
A COMPREHENSIVE ANALYSIS OF SUBWORD TOKENIZERS FOR

MORPHOLOGICALLY RICH LANGUAGES

by

Erencan Erkaya

B.S., Computer Engineering, Marmara University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

I would like to thank Prof. Tunga Güngör for guidance and support.

The models were trained thanks to Google TPU Research Cloud (TRC) Program.

iv

ABSTRACT

A COMPREHENSIVE ANALYSIS OF SUBWORD

TOKENIZERS FOR MORPHOLOGICALLY RICH

LANGUAGES

Transformer language models have paved the way for outstanding achievements

on a wide variety of natural language processing tasks. The first step in transformer

models is dividing the input into tokens. Over the years, various tokenization ap-

proaches have emerged. These approaches have further evolved from character and

word-level representations to subword-level representations. However, the impact of

tokenization on models performance has not been thoroughly discussed, especially for

morphologically rich languages. In this thesis, we comprehensively analyze subword

tokenizers for Turkish, which is a highly inflected and morphologically rich language.

We define various metrics to evaluate how well tokenizers encode Turkish morphol-

ogy. Also, we examine how the tokenizer parameters like vocabulary and corpus size

change the characteristics of tokenizers. Additionally, we propose a new tokenizer for

agglutinative and morphologically rich languages. We demonstrate that our tokenizer

reduces overall perplexity and enables better generalization performance. Downstream

task experiments show that morphology supervision in tokenization improves model

performance.

v

ÖZET

MORFOLOJİSİ ZENGİN DİLLER İÇİN KELİME

BÖLÜMLEME ALGORİTMALARININ KAPSAMLI BİR

ANALİZİ

Dönüştürücü dil modelleri, çok çeşitli doğal dil işleme görevlerinde olağanüstü

başarıların yolunu açmıştır. Dönüştürücü dil modellerinde ilk adım, girdiyi jeton-

lara bölmektir. Yıllar boyunca, çeşitli bölümleme yaklaşımları ortaya atılmıştır. Bu

yaklaşımlar, karakter ve kelime seviyesindeki temsillerden alt kelime seviyesindeki tem-

sillere doğru daha da gelişmiştir. Bununla birlikte, özellikle morfolojik olarak zengin

diller için, kelime bölümleme algoritmalarının model performansı üzerindeki etkisi tam

olarak tartışılmamıştır. Bu tezde, çekimli ve morfolojik açıdan oldukça zengin bir dil

olan Türkçe için alt kelime bölümleme algoritmalarının kapsamlı bir şekilde analizi

yapılmıştır. Bölümleme algoritmalarının Türkçenin morfolojisini ne kadar iyi kod-

ladığını değerlendirmek için çeşitli metrikler tanımlanmıştır. Ayrıca, sözcük dağarcığı

ve derlem boyutu gibi farklı belirteç parametrelerinin belirteçlerin özelliklerini nasıl

değiştirdiği incelenmiştir. Ek olarak, sondan eklemeli ve morfolojik olarak zengin diller

için yeni bir bölümleme algoritması önerilmiştir. Önerilen kelime bölümleme algorit-

masının daha iyi genelleme performansı sağladığı gösterilmiştir. Doğal dil işleme deney-

leri, kelime bölümlemede morfoloji denetiminin model performansını iyileştirdiğini

göstermektedir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . x

LIST OF SYMBOLS . xiii

LIST OF ACRONYMS/ABBREVIATIONS . xiv

1. INTRODUCTION . 1

2. BACKGROUND INFORMATION . 4

2.1. Transformer Model . 4

2.1.1. Scaled Dot-Product Attention 6

2.1.2. Multi-Head Attention . 7

2.1.3. Feed-Forward Networks . 8

2.2. BERT . 8

2.3. ELECTRA . 10

2.4. An Overview of Turkish Language . 11

3. RELATED WORK . 14

4. METHODOLOGY . 17

4.1. Subword Algorithms . 17

4.1.1. Byte-pair Encoding . 17

4.1.2. Unigram Language Model . 18

4.1.3. Wordpiece . 20

4.2. Evaluation Metrics for Subword Algorithms 22

4.3. Morphologically Optimized Tokenizer 24

4.4. Pseudo-perplexity . 25

5. EXPERIMENTS AND RESULTS . 27

5.1. Comparison of Tokenizers . 27

5.2. Impact of Corpus Size on Tokenizer Performance 29

vii

5.3. Impact of Vocabulary Size on Tokenizer Performance 34

5.4. Morphologically Optimized Tokenizer 39

5.4.1. Pretraining . 44

5.4.2. Pseudo-perplexity . 45

5.5. Downstream Task Experiments . 46

5.5.1. Parts-of-Speech Tagging . 46

5.5.2. Named-entity Recognition . 48

5.5.3. Question Answering . 49

5.5.4. Sentiment Analysis . 49

6. CONCLUSION & FUTURE WORK . 51

6.1. Conclusion . 51

6.2. Future Work . 52

REFERENCES . 53

APPENDIX A: TURKISH SUFFIXES . 59

APPENDIX B: MODEL HYPERPARAMETERS 64

APPENDIX C: ALPHABET LIMIT PARAMETER 66

viii

LIST OF FIGURES

Figure 2.1. Transformer model. 5

Figure 2.2. Scaled Dot-Product Attention & Multi-Head Attention. 7

Figure 2.3. BERT Input Representation. 9

Figure 2.4. Replaced token detection. 10

Figure 4.1. Byte-Pair Encoding Algorithm . 18

Figure 4.2. Unigram Language Model Algorithm 20

Figure 4.3. Wordpiece Algorithm . 21

Figure 4.4. Morphologically Optimized Tokenizer 24

Figure 4.5. Pseudo-log-likelihood. 26

Figure 5.1. Impact of Corpus Size on Tokenizer Performance. 32

Figure 5.2. Impact of Corpus Size on Tokenizer Performance, words with suffixes. 33

Figure 5.3. Impact of Vocabulary Size on Tokenizer Performance. 37

Figure 5.4. Impact of Vocabulary Size on Tokenizer Performance, words with

suffixes. 38

Figure 5.5. Experimental Setup. 45

ix

Figure 5.6. Loss of the two ELECTRA-based models. 45

x

LIST OF TABLES

Table 2.1. Word Order Frequencies. 13

Table 4.1. BPE, ULM, Wordpiece Examples. Tokenizers were trained with the

same corpus and parameters. # denotes the word’s complement

tokens. 22

Table 5.1. Comparison of the tokenizers. 27

Table 5.2. Comparison of the tokenizers, only words with suffix. 28

Table 5.3. Comparison of the tokenizers, fertility and average token length. . 28

Table 5.4. Example single-word tokens. 29

Table 5.5. Example morphology-compatible tokens. 29

Table 5.6. Impact of Corpus Size, BPE. 30

Table 5.7. Impact of Corpus Size, ULM. 30

Table 5.8. Impact of Corpus Size, Wordpiece. 31

Table 5.9. Impact of Vocabulary Size, BPE. 35

Table 5.10. Impact of Vocabulary Size, ULM. 36

Table 5.11. Impact of Vocabulary Size, Wordpiece. 36

xi

Table 5.12. Wordpiece tokenization example across different vocabulary sizes. . 39

Table 5.13. Morphological analysis, Wordpiece tokenization, and morphologi-

cally optimized tokenization of example words. 41

Table 5.14. Comparison of Wordpiece and Morphologically Optimized Tokeniz-

ers for all words in BOUN Treebank 42

Table 5.15. Comparison of Wordpiece and Morphologically Optimized Tokeniz-

ers for words with suffixes. 43

Table 5.16. Comparison of Wordpiece and Morphologically Optimized Tokeniz-

ers with respect to fertility and average token length. 44

Table 5.17. Pseudo-perplexity. 46

Table 5.18. Performance comparison of the models, PoS Tagging, BOUN. . . . 47

Table 5.19. Performance comparison of the models, PoS Tagging, IMST. . . . 47

Table 5.20. Performance comparison of the models, PoS Tagging, Kenet. . . . 47

Table 5.21. Performance comparison of the models, PoS Tagging, Penn. 48

Table 5.22. Performance comparison of the models, NER, XTREME. 48

Table 5.23. Performance comparison of the models, QA, TQuAD. 49

Table 5.24. Performance comparison of the models, sentiment analysis, Beyazperde. 50

Table A.1. Turkish Suffixes. 59

xii

Table B.1. ELECTRA Pretraining Hyperparameters. 64

Table B.2. NER, PoS Tagging Fine-tuning Hyperparameters. 64

Table B.3. QA Fine-tuning Hyperparameters. 64

Table B.4. Sentiment Analysis Fine-tuning Hyperparameters. 65

Table C.1. Impact of Corpus Size, Wordpiece. 66

Table C.2. Impact of Corpus Size, Wordpiece. 66

xiii

LIST OF SYMBOLS

dk Dimension of Key Vector

K Key

Q Query

V Value

[CLS] Class Token

[MASK] Mask Token

[SEP] Separator Token

xiv

LIST OF ACRONYMS/ABBREVIATIONS

BERT Bidirectional Encoder Representations from Transformers

BPE Byte-Pair Encoding

CC Common Crawl

CLS Class Token

ELECTRA Efficiently Learning an Encoder that Classifies Token

Replacements Accurately

EM Exact Match

F1 F-measure

GAN Generative Adversarial Network

GB Gigabyte

GPT Generative Pre-training

GPU Graphics Processing Unit

LSTM Long Short Term Memory

MLM Masked-Language Modeling

NER Named-entity Recognition

NLI Natural Language Inference

NLP Natural Language Processing

NSP Next Sentence Prediction

OOV Out-of-vocabulary

OSCAR Open Super-large Crawled Aggregated coRpus

PoS Parts-of-Speech

QA Question Answering

RNN Recurrent Neural Network

RTD Replaced Token Detection

SEP Separator Token

SOV Subject Object Verb

SQuAD The Stanford Question Answering Dataset

T5 Text-to-Text Transfer Transformer

xv

TPU Tensor Processing Unit

TRC TPU Research Cloud

ULM Unigram Language Model

1

1. INTRODUCTION

In natural language processing (NLP), tokenization is the process of dividing a

text into pieces, called tokens. These tokens are represented as fixed-length vectors

and then fed into models. Over the years, various approaches have emerged to address

this problem.

One of the most straightforward solutions to the tokenization problem is to sep-

arate text by white space and punctuation marks. However, this approach brings its

own problems, namely the problems of vocabulary size and out-of-vocabulary words.

As the corpus size increases, the number of unique words increases too and this leads

to a larger vocabulary size which causes memory and performance problems during

processing. As a solution, reducing the vocabulary size gives rise to an increase in the

number of unknown words. The other problem is out-of-vocabulary words that are

seen in the pre-training phase but not in the test phase. This problem is commonly

seen in morphologically rich languages like Turkish as a result of lexical sparseness and

the wide diversity of grammatical properties which are expressed within morphology.

Character level representation is another solution that handles text as a sequence

of characters. The size of the vocabulary is drastically decreased to the number of

unique characters. In this way, unknown words can be encoded since all the char-

acters are represented in the vocabulary. Despite that the method solves the out-of-

vocabulary problem, reducing the size of the vocabulary produces way more tokens

compared to word level representation. Also, character units do not carry seman-

tic information, while word level representation keeps complete word semantics. The

model that employs a character level tokenizer should be complex enough to generate

plausible representations.

An intermediate approach between character and word level tokenization is sub-

word level tokenization which splits text into subwords. Subwords are coarse-grained

2

and generally shorter than word tokens which may encode morphological information

like roots, prefixes, and suffixes, unlike character tokens. The concept of subword

level tokenization was initially used in a data compression algorithm [1]. In the past

years, with the development of transformer models, subwords level tokenization ap-

proaches have been quite popular, and they have been used in state-of-the-art models

like Bidirectional Encoder Representations from Transformers (BERT) [2], Generative

Pre-training (GPT) [3], and Text-to-Text Transfer Transformer (T5) [4] to alleviate

the large vocabulary problem. Subword level tokenization enables a model to cover

any given text in a reasonable vocabulary size.

From past to present, tokenization approaches have been further developed from

word and character level representation to subword level representation. In the liter-

ature, byte-pair encoding [5], unigram language model [6], and Wordpiece [7] are the

most widely used subword tokenization algorithms. Each of these algorithms has its

own advantages and disadvantages.

It is not a straightforward process to choose an optimal tokenizer. Most state-

of-the-art models have their own custom and optimized tokenizer; therefore, input

segmentations of different models may be different for the same input. In addition to

that, subword tokenizers do not always guarantee linguistically meaningful subwords.

The extent to which tokenizer encodes morphology and produces meaningful subwords

is a subject of research. The effects of the tokenizers on the model performance have

not been generally discussed thoroughly in the literature, especially for morphologically

rich languages.

In this thesis, we aim to analyze existing tokenization algorithms for Turkish

which is a morphologically rich and highly inflected language. We define various metrics

to evaluate how well tokenizers encode Turkish morphology. Also, we examine how

the tokenizer parameters like vocabulary and corpus size change the characteristics of

tokenizers.

3

Lastly, we propose a new tokenization approach for agglutinative and morpho-

logically rich languages and compare it with Wordpiece by testing on four downstream

tasks which are named-entity recognition, parts-of-speech tagging, question answering,

and sentiment analysis.

The rest of the thesis is organized as follows. In Chapter 2, we provide background

information about the Transformer architecture, subword algorithms, and Turkish lan-

guage. In Chapter 3, we discuss the related works on transformer and input represen-

tations. In Chapter 4, we provide the details of datasets, the metrics that we use to

compare tokenizers, and the details of morphologically optimized tokenizer. In Chapter

5, we give the experimental setup and discussion of the outcomes. Lastly, in Chapter

6, we give a brief overview of the findings and potential future works.

4

2. BACKGROUND INFORMATION

2.1. Transformer Model

The transformer architecture has paved the way for advanced language models.

In the literature, there are a lot of models based on the Transformer model that show

outstanding performance on a wide variety of natural language processing tasks such

as named entity recognition, question answering, natural language inference [2, 3, 8].

Before the Transformer, Recurrent Neural Network (RNN) and Long Short Term

Memory (LSTM) have dominated NLP literature; the most advanced and complex

models were built using RNN and LSTM. However, RNN and LSTM can just process

one word in a sequence at a time and progressively expands knowledge of the sequence.

This drawback makes them hard to learn long-range dependencies. The nature of

RNNs and LSTMs limits parallel computing. The Transformer enables to process a

sequence at once in a parallel manner on the contrary to RNN, LSTM. As a result of

the parallelization, the Transformer can process way more data than the others and

does not suffer from the long dependency problem. Also, the Transformer has paved

the way for a much more efficient use of computing devices like Graphics Processing

Units (GPUs).

The transformer architecture consists of two major components: encoder and

decoder as shown in Figure 2.1. The encoder takes the whole input sequence (x1, ..., xn)

and encodes it into a sequence of continuous representations z = (z1, ..., zn). The

decoder uses the output of the encoder z and the previously generated tokens as input

to generate output (y1, ..., ym). At each step, the decoder generates the next token.

In the original implementation, the encoder consists of six identical layers. Each

layer is broken down into two components: a multi-head attention mechanism and a

feed-forward network. The multi-head attention mechanism is used to reflect various

5

attention patterns. The feed-forward network provides nonlinear transformation and

operates as key-value memories [9]. These two components have residual connections

followed by layer normalization. Residual connections primarily contribute to alleviat-

ing the vanishing gradient problem.

Feed-forward
Network

Add & Norm

Multi-Head
Attention

Add & Norm

Input
Embedding

Positional
Encoding

Feed-forward
Network

Add & Norm

Multi-Head
Attention

Add & Norm

Masked
Multi-Head
Attention

Add & Norm

Linear

Softmax

Output
Embedding

Positional
Encoding

Output
Probabilities

Source Target

N x

N x

Figure 2.1. Transformer model.

The decoder is a stack of six equal layers similar to the encoder. The decoder

also has an additional multi-head attention layer after the first layer. The second layer

6

carries out the multi-head attention operation over the output of the encoder’s last

layer. Similar to the encoder, the three components have residual connections followed

by layer normalization. On the contrary to the encoder, the decoder partially masks

the input to prevent attending to subsequent tokens since only preceding tokens can

be used for the prediction.

2.1.1. Scaled Dot-Product Attention

Attention was initially used in the encoder-decoder architecture in order to over-

come the inability to decode long inputs. Attention enables the decoder to reach any

state from the encoder’s outputs; as a result of this, the encoder does not have to

compress the whole input sequence information into a single context vector. There

are different types of attention mechanisms. The Transformer uses the self-attention

mechanism to compute the attention scores of a token to a sequence. These scores

indicate how much attention to give to each context token.

Transformer basically relies on self-attention. The input embeddings are pro-

jected onto three vector spaces called query (Q), key (K), and value (V) to calculate

self-attention scores. Then, the dot products of the query and all keys are calculated.

The dot products provide information about how much attention the query has over

the keys. The scores are divided by the square root of the dimension of the key vec-

tor dk and applied a softmax function. The scores are scaled because the dot products

might be large in magnitude. As a final step, the scaled scores are multiplied by values.

In practice, these scores are computed simultaneously for all the keys in a sequence as

Attention(Q,K, V) = softmax

(
QKT

√
dk

)
V. (2.1)

7

h

MatMul

SoftMax

Mask (opt.)

Scale

MatMul

Q K V

Scaled Dot-Product Attention

Scaled Dot-Product
Attention

Concat

Linear

Linear Linear Linear

V K Q

Multi-Head Attention

Figure 2.2. Scaled Dot-Product Attention & Multi-Head Attention.

2.1.2. Multi-Head Attention

Scaled dot-product attention only provides a single representation; however, per-

forming multiple self-attention functions with a different key, query, and value param-

eters might provide different representation sub-spaces. For example, one attention

pattern can reflect the subject-verb agreement, and another can show affixes. The

Transformer uses multiple-head attention instead of performing a single attention op-

eration. The projection operation is performed h times as shown in Figure 2.2. Each

time different projection vectors are used. Finally, outputs are concatenated and pro-

jected onto WO as

MultiHead(Q,K, V) = Concat (head1, . . . , head h)WO,

where head i = Attention
(
QWQ

i , KW
K
i , V W

V
i

)
.

(2.2)

In the original implementation of Transformer, 8 parallel attention layers are

used.

8

2.1.3. Feed-Forward Networks

Within a single Transformer layer, there is also another sub-layer called feed-

forward network. The feed-forward neural network is expressed as

FFN(x) = max (0, xW1 + b1)W2 + b2. (2.3)

The feed-forward neural network applies two nonlinear transformations and the

output of the network is passed to the subsequent layer as input.

2.2. BERT

The original transformer architecture [10] was initially designed for machine trans-

lation tasks; for this reason, the model needs the decoder to generate text. However,

some NLP tasks such as classification and part-of-speech tagging do not require text

generation. This makes the decoder part unnecessary for some tasks.

BERT [2] is the only encoder part of the original transformer model with small

modifications. BERT consists of stacked transformer layers, where each layer includes

multiple self-attention heads. For every input of attentions, query, value, and key vec-

tors are computed and used to correlate the relationship between current and context

words. The outputs of the self-attention heads are fed into a fully connected layer.

Each layer has skip-layer connections and is accompanied by layer normalization.

As shown in Figure 2.3, the input embeddings of BERT consist of position embed-

dings, segments embeddings, and token embeddings. Each embedding layer encodes a

different type of information extracted from the input.

9

[CLS] I1 I2 I3 I4 [SEP] I5 I6 I7 [SEP]

E[CLS] Ew
1 Ew

2 Ew
3 Ew

4 E[SEP] Ew
5 Ew

6 Ew
7 E[SEP]

EA EA EA EA EA EA EB EB EB EB

Input Embeddings

Token Embeddings

Segment Embeddings

Position Embeddings

+ + + + + + + + + +

E0 E1 E2 E3 E4 E5 E6 E7 E8 E9

+ + + + + + + + + +

Figure 2.3. BERT Input Representation.

The input text is tokenized by using the WordPiece algorithm [7, 11]. Also, the

BERT model takes a position and segment embedding for each token in the input. Since

the model does not have any position information of the token, position embedding

is used to encode order for each word. Some tasks require two input segments, like

question answering. In a similar way, segment embedding is used to distinguish two

segments given a pair. The tree embeddings are combined and fed into the model.

Every input sequence starts with a special token [CLS], which is used as an aggregation

of the entire input tokens. In tasks that take two segments, the input is separated by

token [SEP].

BERT is trained on two pretraining tasks; Masked Language Modelling (MLM)

and Next Sentence Prediction (NSP). MLM tries to predict input tokens that are

replaced by the [MASK] token. However, the [MASK] token does not appear during

the fine-tuning process. If the model is trained only by masking tokens, the model

only learns contextual representations of the [MASK] token. To alleviate this issue,

15% of the input tokens are randomly selected. Only 80% of the selected tokens are

replaced by the [MASK] token, 10% of the selected tokens are kept unchanged, and

10% of the selected tokens are replaced with a random token. Many NLP tasks such

as question answering (QA), natural language inference (NLI) require understanding

the relationship between two sentences. To model this relationship, BERT uses the

10

NSP task, which tries to predict whether two sentences are consecutive or not. 50%

of the input sentences are consecutive sentences, and the remaining 50% are randomly

combined sentences. The BERT model develops a solid language comprehension ability

through the pretraining tasks.

2.3. ELECTRA

BERT is trained on the MLM task, which replaces a certain percentage of input

tokens with [MASK], and the trained model is optimized to predict the original tokens.

However, this approach requires a massive amount of computational power to acquire

successful results. Efficiently Learning an Encoder that Classifies Token Replacements

Accurately (ELECTRA) uses an alternative task to train a model called replaced token

detection (RTD), as shown in Figure 2.4. Some tokens are replaced with alternative

tokens that are produced by the generator. Then, another network called discriminator

tries to predict whether each token is replaced or original. RTD is more effective than

MLM because RTD uses all input tokens, unlike MLM, which uses just masked tokens.

Generator Discriminator

[MASK]
örnek
[MASK]
cümledir

bu
örnek
bir

cümledir

şu

bir

replaced
original
original
original

Figure 2.4. Replaced token detection.

ELECTRA consists of the generator G and the discriminator D. Both of them

are encoders like BERT. The generator takes input tokens x = [x1, ..., xn] and produces

contextualized representations of the input h(x) = [h1, ..., hn] like BERT. The generator

produces a token distribution for a masked token as

pG (xt | x) = exp
(
e (xt)

T hG(x)t

)
/
∑
x′

exp
(
e (x′)

T
hG(x)t

)
, (2.4)

where t is the position of the masked token and e is token embeddings.

11

The discriminator D is trained to distinguish whether a token x is replaced or

not for a given position t. The discriminator is expressed as

D(x, t) = sigmoid
(
wThD(x)t

)
. (2.5)

The objective function of ELECTRA is similar to generative adversarial networks

(GAN). The generator implements MLM. It selects 15% of input tokens and replaces

them with [MASK]. Although the ELECTRA architecture is similar to GAN, a few

points are different. The generator is trained with maximum likelihood, not in an

adversarial manner. The combination of loss LMLM and LDisc is minimized during

training. For downstream tasks, the discriminator is finetuned. The combination of

loss is expressed as

min
θG,θD

∑
x∈X

LMLM (x, θG) + λLDisc (x, θD) , (2.6)

where λ is the weight for the discriminator objective.

ELECTRA works especially well under conditions where data and computational

resources are limited. However BERT requires more computational power since BERT

masks only 15% of the input tokens for each example. The studies [12] show that the

training process of ELECTRA is considerably faster than BERT to reach the same

performance and ELECTRA performs better when it is completely trained.

2.4. An Overview of Turkish Language

Turkish is a highly inflected and morphologically rich language. A considerable

amount of grammar is expressed with suffixes that are added to words. These suffixes

may have different forms depending on what vowels are in the base word. This phe-

nomenon in the Turkish language is known as vowel harmony. Suffixes are attached,

considering which type of vowels are used. Vowel harmony rules decide which forms

of a suffix are attached to preserve harmony. For example, -lar and -ler are the plural

suffixes used in Turkish. Adding either -ler or -lar makes a word plural, but which one

to add depends on vowel harmony. Words with one of the back vowels (a, ı, o, u) in

the last syllable get the suffix -lar, while words with one of the front vowels (e, i, ö, ü)

12

in the last syllable get the suffix -ler. Although the form of the suffix is different, the

meaning it gives is the same.

There are mainly two categories of suffixes: inflectional and derivational suffixes.

Inflectional suffixes are used to inflect grammatical properties of words and produce

alternate forms of words without changing the essential meaning of words. Unlike

inflectional suffixes, derivational suffixes make new words and change the meanings of

words.

Prefixes are quite exceptional in Turkish. Most of the words with suffixes were

taken from Persian and Arabic, and later from other foreign languages such as English

and French [13]. For example; a-normal (anormal), dez-avantaj (disadvantage), anti-

tez (antithesis). Also, there are some prefixes to intensify meaning, like mas-mavi (deep

blue), pes-pembe (rose-pink).

A typical Turkish sentence mostly appears in Subject Object Verb (SOV) word

order; the subject appears at the beginning of the sentence, the object comes next,

and the verb generally comes at the end of the sentence. However, the word order is

relatively flexible in Turkish. Various word orders like OSV and OVS can be seen in the

written and spoken language. There are five main elements to make a sentence: verb,

subject, object, indirect object, adverbial clause [14]. When all of these elements are

taken into account, there are 24 possible sentences in the canonical form in which the

verb comes at the end of the sentence. As shown in Table 2.1 [15], most sentences follow

SOV and SVO word orders, and sentences that start with verbs are quite exceptional.

Also, changing the word order enables emphasizing a specific part of a sentence. The

emphasis is on the word that is closer to the verb.

13

Table 2.1. Word Order Frequencies.

SOV 48%

OSV 8%

SVO 25%

OVS 13%

VSO 6%

VOS <1%

14

3. RELATED WORK

After transformer-based models have achieved SOTA results, a lot of studies that

focus on ways to improve and interpret models have been published in the literature.

In this chapter, we explained some important studies.

Kudo et al. [16] proposed a sub-word tokenizer called SentencePiece. It is an

extension of two sub-word segmentation algorithms, byte-pair encoding, and uni-gram

language model. SentencePiece does not need pre-tokenized word sequences, unlike

BPE and ULM. It treats the input just as a sequence of Unicode characters, even for

white spaces. It enables to build an end-to-end system that does not depend on any

language-specific processing. It includes four main components: normalizer, trainer,

encoder, and decoder. Normalizer is a module to normalize semantically equivalent

unicode characters into canonical forms. Trainer trains the sub-word segmentation

model from the normalized corpus. Encoder internally executes Normalizer to normal-

ize the input text and tokenizes it into a sub-word sequence with the sub-word model

trained by Trainer. Decoder converts the sub-word sequence into the normalized text.

It also employs some speed-up methods such as a priority queue. The experiments

show that Sentencepiece consistently outperforms.

Choe et al. [17] developed a tokenizer-free language model based on byte repre-

sentations. The proposed model takes UTF-8 bytes instead of tokenized input text.

The ASCII range covers the most common characters. Two or three UTF-8 bytes are

mostly sufficient for non-ASCII characters. The experiments show that byte-level rep-

resentations improve performance. Tokenizer-free language models like byte-level LM

can perform better.

Sub-word tokenization algorithms do not evenly suit all languages. Clark et

al. [18] proposed a neural encoder that operates on character sequences called CANINE.

It is an architecture that consists of a deep transformer stack at its core that uses

15

Unicode characters to represent input without a vocabulary. Input characters are

represented by Unicode, which does not change over time, unlike vocabulary-based

IDs. CANINE is the first pre-trained encoder that uses a tokenization-free, vocabulary-

free model. The pure character level model is 10x slower than the original BERT

implementation. However, CANINE performs similarly in terms of speed. It may

encode better, especially morphologically rich languages.

Character language models do not need a fixed word vocabulary and enable to

model sub-word information. Nevertheless, even large corpora do not cover most inflec-

tion forms, especially for morphologically rich languages. Blevins et al. [19] developed a

character-based language model that takes morphology into account. The morphology

model outperforms the character language model, and languages with lower inflection

rates benefit from morphology supervision.

Alyafeai et al. [20] analyzed various tokenization approaches for Arabic which is

a morphologically rich language. They compared six tokenizers: character tokenizer,

word tokenizer, morphological tokenizer, stochastic tokenizer, disjoint-letter tokenizer,

and SentencePiece tokenizer. The results indicate that the word tokenizer performs bet-

ter on sentiment analysis and news classification tasks. Increasing vocabulary size leads

to fewer out-of-vocabulary words and generally improves accuracy. Also, stochastic to-

kenizer, which may produce meaningless tokens, performs close to the other tokenizers

on Arabic. They commented that morphological information and coarse-grained tokens

provide better results for low resource datasets, but tokenizer does not contribute too

much for high resource datasets.

Matthews et al. [21] propose an open-vocabulary language model. The model

combines character, word-level approaches, and morphological information in a neural

network. The results show that the proposed model performs better than an n-gram

model, character level RNNLM. Morphological information improves the performance

of language models, especially for morphologically rich languages.

16

Domingo et al. [22] show the impact of various tokenization algorithms on neural

machine translation. They conducted experiments on five tokenizers over ten language

pairs. The experiments show that tokenization has a major impact and improves

translation quality. There is not the best tokenizer for all languages. Each method

gives the best performance for specific languages.

Mielke et al. [23] survey comprehensively the history of tokenization approaches

and show how they evolved throughout the years. They claimed that each method

has its own drawbacks and problems, and each algorithm performs better for certain

applications. There are some applications that need larger tokens for efficiency and

performance. On the other hand, morphologically rich languages may necessitate fine-

grained tokens to represent each word adequately.

17

4. METHODOLOGY

In this chapter, we explain the most commonly used tokenization algorithms and

define some key metrics to compare tokenizers. We also explain the details of the

morphologically optimized tokenizer. Lastly, an intrinsic evaluation metric Pseudo-

perplexity is presented to evaluate how well a model models a given input.

4.1. Subword Algorithms

In the following subsections we explain subword algorithms.

4.1.1. Byte-pair Encoding

Initially, BPE was designed as a data compression algorithm [1], then it became

popular in the neural machine translation field [5, 11] and advanced language models

[24,25]. Byte-pair encoding is a text segmentation algorithm that can represent a word

in smaller pieces. Pretrained language models might need a representation of rare or

unknown word. Since it is not possible to handle all words, pretrained language models

use this kind of approaches as a solution for the out-of-vocabulary problem. Models

tokenize input before processing it and generate output using subword vocabulary.

18

Input: strings S, vocabulary size k

procedure BPE(S, k)

V ← unique characters in S

while |V| < k do (Merge tokens)

a1, a2 ← most frequent bigram in S

anew ← a1 ⊕ a2 (new token)

V ← V ∪ {anew}

Replace a1, a2 with anew

end while

return V

end procedure

Figure 4.1. Byte-Pair Encoding Algorithm.

The BPE algorithm is shown in Figure 4.1. Byte-pair encoding iterates over

each character in a corpus and finds the pair that has the highest frequency. Then it

replaces each occurrence of the pair with a new symbol of the pair (merging) and adds

the merged subword to vocabulary. The process continues until reaching the number of

iterations or subword vocabulary size. The motivation of BPE is to represent a corpus

with a fewer number of tokens so that a model can handle the rare words problem.

4.1.2. Unigram Language Model

ULM is another text segmentation algorithm which is proposed by Kudo [6]. It is

based on a unigram language model which makes an assumption that the probability of

each subword is independent of other subwords. Therefore a sequence can be tokenized

as the product of the subword (x1, ..., xM) probabilities as

P (x) =
M∏
i=1

p (xi) . (4.1)

19

The highest probability gives the most likely segmentation for a sequence, that can be

written as

x∗ = arg max
x∈S(X)

P (x). (4.2)

The loss function is expressed as

L = −
N∑
i=1

log

 ∑
x∈S(xi)

p(x)

 . (4.3)

The ULM algorithm is shown in Figure 4.2. ULM starts with an initial seed

vocabulary which is significantly greater than the target vocabulary size, gradually

reduces to reach target vocabulary size. An initial seed vocabulary might consist of

unique characters, common substrings, affixes that are extracted from training corpus.

The expectation maximization algorithm is used to compute subword probabilities.

The ULM algorithm calculates a loss for each subword in vocabulary at each training

step. This step shows how much a particular subword affects overall score. Then, it

sorts the subwords by loss and removes subwords below a certain percentage. This

process continues until reaching the defined target vocabulary size. In the final version

of the vocabulary, single characters are always kept.

20

Input: strings S, vocabulary size k, shrinking factor p

procedure ULM(S, k)

V ← initial seed vocabulary (unique characters, common substrings, affixes)

while |V| > k do

Compute unigram language model θ for S

for x ∈ V do

Lx ← Pθ − Pθ′ (where θ’ is the LM without substring x)

end for

Remove (1-p)% of the substrings that have lowest L

end while

Fit final unigram LM θ to D

return V, θ

end procedure

Figure 4.2. Unigram Language Model Algorithm.

4.1.3. Wordpiece

Wordpiece was introduced by Schuster and Nakajima [7] to deal with an infinite

vocabulary, then with the rapidly developing NLP studies, it has been used in trans-

former models like BERT [10], ELECTRA [12], DistillBERT [26]. Wordpiece uses all

unique characters in the language as initial seed vocabulary, then iteratively extends

vocabulary by merging the pair that causes the largest increase in likelihood. This

makes Wordpiece an approach between BPE and ULM.

21

Input: strings S, vocabulary size k

procedure Wordpiece(S, k)

V ← unique characters in S

while |V| < k do (Merge tokens)

a1, a2 ← pair that causes largest increase in likelihood

anew ← a1 ⊕ a2 (new token)

V ← V ∪ {anew}

Replace a1, a2 with anew

end while

return V

end procedure

Figure 4.3. Wordpiece Algorithm.

The Wordpiece algorithm is shown in Figure 4.3. Unlike BPE, Wordpiece com-

bines pairs of subwords according to the language model probability instead of fre-

quency. At each iteration of the algorithm, Wordpiece chooses the pair that gives the

largest increase in the language model probability. For example, if the token kalem is

more probably to occur than the tokens kal + em, the tokens are merged and added

to the vocabulary list. The process continues until reaching the target vocabulary size.

Using language model rather than frequency enables Wordpiece to consider the impact

of merging a pair.

The main difference between BPE and Wordpiece is that the Wordpiece algorithm

chooses the most likely segmentation instead of the best segmentation at each iteration

unlike BPE. Both methods are bottom-up and greedy approaches. On the contrary,

ULM is a completely probabilistic solution which makes use of probability for choosing

and merging pairs.

22

Table 4.1. BPE, ULM, Wordpiece Examples. Tokenizers were trained with the same

corpus and parameters. # denotes the word’s complement tokens.

Word BPE ULM Wordpiece

büyükadaya büyü, #ka, #daya büyük, #aday, #a büyük, #ada, #ya

dünyalıyım dün, #yalı, #yım dünya, #lıyım dünya, #lı, #yım

inceltmek incel, #tmek ince, #l, #t, #mek incel, #tme, #k

kaygısını kayg, #ısını kaygı, #sını kaygısı, #nı

yangının yang, #ının yangın, #ın yangını, #n

modüler mo, #düler modül, #e, #r modül, #er

tümüne tüm, #üne tümü, #n, #e tümü, #ne

yandı yandı y, #andı yan, #dı

okuru ok, #uru o, #kuru okur, #u

döşek dö, #şek döşe, #k döş, #ek

4.2. Evaluation Metrics for Subword Algorithms

We define various evaluation metrics to evaluate tokenizers. The motivation is to

evaluate morphological compatibility, especially for morphologically rich languages like

Turkish. Morphology-compatible tokens, suffix precision, suffix recall, and root tokens

require morphological analysis to compare tokens. In addition, single-word tokens,

fertility, and average token length give information about the granularity of tokens.

We analyze the subword algorithms according to the following criteria:

(i) Single-word Tokens: measures the percentage of words that are tokenized as a

single token in a corpus. In other words, it tells what percentage of the words in a

corpus are in the vocabulary; it means that the vocabulary contains those words

themselves. For example, if kalemler (pencils) is tokenized as kalemler, it can be

seen as a single-word token. This metric shows how well a tokenizer represents a

corpus without dividing words into subwords.

(ii) Morphology-compatible Tokens: measures the percentage of words that are ex-

23

actly tokenized as the same as morphology. For example, if kalemler (pencils)

is tokenized as kalem, #ler ; it is valid since the token boundaries are the same

as the morpheme boundaries, which are kalem, -ler. A higher percentage means

that the tokenizer encodes morphology better.

(iii) Suffix Precision: shows how many tokens are suffixes. Suffix precision is the num-

ber of suffix-tokens, in which the token boundaries are the same as the morpheme

boundaries, divided by the total number of tokens. For example, if kalemleri (his

or her pencils) is tokenized as kalem, #ler, #i ; #ler and #i are the suffix-tokens

since they are suffixes. The suffix precision metric is expressed as

Suffix Precision =
number of suffix− tokens

number of tokens
. (4.4)

(iv) Suffix Recall: shows how many suffixes are tokenized properly. Suffix recall is

the number of suffix-tokens, in which the token boundaries are the same as the

morpheme boundaries, divided by the total number of suffixes. The suffix recall

metric is expressed as

Suffix Recall =
number of suffix− tokens

number of suffixes
. (4.5)

(v) Root Tokens: measures the percentage of words in which roots are represented as

a single token. Unlike the morphology-compatible tokens metric, roots are only

taken into account. For example, kalem, #leri can be seen as a valid case, even if

it does not align with morphology like kalem, -ler, -i. This metric ignores suffixes

and focuses only on how successfully roots are represented as a whole.

(vi) Fertility: measures the average number of tokens per word. It shows how fre-

quently a tokenizer splits words. A tokenizer with high fertility tends to produce

fine-grained tokens.

(vii) Average Token Length: measures the average number of characters per token in

a vocabulary.

24

4.3. Morphologically Optimized Tokenizer

The tokenization algorithms do not take morphology into account by default. As

shown in Table 4.1, the words are divided into tokens that do not mostly consider

morpheme boundaries. We propose the morphologically optimized tokenizer to inject

morphological information into the tokenization process. Our approach needs morpho-

logical analyzer to extract suffixes. Then the training corpus is updated in a way that

the suffixes are enclosed with special characters so that the tokenizer recognizes suffixes

during the training phase. Extracted suffixes are represented as undivisible symbols in

inputs, so suffixes are not broken up into smaller tokens. For example, kalemleri was

updated as kalem<ler><i>. Thus, the tokenizer can distinguish the suffixes, which

are -ler and -i. Suffix symbols are not included in the merge process and are always

kept separate from roots.

Input: strings S, vocabulary size k

procedure MorphologicallyOptimizedTokenizer(S, k)

V ← unique characters and affix symbols in S

A ← unique affix symbols in S

while |V| < k do (Merge tokens)

a1, a2 ← pair that causes largest increase in likelihood, a1 or a2 not in A

anew ← a1 ⊕ a2 (new token)

V ← V ∪ {anew}

Replace a1, a2 with anew

end while

return V

end procedure

Figure 4.4. Morphologically Optimized Tokenizer Algorithm.

25

The morphologically optimized tokenizer algorithm is shown in Figure 4.4. The

morphologically optimized tokenizer iterates over each character in a corpus and finds

the pair with the highest frequency. While choosing a pair, suffix symbols are excluded,

so all the suffixes are always represented separately. For example, the tokens kalem and

<ler> can not be merged even if the pair causes largest increase in likelihood, because

the token <ler> is a suffix symbol. Then it replaces each occurrence of the pair with

a new symbol of the pair (merging) and adds the merged subword to vocabulary. The

process continues until reaching the number of iterations or subword vocabulary size.

The motivation of the morphologically optimized tokenizer is to represent a corpus

with morphologically compatible tokens.

We experimented morphologically optimized tokenizer on various downstream

tasks.

4.4. Pseudo-perplexity

A language model is basically a probability distribution that gives a probability

for the new word in a given text. Perplexity is one of the intrinsic evaluation metrics

for language models. Perplexity can be defined as the normalized inverse probability

of given words as

PP (W) = N

√
1

P (w1, w2, . . . , wN)
, (4.6)

where W is a sequence of words.

Intuitively, Perplexity shows how well a language model predicts a given input.

The evaluation is done in sequence from left to right. If a language model gives lower

perplexity, it means higher probability and less uncertainty.

However, Perplexity is not an applicable metric for masked language models like

BERT and ELECTRA. It is not possible to get the probability of an input text. Salazar

et al. [27] proposed Pseudo-perplexity to evaluate how well a masked language model

26

models a given input. Pseudo-perplexity is computed by masking one token at a time,

as shown in Figure 4.5. Firstly, the log-likelihood of each masked token is summed

to calculate pseudo-log-likelihood score (PLL). Pseudo-log-likelihood score (PLL) is

expressed as

PLL(W) =

|W |∑
t=1

logPMLM

(
wt | W\t; Θ

)
. (4.7)

Then, PLL scores are summed and normalized with N which is the number of tokens

in the corpus C to compute Pseudo-perplexity (PPPL). Pseudo-perplexity (PPPL) is

expressed as

PPPL(C) = exp

(
− 1

N

∑
W∈C

PLL(W)

)
. (4.8)

ELECTRA

linear + softmax

[MASK] ##ada ##ya

büyük [MASK] ##ya

büyük ##ada [MASK]

P(büyük) P(##ada) P(##ya)

 PLL
Σ log

Figure 4.5. Pseudo-log-likelihood.

27

5. EXPERIMENTS AND RESULTS

5.1. Comparison of Tokenizers

We trained BPE, ULM, and Wordpiece tokenizers with a vocabulary size of 32000

on the Turkish part of the Open Super-large Crawled Aggregated coRpus (OSCAR)

corpus [28]. The corpus contains 33 gigabyte (GB) of text which is obtained by filtering

the Common Crawl corpus. As shown in Table 4.1, each tokenizer can produce different

tokens for the same word. To compare the tokenizers, we used BOUN Treebank [29]

as the test dataset. The dataset contains 44275 words with suffixes, 97424 words in

total. We tokenized the dataset using three tokenizers and analyzed them according

to the metrics given in section 4.2. The comparison results are provided in Table 5.1.

Table 5.1. Comparison of the tokenizers.

BPE ULM Wordpiece

Single-word Tokens 75% 68% 73%

Morphology-compatible Tokens 52% 51% 54%

Suffix Precision 49% 44% 51%

Suffix Recall 36% 38% 39%

Root Tokens 9% 10% 8%

BPE performs better in terms of single-word tokens. BPE represents words more

as a whole and without dividing them into subwords compared to the other tokenizers.

ULM produces fine-grained tokens, but tokens are less morphologically compatible.

Considering the results, Wordpiece is the most morphologically compatible tokenizer,

and it also produces coarse-grained tokens. However, Wordpiece does not represent

roots as well as ULM.

28

The analysis provided in Table 5.1 includes all the words in the dataset. However,

examining all the words can produce misleading results since many of the words are

short and do not have suffixes. We also analysed only the words with at least one suffix

in the BOUN Treebank dataset. The analysis is provided in Table 5.2.

Table 5.2. Comparison of the tokenizers, only words with suffix.

BPE ULM Wordpiece

Single-word Tokens 55% 47% 53%

Morphology-compatible Tokens 6% 8% 10%

Suffix Precision 21% 24% 27%

Suffix Recall 12% 16% 16%

Root Tokens 19% 22% 19%

Similar statistics are seen when only words with suffixes are considered. About

half of the words are represented as a whole. However, only 10% of the words are

tokenized in a morphologically compatible way and BPE performs the worst in terms

of morphology. This observation applies to the suffix metrics; BPE can not encode

suffixes as well as the other methods. Roots are appropriately represented at around

20% in all the tokenizers.

Table 5.3. Comparison of the tokenizers, fertility and average token length.

BPE ULM Wordpiece

Fertility 1.3133 1.4971 1.3413

Fertility, words with suffix 1.5356 1.7761 1.5813

Average Token Length 6.0962 4.4275 5.7159

Fertility and average token length are provided in Table 5.3. The average token

length of ULM is less than the other tokenizers. As a result of this, ULM tends

to produce more tokens for each word; ULM has higher token fertility. BPE and

Wordpiece have approximately the same fertility scores considering only words with

29

suffixes. Moreover, ULM produces more tokens for the words with suffixes since the

words are generally longer.

In Table 5.4 and 5.5, example single-word and morphology-compatible tokens are

provided. The tokenizers can mostly produce morphology-compatible tokens for the

words with one suffix. On the other hand, the tokenizers tend to produce tokens that

do not reflect morphological boundaries for the words with more than one suffix.

Table 5.4. Example single-word tokens.

BPE ULM Wordpiece

sözcüğü çalışmaları etkinlikleri

hastalıklardan desteklemek araştırmalar

müşteriler vatandaşın maçlarda

Table 5.5. Example morphology-compatible tokens.

BPE ULM Wordpiece

editör, #ler uygula, #mış, #lar kahvaltı, #ya

rüzgar, #lık üniversite, #de televizyon, #da

deprem, #den balık, #lar depo, #nun

5.2. Impact of Corpus Size on Tokenizer Performance

We trained tokenizers with a vocabulary size of 32000 and various corpus sizes

on the Turkish part of OSCAR to measure to what extent the dataset size changes the

characteristics of the tokenizers. As shown in Table 5.6, the average token length of

BPE is getting lower as the corpus size increases. At the same time, fertility is getting

higher. This indicates that BPE tends to produce more and shorter tokens as the

corpus size increases. This analysis holds true for the other tokenizers, as can be seen

in Table 5.7 and Table 5.8. After a certain point, the tokenizers become saturated, and

the training corpus size does not impact that much.

30

Table 5.6. Impact of Corpus Size, BPE.

Corpus Size - GB Fertility

Fertility,

words with

suffix

Average

Token

Length

1 1.3303 1.5674 5.5482

2 1.3367 1.5782 5.3147

3 1.3411 1.5851 5.1702

5 1.3485 1.5972 4.9250

10 1.3614 1.6184 4.5938

20 1.3782 1.6478 4.2437

30 1.3886 1.6653 4.0040

Table 5.7. Impact of Corpus Size, ULM.

Corpus Size - GB Fertility

Fertility,

words with

suffix

Average

Token

Length

1 1.3674 1.6106 6.0719

2 1.3905 1.6337 5.8326

3 1.4007 1.6463 5.6793

5 1.4187 1.6656 5.4268

10 1.4426 1.6996 5.0931

20 1.4721 1.7418 4.7454

30 1.4924 1.7693 4.5026

31

Table 5.8. Impact of Corpus Size, Wordpiece.

Corpus Size - GB Fertility

Fertility,

words with

suffix

Average

Token

Length

1 1.3753 1.6416 4.8747

2 1.3917 1.6684 4.4702

3 1.4048 1.6887 4.2163

5 1.4253 1.7234 3.7898

10 1.4645 1.7882 3.2287

20 1.5226 1.8807 2.6431

30 1.5717 1.9620 2.2617

32

Figure 5.1. Impact of Corpus Size on Tokenizer Performance.

33

Figure 5.2. Impact of Corpus Size on Tokenizer Performance, words with suffixes.

34

The number of single-word tokens decreases as the corpus size increases, as shown

in Figure 5.1. On the other hand, the number of morphology-compatible tokens in-

creases. It means that the tokenizer is getting to encode morphology better when

tokenizers are trained with more data. However, as shown in Figure 5.2, even a few

gigabytes of data is enough to encode a language reasonably. ULM is the most sensitive

tokenizer to the corpus size in terms of morphology. Training with more data causes a

decrease in the number of single-word tokens, but it drastically increases the number

of morphology-compatible tokens than Wordpiece and BPE.

5.3. Impact of Vocabulary Size on Tokenizer Performance

We trained tokenizers with various vocabulary sizes on the Turkish part of OS-

CAR to measure how the vocabulary size changes the characteristics of the tokenizers.

The tokenizers produce fewer tokens per word as the vocabulary size increases. A

vocabulary size of 1000 is nearly identical to a character level tokenizer. Increasing

vocabulary size makes tokenizers generate more and shorter tokens. When the vocab-

ulary size is close to the number of words in a corpus, the tokenizer fertility is nearly

equal to 1. As shown in Table 5.9, Table 5.10, and Table 5.11, the fertility of words

with suffixes is higher since the words that have suffixes are generally longer than words

without suffixes.

35

Table 5.9. Impact of Vocabulary Size, BPE.

Vocabulary Size Fertility

Fertility,

words with

suffix

Average

Token

Length

1000 5.4698 8.0283 1.0119

2000 2.2568 3.0263 2.2570

3000 1.9909 2.6274 2.2971

5000 1.7632 2.2778 3.7434

10000 1.5548 1.9434 4.6962

20000 1.3967 1.6789 5.5725

30000 1.3238 1.5540 6.0275

The tokenizers are getting to produce coarse-grained tokens as the vocabulary

size increases. It leads to an increase in the number of single-word tokens, as shown

in Figure 5.3. On the other hand, the number of morphology-compatible tokens does

not change considerably, especially after a vocabulary size of 5000. A vocabulary size

of between 3000 and 5000 encodes morphology better, as shown in Figure 5.4. After

that size, the number of root tokens gradually decreases.

We used the Hugging Face library [30] to train tokenizers. The library takes

additional parameters like alphabet limit to limit the maximum number of different

characters. The alphabet limit parameter is of significant importance in the quality of

the generated vocabulary. As shown in appendix C, if the alphabet limit parameter is

kept constant, the metrics do not change significantly.

36

Table 5.10. Impact of Vocabulary Size, ULM.

Vocabulary Size Fertility

Fertility,

words with

suffix

Average

Token

Length

1000 5.4698 8.0283 1.0078

2000 5.3461 7.8720 1.0525

3000 3.0765 4.2064 1.1728

5000 2.2633 3.0117 1.9316

10000 2.0186 2.6142 2.2350

20000 1.7347 2.1583 2.8601

30000 1.5162 1.8087 4.2252

Table 5.11. Impact of Vocabulary Size, Wordpiece.

Vocabulary Size Fertility

Fertility,

words with

suffix

Average

Token

Length

1000 5.4698 8.0283 1.0060

2000 5.4698 8.0283 1.0060

3000 2.3922 3.2006 1.8016

5000 1.9347 2.5326 2.8672

10000 1.6347 2.0659 4.0520

20000 1.4384 1.7451 5.0974

30000 1.3548 1.6049 5.6345

37

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0
Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Single-word Tokens

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Morphology-compatible Tokens

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Suffix Precision

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Suffix Recall

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Root Tokens

BPE
ULM
Wordpiece

Figure 5.3. Impact of Vocabulary Size on Tokenizer Performance.

38

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0
Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Single-word Tokens

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Morphology-compatible Tokens

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Suffix Precision

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Suffix Recall

BPE
ULM
Wordpiece

10
00

20
00

30
00

50
00

10
00

0

20
00

0

30
00

0

Vocabulary Size

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
Root Tokens

BPE
ULM
Wordpiece

Figure 5.4. Impact of Vocabulary Size on Tokenizer Performance, words with suffixes.

39

Table 5.12. Wordpiece tokenization example across different vocabulary sizes.

Vocabulary Size Tokens

1000 h, #a ,#z ,#i ,#n ,#e ,#s ,#i ,#d, #i, #r

2000 h, #a ,#z ,#i ,#n ,#e ,#s ,#i ,#d, #i, #r

3000 haz, #ine ,#si ,#dir

5000 haz, #ine ,#si ,#dir

10000 haz, #ine ,#si ,#dir

20000 hazin, #esi ,#dir

30000 hazine, #si ,#dir

Table 5.12 shows how tokens change across different vocabulary sizes for the word

hazinesidir (it is him/her treasure). As the vocabulary size increases, the Wordpiece

tokenizer produces longer and fewer tokens. The WordPiece tokenizer trained with a

vocabulary size of 1000 produces a token for each character. The WordPiece tokenizer

trained with a vocabulary size of 30000 encodes the word exactly in accordance with

the morphology of the word.

5.4. Morphologically Optimized Tokenizer

We trained the morphologically optimized tokenizer with a vocabulary size of

32000 on the Turkish part of the OSCAR corpus as explained in Section 4.3. We

performed morphological analysis using Zemberek [31] to extract suffixes. Zemberek is

an open-source library for Turkish and provides a variety of NLP solutions, including a

morphological parser. The suffixes are listed in Table A.1. After the extracting suffixes,

the corpus was updated in a way that the suffixes are enclosed with special characters so

that the tokenizer recognizes suffixes during the training phase. For example, kalemleri

was updated as kalem<ler><i>. Thus, the tokenizer can distinguish the suffixes, which

are -ler and -i. The morphologically optimized tokenizer was trained using the updated

corpus as explained in Section 4.3.

40

In addition to the morphologically optimized tokenizer, we trained the Wordpiece

tokenizer with the same parameters and corpus to compare the tokenizers. Some exam-

ples from both tokenizers are given in Table 5.13. For example, the word tesislerinde

(in their facilities) is not broken up and is represented as a single-word token with the

Wordpiece tokenizer. Suppose we train a model with this tokenizer. In that case, the

model can not associate tesislerinde (in their facilities) with tesislerimde (in my facil-

ities) since the tokens of the words do not contain any common token. On the other

hand, the morphologically optimized tokenizer tokenizes the word tesislerinde into

morphology-compatible tokens. The token boundaries are exactly compatible with the

morphology of the word; the morphologically optimized tokenizer can split properly

the root, which is tesis (facility) and the suffixes, which are ler, i, and nde. In this

way, if we train a model using the morphologically optimized tokenizer, the model can

correlate tesislerinde (in their facilities) with tesislerimde (in my facilities) as the root

of the words, which is tesis (facility), is represented separately.

For another example, the word olmuş (happened) is tokenized as olm, #uş with

the Wordpiece tokenizer. It means that the vocabulary does not contain the word

itself, and the word is split into smaller pieces, but the token olm is not meaningful

in Turkish, neither root nor suffix. On the other side, if we tokenize the word olmuş

using the morphologically optimized tokenizer, it can split the word into meaningful

tokens which preserve morphological integrity.

41

Table 5.13. Morphological analysis, Wordpiece tokenization, and morphologically

optimized tokenization of example words.

Word Morphology Wordpiece

Morphologically

Optimized

Tokenizer

kumbaranın kumbara, -nın kum, #bara, #nın kumbara, #nın

başlayan başla, -yan baş, #layan başla, #yan

uğraştığı uğraş, -tığ, -ı u, #ğra, #ştı, #ğı uğraş, #tığ, #ı

esiyordu es, -iyor, -du es, #iyordu es, #iyor, #du

tesislerinde tesis, -ler, -i, -nde tesislerinde tesis, #ler, #i, #nde

yaşamak yaşa, -mak yaşama, #k yaşa, #mak

olmuş ol, -muş olm, #uş ol, #muş

dağlarına dağ, -lar, -ı, -na da, #ğla, #rı, #na dağ, #la, #rı, #na

sınarız sına, -r, ız sına, #rı, #z sına, #r, #ız

kaptanının kaptan, -ı, -nın kaptanı, #nın kaptan, #ı, #nın

We used the BOUN Treebank as the test dataset to compare the tokenizers. The

dataset includes 44275 words with suffixes, 97424 words in total. We tokenized the

dataset using Wordpiece and morphologically optimized tokenizers and analyzed them

according to the metrics given in section 4.2. The comparison results are provided in

Table 5.14.

42

Table 5.14. Comparison of Wordpiece and Morphologically Optimized Tokenizers for

all words in BOUN Treebank.

Wordpiece

Morphologically

Optimized

Tokenizer

Single-word Tokens 73% 47%

Morphology-compatible Tokens 54% 83%

Suffix Precision 51% 78%

Suffix Recall 39% 89%

Root Tokens 8% 38%

The number of single-word tokens is higher in Wordpiece. Wordpiece represents

words without splitting them into subwords compared to the morphologically opti-

mized tokenizer. However, it does not encode morphology better, as shown in Table

5.13. The morphologically optimized tokenizer can only represent about half of the

words as a whole. On the other hand, the morphologically optimized tokenizer encodes

morphology better, especially for the longer words with more than one suffix. Suffix

precision and recall are higher than Wordpiece. It means that the token boundaries

are compatible with the suffixes of the words.

We also analysed only the words with at least one suffix in the BOUN Treebank

dataset. The analysis is provided in Table 5.15.

43

Table 5.15. Comparison of Wordpiece and Morphologically Optimized Tokenizers for

words with suffixes in BOUN Treebank.

Wordpiece

Morphologically

Optimized

Tokenizer

Single-word Tokens 53% 0%

Morphology-compatible Tokens 10% 76%

Suffix Precision 27%. 82%

Suffix Recall 16% 100%

Root Tokens 19% 76%

If a word has a suffix, the morphologically optimized tokenizer always splits the

word thanks to encoded morphology information. As a result of this, the morpholog-

ically optimized tokenizer does not generate a single-word token for the words with

suffixes. On the other hand, the morphologically optimized tokenizer may not encode

morphology perfectly. As shown in Table 5.15, the tokenizer can only encode 76% of

the words in a morphologically compatible way. The rest of the words can not be fully

encoded because their roots are broken up into smaller pieces. For example, the word

kasetin (your tape) is tokenized as kas, #et, #in. The suffix, which is -in, is tokenized

properly, but the root, which is kaset (tape), is tokenized into smaller pieces and does

not preserve its integrity.

44

Table 5.16. Comparison of Wordpiece and Morphologically Optimized Tokenizers

with respect to fertility and average token length.

Wordpiece

Morphologically

Optimized

Tokenizer

Fertility, all words 1.3413 1.9935

Fertility, words with suffix 1.5813 2.9480

Average Token Length 5.7159 5.0024

Fertility and average token length are provided in Table 5.16. Since the morpho-

logically optimized tokenizer produces fewer single-word tokens, fertility is higher and

the average token length is lower than Wordpiece.

5.4.1. Pretraining

We pretrained two models: ELECTRA with the Wordpiece tokenizer and ELEC-

TRA with the morphologically optimized tokenizer. The pretraining parameters are

given in Table B.1. Both models were trained on the Turkish part of OSCAR. We

used the original implementation of ELECTRA [12]. We trained the models on a v3-8

Tensor Processing Unit (TPU) for 1M steps, and the training process took 12 hours

for each model.

The experimental setup is shown in Figure 5.5; the models are the same apart

from input vocabularies. The ELECTRA Morphology model was trained with the mor-

phologically optimized tokenizer. The Electra model was trained with the Wordpiece

tokenizer.

45

ELECTRA ELECTRA

ka #lem #le #ri kalem #ler #i

a) ELECTRA b) ELECTRA Morphology

Figure 5.5. Experimental Setup.

The ELECTRA Morphology model converges faster in fewer steps than ELEC-

TRA, as shown in Figure 5.6.

Figure 5.6. Loss of the two ELECTRA-based models.

5.4.2. Pseudo-perplexity

We used pseudo-perplexity to compare the models intrinsically. In this experi-

ment, we analyzed pseudo-perplexity scores for 2206 words that are tokenized in the

same way. The scores are presented in Table 5.17.

46

Table 5.17. Pseudo-perplexity.

Pseudo-perplexity

ELECTRA 80921

ELECTRA (Morphology) 67259

Pseudo-perplexity can be interpreted as the model’s uncertainty. Less pseudo-

perplexity is favourable over more pseudo-perplexity, similar to the case with the per-

plexity metric. The result shows that morphological information reduces overall per-

plexity, whereas the original model has a higher pseudo-perplexity score. A lower

pseudo-perplexity score indicates better generalization performance.

5.5. Downstream Task Experiments

Since it is not straightforward to measure the impact of the morphologically

optimized tokenizer, the models are tested on several downstream tasks: part-of-speech

tagging, named-entity recognition, question answering, and sentiment analysis. We

fine-tuned the models on the tasks.

5.5.1. Parts-of-Speech Tagging

Parts-of-speech (PoS) tagging is the task of tagging each word in a sentence with

its proper parts-of-speech, such as noun or verb. We added a linear classification layer

on top of the models and fine-tuned the entire architecture for predicting the parts-

of-speech tags for single tokens. We fine-tuned the models on 4 datasets: BOUN [29],

IMST [32], Kenet [33], and Penn [34]. The hyper-parameters are given in Table B.2.

The accuracy scores are shown in Tables 5.18 - 5.21.

47

Table 5.18. Performance comparison of the models, PoS Tagging, BOUN.

Training Steps ELECTRA ELECTRA (Morphology)

200k 89.97 90.17

400k 90.21 90.38

600k 90.40 90.56

800k 90.54 90.59

1M 90.62 90.64

Table 5.19. Performance comparison of the models, PoS Tagging, IMST.

Training Steps ELECTRA ELECTRA (Morphology)

200k 93.57 94.73

400k 94.31 95.11

600k 94.78 95.20

800k 95.41 95.42

1M 95.36 95.56

Table 5.20. Performance comparison of the models, PoS Tagging, Kenet.

Training Steps ELECTRA ELECTRA (Morphology)

200k 92.82 93.05

400k 92.80 93.07

600k 93.20 93.48

800k 93.22 93.46

1M 93.19 93.52

48

Table 5.21. Performance comparison of the models, PoS Tagging, Penn.

Training Steps ELECTRA ELECTRA (Morphology)

200k 94.24 94.41

400k 94.38 94.58

600k 94.41 94.60

800k 94.47 94.61

1M 94.58 94.54

The ELECTRA Morphology model generally outperforms the ELECTRA model.

Especially at earlier training steps, The ELECTRA Morphology model achieves a rel-

atively better score than the ELECTRA model.

5.5.2. Named-entity Recognition

Named-entity recognition (NER) is the task of identifying entities, such as person,

location, and organization. We used a similar architecture to parts-of-speech tagging.

We added a linear classification layer on top of the models and fine-tuned the entire

architecture for predicting entity tags for single tokens. We fine-tuned the models on

the Turkish dataset from XTREME [35]. The hyper-parameters are given in Table

B.2. The accuracy results are shown in Table 5.22.

Table 5.22. Performance comparison of the models, NER, XTREME.

Training Steps ELECTRA ELECTRA (Morphology)

200k 86.02 86.40

400k 87.41 87.48

600k 88.21 89.04

800k 89.08 89.44

1M 89.27 89.32

49

The ELECTRA Morphology model outperforms the ELECTRA model on the

named-entity recognition task.

5.5.3. Question Answering

The question answering task extracts an answer given a question from a passage

of text. The model takes two sequences separated by the [SEP] token: a question

and a passage. The model is optimized to predict the index of starting and ending

answer tokens. We fine-tuned the models on TQuAD [36]. The dataset contains 9200

question-answer pairs. We used the Hugging Face question-answering pipeline. The

hyper-parameters are given in Table B.3. The F-measure (F1) and Exact match (EM)

scores are shown in Table 5.23.

Table 5.23. Performance comparison of the models, QA, TQuAD.

ELECTRA ELECTRA (Morphology)

F1 57.38 58.09

EM 37.78 38.17

The ELECTRA Morphology model outperforms the ELECTRA model on the

question answering task.

5.5.4. Sentiment Analysis

Sentiment analysis is the task of predicting the sentiment of a sentence. We added

a classification layer that takes the [CLS] representation as input and fine-tuned the

model to predict sentiment. We fine-tuned the models on the Turkish movie review

dataset from Beyazperde [37]. The dataset contains 5331 positive and 5331 negative

sentences. The hyper-parameters are given in Table B.4. The accuracy scores are

shown in Table 5.24.

50

Table 5.24. Performance comparison of the models, sentiment analysis, Beyazperde.

ELECTRA ELECTRA (Morphology)

Accuracy 0.8630 0.8788

The ELECTRA Morphology model performs better on the sentiment analysis

than the ELECTRA model.

51

6. CONCLUSION & FUTURE WORK

6.1. Conclusion

In this thesis, we analyzed the three most widely used tokenization algorithms:

BPE, Wordpiece, and ULM. We defined various metrics to evaluate how well tokenizers

encode a morphologically rich language. We have found that Wordpiece tends to

produce more single-word tokens, along with morphology-compatible tokens, than BPE

and ULM. The analysis of tokenizers trained with the same corpus and parameters has

shown that the tokenizers can represent about half of the words as a whole. However,

10% of the words could be tokenized in a morphologically compatible way.

We analyzed the impact of corpus size on tokenizer performance. The tokenizers

are getting to produce more and shorter tokens as the corpus size increases. However,

the tokenizers become saturated after a certain point, and the training corpus size does

not impact that much. Training with more data causes a decrease in the number of

single-word tokens, but it drastically increases the number of morphology-compatible

tokens.

The tokenizers produce fewer tokens per word as the vocabulary size increases.

Increasing vocabulary size makes tokenizers generate more and shorter tokens. A

vocabulary size of between 3000 and 5000 encodes morphology better. After that

size, the number of root tokens gradually decreases.

We proposed a morphologically optimized tokenizer to encode morphology better.

We pretrained two models: ELECTRA with the Wordpiece tokenizer and ELECTRA

with the morphologically optimized tokenizer. The models are the same apart from

input vocabularies. We analyzed pseudo-perplexity scores to compare the models in-

trinsically. The experiment has shown that morphological information reduces overall

perplexity, whereas the original model has a higher pseudo-perplexity score.

52

We also fine-tuned the models to measure the impact of the morphologically

optimized tokenizer. The downstream task experiments show that the model trained

with the morphologically optimized tokenizer slightly outperforms the model trained

with the Wordpiece tokenizer.

6.2. Future Work

For future work, we plan to train more models from scratch to compare the

impact of the morphologically optimized tokenizer. As shown in various studies [38,39],

adversarially fine-tuning improves performance. Similar to these approaches, training

with both Wordpiece and morphologically optimized segmentations can be tested. Also,

examining how morphological information is processed along the way in a model in

terms of self-attention weights is a promising study.

53

REFERENCES

1. Gage, P., “A New Algorithm for Data Compression”, C Users Journal , Vol. 12,

No. 2, pp. 23–38, 1994.

2. Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding”, Proceedings of the Con-

ference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies , Vol. 1, pp. 4171–4186, Association for

Computational Linguistics, Minneapolis, Minnesota, 2019.

3. Brown, T., B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-

lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,

T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse,

M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-

dlish, A. Radford, I. Sutskever and D. Amodei, “Language Models are Few-Shot

Learners”, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan and H. Lin (Edi-

tors), Advances in Neural Information Processing Systems , Vol. 33, pp. 1877–1901,

Curran Associates, Inc., 2020.

4. Raffel, C., N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li

and P. J. Liu, “Exploring the Limits of Transfer Learning with a Unified Text-to-

Text Transformer”, Journal of Machine Learning Research, Vol. 21, No. 140, pp.

1–67, 2020.

5. Sennrich, R., B. Haddow and A. Birch, “Neural Machine Translation of Rare Words

with Subword Units”, Proceedings of the 54th Annual Meeting of the Association for

Computational Linguistics , Vol. 1, pp. 1715–1725, Association for Computational

Linguistics, Berlin, Germany, 2016.

6. Kudo, T., “Subword Regularization: Improving Neural Network Translation Mod-

54

els with Multiple Subword Candidates”, Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics , Vol. 1, pp. 66–75, Association

for Computational Linguistics, Melbourne, Australia, 2018.

7. Schuster, M. and K. Nakajima, “Japanese and Korean Voice Search”, International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 5149–5152,

2012.

8. Liu, Y., M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettle-

moyer and V. Stoyanov, “Roberta: A Robustly Optimized Bert Pretraining Ap-

proach”, arXiv preprint arXiv:1907.11692 , 2019.

9. Geva, M., R. Schuster, J. Berant and O. Levy, “Transformer Feed-Forward Lay-

ers are Key-Value Memories”, Empirical Methods in Natural Language Processing

(EMNLP), 2021.

10. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser

and I. Polosukhin, “Attention is All You Need”, Advances in Neural Information

Processing Systems , pp. 5998–6008, 2017.

11. Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, L. Kaiser,

S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil,

W. Wang, C. Young, J. R. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. S.

Corrado, M. Hughes and J. Dean, “Google’s Neural Machine Translation Sys-

tem: Bridging the Gap between Human and Machine Translation”, arXiv preprint

arXiv:1609.08144 , 2016.

12. Clark, K., M.-T. Luong, Q. V. Le and C. D. Manning, “ELECTRA: Pre-training

Text Encoders as Discriminators Rather Than Generators”, The International

Conference on Learning Representations (ICLR), 2020.

55

13. Şahin, H., “Türkçe’de Ön Ek”, Uludağ Üniversitesi Fen-Edebiyat Fakültesi Sosyal

Bilimler Dergisi , Vol. 7, No. 10, pp. 65–77, 2006.

14. Mete, F., “In Turkish: Sentence Structure and Possible Sentences According to

the Sequence of Elements.”, Journal of Education and Training Studies , Vol. 4,

No. 10, pp. 221–231, 2016.

15. Hoffman, B., M. Walker, E. Prince and A. J. Oxford, “Word Order, Information

Structure, and Centering in Turkish”, Centering in Discourse, Citeseer, 1997.

16. Kudo, T. and J. Richardson, “Sentencepiece: A Simple and Language Independent

Subword Tokenizer and Detokenizer for Neural Text Processing”, arXiv preprint

arXiv:1808.06226 , 2018.

17. Choe, D., R. Al-Rfou, M. Guo, H. Lee and N. Constant, “Bridging the Gap for

Tokenizer-free Language Models”, arXiv preprint arXiv:1908.10322 , 2019.

18. Clark, J. H., D. Garrette, I. Turc and J. Wieting, “Canine: Pre-training an Ef-

ficient Tokenization-Free Encoder for Language Representation”, Transactions of

the Association for Computational Linguistics , Vol. 10, pp. 73–91, 2022.

19. Blevins, T. and L. Zettlemoyer, “Better Character Language Modeling through

Morphology”, Proceedings of the 57th Annual Meeting of the Association for Com-

putational Linguistics , pp. 1606–1613, Association for Computational Linguistics,

Florence, Italy, 2019.

20. Alyafeai, Z., M. S. Al-shaibani, M. Ghaleb and I. Ahmad, “Evaluating Various

Tokenizers for Arabic Text Classification”, arXiv preprint arXiv:2106.07540 , 2021.

21. Matthews, A., G. Neubig and C. Dyer, “Using Morphological Knowledge in Open-

vocabulary Neural Language Models”, Proceedings of the Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies , Vol. 1, pp. 1435–1445, 2018.

56

22. Domingo, M., M. Garcıa-Martınez, A. Helle, F. Casacuberta and M. Herranz, “How

Much Does Tokenization Affect Neural Machine Translation?”, arXiv preprint

arXiv:1812.08621 , 2018.

23. Mielke, S., Z. Alyafeai, E. Salesky, C. Raffel, M. Dey, M. Gallé, A. Raja, C. Si,

W. Lee, B. Sagot and S. Tan, “Between Words and Characters: A Brief His-

tory of Open-Vocabulary Modeling and Tokenization in NLP”, arXiv preprint

arXiv:2112.10508 , 2021.

24. Radford, A. and K. Narasimhan, “Improving Language Understanding by Gener-

ative Pre-Training”, OpenAI, 2018.

25. Radford, A., J. Wu, R. Child, D. Luan, D. Amodei and I. Sutskever, “Language

Models are Unsupervised Multitask Learners”, OpenAI, 2019.

26. Sanh, V., L. Debut, J. Chaumond and T. Wolf, “DistilBERT, A Distilled Version of

BERT: Smaller, Faster, Cheaper and Lighter”, arXiv preprint arXiv:1910.01108 ,

2019.

27. Salazar, J., D. Liang, T. Q. Nguyen and K. Kirchhoff, “Masked Language Model

Scoring”, arXiv preprint arXiv:1910.14659 , 2019.

28. Abadji, J., P. J. O. Suárez, L. Romary and B. Sagot, “Ungoliant: An optimized

pipeline for the generation of a very large-scale multilingual web corpus”, Pro-

ceedings of the Workshop on Challenges in the Management of Large Corpora

(CMLC-9), pp. 1 – 9, Leibniz-Institut für Deutsche Sprache, Mannheim, 2021.

29. Türk, U., F. Atmaca, Ş. B. Özateş, G. Berk, S. T. Bedir, A. Köksal, B. Ö. Başaran,

T. Güngör and A. Özgür, “Resources for Turkish Dependency Parsing: Introducing

the BOUN Treebank and the BoAT Annotation Tool”, Language Resources and

Evaluation, pp. 1–49, 2021.

30. Wolf, T., L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,

57

T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,

Y. Jernite, J. Plu, C. Xu, T. Le Scao, S. Gugger, M. Drame, Q. Lhoest and A. Rush,

“Transformers: State-of-the-Art Natural Language Processing”, Proceedings of the

Conference on Empirical Methods in Natural Language Processing: System Demon-

strations , pp. 38–45, Association for Computational Linguistics, Online, 2020.

31. Akın, A. A. and M. D. Akın, “Zemberek, An Open Source NLP Framework for

Turkic Languages”, Structure, Vol. 10, No. 2007, pp. 1–5, 2007.

32. Sulubacak, U., G. Eryiğit and T. Pamay, “IMST: A Revisited Turkish Dependency

Treebank”, Proceedings of TurCLing, the 1st International Conference on Turkic

Computational Linguistics , Ege University Press, 2016.

33. Bakay, Ö., Ö. Ergelen, E. Sarmış, S. Yıldırım, B. N. Arıcan, A. Kocabalcıoğlu,

M. Özçelik, E. Sanıyar, O. Kuyrukçu, B. Avar and O. T. Yıldız, “Turkish Wordnet

Kenet”, Proceedings of the 11th Global Wordnet Conference, pp. 166–174, 2021.

34. Kuzgun, A., N. Cesur, B. N. Arıcan, M. Özçelik, B. Marşan, N. Kara, D. B. Aslan

and O. T. Yıldız, “On Building the Largest and Cross-linguistic Turkish Depen-

dency Corpus”, Innovations in Intelligent Systems and Applications Conference

(ASYU), pp. 1–6, 2020.

35. Hu, J., S. Ruder, A. Siddhant, G. Neubig, O. Firat and M. Johnson, “Xtreme: A

Massively Multilingual Multi-task Benchmark for Evaluating Cross-lingual Gener-

alisation”, International Conference on Machine Learning , pp. 4411–4421, PMLR,

2020.

36. Soygazi, F., O. Çiftçi, U. Kök and S. Cengiz, “THQuAD: Turkish Historic Question

Answering Dataset for Reading Comprehension”, 6th International Conference on

Computer Science and Engineering (UBMK), pp. 215–220, 2021.

37. Demirtas, E. and M. Pechenizkiy, “Cross-lingual Polarity Detection with Machine

58

Translation”, Proceedings of the Second International Workshop on Issues of Sen-

timent Discovery and Opinion Mining , pp. 1–8, 2013.

38. Tan, S., S. Joty, M.-Y. Kan and R. Socher, “It’s Morphin’ Time! Combating

Linguistic Discrimination with Inflectional Perturbations”, Proceedings of the 58th

Annual Meeting of the Association for Computational Linguistics , pp. 2920–2935,

Association for Computational Linguistics, Online, 2020.

39. Tan, S., S. Joty, L. R. Varshney and M.-Y. Kan, “Mind Your Inflections! Improving

NLP for Non-standard Englishes with Base-Inflection Encoding”, arXiv preprint

arXiv:2004.14870 , 2020.

59

APPENDIX A: TURKISH SUFFIXES

Table A.1. Turkish Suffixes.

Suffix Suffix Suffix Suffix

1 -a 26 -ci 51 -duğ 76 -er

2 -abil 27 -cik 52 -dü 77 -erek

3 -acak 28 -ciğ 53 -dük 78 -esi

4 -acağ 29 -cu 54 -dükçe 79 -esiye

5 -adur 30 -cuk 55 -dür 80 -eyaz

6 -agel 31 -cuğ 56 -düğ 81 -i

7 -agör 32 -cü 57 -dı 82 -ici

8 -akal 33 -cük 58 -dık 83 -il

9 -akoy 34 -cüğ 59 -dıkça 84 -im

10 -alı 35 -cı 60 -dır 85 -imiz

11 -am 36 -cık 61 -dığ 86 -imle

12 -ama 37 -cığ 62 -e 87 -imsi

13 -amadan 38 -da 63 -ebil 88 -in

14 -an 39 -dan 64 -ecek 89 -ince

15 -ar 40 -de 65 -eceğ 90 -inil

16 -arak 41 -den 66 -edur 91 -iniz

17 -ası 42 -di 67 -egel 92 -inle

18 -asıya 43 -dik 68 -egör 93 -ip

19 -ayaz 44 -dikçe 69 -ekal 94 -ir

20 -ca 45 -dir 70 -ekoy 95 -iver

21 -casına 46 -diğ 71 -eli 96 -iyor

22 -cağız 47 -du 72 -em 97 -iz

23 -ce 48 -duk 73 -eme 98 -iş

24 -cesine 49 -dukça 74 -emeden 99 -k

25 -ceğiz 50 -dur 75 -en 100 -ken

60

Table A.1. Turkish Suffixes. (cont.)

Suffix Suffix Suffix Suffix

101 -ki 126 -lığ 151 -msı 176 -nul

102 -kü 127 -m 152 -muz 177 -nun

103 -la 128 -ma 153 -muş 178 -nunla

104 -lan 129 -maca 154 -müz 179 -nuz

105 -lar 130 -madan 155 -müş 180 -nü

106 -ları 131 -mak 156 -mız 181 -nül

107 -laş 132 -maksızın 157 -mış 182 -nün

108 -le 133 -makta 158 -n 183 -nüz

109 -len 134 -malı 159 -na 184 -nı

110 -ler 135 -mazlık 160 -nca 185 -nıl

111 -leri 136 -mazlığ 161 -nce 186 -nın

112 -leş 137 -me 162 -nda 187 -nız

113 -li 138 -mece 163 -ndan 188 -r

114 -lik 139 -meden 164 -nde 189 -sa

115 -lim 140 -mek 165 -nden 190 -sal

116 -liğ 141 -meksizin 166 -ne 191 -sana

117 -lu 142 -mekte 167 -ni 192 -sanıza

118 -luk 143 -meli 168 -nil 193 -se

119 -luğ 144 -mezlik 169 -nin 194 -sel

120 -lü 145 -mezliğ 170 -niz 195 -sene

121 -lük 146 -miz 171 -nla 196 -senize

122 -lüğ 147 -miş 172 -nlar 197 -si

123 -lı 148 -msi 173 -nlu 198 -sin

124 -lık 149 -msu 174 -nsuz 199 -siniz

125 -lım 150 -msü 175 -nu 200 -sinler

61

Table A.1. Turkish Suffixes. (cont.)

Suffix Suffix Suffix Suffix

201 -siz 226 -tiğ 251 -unuz 276 -ydi

202 -su 227 -tu 252 -up 277 -ydu

203 -sun 228 -tuk 253 -ur 278 -ydü

204 -sunlar 229 -tukça 254 -uver 279 -ydı

205 -sunuz 230 -tur 255 -uyor 280 -ye

206 -suz 231 -tuğ 256 -uz 281 -yebil

207 -sü 232 -tü 257 -uş 282 -yecek

208 -sün 233 -tük 258 -ya 283 -yeceğ

209 -sünler 234 -tükçe 259 -yabil 284 -yedur

210 -sünüz 235 -tür 260 -yacak 285 -yegel

211 -süz 236 -tüğ 261 -yacağ 286 -yegör

212 -sı 237 -tı 262 -yadur 287 -yekal

213 -sın 238 -tık 263 -yagel 288 -yekoy

214 -sınlar 239 -tıkça 264 -yagör 289 -yeli

215 -sınız 240 -tır 265 -yakal 290 -yem

216 -sız 241 -tığ 266 -yakoy 291 -yeme

217 -t 242 -u 267 -yalı 292 -yemeden

218 -ta 243 -ucu 268 -yam 293 -yen

219 -tan 244 -ul 269 -yama 294 -yerek

220 -te 245 -um 270 -yamadan 295 -yesi

221 -ten 246 -umsu 271 -yan 296 -yesiye

222 -ti 247 -umuz 272 -yarak 297 -yeyaz

223 -tik 248 -un 273 -yası 298 -yi

224 -tikçe 249 -unca 274 -yasıya 299 -yici

225 -tir 250 -unul 275 -yayaz 300 -yim

62

Table A.1. Turkish Suffixes. (cont.)

Suffix Suffix Suffix Suffix

301 -yimiz 326 -yunca 351 -yış 376 -ünce

302 -yin 327 -yunuz 352 -z 377 -ünül

303 -yince 328 -yup 353 -ça 378 -ünüz

304 -yiniz 329 -yuver 354 -çasına 379 -üp

305 -yip 330 -yuz 355 -çe 380 -ür

306 -yiver 331 -yuş 356 -çesine 381 -üver

307 -yiz 332 -yü 357 -çi 382 -üyor

308 -yiş 333 -yücü 358 -çik 383 -üz

309 -yken 334 -yüm 359 -çiğ 384 -üş

310 -yla 335 -yün 360 -çu 385 -ı

311 -yle 336 -yünce 361 -çuk 386 -ıcı

312 -yli 337 -yünüz 362 -çuğ 387 -ıl

313 -ymiş 338 -yüp 363 -çü 388 -ım

314 -ymuş 339 -yüver 364 -çük 389 -ımsı

315 -ymüş 340 -yüz 365 -çüğ 390 -ımız

316 -ymış 341 -yüş 366 -çı 391 -ın

317 -yor 342 -yı 367 -çık 392 -ınca

318 -ysa 343 -yıcı 368 -çığ 393 -ınla

319 -yse 344 -yım 369 -ü 394 -ınıl

320 -ysiz 345 -yın 370 -ücü 395 -ınız

321 -yu 346 -yınca 371 -ül 396 -ıp

322 -yucu 347 -yınız 372 -üm 397 -ır

323 -yum 348 -yıp 373 -ümsü 398 -ıver

324 -yumuz 349 -yıver 374 -ümüz 399 -ıyor

325 -yun 350 -yız 375 -ün 400 -ız

63

Table A.1. Turkish Suffixes. (cont.)

Suffix Suffix Suffix Suffix

401 -ış

64

APPENDIX B: MODEL HYPERPARAMETERS

Table B.1. ELECTRA Pretraining Hyperparameters.

Parameter

Learning rate 0.0005

Batch size 128

Weight decay 0.01

Sequence length 128

Table B.2. NER, PoS Tagging Fine-tuning Hyperparameters.

Parameter

Learning rate 0.00005

Epochs 10

Batch size 16

Optimizer AdamW

Weight decay 0.01

Table B.3. QA Fine-tuning Hyperparameters.

Parameter

Learning rate 0.00003

Epochs 20

Batch size 32

Optimizer AdamW

Weight decay 0.01

Max sequence length 384

Doc stride 128

65

Table B.4. Sentiment Analysis Fine-tuning Hyperparameters.

Parameter

Learning rate 0.00002

Epochs 5

Batch size 32

Optimizer AdamW

Weight decay 0.01

66

APPENDIX C: ALPHABET LIMIT PARAMETER

Table C.1. Impact of Corpus Size, BPE.

Corpus Size - GB Fertility

Fertility,

words with

suffix

Average

Token

Length

1 1.3155 1.5419 6.0766

2 1.3155 1.5412 6.0789

3 1.3147 1.5389 6.0856

5 1.3137 1.5372 6.0901

10 1.3134 1.5361 6.0938

20 1.3136 1.5360 6.0942

30 1.3135 1.5358 6.0974

Table C.2. Impact of Corpus Size, Wordpiece.

Corpus Size - GB Fertility

Fertility,

words with

suffix

Average

Token

Length

1 1.3444 1.5881 5.6984

2 1.3432 1.5852 5.7056

3 1.3441 1.5865 5.7082

5 1.3432 1.5860 5.7109

10 1.3426 1.5840 5.7140

20 1.3425 1.5838 5.7146

30 1.3413 1.5815 5.7163

