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Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering
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Asu Büşra Temizer for being “the domain expert” in our studies and bringing her

inspiring passion into every meeting. I also thank Taha Koulani for his help with

drawing chemicals and Nilgün Lütfiye Karalı for helping me with incredible kindness

and patience any time I needed. I gratefully acknowledge TUBITAK-BIDEB 2210-A

scholarship program and the financial support by TUBITAK ARDEB - 119E133, which

enabled our collaboration.
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ABSTRACT

BIOMOLECULAR LANGUAGE PROCESSING FOR

DRUG-TARGET AFFINITY PREDICTION

Finding high-affinity protein-chemical pairs is a prominent stage of the drug

discovery pipeline. However, the number of available proteins and chemicals forms

an experimentally insurmountable combination space and necessitates computational

approaches. Drug-target affinity prediction models come into play here and rapidly

highlight the high-affinity pairs. This thesis introduces state-of-the-art drug-target

affinity prediction models and training strategies to facilitate drug discovery studies.

The introduced approaches leverage biomolecular language processing techniques which

interpret the chemicals and proteins as documents formed in biomolecular languages.

The units of bimolecular languages, named biomolecular words, are discovered in large

corpora and pharmacologically verified as meaningful substructures. The biomolecular

words are used to develop a novel drug-target affinity prediction framework: Chem-

Boost. ChemBoost models leverage the biomolecule word-driven representations and

achieve state-of-the-art prediction performance. The experiments also demonstrate

that unseen biomolecules challenge all drug-target affinity prediction models and reveal

a generalizability problem. A language-inspired model training framework, Debiased-

DTA, is introduced to target the problem. The evaluations indicate that DebiasedDTA

boosts models on seen and unseen biomolecules, especially when the target pair is dis-

similar to training biomolecules. ChemBoost and DebiasedDTA are published as an

open-source python package, pydta.
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ÖZET

İLAÇ-HEDEF BAĞLILIK İLGİSİ TAHMİNİ İÇİN

BİYOMOLEKÜLER DİL İŞLEME

Yüksek bağlılık ilgisi gösteren protein-kimyasal çiftlerinin tespiti ilaç keşfinin

önemli bir adımıdır. Ancak, mevcut protein ve kimyasal sayısı deneysel olarak tarana-

mayacak bir kombinasyon uzayı oluşturmakta ve hesaplamalı yöntemler gerektirmek-

tedir. Bu aşamada ilaç-hedef bağlılık ilgisi tahmini modelleri sahne alır ve yüksek

bağlılık ilgisi gösteren çiftleri hızla tespit ederler. Bu tez, en üst düzey başarımlı ilaç-

hedef bağlılık ilgisi tahmini modelleri ve model eğitim stratejileri önerir. Önerilen

yaklaşımlar protein ve kimyasal dizilerini biyomoleküler dildeki dökümanlar olarak

gören biyomoleküler dil işleme tekniklerini kullanırlar. Biyomoleküler dilin birimleri,

veya biyomoleküler kelimeler, büyük biyomolekül derlemlerinde keşfedilmiştir ve far-

makolojik olarak değerli bulunmuştur. Biyomoleküler kelimeler özgün bir ilaç-hedef

bağlılık tahmini sistemi, ChemBoost, geliştirmek için kullanılmıştır. ChemBoost biy-

omoleküler kelime tabanlı vektör temsilleri sayesinde en üst düzey başarıma ulaşmıştır.

Deneyler ayrıca eğitim kümesinde olmayan biyomoleküllerin bütün ilaç-hedef bağlılık

ilgisi tahmini modellerini zorladığını göstermiştir. Bu probleme çözüm olarak, doğal

dil işlemeden ilham alan bir model eğitim stratejisi, DebiasedDTA, geliştirilmiştir.

Değelendirmeler DebiasedDTA stratejisinin tahmin modellerini hem eğitim kümesininde

bulunan hem de bulunmayan biyomoleküllerde güçlendirdiğini göstermiştir. Chem-

Boost ve DebiasedDTA pydta adında açık kaynak kodlu bir python kütüphanesi olarak

yayımlanmıştır.
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1. INTRODUCTION

1.1. The Perspective

Drugs are chemical substances that interact with a molecular structure in a living

organism and demonstrate clinical effects [1]. The targeted molecular structure is

often a protein, whose function is linked with the desired clinical results and can be

modulated by a “binding” chemical [1,2]. The binding chemical is called a ligand and

the interaction strength between the ligand and the protein is named affinity score. The

higher the affinity score between a protein and a ligand, the faster the ligand occupies

the proteins in the environment, which is a favorable property for drug candidates.

Unfortunately, discovering promising drug candidates, and thus drugs, to remedy the

target protein function is time-consuming and expensive. The entire drug discovery

pipeline, including the target identification phase, pre-clinical and clinical studies, takes

more than a decade and billions of US Dollars [3].

Finding chemicals that bind to the target protein with high affinity is a prominent

stage of the drug discovery pipeline. Researchers design chemicals that would bind to

the target and measure their binding strength in the lab, until they discover promising

protein-ligand pairs. However, the identification of the pairs can take years and stall the

entire pipeline. This is where the drug-target affinity (DTA) prediction models come

into play. Relying on the known protein-chemical binding affinity measurements, they

immediately predict the binding affinity of another protein-chemical pair. Successful

predictions can eliminate many unsuccessful wet-lab experiments and speed the drug

discovery pipeline.

DTA prediction models often leverage supervised machine learning methods [4–

16], because supervised machine learning allows an intuitive formulation of the problem:

given a set of protein-chemical pairs as input and their binding affinity as output, what

would be the binding affinity of other protein-chemical pairs? In this formulation,
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inputs and outputs must be numeric [17–21] and this is already the case for the output,

as the affinity score is a scalar value. However, the inputs, proteins and chemicals are

physical entities and their effective vectorization is crucial to produce high performance

DTA prediction models.

Biomolecules (proteins and chemicals) have different vectorizations with trade-

offs, which are linked with their 1D, 2D, and 3D structures. 3D-structure-driven vector-

ization approaches process the coordinates of atoms and amino-acids in space and are

the richest in terms of information. However, 3D structures are frequently unknown and

computationally expensive to process [22]. 2D-based vectorization approaches leverage

molecular graphs of atoms and bonds and bear less information than in 3D [23]. 1D-

based approaches, on the other hand, can encode the same amount of information as in

2D for chemicals [24], carry strong signals regarding the 3D structure of proteins [25],

and can outperform other representations in many tasks [26]. Plus, 1D representations

are easily available and the simplest to store and compute upon. This is why we rely

on 1D representations to develop DTA prediction models in this thesis.

In 1D, chemicals and proteins are strings in which each character is a building

block; atoms and bonds for chemicals and amino-acids for proteins. These strings are

products of sets of rules that encode structured information about the biomolecule [24].

This is similar to a document in a natural language, where the document is a string of

alphanumeric characters and punctuation marks put together through grammar rules.

Therefore, we can view chemical and protein strings (or sequences) as documents in

chemical and protein languages, biomolecular languages as a whole, and represent

them through language processing methodologies. This is what we call “biomolecular

language processing”.

1.2. Thesis Overview

Biomolecular language processing opens the doors to leverage many successful

natural language processing approaches for drug-target affinity prediction, and we ex-
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ploit these opportunities in this thesis. First, we examine the language structure of

biomolecular sequences to strengthen the foundations of our methodologies. Chap-

ter 3 shows that we can computationally identify chemically meaningful substrings in

biomolecular sequences, which we name “biomolecular words”. Second, we show in a

preliminary study that biomolecular words can empower state-of-the art DTA predic-

tion models. We then computationally and pharmacologically examine the chemical

words and find that they present patterns statistically similar to natural languages.

The pharmacologic evaluation, on the other hand, reveals that chemical words can be

markers of strong binding to protein families.

The language-like attributes and pharmacologic value of chemical words moti-

vate a DTA prediction framework around the chemical language. Chapter 4 intro-

duces ChemBoost, a chemical language-based approach for protein-chemical binding

affinity prediction. ChemBoost utilizes distributed chemical word vectors to represent

biomolecules and evaluates two chemical word identification methods for DTA predic-

tion. During the efforts to find the limitations of the proposed models in Chapter 4, we

find that all DTA models, not only ChemBoost models, struggle to predict affinities

between proteins and chemicals when at least one of them is unseen during train-

ing. We need DTA prediction models to be successful on these setups too, since novel

biomolecules are frequently studied to find alternative treatments to existing ones or

cure currently incurable diseases. This motivates Chapter 5.

In Chapter 5, we propose a novel perspective to DTA prediction model training to

support models while they predict the affinities between novel biomolecules. We focus

on the spurious patterns in the training datasets that misguide the models towards non-

generalizable information and propose “DebiasedDTA” to avoid such patterns during

training. The experiments show that quantifying and avoiding misguiding information

boosts the performance of DTA prediction models on novel biomolecules. We release

DebiasedDTA as a python package, which also contains the ChemBoost models, and

provide more detail on that in Chapter 6.
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1.3. Key Contributions

A summary of the contributions of our work on biomolecular language processing

for DTA prediction is provided below.

(i) Novel, simple, and successful DTA prediction models and training strategies are

introduced. The methodologies utilize biomolecular language processing methods

and therefore are applicable to all biomolecules – even when 2D and 3D structures

are unknown.

(ii) A novel chemical language-based DTA prediction framework, ChemBoost, is de-

veloped. ChemBoost represents biomolecules through distributed chemical word

vectors and performs at the state-of-the-art level (Chapter 4).

(iii) Novel ligand selection approaches are proposed for ligand-centric protein repre-

sentation. A pipeline is implemented to filter high-affinity protein-ligand pairs in

public databases and the protein vectors are bolstered with these pairs. The new

approach is more successful than the vanilla approaches (Chapter 4).

(iv) The performance of two different chemical word identification approaches to learn

distributed chemical vectors is evaluated for the DTA prediction task (Chapter 4).

(v) A fundamental problem in DTA prediction is demonstrated: current models

struggle to predict the affinity score of a protein-chemical pair when at least

one of the biomolecules is novel (Chapter 4).

(vi) A novel perspective on DTA prediction model training, DebiasedDTA, is proposed

to improve prediction performance on novel protein-chemical pairs. DebiasedDTA

is applicable to almost all existing DTA prediction models and boosts prediction

performance on seen, unseen, and out-of-dataset biomolecules, regardless of the

prediction model architecture (Chapter 5).

(vii) Biomolecule identity- and word-driven dataset biases are studied as two bias

sources that challenge DTA prediction models to generalize. Experiments show

that eliminating any of the two improves the prediction performance. (Chapter 5).

(viii) The effect of model debiasing on input features is studied. Model debiasing en-

ables learning more from the proteins and decrease the contribution of the phar-
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macologically unimportant chemical substructures to model predictions (Chap-

ter 5).

(ix) A python package, pydta, that encapsulates all the proposed methods in the

thesis is published. pydta is available in pip repository and is easy to install and

use (Chapter 6).
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2. BIOMOLECULE REPRESENTATION

2.1. Biomolecular Sequences

2.1.1. Chemicals

Chemicals are substances formed by two or more elements bonded together. They

can be represented in 1D, 2D, and 3D, with different rules in each dimension. 3D

representation of a chemical specifies the atoms, bonds, stereochemistry and atom co-

ordinates, whereas 2D representation specifies atoms, bonds, and stereochemistry in a

molecular graph, omitting the 3D coordinates. Both 2D and 3D representations are

information-rich, but introduce complexity for computational processing. 1D expres-

sion types aim to overcome the complexity of 2D and 3D representations by encoding

the chemical as a sequence while minimizing the information loss.

Simplified Molecular Input Entry Specification (SMILES) [24] syntax is one of

the most popular 1D representations for chemicals as it can serialize the 2D molecular

graph as a 1D sequence. SMILES syntax defines a set of rules that can encode the

chemical’s elements, bonds, and stereochemistry as a sequence without information

loss. Despite bearing the same amount of information as 2D representations, SMILES

strings are simple: the lengths of SMILES sequences for bioactive molecules in the

largest chemical database, ChEMBL [27], range from 2 to 2034, 99% of them being

shorter than 100 characters. Table 2.1 shows the length distribution of SMILES strings

in ChEMBL.

The SMILES syntax encodes the elements by their symbols in the periodic table,

while it uses special symbols for bonds: “=” denotes a double bond and “#” de-

notes a triple bond. Single bonds are implicitly encoded between consecutive elements.

SMILES utilizes another symbol to represent stereochemistry. “@” denotes a bond

that extends away from the reader while “@@” encodes a bond that extends towards.
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Table 2.1. Length distribution of SMILES strings in ChEMBL27.

Length Interval Count Cumulative Count Cumulative Ratio

0 - 100 1823391 1823391 0.93921

100 - 200 92125 1915516 0.98666

200 - 300 15599 1931115 0.99470

300 - 400 4424 1935539 0.99698

400 - 500 2354 1937893 0.99819

500 - 600 1254 1939147 0.99883

600 - 700 1194 1940341 0.99945

700 - 800 605 1940946 0.99976

800 - 900 177 1941123 0.99985

900 - 1000 63 1941186 0.99988

1000 - 1100 46 1941232 0.99991

1100 - 1200 37 1941269 0.99993

1200 - 1300 39 1941308 0.99995

1300 - 1400 59 1941367 0.99998

1400 - 1500 27 1941394 0.99999

1500 - 1600 7 1941401 0.99999

1600 - 1700 3 1941404 1.00000

1700 - 1800 1 1941405 1.00000

1800 - 1900 0 1941405 1.00000

1900 - 2000 2 1941407 1.00000

2000 - 2100 4 1941411 1.00000

A challenge in going from 2D to 1D is representing branches and the SMILES

syntax leverages parentheses as solution. In SMILES notation, an opening parenthesis,

“(”, marks the beginning of a branch and a closing parenthesis, “)”, marks the end.

Rings are encoded similarly, but with numbers instead of parentheses. Table 2.2 illus-

trates the 2D structure and SMILES string of methyldopate and demonstrates how a

SMILES string can be constructed from the molecular graph by starting from its right

end. The illustration is annotated and color-coded for demonstration.
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Table 2.2. SMILES construction from molecular graph for methyldopate.

CCOC(=O)[C@@](C)(N)Cc1ccc(O)c(O)c1

2.1.2. Proteins

Proteins are the functional units in living organisms that perform vital tasks

ranging from respiration to reproduction. Proteins exist in different structures in the

cells and their 3D structure affects their function. 3D structure of a protein is observable

with X-ray crystallography and nuclear magnetic resonance methods. However, X-ray

crystallography of a protein can take up to 5 years and nuclear magnetic resonance is

applicable only to small proteins [28]. Consequently, as of December 2021, the largest

protein structure database PDB [29] contains 187K structures, whereas there are 225M

proteins in UniProt [30].

Proteins can also be represented in 1D as a sequence of their building blocks,

amino-acids, which is easily available for all proteins [31]. The amino-acid sequences

are accessible through UniProt [30], but they do not contain any explicit information

about the 3D structure. However, the 3D structure of a protein can be predicted merely

from its sequence in certain cases [25], indicating the value of amino-acid sequences.
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Table 2.3. Amino-acid names and symbols

Name Symbol

Alanine A

Cysteine C

Aspartic acid D

Glutamic acid E

Phenylalanine F

Glycine G

Histidine H

Isoleucine I

Lysine K

Leucine L

Methionine M

Asparagine N

Proline P

Glutamine Q

Arginine R

Serine S

Threonine T

Valine V

Tlryptophan W

Tyrosine Y

Amino-acid sequences comprise 20 different amino-acids, whose names and sym-

bols, as they appear in the sequences, are displayed in Table 2.3 [31]. Table 2.4 contains

further information about the protein sequences and shows that their length distribu-

tion has a larger range and greater variance than chemical sequences. This is related

to proteins usually being larger molecules than drug-like chemicals.
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Table 2.4. Length distribution of amino-acid sequences in UniProt.

Length Interval Count Cumulative Count Cumulative Ratio

0 - 1000 545419 545419 0.96710

1000 - 2000 15809 561228 0.99513

2000 - 3000 1835 563063 0.99839

3000 - 4000 514 563577 0.99930

4000 - 5000 207 563784 0.99967

5000 - 6000 86 563870 0.99982

6000 - 7000 32 563902 0.99988

7000 - 8000 37 563939 0.99994

8000 - 9000 10 563949 0.99996

9000 - 10000 5 563954 0.99997

10000 - 11000 8 563962 0.99998

11000 - 12000 3 563965 0.99999

13000 - 14000 2 563967 0.99999

14000 - 15000 1 563968 0.99999

18000 - 19000 2 563970 1.00000

34000 - 35000 1 563971 1.00000

35000 - 36000 1 563972 1.00000

2.2. Biomolecular Language Unit Discovery

A natural language document can be viewed as a sequence of smaller language

units, such as prefixes, words, or phrases. These units are already defined in the struc-

ture of the document’s language and known by the language speakers. In biomolecular

sequences, though, the language units are unknown and need identification. Here we

describe two methods to discover biomolecular language units, or as we call them,

biomolecular words.
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2.2.1. k-mers

A k-mer of a sequence is a k -element substring. For a natural language unit, it

is a k-letter substring of the unit. For instance, 5-mers of the unit “michael scott” are

{“micha”, “ichae”, “chael”, “hael ”, “ael s”, “el sc”, “l sco”, “ scot”, “scott”}. For

amino-acid sequences, a k-mer consists of k amino-acids, whereas for a SMILES string

it comprises k SMILES units.

To find the k-mers of a language, a sliding window of length k is traversed over

all known sequences of the language. Then all k-mers are unioned, constituting the

vocabulary of the language, in which each k-mer is a word. k-mers have been proven

successful to represent both chemicals [32] and proteins [33].

2.2.2. Byte Pair Encoding

Byte Pair Encoding (BPE) is a compression technique [34] that was adopted

to the word segmentation task in natural language processing to discover the words

or tokens of a language given a large corpus [35–39]. BPE postulates that frequent

subsequences in a large corpus are meaningful language units. As such, given a corpus,

BPE first extracts the uni-character vocabulary of the corpus and then computes the

frequencies of all two-character subsequences. The algorithm expands its vocabulary

with the most frequent subsequence and restarts counting by considering all elements in

the vocabulary as a single character. The counting and vocabulary expansion continue

until the target vocabulary size (V ) is reached. When the algorithm terminates, the

vocabulary contains the most frequent V subsequences, which are considered to be

the words of the language. Biomolecular sequence processing benefited from BPE too

[40–43]; a recent study that showed the effectiveness of BPE identified “bio-words” for

the task of protein-protein interaction prediction [44]. Table 2.5 provides the chemical

words extracted from ampicilin via both methods as an example.
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Table 2.5. Example chemical words extracted from the SMILES of ampicilin using

8-mers and BPE.

Method Chemical Words

k-mer (i.e. 8-mer)
COc1cc2C, Oc1cc2CC, c1cc2CCN, ..., 3)c2cc1C,

)c2cc1Cl

BPE
COc1cc2, CCN=C(, c3ccc(Cl)c(Cl)c3),

c2cc1Cl

2.3. Biomolecule Vectorization

Throughout the thesis, we train machine learning models that predict the binding

affinity of input protein-chemical pairs. Common to all machine learning models, the

inputs must be vectorized during training and prediction. The sections below present

methods to vectorize chemicals and proteins.

2.3.1. One-hot Encoding

One-hot encoding is a simple method to vectorize any categorical input, such as

words, sequences, or biomolecules. In one-hot encoding, each dimension is reserved for

a category in a C dimensional space, where C is the number of unique categories. The

input category is then vectorized by setting only its reserved dimension to 1 in the

vector and setting the rest of the dimensions to 0. For instance, assume a language

with only 4 words: {“dunder”, “mifflin”, “paper”, “company”}. The following is a

valid one-hot encoding for the language:

“dunder” :
[
1, 0, 0, 0

]
,

“mifflin” :
[
0, 1, 0, 0

]
,

“paper” :
[
0, 0, 1, 0

]
,

“company” :
[
0, 0, 0, 1

]
.
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This setting cannot represent out-of-vocabulary (OOV) words by default, though.

One-hot encoding overcomes this by reserving an additional dimension for OOV words

and setting that dimension to 1 when an OOV word is encountered.

One-hot encoding of biomolecules follows the same approach as language vec-

torization. Each unique chemical is considered as a category and matched with a

dimension. C + 1 dimensional vectors are used to represent chemicals, where C is

the number of unique chemicals in the training set and one dimension is reserved to

vectorize chemicals unavailable in the training set. Therefore, all novel chemicals are

represented with the same vector during prediction. The same vectorization algorithm

applies to proteins, too.

2.3.2. Bag of Biomolecular Words

Bag-of-Words (BoW) is a document vectorization perspective in natural language

processing that interprets documents as unordered collections of words. A vectorization

approach in BoW perspective is to use word frequencies and represent each document

with a V -dimensional vector such that ~vi = f(wi),∀i ∈ {1, 2, ..., V }, where ~vi is the

ith element of the vector; f(wi) is the normalized frequency of the ith word of the

vocabulary in the document; and V is the vocabulary size. The normalized frequency

of a word is computed by dividing its count in the document by the number of words in

the document. For instance, the phrase “dunder mifflin” is vectorized as
[
0.5, 0.5, 0, 0

]
,

given the vocabulary {“dunder”, “mifflin”, “paper”, “company”}.

BoW is applied to biomolecule vectorization through SMILES and amino-acid

sequences. The biomolecular words in these sequences are first identified with any

identification method, and then the described vectorization algorithm is applied as is.
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2.3.3. Distributed Biomolecular Word Vectors

One-hot encoding and bag of biomolecular words are useful vectorization ap-

proaches as they are simple and fast. However, they also have major shortcomings.

One of them is they cannot embed the similarity between words in the vector space. For

instance, assuming a vocabulary of {“dunder”, “mifflin”,“paper”, “company”, “scran-

ton”, “pennsylvania”}, the cosine similarity between “scranton” and “pennsylvania”

is equal to 0, just like the cosine similarity between “scranton” and “paper”. In other

words, despite “scranton” and “pennsylvania” are semantically more related words

than “scranton” and “paper”, the cosine similarities are the same. Hence, the seman-

tic relations between words are not reflected in the vector space.

Word2Vec [45] is a breakthrough approach in natural language processing that

overcomes this limitation by encoding the semantic relations between words in vector

space. Word2Vec assumes that words that frequently appear in similar contexts in

a large corpus have higher semantic similarity, where context is defined as a set of

words within a window frame. By training a single-layered neural network to predict

either the target word given the context or the context given a target word, Word2Vec

learns a vector for each word in the vocabulary. In the resulting vector set, the words

that frequently occur in similar contexts are close to each other in the vector space.

Therefore, cosine similarity between “scranton” and “pennsylvania” is higher than the

one between “scranton” and “paper”, encoding the semantic relations.

Another advantage of Word2Vec over one-hot encoding and BoW representa-

tions is that the dimensionality of Word2Vec models is a model hyper-parameter that

mostly ranges between 50 and 500. For one-hot encoding and BoW, the vector di-

mensionality is determined by the number of words in the language, which can go up

to hundreds of thousands. This breakthrough approach had implications in biomolec-

ular language processing as well and gave birth to novel biomolecule representation

algorithms, SMILESVec [32] and ProtVec [33].
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2.3.3.1. SMILESVec. SMILESVec [32] represents chemicals with distributed chemi-

cal word vectors of their SMILES representations. The underlying hypothesis is that

similar to natural languages where documents and sentences are composed of words;

SMILES strings constitute a domain-specific language composed of chemical words.

SMILESVec utilizes Word2vec to learn 100-dimensional (100D) distributed chemical

word vectors from a large SMILES corpus, while treating SMILES strings of com-

pounds as sentences constituting chemical words. Chemical words are identified via

any language unit identification algorithm such as k-mers and BPE.

When the distributed chemical word vectors are in hand, the SMILESVec of a

compound is calculated as

~compound =

∑n
k=1

~(cwk)

n
(2.1)

where

n is equal to the number of chemical words (cw) extracted from the SMILES

string of a compound

~(cwk) represents the 100D embedding of the kth chemical word.

The compound is then described as the average of the vectors of the chemical

words in its SMILES representation. SMILESVec has been shown to outperform alter-

native vector representations in several benchmark tasks [32].

2.3.3.2. ProtVec. ProtVec [33] is a protein vectorization approach that relies merely

on amino-acid sequences. Similar to SMILESVec, ProtVec assumes that frequently

co-occurring amino-acid subsequences have similar “biological meaning” and should

have similar vector representations. ProtVec breaks amino-acid sequences into non-

overlapping 3-mers and applies Word2Vec algorithm to learn a 100D distributed vector

representation for each 3-mer, or biological word, in the corpus. ProtVec utilizes vec-

tor summation to produce protein vectors via biological word vectors and shows that

consequent vectors bear biological semantics [33].
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2.3.3.3. Ligand-centric Protein Representation. The sequence of a protein determines

the protein’s folding and function. However, the similarity of protein sequences does

not necessarily imply a similarity in protein function, and vice verse [46]. Therefore,

proteins with similar sequences might have dissimilar binding behavior, whereas pro-

teins with dissimilar sequences might bind to similar ligands. This encourages protein

representations that would explicitly encode the binding behavior in the vector space.

The ligand-centric protein representation [32] does exactly that.

Ligand-centric protein representation represents proteins through embeddings of

the chemical words in their interacting chemicals [32]. The protein vector is computed

by averaging the embedding of the chemical words, where chemical word embeddings

of the ligands are obtained via any chemical word embedding algorithm.

2.3.4. Biomolecular Language Model Vectors

Word2Vec transformed natural language processing once and for all and had

implications in biomolecule representation. Word2Vec owed it popularity to being very

easy to use: a vector for each word was produced, which can be re-used in any further

natural language processing tasks [47–50]. On the other hand, using the same vector for

a word in every context is also a shortcoming of the model, since words are attributed

different meanings in different contexts. To exemplify, consider the word “paper” in the

following sentences: (i) “Michael Scott runs the best paper company in the world.”, (ii)

“The last paper from TabiLab is fascinating!”. In (i), “paper” means a sheet to write

on, whereas in (ii), it denotes a scientific manuscript. Therefore, the word “paper”

is used in different meanings in two sentences and should be vectorized differently to

encode the difference in the semantics. Word2Vec cannot do that, inspiring studies on

contextualized word embeddings.

Encoding the context is a task in language modeling, where the goal is to pre-

dict the next word in a sequence based on the previous words. Recent language models

(LMs) [38,51,52] are structured as deep sequence models where word vectors are initial-
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ized randomly during training and updated alongside the model weights. Being a deep

sequence model (Word2Vec is a single layer neural network), the word embeddings in

the subsequent layers are affected by the previous words, and thus contextualized. Fur-

thermore, the overall information in the sentence is encoded in a special token ([CLS])

so that its embedding can be used as the sentence embedding. The contextualized

word embeddings of LMs empowered state-of-the-art level performance on many other

natural language processing tasks [38,51,53–56].

The high performance of LMs in natural language processing inspired modeling

studies on biomolecular sequences [57–60]. The protein LMs are shown to learn bi-

ologically relevant information such as amino-acid locations in 3D [60] and SMILES

language models boosted cheminformatics models in various tasks [57]. To vectorize

biomolecules with LMs in this thesis, the SMILES of the chemicals are input to Chem-

BERTa [61], a chemical language, and amino-acid sequences are input to a protein

sequence LM, ProtBERT [59]. The models infer the contextualized representations of

the input sequences and output one vector per biomolecule, which are used to represent

biomolecules in subsequent operations.

2.3.5. Other Representations

Besides language processing-based vectorization approaches, domain knowledge-

driven approaches are used to vectorize the biomolecules in parts of this thesis. These

are molecular access system (MACCS) keys [62] and Morgan fingerprints [63] for chem-

icals and Smith-Waterman [64] for proteins.

2.3.5.1. MACCS Keys. MACCS Keys [62] are binary vectors of 166 dimensions in

which each dimension specifies the existence of a chemical pattern in the compound.

MACCS keys vectorization approach is publicly available in the popular cheminfor-

matics tool rdkit [65].
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2.3.5.2. Morgan Fingerprints. Morgan fingerprints [63] are summary vectors that en-

code paths in the molecular graph of a compound in a vector. Morgan fingerprint

computation is an iterative process that assigns identifiers to each atom and updates

them with the neighboring identifiers in each iteration. As the number of iterations

increases, the size of the substructures encoded in the vector space also increases. In

other words, larger numbers of iterations encode global structures, whereas smaller

numbers focus on local structures. 2 is a popular choice for this parameter.

2.3.5.3. Smith-Waterman. Smith-Waterman (SW) is a dynamic programming algo-

rithm first developed to find the protein sequence alignment that maximizes the local

structure similarity [64] between proteins. SW assigns a similarity score to each possi-

ble alignment of two sequences and cleverly finds the one with the highest score. This

score is also a measure of protein sequence similarity.

SW represents proteins with respect to their similarity to all proteins as

~vi =
[
vj|NSW (pi, pj),∀j ∈ [1, P ]

]
(2.2)

NSW (pi, pj) =
SW (pi, pj)√

SW (pi, pi)
√
SW (pj, pj)

(2.3)

where

vi is the vector of the ith protein (pi)

P is the number of proteins in consideration

NSW (pi, pj) denotes the normalized SW score of pi and pj [66]

SW (pi, pj) denotes the SW similarity between pi and pj.

While SW incorporates protein similarity and domain knowledge in protein vec-

tors, SW computation is quadratic and computing SW score of all protein pairs is not

scalable to large protein sets. In such sets, the dimensionality of protein vectors can
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also grow too large to have fast models.
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3. BIOMOLECULAR LANGUAGES

We build our work on the hypothesis that there are biomolecular languages and

biomolecular sequences are documents composed in these languages. Thus, we can pro-

cess the biomolecules with language processing techniques. Although there is extensive

work in the literature [4, 16, 33, 40, 59, 61, 67] that show the merit of the biomolecular

languages hypothesis, we further test and strengthen our main claim in this chapter. In

order to test the value of biomolecular language processing, we first identify biomolec-

ular words and then utilize them to build drug-target affinity prediction models. Ob-

serving the power of biomolecular words, we dive deeper into chemical vocabularies

and test if they statistically resemble the words in natural languages. Last, we collab-

orate with medicinal chemists and investigate the meanings of chemical words from a

pharmacological point of view.

3.1. Discovering Biomolecular Words

We introduced two word discovery methods in the previous chapter, k-mers and

Byte Pair Encoding (BPE). Both methods previously showed great performance on

different biological and chemical tasks and can be used for the discovery of biomolecular

words [32, 33, 43, 44]. A distinction between the two approaches is that BPE allows

selecting the vocabulary size during training, whereas k-mers includes all k-mers of the

training corpus in the final vocabulary, which might grow too large. This flexibility

allows extracting different vocabularies from the same corpus encourages us to utilize

BPE to explore biomolecular words in this section.

In addition to BPE, we experiment with the unigram language model (ULM) [68],

which slightly modifies BPE to introduce a probabilistic perspective. The advantage

of ULM over BPE is that it enables training using an initial vocabulary, which allows

us to test more ideas for biomolecular word discovery.
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Both BPE and UML require a large number of sequences to find language units.

To curate protein sequences, we download all ∼520K reviewed protein sequences from

UniProt [30]. To curate a chemical sequences corpus, we download the canonical

SMILES representations of ∼2M bioactive chemicals in ChEMBL [27].

Having curated large number of biomolecular sequences, or corpora, we discover

biomolecular words via BPE and ULM. We select vocabulary sizes of 8000, 16000, and

32000 and first train BPE on ChEMBL and UniProt corpora, separately. We obtain

six biomolecular vocabularies in total.

After BPE, we start discovering biomolecular words with ULM. ULM is inter-

esting to us since it enables integrating additional information into biomolecular vo-

cabularies through start vocabularies. For proteins, we find the most frequent 7000

non-overlapping 3-mers in the corpus and create a starting vocabulary, since non-

overlapping 3-mers showed promise as biological words in the literature [32, 33]. For

the chemicals, we investigate the impact of incorporating domain knowledge into the vo-

cabularies via BRICS [69], which is a rule-based approach that decomposes compounds

into fragments based on chemical bonds. We apply BRICS to ChEMBL corpus and

obtain the fragments identified by BRICS. Then, we train ULM on BRICS fragments

instead of whole SMILES strings. Same as BPE, we obtain six vocabularies with ULM,

whose sizes are 8000, 16000, and 32000.

3.2. Exploring Biomolecular Words for Drug-Target Affinity Prediction

We created 12 biomolecular language vocabularies in the previous section. Would

they be useful for DTA prediction, though? Here we seek an empirical answer to this

question by utilizing the found vocabularies in a DTA prediction model, DeepDTA [4].
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Table 3.1. The performance of biomolecular word discovery methods on BDB dataset.

Chemical Vocab Size Protein Vocab Size BPE Score ULM Score

8000 8000 0.319 (0.011) 0.314 (0.006)

8000 16000 0.302 (0.010) 0.347 (0.076)

8000 32000 0.338 (0.025) 0.313 (0.015)

16000 8000 0.324 (0.022) 0.320 (0.009)

16000 16000 0.326 (0.013) 0.314 (0.009)

16000 32000 0.316 (0.009) 0.330 (0.038)

32000 8000 0.311 (0.016) 0.325 (0.016)

32000 16000 0.325 (0.031) 0.305 (0.011)

32000 32000 0.326 (0.010) 0.312 (0.009)

DeepDTA is a convolutional neural network that predicts the affinity between

a protein-chemical pair using their amino-acid and SMILES sequence representations.

DeepDTA segments these sequences into characters and apply character-level convo-

lutions instead of using biomolecular words. Here, we modify DeepDTA to segment

input sequences into biomolecular words found in the previous section and compare

the performance with the original model.

To evaluate the performance of DeepDTA, we train all DeepDTA variants on five

different training setups of tge BDB dataset [70] and test the models on the corre-

sponding test sets. We compute the average mean squared errors of the models on the

test sets and report the results in Table 3.1. The original DeepDTA model obtained a

score of 0.345 on the same setup, with a standard deviation of 0.026.

Table 3.1 shows that, except 8K-16K combination of ULM vocabularies, inte-

grating biomolecular words into DeepDTA lowered the average mean squared error, or

in other words, improved prediction performance. This evidences that biomolecular

words can enable more informative biomolecule representations than character level

models.
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Table 3.1 also demonstrates that experimented word identification methods have

comparable performance, suggesting that the use of start vocabularies did not improve

the models. Here, we favor the use of BPE over ULM as it is a simpler approach with

fewer components, and thus is easier to maintain.

3.3. Statistical Analysis of Chemical Words

The previous section displayed that biomolecular words are able to produce infor-

mative biomolecule representations. Although this exemplifies the merits of biomolec-

ular language processing, it does not necessarily suggest the language-likeness of iden-

tified biomolecular words.

A language-likeness indicator for vocabularies is Zipf’s Law [71]. Zipf’s Law

proposes that in all natural languages, the frequency of a word in a sufficiently large

corpus is inversely proportional to its frequency ranking in the corpus. In order to test

if the identified vocabularies satisfy Zipf’s Law, we select the chemical vocabulary of

BPE with size 16000, as it consistently produced a strong performance in the previous

section. We then compute the word frequency of all words in ChEMBL corpus we

previously curated. Finally, we compute pearsonr statistics of the word frequencies

with the series proposed by Zipf’s Law, which is
∑

i 1/i. The pearsonr statistics is

calculated as 0.90.

In order to benchmark the pearsonr statistics of chemical vocabulary, we find

three natural language corpora, each of which is similar to ChEMBL in size. These

corpora are (i) the first 400K lines of the English Wiki-Text dataset [72], (ii) the

first 1M lines of the German Deu-News dataset [73], and (iii) the Turkish NLI-TR

dataset [74]. We learn BPE vocabularies of size 16000 on each of these corpora and

measure pearsonr statistics with Zipf’s Law, as previously. We calculate the results as

0.94 for English, 0.88 for German, and 0.99 for Turkish. The figures show that chemical

vocabulary satisfies Zipf’s Law as much as natural languages, and thus the identified

chemical language statistically resembles natural languages.
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3.4. Pharmacologic Evaluation of Chemical Words

The previous sections evaluated the biomolecular words computationally and

demonstrated their benefits in the DTA prediction task and resemblance to natural

words. These results indicate the value of biomolecular language processing and mo-

tivate us to interpret the units of these languages. Similar to statistical analysis, we

select the BPE vocabulary of size 16000 and collaborate with medicinal chemists to

evaluate the chemical words in this vocabulary from a pharmacological perspective.

For pharmacological evaluation, we computationally discover chemical words that

might indicate strong binding to a family of proteins. We call these words “strong

binding indicators” and take the following steps to identify them:

(i) List the high-affinity protein-chemical pairs in BDB by using a threshold of Kd >

7.

(ii) Cluster the proteins with respect to their families. There turned out to be 80

families in the dataset.

(iii) For each family, find the list of chemicals that strongly bind to at least one protein

in the family and extract the chemical words of such chemicals.

(iv) Model the protein families as documents composed of chemical words of their

high-affinity ligands. In this model, the set of all families forms a corpus.

(v) Vectorize protein families with tf -idf [75]. During vectorization, omit the chem-

ical words that exist in more than 50 families. This resembles stopword removal

in natural language processing.

(vi) Based on the intuition that high tf -idf chemical words are distinctive elements

for a document; list 10 chemical words that have the highest tf -idf score for each

family. Call these 10 words as “strong binding indicators”.

After the computational discovery of chemical words, our medicinal chemist col-

laborators select carbonic anhydrase enzyme system (PFam ID: PF00194) for pharma-

cologic evaluation. We provided the following words for the analysis in the decreasing
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order of tf -idf score:

1. c1c(F)c(F)

2. NS(=O)(=O)

3. S(N)(=O)=O

4. c(F)c1F

5. CC(=O)c1ccc(

6. c(S

7. NS(=O)(=O)c1ccc(

8. c(Cl)c1)

9. S(=O)(=O)

10. c(F)c1F)

Our collaborators first observe that words 2, 3, 7, and 9 are either contain or

already are complete chemical structures and identify these words as sulfonamide,

sulfonamide, aryl substituent, and sulfone, respectively. Note that chemical words 2

and 3 are the same chemical structures, though their SMILES representations are

different. Figure 3.1 visualizes the 2D structures of these compounds and provides

their name.

During the literature review, 9 drugs that target carbonic anhydrases stand out.

These drugs are acetazolamide, methazolamide, ethoxzolamide, diclorphenamide, dorzo-

lamide, brinzolamide, sulthiame, zonisamide, and topiramate [76–79], whose 2D struc-

tures are illustrated in Figure 3.2. Figure 3.2 shows that all of these drugs contain

sulfonamide (chemical words 2 and 3) as a substructure, which we also propose as

a strong binding indicator for carbonic anhydrases. Dorzolamide, brinzolamide, and

sulthiame additionally contain standalone sulfone structures, which we also listed as a

strong binding indicator (chemical word 9). These highlight that biomolecular language

processing can be used to reveal binding indicator chemical substructures.
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(a) (b) (c)

Figure 3.1. 2D representations of sulfonamide (a), aryl substituent (b), and sulfone

(c).

Our collaborators evaluate the rest of the chemical words in the list, too. They

conclude that despite having a non-closed branch and being invalid SMILES strings,

chemical words 1, 4, and 10 have fluorine substituent aromatic ring substructure and

chemical word 7 has a chlorine substituent aromatic ring substructure, which are mean-

ingful chemical structures. Even though whether these substructures indicate strong

binding to carbonic anhydrases is still an open question, these observations demon-

strate that chemical words can be used to express compounds in terms of meaningful

substructures.

The successful identification of strong binding indicators to carbonic anhydrases

motivates applying the same computational analysis to more protein families. Our

collaborators select histone deacetylase enzyme system (PFam ID: PF00850), casein

kinase 1 gamma enzyme system (PFam ID: PF12605), guanylate kinase enzym system

(PFam ID: PF00625), and ATPase enzyme system (PFam ID: PF00004). The analysis

predicts ten chemical words as high-affinity indicators per family and the pharmacologic

evaluation verifies the following chemical word sets, respectively:

• {NC(=O)CCCC, CCC(=O), c1ccccc1, c1c(F)c(F)c(F)c(F)c1F, CCC(F) },

• {c1ccncc1, c1ccncc1), c2ccc(NC(=O)N, CC(=O)c1c(C), NC), C(F)(F)F)CC11},

• {F)c(F)c1, C2CCN(CC2)},

• {nCCS(=O)(=O), OCC1, OCC2}.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.2. 2D representations of acetazolamide (a), methazolamide (b),

ethoxzolamide (c) , diclorphenamide (d), dorzolamide (e), brinzolamide (f), sulthiame

(g), zonisamide (h), and topiramate (i).

These strengthen our claim that identified chemical words are chemically mean-

ingful structures.
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4. CHEMBOOST: A CHEMICAL LANGUAGE BASED

APPROACH FOR PROTEIN - LIGAND BINDING

AFFINITY PREDICTION

4.1. Introduction

Identification of high affinity drug-target interactions (DTI) powered by the avail-

able knowledgebase of protein-ligand interactions is an important first step in the drug

discovery pipeline. Computational tools from structure-based drug design [80] to quan-

titative structure–activity relationship (QSAR) [81] can accelerate this critical step by

narrowing down potential binding partners. The prediction of binding affinity for novel

interactions is still a challenging task because (i) representation of proteins and ligands

in computational space is complicated by the inherent three-dimensional (3D) nature

of the interaction [82], (ii) as of April 2020, there are only around 17680 protein-ligand

complex structures in PDBBind [83], (iii) the chemical space sampled by the currently

available data (560K proteins in SwissProt [30], 2M compounds in ChEMBL [84]) is

limited. Recently, powered by the increase in the quantity, quality, and coverage of

protein-ligand interaction data as well as computational advances, machine learning

is gaining traction in the DTI prediction task. DTI prediction has been investigated

as a binary classification problem [66, 85–92] or a regression problem to predict affin-

ity [4, 93–99].

Similar to structure-based drug design studies [100,101], machine learning method-

ologies can utilize the 3D structure information of a protein-ligand complex to predict

binding affinity [95–97]. Such structure-based methodologies, however, are limited

by the available structural information on the complex as stated in point (ii). Two

dimensional (2D) graph convolutions can also be used to learn molecule representa-

tions [102–104]. However, graph-based methodologies rely on complex and challenging-

to-interpret graph convolutional networks for representation learning [105]. An attrac-

tive alternative is to use a string-based compound representation, which allows the
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application of the recent advances in natural language processing (NLP). The field

of chemical linguistics that brings the chemistry and linguistics domains together has

been growing since its inception in the 1960s [106]. A recent review highlights the

impact of NLP on drug discovery studies [16].

Simplified Molecular Input Line Entry System (SMILES) is a specialised syntax

to represent molecules with an alphabet of over sixty characters. The SMILES repre-

sentation can be used to reconstruct the 2D molecular graph, indicating its potential

for encoding valuable molecular information. SMILES has been shown to perform as

well as 2D representation-based graph convolutional embeddings in chemical property

prediction [102] and drug-target interaction prediction [103]. The SMILES representa-

tion has been successfully used in comparison or search algorithms [107, 108], as well

as for different problems ranging from information retrieval [109] to the prediction of

chemical reaction outcomes [67], and the design of novel scaffolds to expand the chemi-

cal space [110]. Here, our aim is to treat the SMILES representation as a language and

develop a machine learning and NLP based methodology for the task of protein-ligand

binding affinity prediction.

We propose ChemBoost, a novel chemical-language based approach that uses

distributed “chemical word” vectors for protein and/or ligand representation to pre-

dict interaction strength between targets and compounds. ChemBoost views SMILES

strings as documents formed in a chemical language and processes the language units

to create ligand and protein representations for affinity prediction. ChemBoost uses

“SMILESVec” [32], a compound representation technique that utilizes the SMILES

form. Distributed chemical word vectors are learned from a large corpus containing

millions of SMILES strings. The chemical language-based nature of ChemBoost allows

us to take advantage of the abundant textual data to learn chemical representations un-

like structure-based learning algorithms [95–97], which are trained on a limited number

of samples.

In the ChemBoost models, ligands are represented with their SMILESVec vectors.
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We investigate two different approaches for protein representation. The first approach

is the standard approach for protein representation, where proteins are represented

with their sequences. We utilize the Smith-Waterman and ProtVec [33] algorithms

to obtain sequence-driven protein representations. The second approach is a ligand-

centric approach, where proteins are represented with the distributed vectors of their

ligands. Biologically and functionally similar proteins often bind to chemically similar

ligands and ligand-centric protein similarity calculations have been used in clustering

and identifying similar proteins [32, 111–114]. To the best of our knowledge, this is

the first study that investigates the effectiveness of distributed chemical word vectors

and ligand-centric protein representations for protein-ligand binding affinity prediction.

The effect of representing proteins through the chemical words of their known ligands

or only high affinity ligands, as well as combining protein sequence based representation

with ligand-centric representation are also examined.

We compare the ChemBoost models with three state-of-the-art binding affinity

prediction approaches: KronRLS [93], SimBoost [94] and DeepDTA [4], all of which

exploit the protein sequence information explicitly. SimBoost further integrates drug-

target interaction network statistics to increase prediction accuracy. SimBoost and

KronRLS employ traditional machine learning models for prediction, whereas Deep-

DTA is built upon a multi-layered CNN architecture. Thanks to its novel chemical

language based and ligand-centric representations, ChemBoost achieves state-of-the-art

performance using a simple predictor, eXtreme Gradient Boosting (XGBoost) [115].
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4.2. ChemBoost

4.2.1. Datasets

To benchmark the performance of ChemBoost, we use KIBA [116] bioactivity

dataset of proteins from Kinase family and BDB dataset that we extract from the

BindingDB database [117], which contains proteins from different families. To compile

the BDB dataset, BindingDB is filtered based on the following criteria: (i) proteins and

compounds with at least 6 and 3 interactions are kept, respectively, (ii) the experiment

with high affinity is selected, if there are multiple instances of the same protein-ligand

pair, and (iii) only the interactions with Kd values are included, and then converted

into pKd with

pKd = − log10(
Kd

1e9
). (4.1)

BDB dataset comprises about 31K interactions between 490 proteins and 924 com-

pounds. The average number of ligands with known binding affinity values for a pro-

tein is 53.3, and the average number of ligands with strong binding affinity values (i.e.,

pKd value > 7) for a protein is 7.3. The pKd threshold of strong/weak binding was

selected as in the literature [94].

The KIBA dataset comprises KIBA scores for about 118K interactions of 229

proteins and 2111 compounds such that all proteins and compounds have at least 10

interactions [94]. KIBA score is a combination of different bioactivity measurement

sources such as Ki, Kd or IC50 [116]. The average number of ligands with known

binding affinity values for a protein is 516.4, and the average number of ligands with

strong binding affinity values (i.e., KIBA score < 12.1) for a protein is 99.2. Protein

diversity is lower in KIBA than KIBA as it contains kinase proteins only. Figure 4.1

illustrates the distribution of the binding affinity values of the protein-ligand pairs in

BDB and KIBA datasets. We observe a strong peak at pKd = 5 for BDB, since low

affinities are frequently reported as Kd >= 10000 (pKd <= 5).
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Figure 4.1. Distribution of binding affinity values in BDB and KIBA.

4.2.2. Ligand Representation

ChemBoost adopts SMILESVec to represent ligands through chemical language.

As described in Chapter 2.3.3.1, SMILESVec relies on chemical words, which we iden-

tify with k-mer and BPE approaches. We set k to 8, since 8-mers were shown to

outperform other options ranging from 4-mers to 12-mers [32]. BPE algorithm is

trained on approximately 1.7M canonical SMILES strings collected from ChEMBL

database (vChEMBL23), with the vocabulary size of 20K, character coverage of 0.99

and maximum word length of 100 characters. The sentencepiece library in Python

is utilized. In order not to omit the symbols in the rich vocabulary of SMILES strings,

number split and unicode split parameters are set to False.

Having identified the chemical words, we employ Word2Vec algorithm to learn

chemical word embeddings by training the algorithm on vChEMBL23. We use gensim

implementation [118] of Word2Vec with Skip-Gram approach and the size of the vectors

is set as the default value of 100.

Besides the chemical language based vectors, we use molecular access system

(MACCS) keys [62] and Morgan fingerprints [63] to represent the ligands. We use

rdkit [65] to compute both representation vectors and use 166-dimensional MACCS

vectors and 2048-dimensional Morgan fingerprints with radius 2. See Chapter 2.3.5 for

more details on these methods.
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4.2.3. Protein Representation

We represent proteins in a ligand-centric way (Chapter 2.3.3.3), in which the

average of the word embeddings of the chemical words in their known ligands are

used to construct the protein vector [32] . The chemical words that are used to build

the SMILESVec representation are either 8-mers or BPE-based words. Consequently,

representation of proteins change according to the word identification technique that

is used to describe SMILESVec.

We build on the vanilla ligand-centric protein representation by introducing new

ligand selection approaches. In addition to the original approach, in which all of the

protein’s known ligands in the training set are used to represent a protein, we investigate

using only protein’s high affinity ligands in the training set, and utilizing a universal

high affinity ligand database.

In the first approach we introduce, only the chemical words of the high affinity

(in other words strong binding) ligands in the training are used to represent a protein.

Here, the intuition is that high affinity ligands of a protein might be more informative

about its binding characteristics [119]. For BDB, the pKd value of 7 is selected as the

threshold to divide the ligands into strong-binding and weak-binding classes (pKd >

7 strong binding), whereas for the KIBA dataset, KIBA score of 12.1 is set as the

threshold [94]. If there is no high affinity chemical of a protein in the training set,

all known ligands are used. We use only the ligands in the training set for protein

representation to prevent information leak from test set.

In the other ligand selection approach we propose, BindingDB is filtered to create

a database of high affinity protein-chemical pairs. BindingDB includes experiments

whose affinity scores reported in one or more of Ki, IC50, EC50 units. A threshold of

100 is selected for each unit to classify experiments as weak and strong binding. Finally,

the protein-ligand pairs in the training set and test sets of the models are removed to

prevent data leak. The integration of a universal database enriches the protein vectors
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with more ligand information and also reduces the number of protein with no known

strong binding ligand.

In addition to the proposed ligand-centric protein representation framework, we

represent proteins with two existing methods, ProtVec and Smith-Waterman (SW),

which we describe in Chapter 2.3.3.2 and Chapter 2.3.5, respectively.

4.2.4. Benchmark Models

We compare the methods presented here with three state of the art DTA pre-

diction models. We adopt Kronecker-Regularized Least Squares (KronRLS) algorithm

that predicts binding affinity while representing both proteins and ligands with their

pairwise similarity score matrices [93]. In order to compute the similarity between pro-

teins and between compounds, Smith Waterman algorithm (SW) and PubChem struc-

ture clustering tool (http://pubchem.ncbi.nlm.nih.gov) are utilized, respectively.

Second, we employ SimBoost, which is a gradient boosting machine based method

that depends on feature engineering of ligands and proteins utilizing information such

as similarity and network-inferred statistics [94]. Last, we compare our results with

DeepDTA, which is a multi-layered Convolutional Neural Network (CNN) [4] based

prediction model. The SMILES representations of ligands and sequences of proteins

are provided as inputs to DeepDTA to predict the binding affinity. All of these baselines

utilize protein sequence features explicitly.

4.2.5. Evaluation

As protein-chemical binding affinity prediction is a regression problem, the per-

formance of the presented models are measured by calculating the Concordance Index

(CI), Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and R2 metrics.
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CI [120] is described as

CI =
1

Z

∑
δx>δy

h(bx − by) (4.2)

where

bx is the prediction value for the larger affinity δx

by is the prediction value for the smaller affinity δy

Z is a normalization constant

h(m) is the step function, which is equal to 0 if m < 0, 0.5 if m = 0, and 1 if

m > 0 [93].

MSE measures the average squared difference between the predicted and the

actual values with

MSE =
1

n

n∑
k=1

(pk − yk)2 (4.3)

where

n is the number of samples

pk is the predicted value for kth sample

yk is the actual value for kth sample.

We also compute RMSE by taking the square root of Equation (4.3) in order to

reduce MSE to the order of the actual affinity scores.

Finally, we compute R2 which measures how much of the variance in the actual

values is explained by the predictions. We calculate R2 using

R2 = 1−
∑n

k=1 (yk − pk)2∑n
k=1 (yk − ȳ)2

(4.4)

where
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pk is the predicted value for kth sample

yk is the actual value for kth sample

ȳ is the mean of the actual values.

4.2.6. Experimental Settings

We use the same training and test folds that are used in DeepDTA work [4], but

use ChEMBL canonical SMILES in ligand representation of the ligands to comply with

SMILESVec vectors. In these folds, both datasets are randomly divided into six equal

parts and one part is separated as the independent test set. The remaining folds are

used to determine the model hyper-parameters, such as learning rate and number of

trees via five-fold cross validation. The hyper-parameter combination with which we

obtain the best MSE value based on the cross-validation results over the training set is

selected to model the test set. To report the performance of the models on the test set,

we first train the models on 4 folds of the training set 5 times by masking a different

fold at each time. Then, we evaluate each of the 5 models on the test set and report

their average performance values alongside the standard deviation.

4.3. Results

We introduced ChemBoost, a novel protein-ligand binding affinity prediction ap-

proach in which both ligands and chemicals are represented through distributed chem-

ical word vectors. We now investigate chemical language based biomolecule represen-

tations for affinity prediction. We further compare the impact of three approaches in

ligand-centric representation of proteins: (i) using all ligands with a reported affin-

ity, (ii) using only strong binding (SB) ligands and (iii) utilizing an additional, non-

redundant high affinity protein-ligand interaction database. SW and ProtVec are used

as alternative protein representations to assess the effectiveness of ligand-centric protein

representation. In addition, the effect of the chemical word discovery approach is ex-

amined by comparing 8-mers with BPE words. We evaluate different predictive models

on BDB and KIBA using CI, MSE, RMSE and R2 as metrics and compare ChemBoost
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models with three state of the art affinity prediction models, two traditional machine

learning based systems, namely KronRLS and SimBoost, and a deep-learning based

approach, DeepDTA. We report the significance levels of comparisons using paired

t-test for models with close scores.

4.3.1. Investigation of Chemical Language Based Biomolecule Representa-

tions

In this subsection, we inspect the effectiveness of chemical language based ligand

and protein representations in the affinity prediction problem. We train each model

five times with different folds of the training set. We measure the performance on

the test set for each trained model and report the average results on BDB and KIBA

datasets utilizing XGBoost as the prediction algorithm for all cases. We compute CI,

MSE, (Table 4.1 and Table 4.2) RMSE, and R2 scores (Table 4.3 and Table 4.4), but

compare the models based only on CI and MSE for readability, because MSE is highly

parallel with RMSE and R2.

Ligand representation. We first test the impact of ligand representation by

creating two baselines. Model (S1) does not utilize any ligand information, whereas

Model (R1) represents each ligand with a 100-dimensional random vector sampled

from a uniform distribution over [0, 1). In both models, proteins are represented with

SW vectors. Model (R1) outperforms Model (S1) on both datasets, with respect to

both evaluation metrics, emphasizing the requirement for ligand information to build

a successful predictive model. As each random vector is associated with a particular

ligand, their success in prediction performance can be linked to ligand-specificity. We

suggest that these random vectors encode the identity of the ligands and thus, improve

model performance, even though the content of the representation vector is pure noise.
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Table 4.1. CI and MSE scores of ChemBoost models on BDB.

Name
Protein

Representation

Ligand

Representation
CI MSE

Model (S1) SW - 0.687 (0.002) 1.037 (0.006)

Model (S2) - SMILESVec (8mer) 0.773 (0.002) 0.876 (0.005)

Model (R1) SW Random 0.859 (0.002) 0.512 (0.005)

Model (R2) Random SMILESVec (8mer) 0.849 (0.002) 0.537 (0.009)

Model (F1) SW MACCS 0.811 (0.003) 0.817 (0.016)

Model (F2) SW Morgan 0.819 (0.002) 0.767 (0.016)

Model (1) SW SMILESVec (8mer) 0.873 (0.001) 0.439 (0.008)

Model (2) ProtVec SMILESVec (8mer) 0.854 (0.002) 0.512 (0.004)

Model (3) ProtVec SMILESVec (BPE) 0.849 (0.002) 0.548 (0.008)

Model (4)
SMILESVec

(all, 8mer)
SMILESVec (8mer) 0.847 (0.001) 0.524 (0.006)

Model (5)
SMILESVec

(SB, 8mer)
SMILESVec (8mer) 0.845 (0.002) 0.478 (0.005)

Model (6)
SMILESVec

(SB, BPE)
SMILESVec (BPE) 0.842 (0.001) 0.497 (0.007)

Model (7)

SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.856 (0.001) 0.454 (0.007)

Model (8)

SW &

SMILESVec

(SB, 8mer)

SMILESVec (8mer) 0.873 (0.001) 0.420 (0.004)

Model (9)

SW &

SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.871 (0.002) 0.420 (0.007)
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Table 4.2. CI and MSE scores of ChemBoost models on KIBA.

Name
Protein

Representation

Ligand

Representation
CI MSE

Model (S1) SW - 0.683 (0.000) 0.585 (0.000)

Model (S2) - SMILESVec (8mer) 0.699 (0.000) 0.425 (0.001)

Model (R1) SW Random 0.803 (0.001) 0.276 (0.002)

Model (R2) Random SMILESVec (8mer) 0.815 (0.001) 0.258 (0.002)

Model (F1) SW MACCS 0.829 (0.001) 0.222 (0.002)

Model (F2) SW Morgan 0.847 (0.001) 0.186 (0.002)

Model (1) SW SMILESVec (8mer) 0.837 (0.001) 0.203 (0.002)

Model (2) ProtVec SMILESVec (8mer) 0.818 (0.001) 0.244 (0.001)

Model (3) ProtVec SMILESVec (BPE) 0.814 (0.001) 0.252 (0.002)

Model (4)
SMILESVec

(all, 8mer)
SMILESVec (8mer) 0.823 (0.001) 0.243 (0.003)

Model (5)
SMILESVec

(SB, 8mer)
SMILESVec (8mer) 0.829 (0.001) 0.221 (0.001)

Model (6)
SMILESVec

(SB, BPE)
SMILESVec (BPE) 0.825 (0.001) 0.227 (0.001)

Model (7)

SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.829 (0.001) 0.223 (0.001)

Model (8)

SW &

SMILESVec

(SB, 8mer)

SMILESVec (8mer) 0.837 (0.001) 0.206 (0.001)

Model (9)

SW &

SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.836 (0.001) 0.207 (0.002)
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Table 4.3. RMSE and R2 scores of ChemBoost models on BDB.

Name
Protein

Representation

Ligand

Representation
RMSE R2

Model (S1) SW - 1.018 (0.003) 0.265 (0.004)

Model (S2) - SMILESVec (8mer) 0.936 (0.002) 0.379 (0.003)

Model (R1) SW Random 0.716 (0.003) 0.637 (0.003)

Model (R2) Random SMILESVec (8mer) 0.733 (0.006) 0.619 (0.006)

Model (F1) SW MACCS 0.904 (0.009) 0.421 (0.012)

Model (F2) SW Morgan 0.874 (0.009) 0.458 (0.011)

Model (1) SW SMILESVec (8mer) 0.662 (0.006) 0.689 (0.006)

Model (2) ProtVec SMILESVec (8mer) 0.716 (0.003) 0.637 (0.003)

Model (3) ProtVec SMILESVec (BPE) 0.740 (0.006) 0.611 (0.006)

Model (4)
SMILESVec

(all, 8mer)
SMILESVec (8mer) 0.724 (0.004) 0.628 (0.004)

Model (5)
SMILESVec

(SB, 8mer)
SMILESVec (8mer) 0.692 (0.004) 0.661 (0.003)

Model (6)
SMILESVec

(SB, BPE)
SMILESVec (BPE) 0.705 (0.005) 0.647 (0.005)

Model (7)

SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.674 (0.006) 0.678 (0.005)

Model (8)
SW & SMILESVec

(SB, 8mer)
SMILESVec (8mer) 0.648 (0.003) 0.702 (0.003)

Model (9)

SW & SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.648 (0.005) 0.702 (0.005)
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Table 4.4. RMSE and R2 scores of ChemBoost models on KIBA.

Name
Protein

Representation

Ligand

Representation
RMSE R2

Model (S1) SW - 0.765 (0.000) 0.139 (0.001)

Model (S2) - SMILESVec (8mer) 0.652 (0.000) 0.374 (0.001)

Model (R1) SW Random 0.525 (0.002) 0.594 (0.003)

Model (R2) Random SMILESVec (8mer) 0.508 (0.002) 0.621 (0.002)

Model (F1) SW MACCS 0.471 (0.002) 0.674 (0.002)

Model (F2) SW Morgan 0.431 (0.002) 0.727 (0.003)

Model (1) SW SMILESVec (8mer) 0.450 (0.002) 0.702 (0.003)

Model (2) ProtVec SMILESVec (8mer) 0.494 (0.001) 0.641 (0.001)

Model (3) ProtVec SMILESVec (BPE) 0.502 (0.002) 0.630 (0.003)

Model (4)
SMILESVec

(all, 8mer)
SMILESVec (8mer) 0.493 (0.003) 0.642 (0.004)

Model (5)
SMILESVec

(SB, 8mer)
SMILESVec (8mer) 0.470 (0.001) 0.675 (0.001)

Model (6)
SMILESVec

(SB, BPE)
SMILESVec (BPE) 0.477 (0.002) 0.665 (0.002)

Model (7)

SMILESVec

(BindingDB, SB,

8mer)

SMILESVec (8mer) 0.472 (0.001) 0.672 (0.001)

Model (8)
SW & SMILESVec

(SB, 8mer)
SMILESVec (8mer) 0.454 (0.002) 0.697 (0.002)

Model (9)

SW & SMILESVec

(BindingDB,

SB, 8mer)

SMILESVec (8mer) 0.455 (0.002) 0.696 (0.002)

We then assess the performance of MACCS keys by comparing Model (R1) and

Model (F1). Both models represent proteins with SW vectors, whereas Model (R1) uses
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random vectors for ligand representation and Model (F1) uses MACCS keys. Model

(F1) outperforms Model (R1) on KIBA in terms of both MSE and CI, whereas on

BDB, Model (R1) achieves better scores. We then evaluate the effectiveness of Mor-

gan fingerprints by comparing Model (F1) and Model (F2) and observe that Morgan

fingerprints are superior to MACCS keys for affinity prediction, since they yield higher

scores on both datasets. However, similar to MACCS keys, the performance of Morgan

fingerprints is lower than random vectors on BDB, suggesting that fingerprints are not

sufficiently distinctive for the ligands in BDB.

In order to analyze the performance of distributed chemical word vectors based

approach in ligand representation, we compare Model (1) and Model (F2). While both

models represent proteins using SW, Model (1) represents ligands with SMILESVec

and Model (F2) represents ligands with Morgan fingerprints. Morgan vectors yield the

best performance among all models on KIBA in terms of both metrics, although they

underperformed random vectors on BDB. SMILESVecs, on the other hand, achieve high

performance on both datasets, suggesting that they are more consistent representations

for the binding affinity prediction task.

We design Models (2), (3), (5) and (6) to investigate the effect of different chem-

ical word discovery techniques on prediction performance. Models (2) and (3) adopt

ProtVec for protein representation, whereas Models (5) and (6) use the average of

chemical word vectors of proteins with high affinity ligands. Comparing Model (2)

with (3) and Model (5) with (6), we observe that 8-mer based representations achieves

higher performance than their BPE counterparts, indicating that 8-mers are stronger

language units for the affinity prediction task. Consequently, we decide to utilize 8-mers

as chemical words in the remaining experiments.

Protein representation. We design two models to show the impact of protein

representation on the affinity prediction problem. We construct Model (S2) which does

not utilize any protein information and Model (R2) that represents each protein with
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a random vector that is sampled from a uniform distribution over [0, 1). Both models

represent the ligands with SMILESVecs. Model (R2) outperforms Model (S2) with

respect to both MSE and CI, on both datasets. Similar to our experiment with ligand

representation, we suggest that random vectors are interpreted as unique fingerprints

for each protein by the prediction algorithm. This information boosts the performance

of the system, validating the necessity of protein information for affinity prediction

modeling.

To test the effectiveness of different protein representation techniques, we first

compare protein-specific random vectors (Model (R2)) with SW (Model (1)) in which

both models describe ligands with SMILESVecs. The use of SW representation im-

proves prediction performance on both datasets for both metrics, demonstrating the

advantage of SW vectors over random vectors. Then we compare SW (Model (1))

with ProtVec (Model (2)) in which SW outperforms ProtVec on both datasets for both

evaluation metrics. This result shows that SW, which includes sequence similarity

and amino acid physicochemical information, is a better alternative for representing

proteins in affinity prediction, when combined with SMILESVec.

Although each binding affinity measurement provides a valuable data point for

learning algorithms, most often, the mechanism of bimolecular interaction is accurately

described by high affinity interactions [119]. Therefore, to verify that the contribution

of high affinity ligands is more informative for ligand-centric protein representation,

we compare the use of chemical words of all ligands with a reported affinity value

(Model (4)) to the use of chemical words of high affinity ligands (Model (5)). In

our experiments, all known ligands of a protein are the ones for which the affinity

value to the protein is reported. In both cases, 8-mer based SMILESVecs are used to

represent the ligands. The results illustrate that using high affinity ligands in protein

representation outperforms the model in which all known ligands are utilized in terms of

all metrics on both datasets. These results emphasize that considering strong binding

ligands in protein representation improves the prediction performance, motivating us

to construct Model (7).
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In Model (7), the number of high affinity ligands incorporated in protein rep-

resentation is increased by including high affinity protein-ligand pairs obtained from

different experimental measurements in BindingDB (e.g. Ki, IC50 etc.). These pairs

are used in the protein representation in addition to the ones that are already in the

training set. We compare Model (7) with Model (5) using a paired t-test at 99% signif-

icance and observe significant improvement in MSE and CI on BDB dataset, whereas

the same test indicates that their performance are on par with each other on KIBA. The

improvement for BDB may be due to the higher increase in the number of high affinity

ligands of a protein. The number of strong binding ligands of a protein increases 17.1

times in BDB but only 2.3 times in KIBA with the inclusion of the additional data.

On the other hand, Model (1), which utilizes SW in protein representation, out-

performs Model (7) with respect to both metrics for both datasets, suggesting the

merit of SW over ligand-centric protein representation. Then, we construct Model (8)

and Model (9) where we concatenate SW vectors with ligand-centric representation to

incorporate amino-acid sequence and ligand binding information. A paired t-test with

99% confidence does not indicate a distinction between Models (8) and (9), despite

Model (9) utilizing an external database of high affinity protein-ligand pairs.

Model (8), however, provides an improvement over Model (6) and Model (9)

outperforms Model (7), emphasizing that integration of SW brings in complementary

information to ligand-centric representation on both datasets. Last, we compare the

hybrid protein representation (Model (9)) with SW (Model (1)). Though the models

perform similarly in terms of CI, MSE indicates a distinction between two representa-

tions. On BDB dataset, concatenating SW and ligand-centric vectors (Model (9)) yields

a better MSE than Model (1) with 95% confidence, whereas on KIBA, the concate-

nation results in a performance decrease. This can be due to higher physicochemical

similarity of Kinases in KIBA, compared to the heterogeneous structure of BDB.

We conclude that both protein and ligand information is indispensable for pre-

dicting binding affinities of protein-ligand pairs, and distributed chemical word vectors
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(SMILESVecs) can be successfully utilized in representing these biomolecular entities.

Distributed vectors for ligand representation combined with SW or ligand-centric pro-

tein vectors capture the necessary information for the targets. The results indicate

that the combination of strong affinity ligands-based protein representation with SW

can improve the predictive performance for datasets with high protein diversity (i.e.

proteins from different families). On the other hand, SW vectors are suitable for pro-

tein representation in datasets with low protein diversity (i.e. proteins from the same

family). We also suggest that 8-mers can be used as chemical words in affinity predic-

tion, since it is a simple and effective technique that performs better than the more

complicated BPE approach.

4.3.2. Comparing ChemBoost with the State of the Art Models

We compare one of the best ChemBoost models (Model (9)) with three state of

the art drug-target affinity prediction models: (i) KronRLS [93], a regularized linear

regression model that uses SW similarity of protein sequences and PubChem struc-

ture similarity of ligands, (ii) SimBoost [94], a gradient boosting tree based prediction

algorithm that utilizes network statistics of protein-ligand interactions, in addition to

the similarity scores used by KronRLS, (iii) DeepDTA [4], a multi-layered CNN that

learns features through raw protein sequences and SMILES strings. Table 4.5 reports

the metrics for these models and ChemBoost. Here ChemBoost refers to Model (9) in

Table 4.1 and describes ligands with SMILESVec and proteins by concatenating SW

and ligand-centric representations.
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Table 4.5. CI, MSE, RMSE, and R2 scores of the state of the art affinity prediction

models and ChemBoost on BDB and KIBA.

Model CI MSE RMSE R2

B
D

B

KronRLS 0.815 (0.003) 0.939 (0.005) 0.969 (0.002) 0.334 (0.003)

SimBoost 0.855 (0.004) 0.501 (0.026) 0.707 (0.018) 0.645 (0.018)

DeepDTA 0.863 (0.007) 0.397 (0.011) 0.630 (0.009) 0.719 (0.008)

ChemBoost 0.871 (0.002) 0.420 (0.007) 0.648 (0.005) 0.702 (0.005)

K
IB

A

KronRLS 0.785 (0.001) 0.411 (0.001) 0.641 (0.001) 0.395 (0.002)

SimBoost 0.836 (0.001) 0.224 (0.001) 0.473 (0.001) 0.671 (0.001)

DeepDTA 0.846 (0.002) 0.215 (0.005) 0.464 (0.006) 0.683 (0.008)

ChemBoost 0.836 (0.001) 0.207 (0.002) 0.455 (0.002) 0.696 (0.002)

SimBoost performs better than KronRLS in terms of all evaluation metrics on

both datasets. This is an expected outcome given that SimBoost relies on network-

based features as well as the features KronRLS utilized, namely the SW and PubChem

similarity scores. ChemBoost, on the other hand, obtains either similar to or higher

scores than SimBoost on both datasets. Although both ChemBoost and SimBoost

depend on the XGBoost algorithm and utilize SW vectors for protein representation,

ChemBoost incorporates chemical word vectors for both ligand and protein represen-

tations, indicating the effectiveness of the information they bring in. On BDB dataset,

DeepDTA obtains a better MSE than ChemBoost, but a similar CI (significance level

95%), whereas on KIBA, ChemBoost achieves a better MSE but worse CI than Deep-

DTA with the 99% significance level, indicating their prediction strengths are compa-

rable. Hence, we suggest that ChemBoost achieves state-of-the-art level performance

by exploiting distributed chemical word vectors and protein sequence information.

4.3.3. ChemBoost can Capture Functional Similarity of Proteins with Low

Sequence Similarity

We investigate different ChemBoost models to observe the impact of using amino-

acid sequence based protein representation in comparison to ligand-centric protein
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representation in predictive performance. Our focus is on proteins with low sequence

similarity that bind to similar ligands. This case, where unrelated proteins bind to

identical or similar ligands is complicated even in 3D space and no clear patterns emerge

[121]. However, ligand binding is known to capture mechanistic information about the

protein [112, 119] and a ligand centric approach is expected to boost performance in

the protein-ligand interaction prediction task, especially for proteins of low sequence

similarity.

Therefore, we investigate the performance of ChemBoost models as a function

of protein sequence similarity. For each protein-ligand pair (P-L) in the test set, we

compute the normalized SW similarity score (see Chapter 2.3.5 for more details) of

P to the other interacting proteins of L in the training set. Then, we calculate the

maximum score, which we refer to as Maximum Sequence Similarity (MSSPL), for a

P-L pair. We formulate MSSPLL as

MSSPL = max{SW (P, p)∀p ∈ P (L)} (4.5)

where P (L) is the set of proteins with a reported affinity with ligand L in the training

set.

We divide the P-L pairs in the test set into 4 categories with respect to their MSS,

such that each category comprises approximately the same number of interactions

(around 5000 P-L pairs for KIBA and 1250 for BDB). Here, an interaction pair P-L

being in a high MSS category, such as (60.00, 100], indicates that the models already

observed an interaction of ligand L with a protein that is sequence-wise similar to P.

Likewise, we can consider low MSS pairs in test set as pairs with no similar interactions

in the training set.
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Figure 4.2. Test set performance of ChemBoost and DeepDTA on BDB (left) and

KIBA (right) with respect to MSS of interactions.

For each MSS category, we compute MSE value with Model (1), Model (7), Model

(9) of ChemBoost and DeepDTA. All ChemBoost models use SMILESVec to describe

ligands. For protein representation, however, Model (1) utilizes SW vectors, Model

(7) uses a strictly ligand-centric approach with BindingDB integration and Model (9)

combines both. Last, DeepDTA uses raw protein and ligand sequences and shown as the

best performing model among the existing benchmarks in Chapter 4.3.2. We repeate

the computations 5 times for each model using different training fold configurations

and Figure 4.2 illustrates the mean and standard deviation of MSE scores for the given

MSS intervals for BDB (left) and KIBA (right) datasets.

For BDB, Model (1) that uses only SW vectors performs significantly worse than

all three models (paired t-test, significance=95%) in the lowest MSS category, propos-

ing that SW vectors are insufficient to capture functional similarity when sequence

similarity is low. The same statistical test did not suggest a distinction for KIBA. On

the other hand, we observe a clear performance increase of Model (1) in the highest

MSS category for both datasets.

Unlike Model (1), Model (7) is unaware of protein sequence information since

it depends on SMILESVecs based ligand-centric representations to describe proteins.

Model (7) is on par with the rest of the models in the lowest MSS category of both

datasets and second lowest category of KIBA, although its overall performance is signif-
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icantly worse than all. This highlights the merit of using ligand-centric representations

when functional similarity cannot be captured from protein sequence.

Model (9) combines SW with chemical language based ligand-centric represen-

tations and performs comparably to DeepDTA as shown in Section Chapter 4.3.2.

Here, we observe that Model (9) achieves relatively consistent scores across all MSS

categories. For all categories except the highest MSS category of KIBA, Model (9) is

on par with (99% significance) the best model of the category. On the other hand,

DeepDTA is negatively affected by low sequence similarity and presents an unstable

prediction performance with higher standard deviation. These results show that, Model

(9) can exploit the advantages of both SW and ligand-centric protein representations

and is more consistent than DeepDTA.

In conclusion, we show that the information encoded through sequence similarity

and ligand-centric approach emphasizes different characteristics in protein represen-

tation. While ligand-centric models are able to capture functional similarity without

using protein sequence information, SW-based models can exploit high sequence simi-

larity. Combining these two complementary approaches, ChemBoost achieves state of

the art performance with robustness to the changes in protein sequence similarity.

4.3.4. Evaluating ChemBoost on Novel Biomolecules

In order to estimate the performance of ChemBoost for novel proteins and lig-

ands, we perform experiments using new train test splits. We randomly group the

proteins and ligands in BDB and KIBA into two categories as known and unknown in

order to create one training split and four test splits, per dataset. For BDB and KIBA,

respectively, we divide the interactions of the molecules in the known group into two

sets and obtain the training set and the first test set (warm). Afterwards, we identify

the interactions of the known proteins with unknown ligands (cold ligand), unknown

proteins with known ligands (cold protein), and unknown proteins with unknown lig-

ands to form the second, third, and fourth test sets, respectively [122].
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Table 4.6. Performance of three ChemBoost models and DeepDTA on warm and cold

ligand test sets of BDB and KIBA.

Warm Cold Ligand

Model MSE CI MSE CI

B
D

B

Model (1) 0.373 (0.016) 0.885 (0.010) 1.178 (0.079) 0.736 (0.036)

Model (7) 0.404 (0.010) 0.863 (0.010) 1.185 (0.143) 0.700 (0.044)

Model (9) 0.361 (0.010) 0.880 (0.008) 1.157 (0.285) 0.730 (0.044)

DeepDTA 0.345 (0.026) 0.879 (0.007) 1.350 (0.306) 0.672 (0.024)

K
IB

A

Model (1) 0.185 (0.010) 0.845 (0.006) 0.450 (0.040) 0.732 (0.009)

Model (7) 0.202 (0.008) 0.839 (0.005) 0.445 (0.038) 0.736 (0.009)

Model (9) 0.183 (0.006) 0.847 (0.005) 0.442 (0.034) 0.735 (0.011)

DeepDTA 0.199 (0.014) 0.853 (0.005) 0.456 (0.068) 0.754 (0.012)

We train Model (1), Model (7), and Model (9), on the new training sets and test

them on each test set. Here, the cold protein representation is especially challenging

for Model (7) and Model (9), since they utilize the high affinity ligands of proteins for

protein representation, but the proteins are absent in the training set. We alleviate this

problem by using the ligand-centric vector of the sequence-wise most similar (based on

3-mer based Jaccard similarity) protein in the training set to compute ligand-centric

vectors for cold proteins. We also evaluate the performance of DeepDTA as a strong

benchmark using the same train-test configuration. We repeat the random splitting

and model training 5 times and report the results in Table 4.6 and Table 4.7, for both

datasets.

For the warm test set, we observe that the ranking of the models is similar to

our previous results, validating that the new experimental setup is also reliable. On

the other hand, the results for cold ligand split does not indicate an apparent ordering

of the models, suggesting that SMILESVec representations, learned from an external

corpus, are as good as the CNN-based representations learned from the training sets

to represent novel ligands.
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Table 4.7. Performance of three ChemBoost models and DeepDTA on the cold

protein and cold both test sets of BDB and KIBA.

Cold Protein Cold

Model MSE CI MSE CI

B
D

B

Model (1) 0.720 (0.094) 0.799 (0.012) 1.393 (0.145) 0.657 (0.044)

Model (7) 1.156 (0.251) 0.749 (0.023) 1.576 (0.185) 0.596 (0.055)

Model (9) 0.800 (0.145) 0.786 (0.023) 1.358 (0.324) 0.665 (0.053)

DeepDTA 0.810 (0.147) 0.778 (0.015) 1.522 (0.300) 0.614 (0.039)

K
IB

A

Model (1) 0.298 (0.024) 0.762 (0.031) 0.588 (0.058) 0.646 (0.043)

Model (7) 0.453 (0.051) 0.734 (0.018) 0.667 (0.060) 0.638 (0.027)

Model (9) 0.340 (0.011) 0.748 (0.021) 0.614 (0.047) 0.640 (0.033)

DeepDTA 0.400 (0.054) 0.747 (0.020) 0.655 (0.080) 0.652 (0.045)

We also analyze the results on the cold protein split and observe that Model

(1) and Model (9), which utilize SW vectors for protein representation, obtain higher

results than Model (7). This shows that SW vectors are more robust to represent novel

proteins, compared to ligand-centric representations. We then analyze the scores on

the cold split and observe that all models perform worse than the first three test sets.

This indicates that the interactions where the protein and ligand are both novel are

challenging for all affinity prediction models.
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5. DEBIASEDDTA: MODEL DEBIASING TO BOOST

DRUG-TARGET AFFINITY PREDICTION

5.1. Introduction

The first step toward drug discovery is to identify high affinity protein-chemical

pairs. However, the number of possible protein-chemical combinations makes this task

a “needle in the haystack” problem (∼560K proteins in UniProt [30] and ∼2.1M chem-

icals in ChEMBL [84]). This is where drug-target affinity (DTA) prediction models

come into play; they can rapidly identify high-affinity protein-chemical pairs in the

combination space after learning generalizable affinity prediction rules from large in-

teraction datasets.

The interaction datasets report affinity measurements for millions of protein-

chemical pairs and stand as invaluable resources to learn rules of affinity prediction.

However, they also contain spurious patterns that can misguide the learning [123–127].

For instance, a single atom may be separating actives and inactives of a target [128]

and the prediction models can learn to predict interaction strength through that atom

exclusively, instead of learning generalizable affinity prediction rules. Consequently,

models struggle to estimate the binding affinity between unseen biomolecules, for which

the learned shortcuts are unavailable [70, 126, 129–131]. These dataset shortcuts are

the dataset biases and form a major problem to discover drugs for rare diseases or to

identify novel chemical moieties to which proteins have not yet acquired resistance.

To the best of our knowledge, there is no study with a focus on boosting drug-

target affinity prediction on novel biomolecules. Recent works studied the generalizabil-

ity problem in a similar task, drug-target interaction prediction. They focused on the

datasets and designed train-test splits with dissimilar biomolecules so that the training

set biases are less rewarding on the test set [124, 130]. However, counter to the aim,

these “dataset-oriented” approaches introduced the risk of degrading model generaliz-
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ability and inaccurate estimation of dissimilar test set performance [132]. Furthermore,

their use in the affinity prediction task would require non-trivial adaptations, as they

exploit the two-class structure (active or inactive) in the drug-target interaction task.

An alternative perspective to cope with biases and improve model generalizabil-

ity is to focus on the prediction models instead of datasets. This “model-oriented”

perspective is free from the limitations of the task and has been recently successfully

used in natural language processing [133–139], computer vision [140, 141], as well as

for structure-based virtual screening [127]. Unfortunately, the impact of the model-

oriented perspective on computational drug discovery was limited by the number of

available 3D structures [127].

In this chapter, we propose DebiasedDTA, a novel model training framework

to address dataset biases and boost the generalizability of DTA prediction models.

DebiasedDTA adopts the model-oriented perspective and, unlike the dataset-oriented

approaches proposed for drug-target interaction prediction, it is applicable to datasets

with continuous and discrete labels without requiring modifications. In addition, De-

biasedDTA can be used to debias DTA prediction models with any biomolecule repre-

sentation and finds a wider application range than 3D-structure based approaches.

DebiasedDTA ensembles a “guide” and a “predictor” to train debiased DTA

prediction models. The guide quantifies a particular type of training set bias and

prepares a debiasing roadmap for the predictor. The predictor utilizes the roadmap

in order to adapt the sample weights during training to avoid biases and to achieve

higher generalizability on novel biomolecules.

We test DebiasedDTA with two guides on different bias sources and with three

predictors to evaluate across biomolecule representations. Experiments on two datasets

and ten test sets show that the proposed approach is robust to different bias sources

and can boost prediction performance of DTA models with different drug-target repre-

sentations. Noteworthy, the improvement is not only observed for novel biomolecules



54

but also for the seen ones.

DebiasedDTA is a novel approach that boosts the generalizability of DTA pre-

diction models. Using a model-oriented perspective and a biomolecule representation

independent sample weight adaptation strategy, DebiasedDTA can be adopted to en-

hance the prediction performance of any DTA prediction model that allows sample

weighting.

5.2. DebiasedDTA

DebiasedDTA is a model debiasing framework to boost drug-target affinity pre-

diction on novel biomolecules and consists of two DTA prediction models, the guide and

the predictor. The guide aims to identify dataset biases only, and thus uses biomolecule

representations that target a specific bias source in the dataset. When the guide is

trained on the training set, it prepares a training roadmap for the predictor and the

predictor follows the roadmap to drive its training away from dataset biases; towards

generalizable information. The debiased model is used standalone to predict the affinity

between target protein-chemical pairs. Figure 5.1 illustrates the DebiasedDTA training

framework.
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Figure 5.1. DebiasedDTA.

5.2.1. The Guide

The guides in DebiasedDTA are designed to learn merely dataset biases and

should have limited learning capacity. So, we design two weak learners with simple

biomolecule representations to identify different bias sources: an identifier-based model

(ID-DTA) and a biomolecule word-based model (BoW-DTA). ID-DTA is motivated by

the fact that mere use of random biomolecule identifiers can produce high-achieving

models for similar test sets [70], and thus, can be a strong bias source. ID-DTA

featurizes the interactions by concatenating the one-hot encoded vectors of chemicals

and proteins. BoW-DTA, on the other hand, bases on natural language inference

studies in which the use of certain words in a sentence produces a strong bias with its

semantic label [142,143]. Here, we investigate a similar bias in biomolecular sequences

and create BoW-DTA. BoW-DTA represents the proteins and chemicals with bag-of-

words vectors and concatenates their vectors to represent the interaction.

BoW-DTA segments the biomolecule sequences into their words via BPE vocab-

ularies and this might create an inconsistency between BoW-DTA and the predictor, if

the predictor uses different vocabularies. So, we fork BoW-DTA and create BoW-LM-

DTA to use with LM-DTA, a predictor introduced in Section 5.2.2, which has different
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vocabularies. BoW-LM-DTA adopts the same word segmentation strategy as LM-DTA

and same vectorization method as BoW-DTA. ID-DTA, BoW-DTA, BoW-LM-DTA use

decision tree regression for prediction, as decision trees have limited learning capacity

and yet are effective to learn spurious patterns.

We adopt 5-fold cross-validation to quantify dataset biases with the guides. First,

we randomly divide the training set into five folds and construct five different mini-

training and mini-validation sets. We train the guide on each mini-training set and

compute the squared errors of its predictions on the corresponding mini-validation

set. One run of cross-validation yields one squared-error measurement per protein-

chemical pair as each pair is placed in the mini-validation set exactly once. In order

to better estimate the performance on each sample, we run the 5-fold cross-validation

10 times and obtain 10 error measurements per sample. We compute the median of

the 10 squared errors and name it as the “importance coefficient” of a protein-chemical

pair. If the affinity of pair is easily predictable via exploiting dataset biases, i.e. the

guide has a low prediction error, then the pair might contain biasing patterns for

DTA prediction models and has a low importance coefficient. Otherwise, the pair is

more likely to contain generalizable information about binding affinity and has a high

importance coefficient. The importance coefficients guide the training of the predictor.

5.2.2. The Predictor

In DebiasedDTA training framework, the predictor is the model to debias and use

on the target protein-chemical pairs. The predictor is free to adopt any biomolecule

representation, but have to be able to weight the training samples during training to

comply with the weight adaptation strategy proposed in DebiasedDTA.

The proposed strategy initializes the training sample weights to 1 and updates

them at each epoch such that the weight of each training sample converges to its im-

portance coefficient at the last epoch. When trained with this strategy, the predictor

attributes more importance to samples with less biasing patterns as the learning con-
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tinues, that is the bias in the model decays over time. Our weight adaptation strategy

is formulated as

~we = (1− e

E
) +~i× e

E
(5.1)

where

we is the vector of training sample weights at epoch e

E is the number of training epochs

~i is the importance coefficients vector.

In Equation (5.1), e/E increases as the training continues, and so does the impact

of ~i on the sample weights. This ensures that the importance of samples with less

biasing patterns is increased towards the end of training.

We implement three drug-target affinity prediction models to observe the per-

formance of DebiasedDTA training framework with different predictors. The first one

is DeepDTA [4], an influential affinity prediction model that uses SMILES strings of

chemicals and amino-acid sequences of proteins to represent biomolecules. DeepDTA

applies three layers of character-level convolutions over input sequences and uses a

three-layered fully-connected neural network for prediction. Here, we slightly modify

DeepDTA and treat chemical groups in the SMILES strings ([OH], [COH], [COOH]

etc.) as a single token, while the original DeepDTA processes these groups as character-

by-character, too.

In the second model, we alter DeepDTA to use biomolecular word-level convo-

lutions, where the words are identified via BPE algorithm and name the resulting

model BPE-DTA. We experiment with BPE vocabulary sizes of 8K, 16K, and 32K for

SMILES and protein sequences and pick the combination of 8K-32K as it yields the

highest scores on datasets of our previous studies [70]. We report the results for all

vocabulary combinations in our GitHub repository for completeness.
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Table 5.1. Average number of proteins, chemicals, and interactions per dataset split.

Fold # Proteins # Chemicals # Interactions

B
D

B

Train 403.4 ± 2.8 740.8 ± 19.46 17988.2 ± 646.45

Validation 355.0 ± 5.62 170.0 ± 11.05 1494.2 ± 56.17

Warm 354.4 ± 3.44 179.6 ± 5.28 1494.4 ± 56.32

Cold Chemical 376.0 ± 4.38 84.8 ± 5.53 2448.8 ± 373.48

Cold Protein 43.6 ± 2.15 264.8 ± 90.17 2360.0 ± 216.02

Cold Both 41.4 ± 3.07 30.8 ± 11.92 274.6 ± 36.19

K
IB

A

Train 200.6 ± 1.36 1834.6 ± 6.41 77264.4 ± 814.94

Validation 193.0 ± 1.67 1467.2 ± 23.75 6650.2 ± 69.53

Warm 192.0 ± 3.16 1476.2 ± 17.7 6650.6 ± 69.1

Cold Chemical 193.0 ± 2.45 140.0 ± 5.59 6810.0 ± 570.52

Cold Protein 14.6 ± 0.8 1296.0 ± 179.09 6259.6 ± 1024.25

Cold Both 14.0 ± 1.1 100.2 ± 14.55 468.6 ± 37.89

Third, we utilize ChemBERTa [61] and ProtBERT [59] to create another drug-

target affinity prediction model, LM-DTA. LM-DTA vectorizes SMILES and amino-

acid sequences via the language models and concatenates their vectors to represent the

interaction. Finally, LM-DTA uses a two-layered fully connected neural network for

prediction.

5.2.3. Experimental Settings

We use BDB and KIBA datasets (Chapter 4.2.1) and create five distinct train-

test setups per dataset to evaluate the models. To create different setups, we cluster

the proteins and chemicals in the datasets and randomly divide the clusters into two

as “warm” and “cold”. We interpret the warm clusters as already known biomolecules

and the cold clusters as novel biomolecules. The dissimilarity of known and novel

biomolecules is enforced by the clustering-based split.

To produce training and test sets from warm and cold biomolecule clusters, we

first filter the interactions between proteins and chemicals in the warm clusters. We
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use these interactions mainly as the training set, but also separate small subsets as

“validation” and “warm test” sets. The validation fold is used to tune model hyper-

parameters, whereas the warm test set is to evaluate models on the interactions between

known biomolecules.

We create two more test sets called “cold chemical” and “cold protein”, where the

cold chemical test set consists of the interactions between chemicals in the cold cluster

and proteins in the warm cluster. This test set is used to measure model performance

in the scenarios in which new drugs are searched to target existing proteins. The cold

protein test set is created similarly and used to evaluate models in the scenarios where

existing drugs are searched to target a novel protein.

Last, we create a “cold both” test set, that is the set of interactions between the

proteins and chemicals in the cold clusters. This is the most challenging test set of

every setup, as both the proteins and the chemicals are unavailable in the training set.

The average number of proteins, chemicals, and interactions in the training and test

sets are reported in Table 5.1, alongside standard deviations.

To tune the hyper-parameters, we train models on the training set of each setup

and measure the performance on the corresponding validation set. We pick the hyper-

parameter combination that scores the lowest validation average mean squared error

to predict the test set interactions.

5.3. Results

5.3.1. DebiasedDTA Boosts Drug-Target Affinity Prediction Models

We debias three DTA prediction models, namely DeepDTA, BPE-DTA, and LM-

DTA with two debiasing approaches, BoW-DTA and ID-DTA, on BDB and KIBA

datasets in DebiasedDTA training framework and report mean CI and R2 on the test

sets in Table 5.2 - Table 5.9, alongside standard deviations in parentheses.
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Table 5.2. Model debiasing results on warm test set of BDB.

The Predictor The Guide CI R2

DeepDTA

None 0.888 (0.009) 0.781 (0.028)

BoW-DTA 0.899 (0.004) 0.799 (0.013)

ID-DTA 0.898 (0.005) 0.804 (0.011)

BPE-DTA

None 0.883 (0.006) 0.774 (0.013)

BoW-DTA 0.888 (0.008) 0.781 (0.016)

ID-DTA 0.891 (0.005) 0.777 (0.019)

LM-DTA

None 0.876 (0.005) 0.745 (0.011)

BoW-DTA 0.882 (0.006) 0.762 (0.003)

ID-DTA 0.883 (0.006) 0.758 (0.003)

BoW-LM-DTA 0.884 (0.009) 0.761 (0.008)

The Overall Gain of Debiasing. We first examine the performance boost due

to DebiasedDTA and compare the best DebiasedDTA score on each setup with no

debiasing score. Table 5.10 reports the percent increase in CI and absolute increase in

R2 thanks to debiasing.

Table 5.10 demonstrates that in 17 of 24 (∼71%) evaluation setups, at least one

model trained in DebiasedDTA outperforms the non-debiased counterpart, highlighting

the strength of the proposed training framework to boost DTA prediction performance.

To show that the performance increase due to DebiasedDTA is statistically significant,

we conduct a one-sided one-sample t-tests with the null hypotheses that mean CI and

R2 gains are 0. The statistical tests result in the rejection of the null hypothesis with p-

value < 0.01, suggesting that DebiasedDTA boosts prediction performance in general,

with 99% significance.



61

Table 5.3. Model debiasing results on cold chemical test set of BDB.

The Predictor The Guide CI R2

DeepDTA

None 0.687 (0.096) 0.039 (0.243)

BoW-DTA 0.698 (0.037) 0.043 (0.108)

ID-DTA 0.693 (0.058) 0.026 (0.109)

BPE-DTA

None 0.657 (0.083) -0.143 (0.202)

BoW-DTA 0.687 (0.082) -0.091 (0.302)

ID-DTA 0.692 (0.065) -0.045 (0.252)

LM-DTA

None 0.688 (0.046) -0.027 (0.175)

BoW-DTA 0.688 (0.069) -0.005 (0.169)

ID-DTA 0.683 (0.067) -0.016 (0.270)

BoW-LM-DTA 0.662 (0.074) -0.096 (0.227)

The improvement in performance due to debiasing is more evident in the cold

test sets of BDB, because BDB is a more diverse dataset than KIBA. Since the BDB

biomolecules are more diverse, the training biases are less applicable to the unknown

test biomolecules and their elimination boosts the DTA prediction performance more

than KIBA.

Table 5.10 also highlights that, training models in DebiasedDTA improves the

performance on every warm test set, though it is mainly designed to boost DTA pre-

diction on novel biomolecules. This shows that eliminating the training set biases helps

models to better represent the known biomolecules, too.

Finally, Table 5.10 shows that debiasing improves the performance of all affinity

prediction models in the study on at least one test setup. This emphasizes that DTA

prediction models are susceptible to dataset biases irrespective of their input repre-

sentation and the proposed training framework is powerful and abstract enough to

eliminate biases in different biomolecule representation settings.
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Table 5.4. Model debiasing results on cold protein test set of BDB.

The Predictor The Guide CI R2

DeepDTA

None 0.759 (0.006) 0.315 (0.049)

BoW-DTA 0.777 (0.014) 0.351 (0.090)

ID-DTA 0.771 (0.007) 0.339 (0.067)

BPE-DTA

None 0.653 (0.060) -0.256 (0.411)

BoW-DTA 0.664 (0.067) -0.386 (0.593)

ID-DTA 0.650 (0.039) -0.689 (0.476)

LM-DTA

None 0.780 (0.016) 0.384 (0.083)

BoW-DTA 0.781 (0.017) 0.386 (0.081)

ID-DTA 0.782 (0.017) 0.387 (0.080)

BoW-LM-DTA 0.784 (0.016) 0.395 (0.078)

Effect of The Guides. We investigate the effect of the guide selection in De-

biasedDTA on the affinity prediction performance by comparing BoW-DTA models

with ID-DTA. For BDB, models debiased with BoW-DTA yield higher scores in both

metrics in 5 cases and ID-DTA based models outperform BoW-DTA 2 times in terms

of CI and R2. 5 out of 12 times, no guide can outscore the other in both metrics.

On KIBA, ID-DTA achieves higher CI and R2 than BoW-DTA in 7 cases whereas

BoW-DTA outperforms ID-DTA 4 times in terms of both metrics. The higher perfor-

mance of ID-DTA on KIBA compared to BDB (7 wins vs. 2 wins) suggests that

biomolecule identities cause more bias in this dataset. We relate this with the fact

that KIBA contains more interactions per biomolecule and thus the models can infer

more information about the biomolecule identities from the training set. In total, both

guides outperform the other 9 times, indicating that the performance of ID-DTA and

BoW-DTA is comparable to each other and both chemical word based and identity

based biases are prevalent in the datasets.
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Table 5.5. Model debiasing results on cold test set of BDB.

The Predictor The Guide CI R2

DeepDTA

None 0.554 (0.047) -0.154 (0.164)

BoW-DTA 0.568 (0.044) -0.092 (0.132)

ID-DTA 0.585 (0.040) -0.128 (0.056)

BPE-DTA

None 0.522 (0.054) -0.442 (0.349)

BoW-DTA 0.568 (0.084) -0.334 (0.347)

ID-DTA 0.565 (0.090) -0.426 (0.231)

LM-DTA

None 0.572 (0.028) -0.226 (0.205)

BoW-DTA 0.563 (0.032) -0.182 (0.136)

ID-DTA 0.581 (0.017) -0.198 (0.174)

BoW-LM-DTA 0.548 (0.033) -0.244 (0.137)

Last, we examine the effect of using the same biomolecule vocabularies in the

guide and predictor by comparing BoW-DTA and BoW-LM-DTA. BoW-LM-DTA,

which uses the same vocabulary as LM-DTA, outperforms BoW-DTA based models on

only 2 of 8 setups in Table 5.2 - Table 5.9, whereas BoW-DTA outscores BoW-LM-DTA

on 4 setups. This shows that the guide and the predictor architectures do not have

to be similar for a cohesive learning. Because, once the guides quantify the dataset

biases, the predictors acquire all the information they need for weight adaptation –

they become indifferent to the underlying computation.

5.3.2. DebiasedDTA Facilitates Out-of-Dataset Generalization

Having observed the strong prediction performance of DebiasedDTA on almost

every test sets of BDB and KIBA, we further challenge the proposed methodology by

out-of-dataset interactions. For out-of-dataset evaluation, we use the models trained

on BDB to predict the affinity of all protein-chemical pairs in KIBA, and vice verse.

Prior to prediction, we remove the SMILES-aminoacid sequence pairs shared between

the datasets to eliminate risk of information leak from test set to training set.
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Table 5.6. Model debiasing results on warm test set of KIBA.

The Predictor The Guide CI R2

DeepDTA

None 0.873 (0.005) 0.756 (0.021)

BoW-DTA 0.888 (0.005) 0.775 (0.019)

ID-DTA 0.887 (0.006) 0.775 (0.018)

BPE-DTA

None 0.881 (0.005) 0.760 (0.016)

BoW-DTA 0.891 (0.003) 0.774 (0.016)

ID-DTA 0.893 (0.003) 0.776 (0.012)

LM-DTA

None 0.858 (0.005) 0.756 (0.012)

BoW-DTA 0.865 (0.005) 0.769 (0.013)

ID-DTA 0.864 (0.006) 0.767 (0.014)

BoW-LM-DTA 0.864 (0.005) 0.768 (0.012)

A remark for cross-evaluation is that BDB and KIBA report the affinity scores

in terms of inconvertible metrics, and thus regression performance of the models on

the cross-dataset cannot be evaluated. We convert both the model predictions and the

affinity scores reported in the datasets to binary classes of strong- and weak-binding

to overcome the inconsistency. pKd > 7 in BDB and KIBA Score > 12.1 in KIBA are

selected as the high-affinity threshold [70].

We utilize the previously trained models to predict cross-dataset interactions and

use F1-score as the evaluation metric since labels are unevenly distributed (Figure 4.1).

Table 5.11 reports the mean and standard deviation of the non-debiased and debiased

models on cross-dataset and also presents in-dataset cold-both test set results as bench-

mark. For brevity, the best performing DebiasedDTA models are shown in Table 5.11

and the statistics for all DebiasedDTA models are presented in GitHub repository.
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Table 5.7. Model debiasing results on cold chemical test set of KIBA.

The Predictor The Guide CI R2

DeepDTA

No Debiasing 0.753 (0.018) 0.337 (0.081)

BoW-DTA 0.761 (0.004) 0.349 (0.046)

ID-DTA 0.761 (0.020) 0.350 (0.101)

BPE-DTA

No Debiasing 0.735 (0.025) 0.274 (0.105)

BoW-DTA 0.736 (0.018) 0.231 (0.093)

ID-DTA 0.736 (0.021) 0.229 (0.099)

LM-DTA

No Debiasing 0.749 (0.012) 0.409 (0.067)

BoW-DTA 0.756 (0.013) 0.435 (0.064)

ID-DTA 0.759 (0.011) 0.436 (0.056)

BoW-LM-DTA 0.758 (0.010) 0.441 (0.055)

Table 5.11 demonstrates that DebiasedDTA achieves a higher mean cross-dataset

F1-score than the non-debiased models, except for the DeepDTA model trained on

KIBA. The difference is the most significant for BPE-DTA trained on BDB, where a

student’s t-test also supports the superiority of DebiasedDTA with 0.99 significance.

These suggest that DebiasedDTA can boost out-of-dataset generalization of the DTA

prediction models.

Table 5.11 also displays the higher generalization capability of LM-DTA, as it

achieves the highest performance on both datasets. We explain this with the pre-trained

biomolecule embeddings in LM-DTA, which encompass information about millions of

biomolecules through language modeling.

Another result in Table 5.11 is that, models trained on BDB perform better on

KIBA than their in-dataset cold-both test sets. This is a consequence of BDB and

KIBA sharing 201 proteins and BDB having a challenging cold-both test set due to

its higher biomolecule diversity. This aligns with the finding in the previous sections

that DebiasedDTA boosted BDB cold-both performance more than KIBA, again due

to higher diversity.
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Table 5.8. Model debiasing results on cold protein test set of KIBA.

The Predictor The Guide CI R2

DeepDTA

None 0.719 (0.029) 0.330 (0.109)

BoW-DTA 0.713 (0.036) 0.308 (0.115)

ID-DTA 0.725 (0.038) 0.333 (0.124)

BPE-DTA

None 0.680 (0.020) 0.185 (0.077)

BoW-DTA 0.679 (0.030) 0.174 (0.103)

ID-DTA 0.684 (0.023) 0.179 (0.060)

LM-DTA

None 0.713 (0.049) 0.366 (0.137)

BoW-DTA 0.717 (0.051) 0.382 (0.139)

ID-DTA 0.718 (0.053) 0.385 (0.143)

BoW-LM-DTA 0.719 (0.054) 0.382 (0.145)

Overall, we observe that DebiasedDTA can boost performance not only on in-

dataset test sets but also on other datasets. We also show that pre-trained language

models can help to predict the affinities of novel biomolecules and the interactions

between biomolecules dissimilar to the training set challenge the models the most.

5.3.3. Demonstrating the Effect of Model Debiasing on Input Features

The experiments show that DebiasedDTA can improve DTA prediction models

with different biomolecule representations on similar and distant test sets. In this

section, we focus on the underlying mechanisms to demonstrate the effect of model

debiasing on input features. The debiasing setup of BoW-DTA and BPE-DTA is

selected, since both models use biomolecule words and this can help to demonstrate

the debiasing on word level. These models are re-trained on an arbitrary setup of BDB

dataset and their predictions on the warm test set are examined.
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Table 5.9. Model debiasing results on cold test set of KIBA.

The Predictor The Guide CI R2

DeepDTA

None 0.654 (0.019) 0.087 (0.099)

BoW-DTA 0.639 (0.028) 0.045 (0.147)

ID-DTA 0.660 (0.034) 0.084 (0.195)

BPE-DTA

None 0.605 (0.033) -0.006 (0.117)

BoW-DTA 0.604 (0.017) -0.046 (0.082)

ID-DTA 0.590 (0.014) -0.037 (0.079)

LM-DTA

None 0.650 (0.041) 0.107 (0.122)

BoW-DTA 0.653 (0.028) 0.159 (0.121)

ID-DTA 0.652 (0.036) 0.151 (0.126)

BoW-LM-DTA 0.646 (0.032) 0.139 (0.115)

In the described setup, the models predict binding affinities using biomolecule

words as input features. Therefore, the effect of model debiasing on each biomolecule

word’s contribution to the predictions is studied. To quantify and study this effect,

we use Gradient-weighted Class Activation Mapping (Grad-CAM) method, which was

designed to measure the importance of each feature in object classification models [144].

Grad-CAM uses the gradient flow in the model to output the “attention coefficient”

of each feature for each prediction. The attention coefficient reflects the feature’s

contribution to the prediction. We run Grad-CAM on debiased and non-debiased

BPE-DTA models and acquire attention coefficients of biomolecular words for each

prediction on the warm test set.
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Table 5.10. The gains of debiasing on each test set of (top) BDB and KIBA (bottom).

Warm Cold Chemical Cold Protein Cold Both

Model CI R2 CI R2 CI R2 CI R2

DeepDTA 1.239% 0.023 1.601% 0.004 2.372% 0.036 5.596% 0.062

BPE-DTA 0.906% 0.007 5.327% 0.098 1.685% -0.141 8.812% 0.108

LM-DTA 0.913% 0.017 0.000% 0.022 0.513% 0.011 1.573% 0.044

DeepDTA 1.718% 0.019 1.062% 0.013 0.834% 0.003 0.917% -0.003

BPE-DTA 1.362% 0.017 0.136% -0.045 0.588% -0.006 -1.157% -0.031

LM-DTA 0.816% 0.013 1.335% 0.032 0.842% 0.019 0.462% 0.052

First, we compare the maximum attention coefficients of protein and chemical

words for each test set interaction, since dataset biases are likely to be attended more

by presenting prediction shortcuts. The comparison shows for non-debiased BPE-DTA

that in 85% of test set interactions, the most attended feature is a chemical word. This

statistic decreases to 78% for debiased BPE-DTA, indicating that debiasing pushes

models to attribute more importance to protein words. Therefore, DebiasedDTA is a

step to learn more from the proteins, which is a known barrier to produce DTA predic-

tion models successful on novel biomolecules [124, 125, 129, 145]. We also visualize the

maximum attention coefficient distribution of protein and chemical words in Figure 5.2

in order to illustrate the higher attendance to the chemical words than protein words in

both models and the push of model debiasing towards learning more from the proteins.

As model training and debiasing continues, models weights and thus the attention

coefficients are updated. In order to observe the effect of model debiasing on attention

coefficients, we study the protein-chemical pairs that utilized debiasing the most, with

the intuition that the effect of debiasing should be more apparent in these instances. We

visualize the attention coefficient of chemical words (since they are attended more) over

training epochs and observe that attention coefficients of the most attended words tend

to decrease with debiasing. The change in squared error and attention coefficients for a

protein-chemical pair (UniProtID: Q6ZN16-PubChemCID: 9869779) is demonstrated

in Figure 5.3.
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Table 5.11. Binary evaluation of model debiasing on cross-datasets.

Training Dataset Model Cold Both Cross Dataset

BDB

DeepDTA 0.122 (0.029) 0.146 (0.025)

DebiasedDTA 0.126 (0.046) 0.152 (0.011)

BPE-DTA 0.072 (0.059) 0.168 (0.040)

DebiasedDTA 0.124 (0.099) 0.186 (0.042)

LM-DTA 0.217 (0.107) 0.520 (0.031)

DebiasedDTA 0.246 (0.103) 0.522 (0.021)

KIBA

DeepDTA 0.361 (0.141) 0.246 (0.021)

DebiasedDTA 0.337 (0.137) 0.243 (0.037)

BPE-DTA 0.291 (0.123) 0.190 (0.040)

DebiasedDTA 0.225 (0.083) 0.217 (0.018)

LM-DTA 0.384 (0.101) 0.286 (0.019)

DebiasedDTA 0.391 (0.106) 0.289 (0.016)

Figure 5.3 displays that the non-debiased model pays attention to a pharmacolog-

ically unimportant word (“C(C)”) during training, whereas the debiased model learns

to reduce its importance and eventually achieves a lower error on the target pair. In

this sense, the guide teaches the predictor to regularize certain biomolecular words as

the training continues. Figure 5.3 also shows that the debiased model starts outputting

stable predictions earlier in the training than the non-debiased model. We welcome

this as a positive side-effect of debiasing, since it can allow to stop training in earlier

steps and save compute time.
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Figure 5.2. Distributions of maximum attention coefficients.
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Figure 5.3. The effect of model debiasing on input features.
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6. PYDTA: A PYTHON LIBRARY FOR DRUG-TARGET

AFFINITY PREDICTION IN BIOMOLECULAR

LANGUAGE

6.1. Motivation

Cheminformatics is an excellent meeting point for researchers of versatile back-

grounds. The versatility in the field is a double-edged sword, though. On one end,

it brings different perspectives to the table to solve the very same problem, while on

the other end, it brings different tool usage habits that are not always compatible with

each other. The difference in these habits can create high barriers while evaluating

other perspectives/tools and hinder the interaction between disciplines. This makes it

critical to communicate perspectives in accessible languages, such that researchers of

any discipline can test, evaluate, and appreciate the wit of the ideas.

For researchers of computational background, like us, the versatility challenge

motivates creating tools whose entry barriers are as low as possible. Such tools are

downloaded and used tens of thousands of times [65, 146, 147]. In order to make our

contribution, here we present a easy-to-use python library, pydta. pydta not only

presents the DTA models developed in this thesis with an intuitive programming inter-

face, but also contains building blocks to produce models from scratch. We aim pydta

to be an ever-growing effort that eventually becomes the go-to library for biomolecular

language processing. We open-source pydta to summon community support in our

quest: https://github.com/boun-tabi/pydta.

6.2. The Library

pydta implements DTA models developed in this thesis; provides biomolecular

language processing tools, and evaluation metrics. pydta consists of four modules:

data, evaluation, models, and utils.
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data

dta sample data

dta sample data.json

dta sample data mini.json

representation

smilesvec chembl 8mer.kv

vocabs

chemical

chembl27 enc 94.json

chembl27 enc bpe 8000.json

chembl27 encoding.json

protein

uniprot 26.json

uniprot bpe 32000.json

Figure 6.1. Directory tree of data module in pydta.

6.2.1. data Module

We proposed ChemBoost and BPE-DTA in Chapter 4 and Chapter 5, respec-

tively. The former requires SMILESVec vectors to create chemical and protein vectors,

while the latter relies on biomolecular vocabularies. data module contains these files

and allows creating SMILESVec based biomolecular vectors and segmenting biomolec-

ular sequences with pre-trained vocabularies. data module also contains uni-character

vocabularies for biomolecular sequences and a dictionary that encodes SMILES tokens

to allow respecting multi-character units during SMILES tokenization.

Finally, data module contains a sample DTA dataset for easy experimentation

with the models. The directory structure of this module is shown in Figure 6.1
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6.2.2. evaluation Module

This module contains only one file, evaluation.py, and provides standardized

implementations for regression metrics for DTA. Concordance index, mean squared

error, root mean squared error, and R2 metrics are all implemented in this module

and a generic evaluation function is provided, that is evaluate predictions(y true,

y preds, metrics). This function returns a mapping from metric names to scores,

given expected and predicted affinity values. The accepted metric names are ci for

concordance index, mse for mean squared error, rmse for root mean squared error, and

r2 for R2 score. All names are case insensitive.

6.2.3. models Module

models includes all strong and weak DTA models proposed throughout the thesis,

namely: BoW-DTA, BPE-DTA, ChemBoost, DebiasedDTA, ID-DTA, and LM-DTA.

The module also contains the official implementation of DeepDTA, as it inspired several

models in this thesis and served as a benchmark several times. We illustrate the

directory tree of this module in Figure 6.2.

BoW-DTA, LM-DTA, and DeepDTA are all deep learning models that are im-

plemented in tensorflow [148]. Thus, they are trained and stored similarly and share

large code parts. To avoid code duplication, we use the inheritance concept in object-

oriented programming, and implement a base class named TFModel. TFModel im-

plements functions to train, save, and load these models and predict the affinity of

protein-chemical pairs. TFModel also provides abstract functions to build the model

architecture, vectorize chemicals, and vectorize proteins, which are implemented by

the child models. We aim TFModel to serve as a base class to custom DTA models in

future releases, too.
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models

bowdta.py

bpedta.py

chemboost.py

debiaseddta.py

deepdta.py

dta model.py

iddta.py

lmdta.py

Figure 6.2. Python files under models module in pydta.

6.2.4. utils Module

Similar to evaluation, utils module also comprises a single file, utils.py.

However, utils.py is as versatile and useful as a Swiss army knife. Besides containing

generic utility functions that strip paths, finding the absolute path of a file, or casting

a numpy array to a list, utils.py comprises functions to find units of a SMILES and a

class named HfWordIdentifier that enables segmenting biomolecular sequences into

biomolecular words in a vocabulary. Finally, utils.py allows loading the sample DTA

dataset embedded in the library and creating uniform training weights for Debiased-

DTA model. We plan to focus on developing these utility functions in future releases

and create standalone modules to emphasize their importance.

6.2.5. Dependencies

pydta rises on the shoulders of the giants (existing libraries) in order to have

reliable implementations. pydta is implemented in python and relies on numpy [149]

for matrix operations. It leverages tensorflow [148] to implement deep models and

transformers and tokenizers [150] for biomolecular word identification with BPE.

It also uses scikit-learn [151] to implement evaluation metrics and pytorch [152]

to obtain language model based biomolecule embeddings. Finally, xgboost [153] is

used to implement XGBoost algorithm in ChemBoost. We hope to minimize these

dependencies in future releases to shorten the installation time of the library. We list

the current dependencies below with their versions.



76

from pydta . u t i l s import l oad sample dta data

from pydta . models import LMDTA

tra in chemi ca l s , t r a i n p r o t e i n s , t r a i n l a b e l s =

load sample dta data ( mini=True ) [ ’ t r a i n ’ ]

lmdta = LMDTA( n epochs =100)

lmdta . t r a i n ( t r a i n chemi ca l s , t r a i n p r o t e i n s , t r a i n l a b e l s )

Figure 6.3. Training LM-DTA in pydta.

• python==3.7.9

• numpy==1.19.2

• scikit learn==0.24.2

• xgboost==1.4.0

• tensorflow==2.3.0

• pytorch==1.8.1

• tokenizers==0.10.3

• transformers==4.10.0

6.3. Installation and Code Examples

pydta is designed to have low entry barriers. So, it is very easy to install and use.

pydta is already published as a python package in pip repositories and can be installed

by a single command, assuming that python3 and pip3 are already installed:

pip3 install pydta

This command installs all dependencies and the library becomes ready to use in

several minutes. After the installation, the models can be trained immediately. For

instance, training an LM-DTA model on the toy dataset of pydta for 100 epochs is

done with five lines displayed in Figure 6.3.
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from pydta . u t i l s import l oad sample dta data

from pydta . models import BoWDTA, BPEDTA, DebiasedDTA

tra in chemi ca l s , t r a i n p r o t e i n s , t r a i n l a b e l s =

load sample dta data ( mini=True ) [ ’ t r a i n ’ ]

deb iaseddta = DebiasedDTA (BoWDTA, BPEDTA, pred ic tor params={ ’

n epochs ’ : 100})

deb iaseddta . t r a i n ( t r a i n chemi ca l s , t r a i n p r o t e i n s ,

t r a i n l a b e l s )

Figure 6.4. Debiasing BPE-DTA using BoW-DTA in pydta.

Debiasing is also as easy as it gets. The same amount of lines is required in order

to train a debiased BPE-DTA using BoW-DTA. The code is displayed in Figure 6.4.

Training a ChemBoost model follows a similar pipeline but also requires a map-

ping from protein sequences to high affinity SMILES strings during initialization, due

to the nature of the algorithm. Assuming such a mapping is stored in a variable al-

ready (prot to sb chemicals), a ChemBoost model is created and evaluated with the

script in Figure 6.5. Here we note that ChemBoost model in pydta concatenates SW

and ligand-centric vectors to represent proteins and can correspond to Model (8) and

Model (9) in Chapter 4, depending on the list of high affinity protein-chemical pairs.

Finally, pydta integrates with custom DTA prediction models, too, and offers

a DebiasedDTA interface. To use DebiasedDTA, pydta enforces the custom predic-

tion model to be implemented as a class that has an n epochs attribute and a train

method with arguments training chemicals, training proteins, training labels, and sam-

ple weights by epoch. DebiasedDTA imposes no restriction on the inner-workings of

the train function and the content of the arguments. Figure 6.6 displays the template to

debias a custom DTA prediction model with ID-DTA and more examples are available

in the pydta repository.
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from pydta . models import ChemBoost

chemboost = ChemBoost ( p r o t t o s b c h e m i c a l s=

p r o t t o s b c h e mi c a l s , n e s t imato r s =1000)

chemboost . t r a i n ( t r a i n chemi ca l s , t r a i n p r o t e i n s , t r a i n l a b e l s )

preds = chemboost . p r e d i c t ( t r a i n chemi ca l s , t r a i n p r o t e i n s )

e v a l u a t e p r e d i c t i o n s ( t r a i n l a b e l s , preds , [ ’ r2 ’ ] )

Figure 6.5. Training ChemBoost in pydta.
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from pydta . models import IDDTA, DebiasedDTA

class CustomDTAModel :

# The c o n s t r u c t o r can have o ther arguments and/ or the

c l a s s have o ther a t t r i b u t e s .

def i n i t ( s e l f , n epochs ) :

s e l f . n epochs = n epochs

# The l a s t argument w i l l be f i l l e d by DebiasedDTA .

def t r a i n ( s e l f , t r a i n chemi ca l s , t r a i n p r o t e i n s ,

t r a i n l a b e l s , sample weights by epoch ) :

pass

t r a i n chemi ca l s , t r a i n p r o t e i n s , t r a i n l a b e l s = [ . . . ] , [ . . . ] ,

[ . . . ]

deb iaseddta = DebiasedDTA (IDDTA, CustomDTAModel ,

pred i c tor params={ ’ n epochs ’ : 100})

deb iaseddta . t r a i n ( t r a i n chemi ca l s , t r a i n p r o t e i n s ,

t r a i n l a b e l s )

Figure 6.6. Debiasing a custom model in pydta.
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7. CONCLUSION

7.1. Contributions

The drug discovery pipeline takes more than a decade, and so does the discovery of

new treatments. An important step in the drug discovery pipeline is to find high-affinity

protein-chemical pairs to experiment in pre-clinical trials. However, the large number of

possible protein-chemical combinations is experimentally invincible and challenges the

search process. DTA prediction models help in this step by immediately highlighting

the promising pairs in silico and speeding the pipeline. This thesis proposes novel

DTA prediction models and training strategies in this quest, with the ultimate goal of

discovering new drugs more quickly.

In this thesis, we exploit 1D representations of biomolecules. The major advan-

tage of using sequence-based representations is that they are easier to obtain, unlike

3D structures, and easy to store and process, unlike 2D molecular graphs. In addition

to being simpler and accessible, 1D sequences are information-rich and can empower

models on par with 2D and 3D structure based models, if not superior [26].

We leverage biomolecular language processing to process 1D representations.

Biomolecular language processing views biomolecular sequences as documents coded

in biomolecular languages and adopts language processing methods. In order to demon-

strate the validity of this perspective, we statistically evidence the existence of biomolec-

ular languages and examine their components computationally and pharmacologically

(Chapter 3).

A language consists of units such as letters, syllables, and words. However, such

units are undefined in biomolecular languages and need identification. Chapter 3 shows

that Byte Pair Encoding (BPE) and Unigram Language Model (ULM) can identify

meaningful language components, “biomolecular words”, that empower state-of-the-
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art DTA prediction models. BPE and ULM perform comparably in the experiments,

although we provide chemical information to ULM through start vocabularies. We

recommend BPE instead of ULM for the sake of simplicity and further investigate its

chemical words.

Statistical analysis on BPE words demonstrates a language-like structure and

motivates pharmacologic evaluation. We collaborate with domain experts for this study

and they find that BPE words can be markers of high affinity to protein families. The

success of chemical words in computational and pharmacologic evaluation motivates

our chemical language-based drug-target affinity prediction framework, ChemBoost.

Chapter 4 introduces ChemBoost, a chemical-word based affinity prediction frame-

work. ChemBoost achieves state-of-the-art prediction performance, when ligands are

represented through chemical words and proteins with the combination of SW and

the chemical words of their high-affinity ligands. As chemical words are at the core

of ChemBoost, we compare 8-mers with BPE words. The experiments show that 8-

mers create better ligand and protein representations for affinity prediction and we

recommend their usage as they are also simpler.

Rost proposes the presence of a “twilight zone” in sequence similarity, for which

information about the protein can be predicted only in the presence of additional

information [46]. We show that, SW is not able to accurately capture binding in-

formation when sequence similarity is low and a ligand-centric approach can improve

model performance, especially for proteins with low sequence similarity. When used as

a stand-alone representation, ligand-centric protein representation is more successful

than SW at capturing functional similarities for low MSS interactions. We also observe

that ligand-centric representations are more powerful when only high-affinity ligands

are used and when the number of high affinity ligands per protein is higher.

The ligand-centric can be used in combination with orthogonal pieces of informa-

tion for tasks ranging from fold prediction [154] to function annotation [155]. Model (9)
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of ChemBoost, which uses both SW and ligand-centric vectors achieves state-of-the-art

performance and is more robust to the changes in sequence similarity than both Model

(1) (SW only protein representation) and the current state-of-the-art model, DeepDTA.

However, ChemBoost models and DeepDTA struggle when the target pair contains at

least one novel biomolecule. This encourages methods to boost the generalizability of

DTA models.

Dataset bias is a major hurdle on the path to develop robust and generalizable

machine learning models and one approach is to obtain a sampling from all knowledge

space. However, protein-chemical interaction space is not sampled evenly, either be-

cause some protein targets are privileged due to their association with certain disease

states, or because some chemicals or chemical moieties are privileged due to their rel-

atively easier synthesis, or because the study of some interactions is experimentally

infeasible. As some proteins or chemicals are over-represented, machine learning mod-

els tend to overfit and memorize these patterns and perform well when the training

and test sets are similar to each other. However, it is difficult to learn generalizable

patterns about protein-chemical interactions and machine learning methodologies fail

when they are tasked with predictions about unseen biomolecules. In Chapter 5, we

propose DebiasedDTA, a novel training framework that boosts the performance of

DTA prediction methods both on known and unknown biomolecules. The performance

improvement is observed for similar and distant test sets and underlines the value of

DebiasedDTA.

DebiasedDTA owes the performance boost to the guides that are designed to

identify specific types of bias sources. Here, we experiment with biomolecule word- and

identity-driven biases and find that the elimination of either of the two can improve

prediction performance. We also find that DebiasedDTA does not require a similarity

in biomolecule representations of guides and predictors and can improve predictors of

diverse architectures.
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The predictors weight training samples for debiasing, which tunes the contribu-

tion of input features to the predictions. We show that elimination of biomolecule word

biases pushes the models to learn more from the proteins and can reduce the effect of

pharmacologically unimportant substructures to the predictions.

We investigate the consequences of debiasing on unknown biomolecules, too, and

find that the more dissimilar the unknown biomolecules to the known ones, the more

beneficial model debiasing is. We further challenge model debiasing with a cross-dataset

evaluation setup, whose results underpins the merit of debiasing one more time.

The success and usability of the models in this thesis encouraged publishing an

accessible tool. Chapter 6 introduces pydta, a python package that wraps up the

methods presented in this thesis. pydta is available in pip repository and presents an

intuitive interface for model development.

7.2. Future Directions

Biomolecular language processing is a promising perspective for DTA prediction

task: it presents simple methods that yield high performance. We present further

studies to overcome the limitations of the models in this thesis and explore the untapped

potentials of language processing for drug discovery.

We need tools to ease developing biomolecular language processing pipelines.

pydta is a step in this direction, which we will continue in the future. With the

support of the community, we will turn pydta into a library that contains all building

blocks to develop biomolecular language processing models for any drug discovery task,

not only for DTA.

One attractive technique biomolecular language processing enables is to represent

proteins through SMILES strings of their known ligands. What about the proteins

with no known ligands, though? How can we represent them? In this thesis, we test
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using the ligands of the most similar protein with a known ligand but the question is

still unanswered. Answering this question would enable functionally more informative

representations for novel proteins and support drug discovery studies on new targets

and diseases.

Developing robust prediction models for novel biomolecules remains as one of the

major problems in drug discovery. We relate this with dataset biases and introduce

a new research direction, in which models are debiased to have stronger generalizabil-

ity to novel biomolecules. DebiasedDTA is the first model debiasing approach and

shows potential in the experiments. We view DebiasedDTA as a technique to priori-

tize informative training samples and believe that it will have implications on de novo

molecule generation task, where out-of-distribution generalization is also an essential

problem. This would allow us to traverse the unexplored regions of the chemical space

and discover novel drugs.
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