kuru (dried). Yet, the

parser falsely predicts kuru as an adjective modifier of yemiş (nuts).

(29) Kuru yemiş

amod

compound

kuru
dry

yemiş
nut

‘Dried nuts’
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(30) Ev yemeği

nmod

ev
home

yemeği
food-3sg-poss

‘Homemade food’

Reduplicated compounds are also handled by this rule. Reduplication is a common pro-

cess in Turkish [90]. Reduplicated words construct reduplicated compounds. However,

the parser sometimes cannot recognize this idiomatic structure and fails to construct

the compound. Example 31 shows this kind of confusion where the parser falsely

assigns the first word of the compound as an adjective modifier of the second.

(31) Arka arkaya

amod

compound:redup

arka
back

arka-ya
back-DAT

‘Repeatedly’

To detect these cases, the NounComp rule utilizes large lexicons and detects the noun

compounds in sentences with the help of these lexicons. We extracted three different

lexicons from the official noun compounds dictionary of Turkish language published

by the Turkish Language Association. These three lexicons are for noun compounds,

possessive compounds, and reduplicated compounds with, respectively, the sizes of ap-

proximately 1.5K, 7K, and 2K entries [14]. We classified each entry in the dictionary as

one of the three kinds of compounds according to their lexical classes. The NounComp

rule searches through these lexicons and by this way detects noun compounds, posses-

sive compounds, and reduplicated compounds in the sentences. In noun compounds

and reduplicated compounds, the second word is set as a dependent of the first word,

whereas in possessive compounds, the first word is set as a dependent of the second

word. As rule-encodings, com is given to the dependent components of detected noun

compounds, fla is given to the dependants of reduplicated compounds, and nmo is

given to the dependent words in possessive compounds. The words whose heads are

found are then eliminated from the remaining words list.



76

Possessive Construction (PossConst) Rule. The PossConst rule includes both

genitive-possessive constructions and possessive compounds that cannot be detected

by the NounComp rule. In genitive-possessive constructions, the first noun of a noun

phrase takes a genitive suffix -(n)In that represents the ownership of the first noun

over the second noun. The second noun takes a possessive suffix -(s)I(n) (page 161

in [32]). In possessive compounds, there is no genitive suffix and the first noun in the

compound appears without any case marking (page 96 in [32]). Although it is easy for

the parser to detect the genitive-possessive construction relations due to the existence

of a genitive suffix, detecting possessive compounds is a challenging task. Because in

possessive compounds, there does not exist a genitive suffix in the first noun and the

possessive suffix -(s)I(n) in the second noun is confusing since it appears the same as

the accusative suffix -(y)I when the suffix initial (s) is dropped in nouns ending with

a consonant.

This situation is depicted in Examples 32, 33 and 34. The only difference in

Examples 32 and 33 is that the genitive suffix showing the possession exists in 32 and

is omitted in 33. In both sentences, the subject of the sentence is the word yağ (oil)

and the two nouns form a possessive construction. However, this is not the case in

Example 34. Here, the subject of the sentence is the word makine (machine), and the

word yağ (oil) is the object of the verb akıt- (drip). The confusion originates from the

use of the same consecutive nouns, makine yağı, in both of the example sentences 33

and 34. However, the -ı suffix of the word yağ in 34 is actually an accusative suffix

and hence the two nouns in 34 do not form a compound. In order to help the parser

to differentiate between these two cases in sentences, we construct the PossConst rule

that identifies whether there is a compound relation between two consecutive nouns or

not.

When two consecutive nouns are detected, the rule checks whether there is a

genitive suffix in the first noun. If yes, it is set as a dependent of the second noun,

given nmo as the rule-encoding, and dropped from the remaining words list. If the first

noun is in bare form and the second noun has a possessive suffix, then the first noun
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is set as the dependent on the second noun. As stated, the third person possessive

suffix -(s)I(n) can be confused with the accusative suffix -(y)I when they are attached

to a word ending in a consonant. In this case, both suffixes reduce to the form ı, i,

u, or ü. To prevent this confusion, the rule analyzes the morphological features of the

word and checks if it is identified as accusative (example 34) or not (example 33). If

it is identified as the possessive suffix, the PossConst rule assigns the first noun as a

dependent of the second noun, gives nmo rule-encoding, and the first noun is eliminated

from the remaining words list.

In addition, PossConst deals with multi-word proper nouns and determiner-noun

relations. When the PossConst rule detects a multi-word proper noun, all the following

consecutive proper nouns are set as dependent on the first proper noun, given cop as

the rule-encoding, and dropped from the remaining words list. When it detects a noun

that is preceded by a determiner, it sets the determiner as dependent on the noun. The

dependent word is given det rule-encoding and dropped from the remaining words list.

(32) Makinenin yağı aktı

root

nmod:poss nsubj

Makinenin
machine-gen

yağ-ı
oil-3sg-poss

ak-tı.
leak-pst-3sg

‘The machine’s oil leaked.’

(33) Makine yağı aktı

root

nmod nsubj

Makine
machine

yağ-ı
oil-3sg-poss

ak-tı.
leak-pst-3sg

‘Machine oil leaked.’

(34) Makine yağı akıttı

root
nsubj

obj

Makine
machine

yağ-ı
oil-acc

akıt-tı.
drip-pst-3sg

‘The machine dripped the oil.’
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Consecutive Adverb (ConsecAdv) Rule. Consecutive adverbs are also hard-to-

detect with data-driven parsers. For instance, the first adverb sonra (then) and the

second adverb çok (very) are both dependents of the verb şaşırırsınız (be surprised)

in Example 35. However, the parser falsely predicts the word sonra as the dependent

of the previous word inanırsanız (if you believe) with case label. The ConsecAdv

rule handles such consecutive adverbs in a sentence. We observe that, if there are

two consecutive adverbs in a sentence, usually there are two cases: either the first

adverb is dependent on the second adverb or they are both dependent on the same

head word. So, when two consecutive adverbs are found, the method checks whether

the first adverb belongs to the group of adverbs that emphasize the meaning of the next

adverb or not (page 213 in [32]). This is done via searching through a list of adverbs

of quantity or degree taken from [32] (pages 210-211). If yes, the first adverb is set as

a dependent word of the second adverb, given adv as the rule-encoding, and dropped

from the remaining words list. If not, these two adverbs are put in a list (which will be

called the consecutive adverbs list throughout the article) and the first one is dropped

from the list of remaining words. When the head word of the second adverb is found

later, the first adverb is also bound to the same head word.

(35) İnanırsanız sonra çok şaşırırsınız

root

advmod

case

advcl:cond

nmod

advmod

İnan-ır-sa-nız
believe-aor-cond-2pl

sonra
then

çok
very

şaşır-ır-sınız.
surprise-aor-2pl

‘If you believe, then you will be very surprised.’

Consecutive Adjective (ConsecAdj) Rule. Consecutive adjectives are another

troublesome word group which the parser sometimes fails to parse correctly. Example

36 shows such an annotation.
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(36) Asistanım bulanık anlamsız gözlerini bana çevirdi

root

obj

nsubj

iobj

objamod

amod
amod

Asistanım
assistant-1sg.poss

bulanık
blurred

anlamsız
meaningless

göz-ler-in-i
eye-pl-3sg.poss-acc

bana
I-dat

çevir-di.
turn-pst-3sg

‘My assistant turned his/her blurred meaningless eyes towards me.’

The parser falsely considers the word bulanık (blurred) as an adjectival modifier of the

word anlamsız and assigns amod to bulanık. In fact, it is an adjective describing the

word gözler (eyes) and should be an amod dependent of the word gözler. The Con-

secAdj rule is created to prevent this type of errors. This rule finds all the consecutive

adjectives in a sentence. Usually, two consecutive adjectives are dependent on the same

word. So, when two consecutive adjectives are found, these adjectives are put into a

list (which will be called the consecutive adjectives list from now on) and the first one is

dropped from the list of remaining words. When the head word of the second adjective

is found later by the parser, the first adjective is also set as a dependent of the same

head word.

Adverb-Adjective (AdvAdj) Rule. The AdvAdj rule handles adverb-adjective

relations in a sentence. For every two consecutive words in the sentence, if the first

word is an adverb and the second word is an adjective, and if the adverb is a quantity or

degree adverb, then the adverb is set as a dependent of the adjective word (pages175-

180 in [32]) and given adv rule-encoding. When the head of an adverb is obtained in

this way, the rule checks whether the adverb is in the consecutive adverbs list supplied

by the ConsecAdv rule. If yes, the consecutive adverbs of this adverb are also set as

dependents of the same head word and given adv as rule-encodings. So, in Example

37, when the AdvAdj rule detects the degree adverb daha (more) is followed by the

adjective ince (thin), it sets daha as a dependent of ince. The rule then checks the

consecutive adverbs list previously created by the ConsecAdv rule and finds that the

adverb normalden (than normal) is a consecutive adverb of the adverb daha. So, the
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adverb normalden is also set as a dependent of the adjective ince.

(37) Normalden daha ince kalemler

root

amod

advmod

advmod

Normal-den
normal–abl

daha
more

ince
thin

kalem-ler
pencil-pl

‘Pencils thinner than normal’

Adverb-Verb (AdvVerb) Rule. For every two consecutive words in a sentence,

if the first word is an adverb and the second word is a verb, and if the adverb is not

one of bile (even), -DAn önce (before something), -DAn sonra (after something) that

modify the preceeding word, then the AdvVerb rule sets the adverb as a dependent

of the verb (page 189 in [32]) as in the relation between the adverb çabuk (quickly)

and the verb ağlarım (I cry) in Example 38. Otherwise, it sets the previous word of

the adverb as its head. As the head of an adverb is found, the AdvVerb rule checks

whether the adverb is in the consecutive adverbs list supplied by the ConsecAdv rule.

If yes, the consecutive adverbs of this adverb are also set as dependents of the same

head word and given adv rule-encoding.

(38) Bazen çabuk ağlarım

root

advmod

advmod

Bazen
sometime

çabuk
quick

ağla-r-ım
cry-aor-1sg

‘Sometimes I cry quickly.’

Adjective-Noun (AdjNoun) Rule. The AdjNoun rule constructs adjective-noun

relations. For every two consecutive words in the sentence, if the first word is an

adjective and the second word is a noun, then the adjective is set as a dependent

word of the noun (page 170 in [32]) and amo is given as the rule-encoding. Like for

the adverbs, when the head of an adjective is found, the algorithm checks whether

the adjective is in the consecutive adjectives list supplied by the ConsecAdj rule. If
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yes, the consecutive adjectives of this adjective are also set as dependents of the same

head word and given amo rule-encoding. So, in the case of Example 39, the three

consecutive adjectives sarışın (blonde), tombul (chubby), and mutlu (happy) are all set

as dependents of the noun çocuklar (children) by the AdjNoun rule.

(39) Sarışın tombul mutlu çocuklar gördüm rüyamda

root
amod

amod
amod obj obl

Sarışın
blonde

tombul
chubby

mutlu
happy

çocuk-lar
child-pl

gör-dü-m
see-pst-1sg

rüya-m-da
dream-1sg-loc

‘I saw blonde chubby happy children in my dream.’

Noun-Verb (NounVerb) Rule. After complex predicates and noun, adverb, and

adjective compounds are detected and eliminated from the sentence, the final NounVerb

rule assigns any unassigned noun or pronoun followed by a verb as a dependent of that

verb and gives nov rule-encoding.

A summary of the rules and their corresponding rule-encodings are depicted in

Table 6.1. Application of each rule on an example sentence is depicted in Figure 6.2.

In the example, the first rules that are applied to the sentence are the ConsecAdv and

ConsecAdj rules. These rules prepare the consecutive adverbs list and the consecutive

adjectives list, respectively. The consecutive adverbs list stores the consecutive adverbs

that should be bound to the same head word. Similarly, the consecutive adjectives list

stores the consecutive adjectives which should have the same head word. After that,

the CmpxPred and NounComp rules are applied consecutively. The CmpxPred rule

finds the complex predicates and idioms in the sentence using a large lexicon while the

NounComp rule detects the noun compounds, possessive compounds, and reduplicated

compounds that also exist in the pre-built lexicons.
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Table 6.1. Summary of rules in the rule-based system with examples for each

encoding. Bold words in the Example column are dependents with an assigned

rule-encoding. Note that, the second case of the ConsecAdv rule and the ConsecAdj

rule do not assign a rule-encoding, but create lists to be used by other rules in

subsequent steps.

Rule Grammatical Structures Rule Example

encoding

CmpxPred Rule Complex predicates cmp kabul → etmek Eng: to accept

NounComp Rule Noun compounds com kara → tahta Eng: blackboard

Possessive compounds nmo armut ← sapı Eng: pear stalk

Reduplicated compounds fla yamuk → yumuk Eng: crooked

PossConst Rule Genetive possessive constructions nmo armutun ← sapı Eng: stalk of pear

Possessive compounds nmo armut ← sapı Eng: pear stalk

Determiner-noun relations det bir ← yol Eng: a way

Multiword expressions cop zor ← dur Eng: it is hard

ConsecAdv Rule Consecutive adverbs:

1) adverb emphasizing adverb adv çok ← daha Eng: much more

2) adverbs sharing heads elbette böyle yaptım Eng: course I did like this

[elbette, böyle]

ConsecAdj Rule Consecutive adjectives sharing küçük eski masa Eng: small old table

heads [küçük, eski]

AdvAdj Rule Adverb-adjective relations adv daha ← uzun Eng: longer

AdvVerb Rule Adverb-verb relations adv hemen ← geldi Eng: came immediately

AdjNoun Rule Adjective-noun relations amo uzun ← ağaçlar Eng: long trees

NounVerb Rule Noun-verb relations nov eve ← gitti Eng: went to home

As the operations of these one-time rules are completed, the PossConst, AdvAdj,

AdvVerb, AdjNoun, and NounVerb rules are applied to the sentence in a loop until

none of the rules can be applied anymore. As for the example sentence in Figure 6.2,

only two words remained unassigned out of fifteen. The complete set of dependency

relations extracted by the rule-based process is shown on the bottom of the figure. The

last line in the figure shows the encoding of the rule applied to each word, which are

then used by the dependency parser as will be explained in 6.3.3.
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Figure 6.2. Operation of the rules on a sentence. Each rule is applied in accordance

with Figure 6.1. The resulting rule-encoding for each underlined word is shown with

blue-colored three-letter encodings below that word.
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6.3.3. Integrating the Rule-based Approach with Stanford’s Graph-based

Parsing Method

Our approach for combining the rule-based method with Stanford’s neural de-

pendency parser is to embed the dependency parsing rule information to the dense

representations of the words. The purpose of this approach is to give the parser an

idea about finding the correct head of the corresponding word. The parser uses the

dependent-head decisions made by the rule-based method in its learning phase and

comes up with more accurate predictions about the syntactic annotation of sentences.

In our method, first the input sentences are pre-processed by the rule-based sys-

tem. For each word in a sentence, the rules decide the head of the word if applicable,

and then a three-letter encoding that denotes the rule action applied (cmp for Cm-

pxPred, amo for AdjNoun, etc.) is assigned to that word. During this process, the

rule-encoded words are dropped from the remaining words list in the sentence and the

rule-based system continues its process in a recursive manner until the head word of all

words in the sentence are found or no more rule can be applied. Note that, each word

is affected by at most one rule. The rules are applied sequentially and their order of ap-

plication is defined considering the grammatical structure of Turkish. For instance, the

noun compounds that are dealt with by the NounComp rule must be detected in the

sentence before the PossConst rule that also deals with nouns because the components

of noun compounds cannot be separated from each other. Similarly the AdvAdj rule

that deals with adverbs followed by an adjective must be applied before the AdjNoun

rule that handles adjectives followed by a noun because otherwise the AdjNoun rule

would assign a rule-encoding to the adjective and it would be dropped from the sen-

tence and hence, the adverb-adjective relation in the sentence could not be detected.

After this rule-based pre-processing step, the rule-encoding of each word is assigned a

100-dimensional embedding vector and concatenated to the embedding vector of that

word. The rule embeddings are initialized randomly and trained together with the rest

of the network. Figure 6.3 depicts this scheme.



85

So, in our model, the rule vector representation is concatenated with the vector

representation of Dozat et al. [82]. The parser takes these word vector representations

with the rule-based parsing decisions as input and learns the relations between the

words in the training phase. In this way, we anticipate that the parser will benefit

from the decisions of the rule-based system and arrive at a more accurate dependency

tree for a given sentence.

Figure 6.3. The word embedding representation of the hybrid model with the

rule-based enhancement. As in the tag representation, rule-encodings are assigned

randomly initialized embedding vectors at the beginning, which are then updated at

each epoch during training.

6.3.4. A Morphology-based Enhancement for Dependency Parsing

In addition to the rule-based enhancement to the deep learning-based parser, we

also propose to include the morphological information directly to the system. In this

approach, we use morphemes of a word as an additional source. Our motivation relies

on the fact that Turkish is a highly agglutinative language where the word structure

is described by identifying the different categories of suffixes and determining which

stems the suffixes may attach to and their orders. The suffixation process in Turkish
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sometimes produces very long word forms that correspond to whole sentences in English

[32]. The morphemes of a word hold important information in terms of the dependency

relations that word belongs to. For instance, it was observed that the last inflectional

morpheme of a word determines its role as a dependent in the sentence [57]. Based

on such observations, we design three different methods to enhance the deep learning-

based parser. The following subsections explain each model in detail.

6.3.4.1. The Inflectional Suffixes Model. In this model, all of the inflectional suffixes

are extracted from the morphologically analyzed form of the word, embedded, and

then concatenated to the vector representation of that word. The integration method

is the same as in Section 6.3.3 in the sense that inflectional suffixes of each input word

are represented with a 100-dimensional randomly initialized embedding vector which

is then concatenated with the word and tag embeddings of the same word. Figure

6.4 depicts the creation of the dense representation of an example word insanların

(people’s).

6.3.4.2. The Last Suffix Model. Slightly different than the Inflectional Suffixes Model,

here the same process is performed for only the last suffix of an input word. The

vector representation of the last derivational or inflectional suffix of a word is added

to the vector representation of that word. Figure 6.5 depicts the creation of the dense

representation of the same example word in Figure 6.4, but this time using the Last

Suffix Model.

6.3.4.3. The Suffix Vector Model. This model is a bit different than the previous two

models. In the Suffix Vector Model, the input words are represented through a vector

of all suffixes which the lemma of that word can and cannot take. The motivation

behind this model comes from the idea that the role of a word form in a sentence can

be determined by considering the suffixes that the lemma of that word never takes and

the suffixes it frequently takes. For instance, inflectional suffixes in Turkish indicate

how the constituents of a sentence are related to each other (page 65 in [32]).
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Figure 6.4. Dense representation of the

word insanların (people’s) using the

Inflectional Suffixes Model.

Figure 6.5. Dense representation of the

word insanların (people’s) using the Last

Suffix Model.

Figure 6.6. Word representation model of

the system with the Suffix Vector Model.

For this purpose, we created a lemma-suffix matrix which consists of 40K unique

lemmas and 81 inflectional and derivational suffixes in Turkish. Rows of the matrix

list lemmas and columns show the normalized count of the times each lemma takes

the corresponding suffix. To compute these statistics, we used the Newscor part of the

Boun Web Corpus [85] which was created using news documents from three pioneering

news portals in Turkish and includes 184M words. Morphological analyses of words in

the corpus are predicted using the Turkish morphological analyzer and disambiguator

of Sak et al. [85]. A small subset of the lemma-suffix matrix is shown in Figure 6.7.

This lemma-suffix matrix is then concatenated with the pretrained word embed-

ding matrix used by the parser. For each word entry in the pretrained word embedding
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matrix, the row vector in the lemma-suffix matrix that corresponds to the lemma of

that word is found and this vector is concatenated to the end of the embedding vector

of that word. Figure 6.6 depicts the word representation model of the system when we

use the Suffix Vector Model.

Figure 6.7. A small subset of the lemma-suffix matrix created from the Newscor part

of the Boun Web Corpus.

6.4. Experiments

We evaluated the Stanford’s neural parser as our baseline and the proposed hybrid

parser with rule-based and morphology-based enhancements on the IMST Treebank

(UD version 2.3), the Turkish PUD Treebank [81], and the BOUN Treebank [11]. In all

experiments, default set of parameters are used for the deep network that produces the

parse trees. We use 100-dimensional word vectors, POS tag vectors, and rule embedding

vectors. The 3-layer BiLSTM modules of the parser have hidden layer size of 400 on

each side. The arc MLP layer of the parser is 400-dimensional and the label MLP layer

is 100-dimensional. All dropout probabilities are 0.33. We use Adam optimizer [146]

with a learning rate of 0.002, training the models for a maximum of 30,000 iterations

and with early stopping criterion as 5,000 iterations without improvement.

We evaluated each of the proposed models on the IMST Treebank which is the

most frequently used treebank in the literature. The training part of the IMST Tree-



89

bank has 3,685 annotated sentences and the development and test parts have 975

annotated sentences each. The PUD and BOUN treebanks were used in the second set

of experiments where we measured the effect of increasing the size of the training data

to the parsing models. We include both projective and non-projective dependencies.

As in the baseline approach [82], we used 100-dimensional Turkish word vectors

from the CoNLL-17 pretrained word vectors [107]. In the evaluation of the dependency

parsers, we used the word-based unlabeled attachment score (UAS) and the labeled

attachment score (LAS) metrics.

In our system, both the rule-based and the morphology-based methods are depen-

dent on a morphological analyzer and disambiguator tool. For this purpose, we used

the Turkish morphological analyzer and disambiguator tool by Sak et al. [85]. This

tool takes the whole sentence as input and analyzes and disambiguates the words with

respect to their corresponding meanings in the sentence. This property is very useful

for Turkish because there are many words in Turkish which have multiple morpholog-

ical analyses that can be correctly disambiguated only by considering the context the

word is in. The accuracy of the tool on a disambiguated Turkish corpus was reported

as 96.45% in [85].

Although our proposed enhancement methods use a morphological analyzer and

disambiguator tool and do not rely on the gold lemmas, gold POS tags, or gold mor-

phological features, the baseline parser used in this study needs input sentences in

CoNNL-U format where the sentence is segmented to tokens and pre-processing op-

erations such as lemmatization and tagging are supplied for each token. Since our

main aim is to improve the parser performance, we supplied gold tokenization and

POS tags to the parser in the evaluation of the models in order to observe the pure

effect of the proposed methods on parsing. When we compared our best model with

the state-of-the-art parsers on parsing raw text, we utilized the Turku Neural Parser

Pipeline [84], an end-to-end system for parsing from raw text, by replacing its default

parser component with our parsing model.
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6.5. Results

6.5.1. Ablation Study

We made an ablation study to see how each rule contributes to the overall per-

formance of the rule-based parsing model. We started from the baseline where no rule

is applied and then add the rules one by one to the model. At each step, we trained

multiple models using different seeds for each setting and evaluated them on the de-

velopment set of the IMST Treebank. The attachment scores shown in this section are

the averages of the attachment scores of these multiple models.

Table 6.2 shows the rules the parser uses at each step of the ablation study. In Step

5, we added ConsecAdv and AdvAdj rules to the parser at the same time. The reason

for including these rules together is that, the ConsecAdv rule finds the consecutive

adverbs that will possibly share the same head word and these consecutive adverb pairs

are given to the AdvAdj and AdvVerb rules as input. When a dependency relation

is constructed between an adverb and an adjective by the AdvAdj rule or between an

adverb and a verb by the AdvVerb rule, these rules look up the consecutive adverbs

list sent by the ConsecAdv rule and assign the same head to their corresponding pairs.

Similarly, we introduced the ConsecAdj and AdjNoun rules to the parser at the

same time in Step 7. Because, the ConsecAdj rule finds the consecutive adjective pairs

that should be set as dependent words to the same head word, and the list of these

consecutive adjectives is given to the AdjNoun rule as input. When the AdjNoun rule

forms a dependency relation between an adjective and a noun, it searches through the

consecutive adjectives list and assigns the same head noun to the corresponding pairs

of that adjective.
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Table 6.2. The ablation study steps for the rule-based parser.

Steps Rules

Step 1 No rule

Step 2 CmpxPred

Step 3 CmpxPred + NounComp

Step 4 CmpxPred + NounComp + PossConst

Step 5 CmpxPred + NounComp + PossConst + ConsecAdv + AdvAdj

Step 6 CmpxPred + NounComp + PossConst + ConsecAdv + AdvAdj + AdvVerb

Step 7 CmpxPred + NounComp + PossConst + ConsecAdv + AdvAdj + AdvVerb + ConsecAdj + AdjNoun

Step 8 CmpxPred + NounComp + PossConst + ConsecAdv + AdvAdj + AdvVerb + ConsecAdj + AdjNoun + NounVerb

Figure 6.8 shows effect of each rule to parsing performance in terms of attachment

scores. We observe that, all rules except the AdvVerb and NounVerb rules improve the

parsing performance whereas AdvVerb and NounVerb rules cause a drop in both UAS

and LAS. A possible reason for this might be the over-generalizing structures of these

rules. Considering the high frequency of complex sentences in Turkish which include

one or more subordinate clauses in addition to the main clause, the risk of assigning

the wrong verb as the head of an adverb is high for the AdvVerb rule. Similarly in

the case of the NounVerb rule, there is a high probability of constructing a relation

between a noun and a verb falsely when there are multiple verbs in a sentence.

So, we removed the AdvVerb and NounVerb rules from the rule-based parser and

performed the ablation study again with the new setting. The effect of the rules to the

performance is depicted in Figure 6.9. We observe that each rule now improves the

parsing scores which means that none of the rules blocks the other and each of them

contributes to the parsing performance of the system. All of the experiments on the

rule-based parser were performed using this final configuration of the rules.
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Figure 6.8. The effect of each rule to the parsing performance on the development set

of the IMST Treebank. Each rule is added on top of the previous rules. So, in the

first step with the label no rule, there is no rule used in the model. In the second

step, the CmpxPred rule is added to the model. In the third step, the NounComp

rule is added to the model which means both the CmpxPred and NounComp rules are

present in the model. The integration of the other rules proceeds in the same manner.
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Figure 6.9. The effect of each rule to the parsing performance on the development set

of the IMST Treebank, when the AdvVerb rule and the NounVerb rule are removed

from the rule-based parsing system. Each rule is added on top of the previous rules.
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6.5.2. Comparison of the Models

Table 6.3 shows the unlabeled and labeled attachment scores of the baseline

system, our proposed enhancement models, and a state-of-the-art multilingual BERT-

based parsing system Udify [147] on the test set of the IMST Treebank. For each

setting, the average and standard deviation across five runs are reported.

We have five different hybrid models that are built on top of the baseline. Our

first hybrid model use the proposed rule-based approach in Section 6.3.2. The sec-

ond, third, and fourth hybrid models are the ones where we apply the corresponding

versions of the morphology-based enhancement methods in Section 6.3.4. The last

hybrid model is the combination of rule-based and morphology-based approaches. We

selected the Last Suffix Model for this combination since it is the best performing one

among morphology-based methods. We combine these models by concatenating their

corresponding embedding vectors to the original input word vector representation.

Table 6.3. Attachment scores of the baseline parser, proposed models, and a

state-of-the-art multilingual BERT-based parsing model (Udify) on IMST.

Parsing models IMST

UAS LAS

Baseline [82] 72.14±0.4 66.12±0.3

Hybrid - rule 74.03±0.3 67.99±0.1

Hybrid - inflectional suffixes 73.57±0.3 67.81±0.2

Hybrid - last suffix 73.95±0.1 68.25±0.2

Hybrid - suffix vector 73.09±0.3 66.96±0.3

Hybrid - rule and last suffix 74.37±0.4 68.63±0.4

Udify [147] 74.32±0.2 67.35±0.3

Experimental results show that all of our hybrid models outperform the baseline

parser on the IMST Treebank with p-values lower than 0.01 according to the performed
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randomization tests. We observe that the best performing model is the combination

of the rule-based model and the Last Suffix Model with more than 2 and 2.5 points

differences in, respectively, UAS and LAS scores when compared with the baseline.

We see that, among the three morphology-based models, best performing one is

the Last Suffix Model. The success of this model matches with the observation that

the last suffix of a word determines its role in a sentence [122]. This result suggests

that the Last Suffix Model can accurately group the words using the last morpheme

information for dependency parsing. Both UAS and LAS differences between this model

and the other two morphology-based models are found to be statistically significant

on the performed randomization test. From these results, we can conclude that the

Last Suffix Model can be preferred over the other two morphology-based models with

respect to the parsing performance and model simplicity. Although it outperforms the

baseline on both scores, the Suffix Vector Model is the worst performing one among

the proposed methods. Its relatively low performance can be attributed to its complex

structure which includes all of the unique suffixes in Turkish. Filtering some of the

suffixes by putting a frequency threshold during the construction of the lemma-suffix

matrix and lowering the dimension of the vectors might improve its performance.

The performance of the rule-based model significantly outperforms the Suffix Vec-

tor Model on both UAS and LAS scores. When compared with the Inflectional Suffixes

Model, the rule-based model outperforms the Inflectional Suffixes Model significantly

on UAS score. However, its LAS score is only slightly better than the Inflectional Suf-

fixes Model which leads the parsing accuracy difference to be insignificant in terms of

LAS score. The rule-based model performs slightly worse than the Last Suffix Model

according to the LAS score and slightly better than the Last Suffix Model according

to the UAS score. Both differences are small and the performed randomization test

results show that both of the differences are insignificant.

Yet, the best performance is reached when we combine the rule-based model

with the Last Suffix model. The combined model outperforms all of the other models
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and the performance differences are found to be statistically significant. This result

suggests that rule-based and morphology-based approaches improve different aspects

of the deep learning-based parser on the dependency parsing of Turkish. Actually we

observe that, while the rule-based model is more successful in establishing dependency

relations between words, the Last Suffix Model is better at determining relation types.

We also compared our models with the current state-of-the-art parsing system

Udify, a transformer-based multilingual multi-task model that reached or exceeded

state-of-the-art performance on many languages [147]. It utilizes multilingual BERT

as its language model. We fine-tuned the multilingual Udify model on the training set

of the IMST Treebank and evaluated on the test set of the IMST Treebank using gold

segmentation and tokenization. We observe that our best hybrid model outperforms

Udify significantly on LAS and performs slightly better than Udify on UAS.

All experiments were repeated five times. The p-values of model comparisons

were obtained by performing the approximate randomization test [148] as described

in [149] on the model outputs. We set the number of shuffles to 10,000.

Table 6.4. Comparison of our best hybrid model on the IMST test set with the top

performing parsing systems in CoNLL 2018 shared task on multilingual parsing from

raw text to Universal Dependencies.

Parsing models IMST

LAS MLAS BLEX

Hybrid 65.06 55.94 60.69

HIT-SCIR 66.44 53.81 56.72

TurkuNLP 64.79 55.73 60.13

UDPipe Future 63.07 54.02 56.69

ICS PAS 63.54 52.51 58.89

CEA LIST 63.78 55.00 54.29
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6.5.3. Parsing Performance on Raw Text

We also measured the parsing performance of our best hybrid model when the

task is parsing from raw text where there is no gold segmentation or tokenization

available. As in every other parsing system, the performance of our model was also

affected negatively by the usage of automatic segmentation, tokenization, and tagging

instead of the gold ones. Table 6.4 shows the comparison of our best parsing model

with the state-of-the-art on parsing raw text. The systems in the table are the five best

performing parsers in the CoNLL 18 Shared Task on Multilingual Dependency Parsing

from Raw Text to Universal Dependencies [112]. The shared task used LAS, MLAS,

and BLEX metrics to sort the participating systems.

In terms of LAS, our best model (using both rule-encodings and last-suffix infor-

mation) is ranked second among the top five best systems participated in the shared

task. The best performing system is HIT-SCIR [127] which incorporates an ensemble

of three instances of Stanford’s neural parser [82] trained with different initializations

and contextual word embeddings. Although HIT-SCIR is ranked first in LAS, our

model outperforms it and is ranked first in MLAS and BLEX metrics. Our model

also outperforms TurkuNLP, which again uses Stanford’s neural parser as the parsing

component, in all three metrics.

Effect of Rule-based and Morphology-based Enhancements on Parsing. In Table

6.5, we depict the results of an analysis made on the proposed hybrid method to see

how rules and morphology are affecting the parsing performance and what percentage

of the input tokens are covered with these methods. We performed this analysis on the

test set of the IMST Treebank and we excluded the punctuation from the analysis. We

observe that the rules are covering 36.07% of the total tokens in the test set whereas

the last-suffix information is included in 52.38% of the tokens. We further analyzed

the tokens that get a rule-encoding to see how much different rules contributed to this

amount. We counted the tokens encoded by the NounComp rule and the PossConst

rule together because the areas of operation of these rules overlap and sometimes
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the same rule-encoding is used by both rules. We did the same thing for AdvAdj-

ConsecAdv and AdjNoun-ConsecAdj rule pairs too. From the statistics in the first

part of Table 6.5, we see that 62.07% of the rule-encodings are resulted from the

NounComp-PossConst rule pair. The AdjNoun-ConsecAdj rule pair follows it with

19.30%. The AdvAdj-ConsecAdv rule pair has 10.18% of the rule-encodings and the

remaining 8.05% rule-encodings is resulted from the CmpxPred rule.

In the second part of Table 6.5, the performance of the hybrid and baseline parsers

on the tokens for which the last-suffix information is available and on the tokens which

are assigned a rule-encoding is given. On 4,295 tokens with last-suffix information,

the hybrid parser made approximately 3.5 points and 4.5 points improvement over the

baseline parser in UAS and LAS, respectively. On 2,958 tokens with rule-encodings, the

hybrid parser outperforms the baseline parser by almost 3 points in both scores. Both

performance differences being greater than the performance differences between the

hybrid and baseline parsers on the whole test set (Table 6.3) signals the contribution

of the two enhancements. It also suggests that increasing the coverage of the rules

and morphology is likely to result in better parsing scores. When we compare the two

parsers on individual rules, we see that the biggest effect is caused by the CmpxPred

rule with adding almost 6 points to UAS and 5.5 points to LAS over the performance

of the baseline. The AdjNoun-ConsecAdj rule pair improves the scores by 3 points, the

effect of the NounComp-PossConst rule pair is 2.5 points in both scores. The AdvAdj-

ConsecAdv has the lowest improvement rates with only a slight difference on UAS and

almost 2 points increase in LAS.

6.5.4. Error Analysis on the Rules

To measure the impact of each rule on the parsing decision more explicitly, we

form the following two questions: (i) For a given rule, of all the words that are given

the correct rule-encoding by that rule, how many of them are predicted correctly (true

positive: TP) by the parser and how many are missed (false negative: FN)? (ii) For

a given rule, of all the words that are given a wrong rule-encoding by that rule, how
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many of them are predicted falsely (false positive: FP) by the parser and how many

are predicted correctly (true negative: TN) in spite of the misleading rule-encoding?

Table 6.5. Analysis of the proposed methods on the IMST test set.

Total token Tokens with Tokens with

count last-suffix rule-encodings

NounComp AdvAdj AdjNoun

& & &

8,199 4,295 2,958 CmpxPred PossConst ConsecAdv ConsecAdj

52.38% 36.07% count count count count

250 1,836 301 571

8.05% 62.07% 10.18% 19.30%

Performance of the parsers:

on tokens with on tokens with

last-suffix rule-encodings

(4,295 tokens) (2,958 tokens)

Performance of the hybrid parser:

UAS: 73.04 78.23
 72.40 78.27 82.40 78.46

LAS: 65.66 69.47 60.80 68.95 80.40 69.18

Performance of the baseline parser:

UAS: 69.61 75.42
 64.80 75.70 82.05 75.65

LAS: 61.14 66.83 55.20 66.67 78.73 66.19

To answer these questions, we created confusion matrices from the outputs of the

hybrid parser which employs only the rule enhancement (hybrid - rule) and the baseline

parser. Figure 6.10 depicts these matrices for the CmpxPred rule and NounComp-

PossConst, AdvAdj-ConsecAdv, and AdjNoun-ConsecAdj rule-pairs. We observe that

the existence of a correct rule-encoding helps the hybrid parser to make the right

parsing decision (TP) and reduces the FN rates, (i.e., setting up the wrong dependency

relation) when compared to the baseline parser. On the other hand, if the word is given

a wrong rule-encoding, this time we observe that the hybrid parser has a bias towards

this rule-encoding which results in a higher FP rate and a lower TN rate for the case

of CmpxPred rule and the NounComp-PossConst rule pair. However, this negative

effect is small compared to the positive effect of the rule-based enhancement on the
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hybrid parser. We observe that even if the rules are not 100% correct individually, our

proposed approach of incorporating the knowledge obtained from them into the neural

parser’s learning has been successful in dependency parsing of Turkish.

Figure 6.10. Confusion matrices for the case of detecting complex predicates

(upper-left corner), noun compounds and possessive constructions (upper-right

corner), adverb-adjective relations (lower-left corner), and adjective-noun relations

(lower-right corner). Label 1 on axis Actual means the rule-encoding assigned is

correct (e.g., the word is assigned the rule-encoding cmp by the CmpxPred rule and

the word is a part of a complex predicate) and Label 0 on axis Actual means the

rule-encoding assigned is wrong (e.g., the word is assigned the rule-encoding cmp but

the word is not a part of a complex predicate). Label 1 on axis Predicted means the

parser predicts the relation of the word in accordance with its rule-encoding (e.g., the

word is assigned the rule-encoding cmp and the parser predicts it as a part of a

complex predicate) and Label 0 on axis Predicted means the parser predicts the

relation of the word by conflicting its rule-encoding (e.g., the word is assigned the

rule-encoding cmp but the parser does not predict it as a part of a complex predicate).

We conclude that the proposed methods increase the parsing accuracy of Turk-

ish which has insufficient amount of training data. The aim of our approach is to
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give the parser additional information in constructing the dependency relations when

learning from the training data is inadequate, i.e. there is not sufficient data to learn

specific relations. The results show that both the rule-based and morphology-based

enhancements on the neural parser improve the parsing accuracy significantly. The

experiments performed on Turkish suggest that the languages with rich morphology

need language-specific treatments and remarkably benefit from the usage of the basic

grammar rules as well as from the inclusion of morphological suffix information.

6.5.5. The Effect of Training Data Size

After the experiments made on the IMST Treebank for measuring the perfor-

mance of each proposed model, we made additional experiments in a larger setup to

understand how the improvement gained by the hybrid approach changes with different

amounts of training data.

The training set of the IMST Treebank consists of 3,685 sentences. To be able to

observe the effect of the gradual increase of the training data more accurately, we addi-

tionally used the BOUN Treebank [11], a newly introduced Turkish treebank annotated

in UD style. Being the largest dependency treebank in Turkish, the BOUN Treebank

includes a total of 9,761 manually annotated sentences (7,803 training, 979 develop-

ment, and 979 test sentences) from various topics including biographical texts, national

newspapers, instructional texts, popular culture articles, and essays. The source texts

were taken from the Turkish National Corpus (TNC) [61]. Decisions regarding the

annotation of the BOUN Treebank were made in line with the recent efforts for unify-

ing the Turkish UD treebanks through manual re-annotation [81]. In this context, the

IMST Treebank and Turkish PUD Treebank were also re-annotated manually [80, 81]

and these re-annotated versions comply with the BOUN Treebank in terms of anno-

tation decisions. Although the current version of the PUD Treebank (which is also

the version used in our work) is this re-annotated version, the re-annotated version

of the IMST Treebank has not been validated. So, we use the original version of the

IMST Treebank in all our experiments. However, note that there are some major dif-
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ferences in the annotations of the current version of the IMST Treebank and the BOUN

Treebank. For more detailed information, see [80] and [11].

For this second set of experiments, the training set of the IMST Treebank was

split into 7 batches of 500 sentences (the last batch includes 685 sentences), and the

training set of the BOUN Treebank was split into 8 batches of 1000 sentences (the

last batch includes 803 sentences). Then the training sets used in the experiment were

created by first adding the 500-sentence batches of IMST on top of each other one

by one and then continuing the process with the 1000-sentence batches of the BOUN

Treebank.

In each setup, the trained models were evaluated on four different test sets. These

test sets are the test set of the IMST Treebank, the test set of the BOUN Treebank,

the Turkish PUD Treebank, and the combined set of these three sets.

Figure 6.11 depicts the results of these experiments. The four plots in the first

column show the UAS performance of the proposed hybrid model and the baseline

model on the four test sets and the plots in the second column demonstrate the LAS

performance of the models. The vertical dashed line in the plots shows the point where

additional BOUN training sentences are beginning to be added on top of the training

set of the IMST Treebank.

From these performance curves in the figure, we observed the following:

• The proposed hybrid model outperforms the baseline model consistently across

all the test sets at every step.

• Adding additional training sentences from the BOUN Treebank has a positive

effect on the parsing performance on all test sets except the test set of the IMST

Treebank. The fluctuating performance change on the IMST test set results from

the annotation difference between the IMST Treebank and the BOUN Treebank.

• The performance of the baseline model on the PUD test set does not always
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increase when there are only IMST sentences in the training set. When we start

to add sentences from the BOUN Treebank, the performance is first decreased

and then started to increase again as more BOUN sentences are included in the

training set. This might again stem from the conflicting annotation differences

between IMST and BOUN treebanks.

• Across the BOUN, IMST, and PUD test sets, the performance gap between the

hybrid and the baseline parsers is 4.3 points in UAS and 4.8 points in LAS

on average when training data consists of 500 sentences. The size of this gap

decreases to 2.2 points in UAS and 2.6 points in LAS when training size is 11,488

sentences.
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Figure 6.11. Effect of increasing the training data size on parsing performance of our

hybrid model and the baseline model [82] in terms of UAS and LAS. The vertical line

in the plots denotes the point where additional BOUN sentences are beginning to be

added to the training data. The horizontal lines show the performance differences

between two parsers at the beginning and end of this incremental process (the black

horizontal dashed line is for the hybrid parser and the gray horizontal dotted line is

for the baseline parser).
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6.6. Generalization to Other Languages

Although this study focuses on the improvement of Turkish dependency parsing,

the proposed models can be adapted to other languages as well. Below we first state

the adaptation of the rule-based component, which is followed by the adaptation of the

morphology-based component.

6.6.1. Adapting the Rule-based Parsing Approach

The ConsecAdj, AdvVerb, AdjNoun, and NounVerb rules can be directly applied

to any language as long as the underlying structures exist in the language. The Con-

secAdv and AdvAdj rules use adverb lists to make decisions. They can be applied

to any language by supplying the adverbs specified in the rule descriptions for that

language.

The PossConst rule needs a small adaptation to work for other languages because

it uses the genitive and possessive marks when constructing possessive compounds. The

genitive and possessive marks should be changed with the corresponding ones of the

language, if applicable.

For the CmpxPred rule which handles complex predicates, we use a dictionary of

complex predicates and idioms for Turkish. If there is a similar structure in the lan-

guage the model is adapted to, supplying such a dictionary to the CmpxPred rule will

be sufficient. Similarly, providing the three lexicons that separate between noun com-

pounds, possessive compounds, and reduplicated compounds for the target language

will be sufficient to adapt the NounComp rule.

We stated above how the rules proposed in this study can be adapted to other

languages. In addition to such rule adaptations, and more importantly, effective rules

for any language can be found by making a manual error analysis on the parser out-

puts. The grammar rules that hold for the relations between verbs, nouns, adverbs,
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and adjectives in a sentence can easily be applied for that language in general. The

rule applications can then be integrated with the dependency parser by following the

proposed strategy explained in Section 6.3.3.

6.6.2. Adapting the Morphology-based Enhancement Approach

To create our suffix-based models, we utilize a morphological analysis tool for

Turkish. A similar approach can be followed for any target language with agglutinative

morphology. All of the three morphology-based models can be adapted by extracting

the derivational and inflectional affixes in the target language. Moreover, other suffix-

based models (e.g. using particular suffixes rather than the last suffix) can be employed

depending on the specifics of the language by using the strategy proposed in Section

6.3.4.

6.7. Conclusion

In this chapter, we introduced a new rule-based method and three morphology-

based methods for improving the accuracy of a deep learning-based parser on Turkish

dependency parsing. In the rule-based approach, decisions made by the rule-based

system are integrated into the word representation model of the deep learning-based

parser. In the morphology-based approach, we experimented with the morphemes of

the words by investigating different methods to integrate the information extracted

from the morphemes into the word vector representation model of the parser. We

observed that the best method of utilizing morphological information in terms of the

dependency parsing of Turkish is using the last suffix of a word. A combination of the

rule-based and morphology-based approaches outperforms all of the other proposed

models as well as the baseline system, suggesting that Turkish dependency parsing

benefits both from the linguistic grammar rules and the additional morphological in-

formation extracted from the input words. The experimental results show that our

enhancement methods are useful for purely deep learning-based parsers, especially

when there is not sufficient amount of training data to learn the dependency relations.
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The results also indicate that the best performing model of the proposed approaches

outperforms the state-of-the-art on parsing of the IMST Treebank. The source code of

the hybrid parser is available at [14].
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7. A SEMI-SUPERVISED DEPENDENCY PARSER FOR

LOW-RESOURCE LANGUAGES: A CASE STUDY FOR

CODE-SWITCHED TEXTS

7.1. Introduction

In this chapter, we expanded the focus of this thesis by proposing a novel parsing

method with semi-supervised enhancement for low-resource languages and applied the

proposed method on low-resource code-switching (CS) language pairs as a case study.

Code-switching is the creation of utterances by combining phrases and word forms

from multiple languages. Although much work has been done on the syntactic parsing

of monolingual languages, CS language pairs are quite understudied in this regard.

There have been only a few studies on CS dependency parsing [150–152], each focusing

only on a single CS language pair. Although CS dependency parsing also benefited

from the recent rise of multilingual and cross-lingual NLP models as shown by van der

Goot et al. [153], these models, which are usually trained on monolingual corpora, are

insufficient on CS parsing. The poor performance on CS language pairs is not only due

to the lack or scarcity of the training data but also because of the shortage on resources

required by deep neural models such as pretrained embeddings, language models, or

even raw data. In addition, each language composing a CS language pair inherits its

own structural difficulties which contributes a good deal to the problem.

Recently, a small number of CS treebanks were manually annotated within Uni-

versal Dependencies (UD) [4]. Even though these treebanks have little to no training

data, their existence provides an opportunity to study dependency parsing also on CS

language pairs.

In such low-resource scenarios, utilizing raw data can be helpful in boosting the

performance. A common method to benefit from raw data is self-training [154], a semi-
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supervised approach where a small number of labeled data is used to train a model

that is later used to predict labels for unlabeled data. This pseudo-labeled data is then

combined with the initial data to re-train the model. This method is usually found

successful in low-resource scenarios [155, 156], although error propagation is a known

problem when pseudo-labels are noisy.

With very restricted resources, we hypothesize that CS dependency parsing can

also benefit from unlabeled data. Based on this hypothesis, we ask the following

question: is using pseudo-labeled data directly beneficial for CS dependency parsing

or can we find better ways of integrating the knowledge from pseudo-labeled data?

Starting from this question, we follow a deep contextualized self-training ap-

proach [157] and integrate semi-supervised auxiliary tasks to the parsing architecture to

enhance CS dependency parsing. Our method enhances a widely-used BiLSTM-based

parser [117] by training parsing-related auxiliary sequence labeling tasks on automat-

ically labeled data and combining these trained auxiliary task models with the base

parser through a gating mechanism. We introduce new sequence labeling tasks that

are shown to be beneficial in improving the parsing performance. Seeing the success

of our semi-supervised enhancement method on the BiLSTM-based parser, we ask a

second question: can we reach even better parsing scores if we combine this enhance-

ment method with XLM-R [49], a state-of-the-art (SOTA) transformer-based language

model that shows superior performance on many NLP tasks? Our experimental results

demonstrate notable success of our proposed models over the previous state-of-the-art

on CS UD treebanks. Our contributions are as follows:

• We employ a semi-supervised learning approach based on auxiliary tasks for CS

dependency parsing. We present the first study with a focus on parsing all CS

UD treebanks and achieve SOTA results on all of them.

• We introduce novel sequence labeling tasks including a CS-specific one, that cap-

ture syntactic information better and hence improve dependency parsing.

• We adapt this method to the powerful XLM-R model and elaborate the effective-
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ness of this approach when combined with XLM-R-based word representation for

dependency parsing. We demonstrate that the mighty transformer model remains

inadequate for the case of low-resource CS parsing.

• We apply the proposed approaches to the parsing of Turkish. Results of the

experiments performed on the IMST Treebank show that the proposed approach

is also effective for Turkish for which the data scarcity problem is not as severe

as for CS language pairs.

This chapter is based on the collaborative work with the Institute for Natural

Language Processing at University of Stuttgart published as [10] and supported by the

German Research Foundation (DFG) via project CE 326/1-1 “Computational Struc-

tural Analysis of German-Turkish Code-Switching”.

7.2. Related Work

Code-switching dependency parsing is a newly-studied research area. The first

CS UD treebank was created by Bhat et al. [150] which included only a test set of

Hindi-English sentences. In the absence of CS training data, the test set was split to

monolingual fragments and existing Hindi and English monolingual treebanks in UD

were used to parse these fragments. Bhat et al. [158] extended this dataset with a CS

training set. They trained a BiLSTM architecture on this additional training data by

also integrating syntactic knowledge extracted from monolingual treebanks.

Partanen et al. [151] laid the first foundations of a Komi-Russian UD treebank

with 25 CS sentences. They adopted a multilingual parsing approach [159] and used

Russian and Komi monolingual training data with bilingual Komi-Russian word em-

beddings. Later, this treebank expanded into the Komi-Zyrian IKDP treebank [160].

Çetinoğlu and Çöltekin [161] created a Turkish-German UD treebank from a

Turkish-German spoken corpus. Seddah et al. [162] introduced the Maghrebi Arabic-

French treebank and performed parsing experiments on the treebank using UDPipe
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[163]. This treebank is yet to be included in the UD. A Frisian-Dutch UD treebank

which includes only test data was introduced by Braggaar and van der Goot [152]. The

authors performed data selection from eight related monolingual treebanks using Latent

Dirichlet Allocation [164] to create a training set. Their experiments performed using a

deep biaffine parser [153] demonstrated no significant performance difference between

training the parser on the selected training set and only on a Dutch monolingual

treebank.

Lately, multilingual and cross-lingual parsing studies have begun to include CS

treebanks in their experimental setups. Van der Goot et al. [153] presented a multi-task

learning tool that utilizes multilingual BERT [44] to perform several NLP tasks, in-

cluding dependency parsing. Evaluation was done on all available UD treebanks which

include CS UD treebanks mentioned above. The model was fine-tuned on training set

of each treebank, which is also the case for Hindi-English and Turkish-German CS tree-

banks. For Frisian-Dutch and Komi-Russian CS treebanks with no training data, they

used Dutch Alpino and Russian SynTagRus treebanks, respectively. Müller-Eberstein

et al. [165] applied a sentence level genre-based data selection from UD treebanks in

a cross-lingual setup. They trained a multilingual BERT-based biaffine parser [153]

for 12 low-resource UD treebanks including Hindi-English and Turkish-German CS

treebanks.

Our study on CS dependency parsing differs from the previous work in the sense

that none of the previous work utilized raw CS data to improve parsing in a semi-

supervised scheme.

7.3. Methods

7.3.1. Base Parsing Model

Our base parser is a neural graph-based parser by Dozat et al. [117] that uses two

biaffine classifiers, one to predict the head of a given token and the other to predict
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the resulting arc’s label. For input representation, the model uses BiLSTM modules

to compute learned word embeddings and add them to their corresponding pretrained

word embeddings that are later concatenated with corresponding part-of-speech (POS)

embeddings. To ensure a well-formed tree at test time, the maximum spanning tree

(MST) algorithm is used.

Figure 7.1. The parser architecture with semi-supervised auxiliary task enhancement.

Ep is the parser encoder, EAT is the sequence labeler encoder trained on one of the

auxiliary tasks. For a given token pair, the model calculates a weighted average of

each token’s hidden representation from EP and EAT . The resulting vectors are given

to two multi-layer perceptrons (MLP) to produce an arc score Sarc and a label score

Slabel for the given token pair. The input tokens are taken from the Frisian-Dutch

Fame Treebank.

7.3.2. Semi-supervised Enhancement through Auxiliary Sequence Labeling

Tasks

We follow Rotman and Reichart [157] to exploit unlabeled data for CS depen-

dency parsing. Rather than directly using pseudo-labeled data as an additional source

in training, the main idea is to extract and utilize parsing-related knowledge from auto-

matically parsed data. This is achieved by training contextualized embedding models

on a number of auxiliary sequence labeling tasks derived from the raw data parsed
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by the base parser and then combining encoders of these trained models with that of

the base parser through a gating procedure [166] as described in Section 7.3.3. Figure

7.1 depicts this enhanced parser. The combined model is then re-trained on the gold

labeled data.

For their experimental setup, Rotman and Reichart [157] consider three token-

level sequence labeling schemes to extract the structural information encoded in the

parsed sentences. These are:

(i) Number of Children (NOC). The task is to predict the number of children

each token has in a dependency tree.

(ii) Distance to the Root (DTR). Each token is tagged with its minimum distance

to the root token of the dependency tree.

(iii) Relative POS-based Encoding (RPE). Each token in a sentence is tagged

with its head’s POS tag in a simplified form and its distance from the head. The

distance calculation considers only the intermediate tokens that share the same POS

tag with its head.

Although these three auxiliary tasks offer a comprehensive scheme in terms of

extracting parsing-related knowledge from automatically parsed data, we search ways

of channeling the embedded knowledge in parsed trees more thoroughly to the trained

word embedding layers of the parser. We come up with three additional sequence

labeling tasks:

(iv) Language ID of Head (LIH). We start with CS-specific features of parsed

trees. The most prominent of them is the language ID (LID) features of the tokens

in CS treebanks. Considering the positive impact of LIDs in various other NLP tasks

[35, 167, 168], we design a simple auxiliary sequence labeling task that makes use of

LIDs. Unlike previous work using token LIDs, LIH tags each token with the LID of
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its head. This way, information about the language of tokens with which each token

tends to relate in terms of dependencies is conveyed to the learning model.

(v) Simplified Morphology of Head (SMH). Morphological features are found to

be beneficial in parsing morphologically-rich languages [169]. This was our motivation

to create a new auxiliary task based on morphology. In the SMH scheme, each token

is assigned its head’s morphological features. To reduce the number of labels, we

use only a subset of the morphological features set (Aspect, Case, Foreign, Mood,

NumType, Person, and VerbForm features), selected by considering the inclusiveness

and the prevalence of the features across the data. The main idea of SMH is to provide

morphological clues to the parser while also giving information about the structure of

the tree.

A similar approach is also tried by Sandhan et al. [170]. They define a sequential

task to predict the full set of morphological features for a given token. In our prelim-

inary experiments, we observed that using the full set of morphological features does

not improve the accuracy. In CS treebanks the unique number of features is increased

due to the combination of language-specific feature sets of the language pair, making

the task more complex. To reduce the complexity, we design SMH as utilizing only a

subset of the morphological features of (not the token itself, but) the head of the token.

(vi) Punctuation Count (PC). Lastly, we design the PC task that only needs

root tokens unlike all other tasks that need parsed trees to function. PC is also not

dependent on morphological, POS, or LID tags as SMH, RPE, and LIH tasks. PC tags

each token with the number of punctuation between that token and the root token in

the sentence. We observe a connection between the position of punctuation and phrase

boundaries in a sentence which goes in line with previous studies [171,172]. PC roughly

groups tokens into phrases that usually constitute sub-trees in a dependency tree.

Figure 7.2 shows the outputs of these tasks on the dependency tree of an example

CS sentence.
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Figure 7.2. The dependency tree of an example sentence from Hindi-English HIENCS

Treebank. Each node in the tree is tagged with the five auxiliary task schemes

depicted in Section 7.3.2. Tags for the case of the SMH scheme are not shown for this

example since the HIENCS Treebank does not include morphology.

7.3.3. The Gating Procedure

To create the final parser, the trained auxiliary task models are combined with

the base parser through a gating mechanism [166] which learns to scale between the

encoders of the auxiliary sequence labelers and that of the parser (see Fig. 7.1).

Formally, the combined representation can be formulated as:

bt = σ(W gate(eparser ⊕ elabeler) + wgate)

gt = bt · eparser + (1− bt) · elabeler ,

where eparser and elabeler are the outputs of the parser and sequence labeler encoders,

respectively. ⊕ denotes concatenation. W gate and wgate are the learned parameters of

the gating procedure and σ is the sigmoid function. The final combined vector gt is

then given to the biaffine classifiers.
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7.3.4. Transformer-based Adaptation of the Model

Our base parser as described in [117] has some shortcomings in the choice of the

input representation, especially when the target language has very little or no training

data and there is no accompanying pretrained word embeddings to represent the input.

This is also the case with CS language pairs. In that situation, utilizing the expressive

power of transformers can be a good solution. Pretrained on huge amounts of raw data

in different languages, multilingual transformer-based language models have proven

remarkably effective [44,173,174]. One such model is XLM-R [49]. Pretrained on text

data in 100 languages, XLM-R shows SOTA performance in many languages including

low-resource ones.

To the best of our knowledge, such a deep contextualized semi-supervised scheme

has not been incorporated with XLM-R before. So, we re-implement the auxiliary task

modules and the combined parsing approach for an XLM-R-based encoding module.

For this purpose we follow the XLM-R-based parsing architecture of Grünewald et

al. [175] which has the same biaffine parsing model described in [117]. Our aim is to

observe how extracting parsing-related knowledge from semi-supervised auxiliary tasks

affects a multilingual transformer model.

7.4. Experiments

7.4.1. Data

We perform experiments on all CS treebanks in Universal Dependencies (v2.8).

These are Komi-Zyrian IKDP (Kpv-Ru), Hindi-English HIENCS (Hi-En), Frisian-

Dutch Fame (Fy-Nl), and Turkish-German SAGT (Tr-De) treebanks. All except Hi-En

are based on spoken CS data. Hi-En is constructed from bilingual tweets. Table 7.1

states basic statistics and related resources for each treebank.
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Table 7.1. Some statistics and related resources for the CS treebanks. Fy-Nl is

provided as a single test set of 400 utterances. As in [152], we split it into a

development set (first 150 utterances) and a test set (remaining 250 utterances). CMI

is the code-mixing index [176] showing how frequent code-switching happens in text.

Kpv-Ru Hi-En Fy-Nl Tr-De

(Komi-Russian) (Hindi-English) (Frisian-Dutch) (Turkish-German)

Train - 1,448 - 578

Dev - 225 150 801

Test 214 225 250 805

CMI 16.97 36.08 17.80 28.78

Morphology yes no no yes

Monolingual treebanks both both only Dutch both

Unlabeled CS data Komi Social Media LinCE FAME! TuGeBiC

XLM-R only Russian both both both

FastText only Russian both both both

7.4.2. Training Setup

Due to lack of training data in some CS treebanks, we have two types of exper-

imental setup. We train the parser models on in-domain data for Hi-En and Tr-De.

In these experiments we use each treebank’s own training set. However, Kpv-Ru and

Fy-Nl consist of a test set only. Hence, training of the latter two treebanks are on out-

of-domain data. For Kpv-Ru which includes Komi-Russian code-switching, we train

the models on Komi-Zyrian Lattice UD Treebank [160] of monolingual Komi data. The

first 562 sentences in Komi-Zyrian Lattice are used for training, the remaining 100 are

used for development. For Fy-Nl, our training data is the Dutch Alpino UD Tree-

bank [63]. We chose Dutch Alpino over the other Dutch UD treebank (LassySmall) as

Alpino is found more effective in parsing Fy-Nl [152].

7.4.2.1. Unlabeled Data.

Komi-Russian. Komi Social Media Corpus [177] is part of a social media corpora

project for minority Uralic languages [178]. The data is crawled from vkontakte, a social
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media service mostly popular in Russia. Collected texts are automatically separated to

monolingual segments of Komi, Russian, or Unknown via a dictionary-based method.

For our purposes, we extract 3,862 CS sentences from the corpus by joining consecutive

segments that alternate between Komi and Russian.

Hindi-English. We employ the datasets in the LinCE CS benchmark [179] for

this language pair. The benchmark provides three different corpora with gold LID and

POS labels for Hindi-English [180–182]. We combine these three corpora to use them

as unlabeled data. The resulting data consists of 10,989 sentences.

Frisian-Dutch. We extract CS sentences from the FAME! Corpus [183] which

contains radio broadcasts in Frisian-Dutch. From this corpus, which is also the source

of the Fy-Nl treebank, we select 2,170 sentences that include at least one CS point and

are not already in the treebank.

Turkish-German. TuGeBiC7 is a set of transciptions, collected from interviews

with Turkish-German bilinguals in the 90s [184]. It contains 16,950 sentences. We use

the whole corpus, and only remove the speaker IDs and metadata from the files.

7.4.2.2. Sequence Labeler Training. Training auxiliary models on sequence labeling

tasks is done on automatically parsed version of the corresponding unlabeled data for

each treebank. Some of the sequence labeling tasks need specific labels on unlabeled

data to function. These are POS tags for RPE, LID labels for LIH, and morphological

annotation for SMH. In training of these tasks, we use gold labels when available (POS

tags for Hi-En; LIDs for Kpv-Ru, Hi-En, and Fy-Nl) and train taggers in the absence

of gold labels (POS tags for Kpv-Ru, Fy-Nl, and Tr-De; LIDs for Tr-De; morphological

features for Kpv-Ru and Tr-De).

7Available for research purposes. We obtained it by contacting Jeanine Treffers-Daller.
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7.4.3. Baselines

As our baseline, we use Ma et al.’ [185] re-implementation of the biaffine parser by

Dozat et al. [117]. We call this model BaseLSTM as it uses BiLSTMs for contextualized

word vectors.

As a second baseline, we implement the traditional self-training approach [154]

in which the parser is first trained only on gold labeled data. Then, labels of unla-

beled data are predicted by the trained parser. Finally the parser is re-trained on the

combination of gold labeled data and pseudo-labeled data. We name this approach as

Self-training.

For our experiments with XLM-R, we use Grünewald et al.’ [175] implementation

of the biaffine parser with XLM-R-based input representation. Input word embeddings

are calculated as a weighted sum of all intermediate outputs of the transformer layers.

Coefficients of the weighted sum are learned during the training phase. Apart from its

multilingual transformer-based contextualized word representation model, it has the

same biaffine parsing model in [117]. We call this version BaseXLMR.

Hyper-parameters of both parser models and sequence labelers are as follows:

BaseLSTM. We use Adam optimizer [146] with a learning rate of 0.002, batch size

of 16, and all dropout probabilities are set to 0.33 for the parser and the sequence

labeler models. We train the parser for 150 epochs and sequence labeling tasks for

100 epochs. We use 300-dimensional FastText embeddings [186] as pretrained word

vectors. Since these embeddings are monolingual, we choose Russian FastText em-

beddings for Kpv-Ru, Hindi embeddings for Hi-En, Dutch embeddings for Fy-Nl, and

Turkish embeddings for Tr-De treebanks. The model also uses 100-dimensional charac-

ter embeddings and POS tag embeddings which are randomly initialized. The 3-layer

BiLSTM modules of the parser and the sequence labeler have hidden layer size of 512

on each side. The decoder of the parser includes an arc MLP of size 512 and a label
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MLP of size 128. The decoder of the sequence labeler consists of two fully connected

layers with size 128 and 64, respectively.

BaseXLMR. Due to computational efficiency, we choose the 768-dimensional XLM-

R base language model as the word representation module of the BaseXLMR architecture.

For the parser, the arc MLP of the biaffine classifier has the same size with XLM-R

model and the size of the label MLP is 256. Dropout for the classifier is set to 0.33. For

the sequence labeler, we use a single-layer feed-forward neural network to extract logit

vectors. We use AdamW optimizer [187] with a learning rate of 0.00004 and set batch

size to 16. Number of epochs for the parser is 300 with an early stop of 50 epochs. For

the sequence labeler, we train models for 100 epochs with an early stop of 15 epochs.

7.4.4. Semi-supervised Enhancement Models

We provide the list of enhancement models built on top of BaseLSTM and BaseXLMR

where parser is combined with a sequence labeler trained on:

• +NOC: Number of Children,

• +DTR: Distance to the Root,

• +RPE: Relative POS Encoding,

• +LIH: Language ID of Head,

• +SMH: Simplified Morphology of Head,

• +PC: Punctuation Count.

Note that only Kpv-Ru and Tr-De treebanks have morphological annotation. Hence,

+SMH is applied only to them. The +PC model is not applied to Fy-Nl since the treebank

does not have punctuation.

Additionally, we perform experiments by ensembling more than one auxiliary

task model with the base parser. We experiment with two configurations. First, we

integrate Number of Children, Distance to the Root, and Relative POS Encoding

models together (+NOC,+DTR,+RPE). This is also the ensemble configuration in Rotman
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and Reichart [157]. Since we have additional three tasks, we also make the combination

of three best performing models for each treebank and name this ensemble version as

+Best Combination. Due to high memory consumption of XLM-R-based models, this

ensemble technique cannot be applied to our XLM-R-based parsing architecture. For

combining encoders of more than one auxiliary task model with the parser encoder, we

use Rotman and Reichart’s [157] extension to the gating mechanism of Sato et al. [166].

We perform three runs for each model and report the average UAS and LAS scores.

7.5. Results

Table 7.2 shows the performance of all LSTM-based models and of the previous

works on the test set of each treebank in terms of attachment scores. Significance

testing is performed using the approximate randomization test [148] on the model

outputs with the number of shuffles set to 5,000.

7.5.1. Parsing of Code-Switching Language Pairs

Comparison to Baselines. On all treebanks, the auxiliary task enhancement

methods improve the scores when compared to BaseLSTM by 4.94 points in UAS and

3.86 points in LAS on average. The best performing enhancement model differs across

treebanks. We observe the same pattern for the traditional self-training method.

Self-training fails to surpass the proposed approach on any of the treebanks. Its

parsing performance even falls below that of BaseLSTM on Kpv-Ru and Tr-De. It shows

the highest improvement with respect to BaseLSTM on Fy-Nl. Yet, the best one of the

auxiliary task enhancement methods significantly outperforms Self-training on each

treebank.

New Individual Tasks. The +LIH model which employs LIDs performs best on

Kpv-Ru, and second best on Hi-En. Its performance on Tr-De and Fy-Nl is comparable

with the other models. It is also in the Best Combination ensemble for all treebanks.

This indicates the importance of language IDs in CS dependency parsing.
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Table 7.2. Attachment scores of baselines, our models, and the previous works on all

CS UD treebanks. +SMH is not applicable to Hi-En and Fy-Nl due to the lack of

morphology in these treebanks. +PC cannot be applied to Fy-Nl since it has no

punctuation. †Best combination for each treebank: +NOC,+LIH,+PC for Kpv-Ru,

+DTR,+RPE,+LIH for Hi-En, +NOC,+RPE,+LIH for Fy-Nl, and +RPE,+LIH,+SMH for

Tr-De. The best scores for each dataset are underlined and bold. Scores marked with

∗ significantly outperform both BaseLSTM and Self-training.

Kpv-Ru Hi-En Fy-Nl Tr-De

UAS LAS UAS LAS UAS LAS UAS LAS

Baselines
BaseLSTM 62.24 45.10 80.10 71.29 64.97 49.56 67.50 57.88

Self-training 59.55 43.27 80.47 72.88 68.91 53.24 60.86 52.04

Semi-supervised

+NOC 64.83* 46.53* 81.67 72.94 71.80* 53.35 70.86* 60.97*

+DTR 64.80* 45.53 81.94 72.96 71.48* 53.10 70.88* 60.63*

+RPE 64.95* 45.90 82.75* 73.84 72.98* 54.12 71.40* 61.46*

Enhancement +LIH 65.70* 47.13* 82.24* 73.54 72.20* 51.98 71.39* 61.46*

+SMH 64.63* 45.31 - - - - 71.41* 61.50*

+PC 64.67* 46.79* 81.40 72.76 - - 71.25* 61.44*

Ensemble
+NOC,+DTR,+RPE 65.59* 46.86* 82.75* 74.09* 73.97* 56.10* 70.55* 60.95*

+Best Combination† 64.98* 46.22* 82.77* 74.02* 74.69* 56.39* 70.92* 61.65*

Previous Work

Bhat et al. [158] - - 80.23 71.03 - - - -

Braggaar and van der Goot [152] - - - - 70.20 55.60 - -

van der Goot et al. [153] - 22.20 - 65.50 - 54.00 - 60.90

Müller-Eberstein et al. [165] - - 73.62 62.66 - - 66.75 55.04

The +SMH model which is only applied to Kpv-Ru and Tr-De is the best performing

one on Tr-De. However, all other tasks outperform +SMH on Kpv-Ru. This might be

due to the quality difference in morphological taggers trained on these treebanks. The

morphological tagger we trained on the CS training set of Tr-De has an accuracy of

82% on its test set. However, to train a tagger for Kpv-Ru we used monolingual Komi

data only. Accuracy of this tagger on Kpv-Ru test set is 66%. It seems the Kpv-Ru

parser suffers from error propagation.

The simplest enhancement model +PC performs comparable to others, even out-

performing +NOC and +DTR on Kpv-Ru and Tr-De. Since it only needs the root position

in the sentence to perform, this model can be an alternative to other models when

gold/predicted POS or morphological tags are hard to acquire. It can also be pre-
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ferred when the error propagated to the auxiliary tasks from the base parser through

predicted trees is high, damaging accuracy of the tasks that rely on these parses.

Individual Tasks vs Ensembles. Ensembling multiple tasks improves UAS and

LAS on Hi-En and Fy-Nl and LAS on Tr-De when compared with the best performing

single task. The +Best Combination ensemble works better on Fy-Nl and Tr-De than

the +NOC,+DTR,+RPE ensemble proposed by Rotman and Reichart [157]. Looking at

the overall results, we observe that including +RPE and +LIH together has a favorable

effect on improving CS parsing performance.

Who Benefits Most and Least. Fy-Nl is the most benefited treebank from the

proposed model. The best performing enhancement model +Best Combination on Fy-

Nl achieves almost 10/7 points increase in UAS/LAS when compared with BaseLSTM.

The least benefited treebank is Kpv-Ru with 2.5/1.1 points increase in UAS/LAS.

Having similar amount of unlabeled data and no CS training data, these treebanks

differ in their training data amounts. The Dutch Alpino Treebank used to train Fy-Nl

models has 13,603 sentences whereas the Komi-Zyrian Lattice Treebank for Kpv-Ru

models includes 662 sentences. So, automatic parsing of unlabeled data of Kpv-Ru by

a model trained on 662 sentences can be much noisier than that of Fy-Nl. In Section

7.5.3, we discuss the effect of gold training data amount on the parsing performance.

Comparison to Previous Work. The best enhancement model always achieves

better scores than previous state-of-the-art on each treebank. In this respect, the

biggest improvement is observed on Kpv-Ru with more than 24 points increase in LAS.

In addition, it should be noted that, model architectures are not quite comparable as

some of the previous work use a lot more resources than our models. For instance,

Müller-Eberstein et al. [165] perform data selection on whole UD datasets for training

and utilize multilingual BERT.

Proposed Method and XLM-R. Attachment scores of BaseXLMR and our XLM-R

adaptation of auxiliary task enhancement models are given in Table 7.3. Our first
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observation is the limited performance of BaseXLMR in parsing CS treebanks. We see

that the enhancement models do not have the same impact on BaseXLMR as they have

on BaseLSTM. The only significant performance increase is on Fy-Nl where the best

performing enhancement model +NOC outperforms BaseXLMR by almost 2/1.5 points in

UAS/LAS. For Kpv-Ru, only model that surpasses the baseline is +RPE. The difference

is found statistically significant only in UAS. For Hi-En, all enhancement models except

+NOC perform better than BaseXLMR. Yet, the only significant improvement is achieved

by +DTR in UAS. None of the enhancement models surpass BaseXLMR on Tr-De but

the difference between the scores is not found to be significant. Another remarkable

observation is our models built on top of BaseLSTM outperforming all XLM-R-based

models with the exception of Tr-De. This answers our second question: XLM-R is not

always the best option. For powerful models like XLM-R, multilinguality can harm the

performance when the target language is unknown to the model. Our results suggest

that in such cases it is better to employ simpler models that are tailored for the exact

task.

Table 7.3. Performance of XLM-R-based parser and our XLM-R adaptation of

auxiliary task enhancement models. The best scores for each dataset are underlined

and bold. Scores marked with ∗ significantly outperform BaseXLMR.

Kpv-Ru Hi-En Fy-Nl Tr-De

UAS LAS UAS LAS UAS LAS UAS LAS

BaseXLMR 57.90 43.12 81.42 71.54 65.75 50.27 75.93 66.30

+NOC 57.09 42.79 81.28 71.58 67.50* 51.64* 75.79 65.98

+DTR 56.65 42.37 82.15* 71.89 66.85* 50.45 75.56 65.73

+RPE 58.77* 43.84 81.79 71.84 67.35* 51.13* 75.49 65.77

+LIH 57.24 43.19 81.92 71.93 66.26 50.10 75.51 65.78

+SMH 56.98 43.25 - - - - 75.53 65.66

+PC 56.81 41.97 81.46 71.89 - - 75.14 65.45
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7.5.2. Comparison of Methods in terms of Computational Resources

Table 7.4 provides time and memory usage of BaseLSTM, BaseXLMR, and our proposed

best model for each treebank. Labeled attachment scores (LAS) acquired by these

models on each treebank are also given.

Table 7.4. Comparison of baselines and the proposed approach according to training

time, memory usage during training, and LAS. Our best model on Kpv-Ru is the

+LIH model. For all other treebanks, our best model is an ensemble that combines

three task models.

Kpv-Ru Hi-En Fy-Nl Tr-De

Training time

BaseLSTM 0h9m 0h15m 0h45m 0h20m

Our best model 0h25m 0h40m 2h30m 0h55m

BaseXLMR 3h40m 3h15m 11h0m 1h30m

Memory usage (GB)

BaseLSTM 3.6 3.6 3.8 3.5

Our best model 4.5 7.6 7.3 7.4

BaseXLMR 9.9 7.9 9.6 8.4

LAS

BaseLSTM 45.10 71.29 49.56 57.88

Our best model 47.13 74.09 56.39 61.65

BaseXLMR 43.12 71.54 50.27 66.30

From the table, we observe that there is a trade-off between performance and

resource consumption for the three models. Training time of BaseLSTM is the shortest.

Yet, our best model improves the performance significantly at the expense of a slight

increase in training time. BaseXLMR has the longest training time by a large margin.

In terms of memory usage, there is a similar pattern to that of training time.

BaseLSTM needs approximately 50% less memory than our best model, yet there is on
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average 3.86 points gap between LAS of the two models. BaseXLMR is again the least

preferable model here due to its highest memory consumption and low performance on

parsing the treebanks with the exception of Tr-De. Only for Tr-De it outperforms the

other two models and can be the model of choice for the parsing of Tr-De data.

7.5.3. Effect of Gold Labeled Data on the Parsing Performance

In our main experiments the gold training data size differs among the four

datasets. While the gold labeled data used for training of Kpv-Ru and Tr-De includes

approximately 500 sentences, Hi-En has 1,448 gold labeled training CS data and for

Fy-Nl we used the training set of the Dutch Alpino UD Treebank which consists of

12,289 gold labeled Dutch sentences. In order to observe how the amount of gold la-

beled training data affects the models’ performance, we did a set of experiments on

each of Hi-En and Fy-Nl datasets by incrementally increasing the size of labeled train-

ing data from 500 to the original training data size as used in the main experiments.

Figure 7.3 shows results of these experiments.
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and Fy-Nl.
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We observe that our best model on these datasets (+NOC,+DTR,+RPE for Hi-En and

+NOC,+RPE,+LIH for Fy-Nl) always surpasses Self-training and BaseLSTM regardless

of the available gold training data. Increasing the labeled training data has always a

positive effect on the performance of all models for Hi-En but causes fluctuations in

the performance for the case of Fy-Nl. The reason for this difference might be that the

training data of Hi-En is in-domain and includes CS sentences, while the training data

we use for Fy-Nl is out-of-domain and includes monolingual Dutch sentences.

Considering long training time and high resource consumption of the XLM-R-

based parser (see Table 7.4) and success of our LSTM-based models, we suggest LSTM-

based auxiliary task enhancement for low-resource dependency parsing of CS data.

7.5.4. Parsing of Turkish

We also applied the proposed models to the Turkish IMST Treebank [60], a mid-

size monolingual UD treebank. Tables 7.5 and 7.6 show attachment scores of the

baselines and the proposed methods on the LSTM-based and XLM-R-based architec-

tures, respectively. In these experiments, we utilized the BOUN Treebank [11] as the

unlabeled data for Turkish that is needed by semi-supervised models.

In Table 7.5, we observe that +SMH performs the best between the single task

models and ensembling the +RPE, +SMH, and +PC tasks achieves the highest scores

among the semi-supervised enhancement models. Similar to its performance on CS

treebanks, the traditional self-training method failed to outperform the semi-supervised

enhancement models in Turkish.

When we examine Table 7.6 for the performance of XLM-R-based models, we

see an improvement on the scores by some of the semi-supervised enhancement models

(+DTR and +SMH) over the BaseXLM-R but this difference is not found to be significant.

However we observe that, in contrast to the experiment results on highly low-resource

CS treebanks, XLM-R-based models outperform the LSTM-based ones by a large mar-
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gin for the case of Turkish. This difference in the models’ success might be due to the

well-representation of Turkish in the pretrained XLM-R model. When comparing the

two architectures, we see a trade-off between the remarkable success (7% increase in

both UAS and LAS over the LSTM-based models) and higher resource consumption

and training time of XLM-R-based models. Which side of this trade-off will be chosen

should be decided by considering the existing resources, conditions, and needs.

Table 7.5. Attachment scores of LSTM-based baselines and our models on the test of

the Turkish IMST Treebank. Scores marked with ∗ significantly outperform both

BaseLSTM and Self-training.

IMST

UAS LAS

Baselines
BaseLSTM 68.76 62.33

Self-training 67.51 61.70

LSTM-based

+NOC 69.61 62.64

Semi-supervised Enhancement

+DTR 70.02* 62.57

+RPE 70.84* 63.97*

+SMH 71.75* 65.06*

+PC 70.63* 63.36*

+NOC,+DTR,+RPE 71.68* 65.11*

+RPE,+SMH,+PC 72.57* 66.20*

Table 7.6. Attachment scores of XLM-R-based baselines and our models on the test

set of the Turkish IMST Treebank.

IMST

UAS LAS

Baseline BaseXLM-R 79.63 73.47

XLM-R-based

+NOC 79.88 73.47

Semi-supervised Enhancement

+DTR 79.98 73.71

+RPE 79.84 73.59

+SMH 79.89 73.62

+PC 79.66 73.47
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7.6. Conclusion

In this chapter, we proposed a parsing model for parsing of low-resource lan-

guages. We addressed this problem with a focus on CS language pairs. We presented

a semi-supervised auxiliary task enhancement to a graph-based neural parser and cre-

ated novel sequence labeling tasks that are shown as useful in improving the parser’s

success. Experimental results show that our enhancement technique achieves SOTA

performance on all CS UD treebanks and helps better utilization of unlabeled data

for CS dependency parsing. We combine our enhancement models with XLM-R to

see their performance on a multilingual transformer-based model. Results demon-

strate that the powerful XLM-R shows limited performance and fails to surpass our

semi-supervised auxiliary task enhancement models. We also applied the proposed

architecture to Turkish and reached the highest parsing scores on the Turkish IMST

Treebank. Our implementation of the proposed sequence labeling tasks and the XLM-

R-based enhancement technique as well as the trained models are publicly available for

research purposes at [15].
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8. TOOLS

In this chapter, the annotation tool mentioned in Chapter 4 and the hybrid parser

tool mentioned in Chapter 6 are introduced.

8.1. BoAT Annotation Tool

This section is based on the Annotation Tool Section of our collaborative work

published as [11].

Annotation tools are fundamental to the facilitation of the annotation process

of many NLP tasks including dependency parsing. UD treebanks are re-annotated or

annotated from scratch in line with the annotation guidelines of the UD framework [4].

There are several annotation tools that are showcased within the UD framework such as

UD Annotatrix [188] and ConlluEditor [189]. These tools are mostly based on mouse-

clicks, and provide graph view and/or text view. Morphological features are, in general,

not easy to annotate/edit with the available tools. There are also annotation tools that

have been developed for annotating Turkish treebanks [56,74,190,191]. However, they

are not specific to the UD framework. Apart from that, they do not have practical

user interfaces regarding dependency parsing.

We present BoAT, a new annotation tool specifically designed for dependency

parsing. To the best of our knowledge, it is the first tool that provides tree view and

table view simultaneously. BoAT enables annotators to use both mouse clicks and

keyboard shortcuts. In addition, unlike previous dependency parsing annotation tools

which show morphological features as a whole, in BoAT, morphological features are

parsed and expanded into multiple columns, as they are one of the most re-annotated

fields according to the observations of the annotators of the BOUN Treebank. The

enhanced presentation of morphological features is beneficial for annotators. Using

BoAT, tokenization can be easily changed by splitting or joining tokens. This is a
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useful property, especially for agglutinative languages since they have more suffixes,

and tokenization may differ according to the used methods. The tool itself, however,

is not specific to agglutinative languages and can be used for other languages as well.

BoAT is designed with the aim of presenting a user-friendly, compact, and prac-

tical manual annotation tool that is built upon the preferences of the annotators. It

combines useful features from other tools such as changing the tokenization, using a

validation mechanism, and taking notes with novel features such as combining tree and

table views, parsing morphological features, and adding keyboard shortcuts to match

the needs of the annotators for the dependency parsing task.

While developing BoAT, we received feedback from the treebank annotators in

every step of the process. One crucial aspect of annotation is speed. Annotation tools

are helpful in this regard but they are still open to advancement in terms of speed. The

existing tools within the UD framework mostly rely on mouse clicks and dragging, and

the usage of keyboard shortcuts is very limited. Unlike them, almost every possible

action within BoAT can be carried out via both mouse clicks and keyboard shortcuts.

We aim to decrease the time-wise and ergonomic load introduced by the use of a mouse

and to increase speed accordingly.

We also added the note taking option being inspired by the BRAT [192], a web-

based manual annotation tool for visualization and editing. While notes are specific

to annotations in BRAT, they are specific to each sentence in our tool. This feature

enabled the annotators to have better communication and have better reporting power.

8.1.1. Features

BoAT is a desktop annotation tool which is specifically designed for CoNNL-U

files. It offers both tree view and table view as shown in Figure 8.1. The upper part

of the screen shows the default table view while the lower part shows the tree view.

Below we explain briefly the components and some of the properties of the tool.



131

Figure 8.1. A screenshot from the BoAT tool. The sentence is taken from Example 7.

Tree view:. The dependency tree of each sentence is visualized in the form of a

graph. Instead of using flat view, hierarchical tree view is used. If the user hovers the

mouse pointer over a token in the tree, the corresponding token in the sentence above

the tree is highlighted which gives the user a linearly readable tree in order to increase

readability and clarity. The tree view is based on the hierarchical view feature in the

CoNNL-U Viewer offered by the UD framework.

Table view:. Each sentence is shown along with its default fields which are ID,

FORM, LEMMA, UPOS, XPOS, FEATS, HEAD, DEPREL, DEPS, and MISC. The

morphological features denoted by the FEATS field are parsed into specific subfields.

These subfields are a subset of universal and language-specific features in the UD

framework. These subfields are optional in the table view; annotators can choose which

subfields they want to see. They are stored in the CoNNL-U file in a concatenated

manner.
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Customizing table view:. Annotators can customize the table view according

to their needs by using the checkboxes assigned to the fields and the subfields of the

FEATS field shown above the parsed sentence. In this way, the user can organize the

table view easily and obtain a clean view by removing the unnecessary fields when

annotating. This customization ameliorates readability, and consequently the speed of

the annotation. The example in Figure 8.1 shows a customized table view.

Actions in table view:. To ease the annotation process, the most frequently used

functions are assigned to keyboard shortcuts. Moreover, annotators can jump to any

sentence by simply typing the ID of the sentence. The value in a cell is edited by

directly typing when the focus is on that cell. If one of the features is edited, the

FEATS cell is updated accordingly.

Changing tokenization:. One of the biggest challenges in the annotation process

is keeping track of the changes in the segment IDs when new segmentations are intro-

duced. In BoAT, new tokens can be added or existing ones can be deleted to overcome

tokenization problems generated during the pre-processing of the text. Moreover, an-

notating multiword expressions often comes at the cost of updating the segment IDs

within a sentence in the case of misdetected multiword expressions due to faulty auto-

matic tokenization. Annotators may need an easy way to split a word into two different

units. We enabled the annotators to split or join words within our tool by clicking the

cells in the first column of the table (written “+” or “-”) or using keyboard shortcuts,

which permits a more accurate analysis of multiword expressions.

Validation:. Each tree is validated with respect to the field values before saving

the sentence. If an error is detected in the annotated sentence, an error message is

issued such as “unknown UPOS value”. The error is shown between the table view

and the tree view.

Taking notes:. With the note feature, the annotator is able to take notes for

each sentence as exemplified on the topmost line in Figure 8.1. Each note is attached
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to the corresponding sentence and stored in a different file with the ID of the sentence.

8.1.2. Implementation

BoAT [12] is an open-source desktop application. The software is implemented

in Python 3 along with PySide2 and regex modules. In addition, CoNNL-U viewer is

utilized by adapting some part of the UDAPI library [193]. Resources consisting of a

data folder, the tree view, and validate.py are adapted from the UD tools [194]. for

validation check. The data folder is used without any changes while some modifications

have been made to validate.py. BoAT is a cross-platform application since it runs on

Linux, OS X, and Windows.

The BoAT tool was designed in accordance with the needs of the annotators,

and it increases the speed and the consistency of the annotation process on the basis

of the annotators’ feedbacks. Currently, BoAT only supports the CoNNL-U format of

UD since it was designed specifically for dependency parsing. In the future, it may be

extended to support other formats such as the CoNNL-U Plus format [195].

8.2. BOUN-PARS

BOUN-Pars is an LSTM-based dependency parser developed for Turkish. It is

based on Stanford’s graph-based neural dependency parser [82] and uses linguistically

oriented rules and benefits from morphological information of words [9].

BOUN-Pars creates dependency parse trees of Turkish sentences in CoNNL-U

format. The pre-processing steps of parsing from raw text: the segmentation, mor-

phological tagging, and lemmatization tasks are performed by a pretrained model by

TurkuNLP pipeline [84].

The source code is written in Python language. BOUN-Pars is publicly available

at [14]. It has also an online tool at [13]. The parsing performance of BOUN-Pars on
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Turkish IMST Treebank is reported in Chapter 6 and in the original article [9].

8.2.1. Requirements

BOUN-Pars requires the following tools:

• Python 3.7

• Tensorflow 1.12

• Torch 0.4

• Keras

• requests

• h5py

• matplotlib

• flask

• numpy

• ufal.udpipe

• pyyaml

• configargparse

8.2.2. Usage of BOUN-Pars

To train new models, the following script can be executed.

python main.py

--save_dir saves/NAME-OF-THE-TRAINED-MODEL

--config_file config/parser-config.cfg

where parser-config.cfg is the configuration file which includes paths to data files

and hyper-parameters of the model. An example configuration file can be reached

at [14]. Note that NAME-OF-THE-TRAINED-MODEL should be replaced with a name for

the model to be trained.

After training the new model, CoNNL-U files can be parsed with the following

script:
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python main.py

--save_dir saves/NAME-OF-THE-TRAINED-MODEL

parse TEST-DATA.conllu

--output_dir ./

--output_file TEST-DATA-PARSED.conllu

Users can also parse sample texts using the online demonstration tool of BOUN-Pars

that is publicly available at [13].

8.2.3. Reproducing the Original Results

In order to reproduce the original results on the test set of the Turkish IMST

Treebank, the following Python script should be executed using the test set file of the

IMST Treebank.

import evaluate

with open("tr_imst-ud-test.conllu", "r") as f:

conllu_text = f.read()

result = evaluate.parse_conllu(conllu_text)

print(result)
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9. CONCLUSION

9.1. Summary of Contributions

In this thesis, we focused on dependency parsing of Turkish language and im-

proved this task by proposing state-of-the-art methodologies. We approached the prob-

lem from two perspectives. First, we developed two novel parsing models: the hybrid

parser that meets the specific needs of Turkish language and the semi-supervised parser

that is especially designed considering low-resource languages. While developing these

models we also manually annotated a new comprehensive Turkish dependency treebank

as a solution to the inconsistent and insufficient annotated data problem of Turkish

treebanking.

In Chapter 5, we performed our initial study [111] and investigated the effect of

morphology to the parsing performance of an LSTM-based deep model. We developed

Lemma-Suffix and Morphological Features embedding models for a transition-based

parser [109] that employs character-based embeddings. We participated in CoNLL-18

shared task on multilingual dependency parsing [112] and evaluated these models on

UD version 2.2 treebanks. From the results, we observed that incorporating morpho-

logical information to a character-based word embedding model achieves better parsing

performance for most of the agglutinative languages in the evaluation set.

After seeing the promising effect of integrating morphology to the LSTM-based

parsing model, we focused on creating a hybrid parser for Turkish by integrating

linguistically-oriented rules and morphology into a deep dependency parsing approach.

For this purpose, we first proposed a novel rule-based enhancement method that can

be integrated to any neural dependency parser in Chapter 6.3.2. This method includes

linguistically-oriented hand-crafted rules that are based on a comprehensive grammar

book for Turkish [32]. We also proposed a morphology-based enhancement method

with three different ways of including morphological information to the deep parser
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in Chapter 6.3.4. In order to integrate these enhancement methods to the widely-

used BiLSTM-based biaffine parser [82], we proposed a simple yet useful integration

method that allows to combine the proposed enhancement methods with any neural

dependency parser via its dense representation. The final hybrid parser acquired state-

of-the-art performance on parsing of Turkish IMST Treebank, even outperforming a

famous mutlilingual BERT-based parser, Udify [147].

In Chapter 7, we expanded the focus of this thesis by proposing a novel parsing

method with semi-supervised enhancement for low-resource languages. In this work, we

followed a deep contextualized self-training approach [157] and created semi-supervised

auxiliary tasks to enhance the BiLSTM-based biaffine parser [117]. We trained parsing-

related auxiliary sequence labeling tasks on pseudo-labeled data and combined these

trained auxiliary task models with the base parser through a gating mechanism [166].

We evaluated this parser on both Turkish and low-resource code-switching language

pairs and reached state-of- the-art performance on all treebanks. We observed that the

new sequence labeling tasks that we introduced are found to be useful in improving

the parsing performance. We also adapted the proposed methodology to the powerful

XLM-R model [49] and discussed its effectiveness when combined with XLM-R-based

word representation for dependency parsing.

In the meantime, we created resources and tools to be used in Turkish depen-

dency parsing. In Chapter 4, we introduced our new BOUN Treebank consisting of

9,761 manually annotated sentences in Turkish. While creating the treebank, we en-

sured that the annotations are of high quality and consistent by considering linguistic

properties of the language and by staying faithful to the UD annotation scheme. We

collaborated with linguists for this task and performed a cross-checking process to

assure consistency between annotations. Besides annotating syntactic relations, we

encoded universal POS tags, lemmas, and morphological features for each token in the

treebank. We explained our linguistic decisions and annotation scheme in detail by

providing examples for the challenging issues that are present in the BOUN Treebank.
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To ease and accelerate the annotation process, we built an annotation tool, BoAT,

specifically designed for dependency parsing. The BoAT tool is tailored to the needs

of annotators and it increases the speed and consistency of the annotation process. We

explained the features and usage of the BoAT tool in Chapter 8.1.

Creating the end-products and making them publicly available is as important a

step as developing the underlying theoretical models. In Chapter 8.2, we introduced

BOUN-Pars, an online and downloadable parsing tool based on the hybrid-parser pre-

sented in Chapter 6. We believe the products of this thesis that are made available to

the public will contribute to Turkish dependency parsing, as well as to various fields

of natural language processing.

In this thesis, we focused on dependency parsing of Turkish and presented two

approaches for this purpose. In our first approach we proposed a rule-based and three

morphology-based enhancement techniques for better representation of words in Turk-

ish dependency parsing. Our experimental results on Turkish IMST Treebank showed

the positive effect of combining simple linguistic rules and morphology with the deep ar-

chitecture of a parsing model to the automatic parsing of Turkish. Our second approach

to dependency parsing is a semi-supervised deep parsing model which utilizes auxiliary

tasks trained on pseudo-labeled data to enhance the parsing performance. We created

novel sequential labeling tasks to be used in training of the two different parsing mod-

els. Our approach acquired state-of-the-art scores on both Turkish and low-resource

code-switching language pairs. According to the results of performed experiments, the

proposed techniques are helpful for dependency parsing in the presence of data scarcity.

Furthermore, we contributed a new comprehensive Turkish dependency treebank to this

field. With detailed experiments, we showed that deep learning-based parsers that are

extremely data-demanding always benefit from additional training data when this new

data is high-quality and consistent with the original data.
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9.2. Future Work

The hybrid dependency parsing approach presented in Chapter 6 was designed for

Turkish. Our future directions for this study will be focused on adapting the proposed

rule-based and morphology-based enhancement techniques to other suitable languages

with restricted amount of annotated data. Rules’ individual accuracies can also be

improved to increase the overall performance. Finding new methodologies to reduce

the false-positive rates for each rule can be a good start for boosting their performance.

Semi-supervised deep dependency parser introduced in Chapter 7 showed promis-

ing success in dependency parsing of code-switched texts. As future work, we plan

to extend this study by applying the proposed methodology to treebanks of all low-

resource languages in the Universal Dependencies project. These languages might

benefit from new auxiliary tasks tailored to demand their specific needs as in the case

for the code-switching language pairs that highly gained from the Language ID of Head

(LIH) task.
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13. Özateş, Ş. B., “BOUN-Pars Online Tool”, 2020,

https://tabilab.cmpe.boun.edu.tr/boun-pars, accessed in April 2022.
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15. Özateş, Ş. B., “Semi-supervised CS Dependency Parser Source Code”, 2022,

https://github.com/sb-b/ss-cs-depparser, accessed in April 2022.



142

16. Bickel, B. and J. Nichols, Inflectional Synthesis of the Verb, Max Planck Institute

for Evolutionary Anthropology, Leipzig, 2013.

17. Kapan, A., Derivational Networks of Nouns and Adjectives in Turkish, M.S. The-
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26. Özsoy, A. S., Word Order in Turkish, Springer, Berlin, 2019.

27. Slobin, D. I. and T. G. Bever, “Children Use Canonical Sentence Schemas: A

Crosslinguistic Study of Word Order and Inflections”, Cognition, Vol. 12, No. 3,

pp. 229–265, 1982.

28. Erguvanlı Taylan, E., The Phonology and Morphology of Turkish, Boğaziçi Uni-
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