
A SEQ2SEQ TRANSFORMER MODEL FOR TURKISH SPELLING

CORRECTION

by

Şahin Batmaz

B.S., Computer Engineering, Boğaziçi University, 2017

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

For all the support and their guidance I am especially grateful to Assoc. Prof.

Arzucan Özgür, Assist. Prof. Susan Michele Üsküdarlı and Assoc. Prof. Ahmet

Cüneyd Tantuğ. In addition, I would like to thank to Onur Güngör, Bilgin Koşucu

and Elif Oral. In many ways, they helped and guided me during my journey through

NLP studies. I am grateful for their help and friendship.

iv

ABSTRACT

A SEQ2SEQ TRANSFORMER MODEL FOR TURKISH

SPELLING CORRECTION

Natural language processing (NLP) is a fascinating area of artificial intelligence.

It allows humans to interact with machines through natural language. There are two

main concepts in NLP model architectures, namely input vectorization and contextual

representation. The input vectorization process starts with tokenization, where there

are three approaches: character-level, word-level, and subword-level. Word-level tok-

enization results in a large vocabulary, and in agglutinative languages such as Turkish,

words derived from the same stem are treated as different words. This makes it difficult

for NLP models to understand their relationships and the meaning of the morphological

affixes. Furthermore, all NLP models suffer from a common problem: spelling errors in

the data. In case of spelling errors, the misspelled tokens become completely different

and the models cannot understand them. In this thesis, a character-level seq2seq trans-

former model is developed for spelling error correction. To train the model, a dataset

for Turkish spelling correction is created by collecting correctly spelled Turkish sen-

tences and systematically adding spelling errors to them. Seq2seq models suffer from

multiple decoding iterations and have high prediction time. To address this problem,

a novel model architecture, one-step seq2seq transformer model, is proposed in which

the transformer model predicts the outputs in one iteration. The proposed models are

tested with the exact match criteria. The standard seq2seq model and the one-step

seq2seq model achieved 68.64% and 42.69% accuracy, respectively. Finally, the stan-

dard seq2seq model makes predictions for 160 input characters in 8.47 seconds, while

the one-step seq2seq model makes predictions for the same number of characters in 73

milliseconds on CPU and 28 milliseconds on GPU.

v

ÖZET

TÜRKÇE YAZIM HATASI DÜZELTME İÇİN SEQ2SEQ

TRANSFORMER MODELİ

Doğal dil işleme (NLP), yapay zeka içerisindeki ilgi çekici bir alandır. Doğal

dil aracılığıyla insanın makinelerle etkileşimini sağlar. NLP model mimarilerinde iki

ana kavram vardır; girdi vektörleştirme ve girdinin bağlamsal temsil edilmesi. Girdi

vektörleştirme işleminde üç tokenizasyon yaklaşımı bulunmaktadır: karakter düzeyi,

kelime düzeyi ve kelime parçaları düzeyi. Kelime düzeyinde tokenizasyon yönteminde,

sözcük dağarcığının geniş olması problemi yaşanmaktadır. Ayrıca Türkçe gibi eklemeli

dillerde, aynı kökten türeyen sözcüklerin birbirinden tamamen farklı sözcükler olarak

ele alınmasına neden olmakta ve modelin bu sözcükler arasındaki ilişkileri ve morfolo-

jik eklerin anlamlarını öğrenmesini zorlaşmaktadır. Ayrıca, tüm NLP modellerin ortak

bir sorun vardır: veride bulunan yazım hataları. Yazım hataları ile girdi kelimeleri

tamamen farklı hale gelir ve model bunları anlayamaz. Bu tezde, yazım hatalarının

düzeltilmesi için karakter düzeyinde bir seq2seq dönüştürücü modeli geliştirilmiştir.

Model için doğru yazılmış Türkçe cümleler toplanmış ve toplanan cümlelere farklı

türdeki yazım hataları sistematik olarak eklenerek Türkçe yazım düzeltmesi için bir veri

seti oluşturulmuştur. Seq2seq modelleri tekrarlanan kod çözme yönteminden dolayı

yüksek bir tahmin süresine sahiptir. Bu sorunu çözmek için, transformer modelinin

çıktıları tek seferde tahmin ettiği, yeni bir model mimarisi önerilmiştir, tek adımlı

seq2seq transformer modeli. Önerilen modeller, tam eşleşme kriterleri ile test edilmiştir.

Standart seq2seq modeli ve tek adımlı seq2seq modeli sırasıyla %68.64 ve %42.69

doğruluk oranı elde etti. Son olarak, standart seq2seq modeli 160 giriş karakteri için

8.47 saniyede tahminleme yaparken, tek adımlı seq2seq modeli 160 giriş karakteri için

CPU’da 73 milisaniyede ve GPU’da 28 milisaniyede tahminleme yapar.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . viii

LIST OF TABLES . ix

LIST OF SYMBOLS . xi

LIST OF ACRONYMS/ABBREVIATIONS . xii

1. INTRODUCTION . 1

2. BACKGROUND . 5

2.1. NLP . 5

2.2. Text Normalization . 8

2.3. Tokenization . 9

2.4. Word Embeddings . 11

3. RELATED WORK . 14

4. DATASET . 19

4.1. Data Collection . 19

4.2. Spelling Error Generation . 20

5. METHOD . 23

5.1. Standard Seq2Seq Model . 23

5.2. One-Step Seq2Seq Model . 25

5.3. Reserved Character . 27

5.4. Optimization . 27

5.5. Loss . 28

6. EXPERIMENTS AND RESULTS . 29

6.1. Standard Seq2Seq Model . 29

6.1.1. Training . 29

6.1.2. Test Dataset Results . 32

6.1.3. Prediction Time Performance 36

vii

6.2. One-step Seq2Seq Model . 37

6.2.1. Training . 37

6.2.2. Prediction Time Performance 39

6.2.3. Test Dataset Results . 40

6.3. Comparison Tests . 43

7. CONCLUSION AND DISCUSSION . 48

8. FUTURE WORK . 49

8.1. Turkish Morphological Parser . 49

8.2. Turkish Language Model . 50

REFERENCES . 52

viii

LIST OF FIGURES

Figure 5.1. Standard Transformer Layers. 24

Figure 5.2. One-step Transformer Layers. 26

Figure 5.3. Warmup Learning Rate. 28

Figure 6.1. Standard Seq2Seq Model Training Loss. 31

Figure 6.2. Standard Seq2Seq Model Validation Loss. 31

Figure 6.3. Standard Seq2Seq Model Warmup Learning Rate. 31

Figure 6.4. One-step Seq2Seq Model - 10 Epochs - Training Loss. 38

Figure 6.5. One-step Seq2Seq Model - 10 Epochs - Validation Loss. 38

ix

LIST OF TABLES

Table 4.1. Example sentences from the dataset. 22

Table 5.1. Dataset character vocabulary. 23

Table 6.1. Experimented parameters. 29

Table 6.2. Standard Seq2Seq Model - Exact match accuracies based on number

of typos in the sentences. 32

Table 6.3. Standard Seq2Seq Model - Token Accuracy Scores on the Prepared

Test Dataset. 33

Table 6.4. Standard Seq2Seq Model Correctly Predicted Text Examples. . . . 34

Table 6.5. Standard Seq2Seq Model Incorrectly Predicted Text Examples. . . 35

Table 6.6. Standard Seq2Seq Model Prediction Durations. 36

Table 6.7. One-step Seq2Seq Model Prediction Durations. 39

Table 6.8. One-step Seq2Seq Model - Exact match accuracies based on number

of typos in the sentences. 40

Table 6.9. One-step Seq2Seq Model - Token Accuracy Scores on the Prepared

Test Dataset. 41

Table 6.10. One-step Seq2Seq Model Correctly Predicted Text Examples. . . . 42

x

Table 6.11. One-step Seq2Seq Model Incorrectly Predicted Text Examples. . . 43

Table 6.12. Sentence Accuracy Scores on the Prepared Test Dataset. 44

Table 6.13. Token Accuracy Scores on the Prepared Test Dataset. 45

Table 6.14. Token Accuracy Scores on the TestSmall Test Dataset. 45

Table 6.15. Token Accuracy Scores on the Test2019 Test Dataset. 46

Table 6.16. Error Type Based Token Accuracy Scores on the #Turki$hTweets

Dataset. 46

Table 6.17. Accuracy Scores on the 100deda Test Dataset. 47

xi

LIST OF SYMBOLS

α Learning Rate

xii

LIST OF ACRONYMS/ABBREVIATIONS

BoW Bag of Words

BPE Byte Pair Encoding

CBoW Continuous Bag of Words

NLP Natural Language Processing

NMT Neural Machine Translation

OOV Out of Vocabulary

SMT Statistical Machine Translation

TFIDF Term Frequency - Inverse Document Frequency

1

1. INTRODUCTION

Natural Language Processsing (NLP) is a subfield of Artificial Intelligence whose

original goal is to enable machine-human interaction. In this context, NLP can be said

to be the domain that enables machines to understand human language. This domain is

used for spelling correction, summarization, question answering, information retrieval

applications and so on. The full integration of the Internet into human life has made

NLP studies a must and has led to developments in fields ranging from medicine to

banking.

NLP is a relatively new field of computer science, but it has several cornerstones

that have helped it reach its current state. The beginnings of NLP can be traced back

to the 1950s. At that time, rule-based methods were prevalent, which were not very

effective given the large number of rules [1]. The early studies were statistical and

rule-based approaches. While there were many attempts to mimic human language,

such as Parry (a program developed to pass the Turing test) [2], the technology at

the time did not match this vision. The introduction of artificial neural networks

(ANNs) was a very important development. The working mechanism of ANNs was

developed based on working mechanism of the human brain, just as it was stated in

the Hebbian rule of learning, neurons that fire together also wire together. In the

ANNs, the weights between neurons are updated based on the provided data. This

development can be considered as one of the important cornerstones that led NLP

to its current state. Another important factor has been the increase in available data.

Being able to access large corpora paved the way for developments that were previously

considered impossible. These immense datasets, especially when it is labelled, provided

a much needed source for training models. In addition to the development of ANNs

and the availability of large corpora, Deep Learning methods were started to be used

in the NLP field in 2012, which is another important cornerstone for the development

of this field [1]. Thanks to these three crucial steps, it is now possible to use NLP for

machine translation, chatbots, question answering, information retrieval, and so on.

2

Looking at the current models, it can be seen that a large corpus of text is needed

for training. One of the examples is Latent Semantic Analysis (LSA) [3]. This is a

text-based model developed by Thomas Landauer and colleagues. LSA is not one of the

modern programs, but it is still used as a measure of the relationship between words and

text. During the training process of LSA, a large corpus is used, which is divided into

parts called “documents” . The words in the documents are obtained and a large matrix

is created. This matrix is processed with Singular Value Decomposition to create low-

dimensional vectors for each word, called word embeddings [4]. Words that are closely

related to each other are given similar vectors due to their similar co-occurrences in the

original matrix. Continuous Bag of Words (CBOW) is another important example [5].

Similarly, a corpus of 630 billion words was used for the training. The embedding of a

word is created by making use of the surrounding words. Contextual summary is used

to predict the masked words. Another important example is BERT [6]. The foremost

important difference of this model is the use of a transformer based neural network.

This leads to a better representation of contextual information.

In the last two decades, the Machine Learning and Deep Learning fields have had

a tremendous impact on many fields, including NLP. Machine Learning is the approxi-

mation of output data with input data. Deep Learning is a subfield of Machine Learning

where the models are neural networks with different architectures. Deep Learning ap-

proaches were developed years ago, but computers were not powerful enough to apply

them.

In NLP, the main task is the contextual representation of input data; couple of

words, sentence or paragraph. As in natural language, the vocabulary can be considered

fixed, but there is no limit to the meanings that can be generated. Therefore, it is not

enough to understand a word, but it is needed to understand the context.

There are several neural network architectures for modelling text context. LSTM

and CNN based architectures have been used in many domains and have achieved

remarkable results. However, the Transformer neural network has raised the success

3

scores to a higher level. BERT is the first Transformer based model that outperforms

almost all NLP tasks on public datasets when released.

In every model architecture, to be able to represent input data, text must be

tokenized. There are 3 different approaches to tokenization which are character, word,

and subword level. With tokenization outputs as tokens, data can be provided into

models.

In model architectures, text is generally provided as words into the models. At

this point, spelling errors have dramatic effects on the models, because a single letter

difference causes the model to consider the word as a new one. Models learn how to

represent a word through examples in the dataset with the interaction of other words.

Therefore, each word in the dataset should occur with sufficient frequency. When

there is a spelling error, there are not enough occurrences of the word, and it cannot

be understood by the model.

Turkish is a member of the Ural-Altaic language family. It is an agglutinative

language, so it is possible to form several new words from one stem with a rich mor-

phology. This case puts Turkish to a different position than English in NLP studies

for spelling correction [7]. In model studies, any word derived with a new suffix is

accepted as a new word. It is important to understand whether a letter is a typo or

a morpheme. Spelling errors in the data reduce the performance of the models by

increasing the complexity of the data.

When the data has spelling problems, the rest of the model will also be strongly

affected by it. Spelling errors can be grouped under two headings; cognitive errors

and typing errors. While typos are mechanical errors that occur simply by touching

a wrong letter on the keyboard, cognitive errors can be phonetic in nature or result

from confusing one word with another. Asciification is also an issue in Turkish, where

diacritic characters, “ğüşıöç”, are replaced by “gusioc”.

4

There are many statistical methods for spelling correction. One of them is the

noisy channel algorithm, in which the misspelled word is corrected with one of the

candidate words. The words closest to the spelling are considered as candidate words.

Then the most likely word is selected based on the surrounding words.

In this study, a character level seq2seq transformer model is developed for spelling

correction in Turkish. This research aims to contribute to the literature in several ways

and the first contribution is the use of a transformer based architecture, for which

there has been no previous transformer based study. Additionally, the seq2seq model

approach is used to work at the sentence level, while most spelling error correction

studies do not analyze the problem at the sentence level. As the second contribution, a

dataset for Turkish spelling correction is created, which can be used for further research

in this area. Moreover, the model is trained on a Turkish dataset for which there is

no other study on seq2seq models for Turkish spelling correction. In this respect, this

study fills an important gap in Turkish NLP studies caused by the spelling correction

problem. Lastly, a novel model architecture, one-step seq2seq transformer model, is

proposed in which the transformer model predicts the outputs in one iteration to solve

the time performance problem of the standard seq2seq transformer model.

5

2. BACKGROUND

2.1. NLP

Natural Language Processing (NLP) is the computational analysis of human lan-

guage in text format [8]. There are lots of different tasks in the analysis of text; text

categorization, part-of-speech tagging, dependency parsing, named entity recognition,

relation extraction, question answering, and so on. Each of these is highly demanded

by different use cases and there is a huge volume of text data for them. Even for a

single use case, it is impossible for a human to read, understand, and analyse the data

in a reasonable time with reliable and high accuracy. NLP aims to handle the analysis

of text automatically in a short time. However, there are lots of difficulties in this

process. First, the analysis of text starts with the representation of text which requires

tokenization and vectorization. Then, problems about spelling errors, size, and vocab-

ulary coverage in dataset affect the performance of NLP systems. Lastly, contextual

representation of data is an another difficulty.

Natural languages consist of an alphabet of characters and a vocabulary of words.

In digital environments, the text data is stored as sequences of characters. In text

representation of NLP, the unit of text is called as token and the process of obtaining

tokens is called as tokenization. There are different approaches in tokenization where

a token can be a single character, a window of characters, a word or a piece of a

word (subword). The main tokenization approach of text is the detection of words

from sequences of characters since word is the unit of human languages and contains

distinctive semantic information compared to sequence of characters. As words are

stored with their characters, computers do not have a semantic information about

words. To obtain semantic information and analyse the text documents, different

approaches are developed in the history of NLP. As the statistical approaches, co-

occurrence metrics are used to learn relations between words. Then word embedding

approaches are used to learn semantics of words.

6

The vocabulary sizes of natural languages are in the scale of tens of thousands.

Each word is unique and computers do not have any information about words. It is

impossible to manually annotate each and every word. Therefore, the first layers of

all NLP models are trained from the raw text documents by utilizing the consecutive

co-occurrence of words. These raw documents are called as corpus. Quality of corpora

determines the success of NLP models that is why every model’s success depends on

the corpus used in training.

NLP data representation models can be put into two categories; statistical mod-

els and embedding based models. Most popular statistical model approaches can be

listed as n-gram, BoW, and tf-idf. Latter two are examples of vector space model

approach where documents are represented with same sized vectors. These models

produce efficient results in NLP tasks in terms of time and accuracy. However, the

language representation capacity of the statistical models is limited. Since vocabulary

size and the size of data are immense, there is always space to increase the model

capacity. Word embedding approach provided a huge improvement in NLP tasks. Em-

beddings represent words in a high dimensional space where similar words are close to

each other. The language representation capacity of word embeddings is much larger.

However, training word embeddings is slower and requires large corpus that contains

high number of co-occurrences per word. To solve this problem, transfer learning tech-

nique is used where word embeddings are trained on very large datasets for languages

and published such as GloVe, fastext, and so on. These are called as pretrained word

embeddings. Then, these embeddings can be used on a different dataset but the vo-

cabularies of the datasets must match with each other. There are two usages of word

embeddings. The first one is calculating a similarity score between two words and

the second one is representing a document with embeddings of words. In the latter

usage, padding is needed to have the same length for all the documents and another

model is required on top of word embeddings for the representation of the document.

In all the models including rule-based, machine learning and deep learning, model ca-

pacity increases from left to right, but required data size to outperform the previous

approach also increases. With transfer learning of word embeddings, required data

7

size thresholds shift to lower values. To sum up, embedding based models can achieve

better results but require larger size of data for training, require padding, and another

model for document representation. On the other hand, the statistical models produce

representation for documents, can work better on smaller datasets, but produce lower

accuracies.

The performance of pretrained word embeddings changes with task dataset, pre-

training corpus, and pretraining model architecture and parameters. Task datasets

play role in the evaluation, not in pretraining. Most popular pretrained word em-

beddings use pretraining corpuses with size of terabytes, so the corpuses cover the

language in terms of the words in vocabulary and number of co-occurrences per word.

Pretraining model architectures determine the performance of embeddings. word2vec

and GloVe use words in text representation and cbow or skipgram approach with feed-

forward neural networks as the model and produce a vector for each word. fastext uses

character n-gram approach for the representation of text. However, the meaning of a

word actually changes with the surrounding words in the sentence, even paragraph.

Therefore, word embedding representation of a word should not be a fixed vector and

should be determined with the sentence. Additionally, cbow and skipgram algorithms

ignore the order of words whereas a word is affected by the both left and right words

differently (by different means), and a model should process the sentence directionality

accordingly. These ideas has led to the development of contextual word embeddings.

Most common models to process the sentence directionality as a sequence are

recurrent and convolutional neural networks. ELMo uses bi-directional LSTM layer in

the model. Attention mechanism took place in the encoder-decoder architectures of

recurrent and convolutional neural networks and improved the results. With the pub-

lication of Transformer structure, a new model based solely on attention mechanism

appeared as an alternative sequence processing model which outperformed other mod-

els in some NLP tasks. Another issue is the text representation. There are two main

concepts; meaning in the token and the number of unique tokens. Token as a single

character approach might have around 30 alphabet character but has disadvantage of

8

losing word meaning. Using words as tokens keeps the meaning however the vocabulary

sizes are more than 100 thousands and it is a burden on the model since the model

diverges to cover all the words and requires enough examples for each word. Subword

based approaches might have more optimal data representations with the relationship

among words having similar subwords. GPT uses byte pair encoding (BPE) algorithm

for the representation of text as subwords and uses position-wise feed-forward Trans-

former neural network as the model. In late 2018, BERT was released. BERT uses

Wordpiece as the text representation and bidirectional Transformer neural network as

the model. BERT dominated most of the state of the art results in NLP tasks in

English.

A comprehensive Transformer model on Turkish data is needed for Turkish NLP

studies. However, the structure of language is different from English since it is ag-

glutinative. The idea behind Wordpiece algorithm used in BERT can be adjusted to

Turkish such that common subwords will be obtained with morphological tokeniza-

tion since Turkish is a morphologically rich and an additive language. To achieve a

successful morphological tokenization, a text normalization model is needed because

morphological analysis is also sensitive to typos. Therefore, text normalization plays a

critical role in solving spelling errors for other studies.

2.2. Text Normalization

Text normalization is a fundamental area of NLP. There are different kinds of

problems in this area; substitute, delete, insert, swap, deasciification, vowelization,

repeat. There have been different approaches to solve these problems. Language

models with statistical n-gram approaches have limited capacity. There are different

approaches in building probabilistic language models. Zemberek [9] has a text normal-

ization functionality with a 2-gram language model. There are also some approaches

with deep learning architectures. Lourentzou [10] developed a seq2seq model with RNN

architecture.

9

2.3. Tokenization

In every NLP model, text processing starts with tokenization. The main approach

is to split text into list of words. The other approach is subword segmentation. There

is a trade-off between approaches; word-based models are more efficient in terms of

training since the length of input sequence is smaller but subword based models are

more flexible in terms of handling OOV and rare words [11].

On the other hand, the size of vocabulary is another trade-off. It generally in-

creases through subword-based approach to word-based approach. Increased vocabu-

lary size allows words to be expressed more distinctively but requires more training

data, more training iterations and more model capacity.

Using subword segmentation is common especially in NMT models since the

effect of OOV and rare words are higher. Using a fixed word vocabulary prevents the

model to produce unseen words where the translation is an open-vocabulary problem

[11, 12]. NMT models with subword segmentation in text representation can solve

open-vocabulary translation. Moreover, the problem of OOV and rare words is same

for all NLP models that are based on a fixed word vocabulary.

Subword segmentation approaches are developed with different strategies. Char-

acter based tokenization is the extreme point where there is no word concept in to-

kenization; however, it is not efficient because it loses all word information and puts

the burden of expressing words to neural network and it produces worse scores than

word-based models [13,14]. Vanilla character-n-gram is another approach. More com-

mon approach is to determine the subword vocabulary with information from training

dataset. BPE [12] and WordPieceModel [11, 15] algorithms are the main examples of

this approach.

BPE subword segmentation [12] is developed by following the idea of Byte Pair

Encoding data compression [16]. The vocabulary is initialized with the list of available

10

characters and an extra end of word symbol. In each iteration of the algorithm, fre-

quencies for all pairs of vocabulary elements are obtained from the dataset and then

the most frequent pair is added to the vocabulary and replaced into a single element in

the dataset. The pairs that cross word boundaries are not included in the algorithm.

The only hyperparameter is the threshold for the vocabulary size where the algorithm

continues to merge elements until the desired vocabular size is achieved.

WordPieceModel also uses dataset to determine the subword vocabulary. It is

originally developed for the voice search system for Japanese and Korean languages

where there are large number of homonyms, and a word segmenter is needed since the

concept of spaces between words usually does not exist. Similar to BPE, the vocabulary

is initialized with the list of available characters. In the merge operation of vocabulary

elements, instead of merging the most frequent pair, a language model is trained on

the dataset and then the pair that would increase the likelihood in the dataset the

most when added to the language model is merged. The iteration is repeated until the

desired vocabulary size is achieved.

Another subword segmentation approach is developed with unigram language

model [17]. The algorithm produces multiple subword segmentations with probabilities.

To be able to build a language model, the vocabulary is needed to be pre-determined.

Opposite to previous studies, vocabulary is initialized with big seed subwords from

the dataset. In each iteration, for each subword, how much the likelihood would be

reduced when removing the subword is calculated. Lowest n%, for example 20%, of

subwords are removed from the vocabulary. The iteration is repeated until the desired

vocabulary size is achieved. Single characters in the vocabulary are excluded from this

process. With the produced vocabulary, a language model is produced for the dataset.

For a given text, with the language model, the most probable segmentation can be

obtained. Additionally, an approach called subword regularization [17] is developed

where multiple subword segmentations are sampled from the language model and used

in a task like NMT.

11

Last perspective of the tokenization is the opposite of subword segmentation,

which is learning phrases where a phrase is a sequence of consecutive words. In the

language, there are many phrases that have a meaning which is not a composition

of the meaning of individual words [13]. For example, “New York Times” should be

represented as single token. A simple approach is to find sequences of words where the

ratio of a sequence frequency over individual word frequencies is high.

2.4. Word Embeddings

Distributed representations of words in a vector space, generally called as word

embeddings, improve learning algorithms to achieve better performance in NLP sys-

tems. The research area has been proposed long ago in [18]. And exemplary model is

proposed in [19] as probabilistic feed forward neural network language model.

Word embeddings are learned from a dataset. The straightforward approach is

to train an end-to-end model from a task specific dataset and use word embedding

layer in the first step; however, task datasets have comparably smaller sizes where the

vocabulary size of the dataset does not cover the language enough and the dataset

does not contain reasonable word frequencies. Even if the task dataset is large enough,

training has high computational cost. For these reasons, as the main approach, word

embeddings are trained on a large corpus in an unsupervised manner and then used in

task datasets as representations of words. With this approach, word representations

are called as pretrained word embeddings. With such pretrained embeddings, high

performing models can be trained on small task datasets where pretrained embeddings

contain rich information about the language.

In 2013, two novel models for computing word embeddings on large datasets, cbow

and skip-gram, are proposed in [5] which gave rise to pretrained word embeddings thus

breakthrough improvements in NLP systems. The models use simple feed forward

neural networks where the input layer is the words and the hidden projection layer is

the embeddings to be learned. The cbow model is short for continous bag-of-words.

12

In the cbow model, current word is predicted based on the surrounding words. In

the skip-gram model, surrounding word are predicted from the current word. The

implementation of these models is named as and provided in word2vec [13].

GloVe [20] is another word embedding approach. It claims that the most common

two training methods global matrix factorization like LSA and local context window

models like skip-gram have drawbacks where the former performs poorly on word anal-

ogy task and the latter poorly utilizes the statistics of the corpus. GloVe proposes a

new regression model that trains on global word-word co-occurrence counts and con-

sistently outperforms word2vec.

As for the word embedding approaches, word2vec, GloVe and fastText can be

categorized as lookup dictionary based word embedding where there is a fixed vector

for a given word, the vector does not change with the surrounding words of the given

word. To improve the performance of word embeddings, contextualized word embed-

ding models are developed where a sentence is given as input and word embeddings for

each token are generated with a model from the sentence.

ELMo [14] is a successful example of contextualized word embeddings and pub-

lished in 2018 February. As the text representation, ELMo uses characters as tokens

and bidirectional LSTM layers as the model. To use it on a task, the model weights

are freezed and additional layers on top of it are trained on the task dataset. When

published, it outperformed the state of the art results.

In [21], a new architecture Transformer is introduced as an alternative to com-

mon CNN and LSTM layers in NLP tasks. Shortly after ELMo, in 2018 July, GPT [22]

contextual word embedding model is published where BPE is used as the token rep-

resentation and deep transformer decoder neural network as the model. GPT out-

performed other models on most of the NLP tasks. Later, GPT-2 [23] is published

in 2019. Shortly after GPT, in 2018 October, BERT [6] contextual word embedding

model is published where WordPieceModel is used as the token representation and

13

deep transformer encoder neural network as the model which processes the sentence

bidirectionally but is not auto-regressive on the other hand. Since the publication

of BERT in 2018 October, many other adjustments and models have been appearing

where they are mostly variations and ensembles of Transformer, GPT and BERT mod-

els like AlBERT, RoBERTA, eRnie, GPT-2, TransformerXL, XLNet as general purpose

models, NCBIBERT, BioBERT as domain specific models, DistillBERT, TinyBERT

as small-sized models; however, in this project, BERT itself is used because it is the

baseline of the current state of the art models in terms of text representation and model

architecture.

14

3. RELATED WORK

Throughout the years, there have been many different approaches on the spelling

correction task. Early studies are designed with statistical and probabilistic approaches.

With the developments in deep learning studies, deep learning based approaches have

become more preferable. The model architectures work on character level inputs. Mod-

els try to learn the context around the spelling errors to be able to detect and fix them.

Oflazer [24] studied spelling correction in agglutinative languages. Given an input

word, Oflazer uses q-gram approach to have candidate root words. Then, a morphologi-

cal generator is developed that generates words from candidate root words. During this

process, edit distances between generated words and the misspelled word are limited to

a threshold. Using morphological generator ensures that predicted words are valid. As

ranking, minimum edit distance is used and when distances are similar, edit types are

used for selection. Oflazer brought the spelling correction of agglutinative languages to

an important milestone; however, there are several drawbacks of the approach. First,

it only operates on the misspelled word and does not make use of any other contextual

word. Second, it uses edit distance metric as the main mechanism, which ignores the

semantics. Therefore, selection from candidate words would result in wrong word.

In 2014, while there were not many precedent studies questioning vowel and

diacritic restoration in Turkish, Adalı [25] proposed an approach for this problem. The

model architecture contains two parts, a discriminative sequence classifier and language

validator. The first part is the model that restores the spelling errors. In the model,

CRF mechanism is used to detect errors and predict correct characters. As the model

input, target word which is subject to spelling errors is given to the model in character

level along with neighbour words. In the second part of the project, predicted words

are provided into a morphological analyzer as the language validator to verify that

the predicted word is valid. As the morphological analyzer, two-level morphological

analyzer by Şahin [26] is used. Compared to this research, the study of Adalı focuses

15

on two subtasks of spelling error correction and it operates on target words with its

neighbours as context; however, this research focuses on wider range of spelling error

correction and as the input, it works on sentence level.

Torunoğlu [27] proposed a cascaded approach to spelling error correction. There

is a tokenization layer at first and there are two main tasks in this approach, ill formed

word detection and candidate word generation. Ill formed detection is controlled via

an abbreviation list and a morphological analyzer. For the candidate word generation,

it is stated that there are 7 normalization steps; letter case, rules & lexicon lookup,

proper noun, deasciification, vowel, accent and spelling. After each normalization step,

produced words are checked by a morphological parser and if a word is valid, it is used

as the final prediction. The architecture is tested on manually annotated tweets. This

approach operates on word level and does not use contextual information. In 2017,

Eryiğit [28] proposed an extended version of Torunoğlu [27]. As the spelling corrector,

an adapted version of the approximate string search algorithm is used as the error

model with a unigram language model to generate and rank candidate words.

Tursun [29] proposed two models for spelling correction of Uyghur; noisy channel

model and neural machine translation. An LSTM is used with a source length of 30

is used for the neural network architecture. As for the dataset, news data is crawled

from websites and synthetic data is obtained by adding random errors. Both models

achieved similar test results. Goker [30] proposed two approaches for Turkish spelling

correction; candidate word generation with word embeddings and a neural machine

translation model with LSTM. The latter model achieved better results in tests.

Etoori [31] proposed a spelling correction model in 2018. As the authors stated,

there was no prior work for Indian languages. As the model architecture, a character

level sequence to sequence model is developed using LSTM with Attention mechanism.

As the input, sequence length of 50 is used. There are some key points in the model

architecture; model operates on character level as it should as the task requires, a

sequence to sequence model architecture is developed since the task can be studied as

16

a translation, a deep learning architecture is designed to be able to understand the

context and decode with correct characters. These points are common solution ap-

proaches to the spelling error correction problem. Additionally, input sequence design

is a parameter in the model architecture. Using target words with neighbours as the

input sequence limits the model architecture in the data part. By providing longer

sequences like 50 characters or whole sentences, model has to learn more; however,

this should be subject of designing model capacity and should not be a limitation to a

solution. In addition, sequence length is also a parameter. Having a fixed size like 50

characters or applying padding to training batches would affect the model.

In 2019, Çolakoğlu [32] proposed a contextual model architecture with fewer

processing steps and compared SMT and NMT approaches. In general, SMT can

perform well even with a smaller amount of data; however, NMT models require large

datasets. In the model, spelling error correction is applied at the sentence level and

uses contextual information. The proposed SMT model performed better than [28] and

the NMT model in the test results.

In one of the recent studies, Büyük [33] proposed a character level seq2seq model

for Turkish spelling error correction. As the model architecture, LSTM with Atten-

tion mechanism is used. As the dataset, Turkish sentences are collected from Internet,

like newspapers. Synthetic errors of substitution, deletion, insertion and swapping are

added and 4 million sentences are obtained. As the task, words not in the vocabu-

lary are detected and spelling correction is applied on them. As the input, misspelled

word, three consonants of previous word and three consonants of next word are userd.

For example, in the sentence “derste oman okuyor”, “drs oman kyr” is given to the

model as input and “roman” is expected as the output. This study is one of the recent

Turkish spelling error correction studies with a recent model architecture. However,

it has several drawbacks compared to this research. First, Transformer architecture

is a newer technology with increased learning capabilities in the NLP models. Trans-

former architecture is based on the Attention mechanism and able to model contextual

information of the input much better than LSTMs. Secondly, model directly focuses

17

on words not in the vocabulary and uses a limited contextual information of three

consonants from previous and next word whereas in this research, whole sentence is

given as the context. In terms of data preparation, procedures are quite similar. Both

studies collected correctly written sentences from internet and introduced synthetic

errors to sentences. Although, Büyük proposed a good approach to the problem but

the scope is to find the best valid word in terms of edit distance with a word as the

input; however, this research focuses on the spelling correction problem from a much

larger perspective, it operates on sentence level and fixes error contextually without

edit distance limitations.

Guinard [34] proposed a cascaded model architecture for Turkish spelling error

correction using Wikipedia edit history data as the dataset. As the types of spelling

errors, diacritics, capitalization, spacing and insert, delete, substitute, swap categories

are detected. In the model architecture, there are two main blocks; word fusing and

single word correction. In the word fusing part, two consecutive words are given and

word fusing decides whether to merge them into one word or not. In the single word

correction part, there is a pipeline of several steps; deasciification, capitalization correc-

tion, word splitting, noisy channel model, ranker. In deasciification, a unigram model

is used. In capitalization, also, another unigram model is used. For word merging

and splitting, SUMLM [35] is used which uses ngram statistics and their probabilities.

In the noisy channel model, error model is trained with processed word pairs and as

language model, stupid backoff ngram model is used. In cascading steps, candidates

are generated for next step with Damerau-Levenshtein distance 2. As the final step,

SUMLM model is used as ranker. Guinard experimented and compared this architec-

ture; however, there are several drawbacks in it. With the cascaded model approach,

every step depends on each other since an error in one step would directly cause an-

other error in the next step cumulatively. Word fusing and splitting steps are unable

to process multiple space operations at once. All of the steps are developed with sta-

tistical and probabilistic approaches, which is not optimal because their capacity is

limited and not flexible compared to deep learning architectures. Guinard stated that

machine translation models are not promising for Turkish spelling correction. How-

18

ever, when dataset and model architecture are well designed and optimized, NMT and

deep learning architectures can do everything statistical and probabilistic models can

do and more.

Kuznetsov [36] proposed a transformer based architecture for spelling correction.

The model is trained on English, Arabic, Greek, Russian, Setswana. The study also

focuses on generating realistic typos in the dataset. Gao [37] proposed HCTagger

for short text spelling correction. A model that uses character level embedding and

bidirectional LSTMs is developed. As the output, it predicts edit labels; keep, delete,

replace, append. Schmaltz [38] proposed a character level sequence to sequence network

that uses LSTM with attention in encoder-decoder blocks.

To sum up, there have been several studies on the spelling error correction task.

Models work on character level to fix the spelling errors. The target of the models

is to learn the context from input characters and predict corrections. As the model

approaches, there are statistical, correction classifier, and sequence to sequence ap-

proaches. In most of the studies, target words and surrounding words are given as

the input. As the model architectures, noisy channel, HMM, LSTM, Attention mecha-

nisms are used. In this research, spelling error correction for Turkish is studied with a

character level sequence to sequence model with Transformer based architecture where

whole sentence is given to the model as context.

19

4. DATASET

In order to train a seq2seq model, a large dataset of sentence pairs is needed

where a source sentence has spelling errors and the corresponding target sentence is

the correctly written version of the source sentence. Since the model will be trained

from scratch without any Turkish knowledge, the dataset must contain a large portion

of the vocabulary. Also, the number of occurrences of each word must be high enough

so that the model can learn the composition of words from its characters through

repetition. These conditions require millions of data pairs.

Manually labeling sentences is not an option because labeling millions of sentences

would take too long and is not feasible. Therefore, obtaining a correct sentence from

an incorrect sentence is not possible, but an incorrect sentence can be generated from

a correct sentence systematically.

4.1. Data Collection

The first part of dataset preparation is to find correctly written Turkish sentences.

Since correctness of sentences is a requirement, social media based text can not be

used. Correctly written sentences can be obtained from formal sources such as books,

newspapers, etc. Wikipedia is a great data source since it is large and formally written.

A Turkish article dump of Wikipedia is obtained where it contains 310K articles. Fixy

[39] project published several datasets for spelling correction. Datasets for “de”, “mi”

and “ki” are obtained, but only “de” dataset is used. Several public book pdfs are

obtained.

Wikipedia and pdf data are represented as blocks of text, not sentences. To split

them into sentences, spacy [40] python package is used. After processing data into

sentences, there are 4.35M, 3.5M and 0.44M sentences from Wikipedia, fixy “de” and

book pdfs, respectively. Since sentence length is a parameter that model must cope

20

with, there should be a limit to sentence length to avoid complexity from unnecessarily

long sentences. For this purpose, 80 characters is selected as the limit and sentences

longer than 80 characters are filtered. Then, within each Wikipedia article, book and

fixy “de” component, the dataset is split into training, validation and test sets. The

sizes of the dataset are limited for processing time reasons and is 1M, 76K and 5K

sentences, respectively.

4.2. Spelling Error Generation

Spelling errors are highly common in every human written text. It is unavoidable

since human knowledge and focus are variable and unreliable. Spelling mistakes can

be considered in 4 types; insert, delete, swap and replacement.

• insert : Add a new character to word

• delete : Remove a character from word

• swap : Swap two characters of word

• replacement : Replacing a character of word with another character

When human mistakes are analysed, there are several specialized spelling errors;

vowel removal, diacritic replacement, and character repetition.

• vowel removal : Removing vowels from word

• diacritic replacement : Replacing Turkish diacritic characters; “ğüşıöç” - “gusioc”

• character repetition : Repeating same character of word

nlpaug [41] python package supports spelling error generation for insert, delete,

swap, replacement types. It randomly selects words from given sentence with a word

percentage parameter, and randomly applies spelling errors in words with given charac-

ter percentage parameter. When a sentence with 7 words is given and word percentage

is 0.3, it randomly selects 2 words. For insert spelling error generation, when a word

has 7 characters and character percentage is 0.3, it randomly inserts 2 characters. Rest

21

of the spelling error types are implemented with the infrastructure of nlpaug. Addition-

ally, for replacement type, nlpaug provides “keyboard” feature where new character is

selected from original character’s neighbour characters in the keyboard. For example,

in word “gemi”, if character “g” is randomly selected, it could be replaced with one of

f,v,b,h,y,t.

In Turkish spelling errors, there are common mistakes on specific suffixes mostly

in verbs such as -yor, -ecek, -alım. For example, the word “geleceğim” is written with

spelling errors as “gelcem”. Spelling error generation functions are developed for this

type of errors.

In sentences with spelling errors, there can be more than one spelling error type.

Therefore, in spelling error generation, combinations of errors are applied. Vowel delete,

vowel repeat, consonant repeat, character swap, ascii character replacement, keyboard

distance character replacement and other error generation functions are randomly ap-

plied to sentences. Several examples from the prepared dataset are provided in Table

4.1.

22

Table 4.1. Example sentences from the dataset.

Type Sentence

1
input

Öyle kı, çok geçmeden ortalıkttta bu sesten başka bir şey

duyulmaaz oldddu.

true
Öyle ki, çok geçmeden ortalıkta bu sesten başka bir şey

duyulmaz oldu.

2
input Istsyon asağıdaki anlamlara geleblir

true İstasyon aşağıdaki anlamlara gelebilir

3
input Bunlarin yanı sıraaaa kitap ve müzik yayıhı da ypar.

true Bunların yanı sıra kitap ve müzik yayımı da yapar.

4
input Köyün gleenek, gorenek ve yemkleri hakoında bilgi yktr.

true Köyün gelenek, görenek ve yemekleri hakkında bilgi yoktur.

5
input Ortasindannn bir de nehir geçiyorddddu.

true Ortasından bir de nehir geçiyordu.

6
input

Özellikle vişne yetiştiriciliği köy ekonmisi icin önemlllli bi

yere samiptir.

true
Özellikle vişne yetiştiriciliği köy ekonomisi için önemli bir

yere sahiptir.

23

5. METHOD

For spelling correction, a character level seq2seq transformer model is developed.

There are encoder and decoder blocks in the model. Sentences with spelling errors are

used as the input and correct sentences are expected as the output.

The vocabulary prepared in this research is the character set of the dataset. The

size of vocabulary is around 85 depending on the dataset. The details of the character

vocabulary are provided in Table 5.1. Every character is provided as a token to the

model. The input sentence is splitted into characters, mapped into index values as the

preprocessing part, and then index values are provided into embedding layer of the

model.

Table 5.1. Dataset character vocabulary.

Vocabulary Characters Description

A-Z Upper case letters

a-z Lower case letters

ğüşıöç-ĞÜŞİÖÇ Turkish diacritic characters

‘ ’ Empty space character

.,!@#$%ˆ&*’() +=-” Punctuation characters

In the vocabulary preparation, lowercase normalization and punctuation removal

are not applied on the dataset so that model can learn case and punctuation correction;

however, the dataset must contain enough examples for comprehensive corrections.

5.1. Standard Seq2Seq Model

In a seq2seq model, there are encoding and decoding blocks. In this research,

transformer encoder and transformer decoder architectures are used in the blocks.

Pytorch [42] transformer encoder and decoder layer implementations are used.

24

In standard seq2seq decoding, the model predicts one output token at a time.

Therefore, it makes n predictions for an output. Misspelled sentence is processed

through embedding layer, positional encoding and encoder block. Then encoder output

is provided into decoder block. Decoder input characters are also processed through

embedding layer and positional encoding. At first step, besides encoder output, only

start token is provided into decoder as input and first output token is predicted. Then

decoding is repeated. Previously decoded k elements are provided to decoder as input.

By using encoder output and k previous predictions, decoder predicts the (k + 1)th

element. This process continues until end condition is obtained or maximum length is

reached.

Figure 5.1. Standard Transformer Layers.

25

In Transformer architecture, training is parallelized where shifted output is used

as decoder input and decoder is masked. Decoder masking prevents decoder from

mapping nth input to (n− 1)th output. As shown in Figure 5.1, S1 and D1 are same

tokens however S1 does not connection to D1. Therefore, each input can be processed

at one step. However, in prediction, the model still makes n predictions.

5.2. One-Step Seq2Seq Model

In this approach, there is no iterative decoding. All output elements are predicted

at once. Decoder masking is not used. Since there is no masking and no iterative

decoding, any output information could not be provided into decoder block. Therefore,

only positional encoding vectors are used as the decoder input. Decoder block is

expected to learn all the characters through information from the encoder block.

26

Figure 5.2. One-step Transformer Layers.

Compared to Standard Seq2Seq model, there is an additional complexity, output

alignment. This model suffers from wrong aligned output predictions during training.

In a 100 character output, if model misses 10th character, remaining 90 characters

become different than expected characters and produce a huge loss. Another case is

if model misses a character, it tries to compensate it with another wrong character.

On the other hand, it can predict much faster in time performance because it predicts

outputs at one step and can utilize parallel execution in GPU. Also batch predictions

can be done.

27

5.3. Reserved Character

In language, words defined by a regexp do not contain the characteristics of

vocabulary and language rules. Hashtags, mentions, URLs, emails have a specific

format. Proper names like personal names or places also do not have the characteristics

of vocabulary. These words can be detected with regexp patterns and lookup tables

and can be replaced with a reserved character so that the model does not process these

words at all. For this reason, the reserved character “¶” is introducted into the model.

The character “¶” is inserted into input and output sentences in some training examples

and the model is expected to leave this character untouched. During the testing phase,

matching words in the input are replaced with “¶” in the preprocessing step, and

“¶” characters in the output are mapped backed to the original matching words in

the postprocessing step. With this approach, the model is freed from the complexity

of regexp patterns and lookup tables, and these reserved words are guaranteed to be

preserved.

5.4. Optimization

As for the optimization, Adam optimizer is used. Similar to BERT, warmup

and decay learning rate scheduling is used. For the 10% of iterations, learning rate is

incremented from 1e-6 to 1e-4 as warmup, then learning rate is linearly decreased back

from 1e-4 to 1e-6. The visualization of warmup learning can be seen in Figure 5.3.

28

Figure 5.3. Warmup Learning Rate.

5.5. Loss

In input sentences, even if there are misspelled characters, most of the characters

are correctly written. Therefore, for a large portion of the task, model just learns to

copy input character to output character. Since the model can certainly learn to copy

characters, the objective function can be optimized in favor of misspelled characters.

To improve the objective function such that model can focus more on areas around

misspelled characters, alignment weights are assigned to each output character based

on their alignment with input. For example, if input and output characters are same,

the weight is 1, and if they are different, the weight is 5. Additionally, neighbour

characters of character with a weight of 5 are assigned with weight of 2.

29

6. EXPERIMENTS AND RESULTS

For the training studies, GeForce RTX 2080 Ti (12GB) and GeForce RTX 3090

(24GB) are used.

6.1. Standard Seq2Seq Model

6.1.1. Training

There have been many model training experiments with different configurations

to find the optimum parameters. Transformer encoder and decoder layer counts, trans-

former size, learning rate, epoch size and batch size are main parameters. Also warmup

learning rate and weighted loss calculation approaches can be subject to experiments,

but they are not compared.

For the parameter search, one main concern is the size of the model occupied

in the GPU. In early studies, experiments were conducted with a capacity of 12 GB

GPU. Later, a GeForce RTX 3090 is accessed. The parameters are adjusted accordingly.

Experimented parameters can be seen in Table 6.1.

Table 6.1. Experimented parameters.

Parameter Values

transformer encoder layers 3, 6

transformer decoder layers 3, 6

transformer size 32, 64, 128, 256, 512, 1536

batch size 8, 16 and 64

learning rate 1e-4

As a part of deep learning model training, modeling capacity and overfit concepts

are analysed. Since the size of dataset is large enough with 1M sentences, it is unlikely

30

for the model to overfit. Because there are so many different examples of spelling errors

on many words and if model can learn to fix them in training dataset, it is probable

for model to perform well on other sentences. However, the main problem is having

enough capacity so that model can fix spelling errors in the training dataset.

In the first experiments, to analyse and make sure about the model capacity,

only random 20k sentences are used as the training dataset. Therefore models with

different parameters are experimented on small dataset. With these models, model

predictions are observed for sentences in training dataset and validation dataset. From

the observations, model parameters are determined.

Loss values are visualized for batch steps with tensorboard. From the experi-

ments, it is observed that lower batch size values 8 and 16 result in large fluctuations

in the loss values. Therefore, higher batch values are preferred. As for the transformer

size, model predictions are observed. Up to the transformer size of 512, model capacity

is not enough to model even 20k data. With transformer size of 512, model could make

promising predictions on training and validation datasets. This situation shows that,

to increase the model capacity, transformer size can be increased to values such as 768,

1024 and 1536. However, model memory size occupied in GPU increases in quadratic

with the transformer size, and the training time also increases accordingly.

In the final model, 3 transformer encoder layers, 3 transformer decoder layers,

1536 transformer size, 64 batch size and 1e-4 learning rate parameters are used. Also,

warmup learning rate and weighted loss approaches are applied in the model. The

model is trained for 10 epochs on GeForce RTX 3090 and training took 6 hours. In

Figures 6.1, 6.2 and 6.3, training loss, validation loss and learning rate are provided.

From Figures 6.1 and 6.2, it is observed that model converged enough, however

increasing transformer size and epoch size might lead to better results. However, due

to hardware restrictions, these results are obtained.

31

Figure 6.1. Standard Seq2Seq Model Training Loss.

Figure 6.2. Standard Seq2Seq Model Validation Loss.

Figure 6.3. Standard Seq2Seq Model Warmup Learning Rate.

32

6.1.2. Test Dataset Results

In sentences with several spelling errors, for some examples, the model might be

able to fix some part of the errors. However, to show numerical scores, exact match

metric is used. This means that if there are 3 spelling errors in the sentence and the

model only fixes 2 of them, the sentence will be evaluated as wrong.

For the test dataset, there are 3001 examples. Model predictions are obtained for

these examples. As the result, 2060 examples are correctly predicted and exact match

accuracy of 68.64% is achieved.

Table 6.2. Standard Seq2Seq Model - Exact match accuracies based on number of

typos in the sentences.

of Typos # of Sentences Accuracy

0 38 71.05%

1 227 73.57%

2 601 71.21%

3 789 69.20%

4 662 70.99%

5 401 63.34%

6+ 283 59.36%

All 3001 68.64%

In Table 6.2, detailed exact match scores are provided based on the number of

spelling errors in the sentences. Since exact match scoring is used, even one character

error in the prediction results as false prediction. Therefore, it is expected that, as the

number of spelling errors increases in the input sentence, exact match accuracy of the

model decreases.

33

Two cases that stand out from the test results are input sentences without errors

and sentences containing one character of spelling error. On sentences without spelling

error, the model has 71.05% exact match accuracy score, which means that model

corrupts the correctly written sentence with 28.95% of the time. This scenario is not

expected from a spelling correction model. Also, the model has 73.57% exact match

accuracy on sentences with one character spelling error, which is a direct score since

there is only one spelling error and it is promising but needs improvement.

On the test dataset, token based accuracy metrics are calculated for error types.

There are 26967 tokens in the test dataset and as the result, 95.49% of the tokens are

correctly predicted. In Table 6.3, detailed token based match scores are provided based

on the error types in the tokens.

Table 6.3. Standard Seq2Seq Model - Token Accuracy Scores on the Prepared Test

Dataset.

of Tokens Accuracy

Vowel

Delete
2337 84.72%

Vowel

Repeat
1322 97.58%

Consonant

Repeat
1295 96.99%

Swap 787 91.36%

Ascii 3577 94.74%

Replacement 749 77.57%

Other 231 99.13%

Correct 16669 97.83%

All 26967 95.49%

34

Table 6.4. Standard Seq2Seq Model Correctly Predicted Text Examples.

Type Sentence

1

input
Bu geniş toprklrı sürebilmek içinsssse ağır sabanalr taşıyan

okuzler kullnıldı.

true
Bu geniş toprakları sürebilmek içinse ağır sabanlar taşıyan

öküzler kullanıldı.

pred
Bu geniş toprakları sürebilmek içinse ağır sabanlar taşıyan

öküzler kullanıldı.

2

input Tropik bölgelwrde, koyunlar dha cok derisi icin yetiştiriliir.

true Tropik bölgelerde, koyunlar daha çok derisi için yetiştirilir.

pred Tropik bölgelerde, koyunlar daha çok derisi için yetiştirilir.

3

input Dha sonralarıı bu aletleriin yapmında bkır kullanildi.

true Daha sonraları bu aletlerin yapımında bakır kullanıldı.

pred Daha sonraları bu aletlerin yapımında bakır kullanıldı.

4

input
Camının kpisi batıda yer almakta oluuup, bir yonca yprğı

şeklindedir.

true
Caminin kapısı batıda yer almakta olup, bir yonca yaprağı

şeklindedir.

pred
Caminin kapısı batıda yer almakta olup, bir yonca yaprağı

şeklindedir.

5

input Bu süreçfe birkac küçük grup da ortya çkmıştır.

true Bu süreçte birkaç küçük grup da ortaya çıkmıştır.

pred Bu süreçte birkaç küçük grup da ortaya çıkmıştır.

6

input Deniz seviyesinden yuksekligiii 885 metredir.

true Deniz seviyesinden yüksekliği 885 metredir.

pred Deniz seviyesinden yüksekliği 885 metredir.

In Table 6.4, several examples that are correctly predicted with the standard

seq2seq model are provided. These examples show that model has potential to be used

for spelling correction for the error types provided in the dataset.

35

Table 6.5. Standard Seq2Seq Model Incorrectly Predicted Text Examples.

Type Sentence

1

input
Popunn krlı hakkında yapilan tartışmalar bununlaaaa da

sınırlı klmadı.

true
Popun kralı hakkında yapılan tartışmalar bununla da

sınırlı kalmadı.

pred
Popun kralı hakkında yapılan tartışmalar bununla da

sınırlı kalamadı.

2

input
Bu küçük haliç, boğazdaa seyreden tekneler için önemlii bir

doğal barınaktı.

true
Bu küçük haliç, boğazda seyreden tekneler için önemli bir

doğal barınaktı.

pred
Bu küçük haliç, boğazda seyreden tekneler için önemli bir

doğal batınaktı.

3

input Kpsamlı bi güvnelik kavrami birçok uönden düşünülmelidir.

true Kapsamlı bir güvenlik kavramı birçok yönden düşünülmelidir.

pred Kapsamlı bir güvenlik kavramı birçok könden düşünülmelidir.

4

input Oyuncuya odeme yapılırken vergiii düşülrk net tutar ödenır.

true Oyuncuya ödeme yapılırken vergi düşülerek net tutar ödenir.

pred Oyuncuya ödeme yapılırken vergi düşlürek net tutar ödenir.

5

input 2017 yılına kadarki donm için de bi geçiş süreci öngörüldü.

true 2017 yılına kadarki dönem için de bir geçiş süreci öngörüldü.

pred 2017 yılına kadarki donm içinde bir geçiş süreci öngörüldü.

6

input Erkklr, apandisiteeee, kadinlara oranlla dha vazla yakalanir.

true Erkekler, apandisite, kadınlara oranla daha fazla yakalanır.

pred Erkekler, apandisite, kadınlara oranla daha vaazla yakalanır.

In Table 6.5, several examples that are incorrectly predicted with the standard

seq2seq model are provided. These examples show that model needs improvement to

be used in real world applications.

36

6.1.3. Prediction Time Performance

In standard seq2seq model, model continues decoding the next character until

the end token is obtained or maximum length is reached. Therefore, the required time

to decode a sentence heavily depends on the input sentence length. Since the model

is limited to 80 characters, long sentences are divided into small blocks of 60+ char-

acters and predicted separately. In Table 6.6, model prediction durations for different

input sentence lengths are provided. It is observed that prediction duration increases

in approximately quadratic.

Table 6.6. Standard Seq2Seq Model Prediction Durations.

Input Length Prediction Duration

10 characters 301 ms

30 characters 1.14 sec

50 characters 2.49 sec

80 characters 4.18 sec

160 characters 8.47 sec

These time performances might still be practical for academic purposes; however,

they are not practical for real life applications where spelling correction prediction

time should be around 20-30ms and not more than 100ms because there is threshold

in human perception after that is considered as slow. Additionally, spelling correction

will be a step in some pipeline and overall time performance will be higher. Therefore,

this research continued to achieve a model with better prediction time performance

and One-step Seq2Seq Model is developed.

37

6.2. One-step Seq2Seq Model

6.2.1. Training

Model training of one-step seq2seq model is a more challenging task because

compared to standard seq2seq model, it must learn the characters and their positions

of output sentence at once. Additionally, the decoder block does not have any input

from output sentence. Therefore, it is certain that one-step seq2seq model requires

more model capacity than standard seq2seq model.

There have been many training experiments to find optimum parameters. Sim-

ilar to standard seq2seq model, warmup learning rate and weighted loss calculation

approaches are applied in the experiments. Transformer encoder and decoder layer

counts, transformer size, learning rate, epoch size and batch size are main hyperpa-

rameters. In addition, one-step seq2seq model requires output length as an input

parameter. However, varying output length leads to higher complexity in the model.

To avoid this complexity, input and output vector lengths are fixed to 80 characters

during training and prediction.

Since the task is more difficult, model needs a longer training period with more

epochs. During these experiments, problems are encountered with the GeForce RTX

2080 Ti GPU and made the training processes difficult. After accessing GeForce RTX

3090, experiments progressed better.

In the training experiments, the decoding task becomes much harder because

decoder block does not have any input from output sentence and it must predict all

characters at once. Therefore, to increase the capacity of decoder block, number of

transfomer decoder layers is increased to 4. To manage the model size stored in the

GPU and training duration, number of transformer encoder layers is decreased to 2.

38

In preliminary experiments, to analyse the feasibility of the one-step seq2seq

model, random 100k sentences are used as the training dataset. Models are trained for

around 100 epochs to achieve an overfitted model that can perform the desired spelling

correction on the training dataset. With these models, model predictions are observed

for training and validation datasets. It is observed that there are promising predictions

for the spelling correction.

After training models with small dataset, experiments are made with full training

dataset. For the transformer size, 256, 512, 1024 and 1536 are experimented. In the

experiments, batch size of 64 and learning rate of 1e-4 are used. The configuration

with transformer size of 1536 is used as the best model. Model is trained for 10 epochs

and it took 6 hours. Training and validation loss values of the model is provided in

Figures 6.4 and 6.5.

Figure 6.4. One-step Seq2Seq Model - 10 Epochs - Training Loss.

Figure 6.5. One-step Seq2Seq Model - 10 Epochs - Validation Loss.

39

6.2.2. Prediction Time Performance

In the one-step seq2seq model, model decoding process is done at one step, which

is the main feature of the model. With this feature, much better prediction time

performance can be achieved. Since the model is limited to 80 characters, long sentences

are divided into small blocks of 60+ characters and predicted separately. Also, input

and output vector lengths are padded to 80 characters so that each prediction step

takes the same amount of time, about 24 milliseconds with CPU. For an input of 80

characters, there are two blocks and for an input of 160 characters, there are three

blocks. In Table 6.7, model prediction durations for different input sentence lengths

are provided.

Table 6.7. One-step Seq2Seq Model Prediction Durations.

Input Length With GPU With CPU
Batch of 16

With GPU

Batch of 16

With CPU

10 characters 9 ms 24 ms 32 ms 193 ms

30 characters 9 ms 24 ms 32 ms 193 ms

50 characters 9 ms 24 ms 32 ms 193 ms

80 characters 19 ms 50 ms 65 ms 388 ms

160 characters 28 ms 73 ms 97 ms 583 ms

These time performances have a quite good level for real life applications. One-

step seq2seq model satisfied the expectations in terms of prediction time performance.

Especially with GPU usage, outstandingly fast results are obtained. Similar GPU

usage does not have much effect on the standard seq2seq model because decoding

iterations depend on each other. Also, with CPU usage, the model is 100x faster for

160 characters input.

40

6.2.3. Test Dataset Results

For the test dataset, there are 3001 examples. Model predictions are obtained

for these examples. As result, 1281 examples are correctly predicted and exact match

accuracy of 42.69% is achieved. In Table 6.8, exact match scores of one-step seq2seq

model are provided with the number of spelling errors of input sentences.

Table 6.8. One-step Seq2Seq Model - Exact match accuracies based on number of

typos in the sentences.

of Typos # of Sentences Accuracy

0 38 60.53%

1 227 59.47%

2 601 52.41%

3 789 44.87%

4 662 41.54%

5 401 27.18%

6+ 283 24.73%

All 3001 42.69%

On the test dataset, token based accuracy metrics are calculated for error types.

There are 26967 tokens in the test dataset and as the result, 85.00% of the tokens are

correctly predicted. In Table 6.9, detailed token based match scores are provided based

on the error types in the tokens.

41

Table 6.9. One-step Seq2Seq Model - Token Accuracy Scores on the Prepared Test

Dataset.

of Tokens Accuracy

Vowel

Delete
2337 58.58%

Vowel

Repeat
1322 87.44%

Consonant

Repeat
1295 85.48%

Swap 787 70.65%

Ascii 3577 81.10%

Replacement 749 54.87%

Other 231 84.85%

Correct 16669 91.35%

All 26967 85.00%

Since the task of one-step seq2seq model is more difficult than the standard

seq2seq model, it is expected to have lower accuracies. The model achieved worse but

comparable results in return of better time performance, which is promising for the

novel model architecture. However, optimizations should still be made for a perfect

model.

42

Table 6.10. One-step Seq2Seq Model Correctly Predicted Text Examples.

Type Sentence

1

input
Bu küçük haliç, boğazdaa seyreden tekneler için önemlii bir

doğal barınaktı.

true
Bu küçük haliç, boğazda seyreden tekneler için önemli bir

doğal barınaktı.

pred
Bu küçük haliç, boğazda seyreden tekneler için önemli bir

doğal barınaktı.

2

input Oyuncuya odeme yapılırken vergiii düşülrk net tutar ödenır.

true Oyuncuya ödeme yapılırken vergi düşülerek net tutar ödenir.

pred Oyuncuya ödeme yapılırken vergi düşülerek net tutar ödenir.

3

input Dha sonralarıı bu aletleriin yapmında bkır kullanildi.

true Daha sonraları bu aletlerin yapımında bakır kullanıldı.

pred Daha sonraları bu aletlerin yapımında bakır kullanıldı.

In Table 6.10, several examples that are correctly predicted with one-step seq2seq

model are provided. These examples show that model has potential to solve the spelling

correction task.

43

Table 6.11. One-step Seq2Seq Model Incorrectly Predicted Text Examples.

Type Sentence

1

input
Popunn krlı hakkında yapilan tartışmalar bununlaaaa da

sınırlı klmadı.

true
Popun kralı hakkında yapılan tartışmalar bununla da

sınırlı kalmadı.

pred
Popun kraaıı hakkında ypıııan aattımaalar buunlaa a

sınıılı kalmaddı

2

input Ekmeeek, fırından ciktiktan en az 6 saat sonra yenmelidir.

true Ekmek, fırından çıktıktan en az 6 saat sonra yenmelidir.

pred Ekmek, fırından çıktıktan en az 6 saat sonra yenimlidirr.

3

input Erkklr, apandisiteeee, kadinlara oranlla dha vazla yakalanir.

true Erkekler, apandisite, kadınlara oranla daha fazla yakalanır.

pred Erkekler, alandisite, kadınlara oranla daha vazla yakalanır.

In Table 6.11, several examples that are incorrectly predicted with one-step

seq2seq model are provided. These examples show that there are issues that must

be fixed.

Overall, spelling correction is an important task in NLP, especially in Turkish.

These model architectures and experiments show that the task can be successfully done.

With optimizations, longer training experiments and dataset improvements, adequate

spelling correction models can be achieved.

6.3. Comparison Tests

For the test comparisons of this paper, there are two approaches; the results for

the prepared test dataset of this study with other spelling correctors and the results

for other datasets published by other researchers. Regarding the test datasets, the

“TestSmall” dataset is provided by [28, 43] and the “Test2019” dataset is provided

by [32]. Additionally, the “#Turki$hTweets” dataset was published by [44] and the

44

“100deda” dataset was published by [45]. As for the other spelling correctors, Zemberek

[9], and GoogleDocs spelling correction tools are used. The comparison results can be

found in 6.12, 6.13, 6.14, 6.15, 6.16, and 6.17.

In Table 6.12, the prepared test dataset contains 3001 sentences, with 38(1.27%)

of the sentences containing no error, 227(7.56%) of the sentences containing one error,

and 2736(91.17%) of the sentences containing more than one error.

Table 6.12. Sentence Accuracy Scores on the Prepared Test Dataset.

of

Typos

of

Sentences

Standard

Seq2Seq

Onestep

Seq2Seq
Zemberek GoogleDocs

0 38 71.05% 60.53% 0.0% 73.68%

1 227 73.57% 59.47% 0.88% 38.33%

2 601 71.21% 52.41% 0.67% 31.78%

3 789 69.20% 44.87% 0.38% 21.42%

4 662 70.99% 41.54% 0.0% 17.82%

5 401 63.34% 27.18% 0.25% 9.73%

6+ 283 59.36% 24.73% 0.0% 4.24%

All 3001 68.64% 42.69% 0.33% 21.46%

45

Table 6.13. Token Accuracy Scores on the Prepared Test Dataset.

of

Tokens

Standard

Seq2Seq

Onestep

Seq2Seq
Zemberek GoogleDocs

Vowel

Delete
2337 84.72% 58.58% 39.92% 59.09%

Vowel

Repeat
1322 97.58% 87.44% 40.62% 62.33%

Consonant

Repeat
1295 96.99% 85.48% 30.97% 58.76%

Swap 787 91.36% 70.65% 50.95% 70.78%

Ascii 3577 94.74% 81.10% 66.45% 40.09%

Replacement 749 77.57% 54.87% 53.94% 68.76%

Other 231 99.13% 84.85% 86.15% 27.27%

Correct 16669 97.83% 91.35% 78.68% 97.51%

All 26967 95.49% 85.00% 68.11% 80.80%

In Table 6.14, the TestSmall dataset contains 509 sentences and 6507 tokens,

of which 1171(17.9%) are non-canonical tokens. In Table 6.15, the Test2019 dataset

contains 713 tweets and 7948 tokens, of which 2856(35.9%) are non-canonical tokens.

In tables 6.14 and 6.15, (1) is for case-sensitive results over all tokens, (2) is for case-

insensitive results over all tokens, (3) is for case-sensitive results over non-canonical

tokens, and (4) is for case-insensitive results over non-canonical tokens.

Table 6.14. Token Accuracy Scores on the TestSmall Test Dataset.

Standard

Seq2Seq

Onestep

Seq2Seq

Eryiğit [28]

Cascaded

Çolakoğlu [32]

SMT

Çolakoğlu [32]

NMT

(1) 87.75% 79.38% 86.20% 89.59% 85.77%

(2) 92.42% 83.65% 92.97% 93.53% 89.52%

(3) 49.39% 39.91% 53.80% 68.40% 51.84%

(4) 67.07% 53.46% 74.72% 76.00% 58.67%

46

Table 6.15. Token Accuracy Scores on the Test2019 Test Dataset.

Standard

Seq2Seq

Onestep

Seq2Seq

Eryiğit [28]

Cascaded

Çolakoğlu [32]

SMT

Çolakoğlu [32]

NMT

(1) 76.48% 67.30% 75.39% 78.10% 67.87%

(2) 84.27% 73.32% 80.25% 85.23% 74.04%

(3) 48.55% 41.21% 56.44% 66.35% 45.03%

(4) 65.20% 54.41% 66.18% 74.02% 50.84%

In Table 6.16, the #Turki$hTweets dataset contains 2000 sentences and 16878

tokens, of which 9713 of them are unique and 6488 of them are non-canonical tokens.

In 77% of the sentences, there are more than one error.

Table 6.16. Error Type Based Token Accuracy Scores on the #Turki$hTweets

Dataset.

Standard

Seq2Seq

Onestep

Seq2Seq
ZS ZN ED RB

Accent 42.2% 28.4% 29.5% 60.8% 22.6% 39.9%

Adjacent 3.5% 3.5% 0% 14.3% 53.1% 0%

Deasciification 73% 61.6% 40.7% 87.1% 43.3% 85.8%

Intentional Char. 60.4% 41.5% 66.7% 68.3% 44.8% 36.1%

Phonetic Subs. 8.8% 2.9% 43.5% 39.1% 39.1% 0%

Proper Name 26.7% 27.2% 40.6% 0.9% 0% 0.4%

Separation 27.3% 19.2% 0% 47.9% 0% 0%

Unintentional Char. 21.7% 10.3% 53.4% 50.7% 50.7% 13.7%

Vowel 53.7% 31.7% 4.5% 63.6% 9.1% 18.2%

All 56.22% 45.30% 41.5% 71.3% 37.5% 60.5%

In Table 6.17, the 100deda dataset contains 100 sentences and 540 tokens. In

each sentence, there is one error in the spelling of de/da.

47

Table 6.17. Accuracy Scores on the 100deda Test Dataset.

Accuracy

Standard Seq2Seq 11%

Onestep Seq2Seq 3%

Arıkan [45] 71%

ITU [46] 0%

GoogleDocs 34%

MicrosoftOffice 29%

LibreOffice 0%

48

7. CONCLUSION AND DISCUSSION

NLP is an important field in artificial intelligence studies with deep learning

models. There have been an increasing interest in the domain. Since the life becomes

more digital everyday, human interactions with machines become more valuable. With

increased demand, more research areas appear in NLP.

In NLP models, vectorization of the input sentences is one of the main challenges

because textual data is unstructured in terms of words and sentences. Tokenization is

the first step of data processing. There are three tokenization approaches; character,

word, and subword level. In word level approach, the vocabulary size become large. In

agglutinative languages like Turkish, there are many words from same stem and it is

harder for model to learn the relationship between them. Morphological tokenization

could perform well on Turkish NLP studies. In addition to these situations, spelling

errors make it much harder and unmanageable because there is no rule and limit to

spelling errors and a model can cope with only a limited part of spelling errors.

Statistical methods can not cover all cases of spelling errors because by their

architecture their modeling capacity is limited. Therefore only a deep learning model

can solve spelling error problem. Since the spelling error problem is based on character

by definition, the deep learning model should be designed at character level.

In this research, two different character level seq2seq models are developed for

Turkish spelling error correction. Models are developed in NMT approach. There

have been many training experiments with different model architectures. The models

produce promising results on a hard task which is proposing a general solution to

spelling error correction. In addition, one-step seq2seq model achieved satisfying results

in prediction time performance for other studies.

49

8. FUTURE WORK

8.1. Turkish Morphological Parser

WordPieceModel offers an approach but it is not guarantee a success since Turkish

is different. Vocabulary size is much larger than English due to the additive structure

of Turkish. BERT English vocabulary from WordPieceModel has 30k vocabulary size.

With WordPieceModel on Turkish with specified vocabulary size, tokens will be like

morphemes since statistically morphemes will occur. But this does not guarantee that

WordPieceModel tokenized vocabulary will have morphological meaning. Following

the main idea of wordpiece which is representing the word with frequently occurring

subtokens, this can be utilized better in an additive language like Turkish where words

can be tokenized into meaningful morphemes instead of a statistical approach.

For the tokenization, a morphological disambiguator component will be devel-

oped. There are existing models for this task like hasim-morph [47], trmorph2 [48] and

zemberek [9]. Performance of these models will be analysed. Available datasets for

this task will be searched. For this component, there could be an approach such that a

training dataset are generated from existing models by majority voting and then sev-

eral neural network models are trained on this dataset with different architectures like

character based neural networks, transformer neural networks. Manual data labeling

could be performed if necessary.

The performance of morphological tokenization depends on the input sentence. If

the input sentence is misspelled, success of morphological tokenization decreases heav-

ily. For this reason, the text normalization component will be used before processing.

50

8.2. Turkish Language Model

An important novelty of the BERT model is the WordPieceModel in the vocab-

ulary setting and the tokenization parts. It learns the vocabulary of subwords from a

large dataset by utilizing a language model which is used to maximize the likelihood

of character sequences. Then the text is tokenized with the vocabulary in a greedy

manner. In Turkish, it is expected that subwords would approximate to morphological

affixes since Turkish is an additive language. Instead of only depending on dataset,

a morphological parser, which directly contains language information, will be used to

tokenize the input.

Turkish is an additive language where words are enriched with many affixes.

From one root word, many other words could be generated. This situation results

in vocabulary problems because of the high vocabulary size where there are more

OOV problems compared to English and also it is hard to relate the words with small

differences like ‘geliyordum’ and ‘geldim’ or ‘ben’, ’beni’ and ‘bana’. With increased

vocabulary size, increased model capacity would be needed. With increased vocabulary

size, larger dataset would be required to have enough word occurences for each word.

Published BERT models are trained on English, Chinese and multilingual datasets.

There is no Turkish pretrained BERT model. To train such a model, a Turkish corpus

will be collected. Since pretraining is unsupervised, any raw text could be used in

pretraining data. The main sources are likely to be books, news, blogs, Wikipedia,

articles etc. Other options of raw text can also be used as the source.

The collected corpus will be tokenized with the morphological disambiguator

component. For the input format of the Transformer model, an adjustment will be

needed to comply with the rest of the model when a state of the art model is used,

like GPT, BERT, Roberta. Since the idea of WordPieceModel and morphological

tokenization is same, using subwords, similar conventions will be followed to represent

and encode words, like keeping word-subword mapping.

51

After Turkish corpus and data preparation steps are handled, a Transformer

model will be trained from scratch. The model hyperparameters will be adjusted for

the changed data and vocabulary. Model loss will be analysed through epochs. Since

dataset size, vocabulary size and subword approaches will differ, convergence of the

model could differ in learning rate, number of epochs, batch size and other possible

parameters.

The pretrained model will be finetuned and tested. For testing, an existing de-

pendency parsing end task is selected. For finetuning, proper layer implementation

will be added on top of the pretrained model. During finetuning, the weights of the

pretrained model could be freezed or could be updated along with finetuning. The

hyperparameters of finetuning, like number of finetuning epochs and learning rate, will

be analysed and adjusted for the finetuning dataset. The results of the finetuned model

will be compared with the state of the art results.

During pretraining and finetuning, “torch” and “transformers” Python packages

will be utilized. “transformers” Python package implements the most popular and

successful state of the art models that are based on transformer neural networks. BERT

is one of the implemented models in the “transformers” package. Most of the required

functions for the pretraining and finetuning implementations of this project will be

utilized from this package. Additionally needed components will be implemented if

any occurs.

52

REFERENCES

1. Zhou, M., N. Duan, S. Liu and H.-Y. Shum, “Progress in Neural NLP: Modeling,

Learning, and Reasoning”, Engineering , Vol. 6, No. 3, pp. 275–290, 2020.

2. Colby, B. N., “Culture Grammars”, Science, Vol. 187, No. 4180, pp. 913–919, 1975.

3. Landauer, T. K. and S. T. Dumais, “A Solution to Plato’s Problem: The La-

tent Semantic Analysis Theory of Acquisition, Induction, and Representation of

Knowledge.”, Psychological Review , Vol. 104, No. 2, p. 211, 1997.

4. Martin, D. I. and M. W. Berry, “Mathematical Foundations Behind Latent Se-

mantic Analysis”, Handbook of Latent Semantic Analysis , pp. 35–56, 2007.

5. Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient Estimation of Word

Representations in Vector Space”, arXiv preprint arXiv:1301.3781 , 2013.

6. Devlin, J., M.-W. Chang, K. Lee and K. Toutanova, “Bert: Pre-training of

Deep Bidirectional Transformers for Language Understanding”, arXiv preprint

arXiv:1810.04805 , 2018.

7. Oflazer, K., “Turkish and Its Challenges for Language Processing”, Language Re-

sources and Evaluation, Vol. 48, No. 4, pp. 639–653, 2014.

8. Cambria, E. and B. White, “Jumping NLP curves: A Review of Natural Language

Processing Research”, IEEE Computational Intelligence Magazine, Vol. 9, No. 2,

pp. 48–57, 2014.

9. Akın, A. A. and M. D. Akın, “Zemberek, An Open Source NLP Framework for

Turkic Languages”, Structure, Vol. 10, No. 2007, pp. 1–5, 2007.

10. Lourentzou, I., K. Manghnani and C. Zhai, “Adapting Sequence to Sequence Mod-

53

els for Text Normalization in Social Media”, Proceedings of the International AAAI

Conference on Web and Social Media, Vol. 13, pp. 335–345, 2019.

11. Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun,

Y. Cao, Q. Gao, K. Macherey et al., “Google’s Neural Machine Translation Sys-

tem: Bridging the Gap Between Human and Machine Translation”, arXiv preprint

arXiv:1609.08144 , 2016.

12. Sennrich, R., B. Haddow and A. Birch, “Neural Machine Translation of Rare Words

with Subword Units”, arXiv preprint arXiv:1508.07909 , 2015.

13. Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado and J. Dean, “Distributed

Representations of Words and Phrases and Their Compositionality”, Advances in

Neural Information Processing Systems , pp. 3111–3119, 2013.

14. Peters, M. E., M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee and

L. Zettlemoyer, “Deep Contextualized Word Representations”, arXiv preprint

arXiv:1802.05365 , 2018.

15. Schuster, M. and K. Nakajima, “Japanese and Korean Voice Search”, IEEE In-

ternational Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.

5149–5152, 2012.

16. Gage, P., “A New Algorithm for Data Compression”, C Users Journal , Vol. 12,

No. 2, pp. 23–38, 1994.

17. Kudo, T., “Subword Regularization: Improving Neural Network Translation Mod-

els with Multiple Subword Candidates”, arXiv preprint arXiv:1804.10959 , 2018.

18. Hinton, G. E., J. L. McClelland and D. E. Rumelhart, Distributed Representations ,

p. 77–109, MIT Press, Cambridge, MA, USA, 1986.

19. Bengio, Y., R. Ducharme, P. Vincent and C. Jauvin, “A Neural Probabilistic

54

Language Model”, Journal of Machine Learning Research, Vol. 3, pp. 1137–1155,

2003.

20. Pennington, J., R. Socher and C. D. Manning, “Glove: Global Vectors for Word

Representation”, Proceedings of the 2014 Conference on Empirical Methods in Nat-

ural Language Processing (EMNLP), pp. 1532–1543, 2014.

21. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser

and I. Polosukhin, “Attention is All You Need”, Advances in Neural Information

Processing Systems , pp. 5998–6008, 2017.

22. Radford, A., K. Narasimhan, T. Salimans and I. Sutskever, Improving

Language Understanding by Generative Pre-training , 2018, https://s3-

uswest2.amazonaws.com/openaiassets/researchcovers/language-

unsupervised/language understanding paper.pdf, accessed in January

2022.

23. Radford, A., J. Wu, R. Child, D. Luan, D. Amodei, I. Sutskever et al., “Language

Models are Unsupervised Multitask Learners”, OpenAI Blog , Vol. 1, No. 8, p. 9,

2019.

24. Oflazer, K., “Spelling Correction in Agglutinative Languages”, arXiv preprint cmp-

lg/9410004 , 1994.

25. Adali, K. and G. Eryiğit, “Vowel and Diacritic Restoration for Social Media Texts”,

Proceedings of the 5th Workshop on Language Analysis for Social Media (LASM),

pp. 53–61, 2014.

26. Sahin, M., U. Sulubacak and G. Eryigit, “Redefinition of Turkish Morphology

Using Flag Diacritics”, Proceedings of The Tenth Symposium on Natural Language

Processing, Phuket, Thailand , 2013.

27. Torunoğlu-Selamet, D. and G. Eryiğit, “A Cascaded Approach for Social Media

55

Text Normalization of Turkish”, Proceedings of the 5th Workshop on Language

Analysis for Social Media (LASM), pp. 62–70, 2014.

28. Eryiğit, G. and D. Torunoğlu-Selamet, “Social Media Text Normalization for Turk-

ish”, Natural Language Engineering , Vol. 23, No. 6, pp. 835–875, 2017.

29. Tursun, O. and R. Cakıcı, “Noisy Uyghur Text Normalization”, Proceedings of the

3rd Workshop on Noisy User-generated Text , pp. 85–93, 2017.

30. Göker, S. and B. Can, “Neural Text Normalization for Turkish Social Media”,

3rd International Conference on Computer Science and Engineering (UBMK), pp.

161–166, 2018.

31. Etoori, P., M. Chinnakotla and R. Mamidi, “Automatic Spelling Correction for

Resource-scarce Languages Using Deep Learning”, Proceedings of ACL, Student

Research Workshop, pp. 146–152, 2018.

32. Çolakoğlu, T., U. Sulubacak, A. C. Tantuğ et al., “Normalizing Non-canonical

Turkish Texts Using Machine Translation Approaches”, The 57th Annual Meet-

ing of the Association for Computational Linguistics Proceedings of the Student

Research Workshop, The Association for Computational Linguistics, 2019.

33. Büyük, O., “Context-Dependent Sequence-to-Sequence Turkish Spelling Correc-

tion”, ACM Transactions on Asian and Low-Resource Language Information Pro-

cessing (TALLIP), Vol. 19, No. 4, pp. 1–16, 2020.

34. Guinard, T., Improving Turkish Spelling Correction with Wikipedia Edit History

Data, Ph.D. Thesis, University of Washington, 2021.

35. Bergsma, S., D. Lin and R. Goebel, “Web-scale N-gram Models for Lexical Disam-

biguation”, Twenty-First International Joint Conference on Artificial Intelligence,

2009.

56

36. Kuznetsov, A. and H. Urdiales, “Spelling Correction with Denoising Transformer”,

arXiv preprint arXiv:2105.05977 , 2021.

37. Gao, M., C. Xu and P. Shi, “Hierarchical Character Tagger for Short Text Spelling

Error Correction”, arXiv preprint arXiv:2109.14259 , 2021.

38. Schmaltz, A., Y. Kim, A. M. Rush and S. M. Shieber, “Sentence-level Gram-

matical Error Identification as Sequence-to-sequence Correction”, arXiv preprint

arXiv:1604.04677 , 2016.

39. Fixy-TR, Fixy-TR/fixy , 2020, https://github.com/Fixy-TR/fixy, accessed in

January 2022.

40. Honnibal, M. and I. Montani, “spaCy: Natural Language Understanding with

Bloom Embeddings, Convolutional Neural Networks and Incremental Parsing”, To

appear , 2017.

41. Makcedward, makcedward/nlpaug: Data Augmentation for NLP , 2020,

https://github.com/makcedward/nlpaug, accessed in January 2022.

42. Paszke, A., S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,

Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito,

M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chin-

tala, “PyTorch: An Imperative Style, High-Performance Deep Learning Library”,

Advances in Neural Information Processing Systems 32 , pp. 8024–8035, Curran

Associates, Inc., 2019.

43. Pamay, T., U. Sulubacak, D. Torunoğlu-Selamet and G. Eryiğit, “The Annotation

Process of the ITU Web Treebank”, Proceedings of the 9th Linguistic Annotation

Workshop, pp. 95–101, 2015.

44. Koksal, A. T., O. Bozal, E. Yürekli and G. Gezici, “# Turki $ hTweets: A Bench-

mark Dataset for Turkish Text Correction”, Findings of the Association for Com-

57

putational Linguistics: EMNLP , pp. 4190–4198, 2020.

45. Arikan, U., O. Güngör and S. Uskudarli, “Detecting Clitics Related Orthographic

Errors in Turkish”, Proceedings of the International Conference on Recent Advances

in Natural Language Processing , pp. 71–76, 2019.

46. Eryiğit, G., “ITU Turkish NLP Web Service”, Proceedings of the Demonstrations at

the 14th Conference of the European Chapter of the Association for Computational

Linguistics , pp. 1–4, 2014.

47. Sak, H., T. Güngör and M. Saraçlar, “Turkish Language Resources: Morphological

Parser, Morphological Disambiguator and Web Corpus”, International Conference

on Natural Language Processing , pp. 417–427, Springer, 2008.

48. Çöltekin, Ç., “A Freely Available Morphological Analyzer for Turkish”, Proceedings

of the Seventh International Conference on Language Resources and Evaluation

(LREC’10), 2010.

