
PARALLEL NETWORK FLOW ALGORITHMS

by

Gökçehan Kara

B.S., Mechanical Engineering, Koç University, 2010

M.S., Computer Engineering, Boğaziçi University, 2014

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Doctor of Philosophy

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to thank my supervisor Prof. Can Özturan for keeping me moti-

vated, fellow jury members Prof. Haluk O. Bingöl, Asst. Prof. Didem Unat, Prof.

Z. Caner Taşkın, Prof. Oya Ekin Karaşan for all the feedback, my dear family for

their endless support, schoolmates for the friendship, Polymer Research Center (PRC)

and Telecommunications and Informatics Technologies Research Center (TETAM) in

Bogazici University for providing the machines for experiments.

iv

ABSTRACT

PARALLEL NETWORK FLOW ALGORITHMS

Network flows is an active area of research that has applications in a wide variety

of fields. Several network flow problems are reduced to either the maximum flow

problem or the minimum cost flow problem. Maximum flow problem involves finding

the maximum possible amount of flow between two designated nodes on a network

with arcs having flow capacities. Minimum cost flow problem tries to determine a

flow with the minimum cost on a network with supply and demand nodes. In this

thesis, we propose two parallel algorithms for the maximum flow and the minimum cost

flow problems respectively. First, we present a shared memory parallel push-relabel

algorithm for the maximum flow problem. Graph coloring is used to avoid collisions

between threads for concurrent push and relabel operations. In addition, excess values

of target nodes are updated using atomic instructions to prevent race conditions. The

experiments show that our algorithm is competitive for wide graphs with low diameters.

Second, we contribute a parallel implementation of the network simplex algorithm that

is used for the solution of minimum cost flow problem. We propose finding the entering

arc in parallel as it often takes the majority of the execution time. Scanning all arcs

can take quite some time, so it is common to consider only a fixed number of arcs

which is referred as the block search pivoting rule. Arc scans can easily be done in

parallel to find the best candidate as the calculations are independent of each other.

We used shared memory parallelism using OpenMP along with vectorization using

AVX instructions. We also tried adjusting block sizes to increase the parallel portion

of the algorithm. Our experiments show speedups up to 4 are possible, though they

are typically lower.

v

ÖZET

PARALEL AĞ AKIŞI ALGORİTMALARI

Ağ akışı pek çok sahada uygulaması olan aktif bir araştırma alanıdır. Birçok ağ

akışı problemi ya azami akış ya da asgari maliyet akışı problemine indirgenmektedir.

Azami akış problemi kenarlarında akış kapasitesi olan bir ağ üzerindeki belirlenmiş

iki düğüm arasında olası azami akışı belirlemek üzerinedir. Asgari maliyet problemi

arz ve talep düğümleri olan bir ağ üzerinde asgari maliyetli akışı belirlemeye çalışır.

Biz bu tezde azami akış ve asgari maliyet akışı problemleri için sırayla iki paralel

algoritma sunduk. Birinci olarak azami akış problemi için paylaşımlı hafıza bir par-

alel itme-etiketleme algoritması sunuyoruz. Eş zamanlı itme ve etiketleme işlemleri

için iş parçacıkları arasındaki çarpışmaları önlemek amacıyle çizge renklendirme kul-

lanılmaktadır. Ek olarak hedef düğümlerdeki fazlalık değerleri yarışma durumlarını

engellemek için atomik komutlarla güncellenmektedir. Deneyler bizim algoritmamızın

geniş ve düşük çaplı ağlarda rekabetçi olduğunu göstermektedir. İkinci olarak asgari

maliyet akış probleminin çözümü için ağ simpleks algoritmasının paralel bir uygula-

masını sunuyoruz. Genellikle çalışma süresinin çoğunu aldığı için giriş kenarını paralel

bir şekilde bulmayı öneriyoruz. Bütün kenarları taramak oldukça vakit alabilir, bu

yüzden sadece sabit sayıda kenarı düşünmek yaygındır ki bu da blok arama eksen kuralı

olarak adlandırılır. Hesaplamalar birbirinden bağımsız olduğundan kenar taramaları

en iyi adayı bulmak için kolaylıkla paralel yapılabilir. Paylaşımlı hafıza paralellik için

OpenMP ve bununla beraber vektörleştirme için AVX komutları kullandık. Ayrıca

algoritmanın paralel miktarını arttırmak için blok büyüklüklerini ayarlamayı denedik.

Deneyler hızlanmanın 4 kata kadar mümkün olduğunu fakat genellikle daha düşük

olduğunu göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

1.1. Minimum Cost Flow Problem . 2

1.2. Maximum Flow Problem . 4

1.3. Shortest Path Problem . 5

1.4. Parallel Programming . 6

1.5. Contributions . 8

2. RELATED WORK . 10

2.1. Sequential Maximum Flow Algorithms 10

2.2. Parallel Maximum Flow Algorithms . 11

2.3. Sequential Minimum Cost Flow Algorithms 14

2.4. Parallel Minimum Cost Flow Algorithms 15

3. MAXIMUM FLOW PROBLEM . 17

3.1. Introduction . 17

3.2. Algorithm . 23

3.3. Implementation . 33

3.4. Experiments . 36

3.5. Conclusions . 58

4. MINIMUM COST FLOW PROBLEM . 60

4.1. Introduction . 60

4.2. Background . 61

4.2.1. Network Simplex Algorithm . 62

vii

4.2.2. Pivoting Operation . 64

4.3. Parallel Block Searching . 66

4.3.1. Shared Memory Parallelism . 69

4.3.2. Vectorization . 69

4.3.3. Block Sizes . 72

4.4. Implementation . 73

4.4.1. Data Alignment . 74

4.4.2. Determinism . 75

4.5. Experiments . 76

4.5.1. Specifications . 76

4.5.2. Dataset . 77

4.5.3. Distributions . 78

4.5.4. Iterations . 81

4.5.5. Timings . 81

4.5.6. Speedups . 84

4.5.7. Vectorization . 84

4.6. Conclusions . 87

5. CONCLUSIONS . 89

REFERENCES . 91

APPENDIX A: COPYRIGHT NOTICE . 103

viii

LIST OF FIGURES

Figure 1.1. Example of a minimum cost flow problem along with its solution

shown as highlighted . 4

Figure 3.1. Conflict scenarios in parallel push-relabel algorithms 21

Figure 3.2. Colored Parallel Push-Relabel (cppr) Algorithm 24

Figure 3.3. Discharge Algorithm . 26

Figure 3.4. Parallel Global Relabeling Algorithm 28

Figure 3.5. Avoidance of the example push-relabel conflict 30

Figure 3.6. Avoidance of the example relabel-relabel conflict 32

Figure 3.7. Speedups of cppr for vision/DIMACS/KaHIP problems compared

to cppr and hpf . 50

Figure 3.8. Distribution of number of nodes in color ticks in vision/DIMACS/KaHIP

problems . 57

Figure 4.1. Network Simplex Algorithm . 64

Figure 4.2. Block Searching Algorithm . 67

Figure 4.3. Sequential Block Searching Algorithm 68

Figure 4.4. An example entering arc selection 69

ix

Figure 4.5. Parallel Block Searching Algorithm 71

Figure 4.6. Parallel Block Searching Algorithm (cont.) 72

Figure 4.7. Distributions of execution times for each step of the network sim-

plex algorithm for each instance in our dataset 80

Figure 4.8. Relative numbers of iterations as percentages with increasing block

size factors . 82

Figure 4.9. Speedups of our implementation with increasing number of threads

calculated according to lemon-ns implementation 85

Figure 4.10. Speedups of our vectorized implementation with increasing number

of threads calculated according to our non-vectorized implementation 86

x

LIST OF TABLES

Table 3.1. Dimensions and coloring information for vision problems 39

Table 3.2. Dimensions and coloring information for DIMACS problems 40

Table 3.3. Dimensions and coloring information for KaHIP problems 40

Table 3.4. Sequential timings for vision problems 42

Table 3.5. Parallel timings for vision problems 43

Table 3.6. Sequential timings for DIMACS problems 44

Table 3.7. Parallel timings for DIMACS problems 45

Table 3.8. Sequential timings for KaHIP problems 46

Table 3.9. Parallel timings for KaHIP problems 46

Table 3.10. Timing distributions of cppr for different phases in vision problems 47

Table 3.11. Timing distributions of cppr for different phases in DIMACS problems 48

Table 3.12. Timing distributions of cppr for different phases in KaHIP problems 48

Table 3.13. Push counts for vision problems 51

Table 3.14. Relabel counts for vision problems 52

xi

Table 3.15. Global relabel counts for vision problems 53

Table 3.16. Push counts for DIMACS problems 54

Table 3.17. Relabel counts for DIMACS problems 54

Table 3.18. Global relabel counts for DIMACS problems 55

Table 3.19. Push counts for KaHIP problems 55

Table 3.20. Relabel counts for KaHIP problems 56

Table 3.21. Global relabel counts for KaHIP problems 56

Table 4.1. Dimensions of instances used in the experiments 79

Table 4.2. Timings of all instances in our dataset 83

xii

LIST OF SYMBOLS

A Set of arcs in the graph

A(x) Residual arcs corresponding to the current flow x

bi Flow balance of node i

ca, cij Cost of the arc with index a or from node i to node j

cπa , c
π
ij Reduced cost of the arc with index a or from node i to node

j according to potentials π

colori Color of node i

curr Current arc index to start searching

di Distance value of node i

ei Excess value of node i

enter Entering arc index .ind and its violation .val

grqi Global relabeling queue of thread i

G Graph

G(x) Residual network corresponding to the current flow x

k Block size factor (i.e. size ≈ k ×√m)

lij Lower flow limit of the arc from node i to node j

L Set of non-tree arcs with flows at lower bounds

m Number of arcs in the graph (i.e. m = |A|)
n Number of nodes in the graph (i.e. n = |N |)
N Set of nodes in the graph

p Number of threads

qij Active node queue for color i of thread j

rij Residual capacity of the arc from node i to node j

s Source node in the graph

size Number of arcs in a block

t Sink node in the graph

tid Thread id of the executing thread

T Set of arcs in the current spanning tree

xiii

uij Upper flow limit of the arc from node i to node j

U Set of non-tree arcs with flows at upper bounds

xij Flow on the arc from node i to node j

πi Node potential of node i

φa Arc coefficient of the arc with index a for the spanning tree

xiv

LIST OF ACRONYMS/ABBREVIATIONS

AVX Advanced Vector Extensions

FIFO First-In-First-Out

OpenMP Open Multi-Processing

1

1. INTRODUCTION

A graph in the most general sense is a model to represent pairwise relations

between a given set of objects. Graph theory is one of the cornerstones of mathematics

which started to gain traction in the 19th century. Since then, graphs have been

studied extensively in discrete mathematics and used in various scientific disciplines.

The rise of computers increased the popularity of the field even further most recently

with internet applications. Today, graphs are everywhere and many applications of the

daily modern life rely on graphs to be properly modeled and operated accordingly.

A flow graph or more commonly a flow network is a special graph to represent

a flow between objects. Network flows as a subfield of graph theory and operations

research started to gain traction in the second half of the 20th century. There is a wide

range of engineering applications which make use of network flows to optimize the flow

of an entity [1]. The canonical example is the supply chain optimization used for the

distribution of a good over a given network of supply and demand nodes. The basic

version of this application is formulated as the minimum cost flow problem.

The other major network flow problem in the literature is the maximum flow

problem to find the maximum possible flow between two points. In addition, shortest

path problem is also commonly studied in this field as it is commonly used in either

the theoretical works or the implementations of network flow algorithms. These three

problems are closely related to each other. It is easily shown that shortest path problem

and the maximum flow problem can be converted to an equivalent minimum cost flow

problem. However, in practice, this is rarely done as specialized algorithms usually

perform better than general solvers.

2

1.1. Minimum Cost Flow Problem

Minimum cost flow problem is the most general form of the three network flows

problems mentioned above. In this problem, each arc has a flow capacity and an

associated cost denoting the expense of sending an additional unit of flow along that

arc. At the same time, each node has an associated balance value denoting the desired

difference between the inflow and outflow of the node in a feasible flow assignment.

This is in contrast with the other two problems that usually have only two special

nodes (i.e. source and sink) with non-zero associated balances. Having balance values

for each node is a more general form and allows more flexible arrangements.

This problem closely mimics the scenario for minimizing the costs of distributing

goods from producers to consumers on a network with shipment costs. Some of the

terminology is borrowed from the real world for this reason. Nodes that have positive

flow balance values are called supply nodes whereas those that have negative balance

values are called demand nodes. Nodes with zero flow balances are called transshipment

nodes. Not all types of nodes need to exist in a problem instance and these cases are

sometimes referred with a special name. For example in transportation problems there

are no transshipment nodes or in circulation problems there are only transshipment

nodes.

Minimum cost flow problem is defined on a graph, G = (N,A), where N denotes

the set of nodes and A denotes the set of arcs. We refer to the number of nodes and

arcs as n = |N | and m = |A| respectively. For each arc (i, j) ∈ A, cij denotes the

cost of sending a unit of flow on an arc, lij denotes the lower flow limit of an arc, uij

denotes the upper flow limit of an arc, and xij denotes the current flow of an arc. For

each node i ∈ N , bi denotes the desired difference between the outflow and the inflow

of a node, which is positive for supply nodes, negative for demand nodes, and zero

for transshipment nodes. There exists network transformation techniques to remove

lower bounds from arcs [1]. In the rest of this thesis, lower bounds and zero values are

3

used interchangeably. With these definitions, linear programming formulation of this

problem is given as

minimize
∑

(i,j)∈A

cijxij (1.1a)

subject to
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji = bi ∀i ∈ N (1.1b)

lij ≤ xij ≤ uij ∀(i, j) ∈ A. (1.1c)

Equation (1.1a) is referred as the objective function defined using the total cost of

each flow. Equation (1.1b) is the mass balance constraint denoting that the difference

between the outflow and inflow of a node should be equal to the desired flow difference

of that node in a feasible flow. Equation (1.1c) is the flow bound constraint denoting

that the flow on an arc should be a value in between the lower and the upper flow

limits of an arc. An implicit assumption is that the desired flow differences of all nodes

should sum up to zero, otherwise there are no feasible solutions. We further assume

that all arc and node values are in integer form. Integrality property holds that there

is always an integer solution in this case.

An example minimum cost flow problem along with its solution is given in Fig-

ure 1.1. In the solution, each node satisfies the mass balance constraint and each arc

satisfies the flow bound constraint. Also note that some of the arcs have zero flow in

the solution meaning that the arc is not used in the optimum flow. We can calculate

the total cost of the solution by multiplying the cost with the flow for each arc and

sum the resulting values.

4

i

bi

j

bj
(cij , uij)

xij

17

2

3

3

−4

4

2

5

−3

6

1

7 −6

(3, 8)

4

(2, 3)

3

(2, 4) 4

(2, 5)

3

(5, 3)

3

(9, 3)

(3, 5)

5

(5, 7)

(3, 5)

2

(2, 4)

(7, 4)

(4, 6)

4

Figure 1.1. Example of a minimum cost flow problem along with its solution shown

as highlighted. Mass balance and flow bound constraints are satisfied for all nodes

and arcs respectively. Total cost of the solution can be calculated by multiplying the

the cost with the flow for each arc to yield 84.

1.2. Maximum Flow Problem

The maximum flow problem is a commonly encountered optimization problem.

It can be used to determine the maximum possible steady flow between two places

on a network. Example networks include petroleum pipelines, road traffic, telecom-

munication, and electricity networks. Other than these, there are also less obvious

problems that can be modeled as a maximum flow network. These include scheduling

in parallel machines, rounding matrices, or selecting political representatives to name

a few. Lastly, it is used as a subroutine in many algorithms for the minimum cost flow

problem to find an initial feasible flow to work on. The minimum cost flow problem

also has many applications from various domains. Refer to the reference book by Ahuja

et al. [1] for more information about these applications.

The maximum flow problem is defined on a directed network with lower and upper

bounds for the flow on each arc. Graph transformation techniques to remove lower

5

bounds from arcs for the minimum cost flow problem can be used for the maximum

flow problem as well [1]. Two special nodes are given as the source and sink nodes on

this network. The aim is to find a feasible flow assignment for each arc that maximizes

the amount of flow between these two nodes. A feasible flow assignment is required to

satisfy two types of constraints. First, the flow value on each arc needs to be less than

the upper bound of that arc. Second, the inflow and outflow of each node needs to be

equal to each other except for the source and sink nodes.

The source node is represented as s and the sink node is represented as t. The

amount of flow from the source node to the sink node is represented with v. With

these definitions, formulation of this problem is given as

maximize v (1.2a)

subject to
∑

{j:(j,i)∈A}

xji −
∑

{j:(i,j)∈A}

xij =


−v i = s

v i = t

0 otherwise

∀i ∈ N (1.2b)

and lij ≤ xij ≤ uij ∀(i, j) ∈ A. (1.2c)

Using a simple transformation, we can see that maximum flow problem is a special

instance of minimum cost flow problem. First, we set flow value of each node and cost

of each arc to zero. Then, in order to satisfy the mass balance constraint, we add an

extra arc from the sink node to the source node. Upper limit capacity of this extra arc

should be infinite or at least larger than the maximum flow. Cost of this arc should be

a negative value so the flow on this arc would be maximized in an optimum minimum

cost flow. In the final solution, flow value on this arc corresponds to the maximum

flow between the source and sink nodes.

1.3. Shortest Path Problem

Shortest path problem is a well-known problem in graph theory. In this problem,

arcs have associated lengths and we are required to calculate the shortest route along

6

two points. In the domain of network flows, lengths are sometimes called costs, and

the cheapest route is calculated in that sense. Linear programming formulation of this

problem is given as

minimize
∑

(i,j)∈A

cijxij (1.3a)

subject to
∑

{j:(i,j)∈A}

xij −
∑

{j:(j,i)∈A}

xji =


1 i = s

−1 i = t

0 otherwise

∀i ∈ N (1.3b)

0 ≤ xij ≤ 1 ∀(i, j) ∈ A. (1.3c)

This formulation already shows the similarity between shortest path and mini-

mum cost flow problems. All we need is to determine a source node and a sink node

by setting the balance values of nodes accordingly and limit the upper flow bounds of

arcs with one.

There is also a more general version of this problem for finding shortest paths

from a single node to all other nodes. In the linear programming formulation for this

problem we need to make a few changes. In the mass balance constraint, we should

have bs = n − 1 and bi = −1 for all other nodes. In the flow bounds constraint, we

need to remove the upper bounds by setting them to any number equal or larger than

n. In terms of algorithms, this version of the problem is identical to the previous one.

1.4. Parallel Programming

Parallel computation is used to describe a computation in which multiple steps of

an execution can be performed at the same time. This term itself has several meanings

in practice at different levels of abstractions ranging from parallelism at the lowest

hardware level to multiple machines connected over a network to be used for the same

computation as in supercomputers. Parallelism is ubiquitous in processors in the form

of bit-level parallelism and instruction-level parallelism. These types of parallelism are

7

often automatically performed by the computer and requires no explicit effort by the

programmer, although carefully designed programs can yield much better performance.

More recently, other forms of higher level parallelism have become more popular as the

single core performance improvements started to stagnate. Two such common forms

are multi-core parallelism in which multiple cores on the same chip are used and multi-

processor parallelism in which multiple chips are used either on the same machine or

separate machines. These forms of parallelization often requires explicit effort by the

programmer.

Parallel programming is the study of designing algorithms and programs for paral-

lel computation. Parallel programming requires careful examination of the underlying

algorithm to avoid unintended behavior due to different execution orders of steps. Two

such common errors are race conditions in which different execution orders produce

different outputs and deadlocks in which multiple executions wait for each other to

finish indefinitely. Such errors may be non-deterministic in practice meaning that they

may not manifest themselves in all runs which can make them difficult to identify.

Therefore, formal analysis may be desired in some cases to prove the correctness of the

algorithm.

Race conditions happen when a shared resource is used concurrently by multiple

executions. Part of a program in which a shared resource is used is referred as a critical

region. Race conditions can be avoided by the use of mutual exclusion to access the

critical region so that only a single execution can be in the critical region at any point.

For shared-memory parallelism, mutual exclusion is commonly implemented either by

the use of locks or atomic instructions. Locks are an abstraction often provided by

the operating system as a coarse-grained mechanism to provide mutual exclusion to an

arbitrary part of the program. On the other hand, atomic instructions are provided

by processors with a guarantee of indivisible execution and they can be used as a fine-

grained mechanism for mutual exclusion. Locks can be more expensive in terms of

performance overhead compared to atomic instructions. The use of locks for synchro-

nization also introduces the possibility of deadlocks in the program. Therefore, the

8

use of atomic instructions over locks are often preferred whenever possible. However,

the use of atomic instructions for mutual exclusion can be limiting at times and may

not always be possible. Algorithms without any lock usage are referred as lock-free

algorithms.

OpenMP (Open Multi-Processing) is an application programming interface de-

signed to support shared-memory parallelism with C, C++, and Fortran languages [2].

It consists of compiler directives to mark parallel sections in the code along with library

functions and environment variables to control the runtime behavior of the program.

Parallel sections are automatically converted to multithreaded code by the compiler.

It is possible to maintain the sequential and parallel versions of a program in the same

codebase by arranging the compiler to ignore OpenMP directives and using preproces-

sor macros for the rest of the library functions.

1.5. Contributions

Contributions of this thesis are as follows:

• We present two parallel algorithms for the two common network flow problems

namely the maximum flow problem and the minimium cost flow problem. There

are many algorithms proposed for the solutions of these problems. We have

selected algorithms which are already competitive with their sequential imple-

mentations and suitable for parallelization. We parallelized the push-relabel al-

gorithm for the maximum flow problem and the network simplex algorithm for

the minimum cost flow problem.

• We have implemented these parallel algorithms and compared their performance

to other existing sequential and parallel implementations. Our implementations

are available online as open source with permissive licenses to help with future

research on this topic [3, 4].

• Our implementations are robust in practice and they produce correct results for

all examples in our experiments. We provide a formal correctness proof our

9

algorithm for the maximum flow problem. Our experience with other existing

parallel implementations showed us that concurrency and memory bugs can be

easily found in these types of algorithms. We have not observed any such bugs

in our implementations during our experiments.

• We include graph instances having up to a billion arcs in our experiments. To

our knowledge, there is no other prior study experimenting with the challenging

billion arc problem.

Contents of this thesis has been published in two papers. Maximum flow algo-

rithm as presented in Chapter 3 is published in [5], and the minimum cost flow algo-

rithm as presented in Chapter 4 is published in [6]. Related work from these papers

are given together in Chapter 2. Conclusions to the thesis are given in Chapter 5.

10

2. RELATED WORK

In this chapter, we review the literature for sequential and parallel network flow

algorithms. Our intention here is to focus on the experimental work in the field instead

of algorithmic complexity bounds. The famous book by Ahuja et al. [1] and an old

survey for the maximum flow algorithms by Goldberg [7] can be consulted for the

history of network flow algorithms given here and improvements in algorithmic bounds

in time.

2.1. Sequential Maximum Flow Algorithms

There are three common classes of algorithms to solve the maximum flow problem.

First, there is the augmenting path algorithm first introduced by Ford and Fulkerson [8].

This algorithm starts with a zero flow, and then tries to identify augmenting paths from

the source node to the sink node. Maximum possible amounts of flow are sent along

these paths iteratively. The algorithm finishes when there are no augmenting paths

left from the source node to the sink node. The original analysis of the augmenting

path algorithm suggests that the algorithm runs in pseudopolynomial time. However,

further modifications have been proposed to improve this bound since then. Edmonds

and Karp [9] show that the algorithm runs in polynomial time when the flow is aug-

mented along shortest paths. Dinitz [10] independently presents a similar result using

layered networks. Ahuja and Orlin [11] propose using distance labels instead of layered

networks. Recent Boykov-Kolmogorov algorithm [12] is an augmenting path algorithm

specialized for grid graphs. It has been shown experimentally that this algorithm is

competitive for problems in computer vision domain [13].

Some other algorithms are based on preflows. The best known algorithm using

preflows is the push-relabel algorithm by Goldberg and Tarjan [14, 15]. Two common

implementations of the push-relabel algorithm involve using different strategies to se-

lect the next active node to be processed [16]. The queue implementation processes

11

active vertices using a first-in-first-out (FIFO) queue. The highest label implementation

always selects the active node with the maximum distance using an array of sets for all

possible distance values. There is also a third hybrid version namely the wave imple-

mentation which also maintains an array of sets but processes distances from higher

to lower repeatedly instead of picking the highest available one each time. There are

two common heuristics used to reduce the number of operations in the push-relabel

algorithm. The global relabeling heuristic is used to periodically update distance labels

to their exact values. The gap relabeling heuristic is used to relabel redundant nodes

in bulk when a gap is found in between distance labels. Further improvements have

been proposed to reduce execution times by pushing flow along a path of multiple arcs

instead of a single arc [17–19].

Lastly, there is the pseudoflow algorithm introduced recently by Hochbaum [20,

21]. This algorithm and its simplex version are used to solve the maximum blocking

cut problem which is equivalent to the minimum cut problem. The corresponding max-

imum flow can then be obtained from this solution if desired. Hochbaum and Orlin [22]

later proposed a simplification further reducing the complexity of the pseudoflow algo-

rithm. Chandran and Hochbaum [23] carry out an experimental study comparing the

pseudoflow algorithm to the best known push-relabel algorithm. The results show that

the pseudoflow algorithm performs better for most problem instances used in the ex-

periments. A recent study suggests that the pseudoflow algorithm can also outperform

the Boykov-Kolmogorov algorithm in most cases for computer vision problems [24].

2.2. Parallel Maximum Flow Algorithms

Anderson and Setubal [25, 26] propose an asynchronous multithreaded push-

relabel algorithm based on locks. Active vertices are stored in a global queue, and

processed in FIFO order. All threads participate in global relabelings which are run

concurrently with push and relabel operations. To avoid collisions, a wave number is

used that denotes the number of global relabeling visits on the node. A push operation

requires the two nodes to be in the same wave. All synchronization is achieved through

12

the use of locks. The experiments show speedups of up to 9 are possible when using

16 processors. We note that these results are not likely reproducible anymore as the

performance overhead of locks often makes them impractical nowadays and the state

of the art research in the field mostly relies on lock-free algorithms.

Bader and Sachdeva [27] implement a cache-aware asynchronous multithreaded

push-relabel algorithm based on locks. This work is an adaptation of Anderson and

Setubal’s previous work to the modern hardware of its time. Their cache-aware imple-

mentation uses contiguous allocation of memory for pair arcs to reduce cache-misses.

In addition, they make use of the highest label node selection strategy instead of using

a FIFO queue to process active nodes. The gap relabeling heuristic is also implemented

concurrently to further improve the performance with this new strategy. The experi-

ments show speedups around 2 to 4 are possible when using 8 processors. Similar to

the previous work, this algorithm also use locks for synchronization which may not

perform well in today’s hardware anymore.

Hong and He [28, 29] introduce an asynchronous multithreaded push-relabel al-

gorithm with a nonblocking global relabeling heuristic. The major contribution of this

study is the use of atomic instructions to replace other synchronization methods such

as locks and barriers. In order to handle concurrent push and relabel operations on the

same node, they use an alternative termination criteria. It is shown by case analysis

that arcs with invalid distance labels that are accidentally formed by these concurrent

operations are all eliminated before the termination. For this purpose, they also pick

the lowest neighbour for push operations instead of an admissible arc. The experiments

show that it scales better than its lock based counterparts. They also experiment with

an implementation of this algorithm on CPU-GPU-Hybrid systems [30].

Baumstark et al. [31] propose a synchronous multithreaded push-relabel algo-

rithm. The main strategy in this work is to avoid explicit synchronization with locks

and atomic accesses as much as possible. Instead, a deterministic winning criteria is

used when two active nodes share a common arc for pushes and relabels. This is used

13

to avoid having wrong distance labels when a concurrent push and relabel operation is

performed on the same node. To achieve this, processing is done using local variables

denoting the value of excess and distance values at the last iteration. These values

are then updated globally at the end of the iteration. Global relabelings are carried

out in parallel in between certain iterations with the same frequency as Goldberg’s

highest label push-relabel implementation. The algorithm is implemented with C++

and OpenMP. Speedup ratios up to 12 are reported when using 40 threads on a self

formed dataset. We note that there were some issues with this implementation in our

experiments resulting in different solutions for a few instances likely due to race condi-

tions and crashes for some other instances likely due to memory leaks so these results

should be taken with a grain of salt.

The use of parallelization methods other than regular shared memory parallelism

are rare. Halim et al. [32] use MapReduce to parallelize the augmenting path algo-

rithm on distributed memory. This is used for extremely large sparse graphs from the

internet with billions of arcs. The experiments show that the algorithm can finish in a

reasonable amount of time. Caragea and Vishkin [33] implement the push-relabel algo-

rithm targeting the XMT platform which is a PRAM-inspired many-core architecture.

The experiments show speedups up to 4 are possible compared to Goldberg’s highest

label push-relabel implementation.

The minimum cut problem, as an equivalent to the maximum flow problem, is

commonly used in computer vision, graphics, and medical imaging. Many problems in

these domains are reduced to energy minimization, and graph cuts are calculated to

solve these problems. Liu and Sun [34] implement a parallel Boykov-Kolmogorov algo-

rithm. Delong and Boykov [35] propose a generalization of the push-relabel algorithm

to work on regions on a graph which is suitable for parallelization. This method has

been used to implement distributed memory algorithms [36, 37]. There exists studies

that implement parallel push-relabel algorithms on GPUs [38–40]. All of these studies

assume a grid graph, and implement specific techniques to exploit this structure. Typ-

ically they are aimed to solve problems on commodity hardware with limited memory.

14

Experiments often involve small problems that are to be solved within a time restriction

in the order of milliseconds. Bigger examples are usually meant to surpass the avail-

able memory, and perform either disk input/output or swapping. Thus, it is difficult

to make a direct comparison with general purpose maximum flow algorithms.

2.3. Sequential Minimum Cost Flow Algorithms

There is a wide range of minimum cost flow algorithms proposed in the litera-

ture. Sifaleras [41] provides a review for the minimum cost flow algorithms and available

software for this problem. Kovács [42] conducts a comprehensible experimental study

comparing the performance for all available solvers with various network instances.

Results suggest that primal network simplex algorithm and cost scaling algorithm are

amongst the most competitive algorithms for this problem. Their own implementation

is often the most performant network simplex algorithm in the experiments. This im-

plementation is available in LEMON graph template library as open source along with

most other algorithms [43]. We used this implementation as a reference for comparison

in our experiments and simply refer it as lemon-ns throughout the chapter. Refer to

these papers for the state-of-the-art experimental knowledge about the minimum cost

flow problem.

There has been a few recent experimental studies evaluating the performance of

various minimum cost flow algorithms for a specific domain and/or a different problem

variation. Vieira et al. [44] evaluate four algorithms for the minimum-cost flow problem

on road networks and find that the network simplex is the best performing algorithm.

Dong et al. [45] investigate multiple algorithms for the transportation problem from

various domains and show the combinatorial methods such as network simplex and aug-

menting path based algorithms can consistently outperform numerical matrix-scaling

based methods.

There are many studies using various approximation, heuristic or meta-heuristic

methods to solve the more difficult variants of the minimum cost flow problem. These

15

variants include fixed costs, non-linear costs as convex or non-convex functions, multi-

commodity flows, and constrained problems [46–49]. In this chapter, we only consider

the basic minimum cost flow problem with single commodity and linear costs [50,51].

There has been many recent studies adapting the network simplex algorithm to

different fields. Modulo network simplex heuristic is used to solve the periodic event

scheduling problem [52–56]. Holzhauser et al. [57] present a specialized network simplex

algorithm for the budget-constrained minimum cost flow problem. Ryan et al. [58]

introduce a simplex algorithm to solve uncapacitated pure-supply infinite network flow

problems. Beckenbach [59] describe a network simplex algorithm for the minimum cost

flow problem on graph-based hypergraphs. Zheng et al. [60] propose a two-layer virtual

network mapping algorithm based on node attribute and network simplex for virtual

network mapping. Nie and Wang [61] use network simplex algorithm to solve the

continuous convex piecewise linear network flow problem. Lin et al. [62] use network

simplex algorithm for balanced clustering. Among the theoretical work, Disser and

Skutella [63] show the network simplex method can be used to solve, with polynomial

overhead, any problem in NP implicitly during the algorithm’s execution.

2.4. Parallel Minimum Cost Flow Algorithms

There has been a number of studies to parallelize the network simplex algorithm.

Peters [64] experiments with different methods for parallel pricing on shared memory

processors. Miller et al. [65] propose running multiple pivot searches in parallel and

then performing pivotings sequentially. Thulasiraman et al. [66] present a method for

concurrent pivoting to solve dual shipment problems. Barr and Hickman [67] report

an implementation for running both pivoting and pricing operations in parallel. These

studies are rather old and use lock-based synchronization which usually does not per-

form well in modern processors anymore. We found no trace of their implementations

available online.

16

Jiang et al. [68] propose a multi-granular approach for parallel network simplex

algorithm. Fine and coarse grained parallel strategies are to be used for shared and

distributed memory parallelism respectively. A maximum speedup of 18.7 is reported

in the paper with a mix of both strategies. While this study has a similar extent as

ours, some of the details are not apparent in the experiments section. There is men-

tion of different pivoting techniques in the paper, but it is not always clear which one

is used for the presented results. We note that, best eligible pivoting is much more

applicable for parallelization even though performance is not competitive compared to

other efficient pivoting rules. Also, speedup values are calculated using the author’s

own sequential implementation and not by using the best and widely used existing se-

quential implementation in the literature. Additionally, there are no other performance

figures of existing implementations in the results for comparison. Since the code is not

available, we have no way of confirming these results and compare it with our own im-

plementation. Experiments are only performed with 3 relatively small graphs which we

expect to be solvable in a few seconds at most with a state-of-the-art performant solver.

In our study, we restrained ourselves from presenting results for best eligible strategy

even though it would show greater speedup values. We also calculate speedup values

using the popular lemon-ns solver with the default block pivoting strategy, which is

compared to other existing implementations in the original paper [42], so our imple-

mentation can also be transitively compared to other implementations. We also made

our implementation available online to make sure results are easily reproducible [4].

To our knowledge, there are no other parallel network simplex algorithm study

in the literature. Some of the other references specific to the discussion are given in

later sections.

17

3. MAXIMUM FLOW PROBLEM

In this chapter, we present a graph coloring based parallel push-relabel algorithm

for the maximum flow problem.

3.1. Introduction

Given a network and a flow on this network we can define a residual network

to show remaining available capacities on arcs. Residual networks are represented as

G(x) = (N,A(x)) where x is a flow on the network G. Residual networks have a

one-to-one correspondence to a flow on the original network, and they can easily be

converted to each other. Many algorithms are designed to manipulate these residual

networks, and the corresponding optimum flow on the original network is calculated

afterwards. We use the assumption that if (i, j) ∈ A then (j, i) 6∈ A without a loss of

generality. This is only a notational convention, and most graph representations are

able to handle parallel arcs. For each arc in the original network, we define at most

two arcs on the residual network. A forward arc shows the available capacity left on

the original arc with a residual capacity rij = uij − xij. A backward arc shows the flow

on the original arc to be cancelled out if desired with a residual capacity rji = xij.

These two arcs are referred to as pair arcs of each other. Residual networks consist of

those arcs with a positive residual capacity.

A common algorithm for the maximum flow problem is the push-relabel algorithm

introduced by Goldberg and Tarjan [14,15]. This algorithm maintains preflows during

the execution by relaxing mass balance constraints given in Equation (1.2b). The left

hand side of this equation shows the difference between the inflow and outflow of a

node. This difference is called the excess value of the node and it is represented as ei

for a given node i. Preflows allow ei ≥ 0 for all i 6= s. A given node i where i 6= t is

called an active node when ei > 0. All active nodes are expected to be eliminated before

18

the algorithm ends to find a feasible flow. To achieve this, excess flow is repeatedly

pushed to neighbouring nodes along individual arcs.

The push-relabel algorithm also assigns a distance value to each node which is

represented as di for a given node i. Distances are sometimes also called heights to

reflect the concept of flowing from a higher node to a lower node. A valid distance label

assignment by definition needs to satisfy two types of conditions namely dt = 0 and

di ≤ dj + 1 for all (i, j) ∈ A(x). Distance labels denote a lower bound rather than the

exact value for the distance between the corresponding node and the sink node. Arcs

that satisfy the condition di = dj +1 are named admissible arcs, and paths that consist

of only admissible arcs are called admissible paths. An admissible path to the sink node

is always a shortest path on the underlying unit weighted graph. When distance labels

are exact, all admissible arcs are on a shortest path to the sink node. Since distance

labels are not always exact, admissible arcs are only estimations of those arcs that are

on shortest paths. For this reason, it is important to keep distance labels as close to

their exact values as possible for better estimations.

The push-relabel algorithm consists of two basic operations.

Push operation increases the flow on an admissible arc that belongs to an active

node. The amount of flow δ to be sent from an active node i on an arc (i, j) ∈
A(x) is calculated with δ = min{ei, rij}. A push operation can be saturating or

unsaturating. In the former case, δ = rij, and all available capacity on the arc is

used. In the latter case, δ < rij, and only the excess on the node is pushed along

the arc.

Relabel operation is applied to an active node only when it has no outgoing admis-

sible arcs. The distance value di of a given node i is updated to d′i = min{dj |
(i, j) ∈ A(x)}+ 1 where d′i represents the new distance value. Relabel operation

ensures that d′i > di since admissible arcs are the only arcs which point to a

neighbour with a lower distance value due to distance label conditions, and there

are no admissible arcs when the node is eligible for relabeling.

19

There is some flexibility in choosing the order of push and relabel operations. In

efficient implementations, each node has an arc list in a fixed order that is determined

arbitrarily at the start of the algorithm. A current arc shows the current candidate

on this list for a push operation. When a push operation is performed or it is not

applicable, the current arc is changed to the next arc in the list. When the current arc

reaches the end of the list, it is reset back to the beginning of the list. For this method,

basic operations are usually combined into a single operation.

Discharge operation iterates over the arc list of a node, and performs all applicable

push operations until the excess is zero or the current arc reaches the end of the

list. If the current arc reaches the end of the list, then it is reset back to the

beginning of the list, and a relabel operation is performed afterwards.

Discharge operations are applied repeatedly on active nodes during the algorithm.

Initialization is slightly different in that the source node is discharged as if it has

unlimited excess. Then the distance label of the source node is set to n to ensure that

excess that can possibly flow to the sink node can never accidentally flow back to the

source node.

Most parallel push-relabel algorithms aim to distribute nodes to threads, and run

discharge operations in parallel. This approach has the following conflict scenarios to

consider.

Push-push conflict occurs when two nodes sharing a common node try to push

at the same time. In this case, race condition happens when these two nodes

update the excess value on the common node. Depending on the execution order

of instructions, the excess value might be set to an incorrect value. There are

actually three variants of this conflict, two nodes share the same target node,

one node shares the source node with the target node of the other, and two

nodes shares the same source node. However, since we only consider node level

parallelization, the last case is properly ordered, and there is no conflict.

20

Push-relabel conflict occurs when a push and relabel operation act concurrently on

the same node. For this case, there must be no residual arc from the node that

the flow is pushed to the node that pushes the flow. When the node that the

flow is pushed is relabeled at the same time, node that pushes the flow might be

overlooked, and distance label conditions might be violated after the push.

Relabel-relabel conflict occurs when two neighbour nodes are relabeled concur-

rently. This can happen when either one of the nodes have an arc to the other

or both nodes have arcs to each other. During the relabel operation, a node can

read the old distance value of the neighbour node that is also being relabeled,

and possibly come up with a lower value.

Examples for these scenarios are shown in Figure 3.1. Note that relabel-relabel

conflicts are actually benign in the sense that they do not cause any distance label

violations. However, they can still be avoided to decrease the number of relabel oper-

ations performed. Push-push conflicts are usually avoided using atomic instructions in

multithreaded algorithms. Push-relabel conflicts are the most complicated of all these

scenarios.

One of the most common graph coloring methods is graph vertex coloring. Ver-

tex coloring assigns colors to nodes in such a way that no two nodes that share an

arc have the same color. Finding an assignment with the minimum number of col-

ors is an NP-complete problem. In practice, there are fast polynomial algorithms to

find approximate solutions using reasonable numbers of colors for most graphs. In

the literature, vertex coloring is a common technique that is used to avoid conflicts in

problems involving graph structures from various domains [69–72]. For parallel algo-

rithms, coloring can be used for synchronization to properly order processing of nodes

and arcs by conforming to a global color order at one point during the execution. Such

a coloring strategy can be useful to prevent common concurrency problems such as

race conditions and deadlocks.

21

d = 5

d = 4

e1 = 2

e3 = 7

3

e2 = 2

2

(a)

d = 5

d = 4

e1 = 0

e3 = 9

1

e2 = 0

2 2

race

(b)

d = 5

d = 4

d = 3

e1 = 2

e2 = 3

3

e3 = 5

2

(c)

d = 5

d = 4

d = 3

e1 = 0

e2 = 5

1 2

race

e3 = 7

2

(d)

d = 6

d = 5

d = 4

d = 3

e3 = 0

e1 = 1

e2 = 1

3

1

(e)

d = 6

d = 5

d = 4

d = 3

e2 = 2

e3 = 0

1

e1 = 0

1

d2 > d1+1

2

(f)

d = 5

d = 4

d = 3

e2 = 3 e3 = 5
2

e1 = 2

3

(g)

d = 5

d = 4

d = 3

e1 = 2 e2 = 3
3

e3 = 5

2

d1 should be 6

(h)

Figure 3.1. Conflict scenarios in parallel push-relabel algorithms, target-target

push-push conflict (a, b), source-target push-push conflict (c, d), push-relabel conflict

(e, f), and relabel-relabel conflict (g, h) (benign).

22

In this study, we present a multithreaded push-relabel algorithm. The novelty

of our method is the use of graph vertex coloring to synchronize node processing.

At one point during the execution, only vertices that belong to a single color are

processed, and thus push-relabel conflicts are avoided. This approach also prevents

relabel-relabel conflicts. For push-push conflicts, atomic instructions are used during

target excess updates to prevent race conditions. There is no need to use atomic

instructions for source excess updates since source-target push-push conflicts are also

avoided with coloring. We refer to the algorithm as colored parallel push-relabel (cppr),

and the implementation is available online [3]. Our experiments show that high speedup

rates are possible when there are enough active vertices for parallelization during the

execution.

Novel features of our contributed algorithm are as follows:

• To our knowledge, graph coloring has not been used so far in the literature for

the parallelization of the push-relabel algorithm. Our algorithm is lock-free and

deterministic, and it uses only a single atomic instruction per push operation

while discharging and similarly per distance update during global relabeling.

• We present formal correctness and termination proof of our algorithm. We have

followed the algorithm thoroughly in our code. Our implementation is robust and

completes with a correct answer for all examples we used in our experiments. In

some examples, all other parallel implementations we tested [14,29,31,37] either

terminate prematurely without an answer, take too long to finish, or come up

with wrong answers.

• Our experiments compare performances of sequential and parallel implementa-

tions for general purpose and computer vision specific algorithms that are often

studied separately in the literature. We have experimented using examples from

three different domains with graphs having up to a billion arcs.

This chapter is organized as follows. The use of graph coloring in our algorithm is

discussed in Section 3.2. We discuss some of the implementation details in Section 3.3.

23

The results of our experiments from different domains are presented in Section 3.4.

Some of the scalability issues and future works are discussed as conclusions in Sec-

tion 3.5.

3.2. Algorithm

In this section, we present the colored parallel push-relabel algorithm, and show

that it handles all conflicting cases properly. The highest label node selection is dif-

ficult to implement as an efficient parallel algorithm. Therefore, we used a queueing

mechanism for active node selection in our algorithm. More information about data

structures and other implementation details are discussed in the next section.

The general overview of the colored parallel push-relabel algorithm is given in

Figure 3.2. The first thing we do is to color the vertices of the input residual graph

(line 1). We used a regular sequential greedy vertex coloring algorithm for this purpose.

Coloring is only done once at the start of the algorithm by considering all arcs in

the residual network including the ones with zero capacity (i.e. on the underlying

undirected graph that does not consider arc directions). Colors are simply denoted

with integers. We check colors of neighbours for each node in the graph. If there is

an available color that has been used before and none of the neighbours is assigned

to this color yet, then we assign this color for the node. If there is no such available

color, we increase the number of colors used, and assign the new color to the node.

This algorithm runs in a fraction of the total execution time, and comes up with a few

number of colors for most problems we used in our experiments.

24

Input: G(x) where x = 0.

Output: The maximum flow and the corresponding residual graph G(x).

1 Perform graph vertex coloring on G(x);

2 qij ← {} for all i ∈ {1, 2, . . . , colormax} and j ∈ {1, 2, . . . , tidmax};
3 foreach (s, j) ∈ A(x) do // initialization

4 δ ← rsj;

5 rsj ← rsj − δ;
6 rjs ← rjs + δ;

7 es ← es − δ;
8 ej ← ej + δ;

9 if ej = δ and j 6= t then

10 qcolorj ,1 ← qcolorj ,1 ∪ j;
11 end

12 end

13 relabels← n;

14 grqi ← {} for all i ∈ {1, 2, . . . , tidmax};
15 while q 6= ∅ do // main loop

16 if relabels ≥ n then

17 relabels← 0;

18 ParallelGlobalRelabeling(G(x), d, grq);

19 end

20 elems← ⋃tidmax

j=1 qij where i is the next color;

21 parallel foreach i← elems reduction (+ : relabels) do // iteration

(color tick)

22 Discharge(G(x), i, d, e, q, relabels);

23 end

24 end

25 return et;

Figure 3.2. Colored Parallel Push-Relabel (cppr) Algorithm.

25

The queues are initialized at line 2, and then the source node is discharged while

disregarding its excess value at lines 3-12. All arcs coming out from the source node are

saturated, and all neighbouring nodes are activated. Since there is only one node being

discharged, this phase is implemented sequentially to avoid parallelization overhead.

All activated nodes are placed in the queue of the first thread. The global relabeling

queues of threads are also initialized at line 14. After these initializations, the main

loop starts (lines 15-24). We first trigger a global relabeling if the condition is met

(lines 16-19). Global relabelings are triggered when the number of relabel operations

from the last time exceed the number of nodes in the graph. To avoid race conditions

in relabel counts, we use the reduction operation to sum thread local counts at the end

of iterations. Initially we set this value to n to run a global relabeling at the beginning

of the algorithm (at line 13). Active nodes are processed afterwards (lines 20-23). A

global color value shows the current color of nodes to be processed. Active nodes of

the current color are selected and distributed to all available threads. These nodes are

discharged in parallel. Then the global color value is changed to the next color. This

is counted as one iteration. We also call this color change a color tick. Iterations are

performed until no active nodes are left of any colors.

The discharge operation is shown in Figure 3.3 in detail. This is implemented

similar to the sequential version. The only difference occurs when the excess of a

target node is increased (line 9). Since there might be several nodes that push to the

same target node, the increment operation for the target excess value is implemented

with an atomic instruction. During this update, the old excess value is kept in order

to determine which thread pushed to the node before the others in case the node is

activated. If the old value is zero, we say that the thread owns that target node and

has the right to push it to its queue. Note that this happens only for a single thread

due to the use of atomic instructions. This is used to avoid duplicate nodes when local

queues are merged at the beginning of iterations. We also store the minimum distance

value of neighbours during push operations to avoid going over arcs again for a possible

relabel operation afterwards (line 17).

26

Input: G(x), node to be discharged i, d, e, q, relabel count relabels

(reduction variable).

Output: A(x), r, d, e, q, and relabels are updated.

1 while true do

2 dmin←∞;

3 foreach (i, j) ∈ A(x) do

4 if di = dj + 1 then // admissible arc

5 δ ← min{ei, rij};
6 rij ← rij − δ;
7 rji ← rji + δ;

8 ei ← ei − δ;
9 atomic (old← ej; ej ← ej + δ);

10 if old = 0 and j 6= t then // node is activated by the

current thread

11 qcolorj ,tid ← qcolorj ,tid ∪ j;
12 end

13 if ei = 0 then

14 return;

15 end

16 else

17 dmin← min{dmin, dj};
18 end

19 end

20 relabels← relabels+ 1;

21 di ← dmin+ 1;

22 end

Figure 3.3. Discharge Algorithm.

27

For heuristics, we have only used global relabeling in our implementation. Gap

relabeling is more useful for the highest label node selection [16]. Also, it is difficult to

implement in parallel algorithms [31]. The global relabeling heuristic is implemented

as a parallel reverse breadth-first search algorithm which is shown in Figure 3.4. Each

level of the graph is processed in a separate iteration. Discovered nodes of all threads

are merged, and then distributed back to threads at the beginning of each iteration.

Distance updates are implemented as atomic instructions to determine which thread

owns an undiscovered node (line 13). Distance value of a node is atomically set to the

current level of the graph possibly by multiple threads. Meanwhile, the old distance

value is stored to determine which thread discovered the node before others. If the old

distance value is equal to the initial distance value, then the thread has the right to

put the node in its queue. This technique is similar to what we have for the discharge

operation, and it is used to avoid duplicates in the merged queue at the beginning of

iterations. We allow threads to read the distance value non-atomically to determine

whether a node is discovered or not since it is already corrected afterwards (line 12).

This helps us avoid the cost of atomic instructions each time we check distance values.

As we mentioned before, there are some conflict scenarios to consider in parallel

push-relabel algorithms. We now formally define these scenarios, and show that the

colored parallel push-relabel algorithm handles these properly.

Definition 3.1 (Target-target push-push conflict). Let i, j, and k be three nodes on

the residual network and (i, k) and (j, k) ∈ A(x). Assume i and j are active nodes that

are assigned to threads tidi and tidj respectively for discharging. A push along the arc

(i, k) should decrease ei and increase ek by the same value. Similarly, a push along the

arc (j, k) should decrease ej and increase ek at the same time. In that case, the order

of increments on ek are not defined, and a race condition occurs. This is referred to as

a target-target push-push conflict.

Lemma 3.2. Target-target push-push conflict always ends up with the same outcome

in the colored parallel push-relabel algorithm.

28

Input: G(x), d, grq.

Output: d is updated.

1 parallel foreach i← 1 to n do // initialization

2 di ← n;

3 end

4 dt ← 0;

5 grq1 ← grq1 ∪ t;
6 level← 0;

7 while grq 6= ∅ do // main loop

8 level← level + 1;

9 elems← ⋃tidmax

i=1 grqi;

10 parallel foreach i← elems do // iteration (wave)

11 foreach (i, j) ∈ A(x) do

12 if dj = n then // undiscovered node

13 atomic (old← dj; dj ← level);

14 if old = n then // node is discovered by the current

thread

15 grqtid ← grqtid ∪ j;
16 end

17 end

18 end

19 end

20 end

Figure 3.4. Parallel Global Relabeling Algorithm.

29

Proof. Values handled by thread tidi are ei, ek, rik, and rki. Similarly, values handled

by thread tidj are ej, ek, rjk, and rkj. The only common element on both of these lists

is ek. The colored parallel push-relabel algorithm uses atomic instructions to update

target excess values. Therefore ek increments are atomic instructions, and no race is

possible during a target-target push-push conflict. When ek = 0, either thread tidi

or tidj may activate node k, and node k may be placed in either qcolorktidi or qcolorktidj

depending on the execution order. However, thread queues are already merged together

before iterations, therefore this difference is eliminated.

Definition 3.3 (Source-target push-push conflict). Let i, j, and k be three nodes on

the residual network, and (i, j) and (j, k) ∈ A(x). Assume i and j are active nodes

that are assigned to threads tidi and tidj respectively for discharging. A push along the

arc (i, j) should decrease ei and increase ej by the same value. Similarly, a push along

the arc (j, k) should decrease ej and increase ek at the same time. In that case, the

order of updates on ej are not defined, and a race condition occurs. This is referred to

as a source-target push-push conflict.

Lemma 3.4. There is no source-target push-push conflict in the colored parallel push-

relabel algorithm.

Proof. Graph coloring assigns different colors to i and j since (i, j) ∈ A(x). In the

colored parallel push-relabel algorithm, only nodes from the same color are processed

in a single iteration. Hence, i and j can not be processed in the same iteration, and

the source-target push-push conflict is avoided.

Definition 3.5 (Push-relabel conflict). Let i, j, and k be three nodes on the residual

network, and (i, j) and (j, k) ∈ A(x) but (j, i) 6∈ A(x). In addition, let the distance

values di and dk satisfy di = dj + 1 and dk = min{dw | ∀(j, w) ∈ A(x)} with dk > di.

Assume i and j are active nodes that are assigned to threads tidi and tidj respectively,

and i is performing pushes while j is being relabeled at the same time. Since (i, j) is

an admissible arc, i is allowed to push on this arc. At the same time, dj is relabeled

to d′j = dk + 1. After the push operation (j, i) is added to A(x). Since dk > di and

30

d′j = dk + 1, we can infer d′j 6≤ di + 1 meaning that the distance label condition for the

new arc (j, i) ∈ A(x) is violated. This is called a push-relabel conflict.

Lemma 3.6. There is no push-relabel conflict in the colored parallel push-relabel algo-

rithm.

Proof. With the same arguments given in the proof of Lemma 3.4, nodes i and j cannot

be processed in the same iteration, and the push-relabel conflict is avoided.

An example of how a push-relabel conflict can arise was shown in Figure 3.1.

Figure 3.5 shows how this example push-relabel conflict is avoided by the use of graph

coloring.

d = 5

d = 4

d = 3

e3 = 0

e1 = 1

e2 = 1

3

1

(a)

d = 5

d = 4

d = 3

e3 = 0

e1 = 0

e2 = 1

2

1

1

(b)

d = 5

d = 4

d = 3

e2 = 1 e3 = 0
1

e1 = 1

1 2

(c)

Figure 3.5. Avoidance of the example push-relabel conflict shown in Figure 3.1 (e, f).

Graph coloring is used to properly order push and relabel operations. All such

possible push-relabel conflicts are avoided by conforming to a global color order to

process nodes.

Definition 3.7 (Relabel-relabel conflict). Let i, j, and k be three nodes on the residual

network, and (i, j) and (j, k) ∈ A(x). Also, let the distance values dk and dj satisfy

dk = min{dw | ∀(j, w) ∈ A(x)} and dj = min{dw | ∀(i, w) ∈ A(x)} with dj < dw for

all (i, w) ∈ A(x) where w 6= j. Assume that i and j are active nodes that are assigned

to threads tidi and tidj respectively, and both of these nodes are being relabeled at the

same time. After node i is relabeled, the new distance value is set to d′i = dj +1. Given

our assumptions, we can infer d′i < dw+1 for all (i, w) ∈ A(x) where w 6= j. Similarly,

31

node j is relabeled to a new distance value d′j = dk +1, and this new label should satisfy

d′j > dj by definition. Since d′i = dj + 1 and d′j > dj, we can infer d′i < d′j + 1. Hence,

d′i < dw + 1 for all (i, w) ∈ A(x) after these operations, which means that node i still

has no admissible arcs, and it requires another relabeling. This is called a relabel-relabel

conflict.

Lemma 3.8. Relabel-relabel conflict is benign.

Proof. These are two relabel operations where A(x) does not change. Therefore, we

only check if any existing arc violates its distance label condition with the new distance

values. Since other distances are not changed, we only consider incoming and outcom-

ing arcs of i and j. It is easy to show that all arcs other than (i, j) and (j, k) satisfy

distance label conditions since we have d′i > di and d′j > dj by definition. For arc

(i, j), we have already inferred d′i < d′j + 1, and therefore the distance label condition

still holds. For arc (j, k), we update the distance value of j to d′j = dk + 1 due to our

assumptions, and therefore the distance label is satisfied. Hence, there are no distance

label violations, and the relabel-relabel conflict is benign.

Even though a relabel-relabel conflict is benign, it creates a redundant relabeling

operation each time it occurs. Next, we show that our algorithm handles this conflict

properly.

Lemma 3.9. There is no relabel-relabel conflict in the colored parallel push-relabel

algorithm.

Proof. For a relabel-relabel conflict, we need to have (i, j) and (j, k) ∈ A(x), therefore

i and j should be assigned to different colors. Since i and j have different colors,

they are processed in separate iterations, and no concurrent relabel operations are

performed. Hence, relabel-relabel conflict is avoided in the colored parallel push-relabel

algorithm.

32

An example relabel-relabel conflict was shown in Figure 3.1. The use of graph

coloring to avoid this case is shown in Figure 3.6.

d = 5

d = 4

d = 3

e2 = 3 e3 = 5
2

e1 = 2

3

(a)

d = 5

d = 4

d = 3

e1 = 2

e2 = 3

3

e3 = 5
2

(b)

d = 5

d = 4

d = 3

e1 = 2

e2 = 3

3

e3 = 5
2

(c)

d = 5

d = 4

d = 3

e1 = 2e2 = 3
3

e3 = 5

2

(d)

Figure 3.6. Avoidance of the example relabel-relabel conflict shown in Figure 3.1 (g,

h). In the colored version, relabels of neighbour nodes are ordered properly. All such

possible relabel-relabel conflicts are avoided by conforming to a global color order to

process nodes.

Theorem 3.10. The colored parallel push-relabel algorithm terminates with a feasible

and optimal flow.

Proof. Following Lemmas 3.2, 3.4, 3.6 and 3.9, the colored parallel push-relabel algo-

rithm is reduced to the original push-relabel algorithm. By the correctness proof of

the original algorithm, the colored parallel push-relabel algorithm terminates correctly

with a feasible and optimal flow.

Since we avoid push-relabel and relabel-relabel conflicts, our algorithm is deter-

ministic in the sense that it always ends up with the same outcome and numbers of

33

operations performed at the end of a color iteration which is independent of the un-

derlying scheduling. The work by Baumstark et al. [31] also has this deterministic

property. This is usually an advantage, as there is no increase in the number of per-

formed operations due to conflicting operations that arise because of using multiple

threads.

Corollary 3.11. The colored parallel push-relabel algorithm is deterministic.

Proof. We only need to consider the push-push conflict since other conflicts are not

possible. In one color iteration (lines 20-23 in Figure 3.2), multiple threads may push

flow from the nodes with the same color to the same target node. Since, associative

addition operation is performed when updating the excess value of the target node,

the resulting excess value is independent of the order of execution of threads as well

as the number of threads. Also, a push operation may create/update a reverse arc.

Again since the active node, from which the push operation will be carried out, is

assigned to one thread only, the result is deterministic. Whichever thread the active

node is assigned, if a reverse arc is to be created/updated, it will be created/updated

independent of the execution order of the threads and their numbers. Hence, the

new residual graph that results after the color iteration is completed will be the same

no matter how many threads we have. Hence, we conclude that the colored parallel

push-relabel algorithm is deterministic.

3.3. Implementation

The implementation is done with C++ using OpenMP for the parallelization.

Atomic capture instructions are used in both distance updates during global relabeling

and target excess updates during push operations. These instructions update the

value of a given memory location atomically while also capturing the old stored value.

Summing relabel counts at the end of iterations is implemented by a reduction clause

with plus operator. The reduction clause creates local variables for each thread and

34

then combines these variables at the end of the loop. In our case, this is used to avoid

the cost of atomic instructions to update a global count.

For the graph representation, we have experimented with both adjacency list and

star graph representations. The adjacency list representation uses separate arrays to

store adjacent arcs for each node. These arrays are usually spread to different locations

in the memory since they are separate. In the star graph representation, there is only a

single contiguous array to store all arcs in the graph. Arcs of a node are represented with

a begin and an end iterator on this array. While the difference is small, the star graph

representation almost always performs better than the adjacency list representation.

Therefore, we used the star graph representation in our experiments. For each original

arc in the input, we have a pair of residual arcs with opposite directions between the

given nodes. Pair of an arc is stored as a pointer in the arc structure for easier update

while pushing flow along the arc. We always keep all residual arcs even if they have zero

residual capacities, and check if the capacity of an arc is positive during processing.

Both of these representations are able to handle parallel arcs in the input graph between

the same two nodes in either the same or opposite directions.

During discharging, we keep new activated nodes apart from others to be pro-

cessed in subsequent iterations. Threads have local arrays to avoid synchronization

overhead. In addition, nodes having different colors are held in separate arrays. In the

end, we have a 2-dimensional array of arrays as the active node queue. At the start

of each iteration, the next color is picked, and local arrays for that color are merged

to a single global array. This array is then distributed evenly among all threads for

processing. Dynamically growing arrays are used to avoid overflowing. Some amount

of size is reserved for each array in the beginning to prevent most reallocations. The

total amount of reserved size for all arrays is set to be equal to the number of nodes

in the graph.

For global relabelings, the same queue is used for all runs. Similar to the dis-

charging queue, threads have their own local arrays. These are merged to a single

35

global array, and then distributed among all threads at the start of each wave. Simi-

larly, dynamically growing arrays are used in the global relabeling queue, and a total

amount of memory with size equal to the number of nodes is reserved in the beginning.

Unlike the discharging queue, we only have a 1-dimensional array since colors are not

used in global relabelings.

We divide the execution into two phases to calculate the minimum cut first and

then optionally get the maximum flow later. First phase is implemented simply by

skipping nodes with distances bigger than or equal to the number of nodes in the

graph. In the second phase, all the remaining active nodes are discharged regardless

of their distances to push the excess flow back into the source node. Global relabeling

is also a little different for the first and second phases. In the first phase, all node

distances except for the source and sink nodes are initialized to the number of nodes

in the graph and relabeling starts with the sink node. In the second phase, these

distances are initialized to the double of the number of nodes and relabeling starts

with the source node. In both cases, the source node is initialized to the number of

nodes and the sink node is initialized to zero.

We use a round-robin order to process colors. In this schema, colors are processed

in the same order repeatedly until no active nodes are left of any colors. If there is

no active node of the current color, it is simply skipped to be checked again in the

next round. We have also experimented with other strategies such as picking the color

having the most active nodes, or the color having the highest total distance of its

active nodes. Performance of these strategies differ from example to example but none

of them is strictly superior to others. Therefore, we settled on using the robin-robin

scheduling.

We used the default OpenMP static scheduling method for all parallel loops.

We have also performed experiments with different OpenMP scheduling methods to

have better load balancing. Our experiments show that the regular static scheduling

is faster than other dynamic methods. The reason for this is that usually the work per

36

node is small enough that the overhead of dynamic scheduling methods becomes more

significant. Also when there are enough active nodes for parallelization, differences

among the number of arcs per node are easily averaged out when nodes are distributed

to threads. On the other hand, parallelization in the arc level in addition to the

node level complicates the synchronization of parallel algorithms significantly and it

is unlikely to scale except for very specific examples designed for this purpose. These

observations are in line with previous parallel push-relabel studies [73].

3.4. Experiments

Experiments were performed on a HPE ProLiant BL460c Gen9 Server Blade.

There are two Intel Xeon CPUs E5-2650 v3 running at 2.30GHz attached to the ma-

chine. Each CPU has 10 physical cores, and 20 logical cores with Hyper-Threading.

In our parallel runs, we used 20 threads at most which is equal to the total number

of physical cores. Scalable memory allocator from Intel Threading Building Blocks

(TBB) library is used to prevent false sharing. Our machine had 8x16GB DDR4 type

RAM running at 2133MHz totaling up to 128GB which was enough to hold all tests in

memory without swapping. Linux operating system is installed on this machine with

kernel version 2.6.32. Programs used in our experiments are compiled with the high-

est optimization level using GCC version 5.4.0 which implements OpenMP version 4.0

using Posix threads. We enabled OpenMP processor binding option with automatic

placement to set processor affinities.

We have also performed experiments with various sequential and parallel max-

imum flow solvers available. For the sequential algorithms, we used fprf and hipr

implementations of the original push-relabel algorithm [16]. fprf uses a FIFO queue

for active node selection, and it implements the global relabeling heuristic. This is

the closest implementation to the sequential version of our algorithm. Similarly hipr

uses the highest label node selection, and it implements both global relabeling and gap

relabeling heuristics. Lastly, hpf is the original pseudoflow algorithm implementation

37

by the authors [23]. We used pseudo fifo implementation which is specified as the

fastest in general out of four available variants from the latest available version 3.23.

For our cppr implementation, we added results from both sequential and parallel

versions. The sequential version is a standard non-colored push-relabel algorithm using

the same discharging routine as the parallel version except for atomic instructions. It

uses a regular sequential reverse breadth-first search algorithm for global relabeling.

This version is included to reflect the parallelization overhead when all other things are

equal. For the parallel version, we included results from two cases, running with only 1

thread, and running with 20 threads. For operation counts, we only show a single case

for the parallel version since our algorithm is deterministic. Push-relabel timings are

measured from the time when the residual graph is ready on the memory to the time

when the algorithm comes up with a maximum flow value and assignment. Residual

graphs are not used in hpf so we measure from the point when the graph is read to

the memory.

For parallel solvers, we obtained the source code of the algorithm by Baumstark

et al. [31] which we refer as sync. Authors also provided implementations for two other

algorithms. First is Goldberg’s original parallel push-relabel algorithm which we refer

as goldberg [14]. Second is the implementation of the algorithm by Hong and He

which we refer as bohong [29]. Lastly, we used p-ard algorithm for comparison which

was shown to be among the most performant parallel algorithms for computer vision

problems [37]. However, parallelization of this algorithm requires a preprocessing step

to split the original graph into parts which we show separately from the execution time.

This process can take a significant amount of time due to I/O operations.

Sequential solvers in our experiments use two-phase implementations that calcu-

late the minimum cut in the first phase, and then get the maximum flow in the second

phase using a more efficient method. Parallel solvers in our experiments calculate only

the minimum cut but not the maximum flow. Our implementation uses the same

method for the first and second phases. We present minimum cut and maximum flow

38

timings separately for a fair comparison. We used our maximum flow runs in the rest

of the results besides timings.

Our first set of examples are maximum flow examples that are encountered in

the computer vision domain. These consist of various types of problems that we have

obtained online [74]. camel and gargoyle are multiview reconstruction instances,

bunny is a surface fitting instance, and the rest are segmentation instances. Dimensions

of these instances along with the number of colors used in greedy coloring and the

number of iterations in our algorithm is shown in Table 3.1. Node degrees statistics

are given in terms of mean (µ) and standard deviation (σ). Distance between the

source and the sink nodes (s − t distance) is the shortest distance measured on the

initial residual graph with unit arcs.

Our second set of experiments are created using synthetic generators used in DI-

MACS challenge [75]. For genrmf examples, we have used dimensions of 8 and 4194304

for the long graph, and 5120 and 8 for the wide graph. Arc capacities are set to the

range of 1 to 10000. For washington examples, we have used dimensions of 32 and

1048576 for the long graph and its reverse for the wide graph. Generating bigger exam-

ples turned out to be difficult without increasing the smaller dimension as generations

already takes too long. Dimensions of the washington-line-mod instance is set to

262144 and 4. Arc capacities are set to the same range of 1 to 10000. Dimensions of

generated instances along with coloring information is shown in Table 3.2.

Our third set of experiments are maximum flow problems converted from graph

partitioning problems by the authors of KaHIP [76]. These problems are provided in

their website for evaluation purposes [77]. For problems that have multiple instances

with different dimensions, we used the biggest ones that fit into the memory of our

test machine for all programs we used in our experiments. Among these problems,

del strip is a graph generated as Delaunay triangulations of random points in the

unit square, europe.osm is a real world Open Street Map road network, grid strip is

a generated grid graph, nlpkkt is a graph generated from a sparse matrix example used

39

in nonlinear programming, and rgg strip is a graph generated from random points

in the unit square connected when the euclidean distance between two points is lower

than a given threshold. Dimensions of these instances along with coloring information

is shown in Table 3.3.

Table 3.1. Dimensions and coloring information for vision problems.

Problem n m
degree

(µ± σ)

s− t
distance

#

colors

#

color

ticks

abdomen long

.n6c10

144M 867M 6.00 ± 0.07 23 4 549K

abdomen short

.n6c10

144M 867M 6.00 ± 0.07 19 4 15K

adhead.n26c100 12M 327M 26.02 ± 0.15 36 12 11K

babyface

.n26c100

5M 131M 26.00 ± 0.03 14 16 781K

BL06-camel-lrg 18M 93M 4.35 ± 0.52 2 5 21K

BL06-gargoyle-

lrg

17M 86M 4.05 ± 0.26 2 5 195K

bone.n26c100 7M 202M 26.01 ± 0.12 79 16 17K

LB07-bunny-lrg 49M 300M 6.03 ± 0.19 3 5 6153K

liver.n26c100 4M 108M 26.03 ± 0.19 6 13 155K

40

Table 3.2. Dimensions and coloring information for DIMACS problems.

Problem n m
degree

(µ± σ)

s− t
distance

#

colors

#

color

ticks

genrmf-long 268M 1207M 4.50 ± 0.61 4194304 4 17258K

genrmf-wide 209M 1022M 4.87 ± 0.33 16 4 16K

washington-line-

mod

1M 134M 127.96 ± 1.64 2058 55 252K

washington-rlg-

long

33M 100M 3.00 ± 0.00 1048577 7 5393K

washington-rlg-

wide

33M 99M 2.93 ± 0.34 33 7 98K

Table 3.3. Dimensions and coloring information for KaHIP problems.

Problem n m
degree

(µ± σ)

s− t
distance

#

colors

#

color

ticks

del strip26 40M 241M 5.99 ± 1.33 1354 7 58598K

europe.osm 15M 32M 2.12 ± 0.48 2712 5 13962K

grid strip26 53M 214M 3.99 ± 0.02 6550 5 270124K

nlpkkt240 8M 222M 26.51 ± 2.32 44 10 2123K

rgg strip26 40M 689M 17.12 ± 4.14 2396 25 3990K

41

Table 3.4 and Table 3.5 show timing results for vision problems. fprf is often

slower than hipr but not with large margins. Our sequential implementation is usu-

ally faster than hipr for minimum cut calculation. However, it can get behind others

for maximum flow calculations since we do not use an efficient second phase imple-

mentation. hpf is almost always the fastest sequential algorithm for these problems.

For most problems, parallel implementations except for bohong can outperform hpf.

Splitter of p-ard can take very large amounts of time especially for bigger examples.

goldberg is faster than sync for all problems. Also sync crashes in two examples likely

due to memory leaking, and comes up with slightly different solutions for two other

examples due to race conditions. Between our algorithm and goldberg, there is no

clear winner though goldberg is sometimes much faster. The parallelization overhead

of our algorithm is around 28% for this set of problems.

42

Table 3.4. Sequential timings (in seconds) for vision problems (mincut/maxflow).

Problem
cppr

(seq)

cppr

(p = 1)

fprf

(seq)

hipr

(seq)

hpf

(seq)

abdomen long

.n6c10

209/250 306/365 224/233 216/224 109/114

abdomen short

.n6c10

142/190 172/227 267/278 122/130 81/86

adhead.n26c100 63/75 85/100 125/134 120/125 41/51

babyface

.n26c100

66/72 90/98 95/107 106/111 66/83

BL06-camel-lrg 130/147 165/184 161/164 198/200 28/44

BL06-gargoyle-

lrg

138/158 188/212 172/174 129/130 31/40

bone.n26c100 38/45 52/62 82/86 46/48 5/8

LB07-bunny-lrg 151/180 188/222 291/302 349/359 26/101

liver.n26c100 56/61 60/65 70/72 49/50 19/20

43

Table 3.5. Parallel timings (in seconds) for vision problems (20 threads)

(mincut/maxflow or only mincut) (asterisk (*) denotes different solution and dash (-)

denotes crash).

Problem
cppr

(p = 20)
goldberg bohong sync

p-ard

(+splitter)

abdomen long

.n6c10

39/43 47 5490 - 38 (+501)

abdomen short

.n6c10

20/24 17 3860 - 15 (+504)

adhead.n26c100 9/10 7 977 11 55 (+172)

babyface

.n26c100

21/22 6 710 10 77 (+84)

BL06-camel-lrg 13/15 15 1550 17* 15 (+40)

BL06-gargoyle-

lrg

18/21 18 1760 21* 27 (+41)

bone.n26c100 5/5 3 395 14 15 (+102)

LB07-bunny-lrg 140/143 31 2150 41 3 (+175)

liver.n26c100 8/9 4 407 6 8 (+39)

Table 3.6 and Table 3.7 show timing results for DIMACS problems. In these

experiments, our sequential implementation is slower than fprf especially for long

graphs. hipr is much faster than fprf for long graphs. hpf is again the fastest sequen-

tial implementation except for genrmf-long example. For genrmf examples, parallel

implementations other than our own have problems calculating the solution. These

are big examples consisting of more than a billion arcs each. For genrmf-wide ex-

ample, our algorithm with 20 threads can outperform sequential hpf algorithm, but

this is not the case for genrmf-long example. For washington-line-mod example,

our algorithm is slower than goldberg and sync, and these two are slower than hpf.

For washington-rlg examples, our algorithm is faster or equal to other parallel al-

44

gorithms. Similar to genrmf examples, for washington-rlg-wide example, some of

the parallel implementations including our own is able to outperform hpf, but not for

washington-rlg-long. The average parallelization overhead for DIMACS examples

is around 51%.

Table 3.6. Sequential timings (in seconds) for DIMACS problems (mincut/maxflow).

Problem
cppr

(seq)

cppr

(p = 1)

fprf

(seq)

hipr

(seq)

hpf

(seq)

genrmf-long 110248/

115027

222453/

231240

87173/

87222

167/204 128/

15064

genrmf-wide 10806/

10806

13532/

13533

9821/

9833

3730/

3738

1425/

1428

washington-line-

mod

5/7 7/9 5/8 7/10 2/3

washington-rlg-

long

1156/

1177

1708/

1774

186/190 23/26 12/18

washington-rlg-

wide

554/562 855/866 609/611 508/510 115/118

45

Table 3.7. Parallel timings (in seconds) for DIMACS problems (20 threads)

(mincut/maxflow or only mincut) (dash (-) denotes crash).

Problem
cppr

(p = 20)
goldberg bohong sync

p-ard

(+splitter)

genrmf-long 16770/17484 - - - - (-)

genrmf-wide 864/864 - 13600 - - (+770)

washington-line-

mod

5/6 3 13 3 44 (+82)

washington-rlg-

long

284/330 492 1220 473 24197 (+57)

washington-rlg-

wide

73/74 70 6260 73 20160 (+84)

Table 3.8 and Table 3.9 show timing results for KaHIP problems. Our sequential

implementation is faster than fprf which is faster than hipr but the fastest sequential

implementation is again hpf. goldberg exits with an error for three problems in

this set and it is slower than sync for the other two problems that it can run. Our

implementation has slowdowns with increasing number of threads for three problems in

this set. For these problems, our algorithm performs slower than goldberg and sync

by a large margin and all parallel implementations are slower than hpf. For the other

two problems, our algorithm have some speedups with increasing number of threads

and it can outperform hpf but it is still slower than sync. The average parallelization

overhead for KaHIP examples is around 14%.

46

Table 3.8. Sequential timings (in seconds) for KaHIP problems (mincut/maxflow).

Problem
cppr

(seq)

cppr

(p = 1)

fprf

(seq)

hipr

(seq)

hpf

(seq)

del strip26 462/494 478/507 685/696 2092/2099 216/282

europe.osm 25/30 38/47 37/38 263/264 10/12

grid strip26 537/543 656/663 729/733 9608/9611 213/213

nlpkkt240 340/350 345/355 445/452 531/535 119/123

rgg strip26 705/723 704/723 1416/1444 3847/3866 637/646

Table 3.9. Parallel timings (in seconds) for KaHIP problems (20 threads)

(mincut/maxflow or only mincut) (dash (-) denotes crash).

Problem
cppr

(p = 20)
goldberg bohong sync

p-ard

(+splitter)

del strip26 1266/1276 - 3550 82 1148 (+127)

europe.osm 185/274 23 236 14 57 (+19)

grid strip26 5129/5130 349 6420 233 - (-)

nlpkkt240 69/70 - 3090 42 3198 (+126)

rgg strip26 116/118 - 5480 75 756 (+314)

Timing distributions of our algorithm for different phases are given in Table 3.10,

Table 3.11, and Table 3.12 respectively. For vision problems, coloring usually takes

a small amount of time except for a few examples. Global relabel and discharge

times are close to each other for most of these problems. For DIMACS problems,

coloring times are mostly insignificant compared to total execution times except for

washington-line-mod example which has the shortest execution time in this set. Most

of the time is spent with discharging for these problems. For KaHIP problems, coloring

47

times are again insignificant especially for the three problems in which our algorithm

shows slowdowns with increasing number of threads. For these three problems, almost

all of the execution time is spent with discharging. For the other two problems, coloring

phases are a little longer but they are still pretty short compared to total execution

times. Discharge times are still dominant compared to global relabeling times for these

two problems.

Table 3.10. Timing distributions (in seconds) of cppr (p = 20) for different phases in

vision problems.

Problem
coloring

(seq)

discharging

(par)

global

relabeling

(par)

abdomen long

.n6c10

5.84 (14%) 19.93 (46%) 17.51 (40%)

abdomen short

.n6c10

6.40 (26%) 5.47 (23%) 12.24 (51%)

adhead.n26c100 1.93 (20%) 3.27 (33%) 4.68 (47%)

babyface

.n26c100

0.73 (3%) 17.63 (80%) 3.76 (17%)

BL06-camel-lrg 0.75 (5%) 8.85 (59%) 5.48 (36%)

BL06-gargoyle-

lrg

0.69 (3%) 15.07 (73%) 5.01 (24%)

bone.n26c100 1.21 (23%) 1.64 (31%) 2.45 (46%)

LB07-bunny-lrg 2.34 (2%) 132.06 (92%) 8.51 (6%)

liver.n26c100 0.76 (9%) 4.90 (55%) 3.21 (36%)

48

Table 3.11. Timing distributions (in seconds) of cppr (p = 20) for different phases in

DIMACS problems.

Problem
coloring

(seq)

discharging

(par)

global

relabeling

(par)

genrmf-long 10.67 (0%) 13037.00 (75%) 4435.82 (25%)

genrmf-wide 20.06 (2%) 578.95 (67%) 265.17 (31%)

washington-line-

mod

0.70 (11%) 5.15 (80%) 0.57 (9%)

washington-rlg-

long

1.09 (0%) 232.70 (71%) 96.55 (29%)

washington-rlg-

wide

2.14 (3%) 57.68 (78%) 13.99 (19%)

Table 3.12. Timing distributions (in seconds) of cppr (p = 20) for different phases in

KaHIP problems

Problem
coloring

(seq)

discharging

(par)

global

relabeling

(par)

del strip26 2.66 (0%) 1258.75 (99%) 15.11 (1%)

europe.osm 0.36 (0%) 271.17 (99%) 2.81 (1%)

grid strip26 2.06 (0%) 5105.41 (100%) 23.25 (0%)

nlpkkt240 2.12 (3%) 55.73 (80%) 12.04 (17%)

rgg strip26 5.87 (5%) 94.42 (80%) 17.35 (15%)

49

Speedup plots are given in Figure 3.7. These are calculated using the parallel ver-

sion executed with one thread and hpf as the best sequential algorithm as references.

For vision problems, the speedup trend seems to saturate as the number of threads in-

crease. In two examples, babyface and LB07-bunny-lrg, we also see slowdowns after

8 threads. The average speedup ratio of the parallel implementation using 20 threads is

around 7.3 compared to the parallel implementation running with a single thread, 5.7

compared to the sequential implementation, and 2.4 compared to hpf. For DIMACS

problems, the scaling trend is more regular even after high numbers of threads, though

there are two examples washington-line-mod and washington-rlg-long which shows

slowdowns after some point. Average speedup rate is about 7.2 compared to the parallel

implementation running with a single thread, 4.7 compared to the sequential implemen-

tation, and 0.6 compared to hpf. For only genrmf-wide and washington-rlg-wide

examples in which our algorithm with 20 threads can outperform the sequential hpf

algorithm, these numbers become 13.6, 9.8, and 1.6 respectively. For KaHIP problems,

slowdowns start earlier than other problems. For three of these problems, speedups

never exceed 2 and they are usually below 1. For the other two problems, speedups

seem to peak at 8 or 16 threads. Average speedup rate is about 0.8 compared to the

parallel implementation running with a single thread, 0.7 compared to the sequential

implementation, and 0.3 compared to hpf. For only nlpkkt and rgg strip examples

in which our algorithm with 20 threads can outperform the sequential hpf algorithm,

these numbers become 5.6, 5.6, and 3.1 respectively.

We measured operation counts of basic routines in our algorithm and compared

them to the numbers reported by other algorithms. These operation counts turned

out to be in accordance with execution times in general as expected. The difference

between the operation counts of our sequential and parallel implementations are usually

insignificant. In some cases, our parallel version has lower operation counts than the

sequential version. This is due to changes in the operation order of active nodes in the

parallel version which can occasionally lead to lower operation counts compared to the

strict FIFO order.

50

number of cores (p)

sp
ee

du
p

1 2 4 8 16 20

0
2

4
6

8
10

12
14

16
18

20

●

●

●

●

●
●

● abdomen_long.n6c10
abdomen_short.n6c10
adhead.n26c100
babyface.n26c100
BL06−camel−lrg
BL06−gargoyle−lrg
bone.n26c100
LB07−bunny−lrg
liver.n26c100

(a)

number of cores (p)

sp
ee

du
p

1 2 4 8 16 20

0
1

2
3

4
5

6
7

8

●

●

●

●

●
●

● abdomen_long.n6c10
abdomen_short.n6c10
adhead.n26c100
babyface.n26c100
BL06−camel−lrg
BL06−gargoyle−lrg
bone.n26c100
LB07−bunny−lrg
liver.n26c100

(b)

number of cores (p)

sp
ee

du
p

1 2 4 8 16 20

0
2

4
6

8
10

12
14

16
18

20

●

●

●

●

●

●

● genrmf−long
genrmf−wide
washington−line−mod
washington−rlg−long
washington−rlg−wide

(c)

number of cores (p)

sp
ee

du
p

1 2 4 8 16 20

0
1

2

●

●

●

●

●

●

● genrmf−long
genrmf−wide
washington−line−mod
washington−rlg−long
washington−rlg−wide

(d)

number of cores (p)

sp
ee

du
p

1 2 4 8 16 20

0
2

4
6

8
10

12
14

16
18

20

●

●
●

●

● ●

● del_strip26
europe.osm
grid_strip26
nlpkkt240
rgg_strip26

(e)

number of cores (p)

sp
ee

du
p

1 2 4 8 16 20

0
1

2
3

4
5

6
7

8

●

●

●
●

●
●

● del_strip26
europe.osm
grid_strip26
nlpkkt240
rgg_strip26

(f)

Figure 3.7. Speedups of cppr for vision problems compared to cppr (p = 1) (a) and

hpf (b), for DIMACS problems compared to cppr (p = 1) (c) and hpf (d), and for

KaHIP problems compared to cppr (p = 1) (e) and hpf (f).

51

Operation counts for vision problems are presented in Table 3.13, Table 3.14,

and Table 3.15 respectively. For this set of problems, fprf usually performs fewer

operations than the rest. Our algorithm performs similar numbers of operations as hpf

on average. hipr usually performs the most number of operations for vision problems.

Table 3.13. Push counts for vision problems.

Problem cppr (seq) cppr (par) fprf hipr hpf

abdomen long

.n6c10

465M 487M 277M 394M 269M

abdomen short

.n6c10

222M 224M 211M 308M 234M

adhead.n26c100 74M 74M 69M 112M 145M

babyface

.n26c100

113M 112M 94M 134M 289M

BL06-camel-lrg 426M 426M 438M 869M 410M

BL06-gargoyle-

lrg

552M 559M 515M 624M 454M

bone.n26c100 43M 43M 40M 40M 26M

LB07-bunny-lrg 664M 690M 485M 871M 111M

liver.n26c100 63M 64M 50M 58M 84M

52

Table 3.14. Relabel counts for vision problems.

Problem cppr (seq) cppr (par) fprf hipr hpf

abdomen long

.n6c10

294M 295M 174M 297M 423M

abdomen short

.n6c10

149M 150M 144M 253M 275M

adhead.n26c100 40M 40M 37M 78M 61M

babyface

.n26c100

49M 49M 40M 75M 103M

BL06-camel-lrg 151M 151M 151M 421M 211M

BL06-gargoyle-

lrg

164M 167M 137M 309M 231M

bone.n26c100 25M 25M 23M 31M 11M

LB07-bunny-lrg 218M 218M 198M 511M 293M

liver.n26c100 36M 35M 29M 39M 31M

53

Table 3.15. Global relabel counts for vision problems (not applicable for hpf).

Problem cppr (seq) cppr (par) fprf hipr hpf

abdomen long

.n6c10

4 4 2 3 n/a

abdomen short

.n6c10

3 3 2 2 n/a

adhead.n26c100 5 5 4 7 n/a

babyface

.n26c100

11 11 9 15 n/a

BL06-camel-lrg 10 10 9 22 n/a

BL06-gargoyle-

lrg

11 11 9 18 n/a

bone.n26c100 5 5 4 5 n/a

LB07-bunny-lrg 6 6 5 11 n/a

liver.n26c100 10 10 8 10 n/a

Operation counts for DIMACS problems are presented in Table 3.16, Table 3.17,

and Table 3.18 respectively. In almost all cases, our algorithm has higher operation

counts compared to others. fprf performs fewer operations compared to our algorithm

but it still performs much more operations compared to others. hipr performs similar

number of operations as hpf on average for this set of problems.

54

Table 3.16. Push counts for DIMACS problems.

Problem cppr (seq) cppr (par) fprf hipr hpf

genrmf-long 469729M 453878M 352569M 849M 537M

genrmf-wide 15281M 15266M 10005M 9177M 52276M

washington-line-

mod

5M 6M 5M 2M 2M

washington-rlg-

long

9152M 9778M 5287M 124M 116M

washington-rlg-

wide

1474M 1481M 1452M 1473M 445M

Table 3.17. Relabel counts for DIMACS problems.

Problem cppr (seq) cppr (par) fprf hipr hpf

genrmf-long 28137M 27386M 29209M 436M 1117M

genrmf-wide 9009M 8863M 6504M 5257M 1327M

washington-line-

mod

1M 1M 1M 1M 2M

washington-rlg-

long

235M 234M 106M 40M 161M

washington-rlg-

wide

503M 505M 503M 595M 331M

55

Table 3.18. Global relabel counts for DIMACS problems (not applicable for hpf).

Problem cppr (seq) cppr (par) fprf hipr hpf

genrmf-long 106 103 109 2 n/a

genrmf-wide 43 43 32 26 n/a

washington-line-

mod

3 3 2 2 n/a

washington-rlg-

long

9 9 4 2 n/a

washington-rlg-

wide

17 17 16 19 n/a

Operation counts for KaHIP problems are presented in Table 3.19, Table 3.20,

and Table 3.21 respectively. Our algorithm has similar operation counts to fprf. hpf

usually performs fewer push operations but more relabel operations compared to our

algorithm and fprf. hipr performs the most number of operations by a large margin

for this set of problems.

Table 3.19. Push counts for KaHIP problems.

Problem cppr (seq) cppr (par) fprf hipr hpf

del strip26 1151M 1148M 1092M 9656M 903M

europe.osm 285M 319M 235M 3652M 42M

grid strip26 1857M 1964M 2511M 86515M 518M

nlpkkt240 351M 351M 343M 784M 217M

rgg strip26 816M 720M 870M 6804M 527M

56

Table 3.20. Relabel counts for KaHIP problems (asterisk (*) denotes negative value is

reported due to overflow).

Problem cppr (seq) cppr (par) fprf hipr hpf

del strip26 845M 846M 793M 7373M 1561M

europe.osm 147M 165M 122M 1917M 93M

grid strip26 912M 966M 1234M 43274M 1484M

nlpkkt240 134M 135M 134M 417M 187M

rgg strip26 644M 564M 684M 6175M -2015M*

Table 3.21. Global relabel counts for KaHIP problems (not applicable for hpf).

Problem cppr (seq) cppr (par) fprf hipr hpf

del strip26 23 23 20 185 n/a

europe.osm 11 12 9 127 n/a

grid strip26 19 20 24 807 n/a

nlpkkt240 18 18 17 51 n/a

rgg strip26 18 16 18 155 n/a

For some problems, parallelization is limited by the number of available active

nodes of the same color at the start of each iteration for processing. If the number of

active nodes of the current color is less than the number of threads then some of the

threads stay idle until the next iteration. Similarly if the number of nodes is barely over

the number of threads then the load distribution may suffer. For these cases, much of

the work is spent for picking the next color, merging queues, and distributing the load

which are all sequential. One of the possible reasons of this issue is the high number of

colors used for graph coloring which is the case for dense graphs. Other than that, the

problem instance may have few active nodes that is independent of colors which is the

case for long graphs. Figure 3.8 show the relative cumulative distribution of number of

active nodes of the same color recorded at each iteration. These are shown as log plots

57

using the number of threads as the base, so anything below 1 is a case in which some

threads stay idle during the iteration. One such example is washington-line-mod

instance which has about 70% of iterations below 1. This is a relatively dense graph

which is colored with 55 colors. Indeed, our algorithm performs poorly on this example

showing a slowdown in the parallel implementation as expected. However, also note

that iterations with a lower number of active nodes have a lesser load to process, thus

these plots are inherently pessimistic in nature.

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log p (number of nodes in color tick)

cu
m

ul
at

iv
e

re
la

tiv
e

fr
eq

ue
nc

y

abdomen_long.n6c10
abdomen_short.n6c10
adhead.n26c100
babyface.n26c100
BL06−camel−lrg
BL06−gargoyle−lrg
bone.n26c100
LB07−bunny−lrg
liver.n26c100

(a)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log p (number of nodes in color tick)

cu
m

ul
at

iv
e

re
la

tiv
e

fr
eq

ue
nc

y

genrmf−long
genrmf−wide
washington−line−mod
washington−rlg−long
washington−rlg−wide

(b)

0 1 2 3 4 5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

log p (number of nodes in color tick)

cu
m

ul
at

iv
e

re
la

tiv
e

fr
eq

ue
nc

y

del_strip26
europe.osm
grid_strip26
nlpkkt240
rgg_strip26

(c)

Figure 3.8. Distribution of number of nodes in color ticks in vision problems (a),

DIMACS problems (b), and KaHIP problems (c) (p = 20).

58

3.5. Conclusions

We presented a parallel push-relabel algorithm. The experiments show that our

algorithm is competitive for wide graphs with low diameters. Wide graphs usually

have more active nodes for parallelization during the execution. On the other hand,

having low diameter is important to have good performance when using FIFO queues

for active nodes. We also show that our algorithm performs poorly for dense graphs in

which the number of active nodes for parallelization is limited by colors and/or graph

structure. For these examples, the pseudoflow algorithm is more suitable as it usually

performs better even with a single thread. We note that there are many real world

graphs that are wide and sparse and have low diameters. One can find such graphs for

instance in social networks, artificial intelligence, bioinformatics, and auction problems.

Hence our algorithm should be useful in practice.

We have a proof of correctness of our algorithm that is easy to follow and a

corresponding implementation that is robust in practice. Our implementation is the

only parallel implementation that is able to run successfully for all examples in our

experiments. All other parallel implementation suffer from memory problems such as

leaks or other logical errors such as races or distance label violations. Memory problems

either cause crashes or high memory usage during the execution. Logical errors make

them unreliable to use in an application where correctness is desirable. We note that

fixing these errors may be difficult if not impossible and they can lead to losses in

performance.

Performance of our sequential minimum cut computations seem to be a little

better than our maximum flow computations compared to other algorithms. As we

mention before, this is due to the use of a more efficient second phase implementation

in Goldberg’s algorithms to get the maximum flow from the minimum cut. This method

can also be implemented to our sequential implementation to increase the performance

further, though it is not easy to parallelize. The applicability of this method for our

parallel implementation is still an open problem.

59

Our sequential minimum cut algorithms performs differently than fprf. This is

most likely due to some of the implementation details we choose differently. Goldberg’s

algorithm uses a current arc pointer whereas our implementation starts each iteration

from the beginning during discharging. This is a trade-off since the latter allows the

minimum distance to be saved during the iteration and avoid an extra iteration in case

a node is relabeled afterwards. In our experiments, we did not find a clear advantage

among these two methods. In relation to that, we also noted that the order of arcs in

the input file can also have a significant effect on the execution time.

In the future, experiments on bigger machines may reveal if the scaling trend

continues as the number of threads increases. Our speedup rates usually show positive

numbers in scaling for most problems. We have only identified the number of active

vertices issue for scalability. As the number of threads increase, different limiting

factors may come up. One particular possibility is the sequential greedy vertex coloring

algorithm we used. This step mostly takes only a fraction of the total execution time

except for a few examples. It may be worthwhile to use a different algorithm or

parallelize the existing one to deal with Amdahl’s law [78].

We carried out our experiments on a locally available computer that had 20 cores

and 128 GB memory. Our algorithm may offer further advantages on NUMA shared

memory based supercomputer systems that offer hundreds of cores and very large

memories. On such systems, we may be able to increase network sizes dramatically.

On very large problems, sequential algorithms may run into processing as well as limited

cache bottlenecks whereas parallel algorithms can utilize hundreds of cores as well as

the caches available on such systems.

60

4. MINIMUM COST FLOW PROBLEM

In this chapter, we present a new method for the parallelization of pivoting op-

eration in the network simplex method.

4.1. Introduction

Simplex algorithm is an important method for many different optimization prob-

lems. This algorithm has been commonly used to solve linear programming problems.

It is known that the minimum cost flow problem can be converted to an equivalent

linear programming problem. Therefore, simplex algorithm can be used to solve the

minimum cost flow problem. However, the resulting algorithm is not competitive in

practice compared to other algorithms used to solve this problem.

Network simplex algorithm is an adaptation of the simplex algorithm to be used

for network optimization problems. This algorithm uses special techniques to benefit

from the special structure of the network to accelerate the regular simplex algorithm.

Operations used in this algorithm closely resemble their counterparts in the simplex

algorithm.

Finding entering arc operation is usually the bottleneck of this algorithm. Bet-

ter strategies can significantly decrease the number of iterations performed in this

algorithm. On the other hand, these strategies can be too expensive to provide a

computational performance advantage. Block searching is a common strategy to have

an acceptable number of iterations and to avoid taking too much time to find an en-

tering arc. In this chapter, we propose parallelization of block searching operation to

accelerate the network simplex algorithm.

We propose the following strategies for parallelization:

61

(i) Finding the arc with the most violation of optimality in a block can be searched

in parallel with multiple threads using OpenMP.

(ii) Within each thread, this reduction operation can be vectorized using AVX in-

structions.

(iii) We can increase the block size to increase the work done for finding an appropri-

ate arc but also heuristically decrease the number of iterations to come up with

an optimum solution. In return, this helps us to trade some of the sequential

portion of the program with parallel portion which is to be calculated with the

additional computation power due to parallelization (i) and vectorization (ii).

This is somewhat similar to Gustafson’s law [79] which was proposed to remedy

pessimistic result of Amdahl’s law [78] when modeling speedup behavior of par-

allel applications. As we increase the total parallel work with increasing number

of threads, the total sequential portion is decreased at the same time along with

the number of iterations.

The rest of the chapter is organized as follows. Section 4.2 provides background

for the minimum cost flow problem and the network simplex algorithm. Section 4.3

discusses our parallel block searching method. Section 4.4 provides implementation de-

tails of our solver. Section 4.5 presents our experimental results. Section 4.6 concludes

the chapter and discusses future work directions.

4.2. Background

In this section we only provide a high level overview of the network simplex

algorithm and proofs are left out for brevity. Seminal book by Ahuja et al. [1] is a

slightly outdated but still a good introductory material on the topic which you can

refer for more information.

62

4.2.1. Network Simplex Algorithm

Simplex algorithm is one of the most famous algorithms devised to solve opti-

mization problems [80]. It has been originally invented to solve linear programming

problems and then found many uses in various fields. Its success is largely due to

providing exceptional efficiency in practice and being useful theoretically in sensitivity

analysis and duality theorems.

Simplex algorithm can be used to solve network optimization problems, though

it does not provide a competitive performance compared to other algorithms used for

these problems. Network simplex algorithm is a specialized version of the simplex

algorithm to exploit the network structure of the underlying optimization problem to

have an efficient performance [81, 82]. For the minimum cost flow problem, network

simplex algorithm is one of the fastest known algorithms, if not the best. This algorithm

can also be seen as an efficient variant of cycle cancelling algorithm. The idea behind

cycle cancelling algorithm is to start with a feasible flow and then converge to an

optimum solution by repeatedly identifying cycles with negative costs at each iteration

and then cancelling the flow on the cycle to get a better solution. Network simplex

algorithm provides a fast method to identify such cycles in the graph. There is also

another common variant of the algorithm called dual network simplex algorithm which

starts with an optimum flow and converges to feasibility. In this chapter, we only

consider the former primal network simplex algorithm which we simply refer as the

network simplex algorithm.

Following concepts are defined to introduce the network simplex algorithm:

Free arc is an arc (i, j) in a feasible flow if 0 < xij < uij.

Restricted arc is an arc (i, j) in a feasible flow if xij = 0 or xij = uij.

Spanning tree solution is a feasible flow and an associated tree structure in which

every non-tree arc is a restricted arc. On the other hand, tree arcs can be free

or restricted. When all tree arcs are free arcs, the tree is called non-degenerate,

63

otherwise it is called degenerate. To represent a spanning tree structure, we divide

the arc set into three subsets (T, L, U) to denote tree arcs, non-tree arcs at lower

bounds, and non-tree arcs at upper bounds respectively.

It can be shown that if a given minimum cost flow problem is feasible, then it

always has an optimum spanning tree solution. We say that a spanning tree (T, L, U)

is optimum if it is feasible and for some choice of node potentials π, reduced cost

cπij = cij + πi − πj for each arc satisfies

cπij = 0 ∀(i, j) ∈ T

cπij ≥ 0 ∀(i, j) ∈ L

cπij ≤ 0 ∀(i, j) ∈ U.

Network simplex algorithm is based on the idea of maintaining a spanning tree

solution. This spanning tree solution corresponds to a basic feasible solution in the

simplex algorithm. At each iteration, the algorithm moves from a basic feasible solution

to another by replacing an arc on the tree with another arc not on the tree. This

operation is called pivoting as in the simplex algorithm. Pivoting is repeated until all

arcs satisfy the optimality conditions given above. High level overview of the network

simplex algorithm is given in Figure 4.1.

64

Data: Graph, node balances, arc costs and arc limits

Result: Optimum spanning tree solution

1 Find an initial feasible spanning tree solution;

2 Calculate arc flows and node potentials;

3 while there is a non-tree arc violating optimality do

4 Select an entering arc violating the optimality;

5 Add the entering arc to the tree;

6 Identify the new cycle on the tree;

7 Determine the leaving arc on the cycle;

8 Update tree, arc flows and node potentials;

9 end

Figure 4.1. Network Simplex Algorithm.

4.2.2. Pivoting Operation

Pivoting is the central operation in the network simplex algorithm. It can be

divided into multiple steps as follows:

Finding entering arc is the first step to find a non-tree arc violating the optimality.

If there is no such arc, then the current solution is optimum. Hence, this step

also serves as the termination condition.

Finding joining node is to identify the new cycle on the spanning tree formed by

the addition of the entering arc. The entering arc is always on this cycle. A

joining node is determined by travelling upwards in the tree starting from both

ends of the entering arc. The cycle hangs from the joining node.

Finding leaving arc is to identify an arc with the minimum residual capacity that

would first block sending additional flow along the cycle. There can be multiple

such arcs, in which case, the leaving arc can be determined according to a leaving

arc selection rule. Entering and leaving arcs can be the same arc, in which case,

the arc moves between L and U . Residual capacity of the leaving arc can be

65

zero on degenerate trees which is referred as stalling. In this case, the spanning

tree is changed but the solution is not improved. It is possible to loop forever in

the algorithm by always picking the same arcs in consecutive iterations which is

referred as cycling. However, there are known selection rules to avoid cycling by

maintaining a strongly feasible spanning tree, in which case, the algorithm always

terminate in a finite number of iterations [83,84].

Updating tree is to update the flow values of arcs and the data structure holding

the current spanning tree solution. This step is rather involved and depends on

the choice of underlying data structures.

Updating potentials is the last step to update node potentials according to the new

spanning tree. Removal of the leaving arc splits the old spanning tree into two

subtrees and only one of the subtrees requires potential updates.

There is some flexibility in choosing the entering arc in the first step of pivoting.

The other steps are more straightforward but still require clever data structures and

strategies for efficient implementations. Determining an entering arc is performed using

a pivoting rule. There are a number of pivoting rules proposed in the literature. Some

of the well known ones are as follows:

Best eligible always selects an eligible arc of maximum violation, which is also known

as Dantzig rule.

First eligible examines the arcs cyclically and selects the first eligible arc [85].

Block search cyclically examines a fixed number of arcs (blocks) and selects the best

eligible candidate among these arcs [86].

Candidate list examines the arcs cyclically to build a list which is then used in a

fixed number of subsequent iterations to select an arc of maximum violation in

the list. This rule is first proposed by Srinivasan and Thompson [87] and later

improved by Bradley et al. [88] and Mulvey [89].

Altering candidate list is similar to the candidate list rule except that it attempts

to extend and filter the list at each iteration [90].

66

Violation of an non-tree arc depends on its reduced cost and the arc being in

either L or U . We define a convenience variable φa where a is the index of an arc as

φa =


0, a ∈ T

1, a ∈ L

−1, a ∈ U.

Any arc with a positive violation can be selected as the entering arc in pivoting.

The choice depends on the pivoting rule and there is no need to consider every arc at

each iteration. Block pivoting technique which we consider in this study is given in

Figure 4.2 and Figure 4.3. The search is performed block by block until an eligible arc

is found or all arcs are examined. The current arc index is saved as curr at the end

of each iteration to start the next iteration from where it is left last time in a cyclical

manner. The number of arcs in a block is an adjustable parameter represented as size.

At the end of each block search, the arc with the most violation in the block is saved

as enter with its arc index as enter.ind and its violation as enter.val. If there are

no eligible entering arcs, then enter is left zero as initialized at the beginning of each

iteration.

4.3. Parallel Block Searching

The choice of pivoting rule has a significant effect on the number of iterations.

Also, it can take the majority of the running time in the pivoting operation depending

on the strategy. First eligible rule is the fastest to finish but results in a high number of

iterations. On the other hand, best eligible rule is slow but finishes in fewer iterations.

These two strategies are unlikely to be effective in practice. Experiments show that

block searching as a hybrid strategy is faster than both strategies. Candidate list

strategies are often on par with block searching and perform slightly better or worse

depending on the input. We consider block pivoting in this study for being simple

and efficient. It is also considered more robust than others so it is used as the default

strategy in lemon-ns [90].

67

Data: m, curr, size

Result: curr and enter are updated

1 Procedure find entering arc is

2 begin← curr;

3 while begin < m and enter.val = 0 do

4 end← min{begin+ size,m};
5 block search(begin, end);

6 begin← end;

7 end

8 if enter.val = 0 then

9 begin← 0;

10 while begin < curr and enter.val = 0 do

11 end← min{begin+ size, curr};
12 block search(begin, end);

13 begin← end;

14 end

15 end

16 curr ← end;

17 end

Figure 4.2. Block Searching Algorithm.

68

Data: c, φ, π

Result: enter is updated

1 Procedure block search(begin, end) is

2 for a← begin to end do

3 (i, j)← a;

4 c← φa × (ca + πi − πj);
5 if c < enter.val then

6 enter.val← c;

7 enter.ind← a;

8 end

9 end

10 end

Figure 4.3. Sequential Block Searching Algorithm

Finding eligible arc is the only step that is easily parallelizeable in pivoting. Other

steps involve either traversing or updating the spanning tree on the graph which makes

them difficult to parallelize, if not impossible. Instead, we focused on minimizing the

time spent in these steps by adjusting the pivoting rule parameters to decrease the

number of iterations.

Calculations of arc violations are independent of each other. Properties of arcs

are stored in continuous arrays and they can be accessed with the arc index. These

properties include sources, targets and costs of arcs to calculate the reduced costs and

φ values to denote the current spanning tree. Similarly, node potentials are stored in

a contiguous array and they can be accessed with a node index. Given these values,

we can simply calculate the reduced cost cπa of an arc using the formula given before.

The reduced cost is then multiplied by φa to get the violation of the arc. Finally,

all arc violations are reduced to a single value with the maximum violation having the

minimum negative value. There are no eligible arcs if there are no negative values. The

69

reduction operation can be performed in parallel. An example entering arc selection is

shown in Figure 4.4.

a 1 2 3 4 5 6 7 8 9 10

∈ T L T U L T U T T L

φa 0 1 0 -1 1 0 -1 0 0 1

cπa 0 -3 0 2 -4 0 -5 0 0 3

φac
π
a 0 -3 0 -2 -4 0 5 0 0 3

-4

Figure 4.4. An example entering arc selection is shown. Violation calculations are

independent of each other. Bottom row shows the violation of arcs. Violations are

reduced to a single value with the most violation having the minimum negative value.

4.3.1. Shared Memory Parallelism

In a single iteration, the number of blocks to search might be one or many. Since

we do not know the number of blocks beforehand, we used OpenMP to parallelize the

search within a block. Small instances are unlikely to benefit from such parallelism,

however we see increased speeds on bigger instances. OpenMP supports reduction

clauses to provide race-free reduction operations without any synchronization overhead.

4.3.2. Vectorization

AVX (Advanced Vector Extensions) are extensions to the x86 instruction set

to add SIMD (Single Instruction Multiple Data) parallelism. These extensions are

successors to MMX and SSE (Streaming SIMD Extensions) introduced in previous

generations. AVX and AVX2 instructions can use 256 bit registers to operate on

70

multiple elements. AVX512 instructions extend this further to 512 bit registers. These

registers are divided according to the width of the underlying data type used in the

calculation.

We have combined AVX instructions with OpenMP to further accelerate the

search within a block. As the calculations are memory intensive, AVX instructions

are only able to speed things up slightly. Also, as the number of threads increase,

vectorization starts to compete with parallelization to get enough arcs to operate on.

Hence, we see the speedup gains of vectorization disappear with increasing number

of threads. However, vectorization is still beneficial to increase the utilizations of the

cores by scaling up to the maximum possible speedups using fewer threads.

Our parallel and vectorized block searching is given in Figure 4.5 and Figure 4.6.

Array notation is used to emphasize memory access patterns. AVX instructions use 512

bit vectors operating as 32 bit integers. Common prefixes mm512 and suffixes si512

and epi32 are erased from the instruction names for brevity. Most of the work is

performed in the first parallel loop. A custom minimum function for vectors named

vminf is used in both the subsequent iterations of the loop and the final reduction of

thread local vectors to a single shared vector. This final mm512 vector is then reduced

to a single i32 integer in the second loop. Finally, leftover arcs are checked in the third

loop when the number of arcs in the range is not a multiple of 16.

71

Data: tails array as arc source nodes, heads array as arc target nodes,

states array as φ, costs array as c, pots array as π,

Result: enter is updated

1 Procedure block search(begin, end) is

2 vmin← {set1(0), set1(0)};
3 parallel for a← begin to end by 16

4 reduction vminf : vminlastprivate a do

5 vind← setr(a, a+ 1, ..., a+ 15);

6 vtail← load(&tails[a]);

7 vhead← load(&heads[a]);

8 vstate← load(&states[a]);

9 vcost← load(&costs[a]);

10 vpoti← i32gather(vtail,&pots[0], 4);

11 vpotj ← i32gather(vhead,&pots[0], 4);

12 vcost← add(vcost, vpoti);

13 vcost← sub(vcost, vpotj);

14 vcost← mullo(vcost, vstate);

15 vminf(vmin, velem{vind, vcost});
16 end

17 min← {0, 0};
18 for i← 0 to 16 do // mm512 to i32

19 if vmin.val[i] < min.val then

20 min.val← vmin.val[i];

21 min.ind← vmin.ind[i];

22 end

23 end

24 . . .

Figure 4.5. Parallel Block Searching Algorithm.

72

23 . . .

24 for a← a to end do // leftover arcs

25 i← tails[a];

26 j ← heads[a];

27 c← cost[a] + pots[i]− pots[j];
28 if c < min.val then

29 min.val← c;

30 min.ind← a;

31 end

32 end

33 enter ← min;

34 end

35 Procedure vminf(out, in) is

36 vmask ← cmpgt mask(out.val, in.val);

37 out.ind← mask blend(vmask, out.ind, in.ind);

38 out.val← min(in.val, out.val);

39 end

Figure 4.6. Parallel Block Searching Algorithm (cont.).

4.3.3. Block Sizes

Block selection works with a parameter to determine the block sizes. An efficient

value is to use
√
m as the block size [90]. We see that this value is usually optimum

for most instances in our dataset. However, this optimum changes naturally when

we introduce parallelism. Searching for an entering arc finishes much faster and the

portion of time spent decreases with increasing number of threads. Theoretically,

block size should be increased by a factor of p, the number of threads, to keep the

same distribution of time for each step if we assume perfectly linear speedups for

block searching. In practice, speedup values are lower since the computation is short

73

and memory intensive. Therefore, we use a different factor k for block sizes (i.e.

size = k ×√m).

On the other hand, we also expect a decrease in the number of iterations in

return with increasing block sizes, otherwise the extra work is wasted. We see various

behaviors across different instances in our dataset. Number of iterations decrease

dramatically for some instances but not so much for others. Therefore, it is usually

required beforehand to determine whether or not block size increments are beneficial

for the input instance at hand.

Amdahl’s law assumes that the fraction of the inherently sequential portion of an

application is fixed which in turn implies a pessimistic result that limits the maximum

theoretical speedup to be bounded by the reciprocal of the sequential portion of the

program [78]. Our discussion is similar to Gustafson’s law, which states that the

problem size scales with the number of processors in practice, but we also decrease the

total sequential work performed at the same time [79]. By increasing block sizes, we

expect to perform better pivots and decrease the number of iterations. Increasing block

sizes is equivalent to increasing the portion of the program which we can parallelize,

and decreasing the number of iterations means there is less sequential work. In return,

we trade the sequential portion of the execution with more parallel portion to achieve

better scaling. Note, this conversion is often not free and there is some overhead

involved in such parallelism.

4.4. Implementation

We have implemented the algorithm in C++ language in both sequential and

parallel versions. Parallel versions are implemented using OpenMP with and without

AVX2 and AVX512 instructions. Intrinsic functions are used for vector instructions.

AVX2 is added mostly as a fallback since AVX512 is relatively new and not widely

supported yet. AVX2 and AVX512 have equivalent instructions for 256 and 512 bit

operations respectively, though there are slight differences. We have not used older

74

vectorization instructions such as AVX and SSE since gather instructions are missing

in them. Our implementation in the form of a standalone DIMACS file format solver

named pns is made publicly available online [4].

Our implementation mostly follow the text book definition of the algorithm [1].

However, some implementation details are often not provided in most text books. Kelly

and ONeill [91] present more details than most other materials on the topic. We have

also used the lemon-ns implementation extensively as a reference as it has efficient

implementations for most procedures [90]. In particular, the data structure holding the

spanning tree as an improved version of the extended threaded index first proposed

by Barr et al. [92] along with the tree update operation has many optimizations to

minimize the amount of work performed. We directly adapted the same tree code in

our implementation. Similarly, we use the same artificial initialization approach for

the initial feasible solution. However, the two implementations are not identical in

general as lemon-ns aims to be more flexible as a library. We have used lemon-ns

as reference in our experiments since there are differences in performance between the

two implementations. lemon-ns is compared to other implementations by Kovács so

our implementation can also be transitively compared to others [42].

4.4.1. Data Alignment

Vector instructions have separate instructions for aligned and unaligned memory

accesses. On some processors, aligned memory access is expected to be faster. Data

needs to be aligned accordingly to be able to use aligned memory access instructions.

For AVX2 and AVX512 instructions, the alignment requirements are 256 and 512 bits

respectively. Similarly, processors typically have 64 byte (512 bit) aligned cache lines.

For this reason, we aligned our arrays with 512 bit alignment.

We used structure of arrays as it is often more appropriate for vectorization

compared to array of structures [93]. Data is held as 32 bit integers in our arrays.

With 512 bit capacity, a single cache line can hold 16 elements at once. So we used 16

75

element blocks for OpenMP scheduler to avoid false sharing. Block size is also rounded

up to a multiple of 16 when possible. However, the effect of this change is hardly any

noticeable as our calculations are mostly bottlenecked by indirect memory accesses

rather than direct memory accesses.

4.4.2. Determinism

Deterministic algorithms are sometimes preferred over non-deterministic ones to

perform consistently. This can become a challenge for parallel algorithms. There has

been various weak and strong definitions of determinism in the literature [94,95]. The

network simplex algorithm has a possible non-determinism scenario due to multiple arcs

having the same maximum violation. In a sequential algorithm, this non-determinism

is avoided by always selecting the first or last arc in such cases. As a result, subsequent

invocations of the algorithm always execute the same number of iterations.

Our regular sequential implementation is also deterministic. Vectorized imple-

mentations are deterministic in the sense that subsequent invocations always result

in the same number of iterations. However, this number may differ slightly from the

normal sequential implementation due to variations in vector reductions. It is trivial to

avoid this difference by picking the arc with the minimum index among equals during

vector reductions. Our parallel implementations are similarly non-deterministic due to

variations in reductions. This can be avoided if the underlying OpenMP implementa-

tion support deteministic reductions (e.g. Intel OpenMP).

Deterministic reductions can be important to always finish with the same result

when the calculations involve floating point arithmetic. In our case, we only have

integer arithmetic so there is no such difference in the final result. The only difference is

the number of iterations performed to get to the final result. For all instances we used in

our experiments, we did not observe a significant difference in the number of iterations.

Therefore, we have not made any effort to make our executions deterministic.

76

4.5. Experiments

In this section, we provide timing results along with various other aspects to

provide insight about cases in which our implementation is competitive. Such insight

is necessary to decide whether or not to use our method in accordance with the input

instance at hand as our algorithm does not perform well for all cases. Our general

consensus is that parallelization is worthy when there are enough arcs in the input

instance and block size increments are often beneficial than not.

We only show results for block size factor 1, 4, and 16 to avoid over-optimizing ac-

cording to the instances in our dataset. These values can be considered small, medium,

and large block sizes respectively. Further improvements might be possible using a finer

grained parameter set with respect to the input instance.

Timings and speedups are only shown with the vectorized and parallel version of

the program for brevity. However, we also include separate results to show the effect

of vectorization. AVX2 and AVX512 show similar improvements so we only show the

results for AVX512 and kept AVX2 version of the code only for compatibility.

We included three algorithms from LEMON library as references, network simplex

(i.e. lemon-ns), cost scaling (i.e. lemon-cos), and capacity scaling (i.e. lemon-cas).

These are referred as the fastest algorithms for the minimum cost flow problem by the

authors [42]. We used these algorithms with their default parameters including block

pivoting strategy for lemon-ns. We used a time limit of 4 hours for each run which

only became an issue with lemon-cas on some instances.

4.5.1. Specifications

We run the experiments on a system with 4 x Intel Xeon Gold 6238 CPUs each

having 22 physical cores and 44 threads totaling up to 176 threads. The system had

1TB memory attached. It was running Ubuntu 20.04.02 operating system with Linux

77

5.8.0-36 kernel. All programs were compiled using GCC 9.3.0 with -O3 optimizations.

We used Boost 1.71.0 for memory alignment. LEMON implementations use LEMON

version 1.3.1.

The machine is a shared multi-user system but it was mostly idle except for a few

other occasional light jobs throughout our experiments. We used OpenMP dynamic

scheduling with a block size of 16. Threads were mapped to the same socket and

processor binding option was enabled to prevent thread migrations. Each run is only

executed once as executions are long.

We have only used up to 16 cores to avoid the effects of non-uniform memory

accesses. We observed further increments result in a performance loss on our test ma-

chine as the computations are often memory bound. Experiments for 32 and 64 threads

are not included in here for brevity but they can be seen in our code repository [4].

4.5.2. Dataset

We used a dataset similar to the one used by Kovács [42]. Most of the graphs are

generated with programs from the first DIMACS implementation challenge [75]. For

each graph families, we only present a single big instance instead of multiple increasing

sizes for brevity. For graphs generated from real world data, road and vision, we

used the biggest instances available in the LEMON website [96]. For other synthetic

graphs, we tried to generate the biggest instances possible with reasonable size and

performance requirements. We used the same random seed used to generate the first

instance of each graph family in the LEMON study (i.e. graph names with a suffixes

in the website). For netgen generator, netgen 8 is a sparse graph with a degree 8,

netgen sr is a denser graph with a degree
√
n, and netgen lo are variants with low

supplies. In the original LEMON study, netgen deg is a family with a fixed number

of nodes and increasing degree up to n. In our study, we only used a single big

instance, so netgen deg corresponds to the densest variant with a degree of n. For

gridgen generator, suffixes have similar meaning as netgen. For grid graphs, we used

78

the biggest instances available in LEMON website. We excluded goto instances from

our dataset. We observed that these instances rely on the initial pivoting heuristic

as mentioned by Király and Kovács [90] to have competitive performance. These

instances are dramatically slower in our implementation at the moment. However, we

see negligible difference of this heuristic in other instance types. We simply skipped

this heuristic for this study and excluded this instance type from experiments. Note,

there are no restrictions for adding this heuristic to our implementation in the future.

Dimensions of instances we used in our experiments are given in Table 4.1. Our

biggest instances have up to a billion arcs. To our knowledge, this is the first study to

experiment with graphs of this size for the minimum cost flow problem.

4.5.3. Distributions

Figure 4.7 shows the distributions of execution times for each step of the network

simplex algorithm for each instance in our dataset. These results are from a sequential

execution with a block size factor of 1. Find join node and find leaving arc operations

follow a similar procedure so they have similar execution times and these are never the

dominant step within an iteration. Update tree operation is well optimized and often

takes a minority of execution time except for one instance. Update potential operation

is a significant step and takes the most amount of time in 6 of 16 instances. Finding

entering arc being the only step we parallelized in our algorithm takes the majority of

the time in the rest of the instances. Note, these distributions are meant to be changed

with increasing number of threads and block sizes.

79

Table 4.1. Dimensions of instances used in the experiments.

Instance n m

gridgen 8 20 1,048,577 8,388,616

gridgen deg 15 32,762 1,073,545,216

gridgen sr 18 262,145 134,218,240

grid long 20 1,048,578 2,031,632

grid square 20 1,048,578 2,097,152

grid wide 20 1,048,578 2,162,672

netgen 8 20 1,048,576 8,388,608

netgen deg 15 32,768 1,061,879,982

netgen lo 8 20 1,048,576 8,388,608

netgen lo sr 18 262,144 134,217,728

netgen sr 18 262,144 134,217,728

road flow 07 2,073,870 5,156,088

road paths 07 2,073,870 5,156,088

vision inv 05 3,899,394 23,091,149

vision prop 05 3,899,394 23,091,149

vision rnd 05 3,899,394 23,091,149

80

gr
id

ge
n

8
20

gr
id

ge
n

de
g

15

gr
id

ge
n

sr
18

gr
id

lo
ng

20

gr
id

sq
ua

re
20

gr
id

w
id

e
20

ne
tg

en
8

20

ne
tg

en
de

g
15

ne
tg

en
lo

8
20

ne
tg

en
lo

sr
18

ne
tg

en
sr

18

ro
ad

flo
w

07

ro
ad

pa
th

s
07

vi
sio

n
in

v
05

vi
sio

n
pr

op
05

vi
sio

n
rn

d
05

0

20

40

60

80

100

39

88

64

33

3

68

30

91

63

84

55

37
42

20

37

23

d
is

tr
ib

u
ti

o
n

(%
)

find entering arc find join node find leaving arc update tree update potentials

Figure 4.7. Distributions of execution times for each step of the network simplex

algorithm for each instance in our dataset (p = 1 and k = 1). Finding entering arc is

the only parallel step in this chapter shown with percentage numbers in the figure.

81

4.5.4. Iterations

Figure 4.8 shows relative numbers of iterations as percentages with increasing

block size factors. In lemon-ns implementation, there is also a block size factor but

its value is set to 1 by default which is often optimum for a sequential implementation.

We see dramatic decreases in gridgen deg and netgen deg instances which are the

biggest and the densest instances in our dataset. Three other instances, gridgen sr,

netgen lo sr and netgen sr instances which are also big and dense graphs show a

little more than half a decrease. The one exception is grid square which is a small and

sparse instance but shows a good amount of decrease. These instances are appropriate

for parallelization by increasing block sizes. Increasing block sizes in other instances

are more likely to waste computation.

4.5.5. Timings

Table 4.2 shows timings of all instances in our dataset. For most sparse in-

stances, lemon-cos and lemon-cas performs better than others. In 2 road instances,

lemon-cas is the best. In 3 vision instances, lemon-cos performs better than others.

For grid long, lemon-cas is the best by a long margin. For grid square, lemon-cos

is better than other algorithms. For grid wide, network simplex algorithm performs

better than others but our implementation is not able to catch lemon-ns. All grid

instances are rather small compared to other instances in terms of the number of

arcs. In the 2 biggest instances, gridgen deg and netgen deg, and the other 3 big in-

stances, gridgen sr, netgen sr and netgen lo sr, increasing block sizes and number

of threads seem to be beneficial as expected. These examples are also denser compared

to other instances. For all instances with more than 25 million arcs, our method shows

some positive improvements.

82

0

50

100

it
er

at
io

n
s

(%
)

gridgen 8 20 gridgen deg 15 gridgen sr 18 grid long 20

0

50

100

it
er

a
ti

on
s

(%
)

grid square 20 grid wide 20 netgen 8 20 netgen deg 15

0

50

100

it
er

at
io

n
s

(%
)

netgen lo 8 20 netgen lo sr 18 netgen sr 18 road flow 07

1 4 16

0

50

100

k

it
er

a
ti

on
s

(%
)

road paths 07

1 4 16

k

vision inv 05

1 4 16

k

vision prop 05

1 4 16

k

vision rnd 05

Figure 4.8. Relative numbers of iterations as percentages with increasing block size

factors. The numbers are taken from our sequential implementation and they are

normalized according to the first case (i.e. k = 1).

Table 4.2. Timings of all instances in our dataset (seconds). The left columns shows LEMON implementations for reference, and

other columns show our pns solver with different block size factors (k) and numbers of threads (p) (dash (-) denotes timeout).

Instance lemon-ns lemon-cos lemon-cas k1p1 k1p4 k1p16 k4p1 k4p4 k4p16 k16p1 k16p4 k16p16

gridgen 8 20 118 28 3267 127 137 186 230 154 173 737 276 202

gridgen deg 15 146 1748 - 113 94 95 107 67 43 143 68 37

gridgen sr 18 214 233 - 237 197 174 310 127 90 837 244 98

grid long 20 459 11 1 561 1082 2637 551 564 985 548 455 562

grid square 20 761 107 581 1733 1525 1924 804 796 937 685 594 678

grid wide 20 8 262 11382 12 25 70 27 27 71 92 38 70

netgen 8 20 186 30 - 335 212 246 341 261 252 951 386 286

netgen deg 15 142 4128 - 113 77 89 104 59 53 158 73 47

netgen lo 8 20 51 21 143 89 51 73 154 71 74 537 146 91

netgen lo sr 18 94 213 251 110 54 49 164 61 38 474 138 53

netgen sr 18 352 235 - 416 340 324 406 199 137 994 324 139

road flow 07 146 114 28 304 288 608 327 262 418 502 271 312

road paths 07 125 74 6 226 244 562 273 220 358 454 224 268

vision inv 05 2805 578 3394 1774 1184 1798 2807 2579 2600 3931 2564 2512

vision prop 05 2638 623 10464 1201 941 1586 2167 1915 2076 4549 3151 3091

vision rnd 05 5457 366 8809 2031 1428 1861 2401 2014 2197 4578 2985 2945

84

4.5.6. Speedups

Figure 4.9 shows speedups of our implementation with increasing number of

threads calculated according to lemon-ns implementation. On multiple occasions,

increased block sizes start slow with fewer threads but pass others with increasing

number of threads in scaling instances. This is in accordance with our rationale for

increasing block sizes for better parallelization. In vision instances, 16 threads are

too many and the optimum number of threads is between 1 and 16. For these in-

stances, block size increments help with the scaling but not enough to be beneficial.

In one of our biggest instances netgen deg, we see a flat curve going from 8 to 16

threads suggesting that there might be room for improvement with further block size

increments.

4.5.7. Vectorization

Figure 4.10 shows speedups of our vectorized implementation with increasing

number of threads calculated according to our non-vectorized implementation. These

are shown with increased block sizes to emphasize the differences. For most instances

in which finding entering arc takes a majority of execution time, we see an improvement

with vectorization. The general trend seems to be that the difference starts noticeable

with fewer threads but disappears with increasing number of threads. This trend

suggests that vectorization competes with threads to claim enough number of arcs in

a block for parallelization. In this case, vectorization can still be useful to have better

utilization of cores with fewer threads. It might also be possible to further improve

speedups with increasing block sizes for instances in which block size increments keep

decreasing the number of iterations.

85

0

2

4

1

sp
ee

d
u
p
s

gridgen 8 20

1

gridgen deg 15

1

gridgen sr 18

1

grid long 20

0

2

4

1

sp
ee

d
u
p
s

grid square 20

1

grid wide 20

1

netgen 8 20

1

netgen deg 15

0

2

4

1

sp
ee

d
u
p
s

netgen lo 8 20

1

netgen lo sr 18

1

netgen sr 18

1

road flow 07

1 4 16
0

2

4

1

p

sp
ee

d
u
p
s

road paths 07

1 4 16

1

p

vision inv 05

1 4 16

1

p

vision prop 05

1 4 16

1

p

vision rnd 05

k = 1 k = 4 k = 16

Figure 4.9. Speedups of our implementation with increasing number of threads

calculated according to lemon-ns implementation. Our algorithm uses both OpenMP

and AVX and lemon-ns is used with default parameters (i.e. k = 1).

86

0.6

0.8

1

1.2

1.4

sp
ee

u
p

d
s

gridgen 8 20 gridgen deg 15 gridgen sr 18 grid long 20

0.6

0.8

1

1.2

1.4

sp
ee

u
p

d
s

grid square 20 grid wide 20 netgen 8 20 netgen deg 15

0.6

0.8

1

1.2

1.4

sp
ee

u
p

d
s

netgen lo 8 20 netgen lo sr 18 netgen sr 18 road flow 07

1 4 16

0.6

0.8

1

1.2

1.4

p

sp
ee

u
p

d
s

road paths 07

1 4 16
p

vision inv 05

1 4 16
p

vision prop 05

1 4 16
p

vision rnd 05

Figure 4.10. Speedups of our vectorized implementation with increasing number of

threads calculated according to our non-vectorized implementation (k = 16).

87

4.6. Conclusions

We proposed a simple approach for the parallelization of the network simplex

algorithm and demonstrated the benefits with an experimental study. Our results

show this approach can be useful for instances in which we can decrease the number

of iterations with the additional parallel computation power. OpenMP threads can

scale as long as there are enough arcs in the scans to be parallelized. Vectorization

seems to be useful to have better utilization of cores using fewer threads. Results

suggest parameter space optimizations can have a significant effect on execution times

especially when parallelization is involved.

We included big graphs having up to a billion arcs in our dataset to better demon-

strate the scalability of our approach. For synthetic graph instances, we tried to gen-

erate instances as big as possible. For natural graph instances, we used the biggest

instances available which already have long execution times. Our results show good

scalability with bigger graphs in which there is enough room for parallelization. For

other instances, we also expect improvements once bigger instances become solvable in

a reasonable time on better hardware in the future.

Our approach is unique in that it shows improvements with block searching which

is among the best performing pivoting rules available. We experimented with best

eligible pivoting rule but failed to get any speedups over block searching even though

there is a greater possibility for parallelization. This suggests that increasing block sizes

for parallelization has an upper limit to be useful, though this limit may be beyond

what is presented in this chapter.

We also tried various GPU approaches for parallelization but failed to get any

improvements over the CPU version. On GPUs, arc scans can easily be processed in

parallel but data dependencies can slow things down. Other operations involve tree

walking so they are harder to parallelize as discussed in this chapter. Specifically, we

tried to use the Euler tour technique introduced by Tarjan and Vishkin [97] to linearize

88

the spanning tree and then used parallel list traversal for tree update operations. How-

ever, existing improvements for tree operations are not directly adaptable with this

approach. On top of these difficulties, iterations in the network simplex algorithm

are typically in the sub-millisecond range which makes data transfers a big challenge.

Therefore, efficient GPU implementations may instead require investigation of running

multiple iterations in parallel.

As for future work, performance differences of our implementation with others

can be further investigated. The network simplex implementation has been studied

extensively for a long time and there are many implementation details to improve per-

formance. Initial pivoting heuristic used in lemon-ns can be added to our implemen-

tation as well. Also, we expect candidate list pivoting rules to be similarly appropriate

for parallelization. Such pivoting rules can be as efficient as block pivoting rule in the

sequential case so any speedup gains would be beneficial. Lastly, different variants of

the network simplex can be of interest in regards to parallelization. These variants

include dual and scaling versions of the algorithm, and other specialized variants for

the maximum flow and the shortest path problems.

89

5. CONCLUSIONS

We proposed two parallel algorithms for the maximum flow and the minimum

cost flow problems. Experiments show that parallel implementations can be useful

depending on the characteristics of the input graph. However, there are also cases

where the use of our parallel algorithms is not beneficial. Therefore, the decision of

making use of parallel algorithms for the problem at hand is left to the user. We

have tried to include as many different input graphs as possible to our experiments to

help this decision. Our general consensus is that our parallel algorithms can be useful

for wide and sparse graphs for the maximum flow problem and dense graphs for the

minimum cost flow problem. In both problems, input graph needs to be sufficiently

big to benefit from parallelization.

We have used shared memory parallelism in both of our algorithms. Our biggest

graph inputs have more than a billion arcs for both problems. Our test machines

had sufficient memory to hold these graphs in memory. Bigger graphs may require

distributed memory parallel algorithms to share the data over the memories of multiple

machines. However, distributed memory algorithms can face a challenge to avoid the

communication bottleneck. Our shared memory algorithms are a good compromise

between performance and sufficiency. Nevertheless, distributed memory algorithms for

network flow problems can still be an interesting topic as a future work.

We have also considered using GPUs for parallel processing during our research.

However, our limited efforts have not yielded satisfactory results. The most important

challenge with GPU algorithms were to avoid the data transfer bottlenecks between

the main and GPU memories. This becomes an issue especially for iterative algorithms

if the sequential portion of the algorithm has a significant amount of computation. In

such cases, neither keeping the data in GPU memory nor transferring it between main

and GPU memories provides a sufficient performance improvement. All aside, we still

think GPU algorithms can be useful for the network flow research in the future.

90

At the same time, GPUs have been influencial for the development of new CPU

features such as vector extensions found in modern CPUs. These extensions provide a

limited form of parallelism similar to GPUs, though the performance difference is quite

high. On the flip side, data transfer bottlenecks are not an issue with these extensions.

Our use of vector extensions provided some improvements but not as much as we

expected. The most important reason is that our computations are generally memory

bound rather than compute bound. Therefore a good strategy involving vectorization

should focus on improving memory access performance.

On the other hand, cache memory hierarchies have been getting deeper over time

generally in favor of regular access patterns for good performance. Graph algorithms

are often known to perform irregular data accesses due to having sparse matrix se-

mantics for data representations. Our results also shows a similar trend for network

flow algorithms. Previous research shows that data structures are an important factor

to achieve good performance for most network flow algorithms. The design of better

data structures for parallel network flow problems to utilize caches of multiple cores

can provide better or even super-linear speedups in the future.

Network flow algorithms often require much effort to implement in a correct

manner. Parallelization of these algorithms adds an extra layer of complexity on top of

this. Working on the design and implementation of our algorithms and experimenting

with other existing implementations showed us that it is easy to make an error which

is often non-deterministic in nature. For this reason, we tried to formally prove the

correctness of our push-relabel algorithm. For the network simplex algorithm, we only

used a parallel reduction operation but it still added some benign non-determinism

to the implementation as discussed before. Our consensus is that formal proofs are

essential in parallel network flow algorithms for any non-trivial changes to the original

algorithm.

91

REFERENCES

1. Ahuja, R., T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms, and

Applications , Prentice Hall, Feb. 1993.

2. Dagum, L. and R. Menon, “OpenMP: An Industry Standard API for Shared-

Memory Programming”, IEEE Computational Science and Engineering , Vol. 5,

No. 1, pp. 46–55, Jan. 1998.

3. Kara, G. and C. Özturan, Algorithm 1002: Graph Coloring Based Parallel Push-

Relabel Algorithm for the Maximum Flow Problem, ACM Collected Algorithms

(CALGO), Dec. 2019, https://calgo.acm.org/1002.zip, accessed in October

2021.

4. Kara, G. and C. Özturan, PNS: Parallel Network Simplex Algo-

rithm for the Minimum Cost Flow Problem, Zenodo, Sep. 2021,

https://zenodo.org/record/5502052, accessed in October 2021.

5. Kara, G. and C. Özturan, “Algorithm 1002: Graph Coloring Based Parallel Push-

relabel Algorithm for the Maximum Flow Problem”, ACM Transactions on Math-

ematical Software (TOMS), Vol. 45, No. 4, pp. 1–28, 2019.

6. Kara, G. and C. Özturan, “Parallel Network Simplex Algorithm for the Minimum

Cost Flow Problem”, Concurrency and Computation: Practice and Experience,

Vol. 34, No. 4, p. e6659, 2022.

7. Goldberg, A. V., “Recent Developments in Maximum Flow Algorithms”, Scandi-

navian Workshop on Algorithm Theory , pp. 1–10, Springer, 1998.

8. Ford Jr, L. R., D. R. Fulkerson and A. Ziffer, Flows in Networks , AIP, 1963.

9. Edmonds, J. and R. M. Karp, “Theoretical Improvements in Algorithmic Efficiency

92

for Network Flow Problems”, Journal of the ACM , Vol. 19, No. 2, pp. 248–264,

Apr. 1972.

10. Dinitz, Y., “Dinitz’ Algorithm: The Original Version and Even’s Version”, Theo-

retical Computer Science, pp. 218–240, Springer, Berlin, Heidelberg, 2006.

11. Ahuja, R. K. and J. B. Orlin, “Distance-Directed Augmenting Path Algorithms

for Maximum Flow and Parametric Maximum Flow Problems”, Naval Research

Logistics , pp. 413–430, 1991.

12. Boykov, Y. and V. Kolmogorov, “An Experimental Comparison of Min-Cut/Max-

Flow Algorithms for Energy Minimization in Vision”, IEEE Transactions on Pat-

tern Analysis and Machine Intelligence, Vol. 26, No. 9, pp. 1124–1137, Sep. 2004.

13. Goldberg, A. V., S. Hed, H. Kaplan, R. E. Tarjan and R. F. Werneck, “Maximum

Flows by Incremental Breadth-First Search”, Algorithms – ESA 2011 , pp. 457–468,

Springer, Berlin, Heidelberg, Sep. 2011.

14. Goldberg, A. V., Efficient Graph Algorithms for Sequential and Parallel Comput-

ers , Ph.D. Thesis, Massachusetts Institute of Technology, 1987.

15. Goldberg, A. V. and R. E. Tarjan, “A New Approach to the Maximum-Flow Prob-

lem”, Journal of the ACM , Vol. 35, No. 4, pp. 921–940, Oct. 1988.

16. Cherkassky, B. V. and A. V. Goldberg, “On Implementing the Push—Relabel

Method for the Maximum Flow Problem”, Algorithmica, Vol. 19, No. 4, pp. 390–

410, Dec. 1997.

17. Cerulli, R., M. Gentili and A. Iossa, “Efficient Preflow Push Algorithms”, Com-

puters & Operations Research, Vol. 35, No. 8, pp. 2694–2708, Aug. 2008.

18. Goldberg, A. V., “The Partial Augment–Relabel Algorithm for the Maximum Flow

Problem”, Algorithms - ESA 2008 , pp. 466–477, Springer, Berlin, Heidelberg, Sep.

93

2008.

19. Goldberg, A. V., “Two-Level Push-Relabel Algorithm for the Maximum Flow

Problem”, Algorithmic Aspects in Information and Management , pp. 212–225,

Springer, Berlin, Heidelberg, Jun. 2009.

20. Hochbaum, D. S., “The Pseudoflow Algorithm and the Pseudoflow-Based Sim-

plex for the Maximum Flow Problem”, Integer Programming and Combinatorial

Optimization, pp. 325–337, Springer, Berlin, Heidelberg, Jun. 1998.

21. Hochbaum, D. S., “The Pseudoflow Algorithm: A New Algorithm for the

Maximum-Flow Problem”, Operations Research, Vol. 56, No. 4, pp. 992–1009,

Aug. 2008.

22. Hochbaum, D. S. and J. B. Orlin, “Simplifications and Speedups of the Pseudoflow

Algorithm”, Networks , Vol. 61, No. 1, pp. 40–57, Jan. 2013.

23. Chandran, B. G. and D. S. Hochbaum, “A Computational Study of the Pseud-

oflow and Push-Relabel Algorithms for the Maximum Flow Problem”, Operations

Research, Vol. 57, No. 2, pp. 358–376, Jan. 2009.

24. Fishbain, B., D. S. Hochbaum and S. Mueller, “A Competitive Study of the Pseud-

oflow Algorithm for the Minimum S–T Cut Problem in Vision Applications”, Jour-

nal of Real-Time Image Processing , Vol. 11, No. 3, pp. 589–609, Mar. 2016.

25. Anderson, R. J. and J. C. Setubal, “On the Parallel Implementation of Goldberg’s

Maximum Flow Algorithm”, Proceedings of the Fourth Annual ACM Symposium

on Parallel Algorithms and Architectures , SPAA ’92, pp. 168–177, ACM, New

York, NY, USA, 1992.

26. Anderson, R. and J. C. Setubal, “A Parallel Implementation of the Push-Relabel

Algorithm for the Maximum Flow Problem”, Journal of Parallel and Distributed

Computing , Vol. 29, No. 1, pp. 17–26, Aug. 1995.

94

27. Bader, D. A. and V. Sachdeva, A Cache-Aware Parallel Implementation of the

Push-Relabel Network Flow Algorithm and Experimental Evaluation of the Gap

Relabeling Heuristic, Technical Report, Georgia Institute of Technology, Feb. 2006.

28. Hong, B., “A Lock-Free Multi-Threaded Algorithm for the Maximum Flow Prob-

lem”, 2008 IEEE International Symposium on Parallel and Distributed Processing ,

pp. 1–8, 2008.

29. Hong, B. and Z. He, “An Asynchronous Multithreaded Algorithm for the Maximum

Network Flow Problem With Nonblocking Global Relabeling Heuristic”, IEEE

Transactions on Parallel and Distributed Systems , Vol. 22, No. 6, pp. 1025–1033,

Jun. 2011.

30. He, Z. and B. Hong, “Dynamically Tuned Push-Relabel Algorithm for the Max-

imum Flow Problem on CPU-GPU-Hybrid Platforms”, 2010 IEEE International

Symposium on Parallel Distributed Processing (IPDPS), pp. 1–10, Apr. 2010.

31. Baumstark, N., G. Blelloch and J. Shun, “Efficient Implementation of a Syn-

chronous Parallel Push-Relabel Algorithm”, Algorithms - ESA 2015 , pp. 106–117,

Springer, Berlin, Heidelberg, 2015.

32. Halim, F., R. H. C. Yap and Y. Wu, “A MapReduce-Based Maximum-Flow Algo-

rithm for Large Small-World Network Graphs”, 2011 31st International Conference

on Distributed Computing Systems , pp. 192–202, Jun. 2011.

33. Caragea, G. C. and U. Vishkin, “Brief Announcement: Better Speedups for Parallel

Max-Flow”, Proceedings of the Twenty-third Annual ACM Symposium on Paral-

lelism in Algorithms and Architectures , SPAA ’11, pp. 131–134, ACM, New York,

NY, USA, 2011.

34. Liu, J. and J. Sun, “Parallel Graph-Cuts by Adaptive Bottom-Up Merging”, 2010

IEEE Computer Society Conference on Computer Vision and Pattern Recognition,

95

pp. 2181–2188, Jun. 2010.

35. Delong, A. and Y. Boykov, “A Scalable Graph-Cut Algorithm for N-D Grids”,

2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8,

Jun. 2008.

36. Strandmark, P. and F. Kahl, “Parallel and Distributed Graph Cuts by Dual De-

composition”, 2010 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pp. 2085–2092, Jun. 2010.

37. Shekhovtsov, A. and V. Hlaváč, “A Distributed Mincut/Maxflow Algorithm Com-

bining Path Augmentation and Push-Relabel”, International Journal of Computer

Vision, Vol. 104, No. 3, pp. 315–342, Sep. 2013.

38. Dixit, N., R. Keriven and N. Paragios, GPU-Cuts: Combinatorial Optimisation,

Graphic Processing Units and Adaptive Object Extraction, Tech. rep., École des

Ponts ParisTech, 2005.

39. Hussein, M., A. Varshney and L. Davis, “On Implementing Graph Cuts on CUDA”,

First Workshop on General Purpose Processing on Graphics Processing Units , Vol.

2007, 2007.

40. Vineet, V. and P. J. Narayanan, “CUDA Cuts: Fast Graph Cuts on the GPU”, 2008

IEEE Computer Society Conference on Computer Vision and Pattern Recognition

Workshops , pp. 1–8, Jun. 2008.

41. Sifaleras, A., “Minimum Cost Network Flows: Problems, Algorithms, and Soft-

ware”, Yugoslav Journal of Operations Research, Vol. 23, No. 1, pp. 3–17, 2013.

42. Kovács, P., “Minimum-Cost Flow Algorithms: An Experimental Evaluation”, Op-

timization Methods and Software, Vol. 30, No. 1, pp. 94–127, Jan. 2015.

43. Dezső, B., A. Jüttner and P. Kovács, “LEMON – An Open Source C++ Graph

96

Template Library”, Electronic Notes in Theoretical Computer Science, Vol. 264,

No. 5, pp. 23–45, Jul. 2011.

44. Vieira, C. L. D. S., M. M. M. Luna and J. M. Azevedo, “Minimum-Cost Flow

Algorithms: A Performance Evaluation Using the Brazilian Road Network”, World

Review of Intermodal Transportation Research, Vol. 8, No. 1, pp. 3–21, Jan. 2019.

45. Dong, Y., Y. Gao, R. Peng, I. Razenshteyn and S. Sawlani, “A Study of Perfor-

mance of Optimal Transport”, arXiv: 2005.01182 , May 2020.

46. Xie, F. and R. Jia, “Nonlinear Fixed Charge Transportation Problem by Mini-

mum Cost Flow-Based Genetic Algorithm”, Computers & Industrial Engineering ,

Vol. 63, No. 4, pp. 763–778, Dec. 2012.

47. Rostami, R. and A. Ebrahimnejad, “An Approximation Algorithm for Discrete

Minimum Cost Flows Over Time Problem”, International Journal of Operational

Research, Vol. 20, No. 2, pp. 226–239, Jan. 2014.

48. Ghasemishabankareh, B., M. Ozlen, X. Li and K. Deb, “A Genetic Algorithm

With Local Search for Solving Single-Source Single-Sink Nonlinear Non-Convex

Minimum Cost Flow Problems”, Soft Computing , Vol. 24, No. 2, pp. 1153–1169,

Jan. 2020.

49. Ghasemishabankareh, B., Meta-Heuristics for Better Constraint Handling and

Minimum Cost Flow Problems , PhD Thesis, RMIT University, Australia, 2020.

50. Sedgewick, R., Algorithms in Java, Part 5: Graph Algorithms , Chap. 22. Network

Flow, Addison-Wesley Professional, Jul. 2003.

51. Ahuja, R., T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms, and

Applications , Chap. 9. Minimum Cost Flows: Basic Algorithms, Prentice Hall,

Feb. 1993.

97

52. Nachtigall, K. and J. Opitz, “Solving Periodic Timetable Optimisation Prob-

lems by Modulo Simplex Calculations”, 8th Workshop on Algorithmic Approaches

for Transportation Modeling, Optimization, and Systems (ATMOS’08), Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2008.

53. Goerigk, M. and A. Schöbel, “Improving the Modulo Simplex Algorithm for Large-

Scale Periodic Timetabling”, Computers & Operations Research, Vol. 40, No. 5,

pp. 1363–1370, May 2013.

54. Goerigk, M. and C. Liebchen, “An Improved Algorithm for the Peri-

odic Timetabling Problem”, 17th Workshop on Algorithmic Approaches for

Transportation Modelling, Optimization, and Systems (ATMOS 2017), Schloss

Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 2017.

55. Borndörfer, R., H. Hoppmann, M. Karbstein and F. Löbel, “The Modulo Network

Simplex With Integrated Passenger Routing”, Operations Research Proceedings

2016 , Springer International Publishing, Hamburg, Germany, 2018.

56. Löbel, F., N. Lindner and R. Borndörfer, “The Restricted Modulo Network Simplex

Method for Integrated Periodic Timetabling and Passenger Routing”, Operations

Research Proceedings 2019 , Springer International Publishing, Dresden, Germany,

2020.

57. Holzhauser, M., S. O. Krumke and C. Thielen, “A Network Simplex Method for

the Budget-Constrained Minimum Cost Flow Problem”, European Journal of Op-

erational Research, Vol. 259, No. 3, pp. 864–872, Jun. 2017.

58. Ryan, C. T., R. L. Smith and M. A. Epelman, “A Simplex Method for Uncapaci-

tated Pure-supply Infinite Network Flow Problems”, SIAM Journal on Optimiza-

tion, Vol. 28, No. 3, pp. 2022–2048, Jan. 2018.

59. Beckenbach, I., “A Hypergraph Network Simplex Algorithm”, Operations Research

98

Proceedings 2017 , Springer International Publishing, Berlin, Germany, 2018.

60. Zheng, Q., J. Li, H. Tian, Z. Wang and S. Wang, “A 2-Layers Virtual Network

Mapping Algorithm Based on Node Attribute and Network Simplex”, IEEE Access ,

Vol. 6, pp. 77474–77484, 2018.

61. Nie, Z. and S. Wang, “A Sequential Simplex Algorithm for the Continuous Convex

Piecewise Linear Network Flow Problem”, 2019 IEEE 15th International Confer-

ence on Control and Automation (ICCA), pp. 1307–1313, Jul. 2019.

62. Lin, W., Z. He and M. Xiao, “Balanced Clustering: A Uniform Model and Fast

Algorithm”, International Joint Conference on Artificial Intelligence, pp. 2987–

2993, 2019.

63. Disser, Y. and M. Skutella, “The Simplex Algorithm Is NP-Mighty”, ACM Trans-

actions on Algorithms , Vol. 15, No. 1, pp. 5:1–5:19, Nov. 2018.

64. Peters, J., “The Network Simplex Method on a Multiprocessor”, Networks , Vol. 20,

No. 7, pp. 845–859, 1990.

65. Miller, D. L., J. F. Pekny and G. L. Thompson, “Solution of Large Dense Trans-

portation Problems Using a Parallel Primal Algorithm”, Operations Research Let-

ters , Vol. 9, No. 5, pp. 319–324, Sep. 1990.

66. Thulasiraman, K., R. P. Chalasani and M. A. Comeau, “Parallel Network Dual

Simplex Method on a Shared Memory Multiprocessor”, Proceedings of 1993 5th

IEEE Symposium on Parallel and Distributed Processing , pp. 408–415, Dec. 1993.

67. Barr, R. S. and B. L. Hickman, “Parallel Simplex for Large Pure Network Problems:

Computational Testing and Sources of Speedup”, Operations Research, Vol. 42,

No. 1, pp. 65–80, 1994.

68. Jiang, J., J. Chen and C. Wang, “Multi-Granularity Hybrid Parallel Network Sim-

99

plex Algorithm for Minimum-Cost Flow Problems”, The Journal of Supercomput-

ing , Vol. 76, No. 12, pp. 9800–9826, Dec. 2020.

69. Das, S., I. Finocchi and R. Petreschi, “Star-Coloring of Graphs for Conflict-Free

Access to Parallel Memory Systems”, 18th IEEE International Parallel and Dis-

tributed Processing Symposium, 2004 , p. 50, 2004.

70. Felzenszwalb, P. F. and D. P. Huttenlocher, “Efficient Belief Propagation for Early

Vision”, International Journal of Computer Vision, Vol. 70, No. 1, pp. 41–54, Oct.

2006.

71. Mahjourian, R., F. Chen, R. Tiwari, M. Thai, H. Zhai and Y. Fang, “An Ap-

proximation Algorithm for Conflict-Aware Broadcast Scheduling in Wireless Ad

Hoc Networks”, Proceedings of the 9th ACM International Symposium on Mobile

Ad Hoc Networking and Computing , MobiHoc ’08, pp. 331–340, ACM, New York,

NY, USA, 2008.

72. Awais Hussein, S., P. Coussy, C. Chavet and E. Martin, “An Approach Based

on Edge Coloring of Tripartite Graph for Designing Parallel LDPC Interleaver

Architecture”, IEEE International Symposium on Circuits and Systems (ISCAS)

2011 , pp. 1720–1723, Rio de Janeiro, Brazil, May 2011.

73. Baumstark, N., Speeding Up Maximum Flow Computations on Shared Memory

Platforms , Bachelor Thesis, Karlsruher Institut für Technologie (KIT), 2014.

74. Computer Vision Research Group, Max-Flow Problem Instances in Vision, Univer-

sity of Western Ontario, Oct. 2009, https://vision.csd.uwo.ca/data/maxflow,

accessed in October 2021.

75. Johnson, D. S., C. C. McGeoch and others, Network Flows and Matching: First DI-

MACS Implementation Challenge, Vol. 12, American Mathematical Society, 1993.

76. Sanders, P. and C. Schulz, “Think Locally, Act Globally: Highly Balanced Graph

100

Partitioning”, International Symposium on Experimental Algorithms , pp. 164–175,

Springer, Berlin, Heidelberg, Jun. 2013.

77. Schulz, C., KaHIP - Karlsruhe High Quality Partitioning , GitHub, May 2013,

https://kahip.github.io/, accessed in October 2021.

78. Amdahl, G. M., “Validity of the Single Processor Approach to Achieving Large

Scale Computing Capabilities”, Proceedings of the April 18-20, 1967, spring joint

computer conference, AFIPS ’67 (Spring), pp. 483–485, ACM, New York, NY,

USA, Apr. 1967.

79. Gustafson, J. L., “Reevaluating Amdahl’s Law”, Communications of the ACM ,

Vol. 31, No. 5, pp. 532–533, May 1988.

80. Dantzig, G. B., “Maximization of a Linear Function of Variables Subject to Linear

Inequalities”, Activity Analysis of Production and Allocation, Vol. 13, pp. 339–347,

1951.

81. Dantzig, G. B., “Application of the Simplex Method to a Transportation Problem”,

Activity Analysis and Production and Allocation, 1951.

82. Dantzig, G. B., Linear Programming and Extensions , Princeton Univ. Press,

Princeton, NJ, 1963.

83. Cunningham, W. H., “A Network Simplex Method”, Mathematical Programming ,

Vol. 11, No. 1, pp. 105–116, Dec. 1976.

84. Barr, R. S., F. Glover and D. Klingman, “The Alternating Basis Algorithm for

Assignment Problems”, Mathematical Programming , Vol. 13, No. 1, pp. 1–13, Dec.

1977.

85. Dennis, J. B., “A High-Speed Computer Technique for the Transportation Prob-

lem”, Journal of the ACM (JACM), Vol. 5, No. 2, pp. 132–153, 1958.

101

86. Grigoriadis, M. D., “An Efficient Implementation of the Network Simplex Method”,

Netflow at Pisa, Mathematical Programming Studies, pp. 83–111, Springer, Berlin,

Heidelberg, 1986.

87. Srinivasan, V. and G. L. Thompson, “Benefit-Cost Analysis of Coding Techniques

for the Primal Transportation Algorithm”, Journal of the ACM , Vol. 20, No. 2,

pp. 194–213, Apr. 1973.

88. Bradley, G. H., G. G. Brown and G. W. Graves, “Design and Implementation

of Large Scale Primal Transshipment Algorithms”, Management Science, Vol. 24,

No. 1, pp. 1–34, 1977.

89. Mulvey, J. M., “Pivot Strategies for Primal-Simplex Network Codes”, Journal of

the ACM (JACM), Vol. 25, No. 2, pp. 266–270, Apr. 1978.

90. Király, Z. and P. Kovács, “Efficient Implementations of Minimum-Cost Flow Al-

gorithms”, arXiv: 1207.6381 , Jul. 2012.

91. Kelly, D. J. and G. M. ONeill, The Minimum Cost Flow Problem and the Network

Simplex Solution Method , PhD Thesis, University College Dublin, 1991.

92. Barr, R., F. Glover and D. Klingman, “Enhancements of Spanning Tree Labelling

Procedures for Network Optimization”, INFOR: Information Systems and Opera-

tional Research, Vol. 17, No. 1, pp. 16–34, Feb. 1979.

93. Abel, J. and K. Balasubramanian, “Applications Tuning for Streaming SIMD Ex-

tensions”, Intel Technology Journal , Vol. Q2, 1999.

94. Dennis, J. B., G. R. Gao and V. Sarkar, “Determinacy and Repeatability of Par-

allel Program Schemata”, 2012 Data-Flow Execution Models for Extreme Scale

Computing , pp. 1–9, Sep. 2012.

95. Blelloch, G. E., J. T. Fineman, P. B. Gibbons and J. Shun, “Internally Determin-

102

istic Parallel Algorithms Can Be Fast”, Proceedings of the 17th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming , PPoPP ’12, pp.

181–192, ACM, New York, NY, USA, Feb. 2012.

96. Kovács, P., Benchmark Data for the Minimum-Cost Flow Problem, LEMON,

Jan. 2015, https://lemon.cs.elte.hu/trac/lemon/wiki/MinCostFlowData,

accessed in October 2021.

97. Tarjan, R. and U. Vishkin, “Finding Biconnected Componemts and Computing

Tree Functions in Logarithmic Parallel Time”, 25th Annual Symposium on Foun-

dations of Computer Science, pp. 12–20, Oct. 1984.

103

APPENDIX A: COPYRIGHT NOTICE

All visual content in this thesis book is produced by the author for his own

publications [5,6] and then reused in this thesis book. Visual content produced in the

scope of this thesis study whose copyrights are transferred to a publisher are used in

accordance with the publisher’s current policies found in the publisher’s web site as of

this writing in regards to the reuse of text and visual content produced by the authors

themselves in this thesis book.

