
ELECTANON: A BLOCKCHAIN-BASED, ANONYMOUS, ROBUST AND

SCALABLE RANKED-CHOICE VOTING PROTOCOL

by

Ceyhun Onur

B.S., Computer Engineering, Koç University, 2016

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022

iii

ACKNOWLEDGEMENTS

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. Arda Yurdakul for her invaluable advice, support, and patience during my thesis

study. I am also grateful to my thesis committee members, Prof. Öznur Özkasap

and Prof. Can Özturan, for their time and assessment of this thesis. I also would

like to thank Kazım Rıfat Özyılmaz for his invaluable suggestions and for sharing his

knowledge with me without hesitation. I also would like to thank all the IoT-BC team

members for their invaluable feedback and support. I also would like to express my

gratitude to all my professors at Boğaziçi University.

I give my deepest thanks to my family for the support, love, and patience they

provided me during my study. I found the most needed motivation in even the darkest

times with their support. I also would like to offer my most profound gratitude and

love to my fiancee, who continuously motivated me during this study.

I also would like to thank Atılberk Çelebi and Bedirhan Çaldır, who have been

classmates with me for a long time from undergraduate years in Koç University to my

graduate years in Bogaziçi University.

I acknowledge that this thesis research was partially supported by BAP committee

under project no: BAP-17A01P7.

A scientific article prepared from this thesis work is under evaluation for publica-

tion as the partial fulfillment of the graduation requirements. There may be substantial

overlap with this thesis when the article is published. All tables, figures and images in

this thesis are prepared by me.

iv

ABSTRACT

ELECTANON: A BLOCKCHAIN-BASED, ANONYMOUS,

ROBUST AND SCALABLE RANKED-CHOICE VOTING

PROTOCOL

Remote voting has become more critical in recent years, especially after the

Covid-19 outbreak. Blockchain technology and its benefits like decentralization, se-

curity, and transparency have encouraged remote voting systems to use blockchains.

Analysis of existing solutions reveals that anonymity, robustness, and scalability are

common problems in blockchain-based election systems. In this thesis, we propose

ElectAnon, a blockchain-based, ranked-choice election protocol focusing on anonymity,

robustness and scalability. ElectAnon achieves anonymity via zero-knowledge proofs.

Robustness is realized by removing the direct control of the authorities in the voting

process. Scalability is ensured by treating each ranked-choice ballot as a permutation

list, then encoded into a single integer that can be efficiently stored. The proposed

protocol includes a candidate proposal system to provide an end-to-end election solu-

tion. We also discuss three different extensions in this thesis. The Multiple Elections

extension provides a mechanism to use the same set of voters for multiple elections.

The Merkle Forest extension minimizes the trust assumption on election authorities in

exchange for a decrease in scalability. The Assisted Merkle Tree extension offers just

the opposite tradeoff by increasing scalability in favor of requiring external assistance

from authorities. ElectAnon is implemented using Ethereum smart contracts and a

zero-knowledge gadget, Semaphore. The implementation includes two different sophis-

ticated tallying methods, Borda Count and Tideman. Results show that ElectAnon is

capable of running feasibly with up to 100,000 voters and reduces the gas consumption

up to 89% compared to previous works.

v

ÖZET

ELECTANON: BLOKZİNCİR TABANLI, ANONİM,

SAĞLAM VE ÖLÇEKLENEBİLİR TERCİHLİ OYLAMA

PROTOKOLÜ

Son yıllarda, özellikle Covid-19 salgını sonrasında, uzaktan oylama sistemleri

önem kazanmaya başlamıştır. Blokzincir teknolojisinin merkeziyetsizlik, güvenlik ve

şeffaflık gibi faydaları, uzaktan seçim sistemlerini de bu teknolojiyi kullanmaya teşvik

etmektedir. Mevcut araştırmalar üzerine yapılan analizler; anonimlik, sağlamlık ve

ölçeklenebilirliğin blokzincir tabanlı seçim sistemlerinde yaygın sorunlar olduğunu or-

taya koymaktadır. Bu tezde, anonimlik, sağlamlık ve ölçeklenebilirliğe odaklanan

blokzincir tabanlı, tercihli oylama protokolü olan ElectAnon’u önermekteyiz. Protokol,

anonimliği sağlamak için sıfır bilgi ispatlarını kullanır. Protokol, sağlamlığı arttırmak

için seçim yetkililerinin seçime doğrudan müdahele etmesini engeller. Protokol, sıralı

oy listelerini verimli bir kodlama algoritmasıyla saklayarak ölçeklenebilirliği arttırmayı

amaçlar. Ayrıca protokol aday önerme sistemini de içerir. Ayrıca tezin içersinde üç

farklı eklenti de ele alınmıştır. Çoklu Seçim eklentisi, aynı seçmen grubunu birden fazla

seçimde kullanmak için bir mekanizma sağlar. Merkle Ormanı eklentisi, bir miktar ek-

stra maliyet karşılığında seçim yetkilileri üzerindeki güven varsayımını en aza indirir.

Destekli Merkle Ağacı eklentisi, yetkililerden ek bir yardım gereksinimi karşılığında

ölçeklenebilirliği artırmayı hedefler. ElectAnon, Borda Count ve Tideman olmak üzere

iki farklı oy sayma yöntemi içerir. ElectAnon, Ethereum akıllı sözleşmeleri ve sıfır

bilgi ispat uygulaması olan Semaphore kullanarak geliştirilmiştir. Test sonuçları, ön-

erdiğimiz protokolün 100.000’e kadar seçmenle uygulanabilir bir şekilde çalışabileceğini

ve daha önceki çalışmalara göre gaz tüketimini %89’a varan oranlarda azalttığını göster-

miştir.

vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iii

ABSTRACT . iv

ÖZET . v

LIST OF FIGURES . ix

LIST OF TABLES . xi

LIST OF SYMBOLS . xii

LIST OF ACRONYMS/ABBREVIATIONS . xiii

1. INTRODUCTION . 1

1.1. Our Contributions . 3

1.2. Thesis Organization . 4

2. BACKGROUND . 5

2.1. Blockchain . 5

2.1.1. Ethereum . 6

2.1.2. Decentralized Autonomous Organizations 7

2.2. Electoral Systems . 8

2.2.1. Choose One Voting . 8

2.2.2. Ranked Choice Voting . 9

2.3. Secure Election Requirements . 10

2.3.1. Eligibility . 10

2.3.2. Uniqueness . 11

2.3.3. Fairness . 11

2.3.4. Soundness . 11

2.3.5. Universal Verifiability . 11

2.3.6. Individual Verifiability . 11

2.3.7. Privacy and Anonymity . 11

2.3.8. Robustness . 12

2.3.9. Self-Tallying . 12

2.3.10. Scalability . 13

vii

3. RELATED WORKS . 14

3.1. Comparative Analysis . 15

3.1.1. McCorry et al. 15

3.1.2. Chaintegrity . 16

3.1.3. Yang et al. 18

3.1.4. Panja et al. 19

3.1.5. PriScore . 20

3.2. Discussion . 22

4. PROPOSED SOLUTION . 24

4.1. Preliminaries . 24

4.1.1. Zero-Knowledge Proofs and zk-SNARKs 24

4.1.2. Semaphore . 26

4.1.3. Ranking and Unranking Permutations in Linear Time 27

4.2. System Model . 28

4.2.1. System Actors . 29

4.2.2. States . 30

4.2.2.1. Setup State . 31

4.2.2.2. Register State . 33

4.2.2.3. Proposal State . 35

4.2.2.4. Commit State . 37

4.2.2.5. Reveal State . 43

4.2.2.6. Completed State . 44

4.3. Technical Details . 46

4.3.1. Tallying Libraries . 46

4.3.1.1. Borda Count Library 46

4.3.1.2. Tideman Library . 47

4.3.2. Block Number . 48

4.3.3. Batch Inputs . 49

4.3.4. Storage Costs . 50

4.3.5. Optimized Merkle Tree . 50

4.4. Extensions . 51

viii

4.4.1. Multiple Elections . 51

4.4.2. Assisted Merkle Tree . 52

4.4.3. Merkle Forest . 53

5. ANALYSIS . 56

5.1. Security Analysis . 56

5.1.1. Eligibility . 56

5.1.2. Uniqueness . 56

5.1.3. Privacy and Anonymity . 57

5.1.4. Fairness . 58

5.1.5. Soundness . 59

5.1.6. Universal Verifiability . 60

5.1.7. Individual Verifiability . 60

5.1.8. Robustness . 60

5.2. Experiments and Results . 61

5.2.1. Merkle Forest . 66

5.2.2. Evaluation . 67

6. CONCLUSION . 70

6.1. Remarks . 70

6.2. Future Work . 70

REFERENCES . 72

APPENDIX A: APPENDIX . 80

ix

LIST OF FIGURES

Figure 2.1. Choose-one voting ballot example. 9

Figure 2.2. Ranked-choice voting ballot example. 10

Figure 4.1. ElectAnon Timeline. 29

Figure 4.2. ElectAnon State Diagram. 31

Figure 4.3. Setup State Sequence Diagram. 33

Figure 4.4. Register State Sequence Diagram. 35

Figure 4.5. Proposal State Sequence Diagram. 36

Figure 4.6. Merkle Tree Example. 39

Figure 4.7. Commit State Sequence Diagram. 42

Figure 4.8. Reveal State Sequence Diagram. 44

Figure 4.9. Completed State Sequence Diagram. 45

Figure 5.1. Voter Functions. 63

Figure 5.2. Election Authority Functions. 64

Figure 5.3. Merkle Tree Functions. 65

x

Figure A.1. ElectAnon Class Diagram. 80

xi

LIST OF TABLES

Table 3.1. Evaluation table of selected blockchain based e-voting studies. . . . 15

Table 4.1. Example rank/unrank table for n=3. 28

Table 4.2. Tideman Gas Results (voterCount=250, candidateCount=10). . . . 48

Table 5.1. Semaphore Circuit & Function Times. 65

Table 5.2. Test Results for Merkle Forest Implementations. 67

Table 5.3. Gas Comparison Table (voterCount=40, candidateCount=10). . . 68

xii

LIST OF SYMBOLS

genIDi Identity generation function

genZK The zero-knowledge key generation function

h Hash function

nc Candidate count

Pi Zero knowledge proof generated by voter

si Identity random seed

xiii

LIST OF ACRONYMS/ABBREVIATIONS

ABI The Contract Application Binary Interface

CID Candidate ID

Circ The Zero-Knowledge Circuit

DAO Decentralized Autonomous Organization

DoS Denial of Service

EA Election Authority

EVM Ethereum Virtual Machine

ExtN External Nullifier

FPTP First-Past-The-Post

genProof Proof Generation Function

genWitness Witness Generation Function

IDi Voter Identity

IDCi Voter Identity Commitment

IPFS The InterPlanetary File System

LT Lifetime

MainSC The Main Smart Contract

MPEi Merkle Path Elements of the Voter

MPI i Merkle Path Index of the Voter

MRC Merkle Root Generated by the Circuit

MRS Merkle Root Stored in the Smart Contract

NHi Nullifier Hash of the Voter

Nulli Nullifier of the Voter

Params Final Parameters from Perpetual Power of Tau Ceremony

PoW Proof of Work

PR Proportional Representation

PrivKi Private Key of the Voter

ProveK The Zero-Knowledge Proving Key

PubKi Public Key of the Voter Identity

xiv

RCV Ranked Choice Voting

SC The Smart Contract

Signi Signature of the Voter

SNARK Succinct Non-Interactive Argument of Knowledge

Trapi Voter Random Trapdoor

TS Tally State Storage Mapping

URL The Remote Storage Address

UTXO Unspent Transaction Output

VerifyK The Zero-Knowledge Verifier Key

VerifierSC The Verifier Smart Contract

V Hi Committed Vote Hash

V IDi Vote ID of the Voter

V Ski Vote Secret Key of the Voter

ZK Zero-Knowledge

1

1. INTRODUCTION

The Internet’s global success and its adoption in the early 2000s have also affected

voting systems. The internet voting, or simply i-voting, has enabled voters to cast their

ballots remotely, unlike those legacy voting systems which require voters to show up

in a specific place like voting booths [1]. The i-voting brings possible advantages like

reduced operational costs for elections, time-saving, increased voter participation, and

improved transparency in elections [2]. Estonia [3] and Switzerland [4] are two early

adopters of i-voting in nation-wide government elections. An Estonian governmen-

tal agency, Enterprise Estonia (EAS), reported that the i-voting saved approximately

11,000 working days cumulatively in the 2011 Estonian parliamentary election [5]. The

same report mentions that the saved costs were roughly equal to 504,000 euros.

Remote systems have become even more significant in recent years, especially

after the COVID-19 outbreak. The pandemic has pushed existing systems and pro-

cedures to be implemented remotely. Legacy election systems, which oblige voters to

go to a specific place to cast a ballot, have also been impacted by the pandemic. For

example, almost half of the ballots were cast through mail voting in the US 2020 pres-

idential election [6]. Research shows that internet voting can be a better solution in

pandemic periods, as it can give faster results and be more cost-effective than other

channels like mail voting [7, 8].

Despite the advantages of internet voting, concerns around Internet-based elec-

tions have also been brought into the light. Main concerns toward i-voting revolves

around the possibility of server-side attacks [2]. The denial-of-service (DoS) is a well-

known server-side attack type that threatens most online systems. In the DoS attack,

the adversary floods targeted servers and services with redundant and resource-heavy

requests to overload systems to make them unavailable to respond to legitimate re-

quests. This attack can be widely expanded by distributing and increasing the number

of the attack origins. This is also known as distributed denial-of-service(DDoS) attack.

2

DoS attacks are more harmful to centralized systems since it is easier to concentrate the

attack on a single target [9]. Another problem with i-voting is that the centralized na-

ture of the Internet makes it more susceptible to censorship by central authorities [10].

Blockchain has emerged as a new paradigm to solve concerns like censorship, tar-

geted server-side attacks, single point of failure using a decentralized infrastructure in

contrast to the centralized Internet. Blockchain technology also offers distributed, se-

cure, privacy-preserving, and immutable applications. These innovations of blockchain

technology are considered to be very suitable for voting systems as well [11]. A com-

prehensive review paper shows that the number of research publications in blockchain-

based voting has increased from 7 to 30 in 2 years between 2017 and 2019 [12]. We also

think that just as blockchains can be useful for voting systems, voting systems can also

be very useful for blockchains. Many existing blockchain-based applications, such as

decentralized autonomous organizations (DAOs), use voting mechanisms [13]. Thus a

solid and efficient voting system can be useful for blockchain-based applications which

require voting and elections.

In this work, we analyze and discuss the secure election requirements along with

state-of-the-art solutions in blockchain-based election systems. Our analysis of existing

solutions has shown us that anonymity, robustness, and scalability are common prob-

lems. We find that even though most of the works can achieve privacy, they cannot

successfully achieve anonymity because election authorities can know the real identi-

ties of voters, and they can distinguish a voter from another. We find this might carry

additional risks for blockchain-based elections since addresses in blockchains can be

traced, and election authorities can expose a link between voters’ blockchain addresses

and their real identities. In addition, most of the works use complex encryption and

decryption schemes to preserve privacy. We find that these complex schemes are very

inefficient for blockchains and cause high voting transaction costs, making existing

systems unscalable. Robustness was also not assured as most of the protocols are dis-

ruptable in the voting process or require additional assistance from authorities to tally

votes.

3

In the light of these analyses, we propose ElectAnon, a blockchain-based ranked-

choice election protocol with additional focus in anonymity, robustness and scalability.

In the proposed protocol, we aim to achieve anonymity by using zero-knowledge proofs.

ElecAnon minimizes any need for manual handling between election phases and reduces

the election assistance in the voting to achieve robustness. ElecAnon aims to minimize

voting costs to increase scalability by using efficient storage mechanisms and other

optimization techniques. ElectAnon targets to achieve privacy through anonymity

with zero-knowledge proofs. This not only brings a novel solution for privacy issues,

but it also increases the scalability by replacing complex encryption schemes with zero-

knowledge proof schemes, which are more optimized and efficient for blockchains.

1.1. Our Contributions

In this thesis, we propose a new blockchain-based voting protocol, ElectAnon.

Our main contributions in this work are presented as follows:

• We gather known secure election requirements and extend them for secure online

elections. Anonymity is derived from existing Privacy requirement and discussed.

The current definition of Robustness is expanded by adding Autonomy to it. Scal-

ability is also redefined and included in blockchain-based election requirements.

• A privacy-preserving, blockchain-based voting protocol, ElectAnon, is proposed.

The protocol fulfills the discussed election requirements.

• A scalable ranked-choice voting system is inherited in the protocol to conduct

more democratized elections.

• A candidate proposal system is included in the protocol to provide an end-to-end

decentralized election experience.

• A modular and algorithm-agnostic mechanism is used in tallying to switch be-

tween different methods easily. Two ranked-choice tallying methods, Borda Count

and Tideman, are implemented and analyzed.

4

• Possible extensions are discussed to optimize the proposed protocol for different

use cases. One of these extensions shows a possible mechanism to run multiple

elections with the same voters. Another one can be used to adjust trust assump-

tions and conduct even more trustless election environments. We also discussed

another extension that can reduce the costs further in favor of increased trust

assumption in election authorities.

We used Ethereum Virtual Machine (EVM) [14] based smart contracts and an

EVM-based zero-knowledge tool called Semaphore [15] in our implementations. Our

work supports other EVM-based blockchain platforms. ElectAnon can be especially

beneficial for decentralized autonomous organizations (DAOs) because of its inherently

democratic voting protocol and the ability to work with existing EVM-based smart

contracts.

Performance tests are conducted in the Ethereum and Avalanche local test net-

works to measure the scalability of the implemented solution. We see that our work

is capable of running feasibly up to 100,000 voters. Moreover, we show that our work

can scale up the number of voters indefinitely with increased costs. Test results show

that our work reduces the total election gas consumption by 89% compared to existing

solutions.

1.2. Thesis Organization

The thesis is organized as follows. The following chapter explains the general

blockchain and election concepts, along with secure election requirements. Chapter 3

provides a detailed analysis of selected previous works. Chapter 4 starts with a brief

preliminary section to explain used algorithms and concepts. The chapter continues

with the proposed ElectAnon protocol with its implementation details and provided

extensions. Chapter 5 presents the security analysis, test results, and comparison with

previous works. Chapter 6 concludes the thesis with an overview of achieved results

and gives directions for future research.

5

2. BACKGROUND

2.1. Blockchain

Even though blockchains have become very popular in recent years, the history

of blockchains roots back to the 1970s [16]. There were many different studies con-

ducted on topics like timestamp-able ledgers, e-cash schemes, and digital currencies

in peer-to-peer networks from the 1970s to 2008 [16]. Bitcoin whitepaper, the pioneer

of blockchain technology, was published in 2008 by an anonymous identity, Satoshi

Nakomoto [17]. Bitcoin whitepaper proposes secure, agreeable, and decentralized asset

transfers in peer-to-peer networks. These asset transfers are referred to as transac-

tions in the whitepaper. Transactions are wrapped in timestamped containers called

blocks. Blocks are in total order and appended to each other by referencing previous

ones. Bitcoin brings Sybil-attack protection called Proof-of-Work (PoW). In PoW,

verifier nodes, a.k.a miners, compete in a race to create valid blocks by solving a hash-

puzzle. The first miner to solve this puzzle gets the right to wrap transactions into a

block and propagates them to the network. Each network member, i.e., node, verifies

these propagated blocks. Miners get a reward in return if they successfully create valid

blocks. Bitcoin also effectively solves double-spendable transactions with a new method

called unspendable transaction output, i.e UTXO. In UTXO model, each transaction

refers to an existing UTXO. UTXOs are considered spent when they are referred to

in transactions. So when they are referred twice, one of the referring transactions is

invalidated. A novel consensus model called Nakomoto Consensus is also presented in

the whitepaper. Participants (nodes) agree to follow the largest chain in this consensus

model to reach a network-wide consensus.

Bitcoin brought a groundbreaking approach to asset transfers with modern cryp-

tography techniques. It does not only offer a way to decentralize asset transfers but

also reduce transaction costs in comparison to traditional banking. Although Bitcoin

offered a breathtaking technology, the drawbacks and bottlenecks have been noticed.

6

One of the main drawbacks is the long finalization times. Bitcoin aims to produce

a block every 10 minutes. It means that each transaction is confirmed within ap-

proximately 10 minutes. Bitcoin has some basic scripting to support features like

time-locking transactions and multi-owner transactions. However, this has turned out

insufficient to support a wide range of application use cases.

2.1.1. Ethereum

Vitalik Buterin proposed Ethereum in 2014 to address issues with Bitcoin [14].

Ethereum aims to become a global and decentralized computer that can run many

different applications, which are called smart contracts [14]. Ethereum has been a huge

success since its release in 2015. Smart contracts are applied in various industries like

finance, logistics, insurance, entertainment, and art. The number of smart contracts

deployed on the Ethereum network was reported up to 1.5 million in 2020 [18]. Today,

it remains the second-largest cryptocurrency, just one place behind Bitcoin.

Ethereum uses a compiled Turing-complete language called Ethereum Bytecode

for smart contracts. A virtual machine, Ethereum Virtual Machine or simply EVM,

executes each transaction with a given pre-state and outputs a new post-state. It

means that every other node running EVM gets the same post-state with the given

pre-state so that a consensus can be reached. EVM transactions require computational

resources (CPU, storage, memory) to execute these state transitions. These costs can

increase with the increased transaction operation complexity. In order to compensate

for these required computational resources, each operation requires a constant gas cost.

It guarantees that the calculation of total transaction gas cost is deterministic. Smart

contract functions are simply compositions of different EVM operations, so they all

require a gas cost. Gas cost is constant for all Ethereum Virtual Machines at any time;

however, the gas must be paid with a real-world value. Ethereum uses ETH as its

native token for fees. Each transaction fee is calculated by gasCost ∗ gasPrice. The

gas price changes with the network activity. Even though the gas cost of transactions

is constant, the gas price can change; thus, the actual transaction cost can fluctuate.

7

There are many different high-level smart contract languages for the Ethereum

Bytecode. Solidity is one of the most popular and well supported smart-contract

languages [19]. Solidity is a C++-like object-oriented language specifically designed

for EVM smart contracts. It supports concepts such as inheritance, loadable libraries,

custom types, loops, function overloading.

We have used Ethereum and Solidity as our main blockchain platform and smart

contract language in our protocol implementation, respectively. This is because they

are both well-designed and highly-supported technologies. Moreover, a smart contract

implementation in EVM can be used in other EVM-based chains like Avalanche [20],

Binance Smart Chain [21], xDai [22] to name a few. Recently Ethereum took a step to

specifically support zero-knowledge proofs with the Istanbul hard fork (upgrade) [23].

The upgrade has dramatically reduced gas costs of operations in zero-knowledge proof

verification. All of these mentioned reasons and the availability of well-supported

development tools had led us to choose Ethereum as our main blockchain platform.

2.1.2. Decentralized Autonomous Organizations

Decentralized Autonomous Organization (DAO) is yet another concept brought

by Ethereum. DAO can be defined as “an organization that requires no central man-

agement” [13]. In DAOs, the organizational decisions are made through proposals and

elections. Each proposal defines an organizational operation, i.e., hiring new employ-

ees, managing resources, and deciding on feature sets. Proposals are voted, and final

decisions are made through elections. In a typical DAO, voting powers are determined

by governance tokens [13]. These governance tokens are issued via initial coin offerings

(ICOs) to investors [13]. Each of these proposals, elections, decisions, and operations

are made on the blockchains, so they are transparent, decentralized, and verifiable.

DAOs have become very popular since 2018. At the end of 2020, the number of es-

tablished DAOs was almost 2000. A recent article shows there are more than 700,000

DAO members in September 2021 [24].

8

2.2. Electoral Systems

In this section, we give a brief explanation and comparison of two electoral sys-

tems: Choose One and Ranked Choice.

2.2.1. Choose One Voting

In plurality voting, or simply choose-one voting, voters select a single candidate

on the ballot [25]. The choose-one voting is still widely used in today, within electoral

systems like first-past-the-post (FPTP) and Proportional Representation (PR) [26,27].

A choose-one voting ballot example can be seen in Figure 2.1. Choose-one is very sim-

ple; thus, it is straightforward to understand and applicable for voters. This simplicity

brings a restriction for the expressed preferences as voters are only allowed to cast a

single vote. This restriction can cause potential problems. Maurice Duverger, a famous

political scientist, devised Duverger’s law which states that choose-one plurality-rule

elections favor the two-party systems [28]. This favor in two-party systems also in-

creases the wasted votes since the losing side might feel ineffective on the election

outcome. Wasted votes might also trigger possible spoiler effects. Spoiler effects, or

vote splitting, is the effect of dividing one candidate’s potential votes into several sim-

ilar candidates. It mostly occurs between parties that adopt similar ideologies so that

they can attract votes from similar parties. This would eventually favor the election

toward the opponent of that ideology. So in some sense, having multiple parties with

the same ideology harms that ideology. In the 2000 US Presidential Race, it is debated

that Raphael Nade’s entrance to the election had split votes from Al Gore because

they both share similar ideologies [29]. As a result, choose-one remains susceptible to

tactical voting, spoiler effects, and manipulations.

9

Candidates Vote

Candidate A □

Candidate B ■

Candidate C □

Candidate D □

Candidate F □

Figure 2.1. Choose-one voting ballot example.

2.2.2. Ranked Choice Voting

Ranked Choice Voting (RCV) enables voters to sort their candidate preferences

and vote with a sorted list. Contrary to choose-one voting, RCV allows each voter to

express their preferences better in an election. An RCV ballot example can be seen

in Figure 2.2. RCV reduces the risk of manipulations that exist for the choose-one

ballot system. At the same time, it also supports multiple-candidate elections. James

Anest discusses the depths of RCV and its potential contributions to conduct more

democratic elections [30]. The author states that RCV can encourage candidates to

enter elections without having to worry about spoiling votes for other candidates and

also helps losers to stay in the future elections. This is due to the fact that the increased

expressed preferences reduce the vote splitting risks dramatically. In RCV, a voter can

put similar candidates to higher positions, rather than choosing one of them. In RCV,

it is very likely that each voter’s preference makes a difference in the election. RCV

encourages voters to participate in elections because it also reduces wasted votes. One

of the debates against RCV claims that RCV could be too complicated for voters since

it is relatively new when compared to FPTP or PR [31]. However, Anest argues that

with the recent developments in electronic voting, it could be practical to use RCV in

large-scale elections [30].

10

Candidates 1st 2nd 3rd 4th 5th

Candidate A □ ■ □ □ □

Candidate B ■ □ □ □ □

Candidate C □ □ ■ □ □

Candidate D □ □ □ ■ □

Candidate F □ □ □ □ ■

Figure 2.2. Ranked-choice voting ballot example.

2.3. Secure Election Requirements

There are some requirements that must be satisfied in order to conduct a se-

cure online election. D.A Gritzalis identifies some of these requirements in his work

in 2002 [32]. Gritzalis’ identified requirements are still valid even today. A recent

work [33] in 2021 mentions a similar set of requirements for secure blockchain-based

online elections. We gathered and presented existing definitions of Eligibility, Unique-

ness, Privacy, Fairness, Soundness, Universal Verifiability, Individual Verifiability se-

cure election requirements. We also expanded existing definitions of Privacy and Ro-

bustness. We also introduce Scalability as a secure online election requirement.

2.3.1. Eligibility

Only eligible voters must be able to cast ballots in an election [32]. The eligibility

of a voter is generally decided by some set of rules. Some of these rules may be listed

as being a resident in a particular state, being old enough to vote, having no criminal

records. In most cases, election authorities collect some documents like ID cards or

biometric data to decide on a voter’s eligibility [34].

11

2.3.2. Uniqueness

Uniqueness or Unreusability ensures that no voter can cast more than one ballot

in an election. In other words each voter can vote only once [32,35].

2.3.3. Fairness

No intermediate results should be available to be obtained. In other words, voters

should not be able to alter their preferences according to the intermediate results

[32,33].

2.3.4. Soundness

Only valid ballots should be taken into account in the tallying process. In other

words, invalid ballots should be discarded and not be tallied [33].

2.3.5. Universal Verifiability

The fairness and the correctness of an election result must be verifiable universally.

Even non-participants must be able to validate the election result [36, 37].

2.3.6. Individual Verifiability

Voters must be able to verify that their ballots are cast correctly in the election

[36, 37]. We also think that voters should be able to verify all their interactions with

the election protocol, especially in elections that have multiple states and phases.

2.3.7. Privacy and Anonymity

Votes should not be distinguishable in terms of who cast them. It also means

that no one should be able to figure out which voter used which ballot [36].

12

Online voting, especially repeated elections in public networks, is susceptible to

linking voting preferences to voters’ digital identity. This might include linking a

digital anonymous identity to the actual identity via linkage attacks [38]. Because of

this link, the privacy of voters can be reduced. This could carry a higher risk in the

case that a party, like the election authority, knows the actual identities. We expand

the Privacy requirement by ensuring that no operation in an election can be linked to

actual identities. We call this Anonymity of voters. If the Anonymity is guaranteed,

then no parties, even election authorities, can know who interacted with the election

protocol.

2.3.8. Robustness

Robustness is another crucial requirement for voting systems. This condition

ensures the inability of any parties to disrupt an ongoing election [33]. Robustness is

extended in the work [39] by adding tallying availability on top of voting availability.

Voting availability ensures that eligible voters can finish the voting process without

any disruption. Tallying availability ensures that valid votes can be tallied correctly

without any disruption. In other words, tallying availability guarantees that cast votes

will not be lost in vain. This is crucial for blockchain systems since each transaction

requires a transaction fee and cost. If a disruption happens after vote casting, it means

that this cost would be for nothing. Most of internet-voting protocols typically consist

of different phases like Initialization, Voting and Tallying [2] We extend Robustness

requirement by adding autonomy, which ensures that there can be no halting/freezing

between phase changes.

2.3.9. Self-Tallying

Everyone should be able to calculate the election result and come up with the

same result as others [37]. This ensures there is no need for authorities or any specific

actors to calculate the election result. Hence everyone, even non-participants, can learn

the election result without depending on other parties.

13

2.3.10. Scalability

This one is not a direct election requirement but one of the crucial requirements

for generic electronic systems. We define Scalability as the maximum number of voters

and candidate counts in an election. Most blockchain platforms have a fixed capacity

of transaction and block size. It means that the Scalability in those systems are more

evident and can be easily measurable when compared to traditional centralized systems.

There are also other considerations that should be taken into account for a scalable

election system, like required computational resources and calculation times.

14

3. RELATED WORKS

In this section, we analyze and discuss existing blockchain-based e-voting stud-

ies. A comprehensive work Trends in Blockchain-Based Electronic Voting Systems [40]

evaluates and scores more than 50 blockchain-based e-voting studies. Score evaluation

is based on nine different qualification criteria questions and scores each study with the

number of criteria it provides. We picked some of these studies to do a more detailed

review and comparison as follows:

• McCorry et al. [41] scores a %100 in [40] and also one of the earliest (2017)

blockchain based works.

• Chaintegrity [36] scores also %100 and has a smart contract implementation.

• Yang et al. [35] has a %89 score, and also uses a ranked-choice electoral system

like ours.

• Panja et al [42] also scores %89 and uses a smart-contract based borda-count

voting with gas consumption measurements.

• PriScore [37] is not scored in the work [40], however worth to be included as it

uses score-voting and has a smart contract implementation.

We evaluated these works in the following aspects: Eligibility, Uniqueness, Pri-

vacy, Anonymity, Fairness, Soundness, Universal Verifiability, Individual Verifiability,

Robustness and Scalability. Table 3.1 categorizes and summarizes this evaluation.

15

Table 3.1. Evaluation table of selected blockchain based e-voting studies.

Work
Election requirement

Scalable Electoral System Platform
E U P A F S UV IV R S-T

McCorry et al. [41] ✓ x ✓ x ✓ ✓ ✓ ✓ o ✓ x Yes-No Public/Ethereum

Chaintegrity [36] ✓ ✓ ✓ x x ✓ ✓ ✓ x x x Choose-One Abstract

Yang et al. [35] ✓ ✓ ✓ x o ✓ o ✓ x o x Ranked Choice Abstract

Panja et al. [42] ✓ x ✓ x ✓ ✓ ✓ ✓ o ✓ x Ranked-Choice Public/Ethereum

Priscore [37] ✓ o o x ✓ ✓ ✓ ✓ o o x Ranked-Choice Public/Ethereum

ElectAnon (this work) ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ Ranked-Choice Public/Ethereum

E: Eligibility, U: Uniqueness, P: Privacy, A: Anonymity, F: Fairness, S: Soundness,

UV: Universal-Verifiability IV: Individual-Verifiability, R: Robustness, S-T: Self-Tallying

✓: implemented, x: not implemented, o: partially implemented

3.1. Comparative Analysis

3.1.1. McCorry et al.

McCorry et al. [41] implements the Open-Vote Network(OV-net) protocol origi-

nally proposed by Hao et al. [43]. McCorry et al. use a blockchain-based smart contract

system to implement the OV-net protocol. The protocol uses shared-key encryption

to encrypt individual votes. Tallying can be done by combining encrypted votes and

obtaining the decrypted result without actually decrypting individual votes. The study

accomplishes Eligibility by publishing a list of eligible voter accounts in the smart con-

tract. Uniqueness is not mentioned in work. We suppose that an eligible voter can

double vote using a different voting key. Hao et al.’s original OV-net protocol [43] men-

tions that other participants can notice this type of action, but it does not mention

any countermeasure.

Privacy is ensured in work since preferences are kept encrypted with the shared-

key encryption and cannot be decrypted without the voter’s secret key. However, the

work does not guarantee Anonymity since election authorities need to register eligible

voters with their blockchain addresses. This means that election authorities can link the

real identities of eligible voters with their blockchain addresses. When voters interact

16

with the protocol, election authorities can distinguish the actual identities of voters.

Fairness was an open-question in the original OV-Net protocol [43].

The very last voters in the election held the last piece of the shared key; thus, they

can self-tally the election before revealing their own key. McCorry et al.’s work [41] fixes

this by adding an additional step that locks (commits) every voter’s preferences before

tallying. Soundness is achieved through verifying each ballot with Zero-Knowledge

proofs. Universal & Individual Verifiability are achieved through self-tallying and via

verifiable blockchain transactions. We consider Robustness is partially implemented

here since last voters have the ability to disrupt the whole election by not providing

their shared keys. This is partially solved by adding a mechanism that requires voters

to deposit some tokens beforehand and refund when they successfully cast their votes.

However, voters with harmful intentions can still disrupt the whole voting process

despite the economic incentives.

The work is also cannot be considered as Scalable. At the time of their writing,

they hit an Ethereum block capacity (2 million gas) for a single vote in a 50 voter

setup. Currently, the block capacity is 30 million gas on average, which makes the

work support around 650 voters at maximum as of today. The cost of casting a single

vote is shown as approximately 3,300,000 gas which would be equivalent to almost

900$, which is not feasible. The work uses a single yes/no based election. This is also

very restrictive on the expression of preferences, as mentioned in Section 2.2.1.

3.1.2. Chaintegrity

Chaintegrity [36] implements an e-voting protocol with smart contracts. The

underlying protocol uses blind signatures and multiple-round of message exchanges be-

tween election authorities and voters. The work provides Eligibility by publishing a list

of eligible public keys and verifying each signature in the vote registering. Uniqueness

is also accomplished by marking public keys once they successfully cast a vote.

17

Privacy of underlying protocol depends on the assumption that voters use differ-

ent blockchain addresses in different phases. In the protocol, voters register a blinded

ballot with their public keys and blockchain addresses; this reveals a link between their

public keys and blockchain addresses. We think Anonymity is violated here since the

election authority knows the public key of voters in registration. Thus, the authority

can link blockchain addresses with the real identity of voters. Even though Anonymity

is not achieved, the work achieves Privacy by using homomorphic encryption to tally

votes without decrypting them.

In the work, election authorities hold a shared secret key. The authors state that

their work meets the Fairness requirement under the assumption that the number of

honest election holders is above a security threshold. We think that this assumption

is too broad since the number of election holders is relatively small when compared to

voters. In other words, a subset of election holders can organize a collaborated attack

to tally the partial results before ballot casting ends. Thus intermediate results can

be obtained by the malicious election holders during the voting procedure, so Fairness

is violated. Soundness is achieved by verifying ballot validity with zero-knowledge

proofs. Universal Verifiability is achievable at the end of the election by self-tallying

the encrypted results and verifying that decrypted results are indeed intact. Individual

Verifiability is available via verifying blockchain transactions.

Voters need to send their encrypted ballots to election holders to obtain valid

signatures. It is possible that the election holder can stall the voting procedure by

not providing a signature or providing an invalid one. Voting verifiability is violated

since this disruption may occur during ongoing voting. The tallying verifiability is

also violated since election holders have to collaborate together for decrypting the

encrypted vote results at the end of the election. It means they can stall the procedure

or completely disrupt the election by not providing their keys. Thus, Robustness is

violated in terms of both voting verifiability and tallying verifiability. Self-Tallying is

also not possible since results have to be decrypted and tallied by election holders.

18

The authors mention that their protocol is scalable since their communication cost

is linear in the number of voters (O(n)). However, their protocol requires additional

steps. Firstly, voters need to send blinded ballots to the smart contract. Secondly,

election holders need to receive these blinded ballots from the smart contract, then

sign them and send them back to the smart contract. Finally, voters need to resend an

unblinded version of their ballots. In total, the voting procedure requires three trans-

actions to blockchain for a single vote. Tallying also requires one transaction. Each

additional transaction reduces scalability. Our work requires only two transactions for

voting and no transaction for tallying. It means that this work requires one additional

transaction for each vote and one for tallying when compared to our work. Any addi-

tional transactions, especially for voting, might end up increasing costs in a large-scale

election. They use plurality i.e choose-one voting [25]. The work does not mention a

specific blockchain platform for their implementation.

3.1.3. Yang et al.

Yang et al. [35] uses ElGamal scheme together with a new group-based encryption

proposed in work. The work implements Eligibility by registering eligible public keys

and verifying signatures in the vote casting. Uniqueness is achieved by storing the

digital signatures in the blockchain and checking that no signature is used more than

once. Privacy is ensured by encrypting votes twice. Voters encrypt their preferences

with a voting key and also with a public candidate key. So, in the end, individual votes

can only be decrypted by both the candidate’s private key and the voter’s private

voting key. During eligible public keys registration, the election authority knows the

real identities of voters, so the election authority knows the link between the public

keys of voters and their identities. Voters use the same public keys and blockchain

addresses in the vote casting; thus, election authority can deduct their real identities

when they cast their votes; this violates Anonymity. Candidates can decrypt their own

results before revealing their secret keys at the end of the Voting state. Thus each

candidate will know their results before the result is publicly announced. Since this

can occur only after the voting phase, we consider Fairness is partially implemented.

19

Soundness is guaranteed by zero-knowledge range proofs [35]. Universal Verifiability is

partially available since the result must be decrypted by the candidate keys before the

result can be verified. Individual Verifiability is available through verifying blockchain

transactions.

Robustness is not guaranteed since candidates have to reveal their secret keys in

order to tally the results. This means that candidates can mask their results by not

revealing their keys. Authors mention that this can be detectable and punishable by

giving these malicious candidates a 0 score. However, this clearly ignores preferences

of used votes for these candidates and disrupts the election. Since it is not possible to

tally the results without candidate keys, we consider Self Tallying is partially imple-

mented in this work. Voters need to encrypt each candidate in their ballots with their

related candidate secret keys. This creates an additional overhead with the increased

candidate count. Voters also have to form a zero-knowledge proof for their votes. In

their performance analysis, they measured a 100 KB total size for one vote with 15

candidates. This does not fit into one Ethereum block, which is almost 80 KB on

average at the time of writing this paper [44]. Because of these reasons, we think that

the study cannot be considered as Scalable. The study uses ranked-choice voting. The

research does not mention anything about blockchain platform choices.

3.1.4. Panja et al.

Panja et al. [42] add a ranked-choice election scheme to the existing work of

McCorry et al. [41], and OV-net [43]. The work inherits the same election requirements

from the previous work of McCorry et al. [41]. The only differences are Scalability

and Electoral System. Unfortunately, adding a ranked-choice electoral scheme to the

existing work [41] has made it even less scalable. The communication & computation

costs are shown as O(nk2) where n is voter count and k is candidate count. They

run their implementation with 80 voters and with five candidates in Ethereum. They

mention that even a single voting cost exceeds the block limit of 8 million. They tried

to split the voting transaction into five sub-transactions, but in the end, a single voting

20

transaction costs 40,102,222 gas. Unfortunately, this result is even more expensive

than the original work of McCorry et al. [41].

3.1.5. PriScore

PriScore [37] uses a distributed ElGamal scheme and zero-knowledge proofs [45].

The work achieves Eligibility by publishing a list of eligible voter public keys and

then verifying these public keys in the voting phase with zero-knowledge proofs. The

work can detect when a voter tries to cast multiple votes but does not mention any

countermeasures against it. So we suppose Uniqueness is partially supported. The

work uses a similar distributed secret key encryption scheme like McCorry et al. [41]

and Panja et al. [42]. As mentioned before, in these schemes, if any voter abandons their

committed vote, it can disrupt the whole voting. This work also suffers from the same

issue. In order to solve this, they added a commitment mechanism so that they can

terminate the whole election in case of a registered voter does not commit a vote. This

solution can only work for the abandoning vote problem in the commit phase. It is still

possible that a committed vote can be abandoned before the reveal, thus can disrupt

the election. The work has two tallying algorithms for two different cases. In the first

case, every registered voter casts their ballots, and thus everyone can self-tally the result

via the distributed ElGamal scheme. However, in the second case, where abandonment

happens, remaining voters need to collaborate together to re-calculate the result from

the remaining votes. The study mentions that the second algorithm requires voters’

secret keys as inputs to the algorithm. This clearly violates the Privacy. We assume

that Privacy is partially implemented since the second situation, where voters abandon

their votes, is an edge-case. The election authority collects public keys from voters and

generates a list of eligible voters. Eligible voters provide their public keys in Commit

state to verify that they are on the eligible list. Since the Election authority knows

their actual identity and their linked public key, Anonymity is not guaranteed.

Fairness is guaranteed with the fact that encrypted votes cannot be decrypted

until the end of the tallying process. Soundness is achieved by ensuring the ballot

21

validity with zero-knowledge proofs. Individual Verifiability satisfied by verified sig-

natures on ballots; thus, each voter can check if their votes are published and tallied

correctly on the blockchain. Universal Verifiability is ensured by homomorphic addi-

tion in ElGamal encryption. Robustness is partially violated since abandoned votes

can disrupt the election. The work mentions that the tallying algorithm can tolerate

at most one abandoned vote. However, it is also mentioned that an abandoned vote

is not recoverable during the commit phase. So if one voter does not participate in

the commit phase, the whole election needs to be reconstructed. We also think that

Self-Tallying is partially supported here since voters cannot tally the result without

collaborating together in the abandoned vote case.

The authors of the work provide a gas consumption table of different zero-

knowledge verification operations. We calculated the total gas consumption of each

state with ten candidates and 50 voters. Setup state is not mentioned for gas con-

sumption, so we skipped it. Commit state consumes a total of almost 1,100,000 gas.

Vote state consumes nearly 3,500,000 gas. Commit and Vote phase consumption in-

creases linearly with respect to candidate count. The work uses an efficient Self-Tally

algorithm, and it consumes almost 60,000 gas. The abandoned case tallying algorithm

consumes nearly 500,000 gas which increases linearly with respect to both candidate

and voter counts. The authors did not specify how voters can collaborate for tallying

in the abandoned case. We assume this might introduce additional overhead to the

network. In short, we assume that the work cannot be considered as Scalable since

a single vote casting consumes almost 4,500,000 gas which is almost half of the block

gas capacity. We also think that the gas consumption of the abandoned tally function

will hit Ethereum’s block size of 30,000,000 gas in an election with ten candidates and

25000 voters. The work uses ranked-choice electoral system with Ethereum as their

platform choice.

22

3.2. Discussion

We have iterated over some most qualified works mentioned in work Trends in

Blockchain-Based Electronic Voting Systems [40]. A summary table can be found in

Table 3.1. We have identified three common problems in the prior works. These are

Anonymity, Robustness and Scalability.

Anonymity was not considered thoroughly in the related works. Prior studies

try to accomplish Privacy by keeping votes encrypted and secret. This can hide the

link between a voter and their actual preference. In other words, they aim to secure

the vote side of the vote-voter link instead of the voter side. We aim to secure the

voter side of the link in our work. The prior works fail to accomplish this because

election authorities hold the information of voters’ real identities and their public keys

or blockchain addresses. This is needed in order to form a list of eligible voters properly,

so Eligibility can be reassured. However, when voters act in an election (i.e., vote,

commit, register, etc.), election authorities will know who acts on which function. The

Anonymity becomes more critical if the same list of eligible voters is being used many

times. Election authorities may form and enhance a link between the voter and the vote

usage pattern in every repeated election. This can be even more apparent for studies

like Yang et al. [35], McCorry et al. [41], Priscore [37]; since they need to repeat their

elections in case of abandoned votes. Most blockchain addresses are pseudo-anonym

by design [46]. It means addresses can be tracked down to affiliate the user with their

chain activities. In blockchain-based voting systems, it can lead to the exposure of

a link between voter identities and different blockchain activities. These blockchain

activities include transactions, token balances, ownerships, and relations with other

addresses. If Anonymity is not guaranteed, then election authorities can link actual

identities to these blockchain activities.

The Robustness also could not be achieved properly in prior works. Yang et al. [35]

and Chaintegrity [36] depend on third-party actors to decrypt ballots in tallying. This

clearly violates as these third-party actors can disrupt the election by providing invalid

23

credentials or not providing credentials at all. Some other works like McCorry et al. [41],

Yang et al. [35] and PriScore [37] use shared secret-key encryption, and thus susceptible

to vote to abandon. McCorry et al. [41] tries to solve this by incentive mechanisms,

by depositing and refunding some assets. However, if the political advantages of an

election exceed the incentives, voters can still disrupt the voting. PriScore [37] tries to

solve this with additional cryptographic operations; however, it also fails to apply it

for more than one abandoned vote. Every blockchain transaction costs additional fees.

So a large-scale election setup can be very costly, especially the cases like nationwide

elections. As a result, Robustness becomes a very crucial requirement in e-voting,

especially for blockchains. In our work, we tried to minimize the risk of ongoing

election disruption and also eliminated the possibility of election repetition.

Scalability is another aspect that could not be achieved properly in prior works.

They either fail to provide feasible costs or cannot conduct large-scale elections. We

think that this is because most of the works tried to preserve privacy with complex en-

cryption/decryption schemes like homomorphic encryption, ElGamal encryption, and

shared key encryptions. We think these are inefficient for blockchains, especially for

Ethereum based platforms. Works like McCorry et al. [41], Panja et al. [42] and

Priscore [37] uses Ethereum as the blockchain platform, and they were able to provide

gas consumptions of their implementations. Gas consumption is a very strong indicator

of scalability since there is a limit on the maximum consumable gas in Ethereum. This

limit dynamically changes with the network state and Ethereum fork version. We tried

to evaluate their work in today’s Ethereum gas limit standards. These works either

hit a maximum gas limit with a relatively small voter set or consume too much gas,

making them practically impossible. We tried to minimize the voter-side gas consump-

tion in our work so that it can be practically possible to conduct a large-scale election

in Ethereum. We think measuring the transaction delays and finalization times is not

very reasonable since these completely depend on the network state and the underly-

ing blockchain platform. It could be misleading to measure the scalability of a smart

contract, or generally a decentralized application, with transaction and finalization

times.

24

4. PROPOSED SOLUTION

We propose ElectAnon, a privacy-preserving, anonymous, scalable voting pro-

tocol. In this section, we provide some background information about incorporated

concepts and algorithms before explaining the implementation in detail.

4.1. Preliminaries

In this section, we provide some background information of the algorithms and

techniques used in our proposed solution.

4.1.1. Zero-Knowledge Proofs and zk-SNARKs

Zero-Knowledge proofs provide a way to prove the existence of the knowledge

without revealing the knowledge itself. There are two main actors in the protocol.

The prover forms the zero-knowledge proof and the verifier verifies the proof. The

zero-knowledge term was first mentioned in The Knowledge Complexity Of Interactive

Proof Systems by Goldwasser, Micali & Rackoff in 1989 [47]. Use cases include proving

private data, anonymous authorizations, private payments, computation offloading,

and electronic voting [48,49]. For example, one can prove they hold a sufficient amount

of balance in their bank account without actually revealing the exact balance itself.

Another example could be proving identity is indeed in a given eligible list without

actually revealing the identity in order to preserve privacy. The zero-knowledge proofs

can also be used to scale-up blockchains by offloading heavy computations to off-chain

(i.e., local) while verifying proofs and results on-chain [48].

The earlier zero-knowledge protocols make use of interactive protocols which re-

quire verifiers and provers to exchange messages in several rounds. Zero-Knowledge

Succinct Non-Interactive Argument of Knowledge or simply zk-SNARK brought an ef-

ficient zero-knowledge protocol that reduces the number of rounds to verify proofs [48].

25

zk-SNARK proofs are also succinct as they can be verified in milliseconds, and their

proof sizes can be as small as a few hundred bytes long.

zk-SNARKs are widely used in blockchains both to preserve privacy and to offload

heavy computations for scalability. Zcash is a well-known blockchain platform that uses

zk-SNARKs [50]. Zcash offers full-private blockchain transactions that completely hide

sender and receiver addresses and transaction amounts. The success of Zcash has led

other blockchain platforms to use zero-knowledge proofs and zk-SNARKs. For example,

Aztec [51] and StarkNet [52] are two side networks being developed with zk-SNARKs

to off-load Ethereum transactions.

zk-SNARK proofs are constructed with complex mathematical equations. These

equations, or constraints, can be in the form of quadratic, linear, or constant equa-

tions. Each of these constraints is combined together to form a single equation. These

arithmetic equations are formed into circuits [53]. There are some zk-SNARK circuit

compilers that abstract away these mathematical equations and generate zk-SNARK

constraints by using a higher-level language. Circom [54] and Zokrates [55] are two

popular compilers for zk-SNARK circuits. They support some basic software-language

concepts like variables, functions, control flows, operators and include types like inte-

gers, booleans, arrays, and structs. It’s also possible to define private and public inputs

and output signals with these languages. They can also generate smart contract veri-

fiers so that proofs can be verified on-chain. Typical steps for generating and verifying

zk-SNARK proofs are listed as follows:

(i) Designing a high-level circuit, i.e., writing the logic for the zero-knowledge com-

putation.

(ii) Compilation of the high-level circuit into a set of low-level arithmetic equations.

(iii) Generating verification key and a proving key with the compiled circuit and a

secret parameter. Both keys are announced publicly.

(iv) Computation of a secret called to witness by executing compiled circuit with the

given public and private inputs.

26

(v) The proof generation with the witness and the proving key.

(vi) Sending generated proof to the verifier.

(vii) Verification of the proof with the verification key by the verifier.

4.1.2. Semaphore

The Semaphore [56] is a zero-knowledge protocol and set of tools for anonymous

signaling. It uses a circuit to prove these three properties:

(i) An identity is eligible to broadcast a signal.

(ii) The signal truly belongs to the identity owner

(iii) The signal is not broadcasted twice.

The Semaphore aims to prove these properties without revealing any extractable infor-

mation about the user identity. As a result, users can broadcast various signals without

revealing their actual identities. A valid proof verifies that the user is indeed on the

eligible list. Eligible lists are defined with Merkle trees, so identity verification can

be efficiently done with Merkle proofs. The Semaphore contains a Circom zk-SNARK

circuit and two smart contracts. One of the smart contracts includes a Merkle tree

implementation so that smart contract owners can register eligible identities to Merkle

trees through the smart contract. The other smart contract verifies zero-knowledge

proofs and prevents double-signaling by storing nullifiers. The project also provides

a Javascript library libsemaphore [57] to seamlessly interact with smart contracts and

to generate identities, witnesses, signals, and proofs. More details can be found in the

comprehensive article: Semaphore: Zero-Knowledge Signaling on Ethereum [15].

Semaphore can be used in a wide range of use cases like anonymous transactions

in ZCash, anonymous authentication, mixers, and private voting. We adopted and used

the Semaphore in our voting protocol. ElectAnon uses a modified version of Semaphore

Merkle trees to reduce the huge cost of voter registration. We explained the modified

version in Subsection 4.3.5.

27

zk-SNARK circuits use a random secret parameter called toxic waste in the setup

phase to generate proving and verifying keys [58]. This toxic waste must be safely

discarded, as it can be used to generate a fake proof. Semaphore uses a ceremony

called Perpetual Powers of Tau to make sure the toxic waste is discarded [59]. The

ceremony guarantees security even if only one participant safely discards their toxic

waste and responds to the ceremony. There are two phases in the ceremony. Each

phase consists of several rounds. Phase-1 is a common ceremony for generic zk-SNARK

circuits [59]. Phase-2 must be applied by each different circuit implementation. The

ceremony can continue as long as there are participants willing to participate. At the

time of writing this work, there were 71 participants in the repository for Phase-1 [60].

The authors of Semaphore have worked on a follow-up Phase-2 ceremony specifically

for the Semaphore circuit [61]. ElectAnon uses the same Semaphore circuit, so we can

use the same Phase-2 ceremony in our implementation.

4.1.3. Ranking and Unranking Permutations in Linear Time

Myrvold & Ruskey developed an efficient algorithm to rank/unranked permuta-

tion lists [62]. The ranking algorithm takes a permutation list (π), size of the list (n),

and its inverse (π−1); then outputs the corresponding rank integer (r). Each rank inte-

ger represents a permutation list, since there can be at most n! different permutations,

the rank integer (r) can be in the range of between [0...n!− 1]. The unrank algorithm

takes n, r, and an identity permutation π′ and outputs the corresponding permutation

list π. Both ranking and unranking algorithms have O(n) arithmetic operation com-

plexity, which makes them practical enough to compute. An example for n = 3 can be

found in Table 4.1.

We used a ranked-choice electoral system in our voting protocol. In the ranked-

choice system, voters from a list of candidates by ranking them from most wanted to

least wanted. So each vote list, or preference list, is a permutation of the candidate

list. Our candidate list is a set of candidate IDs ranging from 0 to candidate count

(nc). Each preference list is required in tallying phase for complex tallying algorithms

28

like Tideman [63]. We initially tried to store all preference lists as arrays in the smart

contract. In the best case, there is only 1 reference list that needs to be stored if every

voter votes for the same preference list. However, in the worst case, where every voter

votes for a different list, there are Pn = n! different preference lists. Unfortunately,

storing arrays in smart contracts is not gas efficient. We developed a solution to

efficiently store these preference lists in smart contracts. We used the aforementioned

rank/unrank algorithms to encode/decode our preference lists. Instead of storing the

whole list, we were able to compute the rank of each preference list and store the

corresponding integer rank instead of arrays. Voters compute ranks of their preference

lists off-chain(offline) in the voting phase, so it also offloads the computation. Then

our tallying function in the smart contract unranks each of these rank integers and

computes preference lists to obtain results. Since there can be at most n! permutations,

the maximum rankID can be n! − 1. So we can easily detect an invalid rankID, or

voteID, by checking if the given rankID is in the range of [0, n! − 1]. These rank &

unrank algorithms do not only reduce the storage cost but also provide us a way to

easily detect invalid votes to ensure Soundness.

Table 4.1. Example rank/unrank table for n=3.

Permutation Rank

[1,2,0] 0

[2,0,1] 1

[1,0,2] 2

[2,1,0] 3

[0,2,1] 4

[0,1,2] 5

4.2. System Model

ElectAnon is a self-tallying, privacy-preserving e-voting protocol implemented

with EVM smart contracts. The protocol aims to support all of the requirements men-

29

tioned in Section 2.3. The protocol utilizes the ranked-choice electoral system. There

are three system actors defined in the protocol. These are Election Authority, Pro-

posers, and Voters. The protocol is composed of six different phases: Setup, Register,

Proposal, Commit, Reveal, and Completed. These phases are consecutive, and together

they form a timeline formation. Different actors take different actions in each phase.

An overview of our protocol flow and the timeline is presented in Figure 4.1.

Time

SETUP

Actors: Election Authority(EA)

Actions:

1. Set time-out parameters for
each phase of the election

2. Set election parameters

3. Deploy smart contracts

REGISTER

Actors: EA, Voter, Proposer

Actions:

1. Voters and proposers
apply for entering the
election

2. EA registers proposers
and voters

3. EA starts the election

Actors: Proposer

Actions:

Register candidates

PROPOSAL COMMIT

Actors: Voter

Actions:

1. Decide on the vote

2. Generate a one-time
secret
3. Blind the vote with the
secret

4. Commit the blinded vote

5. Self-verify existence of
the vote in the election
system

REVEAL

Actors: Voter

Actions:

1. Reveal vote commitment

2. Self-verify that vote is
tallied

COMPLETED

Actors: Everyone

Actions:
Query the election results

start of the
election

end of
proposal

phase

end of
commitment

phase

end of
reveal
phase

Figure 4.1. ElectAnon Timeline.

4.2.1. System Actors

• Election Authority (EA) is responsible for system setup and initialization. EA

decides on system parameters and initializes the election by deploying the smart

contract to the blockchain. EA is also responsible for registering eligible pro-

posers and voters to the system. EA role can be assigned to several parties. For

example, one party can be solely responsible for the setup/deploying system to

the blockchain, whereas another party can register eligible voters and proposers.

For the sake of simplicity, these parties are unified under a single Election Au-

thority in this work. EA capabilities and responsibilities are limited. EA does

not actively take place in the protocol after the end of the Register state.

• Proposers can propose their answers for the election question. Each proposed

answer, i.e., a proposal, becomes a candidate in the election. Each proposer can

only register a single proposal. Proposals are in the form of arbitrary strings.

30

Proposals are registered only during the Proposal state.

• Voters can vote for candidates, during the Commit state. Voters also participate

in the Reveal state to reveal their committed votes.

4.2.2. States

ElectAnon protocol implements a timed-transition state machine. The states

are Setup, Register, Proposal, Commit and Reveal, and Completed. Each state has

a timed-transition guard, meaning that there is a lifetime/deadline for these states.

If any state-specific transaction (function call) is received after the related state, the

transaction is rejected. For example, let’s say the proposal lifetime is selected as 30

blocks. The state deadline is computed by adding 30 (lifetime) to the block number

of the proposal state’s start. After 30 blocks, any call to the Proposal state-specific

function is rejected. In the same example, users (voters) can start using functions

defined for the Commit state after 30 blocks. These lifetimes are specific for each state

and can be defined in the smart contract deployment.

In addition to timed-transition guards (lifetimes), there are also conditional tran-

sitions that check if states can transit the next one safely. These conditional transitions

mostly check if all actors have taken their actions successfully. For example, if all regis-

tered voters commit their votes, Commit state switches to the next state, i.e., to Reveal.

Conditional transitions and timed transitions are used in conjunction; whichever oc-

curs first changes the state to the next one. For instance, even if some of the voters

abandon their committed votes in Reveal phase, the timed-transition condition can

change the state to the next phase if the Reveal lifetime is exceeded. This mechanism

ensures that the election protocol can continue as usual in an autonomous way without

requiring any additional triggering. Figure 4.2 shows the state diagram and transition

conditions.

31

Smart Contract Deployed

Manual Transition by EA

ProposedCount == MaxProposalCount ProposedCount == ProposerCount BlockNumber > ProposalLifetime

CommittedCount == VoterCount BlockNumber > CommitLifetime

RevealedCount == CommittedCount BlockNumber > RevealLifetime

Setup

Register

Proposal

Commit

Reveal

Completed

Figure 4.2. ElectAnon State Diagram.

4.2.2.1. Setup State. Election Authority EA initializes the election parameters and

protocol at this state. EA decides on the election question at this state. The election

question, or poll question, is an arbitrary string that can represent various question

topics like “who should be the president” in a presidential election; “which platform

should be used” in organizational decisions.

EA prepares the zero-knowledge circuit Circ in this state. The Semaphore circuit

defines a static tree-level inside the circuit code which defines the maximum depth of

the Merkle tree. The parameter also indicates the maximum voter count, as voters are

registered to the election through the Merkle tree. The maximum voter count equals

the Merkle tree leaf count, which is 2tree level. EA can alter the tree level in the circuit

to change the Merkle tree level and thus the maximum voter count. The Semaphore

circuit uses 20 levels by default, which equals to a maximum 220 = 1, 048, 576 number

of voters in the Merkle tree.

32

EA announces the zero-knowledge verification (VerifyK) and the proving keys

(ProveK) in this state. These keys are generated from the given circuit Circ and final

parameters (Params) of Perpetual Power of Tau ceremony as

genZK(Params ,Circ) −→ (VerifyK ,ProveK).

EA can store these keys, and the circuit in a place where every voter can access,

preferably a decentralized storage like The InterPlanetary File System (IPFS) [64].

The storage address (URL) can be put in the smart contract so that voters can fetch

keys to generate their proofs without a need for recalculation of these keys. This

step can be fully omitted since each voter can generate these keys on their own, using

publicly announced (Params) from the Perpetual Power of Tau ceremony.

EA also generates the verifier smart contract (VerifierSC) with the verifier key

VerifyK . The verifier smart contract is embedded (inherited) in the main smart con-

tract (MainSC) so that these two can be combined and deployed as a single, smart

contract (SC). Later on, EA decides on the election parameters to conduct a custom

election. These parameters are tree level, maximum candidate count, proposal lifetime,

commit lifetime, and reveal lifetime. The tree-level should be the same as the one in

the circuit Circ. The maximum candidate count indicates the maximum number of

proposals that can be registered as candidates. Each lifetime (LT) parameter defines

the lifespan of the related state in terms of block number, i.e proposal lifetime indi-

cates the lifespan of the proposal state. EA can deploy the smart contract (SC) with

these parameters at this point. This phase is completed when the contract is deployed.

Figure 4.3 shows the sequence diagram for this state.

33

ElectionAuthority IPFS Blockchain

In Setup State

Perpetual Power of Tau is completed. Params are available.

genZK(Params, Circ): VerifyK, ProveKgenZK(Params, Circ): VerifyK, ProveK

store(Circ, ProveK)store(Circ, ProveK)

URLURL

genVerifierSC(VerifyK): VerifierSCgenVerifierSC(VerifyK): VerifierSC

embed(MainSC, VerifierSC): SCembed(MainSC, VerifierSC): SC

LT means Lifetime

deploySC(URL,TreeLevel,MaxProposalCount,ProposalLT,CommitLT,RevealLT)deploySC(URL,TreeLevel,MaxProposalCount,ProposalLT,CommitLT,RevealLT)

SmartContract AddressSmartContract Address

ElectionAuthority IPFS Blockchain

Figure 4.3. Setup State Sequence Diagram.

4.2.2.2. Register State. In this state, EA starts forming eligible proposer and voter

lists. EA can establish a platform or connection to collect proof of eligibility documents

from proposers and voters. Proposers must send their blockchain addresses to EA to

be able to propose in the election. Voters send their proof of eligibility documents (ID

cards, documents, etc.), along with their generated identity commitments.

Each voter generate their identity (IDi) and identity commitment (IDCi) with

the identity generation function (genIDi). It takes a random seed si and generates

the IDi which contains a private key and public key pair (PrivKi, PubKi), a nullifier

(Nulli) and a trapdoor (Trapi) value as

genIDi(si) −→ IDi : (PrivKi, PubKi, Nulli, T rapi).

34

IDi must be kept secret by the voter. The identity commitment IDCi is constructed

by hashing PubKi, Nulli and Trapi as

h(PubKi, Nulli, T rapi) −→ IDCi.

After generating, voter sends IDCi to EA, so it can be registered as an eligible voter

for the election. Note that voter never sends the actual identity IDi, but a hash of the

IDi which is IDCi.

EA is also responsible for generating a Merkle-tree root MRS from all collected

identity commitments, i.e., IDCiϵ[0..k] where k is the voter count. EA then submits

MRS along with the list of collected IDCs to the smart contract. The smart contract

has the main function, and voters, for Merkle tree registration. The function can take

an arbitrary number of IDCs and a corresponding Merkle root, MRS. Due to the

gas limit of Ethereum, the number of registrable IDCs has an upper bound. In our

experiments, we found the upper bound is approximately 30.000 IDCs in a single ad-

dVoters call. EA can split IDCs into smaller batches (like 30.000 per call) and issue

them with multiple calls to the smart contract. Identity commitments (IDCs) must be

added to the smart contract in the same order as they are used when constructing the

Merkle-tree root. This must be maintained correctly by the EA, so the same Merkle

tree can be safely reconstructed by voters. There is a function named replaceIdCom-

mitments which replaces the Merkle-tree root and IDCs in the smart contract. This

can be used to replace the Merkle tree without destroying the whole contract when

EA accidentally registers wrong MRS. EA also adds proposer blockchain addresses to

the smart contract (SC). SC makes sure that the same proposers cannot be registered

more than once. EA can manually change the state machine to the next state when it

confirms the register state is successfully done. Figure 4.4 shows the sequence diagram

for this state.

35

Voter ElectionAuthority Proposer Smart Contract Blockchain

In Register State

genID(): IDgenID(): ID

genIDCommitment(Identity): IDCgenIDCommitment(Identity): IDC

store(ID, IDC)store(ID, IDC)

Secure Channel

IDCIDC

store(IDC)store(IDC)

loop [For each Voter]

IDCList contains all Identity Commitments
stored by the ElectionAuthority

genMerkleTreeRoot(IDCList, TreeLevel): MRSgenMerkleTreeRoot(IDCList, TreeLevel): MRS

addVoters(IDCList, MRS)addVoters(IDCList, MRS)

emit VotersAddedEvent(IDCList, MRS)emit VotersAddedEvent(IDCList, MRS)

Secure Channel

Proposer AddressProposer Address

store(Proposer Address)store(Proposer Address)

loop [For each Proposer]

ProposerAddressList contains all Proposed Addresses
stored by the ElectionAuthority

addProposers(ProposerAddressList)addProposers(ProposerAddressList)

store(ProposerAddressList)store(ProposerAddressList)

emit ProposersAddedEvent(ProposerAddressList)emit ProposersAddedEvent(ProposerAddressList)

failfail

alt [Proposers Not Added Before]

Voter ElectionAuthority Proposer Smart Contract Blockchain

Figure 4.4. Register State Sequence Diagram.

4.2.2.3. Proposal State. At this state, proposers can send their proposals to the smart

contract through propose calls. Proposals can be considered as the proposed answer

strings for a possible solution to the underlying election question. Smart Contract

assigns a candidate ID (CIDi) for each proposal. Voters use CIDs in their ballots

when they cast votes at the Commit state. Proposals are not stored in the smart

contract, and they are announced and stored in the blockchain as event logs. Each

36

proposer can propose only once. To ensure this, the smart contract removes proposers

from the eligible list after they propose. At the end of the proposed call, the smart

contract publishes a ProposedEvent which contains the assigned candidate ID (CIDi)

and the proposal string.

The state has a lifetime proposal lifetime which is defined in Setup state. The

state changes to Commit state when this lifetime is exceeded. The state changes when

all registered eligible proposers successfully propose. Proposal state also changes when

the registered proposal count reaches the maximum candidate number to make sure

the proposal (candidate) count never exceeds the maximum. Figure 4.5 shows the

sequence diagram for this state.

Proposer Smart Contract Blockchain

In Proposal State

propose(Proposal)propose(Proposal)

CID, i.e candidate ID, is initially 0

CID = CID + 1CID = CID + 1

store(CID)store(CID)

removeProposer(Proposer)removeProposer(Proposer)

emit ProposedEvent(CID, Proposal)emit ProposedEvent(CID, Proposal)

failfail

alt [Proposer is eligible]

Proposer Smart Contract Blockchain

Figure 4.5. Proposal State Sequence Diagram.

37

4.2.2.4. Commit State. Voters cast their ballots in the Commit state. Voters inves-

tigate the candidate list by fetching them from the blockchain with filtering events.

Recall that in the Proposal state, when a proposal is registered, the smart contract

emits a ProposedEvent which includes candidate ID (CID) and the proposal string.

At the Commit state, voters can filter these events to gather CIDs and proposal strings,

then decide their preference lists accordingly. ElectAnon uses ranked-choice electoral

system. In this system, voters need to prepare their preferences as a sorted list, from

the most preferred to the least preferred. Voters need to prepare a list that contains

every registered candidate in the Proposal state. It means that the preference list has

a static size that is equal to the candidate count (nc). Each of these preference lists is

a permutation of [1, 2, 3, ..., nc]. ElectAnon uses an encoding algorithm to rank/unrank

each specific preference list [62]. This algorithm efficiently maps a given permutation

list to a single rankID integer, as explained in the Section 4.1.3. Instead of storing

the whole list, we store a single voteID (rankID) in the contract. After finalizing their

decisions, voters can get the rank of their preference list with the ranking algorithm,

which results in voteID (V IDi).

Revealing voteIDs (V IDs) during the election violates the Fairness requirement.

In order to preserve Fairness, ElectAnon uses vote hashes V Hs. Voters can hash their

V IDi with a secret key VSk i to safely mask their V IDi as

hkeccak256 (VID i,VSk i) −→ VH i.

The need for the V Ski emerges because all available V IDi is publicly known. V IDs

are basically in range of [0, ..., n!− 1]. Therefore their hash outputs can be calculable

with brute-force attacks. In order to mitigate the attack, each voter picks a big random

number as V Ski. This provides a way to generate indistinguishable vote hashes VH i

from a plaintext V IDi. Each voter locally stores their V IDi and V Ski for later use.

They should keep V IDi and V Ski as secret in order to preserve their privacy.

38

ElectAnon embeds two functions to provide an easier interface for voters, getRank

and unrank. These convenient functions can assure voters are indeed using the protocol

in a correct way, so they can cast their votes safely. These functions are view functions.

They do not require transactions. Any calls made to these functions are not stored in

the blockchain. It means that they can be used without any blockchain address. Voters

can use these functions without revealing any particular information about their votes

or identities.

Voters need to generate Merkle trees to obtain their Merkle proofs to prove their

eligibility to vote. They can fetch Merkle tree leaves, i.e., IDCs, from event logs

persisted in the blockchain. Recall that in the Register state, when a list of eligible

voters is registered, the smart contract emits a VotersAddedEvent which includes the

registered IDC list and the Merkle root MRS. Voters also need to obtain Merkle

tree level, which is obtainable from the smart contract. With all of these, voters can

generate the full Merkle tree and the Merkle proof for the Merkle proof path index

(MPI i) and the Merkle proof path elements (MPEi) as

genTree(IDCList, T reeLevel) −→ MerkleTree

genMerkleProof(MerkleTree, IDCi) −→ MerkleProof : (MPI i,MPEi).

MPI i contains a list of ones and zeroes which represents directions (left/right) for

corresponding Merkle path to the IDCi. MPEi contains a list of Merkle nodes in this

path. We presented an example Merkle tree in Figure 4.6. In the example tree, IDC

list is given as: [807db9, 9343a4, 5cb255, f4cfad, ba52d21, 643af3, e57c40, e2180c]. For

instance, we can construct MPIi and MPEi for the identity commitment ba52d1 as

follows. As we mentioned, the Merkle path index MPIi shows directions from root to

the Merkle leaf. In this case our Merkle leaf is ba52d1, and the corresponding MPIi

is 011 which indicates its position (right,left,left) in the tree. The Merkle proof path

elements MPEi are: [643af3, 7caf45, 61d143]. In this example, Merkle root (d692b1)

can be obtained only with these three elements and the leaf itself (ba52d21).

39

1 0

11 10 01 00

111 110 101 100 011 010 001 000

0

Figure 4.6. Merkle Tree Example.

Upon completion steps above, each voter can start generating its witness and the

zero-knowledge proof Pi. Voters use the Semaphore circuit to generate their witnesses

[56]. Voters need to generate these proofs and witnesses with the same circuit (Circ)

and the proving key (ProveK) used in the Setup state so that proofs can be verified

correctly by the smart contract. Voters can fetch the circuit (Circ) and the proving

key (ProveK) from the IPFS with the URL provided in the smart contract. The

circuit expects following inputs: the vote hash (V H i), the identity (IDi), the Merkle

proof (MPIi and MPEi), the external nullifier (ExtN) and a signature (Signi). The

ExtN is defined as the contract address and accessible from the smart contract. Signi

is the signature on the V Hi which is signed with voters private key PrivK. The circuit

outputs the witness, which contains a verification for the Merkle root (MRC) and the

nullifier hash NHi. A detailed explanation about MRC and NHi is given at the end

of this section. Voters can generate their proofs Pi with witness result along with the

ProveK as

genWitness(Circ, V Hi, IDi,MerkleProof, ExtN, Signi) −→ Witness : MRC , NHi

genProof(Witness, ProveK) −→ Pi.

40

The commitVote function in the smart contract, expects 3 inputs of V H i, NHi

and Pi from voters. The verifier smart contract (VerifSC) expects 2 additional inputs

of ExtN and the Merkle tree root MRS to verify Pi. ExtN is defined as blockchain

address of the contract, and the MRS is the registered Merkle root in Register state.

The smart contract then proceeds with the verification of given proof Pi to ensure

the proof is intact with given inputs. As a result, the contract rejects or accepts the

proof. If the proof is accepted, nullifier hash NHi is marked as used to prevent the

double-voting. The smart contract stores VH i keyed with voters blockchain address

for later use.

The Commit state ends with two conditions. The first one is the timed transition

which changes the state after commitLifetime. Any transaction (function call) made

after this time will be rejected. The other one checks if every voter has committed

already. If lifetime exceeds or all voters are done with voting, the smart contract

changes to the next state, Reveal. Figure 4.7 shows the sequence diagram for this

state.

It is worth mentioning how the zero-knowledge proof Pi is constructed and works.

In general, the proof ensures these three properties:

(i) The identity is in the eligible member set.

(ii) The same identity is not used to cast a vote hash twice.

(iii) The vote hash is truly generated by the identity which created the proof.

The circuit guarantees the first property with Merkle trees and Merkle proofs. Voter

forms the Merkle proof and gives MPIi and MPEi as private inputs to the circuit. The

circuit also takes each subcomponent of IDi as private inputs. These subcomponents

are PubKi, Nulli and Trapi. The circuit re-generates the IDCi by hashing PubKi,

Nulli and Trapi. The circuit continues with generating the Merkle root MRC by the

generated IDCi along with given private inputs of MPEi and MPI i. The circuit puts

the resulting Merkle tree root MRC into the proof Pi. The smart contract verifies Pi

41

and checks whether the root in the proof MRC is verifiable with the registered root

MRS. As a result, the verifier verifies that the voter is able to generate the correct

Merkle tree root. With this, ElectAnon verifies that the voter is eligible since the IDCi

is indeed a member of the eligible voter Merkle tree.

The circuit ensures the second property with nullifier hashes. As told before, the

circuit takes IDi subcomponents as private inputs. IDi contains an identity nullifier

Nulli. The circuit hashes given identity nullifier Nulli with external nullifier ExtN

and the Merkle path index (MPI i) of IDCi and obtains NHi as

h(Nulli, ExtN,MPI i) −→ NHi.

In the verification, the smart contract takes NHi from the voter as input and verifies

that it matches with the one in the Pi. Additionally, the smart contract marks and

stores this NHi as used and invalidates any future calls with the same NHi. This

prevents double voting with the same NHi. The zero-knowledge proof ensures that

NHi is constructed correctly with components of Nulli, ExtN,MPI i. So reforging

a new NHi would require a change in these components. ExtN is provided by the

smart contract itself to the verifier, so the voter has no direct control over it. If the

voter provides an invalid ExtN in the proof generation, the verifier will not be able to

validate the proof. Nulli and MPIi is a part of IDCi, so reforging Nulli would result

in a completely different IDC ′
i. This would invalidate the proof Pi as this new IDC ′

i

would not be in the eligible list.

Voters sign their vote hashes (VH i) with their private key PrivKi. The circuit

takes the voter public key PubKi and the signature Signi as private inputs. Then it

checks the signature Signi with the given public key PubKi. This completes the last

property as it can verify that V Hi is indeed generated by the voter.

42

Voter SmartContract Blockchain IPFS

In Commit State

filterProposedEvents()filterProposedEvents()

CIDs, ProposalsCIDs, Proposals

decidePreferences(CIDs, Proposals): PreferenceListdecidePreferences(CIDs, Proposals): PreferenceList

nc is the total candidate count

getRank(PreferenceList, nc): VIDgetRank(PreferenceList, nc): VID

genVoteHash(VID, VSk): VHgenVoteHash(VID, VSk): VH

store(VID, VSk)store(VID, VSk)

filterVoterAddedEvents()filterVoterAddedEvents()

IDCListIDCList

getTreeLevel()getTreeLevel()

TreeLevelTreeLevel

genTree(IDCList, TreeLevel): MerkleTreegenTree(IDCList, TreeLevel): MerkleTree

Voter uses own stored IDC

genMerkleProof(MerkleTree, IDC): MerkleProofgenMerkleProof(MerkleTree, IDC): MerkleProof

getFiles(URL)getFiles(URL)

Circ, ProveKCirc, ProveK

getExtNullifier()getExtNullifier()

ExtNExtN

sign(VH, PrivK): Signaturesign(VH, PrivK): Signature

genWitness(Circ, VH, ID, MerkleProof, ExtN, Signature): WitnessgenWitness(Circ, VH, ID, MerkleProof, ExtN, Signature): Witness

genProof(Witness, ProveK): PgenProof(Witness, ProveK): P

MPI is a component of MerkleProof. ID is the voters own stored ID.

genNullifierHash(ExtN, ID, MPI): NHgenNullifierHash(ExtN, ID, MPI): NH

commitVote(VH, NH, P)commitVote(VH, NH, P)

verifyProof(VH, NH, P, ExtN, MRS)verifyProof(VH, NH, P, ExtN, MRS)

store(VoterAddress => VH, NH)store(VoterAddress => VH, NH)

failfail

alt [Valid Proof && NH is not
registered before]

Voter SmartContract Blockchain IPFS

Figure 4.7. Commit State Sequence Diagram.

43

4.2.2.5. Reveal State. In the Reveal state, voters can reveal their vote hashes VH i

with revealVote function. The contract stores VH i in the Commit state within a map

of addresses to vote hashes. It means that voters need to reveal their commitments

with the same blockchain address they used in Commit state. This is to eliminate any

attack with brute-forcing vote secret key (V Ski). With this method, an adversary has

to seize both (V Ski), and also the private key of voters blockchain address that is used

in Commit state to reveal votes. Each voter provides inputs of voteID (VID i) and vote

secret key VSk i to the smart contract. The smart contract checks if the hash of these

two inputs (VH ′
i) is equal to the one that was stored (VH i) in the previous Commit

state as

hkeccak256 (VID i,VSk i) −→ VH ′
i

VH ′
i

?
= VH i.

If they’re not equal, the smart contract rejects the transaction. Otherwise, it deletes

the stored VH i in the contract to guarantee that it is not revealed twice.

The contract passes V IDi, candidate count nc and a storage mapping Tally State

TS to the tally library. TS is required to keep revealed votes in the storage so that

tally libraries can use revealed votes. The tally library defines a tally function, which

tallies revealed results. The library is capable of changing the election state with TS,

which means that each revealed V ID is counted accordingly and put into the contract

storage through TS. The tally function may differ for each tallying algorithm and

implementation. We implemented two tallying libraries for Borda Count and Tideman

in our work. The details are discussed in Section 4.3.1.

After all committed votes are successfully revealed, this state ends, and the smart

contract changes to Completed state. There is also a timed-transition revealLifetime

for this state. Voters must reveal their votes within this lifetime; otherwise, their

votes cannot be counted. This is the last state where actors can issue state-changing

transactions for the ElectAnon. Figure 4.8 shows the sequence diagram for this state.

44

Voter SmartContract TallyLib

TallyLib is imported by
SmartContract

In Reveal State

revealVote(VID, VSk)revealVote(VID, VSk)

nc is the candidate count

delete(VoterAddress->VH)delete(VoterAddress->VH)

TallyState is the state storage

tally(CandidateCount, VID, TallyState)tally(CandidateCount, VID, TallyState)

changeState(TallyState)changeState(TallyState)

failfail

alt [0 < VoteID < nc!-1 AND
hash(VID,VSk) == VoterAddress->VH]

Voter SmartContract TallyLib

Figure 4.8. Reveal State Sequence Diagram.

4.2.2.6. Completed State. The Completed state is not an actual timed-state. This is

because if block number exceeds the revealLifetime, any call to the revealVote function

is immediately rejected. It means that no state change occurs on the contract, so

actually, the state cannot be changed from Reveal to Completed in that case. This is

because smart contracts cannot change any state without an actual user trigger; this is

a general EVM smart contract limitation. This does not change anything in the voting

protocol as Reveal state is not callable after reveal lifetime. If all committed votes are

revealed, the smart contract changes the state to Completed. In this case, whoever

reveals the last commit will trigger a state change from Reveal to Completed.

45

In this state everyone can call the electionResult function to get the election result.

This function is a view function, meaning that calling it will not change the state in the

blockchain. Thus it requires neither transactions nor fees. The smart contract uses an

inner tallying library to calculate the results. The tallying library fetches the tallying

state TS, the same storage that is populated in the Reveal state. The tallying library

has calculateResult which takes the candidate to count nc and tally storage TS then

interprets the election result. The election result shows the candidate ID (CIDi) of the

winner. Note that, the smart contract publishes ProposedEvent for each proposal in the

Proposal state. The actual proposal string can be fetched by filtering ProposedEvent

with the winner CIDi to find the winner proposal. The election result can be calculable

with different tallying libraries. Figure 4.9 shows the sequence diagram for this state.

User SmartContract TallyLib Blockchain

In Completed State

Anyone in the Blockchain network
can be a user

TallyLib is imported by
SmartContract

electionResult()electionResult()

nc is the candidate count

calculateResult(nc, TallyState)calculateResult(nc, TallyState)

WinnerID is in form of
candidateID

WinnerIDWinnerID

WinnerIDWinnerID

filterProposedEvents(WinnerID)filterProposedEvents(WinnerID)

ProposalProposal

User SmartContract TallyLib Blockchain

Figure 4.9. Completed State Sequence Diagram.

46

4.3. Technical Details

In this section, we provide some technical details regarding technical preferences

like algorithms and optimizations. A full-fledged class diagram is presented under the

Appendix in Figure A.1.

4.3.1. Tallying Libraries

Solidity libraries can be used as shared codes for smart contracts. Smart contracts

can load functions and types from these libraries. Our tallying algorithms are imple-

mented with libraries. Hence it’s trivial to change the tallying algorithm by loading

a different library before the deployment. The main smart contract can load another

tallying library by importing it. This change should be done before the contract deploy-

ment. Ethereum does not allow any change in the contract code after the deployment.

A different tallying algorithm can be used through libraries while still keeping the core

functionalities of the main smart contract like revealVote and commitVote. Tallying

libraries has two main functions, tally and electionResult. The tally is used in Re-

veal state and is responsible for counting the votes and putting them into the tallying

storage TS. The electionResult function is used in Completed state and announces the

winner ID by interpreting the given tallying storage TS. These two functions can differ

for each tallying algorithm.

4.3.1.1. Borda Count Library. The history of Borda Count method roots back to 15th

century [65]. In the election of the Holy Roman Emperor, Nicholas of Cusa proposed

to score each candidate by putting a number ranging from one to the total number

of candidates. However, the Borda Count was named after Jean Charles de Borda,

who devised and scientifically analyzed the method in 1781 [65]. In the basic form,

each ballot holds a sorted list of candidates; each of these candidates gets a score

based on their orders in the list. For example in a five-candidate election, where each

candidate has an ID between c1, c2, ...c5, a sample ballot would be [c3, c2, c1, c4, c5]. This

is equivalent to giving c3 the maximum score of 5, c2 score of 4 and so on. At the end of

47

the election, each of these scores for the candidateID is summed together. As a result,

the candidate with the maximum total score wins the election.

We implement Borda Count tallying algorithm as a tallying library. The tally

function takes voteID (V ID) and then unranks it into the related preference list. The

preference list represents a sorted list of candidates. The function scores each of sorted

candidates in a decreasing scores of [nc, nc − 1, nc − 2, ..., 1], where nc is the candidate

count, i.e preference list size. These scores are added to the tally state storage TS in a

map of candidateIDs to their respective cumulative score. The calculateResult function

of this library compares each cumulative score of candidates given in TS, then returns

the candidateID with the maximum score. We used this library in our experiments in

the Section 5.2.

4.3.1.2. Tideman Library. The Tideman Method [63], also known as Ranked pairs, is

a ranked-choice-based tallying algorithm. The method collects the ranked preferences

and compares each candidate in a pairwise fashion. Then each of these pairwise com-

parisons is sorted by their winner’s vote dominance against the loser. The algorithm

starts locking the winners against losers in this sorted order by constructing a directed

graph. The one that does not being locked by another candidate, i.e., the vertex that

has an in-degree of 0, becomes the winner. If any cycle occurs in the locking, that

pair is ignored. The method is a Condorcet method as it guarantees the winner wins

every head-to-head match against other candidates. The author [63] states that Borda

is not a Condorcet method unlike the Tideman method. Majority rule ensures that

a candidate is the election winner if it is selected as the first choice by the majority.

The Tideman guarantees the Majority Rule [63]. Unlike Tideman, Borda does not

guarantee the Majority Rule [66].

We implement the Tideman Method as a tallying library. The tally function

increments the count seen voteIDs (V ID) and then stores the count in the tally state

TS. Unlike borda count library, tally does not unrank V ID into the preference list.

The calculateResult function unranks V IDs into preference lists first. Then it follows

48

the Tideman algorithm to calculate the winner. The algorithm heavily uses graphs,

matrixes, and sorting algorithms. Due to the nature of smart contracts, these opera-

tions are very costly. We were able to reduce some of these costs by efficiently counting

and storing the preferences via the rank/unranking permutation algorithm in the tally

function. Without such an encoding scheme, storing preferences as lists would make

it even costlier. calculateResult function, is a view function. So it does not actually

cost any transaction fee, so we can say it’s free to run. However, the block limit is still

applicable to the view functions even they’re practically free. Ethereum nodes do not

return results in case of this block gas limit is reached by a function call. So there is

still a gas limit applied to the view functions. We’ve seen that our Tideman algorithm

is capable of running with 250 voters and ten candidates. This makes it a viable option

for small-scale elections, but it’s not feasible to be utilized in a large-scale election. The

Tideman gas results can be found in Table 4.2.

Table 4.2. Tideman Gas Results (voterCount=250, candidateCount=10).

Entity: Transaction Gas Cost

Deployment 4,065,760

addVoters 276,929

addProposers 286,064

propose 42,155

toProposalState 71,877

commitVote 312,382

revealVote 84,454

electionResult 21,113,398

4.3.2. Block Number

We use timed transition for our state machine. It means that our smart contract

must have a perception of time. Ethereum Virtual Machine (EVM) provides a way

to fetch timestamps of blocks. The block.timestamp can be used in smart contracts

49

to fetch the timestamp of the current block. However, there is a known vulnerability

with this method [67]. The block timestamp can be alterable by the block miner up

to some margin, approximately 30 seconds. This actually does not possess a very high

risk for voting scenarios since election phases have relatively large lifetimes that can

be measured in hours or even days. However, we have addressed this issue by using

block.number instead of block.timestamp. block.number is not alterable by the miner

and still can be used as a source of time. There are approximately 15 seconds between

each block. The network adjusts mining difficulty to stay in this interval. We specified

state lifetimes in terms of block numbers.

4.3.3. Batch Inputs

Most of the blockchain platforms require a base transaction fee. Ethereum re-

quires an additional 21.000 gas for each transaction. This fee is included in every

transaction. It means that every single transaction costs additional fees. We tried

to minimize fee requirements and gas consumption by using batched inputs whenever

possible. Functions that use batched inputs can reduce the transaction count, so it

can reduce the total required transaction fees. For example, instead of adding a single

eligible proposer address, we can batch multiple addresses into a single transaction. In

this way, we can reduce the total transaction count that needs to be done for adding el-

igible addresses. There are mainly two functions that effectively benefit from batched

inputs. addProposers can be used with multiple proposer address inputs. This is a

viable option in the case that the election authority collects the eligible proposer list

beforehand. So the election authority can issue a single transaction that contains all

eligible proposer addresses. addVoters also uses batched inputs by adding multiple vot-

ers to the eligible voter list in a single transaction. This also reduces the transaction

count, thus reducing transaction fees.

50

4.3.4. Storage Costs

ElectAnon also aims to reduce storage costs by omitting any unnecessary storage

operations. We offloaded some storage costs to events. Smart contracts can publish

persisted logs to the blockchain through events. Applications can subscribe to certain

event topics and get notified about these published events. One of the use cases of

events is to reduce the smart contract storage by offloading them to events. Events

consume much less gas than storage in certain cases, especially when it comes to store

complex types like arrays and strings [68]. For instance, we did not store any proposal

string in the contract. The smart contract publishes an event with the proposed string

when a proposal is added. So voters can listen Proposed event topic and fetch these pro-

posals and decide their preferences based on strings in the proposal events. Moreover,

when voter identity commitments are added to the smart contract, an event is pub-

lished instead of storing these in the contract. The contract itself does not need to know

all of these commitments; it just needs to hold the Merkle tree root. So ElectAnon only

stores Merkle tree root in the contract. Voters can subscribe to VoterIdCommitsAdded

topic and store ID commitments (IDCi) so that they can reconstruct the tree and

find their own commitment Merkle paths. In our implementation, we tried to reduce

the number of state-changing functions by using view functions wherever possible. For

instance, the self-tallying mechanism electionResult function is a view function. This

enables users to interact with the function and fetch the election result without pay-

ing any transaction fee. ElectAnon also does not store election results as they can be

queried with a gas-free view function electionResult.

4.3.5. Optimized Merkle Tree

ElectAnon slightly improves smart contracts of Semaphore. The smart contract in

Semaphore inserts a single leaf (identity commitment) to the Merkle tree at a time [56].

It also generates the Merkle tree root on the smart contract. The single leaf insertion

requires a traversal and update on the tree. The tree is reformed by hashing each level

of the corresponding subtree with the new leaf. Semaphore uses a hash function called

51

MiMC. MiMC provides an efficient hash solution for SNARKs by reducing required

multiplicative complexity [69]. Unfortunately the MiMC is not an optimized hash

function for the EVM, a single hash operation requires almost 30.000 gas [70]. A single

leaf insertion to a 20-level tree consumes almost 500.000 gas in our experiments. At the

time of writing this work, the value of 500.000 gas is approximately 200 USD. This is

not scalable for large-scale elections. We optimized this function by inserting multiple

leaves with a single transaction. In our work, we assumed that identity commitments

could be known by the election authority beforehand. So with this assumption, we

offloaded Merkle tree calculations to off-chain where election authorities calculate the

Merkle tree roots in their local environments. The optimized version takes multiple

leaves (identity commitments) and a single Merkle tree root. With these inputs, Merkle

tree calculations need not be done in the smart contract, so they don’t consume gas

in large quantities. This approach reduces not only the gas consumption of a single

insertion function but also the number of calls to this function as we insert multiple

leaves at a time. Our optimized version costs nearly 560.000 gas to insert 750 leaves

at a time. This is almost equal to the Semaphore’s single leaf insertion gas cost.

4.4. Extensions

In this section, we discuss some possible extensions of our work. They mostly

depend on specific use cases and setups.

4.4.1. Multiple Elections

It’s possible to conduct several elections with the same Merkle tree, i.e., eligible

voters list. There are essentially two smart contracts; one of them includes the opti-

mized Semaphore contract, which contains the zero-knowledge verifier and the Merkle

tree registration. The other smart contract contains voting functions like ballot cast-

ing, revealing, and tallying. Currently, ElectAnon is optimized to run a single election.

ElectAnon merges these two contracts into one and creates a single deployable smart

contract to host a single election. However, it is possible to separate these smart con-

52

tracts and deploy them as two different instances. In this case, the deployed Semaphore

contract will have its own contract address. The Merkle tree, thus eligible users, can be

registered directly to this Semaphore contract instance. Afterward, other election con-

tracts, like ElectAnon, can use this Merkle tree through delegated calls. Remind that

external nullifier ExtN is used in nullifier hash NHi to prevent double-signalling, i.e

double-voting. In this case, every election contract can register itself to the Semaphore

contract with a different ExtN . With this method, other election contracts can still

ensure that no vote is being double signaled within the same election. However, it also

means that a voter can still vote for different elections at the same time. This would

effectively help to scale repeated elections or multiple elections since one single Merkle

tree can be used in multiple elections. However, at the same time, it would increase

the cost for a single election as delegateCalls requires extra gas cost. Also, deploying

two contracts instead of one increases the total gas cost further.

4.4.2. Assisted Merkle Tree

The Merkle tree of identity commitments (IDCi) must be known by the network

so that each voter can generate their Merkle proofs and paths for the zero-knowledge cir-

cuit. ElectAnon takes identity commitments as inputs along with the Merkle tree root

in the addVoters function. These identity commitments are published with Ethereum

events. Voters can subscribe to these events and fetch Merkle tree leaves and the root.

This approach ensures that the Merkle leaves (identity commitments) are available to

voters via blockchain. However, it also means that the gas consumption of addVoters

increases with the voter count since the function takes a list of identity commitments

as input. The smart contract actually does not require any of these leaves; it only

needs to know the Merkle tree root for proof verification. So the identity commitments

list input can be omitted from the smart contract function. This would require elec-

tion authority to publish identity commitments in an external, public channel; so that

voters still can generate their Merkle proofs correctly. The method adds an additional

trust assumption on the election authority, as the network depends on the authority

to publish identity commitments.

53

4.4.3. Merkle Forest

ElectAnon uses Merkle trees in order to efficiently prove the eligibility of voter

identity commitments. On the other hand, the original Semaphore smart contract

calculates the Merkle tree on the smart contract (on-chain) as mentioned in Section

4.3.5. Calculating the Merkle tree on-chain provides a safe way to keep the Merkle tree

root intact with the registered leaves. This calculation has a very high gas consumption

since it requires multiple hash operations per tree level. We removed this by offloading

the calculation to the election authority. The Election Authority calculates the Merkle

tree root off-chain then sends it to the smart contract, along with the leaves (identity

commitments) of the Merkle tree in the Register state. However, this puts trust in the

authority as we trust the authority to calculate it honestly. We can reduce this trust

possibly with two approaches: an on-chain challenge and verifiable local computation.

It’s almost impossible to completely eliminate the trust in the authority since the

authority has to form an eligible list. So the authority can always forge an invalid list

by not putting some voters on the list; or putting non-existent voters into the list. We

assume that the election authority has no interest in forging an invalid eligible list. In

this section, we discuss the trust in the authority to form a valid Merkle tree.

The first solution would be to calculate the Merkle tree on chain but only when

it’s needed. The approach includes a challenger and a verifier. Election authority

still computes the Merkle tree locally and sends it to the smart contract along with

the whole Merkle tree. A challenger can challenge the registered Merkle root with a

Merkle path in a pre-defined time frame. Merkle path includes a direction path of

where the verification should start from. Then smart contract can try to regenerate

the Merkle tree root with the given path and compare it with the registered root. Since

it would require a gas consumption for the challenger to issue a challenge transaction

for the smart contract, there can be some incentive mechanisms to compensate for

this challenge cost. The smart contract can reward the challenger if the registered

Merkle tree root is indeed invalid. In a successful challenge case, where Merkle tree

54

root is found invalid, the smart contract can halt the process and require a valid Merkle

tree to be registered again. This approach is similar to what the original semaphore

contract does, but instead of recalculating the Merkle tree in every leaf register, it can

be calculated when it’s challenged. However, the solution requires Merkle tree hashes

to be stored on the smart contract, which increases the gas cost directly proportional

to the leaf count. Generating the Merkle tree also requires too much gas since it

involves MiMC hash function, which is not natively supported by EVM. The solution

depends on a challenger who has either a good incentive or motivation to challenge the

registered tree. It means that the security of this solution depends on the motivation

of challengers.

We propose Merkle Forests solution, which includes zero-knowledge proofs. In

this solution, each Merkle tree root can be calculated with a zero-knowledge circuit,

and then calculation proofs can be verified on the chain. The circuit takes a fixed-

size leaves list as a private input. Then it forms a Merkle tree from these leaves by

using MiMC hash function and generates the root. It also hashes elements in the

given list input with keccak256 hash function. The proof outputs both the Merkle

tree root and the hash of inputs. The verifier smart contract takes the leaf-list, the

Merkle tree root, and the zero-knowledge proof as inputs. Firstly, the verifier smart

contract computes keccak256 hash of the given leaf-list. Then it verifies the given zero-

knowledge proof with the given Merkle tree root and the calculated hash of inputs.

In this way, the smart contract can ensure that the given Merkle tree root is indeed

calculated with the given leaf-list. After a successful verification, the root is registered

to the ElectAnon smart contract with a tree index. This is because zk-SNARK circuits

do not support dynamic-size arrays. So in order to register more voters, a new tree

must be constructed and registered to the smart contract. The number of trees need to

be registered is directly proportional to the voter count. Let’s say tree leaf size is set to

256, so each tree can hold 256 voters. It means that if there are 2560 eligible voters in

the election, ten trees must be registered to the smart contract. Smart contract stores

tree roots within a mapping[treeIndex] => treeRoot structure. The smart contract

publishes an event when a tree is registered. The event contains treeIndex, treeRoot

55

and leaf-list, so that voters can track which tree they’re registered in. In the commit

state, each voter must explicitly tell which tree they are into the smart contract; so

that the smart contract fetches the Merkle root of that particular tree and verify the

Semaphore proof of the voter. Note that ElectAnon already has a zero-knowledge

proof construction from Semaphore. This Merkle Forest approach adds another zero-

knowledge circuit and verifier to the ElectAnon to verify that Merkle tree constructions

are done faithfully. With this method, the smart contract can verify that each Merkle

tree root input is correctly constructed from the given Merkle tree leaves.

We have realized that keccak256 hash function is not very efficient for zero-

knowledge proofs. However, it is an efficient hash function for EVM-based smart

contracts. We have also realized that we can accomplish the proposed Merkle Forest

approach by not using keccak functions at all. So we wanted to compare these two

different versions. Keccak hash function is only required when leaf inputs are private

and not verifiable by contract. However, if we can remove this necessity by making the

leaf-list as public input, we can also remove the keccak hash function from the circuit.

With that, the verifier smart contract can take the full leaf-list as the input and verify

the remaining Merkle tree construction proof with this list input. In this work, we also

implemented a circuit that can take public inputs of tree leaves and requires no keccak

hash function. We used Zokrates [55] as our main zk-SNARK toolbox in our implemen-

tations. We conducted experiments for both of these Merkle Forest implementations

(with and without keccak256) in the Section 5.2.1.

56

5. ANALYSIS

5.1. Security Analysis

In this section we analyze ElectAnon with aspects defined in the Election require-

ment section.

5.1.1. Eligibility

At the beginning of the Register state, the election authority (EA) requests ver-

ification documents from voters. Each voter generates an identity commitment IDCi

and submits it to EA in a secure channel. EA decides voters’ eligibility by verify-

ing their provided verification documents. After deciding eligible voters, EA forms a

Merkle-tree with voters identity commitments (IDC1, IDC2,...IDCk). EA registers

the Merkle tree root (MRS) and identity commitments (IDCi) to the smart contract

at the end of the Register state. In the Commit state, the protocol verifies that each

voter owns a valid identity commitment IDCi with zero-knowledge proofs created by

the Semaphore circuit. The circuit also takes the Merkle proof of IDCi, which consists

of Merkle proof path indexes (MPI i) and Merkle proof path elements (MPEi). Then

the circuit generates the Merkle tree root (MRC) with the given inputs puts it into

the proof Pi. The verifier smart contract verifies that the MRC in the proof and the

registered Merkle tree root in the smart contract MRS matches with each other. At

the end of this verification, the protocol verifies that the IDCi is indeed in the eligible

voter set. The smart contract rejects transactions without valid proof; thus, ElectAnon

ensures Eligibility.

5.1.2. Uniqueness

Uniqueness is ensured by Semaphore’s double-signalling prevention. In the Setup

state, each voter generates their identity IDi and identity commitments IDCi. This

57

IDi, and therefore IDCi, includes a random-secret nullifier Nulli. Each voter generates

the zero-knowledge proof Pi with private inputs of their nullifier Nulli and an external

nullifier ExtN . The circuit hashes these private inputs and generates NHi as follows

NHi = h(Nulli, ExtN,MPI i). Smart contract verifies the proof Pi to make sure NHi

is correctly generated by the voter. Smart contract also stores this NHi and invalidates

any call with the same NHi. Each of these NHis are unique to their IDi, it means

that in order to reforge a valid NHi adversaries must register a new eligible IDi, which

contradicts with the Eligibility proof. Since no voter can cast more than one vote in

the election, ElectAnon achieves Uniqueness.

5.1.3. Privacy and Anonymity

Privacy is ensured by preserving the anonymity of voter identities. We assume

voters send their identity commitments (IDCi) to Election Authority (EA) in a secure

channel. EA can also collect any documents or information from voters to decide their

eligibility. The protocol aims to keep identities IDi and their commitments IDCi

secret when voters cast their votes. This is because if one of them is revealed in the

voting time, then EA can distinguish voters and learn about their votes. Most of the

existing works encrypt/hide the actual votes, but they do not consider hiding the voter

identities. ElectAnon follows a contrary way to preserve privacy. In ElectAnon, we

aim to hide voter identities as well.

In the Commit state, voters generate zero-knowledge proofs without revealing

their identity commitments IDi or IDCi. The zero-knowledge proof Pi proves that

the vote is indeed generated by the voter. Voters generate their zero-knowledge proofs

in their local offline environments. The zero-knowledge circuit Circ takes voter identity

IDi as a private input and generates the proof Pi. By taking a private input, Circ

guarantees that given IDi is not revealed in the proof. The smart contract takes Pi

as input but does not require IDi or IDCi. As a result, no identity IDi or their

commitment counterpart IDCi is revealed.

58

Voters still interact with the smart contract through their blockchain addresses.

We assume they use a new and fresh blockchain address when they first interact with

the smart contract in Commit state. Any reuse of these addresses in other blockchain

applications can compromise their anonymity. This is not a specific cause for our

protocol but a common situation for blockchain applications. If both of these assump-

tions hold, then even the EA cannot deduct any information about voter identities

since IDCi is not revealed in the protocol. In the Reveal state, voters expose their

one-time-only vote secret keys V Ski which are not related to their identities. In that

phase, voters use the same blockchain addresses that they used in the previous Commit

state. However, this will not have any impact on the anonymity since they do not use

any information about their IDi or IDCi in the Reveal state. ElectAnon ensures the

Anonymity since no one can distinguish any voter operation and link them to actual

voter identities. This satisfies Privacy since no one also can link a vote to the actual

voter identity.

5.1.4. Fairness

ElectAnon voting phase consists of two consecutive states, Commit and Reveal.

Recall that voters commit the hash of the vote (V H i) without revealing the actual

vote ID (V IDi) in the Commit state. This is done by hashing the V IDi with a

random vote key (VSk i), e.g V H i = h(V IDi, V Ski). These VSk i and the V IDi must

be kept secret until end of the Commit state to guarantee Fairness is preserved. In

the Reveal state, voters provide their plaintext V IDi along with V Ski. The smart

contract verifies the stored V H i can be constructed with these inputs by checking

m[senderAddress] : V Hi == keccak256(V IDi,VSki). Then these revealed votes are

stored in the smart contract to be tallied. This two-step voting phase ensures that

committed vote hashes do not reveal any information about actual votes and committed

votes are not modifiable after the commitment. Fairness defined as “no intermediate

results should be available to be obtained.” ElecAnon guarantees that no-intermediate

results are obtainable in the Commit state, and committed votes are not alterable.

Thus, ElectAnon satisfies the Fairness.

59

5.1.5. Soundness

ElectAnon encodes ranked-choice lists into single integers, i.e to vote IDs V IDs.

Each of these V IDs represents a permutation of candidate IDs. In the Commmit

state, voters commit their preferred V IDi with hashing them into vote hashes V H i.

Solidity smart contracts can encode data with their types in hash functions by using

The Contract Application Binary Interface (ABI) [71]. We use ABI to make sure

hashed commitments also carry their type information so that we eliminate any type-

related corruption in the data. In the Reveal state, voters reveal their V IDi. Each

of V IDi integers represents an encoded ranked-choice list. ElectAnon decodes these

V IDi with the unrank algorithm [62] to obtain actual ranked-choice preference lists.

For a list of size nc, there can be at most nc! permutations. It means that the valid

V IDs can be in range of [0, nc! − 1]. This is easily detectable in the Reveal state as

V IDs are revealed in this state. ElectAnon checks the revealed V IDi and rejects the

transaction if it is not in the valid range. Soundness is defined as “no invalid ballots

should be tallied.” ElectAnon achieves Soundness by securing that no invalid votes

can be revealed and tallied.

We explicitly reject invalid votes instead of marking and storing them in the

smart contract. This reduces extra storage costs. In the Commit state, the smart

contract cannot perform a sanity check on votes (V ID) since they are not committed

in plaintext but with their hashes (V H). It means that invalid votes can be committed

in the Commit state. However, in the Reveal state, we prevent invalid votes from being

revealed and tallied by rejecting transactions that contain invalid votes. We provide

log feedback stating that the registered vote is invalid when voters try to reveal an

invalid vote. Moreover, there are two getRank and unrank functions that can be used

to encode/decode preference lists into V IDs.

60

5.1.6. Universal Verifiability

ElectAnon is a self-tallying protocol, and it uses blockchain technology. The

technology ensures that every transaction is transparent and verifiable by the network.

With these two aspects, anyone can verify each commitment or reveal transactions.

Tallied results also can be verifiable with revealed voteIDs (V IDs) at the end of the

reveal phase.

5.1.7. Individual Verifiability

Voters can verify that their committed votes are successfully cast on the ballot

by verifying blockchain transactions. This can be done by verifying that transactions

contain their committed vote hashes (V Hs). They can also make sure that their

revealed votes are tallied correctly by verifying that transactions contain their plaintext

(V ID) input in the Reveal state transaction.

5.1.8. Robustness

We define a state-machine in the smart contract to ensure each state transition

is well executed and election protocol flows without any interruption. This certainly

makes it possible to conduct an election without a manual transition from authority.

The authority is only available in Setup and Register states. The smart contract ensures

that the Election Authority (EA) cannot call any state-changing function after Register

state. EA can only disrupt the election before voting starts, i.e., before the Commit

state. There is no voter-smart contract interaction required before the Commit state.

So if EA disrupts the election before the Commit begins, it would only harm the EA

itself.

The smart contract (SC), the circuit (Circ), and zero-knowledge keys (V erifyK,

ProveK) are announced publicly, and thus everyone in the network can verify thems.

EA generates the zero-knowledge verifier smart contract using the verification key.

61

Note that, zero-knowledge key setup derives V erifyK and ProveK from a set of

public parameters (Params). These public parameters are also announced publicly at

the end of the Perpetual Power of Tau [59] ceremony. It means that even if EA deploys

an invalid verifier contract, it is immediately detectable. Voters also will not be able to

use this invalid smart contract with their valid proving keys. This situation would be

to the disadvantage of the election authority (EA) since no voter can interact with the

invalid in the smart contract; thus, the election can never start. In the voting process,

every voter verifies their own proof.

We do not use any shared-key encryption to ensure voters’ activities do not affect

each other. So our protocol is safe against abandoning vote attacks, which can be seen

in works like McCorry et al. [41], Yang et al. [35] and Priscore [37]. In the Reveal state,

voters reveal their own votes. If a voter abandons a committed vote, others will not

be affected by it, and the election can safely continue to tally.

ElectAnon guarantees that a started election will not be disrupted by any means.

As a result ElectAnon achieves voting availability. Moreover, ElectAnon is a self-

tallying protocol. It means that everyone can tally the result without requiring any

external assistance. As a result, ElectAnon also achieves the tallying availability.

ElectAnon guarantees Robustness with these two achievements combined.

5.2. Experiments and Results

We deployed ElectAnon to a local Ethereum network by using Hardhat [72] tool.

Hardhat is a development environment that provides local Ethereum networks, gas

consumption reports, a high-level language to conduct tests, and a wallet pre-filled

with accounts. Hardhat also supports smart contract language Solidity. We wrote

tests in NodeJS and used a modified version of Semaphore library libsemaphore [57] to

generate proofs and witnesses. We used Solidity version 0.8.7 and the latest Ethereum

fork London. We used a MacBook Pro with an 8-core 3.2GHz Apple M1 chip and 16

GB Ram, running on macOS BigSur (Version 11) to conduct our tests.

62

Figure 5.1 shows measured gas consumption results for commitVote, revealVote

and electionResult functions. These functions are mainly called by voters in the elec-

tion. We run them in 2 different setups. In the first one, we fixed the voterCount to 10

and increased the candidate count linearly. In the second setup, we used a fixed candi-

date count of 10 and increased voter counts exponentially. We found that commitVote

has a O(1) gas complexity since it is not affected by the candidate count change or

vote count change. The function consumes approximately 315.000 gas per transaction.

The function verifies the zero-knowledge proofs. Hence, it consumes relatively more

gas than other functions. We have seen that the function revealVote is only affected by

the candidate count. The consumption function is approximately: nc ∗ 8000 + 39000

and thus linear with O(nc). The votes are counted in revealVote function and voteIDs

(V ID) are unranked with the Ranking/Unranking permutation algorithm [62]. The

algorithm takes a linear time to unrank the rankID to a permutation list. As expected,

it causes a linear gas consumption with respect to candidate count nc.

We found that voter count has no effect on revealVote. There is a down-slope in

between voterCount=10 and 100. This is due to the fact that there is an additional

map initialization cost when revealVote is called for the first time. Hardhat gas-reporter

takes an average of gas consumption if the same function is used more than once.

Eventually, the average value becomes closer to the maximum when there are few

voters and becomes closer to the minimum when there are more voters.

The electionResult function is not affected by the vote count but is linearly af-

fected by the candidate count O(nc). This is because the Borda Count tally library

partially tallies the results in the revealVote function, as previously mentioned in the

Subsection 4.3.1.1. The electionResult function iterates over each candidate ID in the

tally storage TS and finds the candidate with the maximum score, then reports it. As

a result, the function cost increases linearly with respect to candidate count.

63

10 20 30 40 50
0

100,000

200,000

300,000

400,000

Candidate Count

G
a
s
C
on

su
m
p
ti
on

voterCount=10

commitVote
revealVote

electionResult

10 100 1,000 10,000

50,000

100,000

150,000

200,000

250,000

300,000

Voter Count

candidateCount=10

1

Figure 5.1. Voter Functions.

The smart contract deployment takes a total of 3458406 gas. The deployment

is done only once by the election authority. Figure 5.2 shows gas consumptions for

addVoters, addProposers, propose, toProposalState which are mainly used by election

authority and proposers. The gas consumption of addProposers is proportional to the

candidate (proposal) count. The cost function of addProposers is 50180 + (23586 ∗ nc)

which is O(nc). The measured gas consumption of proposer and the toProposalState

are O(1) and fairly low. addVoters ’s gas cost is directly related with the voter count.

Ethereum has a block gas capacity which changes between 15 and 20 million gas. We

were able to add 10,000 voter IDs in a single transaction for addVoters function call,

without exceeding the block limit. In our tests, we found that addVoters call exceeds

this limit with approximately 30,000 voters. However, as mentioned before, this is only

for a single call. Election Authority can issue multiple calls to keep adding new IDs. For

example 100,000 voters can be added by splitting vodeIDs into 10 different addVoters

calls with 10,000 voters for each. We have mentioned that the addVoters function can

be offloaded to the election authority with an additional trust in the authority. We have

conducted a test for this version of the addVoters function with candidateCount=10

and voterCount=10,000. The modified function consumes only 70,219 gas as it only

registers the Merkle tree root without publishing events for identity commitments.

64

10 20 30 40 50

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

Candidate Count

G
a
s
C
on

su
m
p
ti
on

voterCount=10

addVoters
addProposers

propose
toProposalState

10 100 1,000 10,000

100,000

1,000,000

10,000,000

Voter Count

candidateCount=10

1

Figure 5.2. Election Authority Functions.

We also run tests for Merkle tree generation with different voter counts. Merkle

trees must be generated by both election authority and voters. Election Authority

must generate the Merkle tree and register the tree root to the smart contract. Voters

also need to generate the tree to find their path elements and indexes for Merkle proofs.

We analyzed all these tree functions genTree, genPathElementsAndIndex, getRoot with

increased voter count. Figure 5.3 shows the result. The tree file size represents Merkle

proof file size. The file contains all Merkle proofs for every individual leaf. It means

that voters can grab the file and find their related Merkle proofs without actually

generating the tree. Merkle tree and proof generation have a linear relation with the

voter count. We found that the tree can be constructed within 42 minutes for 100,000

voters. Merkle proof generation takes only 6 seconds for 100,000 voters. The generated

file size takes 165,5 megabytes for 100,000 voters, which makes it practical enough to

be shared online.

65

10 100 1,000 10,000 100,000

0.00001

0.0001

0.001

0.01

0.1

1

10

100

1,000

10,000

Voter Count

E
la
p
se
d
S
ec
on

d

Merkle Tree Time

genTree
genPathElementsAndIndex

getRoot

10 100 1,000 10,000 100,000

10

100

1,000

10,000

100,000

Voter Count

S
iz
e
in

K
B

Merkle Proof File Size

1

Figure 5.3. Merkle Tree Functions.

We also analyzed the Semaphore circuit setup times, file sizes, and the witness &

proof generation times. Results can be found in Table 5.1. Results show that compiling

the circuit and generating keys take a total of almost 15 minutes and 250-megabyte

file size. This is fairly feasible since it is a one-time setup only. Each voter uses genID,

genIDCommit to generate their identity and identity commitments. In the table, it

can be seen that these functions take sub-second times. Voters use genWitness and

genProof in conjunction to generate their zero-knowledge proofs. They take around 10

secs to generate proof for the Semaphore verifier.

Table 5.1. Semaphore Circuit & Function Times.

Operation
Time

(sec)

File Size

(mb)

Compile Circuit 206 132

Key Generation 703 128

Generate Verifier Contract 0.39 0.01

Function
Time

(sec)

genID 0.027504

genIDCommit 0.099805

genWitness 1.622

genProof 8.446

66

5.2.1. Merkle Forest

We also run tests for the Merkle forest extension. We have deployed several smart

contracts with various fixed-size trees and added voters with addVoters. We show

results for two different implementations in Table 5.2. One of the implementations

takes the keccak hash function; the other one uses public inputs. It is obvious that

implementation with keccak hash function consumes less gas for increased voter count.

It is due to the fact that the verifier in the implementation with the keccak hash

function verifies only a single hash input. Whereas in the other implementation, all

leaves are passed to the verifier to be verified. Passing a full list instead of a single

hash increases the gas consumption with respect to increased voter count. However,

the implementation without keccak hash function produces fewer constraints. As a

result, generation times and file sizes are lower. We think that the circuit with keccak

is more feasible for a smart contract approach since it consumes almost one-quarter of

gas compared to the one without keccak. As we told before, we assume the election

authority has enough resources, i.e., enough to cover gas prices and computational

resources to generate zero-knowledge proofs. Inserting a 256-sized tree with a keccak

circuit consumes 482,409 gas, whereas the original implementation without Merkle

forest consumes 276,929 for 200 voter registration. The Merkle forest solution becomes

more valuable for small-scale elections as the solution reduces the trust assumption

in the election authority without consuming too much gas. It is also still possible to

generate a 256-size tree circuit and insert multiple trees to the smart contract, thus

increasing the total voter count with several rounds. However, increasing the fixed

tree size in circuits certainly helps to reduce the gas cost for a single leaf insertion to

the smart contract. The insertion/size gas ratio can be seen in in Table 5.2 column

Insert/Size Gas. For large-scale elections, we think this solution is not feasible as both

gas consumption and circuit costs (file sizes, generation times) increase dramatically

with increased tree sizes. However, Merkle Forest extension can offer a viable solution

for small/medium scale elections.

67

Table 5.2. Test Results for Merkle Forest Implementations.

Keccak Size Constraints
Compile

Time

Setup

Time

Witness

Time

Proof

Time

Deploy

Gas

Insert

Gas

Insert Gas per

Size

Compiled

Size

(MB)

Proving

Key Size

(MB)

Yes 2 156,423 0:00:05 0:01:14 0:00:02 0:00:06 1,362,455 312,823 156,411.5 52 55

No 2 2641 0:00:01 0:00:01 0:00:00 0:00:01 1,310,489 297,325 148,662.5 12 0.9

Yes 4 163,237 0:00:06 0:01:19 0:00:02 0:00:07 1,400,793 315,557 78,889.25 86 57

No 4 7921 0:00:02 0:00:04 0:00:02 0:00:01 1,398,693 315,519 78,879.75 46 2.4

Yes 8 329,499 0:00:13 0:02:23 0:00:04 0:00:14 1,404,040 316,799 39,599.875 205 114

No 8 18,481 0:00:05 0:00:10 0:00:03 0:00:05 1,508,133 349,425 43,678.125 125 6.5

Yes 16 661,908 0:00:29 0:04:44 0:00:10 0:00:30 1,404,004 322,106 20,131.625 452 229

No 16 39,601 0:00:12 0:00:24 0:00:07 0:00:11 1,714,373 419,031 26,189.4375 292 14

Yes 32 1,326,724 0:01:05 0:09:42 0:00:22 0:01:07 1,405,936 332,534 10,391.6875 957 459

No 32 81,874 0:00:27 0:00:53 0:00:16 0:00:25 2,128,664 558,448 17,451.5 636 28

Yes 64 2,656,356 0:02:53 0:21:06 0:00:53 0:02:28 1,404,004 353,931 5530.171875 1900 918

No 64 166,321 0:01:02 0:01:52 0:00:34 0:00:53 2,948,257 839,127 13,111.35938 1300 57

Yes 128 5,162,019 0:05:18 0:37:37 0:01:36 0:04:29 1,404,016 396,685 3099.101563 3900 1800

No 128 335,281 0:02:16 0:03:17 0:01:08 0:01:48 4,595,134 1,405,349 10,979.28906 2700 114

Yes 256 10,173,347 0:30:49 1:16:15 0:03:17 0:10:03 1,404,640 482,409 1884.410156 7800 3500

No 256 673,201 0:07:56 0:06:48 0:02:17 0:03:55 7,890,686 2,559,015 9996.152344 5400 228

5.2.2. Evaluation

We compared the ElectAnon with other previous similar works like McCorry

et al. [41] and PriScore [37]. McCorry et al. [41] has only a single Yes/No choice

system, whereas PriScore [37] uses a score-based ranked-choice election with multiple

candidates. McCorry et al. [41] conducted their gas consumption tests with 40 voters.

PriScore [37] also shows gas costs for each of their different functions. We computed

their total gas costs for 40 voters and ten candidates. We also run our tests with

40 voters and ten candidates. A comparison table can be found in Table 5.3. We

found that ElectAnon offers an 83% and 89% decrease in total election gas costs in

comparison with the McCorry et al. [41] and Priscore [37] respectively.

68

Table 5.3. Gas Comparison Table (voterCount=40, candidateCount=10).

Entity: Transaction McCorry et al. [41] Priscore [37] This Work

A: Deploy 6,215,811 - 3,430,754

A: Add Voters 2,153,461 - 113,963

A: Add Proposers - - 286,040

A: State Change 3,320,433 - 71,877

P: Propose - - 42,681

V: Register 763,118 - -

V: Commit 70,112 1,107,374 312,856

V: Vote 2,490,412 3,579,468 105,140

A: Tally 746,485 60,096 48,937

Authority Total 12,436,190 60,096 3,665,531

Proposer Total - - 42,681

Voter Total 3,323,642 4,686,842 417,996

Election Total 145,381,870 187,533,776 20,812,181

At the time of writing this work, the gas price in Ethereum nearly 100 gwei, and

one ETH is approximately 4,500 $. A gwei equals to 109 ETH, so a gwei roughly equals

to 4, 500/109 = 0.0000045$. It means that a single gas costs 100∗0.0000045 = 0.00045$.

In our work, voters total gas cost is 417,996 which makes 0.00045∗417, 996 = 188.0982$.

We considered running the ElectAnon in another Ethereum Virtual-Machine compat-

ible network, Avalanche. Avalanche implements a novel consensus mechanism with

proof-of-stake Sybil protection [73]. It offers a faster finalization time and increased

transaction per second rate with very low gas fees when compared to Ethereum. The

Avalanche gas prices change between 25-150 nAVAX (equivalent to gwei) [74]. The cur-

rent price of Avalanche is 85$ on average. If we take the gas price as nearly 100 nAVAX,

then our voting transactions costs would be equivalent to 100/109 ∗ 85 ∗ 417, 996 =

3.552966$. We run an election with ten voters and ten candidates in Avalanche local

network. We found that ElectAnon is compatible with the Avalanche network and it

69

costs the same gas as the Ethereum network. However, since gas prices and the AVAX

price is much lower than the Ethereum, it reduces the cost of election significantly.

In our tests, we found that the voter functions, i.e commitVote, revealVote, elec-

tionResult are not affected by the increased voter count. It means that voters do not

pay for extra gas in case of a large-scale election. The cost of election authority in-

creases with both candidate count for addProposers and voter count for addVoters. We

assume that the election authority has enough resources to conduct the election.

A possible bottleneck of ElectAnon could be adding voters to the eligible list. It

costs almost a total of 10,000,000 gas for 10,000 voter registration which almost costs

$5000 USD in Ethereum. It means that a single leaf insertion costs approximately

5000/10, 000 = $0.5 USD. This is a fair cost for small to medium-scale elections, i.e., up

to 10,000 voters. The gas cost increases linearly. A large-scale election with 1,000,000

voters would cost approximately $500.000 USD. Even though our work offers the best

gas consumption amongst others like McCorry et al. [41] and Priscore [37], $500.000

USD is still too much. The total USD cost can be decreased by using Avalanche

network, which has significantly less gas price, as mentioned in the previous paragraph.

The same total cost to register 1,000,000 voters can be decreased to almost 100/109 ∗

85 ∗ 10, 000, 000 ∗ 100 = 8500$ USD in Avalanche.

We also discussed a potential solution to reduce the cost of registering voters

with Assisted Merkle Trees in Section 4.4.2. We found that the potential solution

registers 100,000 voters with only 70,219 gas costs which are approximately $30 USD

in Ethereum Network. The Merkle tree file takes almost 100 mega-bytes for 100,000 tree

leaves. We used no compression or encoding in our experiments. This size potentially

can be decreased further with compression. The potential solution can offer a feasible

way to share Merkle trees via cloud or IPFS.

70

6. CONCLUSION

6.1. Remarks

In this work, we proposed a blockchain-based, anonymous ranked-choice voting

protocol. Our work, ElectAnon, ensures full anonymity with zero-knowledge proofs.

We used a zero-knowledge gadget, Semaphore [15], which provides anonymous member-

ship proofs with the efficient zk-SNARK technique. Our protocol also provides efficient

mechanisms for ranked-choice voting. We used an effective algorithm [62] to encode and

decode our ranked-choice lists with integers. ElectAnon is designed to be fully robust

and uninterruptible in the voting phase. We implemented the protocol in Ethereum

smart contracts to ensure decentralization and robustness. Detailed implementation

and analysis of the protocol are presented in work with technical discussions. We also

defined some of the most critical election requirements and provided a deep-down anal-

ysis of prior works. We also discussed and analyzed alternative extensions like Merkle

Forests, Tideman method and Multiple Elections for our protocol. We have run some

real-world experiments and shown the results. We also compared our work with prior

works. Our protocol not only assures critical election requirements but also scales to

be used in large-scale elections. We think that ElectAnon can also be beneficial for

governance applications like decentralized autonomous organizations (DAOs).

6.2. Future Work

Currently, ElectAnon returns only the first winners of the elections. The whole

tallying information is kept available on the smart contract after tallying phase ends,

so showing remaining results can be achieved through very little modification. We left

the implementation for this as future work.

We assumed that election authority establishes a secure channel for voters and

proposers. We left the actual implementation of this channel as future work. Recall

71

that we also mentioned it is possible to increase the election authority number so the

authority role can be more decentralized and voter registration costs can be shared.

We also left the actual implementation of working with multiple election authorities as

future work.

Our current voting scheme expects voters to form a full list of candidates. Because

of that, each voter has to decide their preferences for all candidates. In other words,

each preference list must contain all possible candidates in different orders. This can be

a burden for elections with many candidates, as voters have to evaluate all candidates

and form a list of all candidates sorted by their preferences. This can be avoided

by specifying a smaller preference list size. For example, if there are 50 candidates,

instead of forming a permutation of 50 candidates, the election can require voters to

decide on some smaller number of candidates like 10 or 5. So voters can evaluate

a smaller candidate subset instead of the whole set. Authors of the Ranking and

unranking permutations in linear time [62] mention a possible extension to accomplish

k-permutations of an n-set. Our preference list encoding can use this approach to

reduce the list size, and thus both usability and gas efficiency can be increased.

72

REFERENCES

1. Gibson, J. P., R. Krimmer, V. Teague and J. Pomares, “A Review of E-voting:

the Past, Present and Future”, Annals of Telecommunications , Vol. 71, No. 7, pp.

279–286, 2016.

2. Al-Janabi, S. and N. Hamad, “Security of Internet Voting Schemes: A Survey”,

REVISTA AUS Journal, Special Issue, Vol. 26, No. 2, pp. 260–270, 2019.

3. Alvarez, R. M., T. E. Hall and A. H. Trechsel, “Internet Voting in Comparative

Perspective: the Case of Estonia”, PS: Political Science & Politics , Vol. 42, No. 3,

pp. 497–505, 2009.

4. Serdult, U., M. Germann, F. Mendez, A. Portenier and C. Wellig, “Fifteen Years

of Internet Voting in Switzerland [History, Governance and Use]”, 2015 Second

International Conference on eDemocracy eGovernment (ICEDEG), pp. 126–132,

2015.

5. SCOOP4C, Estonian Internet Voting , "https://scoop4c.eu/cases/estonian-

internet-voting", accessed in November 2021.

6. Desilver, D., “Mail-in Voting Became Much More Common in 2020 Primaries as

COVID-19 Spread”, Pew Research Center , 2020.

7. Krimmer, R., D. Duenas-Cid and I. Krivonosova, “Debate: Safeguarding Democ-

racy During Pandemics. Social Distancing, Postal, or Internet Voting—the Good,

the Bad or the Ugly?”, Public Money & Management , Vol. 41, No. 1, pp. 8–10,

2021.

8. James, T. S., “New Development: Running Elections During a Pandemic”, Public

Money & Management , Vol. 41, No. 1, pp. 65–68, 2021.

73

9. Sachdeva, M., G. Singh, K. Kumar and K. Singh, “A Comprehensive Survey of

Distributed Defense Techniques Against DDoS attacks”, International Journal of

Computer Science and Network Security , Vol. 9, No. 12, pp. 7–15, 2009.

10. Agre, P. E., “P2P and the Promise of Internet Equality”, Communications of the

ACM , Vol. 46, No. 2, p. 39–42, 2003.

11. Hjálmarsson, F. T., G. K. Hreiðarsson, M. Hamdaqa and G. Hjálmtýsson,

“Blockchain-Based E-Voting System”, 2018 IEEE 11th International Conference

on Cloud Computing (CLOUD), pp. 983–986, 2018.

12. Taş, R. and Ö. Ö. Tanrıöver, “A Systematic Review of Challenges and Opportuni-

ties of Blockchain for E-Voting”, Symmetry , Vol. 12, No. 8, 2020.

13. El Faqir, Y., J. Arroyo and S. Hassan, “An Overview of Decentralized Autonomous

Organizations on the Blockchain”, Proceedings of the 16th International Symposium

on Open Collaboration, OpenSym 2020, Association for Computing Machinery,

New York, NY, USA, 2020.

14. Buterin, V., A Next-Generation Smart Contract and Decentralized Application

Platform, Tech. rep., Ethereum Foundation, 2014.

15. Gurkan, K. and K. W. Jie, Community Proposal: Semaphore: Zero-Knowledge

Signaling on Ethereum, Tech. rep., ZKProof Standards, 2020.

16. Sarmah, S. S., “Understanding blockchain technology”, Computer Science and En-

gineering , Vol. 8, No. 2, pp. 23–29, 2018.

17. Nakamoto, S., Bitcoin: A Peer-to-Peer Electronic Cash System, Tech. rep., Bitcoin,

2008.

18. Pierro, G. A., R. Tonelli and M. Marchesi, “An Organized Repository of Ethereum

Smart Contracts’ Source Codes and Metrics”, Future Internet , Vol. 12, No. 11,

74

2020.

19. Solidity 0.8.7 Documentation, https://docs.soliditylang.org/en/v0.8.7/, ac-

cessed in November 2021.

20. Kevin Sekniqi, S. B., Daniel Laine and E. G. Sirer, Avalanche Platform Whitepaper ,

Tech. rep., AvaLabs, 2020.

21. Binance, “Binance Chain Community Releases Whitepaper for Enabling Smart

Contracts”, Binance Blog , 2020.

22. Barinov, I. I., V. Arasev, A. Fackler, V. Komendantskiy, A. Gross, A. Kolotov and

D. Isakova, “POSDAO: Proof of Stake Decentralized Autonomous Organization”,

Applied Computing eJournal , 2019.

23. Ethereum Foundation, Istanbul - October 2019 Planned Ethereum Network Up-

grade, 2019, https://eth.wiki/roadmap/istanbul, accessed in November 2021.

24. Kumar, A., “Ownerless Ownership, Trustless Trust — DAOs, the Future of Gov-

ernance”, BeInCrypto, 2021.

25. Meir, R., “Plurality Voting Under Uncertainty”, Proceedings of the AAAI Confer-

ence on Artificial Intelligence, Vol. 29, 2015.

26. Bormann, N.-C. and M. Golder, “Democratic Electoral Systems around the world,

1946–2011”, Electoral Studies , Vol. 32, No. 2, pp. 360–369, 2013.

27. ACE, The Global Distribution of Electoral Systems , https://aceproject.org/

main/english/es/esh.htm, accessed in November 2021.

28. Brogan, D. W., “Political Parties: Their Organization and Activity in the Modern

State. By Maurice Duverger. Translated by Barbara and Robert North. (New York:

John Wiley & Sons, Inc.1954. Pp. xxxvii, 439.)”, American Political Science

75

Review , Vol. 49, No. 3, p. 889–890, 1955.

29. Herron, M. and J. Lewis, “Did Ralph Nader Spoil a Gore Presidency? A Ballot-

Level Study of Green and Reform Party Voters in the 2000 Presidential Election”,

Quarterly Journal of Political Science, Vol. 2, No. 3, pp. 205–226, 2007.

30. Anest, J., “Ranked Choice Voting”, Journal of Integral Theory and Practice, Vol. 4,

No. 3, pp. 23–40, 2009.

31. Diorio, D. and W. Underhill, “Ranked-Choice Voting”, LegisBriefs , Vol. 25, No. 24,

2017.

32. Gritzalis, D. A., “Principles and Requirements for a Secure E-voting System”, Com-

puters & Security , Vol. 21, No. 6, pp. 539–556, 2002.

33. Jafar, U., M. J. A. Aziz and Z. Shukur, “Blockchain for Electronic Voting Sys-

tem—Review and Open Research Challenges”, Sensors , Vol. 21, No. 17, 2021.

34. Hussien, H. and H. Aboelnaga, “Design of a Secured E-voting System”, 2013 In-

ternational Conference on Computer Applications Technology (ICCAT), pp. 1–5,

2013.

35. Yang, X., X. Yi, S. Nepal, A. Kelarev and F. Han, “Blockchain Voting: Publicly

Verifiable Online Voting Protocol Without Trusted Tallying Authorities”, Future

Generation Computer Systems , Vol. 112, pp. 859–874, 2020.

36. Zhang, S., L. Wang and H. Xiong, “Chaintegrity: Blockchain-enabled Large-scale

E-voting System With Robustness and Universal Verifiability”, International Jour-

nal of Information Security , Vol. 19, pp. 323–341, 2019.

37. Yang, Y., Z. Guan, Z. Wan, J. Weng, H. H. Pang and R. H. Deng, “PriScore:

Blockchain-Based Self-Tallying Election System Supporting Score Voting”, IEEE

Transactions on Information Forensics and Security , Vol. 16, pp. 4705–4720, 2021.

76

38. Merener, M. M., “Theoretical Results on De-Anonymization via Linkage Attacks”,

Transactions on Data Privacy , Vol. 5, No. 2, p. 377–402, 2012.

39. Shirazi, F., S. Neumann, I. Ciolacu and M. Volkamer, “Robust Electronic Voting:

Introducing Robustness in Civitas”, 2011 International Workshop on Requirements

Engineering for Electronic Voting Systems , pp. 47 – 55, 2011.

40. Pawlak, M. and A. Poniszewska-Marańda, “Trends in Blockchain-based Electronic

Voting Systems”, Information Processing & Management , Vol. 58, No. 4, p. 102595,

2021.

41. McCorry, P., S. F. Shahandashti and F. Hao, “A Smart Contract for Boardroom

Voting with Maximum Voter Privacy”, A. Kiayias (Editor), Financial Cryptography

and Data Security , pp. 357–375, Springer International Publishing, 2017.

42. Panja, S., S. Bag, F. Hao and B. Roy, “A Smart Contract System for Decentralized

Borda Count Voting”, IEEE Transactions on Engineering Management , Vol. 67,

No. 4, pp. 1323–1339, 2020.

43. Hao, F., P. Ryan and P. Zielinski, “Anonymous Voting by Two-round Public Dis-

cussion”, Information Security, IET , Vol. 4, pp. 62 – 67, 2010.

44. etherscan.io, Ethereum Average Block Size Chart , http://etherscan.io/chart/

blocksize, accessed in October 2021.

45. Brandt, F., “Efficient Cryptographic Protocol Design Based on Distributed El

Gamal Encryption”, D. H. Won and S. Kim (Editors), Information Security and

Cryptology - ICISC 2005 , pp. 32–47, Springer Berlin Heidelberg, Berlin, Heidel-

berg, 2006.

46. Linoy, S., N. Stakhanova and S. Ray, “De-Anonymizing Ethereum Blockchain

Smart Contracts through Code Attribution”, International Journal of Network

Management , Vol. 31, No. 1, 2021.

77

47. Goldwasser, S., S. Micali and C. Rackoff, “The Knowledge Complexity of Interac-

tive Proof-Systems”, Proceedings of the Seventeenth Annual ACM Symposium on

Theory of Computing , STOC ’85, p. 291–304, Association for Computing Machin-

ery, New York, NY, USA, 1985.

48. Petkus, M., “Why and How zk-SNARK Works”, arXiv , Vol. abs/1906.07221, 2019.

49. Morais, E., T. Koens, C. van Wijk and A. Koren, “A Survey on Zero Knowledge

Range Proofs and Applications”, SN Applied Sciences , Vol. 1, No. 8, p. 946, 2019.

50. Company, E. C., What are zk-SNARKs? , https://z.cash/technology/

zksnarks/, accessed in November 2021.

51. Aztec, Aztec Network , https://aztec.network/, accessed in November 2021.

52. Starkware, StarkNet , https://starkware.co/starknet/, accessed in November

2021.

53. Partala, J., T. H. Nguyen and S. Pirttikangas, “Non-Interactive Zero-Knowledge

for Blockchain: A Survey”, IEEE Access , Vol. 8, pp. 227945–227961, 2020.

54. iden3, Circom 2 Documentation, https://docs.circom.io/, accessed in November

2021.

55. ZoKrates, Introduction - ZoKrates , https://zokrates.github.io/, accessed in

November 2021.

56. Jie, K. W., “To Mixers and Beyond: Presenting Semaphore, a Privacy Gadget Built

on Ethereum”, Coinmonks , 2020.

57. appliedzkp, libsemaphore, https://semaphore.appliedzkp.org/

libsemaphore.html, accessed in November 2021.

78

58. Company, E. C., Parameter Generation, https://z.cash/technology/

paramgen/, accessed in October 2021.

59. Jie, K. W., “Announcing the Perpetual Powers of Tau Ceremony to Benefit all

zk-SNARK Projects”, Coinmonks , 2020.

60. Jie, K. W., Perpetual Powers of Tau, https://github.com/weijiekoh/

perpetualpowersoftau, accessed in October 2021.

61. Jie, K. W., “Restarting the Semaphore Random Value Generation process”,

Medium, 2020.

62. Myrvold, W. and F. Ruskey, “Ranking and Unranking Permutations in Linear

Time”, Information Processing Letters , Vol. 79, No. 6, pp. 281–284, 2001.

63. Tideman, T. N., “Independence of Clones as a Criterion for Voting Rules”, Social

Choice and Welfare, Vol. 4, No. 3, pp. 185–206, 1987.

64. Benet, J., “IPFS - Content Addressed, Versioned, P2P File System”, arXiv , Vol.

abs/1407.3561, 2014.

65. Emerson, P., “The Original Borda Count and Partial Voting”, Social Choice and

Welfare, Vol. 40, No. 2, pp. 353–358, 2013.

66. Bassett, G. W. and J. Persky, “Robust Voting”, Public Choice, Vol. 99, No. 3, pp.

299–310, 1999.

67. Sayeed, S., H. Marco-Gisbert and T. Caira, “Smart Contract: Attacks and Protec-

tions”, IEEE Access , Vol. PP, pp. 1–1, 2020.

68. Chow, J., “A Guide to Events and Logs in Ethereum Smart Contracts”, ConsenSys ,

2016.

79

69. Albrecht, M., L. Grassi, C. Rechberger, A. Roy and T. Tiessen, “MiMC: Efficient

Encryption and Cryptographic Hashing with Minimal Multiplicative Complexity”,

J. H. Cheon and T. Takagi (Editors), Advances in Cryptology – ASIACRYPT 2016 ,

pp. 191–219, Springer Berlin Heidelberg, Berlin, Heidelberg, 2016.

70. Jie, K. W., Gas and Circuit Constraint Benchmarks of Binary and Quinary

Incremental Merkle Trees Using the Poseidon Hash Function, 2020,

https://ethresear.ch/t/gas-and-circuit-constraint-benchmarks-of-

binary-and-quinary-incremental-merkle-trees-using-the-poseidon-

hash-function/7446, accessed in October 2021.

71. Solidity, Contract ABI Specification — Solidity 0.8.7 Documentation, https://

docs.soliditylang.org/en/v0.8.7/abi-spec.html, accessed in October 2021.

72. Nomic Labs, Hardhat , https://hardhat.org/, accessed in November 2021.

73. Rocket, T., M. Yin, K. Sekniqi, R. van Renesse and E. G. Sirer, “Scalable

and Probabilistic Leaderless BFT Consensus through Metastability”, arXiv , Vol.

abs/1906.08936, 2020.

74. Ava Labs, Avalanche Transaction Fee, https://docs.avax.network/learn/

platform-overview/transaction-fees, accessed in November 2021.

80

APPENDIX A: APPENDIX

Figure A.1. ElectAnon Class Diagram.

