
A COMMON SUBEXPRESSION ELIMINATION-BASED COMPRESSION

METHOD FOR THE CONSTANT MATRIX MULTIPLICATION

by

Emre Bilgili

B.S., Computer Engineering, Boğaziçi University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

This thesis is supported by TUBITAK BIDEB 2210-A program.

iv

ABSTRACT

A COMMON SUBEXPRESSION ELIMINATION-BASED

COMPRESSION METHOD FOR THE CONSTANT

MATRIX MULTIPLICATION

The execution time, resource and energy costs of deep learning applications

become much more important as their popularity grows. The Constant Matrix Multi-

plication has been studied for a long time and takes place in deep learning applications.

Reducing the computation cost of those applications is a highly active research topic.

The weights are pruned or quantized while satisfying the desired accuracy requirement.

The pruned matrices are compressed into one-dimensional arrays without data loss.

Matrix multiplication is performed by processing those arrays without decompression.

Processing one-dimensional arrays to perform matrix multiplication is deployed on vari-

ous hardware platforms that employ Central Processing Unit, Graphics Processor Unit

and Field-Programmable Gate Array. The deployments can also be supported with

common subexpression elimination methods to reduce the number of multiplications,

additions and storage size. However, the state-of-the-art methods do not scale well for

the large constant matrices as they reach hours for extracting common subexpressions

in a 200 × 200 matrix. In this thesis, a random search-based common subexpression

elimination method is constructed to reduce the run-time of the algorithm. The algo-

rithm produces an adder tree for a 1000× 1000 matrix in a minute. The Compressed

Sparse Row format is extended to build a one-dimensional compression notation for

the proposed method. Simulations for a single-core embedded system show that the

latency is reduced by 80% for a given 100×100 matrix compared to the state-of-the-art

methods. The storage size of the sparse matrices is also reduced by more than half in

the experiments compared to the Compressed Sparse Row format.

v

ÖZET

SABİT MATRİS ÇARPIMI İÇİN ORTAK ALT İFADE

ELEME TABANLI BİR SIKIŞTIRMA YÖNTEMİ

Derin öğrenme uygulamalarının çalışma süresi, kaynak kullanımı ve enerji maliye-

ti bu uygulamalar arttıkça daha önemli bir duruma gelmiştir. Uzun bir süredir çalışılan

sabit matris çarpımı, derin öğrenmede de kullanılmaktadır. Bu uygulamaların hesapla-

ma maliyetinin düşürülmesi yaygın bir araştırma konusudur. Ağırlıklar istenen doğru-

luk oranı gözetilerek budanır veya nicelendirilir. Budanan matrisler veri kaybı ol-

madan tek boyutlu dizilerin içine sıkıştırılır. Matris çarpımı bu dizileri geri açmadan

işleyerek gerçekleştirilir. Matris çarpımını gerçekleştirmek için tek boyutlu dizilerin

işlenmesi Merkezi İşlem Birimi, Görüntü İşlem Birimi ve Alanda Uyarlanabilir Kapı

Dizini çalıştıran çeşitli donanımlara uygulanır. Bu uygulamalar toplama ve çarpma

sayıları ile depolama boyutunu düşürmek için ortak alt ifade eleme yöntemleri ile de

desteklenebilir. Ancak, son yöntemler büyük sabit matrisler için ölçeklenebilir değildir

çünkü hesaplama süreleri 200 × 200 boyutlu bir matris için saatleri bulmaktadır. Bu

tezde algoritmanın hesaplama süresini azaltmak için rastgele arama tabanlı bir ortak

alt ifade eleme yöntemi inşa edilmiştir. Bu algoritma 1000 × 1000 boyutlu bir matris

için toplama ağacını bir dakikada üretmektedir. Önerilen yönteme uygun bir sıkıştırma

gösterimi Sıkıştırılmış Seyrek Satır biçimini genişleterek geliştirilmiştir. Tek çekirdekli

gömülü sistem simülasyonları, 100×100 boyutlu bir matris çarpımı için işlem süresinin

son yöntemlere göre %80 azaldığını göstermektedir. Deneylerde seyrek matrislerin de-

polama boyutu da Sıkıştırılmış Seyrek Satır biçimiyle elde edilenin yarısından azdır.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . vii

LIST OF SYMBOLS . x

LIST OF ACRONYMS/ABBREVIATIONS . xi

1. INTRODUCTION . 1

2. RELATED WORK . 3

3. THE STATE-OF-THE-ART METHODS . 8

3.1. Explanation of the Proposed Method in Hsiao et al. [9] 8

3.2. Explanation of the Proposed Method in Wu et.al. [10] 10

4. METHOD . 12

4.1. Common Subexpression Elimination 14

4.2. Matrix Compression . 22

5. EXPERIMENTS . 28

5.1. Random Distribution Options for the Improvement Phase 30

5.2. Comparison with the State-of-the-art Methods 33

5.3. The Effects of the Matrix Properties 37

5.3.1. Unique Values . 37

5.3.2. Non-zero Ratio . 41

5.3.3. Matrix Size . 45

6. CONCLUSION . 50

REFERENCES . 52

APPENDIX A: USED GEM5 OPTIONS . 58

vii

LIST OF FIGURES

Figure 4.1. Pseudocode of Intermediate Values Unit. 23

Figure 4.2. An Example Process in PCU. 24

Figure 4.3. Pseudocode of Pair Copy Unit. 25

Figure 4.4. An Example Process in ECU. 26

Figure 4.5. Pseudocode of Element Copy Unit. 27

Figure 5.1. Pseudocode of Matrix Multiplication. 29

Figure 5.2. An example illustration of three CDFs. 31

Figure 5.3. The comparison of three CDFs when UV = 2, NZR = 0.1 and

N ×M = 500×500 for a) It = 10, At = 100 b) It = 10, At = 1000

c) It = 100, At = 100 d) It = 100, At = 1000. 32

Figure 5.4. The number of additions when UV = 2. F: Baseline, P: Proposed. 34

Figure 5.5. The number of intermediate results when UV = 2. F: Baseline, P:

Proposed. 35

Figure 5.6. The number of cycles when UV = 2. F: Baseline, P: Proposed. . . 35

Figure 5.7. The L1 instruction cache miss rate when UV = 2. F: Baseline, P:

Proposed. 36

viii

Figure 5.8. The L1 data cache miss rate when UV = 2. F: Baseline, P: Proposed. 36

Figure 5.9. The L2 cache miss rate when UV = 2. F: Baseline, P: Proposed. . 37

Figure 5.10. The number of additions when N ×M = 1000× 1000 for different

UV. F: Baseline, P: Proposed. 38

Figure 5.11. The storage size when N ×M = 1000 × 1000 for different UV. F:

Baseline, P: Proposed. 39

Figure 5.12. The number of cycles when N ×M = 1000×1000 for different UV.

F: Baseline, P: Proposed. 39

Figure 5.13. The L1 instruction cache miss rate when N ×M = 1000× 1000 for

different UV. F: Baseline, P: Proposed. 40

Figure 5.14. The L1 data cache miss rate whenN×M = 1000×1000 for different

UV. F: Baseline, P: Proposed. 40

Figure 5.15. The L2 cache miss rate when N ×M = 1000 × 1000 for different

UV. F: Baseline, P: Proposed. 41

Figure 5.16. The number of additions when N ×M = 1000× 1000 for different

NZR. F: Baseline, P: Proposed. 42

Figure 5.17. The storage size when N ×M = 1000× 1000 for different NZR. F:

Baseline, P: Proposed. 43

Figure 5.18. The number of cycles when N × M = 1000 × 1000 for different

NZR. F: Baseline, P: Proposed. 43

ix

Figure 5.19. The L1 instruction cache miss rate when N ×M = 1000× 1000 for

different NZR. F: Baseline, P: Proposed. 44

Figure 5.20. The L1 data cache miss rate whenN×M = 1000×1000 for different

NZR. F: Baseline, P: Proposed. 44

Figure 5.21. The L2 cache miss rate when N ×M = 1000 × 1000 for different

NZR. F: Baseline, P: Proposed. 45

Figure 5.22. The number of additions when UV = 2 and NZR = 0.1 for different

matrix sizes. F: Baseline, P: Proposed. 46

Figure 5.23. The storage size when UV = 2 and NZR = 0.1 for different matrix

sizes. F: Baseline, P: Proposed. 47

Figure 5.24. The number of cycles when UV = 2 and NZR = 0.1 for different

matrix sizes. F: Baseline, P: Proposed. 47

Figure 5.25. The L1 instruction cache miss rate when UV = 2 and NZR = 0.1

for different matrix sizes. F: Baseline, P: Proposed. 48

Figure 5.26. The L1 data cache miss rate when UV = 2 and NZR = 0.1 for

different matrix sizes. F: Baseline, P: Proposed. 48

Figure 5.27. The L2 cache miss rate when UV = 2 and NZR = 0.1 for different

matrix sizes. F: Baseline, P: Proposed. 49

x

LIST OF SYMBOLS

M The column number of the matrix

N The row number of the matrix

T A constant matrix

v An input vector

y A result vector

xi

LIST OF ACRONYMS/ABBREVIATIONS

ASIC Application-Specific Integrated Circuit

At Attempt Number

CDF Cumulative Distribution Function

CEA Copy Elements Array

CESA Copy Elements Separator Array

CPA Copy Pairs Array

CPSA Copy Pairs Separator Array

CMM Constant Matrix Multiplication

CPU Central Processing Unit

CSC Compressed Sparse Column

CSE Common Subexpression Elimination

CSR Compressed Sparse Row

ECU Element Copy Unit

FPGA Field-Programmable Gate Array

GPU Graphics Processing Unit

It Iteration Number

IVU Intermediate Values Unit

MRA Multiplication Result Array

NNZ Number of Non-zero

NZR Non-zero Ratio

PCU Pair Copy Unit

UEA Unique Elements Array

UESA Unique Elements Separator Array

UV Unique Values

1

1. INTRODUCTION

Most deep learning applications perform a series of Constant Matrix Multipli-

cation (CMM). Various improvements have been developed to speed up the process

and reduce power consumption [1]. For example, the constant matrices are pruned at

the cost of some accuracy loss. Then, the resulting sparse matrices are compressed

to eliminate the process with zero operands. The applied compression format is im-

plemented on customizable hardware Field-Programmable Gate Arrays (FPGA) and

low-end devices [2, 3]. In addition, the matrix is quantized to process on smaller exe-

cution units [4].

Common subexpression elimination (CSE) methods modify the statements that

process the one-dimensional arrays to perform matrix multiplication. They are up-

graded to integrate the common subexpressions. However, the modified statements

may not fit the target hardware properly. For example, the Graphics Processing Unit

(GPU) is specialized in performing two-dimensional matrix multiplication. It outper-

forms the Central Processing Unit (CPU) and FPGA in terms of latency of the matrix

multiplication. It becomes the top choice to deploy a deep learning model when the

price and power costs are affordable. Yet, it shows a weak performance in matrix

multiplication with Compressed Sparse Row (CSR) and Compressed Sparse Column

(CSC) formats. Therefore, deploying a CSE method on a GPU is not a common prac-

tice. In addition, the efficiency of the CSE methods depend on the similarity of the

coefficients. Pruning and quantization operations tend to increase the similarity, but

they also cause an accuracy reduction in many models. If the accuracy requirement

of the application is not allowed to be reduced, those operations are not applied by

a significant amount. As a result, the latency and accuracy requirements limit the

usability of the CSE methods.

The quantization operation is also performed to reduce the number of distinct

elements in deep learning applications [5]. The number of duplicate elements increases

2

in this way. Hence, a CSE algorithm is applied to remove the redundant operations [6].

Besides, the matrices are pruned to reduce the number of multiplications and additions.

The sparse matrices are recorded into several one-dimensional arrays, and matrix mul-

tiplication is performed by processing the arrays [7]. A CSE method connected with a

compression and matrix multiplication format is aimed in this thesis.

This thesis constructs a lossless compression method that includes a reuse tech-

nique while ignoring zeros. The matrix-vector multiplication is discussed in two steps.

Firstly, the vector is element-wise multiplied by the matrix. Secondly, the rows of the

resulting matrix are accumulated to produce the result vector. A CSE technique is

constructed for both steps. A portion of the multiplications and additions are replaced

with the copy operations. Afterwards, a compression format is provided to realize the

eliminated subexpressions by the reuse operations.

The gem5 simulation tool is used in the experiments [8]. The hardware of a

low-cost device is imitated because the deep learning applications are deployed on

the low-end devices to reduce the price and power consumption. Sample matrices

are constructed to measure the latency, storage size, and the number of additions

and multiplications. The proposed method, the base implementation of the matrix

multiplication and two state-of-the-art methods [9] and [10] are compared in terms of

latency and the number of additions. Plus, the proposed method is compared with

the CSR format in terms of the storage size. Only the proposed method reduces the

number of multiplications. So, it is not compared with other techniques in terms of

the number of multiplications.

The thesis is organized as follows. Model restructuring, pruning, quantization

and compression operations in the field of study are mentioned in the next chapter.

The compared methods are briefly explained with an illustrative example in Chapter 3.

Proposed search algorithm and compression format are constructed with an illustrative

example in Chapter 4. Experiments are performed, and the results are commented on

in Chapter 5. The thesis is concluded in the last chapter.

3

2. RELATED WORK

The studies to improve deep learning applications can be grouped into two cate-

gories. One group implies increasing the accuracy. The models are enlarged, and more

complex functional models are introduced [11]. The models are upgraded to improve

the accuracy, but the upgrades increase the costs of the applications at the same time.

For this reason, the metrics are built to predict the costs of the models and frame-

works [12, 13]. The layer-specific features of a deep learning model are analyzed. The

additional cost caused by adjusting a layer and adding a layer is measured. In addition,

the effects of the hyper-parameters on the accuracy are investigated with various data

sets. The results are aimed to use in future application developments as training and

testing the models requires a significant amount of time [14].

The studies in the second group aim to reduce the implementation costs of the

trained models. The latency, power consumption and size of an inference model are

minimized while the accuracy is kept above a certain threshold. The solutions for

reducing the costs may be gathered under four topics [15, 16]. Firstly, the models are

analyzed to be reshaped. The large layers are approximately compressed or decomposed

into a set of small layers to remove the redundant operations and reduce the size [17,18].

The compression and decomposition ratio is tuned by the change in accuracy because

the accuracy may decrease significantly due to data loss. Moreover, each problem

requires a different model. Unfortunately, reshaping the weights depends on the target

model. A generic framework is introduced in [19] to produce a model-independent

solution. The purpose of the framework is to build sparse deep learning models from

scratch. Pruning is not required after the training operation as the density of the

weights is adjusted while building the matrices. The framework can be applied to

produce different models.

Secondly, the weights are pruned. The matrix elements are set to zero during the

training step or after the weights are produced [20, 21]. The density of the matrices

4

is reduced by a set of particular ratios. The accuracy for each ratio is calculated, and

the most suitable one is picked. The coefficients are selected in a structural or non-

structural manner. Each coefficient is individually considered in the non-structural

pruning. The coefficients with less impact on the accuracy are explored and eliminated.

The coefficients are considered group by group in structural pruning. The matrices are

divided into rectangular areas. If an area is selected to be pruned, its elements are set

to zero. The size of the rectangular areas and prune ratio are determined according to

the target hardware and compression method. The purpose of the structural pruning is

loading and processing the matrices block by block. Pruning eliminates some blocks in

structural pruning and some elements in non-structural pruning to reduce the latency

and storage size.

Both pruning methods are compared in [22] in terms of storage size and latency.

It shows that structural pruning outperforms non-structural pruning when applied with

the compression and data placement methods. An example deployment on FPGA is

studied for structural pruning in [23]. A compression method is built for the non-

zero blocks. The blocks are distributed into the Block RAMs for parallel processing.

The results show that latency and power consumption are reduced against the non-

structural pruning and sequential implementation of the structural pruning.

Thirdly, the weights are quantized. The data type of the weights is changed to

reduce the storage and computation costs [24]. If the hardware contains the processing

unit for the target data type, the latency is reduced. Otherwise, the quantization

operation still continues to be beneficial as the size of the weights is reduced [25].

For example, FPGA contains arithmetic units for 16-bit half-precision floating-point

and arbitrary precision fixed-point data types. 32-bit single-precision floating-point

coefficients can be mapped to shorter data types. The target bit size is determined by

the target accuracy. The design is tested under a set of word lengths, and the accuracy

is obtained for each configuration. The most appropriate one is deployed. Note that

the quantization operation can sometimes slightly increase the accuracy [26]. Hence,

pruning and quantization are also used to improve accuracy.

5

The weights may be quantized to a small set of values. For example, the coeffi-

cients are mapped to powers-of-two in [27]. Each coefficient contains a single 1 in its

binary representation. The storage cost is significantly reduced, while the data loss

does not cause a valuable reduction in accuracy in some models. In addition, the hard-

ware efficiency of the shift operation on an FPGA is analyzed in [28]. The coefficients

are not restricted with powers-of-two. The input matrix values are converted to the

fixed-point data type. So, the multiplication operation is replaced with a series of shift

and addition operations. Its overhead is traded with a low power option. The results

imply a significant gain in the computation cost.

The fourth topic includes processing compressed matrices. The weights are

pruned to reduce the density. Those sparse matrices are compressed to ignore zero

elements [29]. The non-zero elements are saved into several one-dimensional arrays.

The data is not lost during compression, and its two-dimensional form can be recon-

structed. In addition, the matrix multiplication is performed without decompression.

Processing the one-dimensional arrays produces the result vector. In this way, the ma-

trices are kept in the compressed form while storing and executing [30]. Decompressing

the matrices is not required during the run-time of the device. CSR and CSC formats

are two examples of processing one-dimensional arrays to perform matrix multiplica-

tion. The non-zeros are row-wise or column-wise ordered, respectively. The values and

indices of the coefficients are recorded into two one-dimensional arrays. Then, the end

position of each row or column is recorded into the third array, respectively. So, the

matrix is displayed with three one-dimensional arrays. They are deployed on various

hardware platforms such as CPU, FPGA and GPU [31–33].

All of those improvements provide crucial benefits for the edge devices and mobile

phones [34, 35]. The limited power delivery and low storage size form the main issues

for those devices. The model size and power consumption need to be reduced below a

certain level to perform the inference operation properly [36,37]. Therefore, the sparse

matrix-vector multiplication is studied to be accelerated with the guidance of those

improvements [38]. In addition, it can be supported with CSE methods. They explore

6

and eliminate the redundant operations in matrix multiplication. An adder tree is

produced to show the operation sequence. A notation is provided to save the adder

tree in the storage and execute it in the hardware.

The efficiency of the CSE methods can be increased with quantization. The

number of non-zero elements stays the same, but the number of distinct elements is

reduced. So, the occurrence rate of an element is increased. CSE methods utilize the

similarity between the duplicate elements. A quantized network example is studied

in [39]. The coefficients of the matrices are mapped to −1 and 1. The output of

each layer is mapped −1 and 1 in the run-time. Zeros are also considered positive or

negative values. So, the negative values are represented with 0, and positive values are

represented with 1. The binary multiplications are performed with bit-wise operations.

The models are deployed on CPU, GPU, FPGA and Application-Specific Integrated

Circuit (ASIC) for the latency comparison. ASIC implementation takes the first place,

and the proposed FPGA architecture takes the second place. FPGA seems to utilize

bit-wise operations much more than GPU and CPU.

Two CSE algorithms are introduced in [9] and [10] for matrices that contain only

0s and 1s. So, the multiplication operation is not considered. The methods use the

same notation to express subexpressions. A pair of a row and column is appended

to the matrix for each common subexpression. A huge matrix is produced to form

the adder tree. Proposed in [9] searches the size-of-two common subexpressions and

concatenate them to form longer ones. Proposed in [10] searches the longest common

subexpressions. The search procedure of each method is explained in the next chapter

on an example.

Both methods are compared in [40] to run an inference model on an FPGA. The

value set is extended to −1, 0 and 1 for the experiments. So, the matrix multiplication

is performed with the addition and subtraction units. The results show that eliminating

the longest subexpression misses the shorter subexpressions in [10]. Proposed in [9]

explores both shorter and longer subexpressions. In this way, it reduces the number

7

of additions more than proposed in [10]. In addition, proposed in [41] is used in

the comparison. It considers fixed-point and integer coefficients in their Canonical

Signed Digit (CSD) forms. Multiplication operations are replaced with a series of

additions, subtractions and shift operations. The method produces an adder tree with

a depth-first search algorithm on the CSD bits. It produces better results than proposed

algorithms in [10] and [9] for 3 × 3 matrices which is the first layer. However, it does

not scale for the larger matrices due to its longer run-time for the first layer. For this

reason, it is not used for the next layers.

Algorithms introduced in [10] and [9] also contain two major problems. The first

problem is long search time for the large matrices. The run-time of the algorithms

reach approximately an hour for 100 × 100 matrices and nine hours for 200 × 200

matrices. The second problem is the notation they use to imply the subexpressions.

The additional rows and columns include many zeros. So, the algorithms take an input

matrix and produce a larger matrix by the notation. The storage size increases due

to the lack of a compression method. In this thesis, a heuristic algorithm is proposed

by sacrificing some of the addition eliminations to produce the results for 1000× 1000

matrices in a shorter time. Additionally, a one-dimensional compression format which

does not record the zero elements is provided. It compresses experimented matrices

more than CSR and CSC formats.

8

3. THE STATE-OF-THE-ART METHODS

Two CSE algorithms are introduced in [9] and [10] using the same notation. They

are explained on an illustrative example. Let T be a 4 × 5 matrix and v be a 5 × 1

vector. The matrix multiplication Tv can be written as

Tv =


y0

y1

y2

y3

 =


1 0 1 1 1

0 1 1 1 1

1 0 0 1 0

1 0 1 1 1

 .



v0

v1

v2

v3

v4


=


v0 + v2 + v3 + v4

v1 + v2 + v3 + v4

v0 + v3

v0 + v2 + v3 + v4

 . (3.1)

The coefficients are selected as ones and zeros because both methods focus on only

binary values. They follow a procedure to record the common subexpressions. The

input vector consists of M values from v0 to vM−1 and the result vector consists of N

values from y0 to yN−1. A common subexpression is picked according to the applied

algorithm. Then, it is extracted from the rows and appended as a new row at the

bottom of the matrix. Plus, a new column is appended to the right of the matrix. In

that column, the coefficients in the extracted rows are set to one. vM is appended to

both the input vector and result vector.

3.1. Explanation of the Proposed Method in Hsiao et al. [9]

This method searches size-of-two common subexpressions. The longer subex-

pressions are iteratively obtained from size-of-two subexpressions. The most occurred

size-of-two subexpression is processed at each iteration. The common subexpression

list of T is prepared as follows:

• v0 + v2 occurs twice.

• v0 + v3 occurs three times.

• v0 + v4 occurs twice.

• v2 + v3 occurs three times.

9

• v2 + v4 occurs three times.

• v3 + v4 occurs three times.

Four size-of-two expressions occur three times. The first one of the most occurred

subexpressions, v0 + v3, is picked. Then, the matrix, input vector and result vector

are updated. Let Tr and vr denote the resulting matrix and input vector for the r’th

iteration. The result of the first iteration is shown as

T1v1 =



y0

y1

y2

y3

v5


=



0 0 1 0 1 1

0 1 1 1 1 0

0 0 0 0 0 1

0 0 1 0 1 1

1 0 0 1 0 0


.



v0

v1

v2

v3

v4

v5


=



v2 + v4 + v5

v1 + v2 + v3 + v4

v5

v2 + v4 + v5

v0 + v3


, (3.2)

where v0 + v3 is replaced with v5. Extracting a subexpression may affect the other

subexpressions. For this reason, the subexpression list is recalculated as follows:

• v2 + v4 occurs three times.

• v2 + v5 occurs twice.

• v4 + v5 occurs twice.

v2 + v4 is extracted from the matrix as it occurs the most. The result of the second

iteration is shown as

T2v2 =



y0

y1

y2

y3

v5

v6


=



0 0 0 0 0 1 1

0 1 0 1 0 0 1

0 0 0 0 0 1 0

0 0 0 0 0 1 1

1 0 0 1 0 0 0

0 0 1 0 1 0 0


.



v0

v1

v2

v3

v4

v5

v6


=



v5 + v6

v1 + v3 + v6

v5

v5 + v6

v0 + v3

v2 + v4


, (3.3)

where v2 + v4 is replaced with v6.

10

The remaining subexpression is listed as follows:

• v5 + v6 occurs twice.

The last common subexpression is extracted, and the result of the third iteration is

shown as

T3v3 =



y0

y1

y2

y3

v5

v6

v7


=



0 0 0 0 0 0 0 1

0 1 0 1 0 0 1 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1

1 0 0 1 0 0 0 0

0 0 1 0 1 0 0 0

0 0 0 0 0 1 1 0


.



v0

v1

v2

v3

v4

v5

v6

v7



=



v7

v1 + v3 + v6

v5

v7

v0 + v3

v2 + v4

v5 + v6


, (3.4)

where v5 + v6 is replaced with v7. The iterations finish as T3 does not contain any

common subexpression. It is the result of the method [9].

3.2. Explanation of the Proposed Method in Wu et.al. [10]

This method picks two rows of the matrix and notes the longest subexpression.

All row pairs are checked, and the longest subexpression is processed in each iteration.

The common subexpression list of T in Equation (3.1) is prepared as follows:

• Row 0 and 1 includes v2 + v3 + v4 by three elements.

• Row 0 and 2 includes v0 + v3 by two elements.

• Row 0 and 3 includes v0 + v2 + v3 + v4 by four elements.

• Row 1 and 3 includes v2 + v3 + v4 by three elements.

• Row 2 and 3 includes v0 + v3 by two elements.

The longest subexpression is v0 + v2 + v3 + v4 and occurs in the row 0 and 3. It is

appended to the matrix as a new row and column pair. Let Tr and vr denote the

11

resulting matrix and input vector for the r’th iteration. The result of the first iteration

is shown as

T1v1 =



y0

y1

y2

y3

v5


=



0 0 0 0 0 1

0 1 1 1 1 0

1 0 0 1 0 0

0 0 0 0 0 1

1 0 1 1 1 0


.



v0

v1

v2

v3

v4

v5


=



v5

v1 + v2 + v3 + v4

v0 + v3

v5

v0 + v2 + v3 + v4


, (3.5)

where v0+v2+v3+v4 is replaced with v5. The subexpression list is updated as follows:

• Row 1 and 4 includes v2 + v3 + v4 by three elements.

• Row 2 and 4 includes v0 + v3 by two elements.

The subexpression v2 + v3 + v4 is picked and extracted as being the longest one. The

result of the second iteration is shown as

T2v2 =



y0

y1

y2

y3

v5

v6


=



0 0 0 0 0 1 0

0 1 0 0 0 0 1

1 0 0 1 0 0 0

0 0 0 0 0 1 0

1 0 0 0 0 0 1

0 0 1 1 1 0 0


.



v0

v1

v2

v3

v4

v5

v6


=



v5

v1 + v6

v0 + v3

v5

v0 + v6

v2 + v3 + v4


, (3.6)

where v2 + v3 + v4 is replaced with v6. The iterations end as the T2 does not contain

any common subexpression. It is the result of the method [10].

12

4. METHOD

Let T be an N ×M constant matrix where each column is accessed as tj. Let v

represent an input vector, and vj is one of its entries. Then a matrix-vector multipli-

cation can be handled as

Tv = y = t0v0 + t1v1 + ...+ tjvj + ...+ tM−1vM−1. (4.1)

This approach enables matrix-vector multiplication in two steps. In the first step, each

entry multiplies the related column. In the second step, the multiplied columns are

added row-by-row. Hence, Equation (4.1) reduces the number of multiplications when

a column contains a constant more than once.

In a matrix, there are M.N entries. Since only non-zero elements contribute to

the computation, the upper bound on the number of computations is determined by the

number of non-zero elements (NNZ). Then, the sparsity of a matrix can be determined

as

NZR =
NNZ

M.N
. (4.2)

It is obvious that sparsity increases as the non-zero ratio (NZR) reduces. Sparse matrix

dense vector multiplications can be realized with fewer operations.

Computations can be reduced further if all of the non-zero elements can be repre-

sented by only a few different numbers. For example, a matrix that contains only −1, 0

and 1 strips off the multiplications. A matrix of size 1000×1000 with 4−bit fixed point

entries requires at most 16000 multiplications instead of one million if the computation

is carried out as shown in Equation (4.1). Without loss of generality, we can claim that

the number of unique values (UV) in a matrix is essential in reducing the number of

computations, regardless of the data format used in representing these values. Thus,

only letters are used in the representation of UV throughout the illustrative examples

in this chapter.

13

Given a constant matrix, NNZ and UV may be reduced through the quantization

and pruning operations to reach better results regarding the number of additions,

multiplications and compression size. The data loss may cause an error in the result

vector. For this reason, the developer should decide the portions for the pruning and

quantization by analyzing the benefits and accuracy loss. The proposed method does

not provide a recommendation about the portions. It accepts any constant matrix with

or without pruning and quantization.

The proposed method consists of CSE and compression steps. The number of

multiplications and additions is reduced in the CSE step. The constant matrix is

compressed into several one-dimensional arrays in the compression step. Processing

those arrays produces the result vector without data loss. Both steps are explained

with an illustrative example.

14

4.1. Common Subexpression Elimination

An example 8× 8 constant matrix with 0.75 NZR and 3 UV is constructed to be

used in the explanations as

y0

y1

y2

y3

y4

y5

y6

y7



=



a b 0 c b a c 0

0 a a b b c 0 c

c b 0 0 c a b a

c 0 b a 0 b b b

b c a b 0 0 a c

c 0 c c a c b 0

0 c a a b 0 c b

a b a 0 b a 0 c



.



v0

v1

v2

v3

v4

v5

v6

v7



=



av0

0v0

cv0

cv0

bv0

cv0

0v0

av0



+



bv1

av1

bv1

0v1

cv1

0v1

cv1

bv1



+



0v2

av2

0v2

bv2

av2

cv2

av2

av2



+



cv3

bv3

0v3

av3

bv3

cv3

av3

0v3



+



av4

bv4

cv4

0v4

0v4

av4

bv4

bv4



+



av5

cv5

av5

bv5

0v5

cv5

0v5

av5



+



cv6

0v6

bv6

bv6

av6

bv6

av6

0v6



+



0v7

cv7

av7

bv7

cv7

0v7

bv7

cv7



,

(4.3)

where U = {a, b, c} represent the set of values.

Let mulux,i be defined as

mulux,i = uxvi, (4.4)

where ux is a unique value in U and vi is an entry at the input vector v. The main

idea of the first step in CSE is to replace the multiplication operation with the copy

operation in the first step. In the illustrative example of Equation (4.3), cv0 appears

three times: third, fourth and sixth rows. In other words, there are three occurrences of

15

mulc,0 according to Equation (4.4). Instead of calculating mulc,0 three times, it can be

calculated once, and its result can be reused. In this way, two multiplication operations

are eliminated in the first column. Other columns also include multiple occurrences for

reuse. Though T contains 48 non-zero elements, only 24 multiplication operations are

sufficient to build the result vector.

Row-wise additions can be reduced similarly. In the proposed approach, two-

element common subexpressions are sought. Let ti and tj be two selected columns

from matrix T. The elements at the k’th row of these columns can be accessed as tk,i

and tk,j. Element-wise addition at these rows, addk,ij can be defined as

addk,ij = tk,ivi + tk,jvj. (4.5)

If there exists another row l such that addk,ij = addl,ij, then one of the additions can

be eliminated since the result of the first addition can be used in the other. Assume

that there are zk,ij occurrences of addk,ij in the (ti, tj) pair. Then, the number of

addition eliminations due to addk,ij can be computed as zk,ij −1. Thus, a solution that

maximizes the total gain should be sought as

gain = max
∑

∀(ti,tj)

∑
k

(zk,ij − 1)

such that

(ti, tj) ∩ (tm, tn) = ∅ i ̸= j ̸= m ̸= n⋃
i ̸=j

(ti, tj) = T.

(4.6)

Two-element common subexpressions are sought in the second step iteratively.

Each iteration consists of an initial phase and an improvement phase. The matrix is

partitioned into M
2

pairs in the initial phase. Some of the pairs are untied, and the

remaining columns are re-matched in the improvement phase. All common subex-

pressions that maximize gain are extracted from the matrix at the end of the current

iteration. The remaining matrix is processed through the same procedure in the next

iteration. The user decides the number of iterations. Once all iterations end, the CSE

step terminates. Two consecutive iterations are illustrated in the rest of this section.

16

The columns of the illustrative matrix are randomly picked and paired as (t0, t6),

(t1, t4), (t2, t5) and (t3, t7) at the initial phase. The common subexpressions of the

pairs are listed as follows:

• (t0, t6) : cv0 + bv6 occurs three times.

• (t1, t4) : This pair does not contain a common subexpression.

• (t2, t5) : This pair does not contain a common subexpression.

• (t3, t7) : av3 + bv7 occurs twice and bv3 + cv7 occurs twice.

Then, the gain becomes

gain1,0 = (3− 1) + 0 + 0 + [(2− 1) + (2− 1)] = 4 (4.7)

according to the selected pair order. In this equation, gain1,0 represents the gain

achieved at the initial attempt of the first iteration.

The improvement phase consists of a series of improvement attempts. Two

columns from different pairs are randomly picked and temporarily exchanged in a

single attempt. The number of addition eliminations is calculated for the new order.

If the current gain is higher than the previous one, the replacement is accepted, and

the improvement attempt becomes successful. Otherwise, the replacement is reverted,

and the improvement attempt becomes unsuccessful. The first improvement attempt

on the selected pair order (t0, t6), (t1, t4), (t2, t5) and (t3, t7) temporarily exchanges t1

and t6. The common subexpressions, according to the new order, are listed as follows:

• (t0, t1) : av0 + bv1 occurs twice.

• (t4, t6) : This pair does not contain a common subexpression.

• (t2, t5) : This pair does not contain a common subexpression.

• (t3, t7) : av3 + bv7 occurs twice and bv3 + cv7 occurs twice.

17

The gain becomes

gain1,1 = (2− 1) + (2− 1) + (2− 1) = 3 (4.8)

according to the new pair order. The exchange attempt of t1 and t6 is rejected as

gain1,1 is less than gain1,0.

In the next attempt, t4 and t5 are randomly picked and temporarily exchanged

on the pair order (t0, t6), (t1, t4), (t2, t5), (t3, t7). The common subexpressions are

listed as follows:

• (t0, t6) : cv0 + bv6 occurs three times.

• (t1, t5) : bv1 + av5 occurs three times.

• (t2, t4) : av2 + bv4 occurs three times.

• (t3, t7) : av3 + bv7 occurs twice and bv3 + cv7 occurs twice.

The gain becomes

gain1,2 = (3− 1) + (3− 1) + (3− 1) + [(2− 1) + (2− 1)] = 8 (4.9)

according to the new pair order. The exchange attempt of t4 and t5 is accepted as

gain1,2 is greater than gain1,0.

Two improvement attempts are shown in the first iteration. The user decides the

number of attempts. The following attempts are performed on the last accepted pair

order in the improvement phase. Therefore, the number of addition eliminations either

stays the same or increases through the attempts. Once an iteration is halted, the last

pair order is marked as the result of the current iteration. The common subexpressions

of the selected pairs are used in forming y1
p, the partial result vector of the first iteration,

as

18

y1
p = T1

ps
1 =



0 1 0 0 0

0 0 1 0 1

1 1 0 0 0

1 0 0 1 0

0 0 0 0 1

1 0 0 0 0

0 0 1 1 0

0 1 1 0 0



.



cv0 + bv6

bv1 + av5

av2 + bv4

av3 + bv7

bv3 + cv7


. (4.10)

T 1
p and s1 represent the row indices of the common subexpressions found in the first

iteration and the values of those common subexpressions, respectively. LetT1
r represent

the remainder matrix after the first iteration. Then, the remaining operations that will

take place on T1
rv can be written as

y1
r = T1

rv =



av0

0v0

0v0

0v0

bv0

0v0

0v0

av0



+



0v1

av1

0v1

0v1

cv1

0v1

cv1

0v1



+



0v2

0v2

0v2

bv2

av2

cv2

0v2

0v2



+



cv3

0v3

0v3

0v3

0v3

cv3

0v3

0v3



+



av4

0v4

cv4

0v4

0v4

av4

0v4

0v4



+



0v5

cv5

0v5

bv5

0v5

cv5

0v5

0v5



+



cv6

0v6

0v6

0v6

av6

0v6

av6

0v6



+



0v7

0v7

av7

0v7

0v7

0v7

0v7

cv7



. (4.11)

The pairs are reshuffled for the initial phase of the second iteration. The common

subexpressions of the pair order (t0, t2), (t1, t7), (t3, t4), (t5, t6) on T1 are listed as

follows:

• (t0, t2) : This pair does not include a common subexpression.

• (t1, t7) : This pair does not include a common subexpression.

• (t3, t4) : cv3 + av4 occurs twice.

• (t5, t6) : This pair does not include a common subexpression.

19

The gain becomes

gain2,0 = 0 + 0 + (2− 1) + 0 = 1 (4.12)

according to the selected pair order.

t6 and t7 are randomly picked in the first attempt of the improvement phase.

They are temporarily exchanged to form the pair order (t0, t2), (t1, t6), (t3, t4), (t5, t7).

The common subexpressions of the pair order is listed as follows:

• (t0, t2) : This pair does not include a common subexpression.

• (t1, t6) : cv1 + av6 occurs twice.

• (t3, t4) : cv3 + av4 occurs twice.

• (t5, t7) : This pair does not include a common subexpression.

The gain becomes

gain2,1 = 0 + (2− 1) + (2− 1) + 0 = 2 (4.13)

according to the selected pair order. The exchange attempt of t6 and t7 is accepted

as gain2,1 is greater than gain2,0. The pair order (t0, t2), (t1, t6), (t3, t4), (t5, t7) is

marked as the current result.

The next improvement attempt is temporarily exchanging t2 and t5 on the current

pair order (t0, t2), (t1, t6), (t3, t4), (t5, t7). The common subexpressions of the pair

order (t0, t5), (t1, t6), (t3, t4), (t2, t7) are listed as follows:

• (t0, t5) : This pair does not include a common subexpression.

• (t1, t6) : cv1 + av6 occurs twice.

• (t3, t4) : cv3 + av4 occurs twice.

• (t2, t7) : This pair does not include a common subexpression.

20

The gain becomes

gain2,2 = 0 + (2− 1) + (2− 1) + 0 = 2 (4.14)

according to the selected pair order. The improvement attempt is rejected as the new

elimination number 2 equals the last marked gain, i.e. gain2,1.

The second iteration is limited to two improvement attempts. The pair order

(t0, t2), (t1, t6), (t3, t4), (t5, t7) is marked as the result of the second iteration. y2
p is

built as

y2
p = T2

ps
2 =



0 1

0 0

0 0

1 0

0 1

1 0

0 0


.

cv1 + av6

cv3 + av4

 . (4.15)

The common subexpressions are removed from T1
r to produce T2

r. Then, T2
rv can be

written as

y2
r = T2

rv =



av0

0v0

0v0

0v0

bv0

0v0

0v0

av0



+



0v1

av1

0v1

0v1

0v1

0v1

0v1

0v1



+



0v2

0v2

0v2

bv2

av2

cv2

0v2

0v2



+



0v3

0v3

0v3

0v3

0v3

0v3

0v3

0v3



+



0v4

0v4

cv4

0v4

0v4

0v4

0v4

0v4



+



0v5

cv5

0v5

bv5

0v5

cv5

0v5

0v5



+



cv6

0v6

0v6

0v6

0v6

0v6

0v6

0v6



+



0v7

0v7

av7

0v7

0v7

0v7

0v7

cv7



. (4.16)

21

The search of the common subexpressions ends as the number of iterations is

kept as two for the example. The result of Tv is written as

y = Tv = (
It∑
i=1

yi
p) + yIt

r , (4.17)

where It is the number of iterations. So, the results of all iterations, yi
p, and the

second remainder matrix which is the last remainder matrix, ylt
r , are proceeded to the

compression step explained in the next section.

The time complexity of the algorithm is analyzed for a given N × M matrix,

iteration number and attempt number for each iteration. In the worst case, the column

pair does not include any zero elements and any duplicated element pairs. Then, the

first element pair is compared with N − 1 element pairs, where N is the number of

rows. After it is removed from the list, the second picked element pair is compared

with N−2 element pair. The sequence continues until the last element pair is removed.

The summation of the sequence indicates the number of element pair comparisons while

calculating the gain in the worst case. It is shown as

N−1∑
i=1

(N − i) =
N(N − 1)

2
=

N2 −N

2
. (4.18)

The iteration number and attempt numbers indicate how many pairs are pro-

cessed. The initial phase of an iteration considers M
2

pairs where M is the column

number. The user defines the number of iterations and the number of attempts for

each iteration. Note that each iteration may perform a different number of attempts.

However, the distribution of the attempts over iterations is not considered in the worst

case. Only the total number of attempts takes place in the time complexity notation,

as each attempt is assumed to consume the same time duration. Let At be the total

number of attempts in all iterations. Overall pair checking number is shown as

(It× M

2
) + At. (4.19)

The multiplication of both equations produces the time complexity of the proposed

algorithm for the worst case. It is built as O(N2(ItM + At)) when the constants are

22

removed. The user may estimate the run-time of the method by tuning the iteration

and attempt numbers. Note that the assumptions of the worst case may not hold in

an average run. The attempts in the later iterations may take less time than those in

earlier iterations as the density of the matrix may reduce through the iterations.

4.2. Matrix Compression

The constant matrix is compressed into one-dimensional arrays according to the

CSE results. Three units are introduced. The Intermediate Values Unit (IVU) receives

the input vector and performs all multiplication operations, shown in Equation (4.4),

to prepare the multiplication result array (MRA). Pair Copy Unit (PCU) receives it

and produces the first part of the result vector. This part contains the summation of

the results of all CSE iterations shown as
∑It

i=1 y
i
p. Element Copy Unit (ECU) receives

the first part of the result vector and MRA. It accumulates the remaining elements,

shown as yIt
r , on the received part of the result vector. This operation produces the

result vector.

IVU requires two one-dimensional arrays named unique elements array (UEA)

and unique elements separator array (UESA). The values of T are column-wise sorted,

and duplicated elements are removed to build the UEA. The end position of each

column is recorded into the UESA. IVU processes those arrays to build the MRA.

Three arrays are filled according to T in Equation (4.3) and listed as follows:

• UEA: | a b c a b c a b c a b c a b c a b c a b c a b c |.

• UESA: | 3 6 9 12 15 18 21 24 |.

• MRA: | av0 bv0 cv0 av1 bv1 cv1 av2 bv2 cv2 av3 bv3 cv3 av4 bv4 cv4 av5 bv5 cv5 av6

bv6 cv6 av7 bv7 cv7 |.

The MRA size equals the UEA size, and the UESA size equals the number of

columns. Pseudocode of IVU is shown in Figure 4.1.

23

Input: Vector[]

Output: Multiplication Result[]

1: multiplication result[] = {0}

2: unique elements[] = {...} {Predefined}

3: unique elements separator[] = {...} {Predefined}

4: start = 0

5: end = 0

6: for j = 0 to j < Column do

7: start = end

8: end = unique elements separator[j]

9: for k = start to k < end do

10: value = unique elements[k]

11: multiplication result[k] = value ∗ vector[j]

12: end for

13: end for

14: return multiplication result[]

Figure 4.1. Pseudocode of Intermediate Values Unit.

PCU calculates the results of the common subexpressions and accumulates them

on yi. The pairs acquired from Ti
p, si and filled into two one-dimensional arrays

named copy pairs array (CPA) and copy pairs separator array (CPSA). The common

subexpressions are grouped and saved into the CPA. A pair group includes one element

from the si. An element contains two values from the MRA. Indices of those values

are written into a pair group as the first two elements. Then, the row indices of the

corresponding column in Ti
p are appended to the pair group. The pair groups are listed

in the CPA. The order of the pairs are not important. The end position of each pair

group is recorded in the CPSA. Two arrays are filled according to the results of the

iterations in Equations (4.10), (4.15) and listed as follows:

• CPA: | 2 19 2 3 5 4 15 0 2 7 6 13 1 6 7 9 22 3 6 10 23 1 4 5 18 4 6 11 12 0 5 |.

• CPSA: | 5 10 15 19 23 27 31 |.

24

Figure 4.2. An Example Process in PCU.

The CPSA size equals the number of pair groups. It is not related to the row

number or column number. Processing the CPSA elements 19 and 23 are illustrated

in Figure 4.2 to show the processing procedure of the pair bv3+ cv7. The CPSA values

19 and 23 show the CPA indices from 19 to 22. The first two elements, 10 and 23,

show the MRA elements to be summed. The last two values, 1 and 4, show that the

addition is accumulated on y1 and y4. Pseudocode of PCU is shown in Figure 4.3.

25

Input: Multiplication Result[]

Output: Result Vector[]

1: result vector[] = {0}

2: copy pairs[] = {...} {Predefined}

3: copy pairs separator[] = {...} {Predefined}

4: pairs number = {...} {Predefined}

5: start = 0

6: end = 0

7: for i = 0 to i < pairs number do

8: start = end

9: end = copy pairs separator[i]

10: index1 = copy pairs[start]

11: index2 = copy pairs[start+ 1]

12: value1 = multiplication result[index1]

13: value2 = multiplication result[index2]

14: sum = value1 + value2

15: for k = start+ 2 to k < end do

16: index = copy pairs[k]

17: result vector[index] += sum

18: end for

19: end for

20: return result vector[]

Figure 4.3. Pseudocode of Pair Copy Unit.

PCU produces yp =
∑It

i=1 y
i
p and sends it to ECU. ECU accumulates the remain-

ing elements, yIt
r on yp to produce y by processing two arrays named copy elements

array (CEA) and copy elements separator array (CESA). The remaining elements are

row-wise ordered. Each element corresponds to a value from the MRA. Corresponding

indices are recorded into the CEA. The end position of each row is recorded into the

CESA. Both arrays are filled according to the remaining elements shown in Equation

(4.16) and listed as follows:

26

• Copy elements array: | 0 20 3 17 14 21 7 16 1 6 8 17 0 23 |.

• Copy elements separator array: | 2 4 6 8 10 12 12 14 |.

Figure 4.4. An Example Process in ECU.

Note that the sixth row does not contain any remaining elements. The CESA

contains 12 twice for this reason. The CESA size equals the number of rows. Processing

the 5th row of y2
r is illustrated in Figure 4.4. The fourth and fifth indices of the CESA

indicate the start position inclusively and end position exclusively of the 5th row of y2
r

in the CEA, respectively. This region contains the values 8 and 17. The values in the

8th and 17th indices of the MRA are acquired. They are accumulated on the 5th index

of the CESA one by one. Pseudocode of ECU is shown in Figure 4.5.

27

Input: Multiplication Result[], Result Vector[]

Output: Result Vector[]

1: copy elements[] = {...} {Predefined}

2: copy elements separator[] = {...} {Predefined}

3: start = 0

4: end = 0

5: for i = 0 to i < Row do

6: start = end

7: end = copy elements separator[i]

8: for k = start to k < end do

9: index = copy elements[k]

10: value = multiplication result[index]

11: result vector[i] += value

12: end for

13: end for

14: return result vector[]

Figure 4.5. Pseudocode of Element Copy Unit.

The output of ECU equals y. As a result, the matrix multiplication is performed

with six constant arrays and one temporary MRA. Array sizes depend on the matrix

elements and CSE solution.

28

5. EXPERIMENTS

Sample matrices are constructed for given N ×M , UV and NZR for the exper-

iments. The non-zero elements are equally distributed to each row. The non-zeros

inside a row are shuffled with a uniform distribution. Three groups of experiments are

performed. Firstly, three random distributions are tested for the improvement phase of

the proposed method. The number of additions is measured on the proposed method

as the idea is specific to the search algorithm of the proposed method. Secondly, the

state-of-the-art methods, the proposed method and the baseline are compared in terms

of the number of additions and latency. The baseline contains a nested for-loop for

two-dimensional matrix multiplication. Thirdly, a set of experiments are conducted to

investigate the performance of the proposed method on various matrix parameters such

as N ×M , UV and NZR against the baseline. The number of additions, latency and

storage size are measured. The proposed method is indicated with “P”. The methods

from [9] and [10] are indicated with “[9]” and “[10]”, respectively. The baseline is

identified with “F”.

The state-of-the-art methods produce an adder tree as a two-dimensional ma-

trix. The adder tree for the state-of-the-art methods and the constant matrix for the

baseline are processed with the pseudocode provided in Figure 5.1. The number of

multiplications and additions are calculated according to the pseudocode for the state-

of-the-art methods and the baseline. Zeros are ignored, and each non-zero is counted

as an addition and multiplication.

The number of multiplications is not measured in the experiments as the state-

of-the-art methods and baseline do not include a mechanism to reduce the number

of multiplications. The number of multiplications is equal to the NNZ for the state-

of-the-art methods and baseline. It equals
∑M

j=1 UVj × M . Note that the number of

multiplications is equal to UV × M in all sample matrices as all columns contain all of

the unique values.

29

Input: Vector[]

Output: Result Vector[]

1: result vector[] = {0}

2: matrix[][] = {...} {Predefined}

3: for i = 0 to i < row number do

4: for j = 0 to j < column number do

5: if matrix[i][j] != 0 then

6: result vector[i] += matrix[i][j] ∗ vector[j]

7: end if

8: end for

9: end for

10: return result vector[]

Figure 5.1. Pseudocode of Matrix Multiplication.

The state-of-the-art methods produce a matrix according to their notation. The

NNZ of the produced matrix is equal to the number of additions for the state-of-the-art

methods. It is equal to the NNZ for the baseline. It is equal to |CEA| + |CPA| −

|CPSA| for the proposed method. |CEA| indicates the NNZ of the remaining elements

matrix, yIt
r . |CPA| − |CPSA| indicates the total number of additions of all pair groups.

The storage size is not measured for the state-of-the-art methods because their

notation increases the matrix size, and they do not provide a compression format. The

storage size is equal to N × M for the baseline. However, it can be measured according

to the CSR format for the baseline. So, zeros are not counted for the storage size in

the baseline. It is calculated as 2 × N × M × NZR + N for the CSR format. The

storage size equals |UEA| + |UESA| + |CPA| + |CPSA| + |CEA| + |CESA| for the

proposed method.

The gem5 simulation tool is used to simulate the matrix multiplication on a CPU

[8]. The same simulation configuration is used for all experiments. TimingSimpleCPU

is used to calculate the latency of the matrix multiplication. It runs x86 instructions.

L1 instruction cache and L1 data cache sizes are selected as 256 kB for both. L2 cache

30

size is selected as 1 MB. A single channel DDR3 1600 MHz RAM is used. CPU clock

is set to 1 GHz. So, the number of CPU cycles mentions the latency of a method. The

miss rates of three caches are provided in the results to show that if a memory shortage

occurs in any method. Note that the simulator accumulates the CPU cycles for each

system call to calculate the total number of CPU cycles passed during the program.

However, some of the calls are missing in the implementation. Therefore, the results

may differ in a real hardware implementation.

5.1. Random Distribution Options for the Improvement Phase

The columns are randomly picked in the improvement phase. The distribution

of the random number generator may affect the improvement phase results. An idea

is introduced to test this thought. The pairs are sorted by their gains at the start of

each improvement attempt. A biased random distribution is used to break and tie low-

gained pairs more frequently than high-gained pairs. Three cumulative distribution

functions (CDF) are selected. The first one is Rayleigh CDF

F (x) = 1− e
−x2

2σ2 where x ∈ [0.0, 10.0] (5.1)

includes the parameter σ. The second one is Exponential CDF

F (x) = 1− e−λx where x ∈ [0.0, 1.0] (5.2)

includes the parameter λ. The third one is Continuous Uniform CDF

F (x) =


0, if x < a

x−a
b−a

, if x ∈ [a, b]

1, if x > b

where x ∈ [0.0, 1.0] (5.3)

includes the parameters a and b. The parameter a is set to zero in all experiments.

Three CDFs are illustrated in Figure 5.2 to show that all of them serve high probability

to the pairs with low gain.

31

Figure 5.2. An example illustration of three CDFs.

Three CDFs are tested on the same constant matrix for consistency. Its pa-

rameters are set as N ×M = 500 × 500, UV = 2 and NZR = 0.5. The iteration and

improvement attempt numbers, It and At, are selected as 10−100, 10−1000, 100−100

and 100− 1000, respectively. The number of additions is calculated in Figure 5.3. The

parameter values of three CDFs σ, λ and b are shown on the X−axis. The Continuous

Uniform CDF with b = 0.01 is selected to simulate the uniform distribution. It pro-

duces the lowest result in all cases. For this reason, using a biased distribution function

achieves better results than the uniform distribution. Note that the results change in

every run if different seeds are fed to the random number generator. The results show

that each option indicates a different CDF for the lowest addition number. The results

may change in the next run. Besides, another CDF with a different parameter value

may produce the lowest addition number.

32

: 2.5
: 0.5

b: 0.01

: 2.75
: 0.75

b: 0.25

: 3.0
: 1.0

b: 0.5

: 3.25
: 1.25

b: 0.75

: 3.5
: 1.5

b: 1.0
CDF Parameters

77700

77800

77900

78000

Ad
di

tio
ns

Rayleigh CDF
Exponential CDF
Continuous
Uniform CDF

(a)

: 2.5
: 0.5

b: 0.01

: 2.75
: 0.75

b: 0.25

: 3.0
: 1.0

b: 0.5

: 3.25
: 1.25

b: 0.75

: 3.5
: 1.5

b: 1.0
CDF Parameters

75800

76000

Ad
di

tio
ns

(b)

: 2.5
: 0.5

b: 0.01

: 2.75
: 0.75

b: 0.25

: 3.0
: 1.0

b: 0.5

: 3.25
: 1.25

b: 0.75

: 3.5
: 1.5

b: 1.0
CDF Parameters

74700

74750

74800

74850

Ad
di

tio
ns

(c)

: 2.5
: 0.5

b: 0.01

: 2.75
: 0.75

b: 0.25

: 3.0
: 1.0

b: 0.5

: 3.25
: 1.25

b: 0.75

: 3.5
: 1.5

b: 1.0
CDF Parameters

73400

73450

73500

Ad
di

tio
ns

(d)

Figure 5.3. The comparison of three CDFs when UV = 2, NZR = 0.1 and

N ×M = 500× 500 for a) It = 10, At = 100 b) It = 10, At = 1000 c) It = 100, At

= 100 d) It = 100, At = 1000.

33

5.2. Comparison with the State-of-the-art Methods

The proposed method is compared with [9], [10] and the baseline. Nine matrices

are prepared for the experiments. UV is set as 2 for all of them. NZR is selected as

0.25, 0.5 and 0.75. The matrix size is determined as 24× 24, 50× 50, 100× 100. The

sizes are picked small to keep the run-time of the compared methods less than one

hour. The iteration (It) and attempt (At) are selected as 100 for all matrices in the

proposed method. The random distribution is selected as the Rayleigh CDF with σ

= 3.25. The results of the proposed method are prepared in less than ten seconds for

each run.

The number of additions for all methods is illustrated in Figure 5.4. The results

show that increasing NZR on the same size increases the length of the common subex-

pressions. Therefore the proposed method can fall behind the compared methods for

a higher NZR in some experiments. On the other hand, the gap between the proposed

method and state-of-the-art methods reduces as the NZR reduces.

The state-of-the-art methods require registers to save the intermediate results of

the common subexpressions. The proposed method does not require registers as it

considers only size-of-two common subexpressions. The baseline does not require any

register as it does not include a CSE algorithm. The number of the register writes

for storing intermediate results in Figure 5.5. The results show that the state-of-the-

art methods require a compression mechanism. Appended rows contains two non-zero

elements in [9]. For example, when two non-zeros in the appended rows are counted

as two additions, the total number of additions becomes 2093 for a given 100 × 100

matrix with NZR = 0.25. The adder tree contains 435 appended rows. When two non-

zeros in the appended row are counted as one addition, the total number of additions

becomes 2093 − 435 = 1658. So, [9] can outperform the proposed method with a

compression format as the proposed method performs the matrix multiplication with

1923 additions for the same matrix. Also, matrix sizes are not listed in this section as

the state-of-the-art methods do not provide a compression technique.

34

The number of CPU cycles is shown in Figure 5.6. The CPU cycles show that the

state-of-the-art methods require a compression method for processing one-dimensional

arrays to perform matrix multiplication. Although their notation reduces the addition

number more than the proposed method in some experiments, their process times fall

behind the proposed method and baseline. Their notation does not utilize the addition

reduction in the CPU. Those methods are built for customizable hardware such as

ASIC or FPGA. Their CPU implementation requires a revision to reduce the latency.

The miss rates of the L1 instruction cache, L1 data cache and L2 cache are shown

in Figure 5.7, Figure 5.8 and Figure 5.9, respectively. The results do not imply a

significant memory shortage for any method.

Figure 5.4. The number of additions when UV = 2. F: Baseline, P: Proposed.

35

Figure 5.5. The number of intermediate results when UV = 2. F: Baseline, P:

Proposed.

Figure 5.6. The number of cycles when UV = 2. F: Baseline, P: Proposed.

36

Figure 5.7. The L1 instruction cache miss rate when UV = 2. F: Baseline, P:

Proposed.

Figure 5.8. The L1 data cache miss rate when UV = 2. F: Baseline, P: Proposed.

37

Figure 5.9. The L2 cache miss rate when UV = 2. F: Baseline, P: Proposed.

5.3. The Effects of the Matrix Properties

The effects of the matrix properties, UV, NZR and N ×M , are investigated on

the proposed method and the baseline. The iteration (It) and attempt (At) numbers

are selected as 100. The random distribution is selected as the Rayleigh CDF with

σ = 3.25. The proposed method results are prepared in less than 70 seconds for each

run. The state-of-the-art methods are not included in this section as they do not scale

for 1000× 1000 matrices. Their run-time reaches nine hours for a 200× 200 matrix.

5.3.1. Unique Values

1000×1000 matrices with UV = {2, 4, 6, 8} are constructed. NZR = 0.1 and NZR

= 0.25 are used to check whether the results depend on a specific NZR. The number

of additions is shown in Figure 5.10. The storage size is shown in Figure 5.11. The

number of CPU cycles is shown in Figure 5.12.

38

The results emphasize the importance of quantization. The quantization oper-

ation increases the similarity of the coefficients. When the similarity increases, the

number of additions, storage size and latency reduce in the proposed method. The

results also indicate the consistency of the proposed method. One of the aims of the

proposed method is to reduce the computation cost. The computation cost includes

the number of additions, storage size and latency. When the similarity increases, three

indicators reduce at the same time.

On the other hand, the baseline is not affected by UV change in terms of the

addition number and storage size. However, the simulation results show negligible

differences. For example, the cycle number increases less than 0.1% when UV increases.

The miss rates of the L1 instruction cache, L1 data cache and L2 cache are shown in

Figure 5.13, Figure 5.14 and Figure 5.15, respectively. The results do not imply a

significant memory shortage for the proposed method and baseline.

Figure 5.10. The number of additions when N ×M = 1000× 1000 for different UV.

F: Baseline, P: Proposed.

39

Figure 5.11. The storage size when N ×M = 1000× 1000 for different UV. F:

Baseline, P: Proposed.

Figure 5.12. The number of cycles when N ×M = 1000× 1000 for different UV. F:

Baseline, P: Proposed.

40

Figure 5.13. The L1 instruction cache miss rate when N ×M = 1000× 1000 for

different UV. F: Baseline, P: Proposed.

Figure 5.14. The L1 data cache miss rate when N ×M = 1000× 1000 for different

UV. F: Baseline, P: Proposed.

41

Figure 5.15. The L2 cache miss rate when N ×M = 1000× 1000 for different UV. F:

Baseline, P: Proposed.

5.3.2. Non-zero Ratio

1000× 1000 matrices with NZR = {0.1, 0.25, 0.5, 0.75} are constructed. UV = 2

and UV = 4 are used to check whether the results depend on a UV. The number

of additions is shown in Figure 5.16. The storage size is shown in Figure 5.17. The

number of CPU cycles is shown in Figure 5.18.

The results show that the efficiency of the proposed method increases when the

NZR increases. For example, a given NZR = 0.5 matrix contains twice the amount

of non-zero elements compared to a given NZR = 0.25 matrix. But, the number of

additions increases by 1.78 for the given UV = 2 matrix and 1.73 for the given UV = 4

matrix. In addition, a given NZR = 0.75 matrix contains 1.5 times of non-zero elements

compared to the given NZR = 0.5 matrix. The addition number ratio becomes 1.42

for the given UV = 2 matrix and 1.37 for the given UV = 4 matrix. The storage size

increases with a lower slope than the slope of the NNZ. The storage size for a given

UV = 2 and NZR = 0.1 matrix is 201000 elements for the CSR format and 112195

42

elements for the proposed method. The ratio of the CSR format over the proposed

method in terms of storage size is approximately 1.8. This ratio is approximately 2.3,

2.9 and 3.2 for given matrices UV = 2 and NZR = {0.25, 0.5, 0.75}, respectively.

The cycle numbers show that the latency of the baseline is approximately 4.8

seconds for NZR = {0.1, 0.25, 0.5, 0.75} with less than 1% change between each run.

The latency of the proposed method is approximately 3.2 seconds for NZR = 0.1, and

it increases to 7.5 for NZR = 0.75. The curves of the baseline and proposed method

intersect nearly at NZR = 0.25. So, the proposed method outperforms the base for

the matrices with NZR < 0.25, and the baseline outperforms the proposed method for

the matrices with NZR > 0.25. The miss rates of the L1 instruction cache, L1 data

cache and L2 cache are shown in Figure 5.19, Figure 5.20 and Figure 5.21, respectively.

The results do not imply that the cache sizes affect the process time for the proposed

method and baseline. As a result, the pruning ratio needs to be decided by considering

the changes in the latency and storage size.

Figure 5.16. The number of additions when N ×M = 1000× 1000 for different NZR.

F: Baseline, P: Proposed.

43

Figure 5.17. The storage size when N ×M = 1000× 1000 for different NZR. F:

Baseline, P: Proposed.

Figure 5.18. The number of cycles when N ×M = 1000× 1000 for different NZR. F:

Baseline, P: Proposed.

44

Figure 5.19. The L1 instruction cache miss rate when N ×M = 1000× 1000 for

different NZR. F: Baseline, P: Proposed.

Figure 5.20. The L1 data cache miss rate when N ×M = 1000× 1000 for different

NZR. F: Baseline, P: Proposed.

45

Figure 5.21. The L2 cache miss rate when N ×M = 1000× 1000 for different NZR.

F: Baseline, P: Proposed.

5.3.3. Matrix Size

Several matrices of size N×M = {250×250, 250×500, 250×1000, 500×250, 500×

500, 500× 1000, 1000× 250, 1000× 500, 1000× 1000} are constructed with UV = 2 and

NZR = 0.1. The additions number is shown in Figure 5.22. The storage size is shown

in Figure 5.23. The number of CPU cycles is shown in Figure 5.24.

When the given 1000×250 matrix is compared with the given 250×1000 matrix,

the proposed method produces 9% fewer additions, 10.8% less storage size and 1.9%

less latency for the 1000 × 250 matrix. When the row size is doubled, the number

of additions and storage size are multiplied by approximately 1.9. Besides, when the

column size is doubled, the number of additions and storage size are multiplied by

approximately 2.1. Doubling the column number increases the latency more than

doubling the row number. The results imply that increasing the row number causes less

overhead than increasing the column number in the proposed method. This property

needs to be considered while restructuring the deep learning model.

46

Besides, doubling the row number or column number double the number of addi-

tions in the baseline. In addition, doubling the row number or column number nearly

doubles the storage size in the CSR and CSC formats. Note that if the row number is

higher than the column number for a given matrix, the CSC format can be used. The

latency is very near for the given 250× 1000 and 1000× 250 matrices in the baseline.

The miss rates of the L1 instruction cache, L1 data cache and L2 cache are shown in

Figure 5.25, Figure 5.26 and Figure 5.27, respectively. The results show that the miss

rates do not change significantly between the matrices for the proposed method and

baseline.

Figure 5.22. The number of additions when UV = 2 and NZR = 0.1 for different

matrix sizes. F: Baseline, P: Proposed.

47

Figure 5.23. The storage size when UV = 2 and NZR = 0.1 for different matrix sizes.

F: Baseline, P: Proposed.

Figure 5.24. The number of cycles when UV = 2 and NZR = 0.1 for different matrix

sizes. F: Baseline, P: Proposed.

48

Figure 5.25. The L1 instruction cache miss rate when UV = 2 and NZR = 0.1 for

different matrix sizes. F: Baseline, P: Proposed.

Figure 5.26. The L1 data cache miss rate when UV = 2 and NZR = 0.1 for different

matrix sizes. F: Baseline, P: Proposed.

49

Figure 5.27. The L2 cache miss rate when UV = 2 and NZR = 0.1 for different

matrix sizes. F: Baseline, P: Proposed.

50

6. CONCLUSION

In this thesis, a random search-based CSE method with a compression format is

built. Its run-time can be defined by the iteration and attempt parameters. The run-

time of producing the adder tree stays under ten seconds for 100 × 100 matrices and

under hundred seconds for 1000×1000 matrices in the experiments. Although it shows

a weaker performance against the compared methods, it can produce an adder tree for

large matrices in a short time. The compared methods are supposed to be used for

small layers of a deep learning model if a one-dimensional matrix multiplication format

is provided. In contrast, the proposed method is recommended for large layers of a

deep learning model.

The proposed method can also be used to compress the matrices. If the matrix

contains a portion of similar elements, the proposed method compresses the matrix

more than CSR and CSC formats. Decompression can be performed without data

loss. Therefore, the proposed method can be used as a compression technique. Both

compressed and decompressed versions of the matrices can be used in matrix multipli-

cation.

The proposed method is simulated on gem5 to investigate its deployment on a

single-core embedded device. A small cache setup and DDR3 memory are picked in

the simulation to imitate an embedded device. The proposed method shows better

performance than the baseline for sparse matrices up to approximately 25% NZR. So,

the sparse models can be deployed on low-end devices, and they can be supported with

the proposed method.

In the next step of this thesis, data arrangement on the compression matrices

needs to be analyzed for the latency decrease. The placement of the common subex-

pressions in the compression matrices may be reconsidered to reduce the memory ac-

cesses. In addition, parallel processing on a multi-core device or FPGA can be studied.

51

The compression format and processing the compressed arrays need to be manipulated

to fit an FPGA well.

In conclusion, deploying a deep learning application needs to be considered as a

whole. Pruning, quantization and CSE algorithms are applied to reduce the computa-

tion cost. The efficiency of the improvement attempts depends on the target hardware.

Pruning, quantization and CSE methods need to be manipulated according to the tar-

get hardware to increase utilization. A CSE algorithm and its compression format

must be specialized for CPU, GPU or FPGA.

52

REFERENCES

1. LeCun, Y., “1.1 Deep Learning Hardware: Past, Present, and Future”, IEEE

International Solid- State Circuits Conference - (ISSCC), pp. 12–19, San Francisco,

USA, 2019.

2. Zhang, C., P. Patras and H. Haddadi, “Deep Learning in Mobile and Wireless

Networking: A Survey”, IEEE Communications Surveys & Tutorials , Vol. 21, pp.

2224–2287, 2019.

3. Shawahna, A., S. M. Sait and A. El-Maleh, “FPGA-Based Accelerators of Deep

Learning Networks for Learning and Classification: A Review”, IEEE Access ,

Vol. 7, pp. 7823–7859, 2019.

4. Zaman, K. S., M. B. I. Reaz, S. H. M. Ali, A. A. A. Bakar and M. E. H. Chowd-

hury, “Custom Hardware Architectures for Deep Learning on Portable Devices: A

Review”, IEEE Transactions on Neural Networks and Learning Systems , pp. 1–21,

2021.

5. Han, S., H. Mao and W. Dally, “Deep Compression: Compressing Deep

Neural Networks with Pruning, Trained Quantization and Huffman Coding”,

ArXiv:1510.00149 [cs], 2016.

6. Pasko, R., P. Schaumont, V. Derudder, S. Vernalde and D. Durackova, “A New

Algorithm for Elimination of Common Subexpressions”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems , Vol. 18, No. 1, pp.

58–68, 1999.

7. Goharian, N., A. Jain and Q. Sun, “Comparative Analysis of Sparse Matrix Algo-

rithms for Information Retrieval”, Computer , Vol. 2, pp. 0–4, 2003.

8. Binkert, N., B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hest-

53

ness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish,

M. D. Hill and D. A. Wood, “The Gem5 Simulator”, SIGARCH Computer Archi-

tecture News , Vol. 39, No. 2, pp. 1–7, 2011.

9. Hsiao, S.-F., M.-C. Chen and C.-S. Tu, “Memory-free Low-cost Designs of Ad-

vanced Encryption Standard Using Common Subexpression Elimination for Sub-

functions in Transformations”, IEEE Transactions on Circuits and Systems I: Reg-

ular Papers , Vol. 53, No. 3, pp. 615–626, 2006.

10. Wu, N., X. Zhang, Y. Ye and L. Lan, “Improving Common Subexpression Elimina-

tion Algorithm with A New Gate-Level Delay Computing Method”, Lecture Notes

in Engineering and Computer Science, Vol. 2, pp. 677–682, 2013.

11. Alzubaidi, L., J. Zhang, A. Humaidi, A. Al-Dujaili, Y. Duan, O. Al-Shamma,

J. Santamaŕıa, M. Fadhel, M. Al-Amidie and L. Farhan, “Review of Deep Learn-

ing: Concepts, CNN Architectures, Challenges, Applications, Future Directions”,

Journal of Big Data, Vol. 8, p. 53, 2021.

12. Justus, D., J. Brennan, S. Bonner and A. S. McGough, “Predicting the Compu-

tational Cost of Deep Learning Models”, IEEE International Conference on Big

Data (Big Data), pp. 3873–3882, Seattle, WA, USA, 2018.

13. Liu, L., Y. Wu, W. Wei, W. Cao, S. Sahin and Q. Zhang, “Benchmarking Deep

Learning Frameworks: Design Considerations, Metrics and Beyond”, IEEE 38th

International Conference on Distributed Computing Systems (ICDCS), pp. 1258–

1269, Vienna, Austria, 2018.

14. Gupta, S., W. Zhang and F. Wang, “Model Accuracy and Runtime Tradeoff in

Distributed Deep Learning: A Systematic Study”, IEEE 16th International Con-

ference on Data Mining (ICDM), pp. 171–180, Barcelona, Spain, 2016.

15. Goel, A., C. Tung, Y.-H. Lu and G. K. Thiruvathukal, “A Survey of Methods

54

for Low-Power Deep Learning and Computer Vision”, IEEE 6th World Forum on

Internet of Things (WF-IoT), pp. 1–6, New Orleans, LA, USA, 2020.

16. Deng, L., G. Li, S. Han, L. Shi and Y. Xie, “Model Compression and Hardware

Acceleration for Neural Networks: A Comprehensive Survey”, Proceedings of the

IEEE , Vol. 108, No. 4, pp. 485–532, 2020.

17. Wang, Y., W. “. Guo and X. Yue, “Tensor Decomposition to Compress Convolu-

tional Layers in Deep Learning”, IISE Transactions , pp. 1–60, 2021.

18. Phan, A.-H., K. Sobolev, K. Sozykin, D. Ermilov, J. Gusak, P. Tichavský,

V. Glukhov, I. Oseledets and A. Cichocki, “Stable Low-Rank Tensor Decompo-

sition for Compression of Convolutional Neural Network”, A. Vedaldi, H. Bischof,

T. Brox and J.-M. Frahm (Editors), Computer Vision – ECCV , pp. 522–539, Glas-

gow, Scotland, 2020.

19. Kim, E., C. Ahn and S. Oh, “NestedNet: Learning Nested Sparse Structures in

Deep Neural Networks”, IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pp. 8669–8678, Salt Palace Convention Center, Utah, United States,

2018.

20. Liu, Z., M. Sun, T. Zhou, G. Huang and T. Darrell, “Rethinking the Value of

Network Pruning”, ArXiv:1810.05270 [cs], 2019.

21. Xu, S., A. Huang, L. Chen and B. Zhang, “Convolutional Neural Network Pruning:

A Survey”, 39th Chinese Control Conference (CCC), pp. 7458–7463, Shenyang,

China, 2020.

22. Ma, X., S. Lin, S. Ye, Z. He, L. Zhang, G. Yuan, S. H. Tan, Z. Li, D. Fan, X. Qian,

X. Lin, K. Ma and Y.Wang, “Non-Structured DNNWeight Pruning–Is It Beneficial

in Any Platform?”, IEEE Transactions on Neural Networks and Learning Systems ,

pp. 1–15, 2021.

55

23. Cao, S., C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu and L. Zhang,

“Efficient and Effective Sparse LSTM on FPGA with Bank-Balanced Sparsity”,

Proceedings of the ACM/SIGDA International Symposium on Field-Programmable

Gate Arrays , pp. 63–72, New York, NY, USA, 2019.

24. Yang, J., X. Shen, J. Xing, X. Tian, H. Li, B. Deng, J. Huang and X.-s. Hua,

“Quantization Networks”, Proceedings of the IEEE/CVF Conference on Computer

Vision and Pattern Recognition (CVPR), Long Beach, California, 2019.

25. Liang, T., J. Glossner, L. Wang, S. Shi and X. Zhang, “Pruning and Quantization

for Deep Neural Network Acceleration: A Survey”, Neurocomputing , Vol. 461,

No. C, pp. 370–403, 2021.

26. Hou, L. and J. T.-Y. Kwok, “Loss-aware Weight Quantization of Deep Networks”,

ArXiv:1802.08635 [cs], 2018.

27. Chen, X., Y. Zhao, Y. Wang, P. Xu, H. You, C. Li, Y. Fu, Y. Lin and Z. Wang,

“SmartDeal: Remodeling Deep Network Weights for Efficient Inference and Train-

ing”, IEEE Transactions on Neural Networks and Learning Systems , pp. 1–15,

2022.

28. You, H., X. Chen, Y. Zhang, C. Li, S. Li, Z. Liu, Z. Wang and Y. Lin, “Shif-

tAddNet: A Hardware-Inspired Deep Network”, H. Larochelle, M. Ranzato,

R. Hadsell, M. Balcan and H. Lin (Editors), Advances in Neural Information Pro-

cessing Systems , Vol. 33, pp. 2771–2783, 2020.

29. Langr, D. and P. Tvrd́ık, “Evaluation Criteria for Sparse Matrix Storage Formats”,

IEEE Transactions on Parallel and Distributed Systems , Vol. 27, No. 2, pp. 428–

440, 2016.

30. Willcock, J. and A. Lumsdaine, “Accelerating Sparse Matrix Computations via

Data Compression”, Proceedings of the 20th Annual International Conference on

56

Supercomputing , pp. 307–316, New York, NY, USA, 2006.

31. Hosseinabady, M. and J. L. Núñez-Yáñez, “Sparse Matrix-Dense Matrix Multi-

plication on Heterogeneous CPU+FPGA Embedded System”, Proceedings of the

11th Workshop on Parallel Programming and Run-Time Management Techniques

for Many-core Architectures / 9th Workshop on Design Tools and Architectures for

Multicore Embedded Computing Platforms , Bologna, Italy, 2020.

32. Hosseinabady, M. and J. Nunez-Yanez, “A Streaming Dataflow Engine for Sparse

Matrix-Vector Multiplication Using High-Level Synthesis”, IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems , Vol. 39, pp. 1272–1285,

2020.

33. Greathouse, J. L. and M. Daga, “Efficient Sparse Matrix-Vector Multiplication on

GPUs Using the CSR Storage Format”, SC ’14: Proceedings of the International

Conference for High Performance Computing, Networking, Storage and Analysis ,

pp. 769–780, New Orleans, LA, USA, 2014.

34. Wang, Y., J. Wang, W. Zhang, Y. Zhan, S. Guo, Q. Zheng and X. Wang, “A Sur-

vey on Deploying Mobile Deep Learning Applications: A Systemic and Technical

Perspective”, Digital Communications and Networks , Vol. 8, pp. 1–17, 2021.

35. Chen, J. and X. Ran, “Deep Learning With Edge Computing: A Review”, Pro-

ceedings of the IEEE , Vol. 107, No. 8, pp. 1655–1674, 2019.

36. Ma, X., F. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren and Y. Wang, “PCONV:

The Missing but Desirable Sparsity in DNN Weight Pruning for Real-time Execu-

tion on Mobile Devices”, ArXiv:1909.05073 [cs], 2019.

37. Chen, Y., B. Zheng, Z. Zhang, Q. Wang, C. Shen and Q. Zhang, “Deep Learn-

ing on Mobile and Embedded Devices: State-of-the-Art, Challenges and Future

Directions”, ACM Computing Surveys , Vol. 53, No. 84, pp. 1–37, 2021.

57

38. Goumas, G., K. Kourtis, N. Anastopoulos, V. Karakasis and N. Koziris, “Under-

standing the Performance of Sparse Matrix-Vector Multiplication”, 16th Euromicro

Conference on Parallel, Distributed and Network-Based Processing , pp. 283–292,

Toulouse, France, 2008.

39. Nurvitadhi, E., D. Sheffield, J. Sim, A. Mishra, G. Venkatesh and D. Marr, “Ac-

celerating Binarized Neural Networks: Comparison of FPGA, CPU, GPU, and

ASIC”, International Conference on Field-Programmable Technology (FPT), pp.

77–84, Xi’an, China, 2016.

40. Tridgell, S., M. Kumm, M. Hardieck, D. Boland, D. J. M. Moss, P. Zipf and

P. H. W. Leong, “Unrolling Ternary Neural Networks”, ACM Transactions on

Reconfigurable Technology and Systems (TRETS), Vol. 12, pp. 1–23, 2019.

41. Kumm, M., M. Hardieck and P. Zipf, “Optimization of Constant Matrix Multipli-

cation with Low Power and High Throughput”, IEEE Transactions on Computers ,

Vol. 66, No. 12, pp. 2072–2080, 2017.

58

APPENDIX A: USED GEM5 OPTIONS

The arguments to run the gem5 executable for a matrix multiplication executable

are listed as follows:

• “../../../gem5/build/X86/gem5.opt”,

• “../../../gem5/configs/example/se.py”,

• “–cpu-type=TimingSimpleCPU”,

• “–cpu-clock=1GHz”,

• “–l1d size=256kB”,

• “–l1i size=256kB”,

• “–caches”,

• “–l2cache”,

• “–l2 size=1MB”,

• “–cmd=./matrix executable”.

