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ABSTRACT

ATTENTION MODELING WITH TEMPORAL SHIFT IN

SIGN LANGUAGE RECOGNITION

Sign languages (SLs) are the main communication language of deaf people. They

are visual languages that establish communication through multiple cues including

hand gestures, upper-body movements and facial expressions. Sign language recog-

nition (SLR) models have the potential to ease communication between hearing and

deaf people. Advancements in deep learning and the increased availability of public

datasets have led more researchers to study SLR. These advancements shifted solution

methods for SLR from hand-crafted features to 2 Dimensional Convolutional Neural

Network (2D CNN) models. Inadequacy of 2D CNNs on temporal modeling and 3D

CNNs’ ability of spatio-temporal modeling made 3D CNNs a popular choice. Despite

its successful results, high computational costs and memory requirements of 3D CNNs

created a need for alternative architectures. In this thesis, we propose an SLR model

that uses 2D CNN as backbone and attention modeling with temporal shift. Usage of

2D CNN decreases the number of parameters and required memory size compared to its

3D CNN counterpart. In order to increase adaptability to other datasets and simplify

the training process our model uses full frame RGB images instead of cropped images

that focus on specific body parts of signers. Since communication in SL is established

by using multiple visual cues at the same time or at different moments, the model must

learn how these cues are collaborating with each other. While temporal shift modules

give our 2D CNN backbone model the ability of temporal modeling, attention modules

learn to focus on what, where and when in videos. We tested our model with Bospho-

rusSign22k dataset which is a Turkish isolated SLR dataset. The proposed model

achieves 92.97% classification accuracy. Our study shows that attention modeling with

temporal shift on top of 2D CNN backbone gives competitive results in isolated SLR.
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ÖZET

İŞARET DİLİ TANIMADA ZAMANSAL KAYMA İLE

DİKKAT MODELLEMESİ

İşaret dilleri, sağır bireylerin esas iletişim dilidir. Bu diller el şekilleri, üst vücut

hareketleri ve yüz ifadeleri gibi birden fazla kip kullanarak iletişim kurulmasını sağlayan

görsel dillerdir. İşaret dili tanıma modelleri, sağır ve duyma engeli bulunmayan insanlar

arasında iletişimi kolaylaştırma potansiyeline sahiptir. Derin öğrenme alanındaki iler-

lemeler ve erişime açık veri kümelerinin sayısının artması daha fazla araştırmacıyı işaret

dili tanıma alanına yönlendirmiştir. Derin öğrenme alanındaki ilerlemeler ile işaret

dili tanıma çalışmalarında kullanılan manuel öznitelik çözümlerinin yerini 2 boyutlu

Evrişimsel Sinir Ağları (2B ESA) almaya başlamıştır. 2B ESA’nın zamansal mod-

ellemedeki yetersizliği ve 3B ESA’nın uzam-zamansal modelleme kabiliyeti 3B ESA’yı

çok kullanılan bir çözüm haline getirmiştir. 3B ESA’ların başarılı sonuçlarına rağmen

hesaplama maliyetinin ve hafıza ihtiyacının yüksek olması alternatif mimariler aran-

masına sebep olmuştur. Bu tezde 2B ESA tabanlı zamansal kayma ile dikkat mod-

ellemesi yapan bir işaret dili tanıma modeli önerdik. 2B ESA kullanılması, karşılığı

olan 3B ESA’ya göre parametre sayısını ve gerekli hafıza boyutunu azaltmıştır. Diğer

veri kümeleri ile uygulanabilirliğini artırmak ve eğitim sürecini kolaylaştırmak için

işaretçinin belirli vücut bölümlerine odaklanan görüntü kesimleri yerine tam çerçeve

RGB görüntüler kullanılmıştır. İşaret dilinde iletişim birden çok görsel kipin aynı veya

farklı zamanlarda kullanılması ile sağlandığı için model bu kiplerin birbirleri ile nasıl

etkileşime girdiğini öğrenmelidir. Zamansal kayma modülleri 2B ESA tabanlı modele

zamansal modelleme kabiliyeti verirken, dikkat modülleri ise videolarda neye, nereye

ve ne zamana odaklanacağını öğrenmektedir. Modelimizi, Türkçe izole işaret dili veri

kümesi olan BosphorusSign22k ile test ettik. Önerilen model %92.97 sınıflandırma

başarımı elde etmiştir. Çalışmamız, izole işaret dili tanımada 2B ESA tabanlı zamansal

kayma ile dikkat modellemesi yaparak rekabetçi sonuçlar alınabileceğini göstermiştir.
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1. INTRODUCTION

Sign languages are visual communication systems used by deaf communities as

their primary language. Sign language users, signers, use multiple manual and non-

manual visual cues to convey meaning in their communication with other signers.

While the manual cues include shape, movement, position and orientation of hands, the

non-manual cues include upper-body postures, head-shoulder movements and different

kinds of facial expressions like eye gaze and mouth gestures [1].

Sign language recognition (SLR) refers to a field that aims at understanding and

inferring signs performed by a signer in a recorded video. Essentially SLR is a video

classification task; however, it has challenging characteristics. Firstly, SLR models

recognize non-manual gestures together with manual ones in order to understand the

performed sign. Therefore, the model must be able to capture fine differences in human

pose. Secondly, SLR models use information gathered from human pose and movement

while other video classification problems can also benefit from context information in

videos. Another challenge is that since standardization of sign languages is not very

common, different signers can perform different gestures to execute the same sign.

Moreover, at times the same signer can skip some of the visual cues for a given gloss

depending on performed signs previously [2]. The ground truth for individual signs

is assigned by experts, by assigning labels called “glosses”, which are words from the

spoken language.

Sign language recognition tasks can be divided into two categories according to

the problem they aim to solve. The first category, isolated SLR problem, tries to

recognize words or phrases corresponding to a specific sign performed in video. All

visual cues to express signs are presented in the video and each video contains only

one sign. Proposed solutions for this category must be able to distinguish differences

between many signs. The second category, continuous SLR problem, aims to identify

and recognize signs that appear in sequence. The sequence of signs appears in videos
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in a continuous manner. Therefore continuous SLR models must be able to recognize

the start and end point of each sign performed by the signer in addition to challenges

in isolated SLR.

Sign languages are not universal and they are also different from corresponding

spoken languages in terms of grammar and vocabulary. These differences make com-

munication between deaf communities and hearing people even harder. Automated

systems that understand and translate a sign language to a spoken language can al-

leviate communication problems between two communities. SLR has been an active

research domain for over 30 years [3]. We conducted our study with a Turkish isolated

sign language dataset in order to present an effective and efficient solution that can be

helpful for other researchers and deaf community in Turkey. Moreover, the presented

architecture can easily be applied for other sign languages in the world.

Early studies in SLR used wearable sensors to collect data and extract features.

Kadous [4] used instrumented gloves to extract features from signers’ hands. Covered

distance and time duration to perform a sign together with histograms for wrist ro-

tations, finger bends and positions in 3D coordinates are used as features in order to

recognize the corresponding sign.

Hand-crafted feature based methods were also used in the SLR domain. Liwicki

and Everingham [5] used videos taken by consumer quality webcam. They used the

Histogram of Oriented Gradients (HOG) descriptor to represent hand shape. For tem-

poral modeling of hand-crafted features Hidden Markov Models (HMM) are used in

different studies [5, 6].

Thanks to advancements in deep learning and new public datasets, neural net-

works achieved high performances in both image [7, 8] and video [9, 10] tasks in the

computer vision domain. Studies in SLR have also started to use deep learning models

like other tasks in computer vision [1, 3].
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Deep learning based models have been used in isolated SLR. Özdemir et al. [11]

used 3D residual network (3D ResNet) architecture with mixed 2D-3D convolution

layers proposed in [12]. Gökçe et al. [13] also used 3D ResNet with mixed 2D-3D

convolution layers. They trained separate models for different visual cues and fused

their outputs to classify signs. Vázquez-Enŕıquez et al. [14] used multiscale spatial-

temporal graph convolutional network for isolated SLR.

The resemblance of continuous SLR to the daily communication problem between

deaf and hearing people in the real world attracts researchers. Koller et al. [15] pro-

posed an architecture of 2D CNN with HMM for continuous SLR. Camgoz et al. [16]

proposed a novel architecture with CNN and Bidirectional Long Short-Term Memory

(BLSTM) layers for spatial and temporal modeling while using Connectionist Tempo-

ral Classification (CTC) loss. Zhou et al. [1] proposed a spatial-temporal multi-cue

(STMC) that uses 2D CNN to extract spatial features from different cues and decon-

volutional layers for pose estimation. It models temporal information by using BLSTM

and CTC.

This thesis aims to achieve competitive performance in isolated SLR without

suffering from high computational costs and memory requirements. For this purpose,

we presented a network with a 2D CNN backbone that lowers memory and computa-

tional costs. Temporal shift modules (TSM) are inserted into the backbone in order

to compensate for insufficiency of 2D CNN models in temporal modeling. Since we

only use one model to predict the class of a sign, the model must be able to focus

on important regions and moments of performed visual cues. Attention modules with

channel-temporal attention and spatio-temporal attention submodules perform this

task. Channel-temporal attention focuses on what is important in a frame and when

that body part of movement is important in the sign video. On the other hand, spatio-

temporal attention focuses on which area is discriminative in a frame and when that

position is important in video.
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The following chapters of the thesis are organized as follows. In Chapter 2,

related works in sign language recognition and published SLR datasets are introduced.

Chapter 3 provides detailed information about our model architecture and how each

subunit in the model works. In Chapter 4, experimental results are presented and

discussed. Chapter 5 contains conclusions and suggestions for future work.
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2. RELATED WORK

Understanding video content has gained more importance with the increase in the

number of videos. Video classification is a domain working for this purpose. It aims to

label videos according to their contents. Human action recognition and sign language

recognition are subdomains that are named according to the contents of videos they

examine. While human action recognition focuses on human interactions with objects

and other people, sign language recognition focuses on performed visual cues to express

a sign gloss. Human action recognition uses more general data from a wider domain

with coarse motions relative to sign language recognition. Therefore datasets and

proposed solutions in the field of human action recognition can be adapted to sign

language recognition.

2.1. Human Action Recognition

Human action recognition is the task of recognizing human actions in videos.

These actions generally involve motion of a single person, interaction of multiple peo-

ple or interaction of humans with objects (see Figures 2.1 and 2.2 for examples). It

is an interesting subject because proposed solutions can be used in other real world

applications including human-computer interaction, video retrieval, gaming and enter-

tainment.

Even though recognizing an action is simple for a human, it is challenging for

computer systems because of several reasons. Firstly, cluttered backgrounds in the

videos may contain distracting objects or irrelevant human actions [17]. Secondly,

human action videos have both interclass and intraclass variations [18]. Another chal-

lenge is that developing complex models capable of recognizing many actions has high

computational cost.
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Early studies in the field used hand-crafted features for representation and ma-

chine learning models for classification. Bobick and Davis [19] presented Motion History

Images (MHI) to represent the accumulated trajectory of moving objects. It is an en-

hanced version of Motion Energy Images (MEI) [20] which is used to show regions of

motion. Laptev et al. [21] used Histogram of Oriented Gradient (HOG) and Histogram

of Oriented Flow (HOF) to represent motion. They used a nonlinear Support Vector

Machine (SVM) for classification.

Figure 2.1. Example actions from Kinetics400 Dataset.

Wang et al. [22] used HOG, HOF and Motion Boundary Histogram (MBH) to

extract features from dense trajectories. After the success of dense trajectories in action

recognition, improved dense trajectory (IDT) is introduced in [23]. It aims to improve

trajectory features by deleting camera motion trajectories and canceling out camera

motion from optical flow. IDT used Fisher Vectors [24] for feature encoding and SVM

for classification.
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Figure 2.2. Example action from Something-Something Dataset.

Krizhevsky et al. [25] presented a 2D CNN image classification model for Ima-

geNet Large-Scale Visual Recognition Challenge 2012 (ILSVRC) [26]. The success of

this model attracted researchers to design deep learning models for both image and

video related computer vision problems. Faster and specialized hardwares, publication

of available large datasets and advancements in deep learning have shifted the main

focus in human action recognition to deep learning models.

Karpathy et al. [9] presented an early study which applies 2D CNN model to the

action recognition domain. The study investigated different models to fuse temporal

information and to speed up the training process. Firstly, it proposed a 2D CNN

model that takes a single frame at a time to predict the action in the video. Secondly,

it examined several methods to fuse temporal information. Combining frames from a

time window at pixel level or training two seperate networks with joint classification

layer with multiple frames were tried options. Moreover, it proposed a two stream

model architecture that processes low and high resolution images of the same frame

in its streams. This design lowers training time of the network without decreasing its

accuracy.

Simonyan and Zisserman [10] proposed a two-stream CNN architecture for action

recognition in videos. The first one, spatial stream, takes static images from input

video. This stream is especially useful for predicting actions related to an object. The

second one, temporal stream, uses dense optical flow which represents motion between

consecutive frames as input. Softmax outputs of two streams are fused by averaging
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or SVM. Separating the network to two streams gives the chance to use pre-trained

networks with large datasets in the spatial stream. The architecture is related to the

two-stream hypothesis in the human visual system [10]. The spatial stream is similar

to the ventral stream in humans which recognizes objects and the temporal stream

is related to the dorsal stream which recognizes motion. Ng et al. [27] also used a

two stream CNN architecture with raw frames and optical flow inputs to compute

feature maps. These frame-level feature maps are aggregated by Long Short-Term

Memory (LSTM) and video level action predictions are made. Wang et al. [28] proposed

Temporal Segment Networks (TSN), a two-stream architecture that can learn long-

range temporal information. The idea behind the solution is that consecutive frames

have very similar content so picking them to represent action is unnecessary. Instead

of this strategy, [28] suggested to divide the video into segments. One frame from each

segment is selected and given into the model as input. Frame level predictions from

the spatial stream and the temporal stream are aggregated separately by corresponding

segmental consensus functions. Results of two segmental consensus are fused and video

level prediction is obtained.

Tran et al. [29] introduced a 3D CNN model named Convolutional 3D (C3D) to

learn spatio-temporal features and classify action recognition videos. The downside of

the network is having more parameters than a 2D CNN, making the network harder

to train. Carreira and Zisserman [30] proposed converting successful 2D CNN models

to 3D CNN models. The first step is inflating all filters and pooling kernels to add a

temporal dimension. Then, in order to benefit from huge image datasets like ImageNet,

weights of the selected pre-trained 2D CNN can be bootstrapped to a 3D CNN model.

They introduced a two-stream inflated 3D CNN (I3D) that uses both RGB and optical

flow as inputs.

Both 3D CNN and two-stream models have efficiency problems when trained

with big datasets. 3D CNN models have a high number of parameters which makes

them hard to train and two-stream models require computing and storing optical flow

information before the training process. These reasons cause search for alternative
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efficient methods. Lin et al. [31] introduced Temporal Shift Module (TSM) that shifts

part of the feature channels obtained by different frames. This operation enables a 2D

CNN to model temporal information without adding more parameters to the backbone

model.

2.1.1. Human Action Recognition Datasets

Deep learning models usually give better results when trained with large datasets.

This created a need for larger action recognition datasets to improve model perfor-

mances, to provide challenging datasets for more complex models and to create new

benchmarks. Summary information about human action recognition datasets can be

found in Table 2.1.

Kuehne et al. [32] introduced the Human Motion Database (HMDB51) in 2011.

The dataset has approximately 7000 videos from 51 action categories and each category

has at least 101 clips. The videos are collected from YouTube, Google, digitized movies

and public databases (see Figure 2.3).

Figure 2.3. Example actions from HMDB51 Dataset. From left to right action classes

are: hand-waving and drinking.
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Soomro et al. [33] introduced UCF101, the largest human action dataset at its

time, in 2012. It has 13320 videos from 101 action groups. The videos are collected

from YouTube (see Figure 2.4).

Figure 2.4. Example actions from UCF101 Dataset. From left to right action classes

are: rafting, cricket shot and shaving beard.

Karpathy et al. [9] introduced the Sports-1M dataset in 2014. The dataset has

one million YouTube videos from 487 classes. Each class has between 1000 to 3000

related videos (see Figure 2.5).

Figure 2.5. Example actions from Sports-1M Dataset. From left to right action

classes are: track cycling and ultramarathon.
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YouTube-8M dataset [34] was published in 2016. It has around 8 million videos

with a duration of 500K hours in total. The videos have multi-labels and these labels

are taken from YouTube video annotation system (see Figure 2.6).

Figure 2.6. Example actions from YouTube-8M Dataset annotated with Guitar

keyword.

Kinetics400 dataset [35] was published in 2017. The dataset has videos from 400

different action categories and each of these categories has between 400 and 1150 clips.

The dataset has over 300K videos collected from YouTube platform. It contains videos

of single person actions, person-person actions and person-object actions (see Figure

2.7).

Figure 2.7. Example actions from Kinetics400 Dataset from the “dunking basketball”

class.
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The first version of the something-something dataset [36] was introduced in 2017.

It is a fine-grained action recognition dataset and has 108499 videos from 174 action

classes. The videos contain human-object interactions and are labeled with textual

descriptions (see Figure 2.8).

Figure 2.8. Example action from Something-Something Dataset that shows putting a

white remote controller into a cardboard box.

Table 2.1. Summary table of human action recognition datasets.

Dataset Year # Classes # Videos

HMDB51 [32] 2011 51 ∼ 7000

UCF101 [33] 2012 101 13,320

Sports-1M [9] 2014 487 1 million

YouTube-8M [34] 2016 4800 8,264,650

Kinetics400 [35] 2017 400 306,245

Something-Something [36] 2017 174 108,499

2.2. Sign Language Recognition

Sign language recognition (SLR) refers to the task of inferring the label of a

performed sign by examining manual and non-manual visual cues in a video. These

cues mainly consist of hand gestures, upper-body movements and facial expressions of

the signer. Human experts can comprehend collaboration between visual cues. These

visual cues can happen at the same time or in sequence. Moreover some of them

are fine-grained movements and temporal relationships between them have critical
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importance to recognize the corresponding gloss. SLR models should have the ability

to understand spatial and temporal relations between visual cues.

SLR models are proposed to work with isolated or continuous SL datasets. Iso-

lated SL datasets consist of videos that contain visual cues to express a single gloss.

The gloss corresponds to a word or a phrase in spoken language. On the other hand,

continuous SL datasets have videos showing a sequence of glosses in a continuous

manner. Moreover, SLR has subdomains that are related to hand signs and motions.

These are hand detection, hand pose estimation, hand gesture recognition, real-time

hand tracking and hand pose recovery [37].

Early studies in the SLR domain make use of wearable sensors. These sensors are

used to collect informative data regarding a signer’s hand positions and movements.

Vogler and Metaxas [38] used the Ascension Flock of Birds which is an equipment

with sensors and a magnet. Three dimensional wrist positions and orientations are

collected with this equipment. The collected data is modeled with an HMM and

presented as a solution for continuous American Sign Language (ASL) recognition

problem. Kadous [4] used PowerGlove, an instrumented glove, to get position data,

wrist rotations and finger bends. The data is used for feature extraction. Lee et al. [39]

proposed an approach for Korean Sign Language (KSL) recognition. They used Cyber-

Glove and Polhemus sensor to acquire finger flexures, hand positions and orientations.

The proposed approach used fuzzy rules for direction classification and Fuzzy Min-Max

Neural Network (FMMNN) to classify the posture and orientation of a signer.

Wearable sensors were used and maintained their importance in the SLR domain

until 2005 [40]. Their dominance in SLR was replaced by vision based data such as

RGB and depth data after 2005. In the transition period from wearable sensors to

vision based data, colored gloves were also used. Colored gloves, as the name suggests,

are colorful gloves that help researchers to detect signer’s hand in video frames. Zhang

et al. [41] introduced an architecture to recognize Chinese Sign Language (CSL). They

used colored gloves to detect the singer’s hands in a video taken by a USB camera.
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Detected hands are used to extract features from the dominant hand, non-dominant

hand and finger area of the dominant hand. Tied-Mixture Density Hidden Markov

Model (TMDHMM) is used for sign recognition.

RGB and depth data are two main input types in vision based data used for

SLR. RGB data has become the most used data type in SLR since 2005. Also the

number of studies with depth data increased after 2010 thanks to the Kinect sensor.

RGB videos generally have high resolution image content and depth data contains

information about distance in videos [37].

Usage of visual data prompts researchers to extract features from RGB videos or

depth data. Early studies with visual data extract hand-crafted features then generally

use two models: one to understand the temporal relation in video and another one to

classify the performed sign gloss.

Wong and Cipolla [42] focused on classifying 10 primitive hand motions. Video

frames are processed with MHI and MEI operations. Their outputs are used to com-

pute Motion Gradient Orientation (MGO) images. Motion features are extracted from

MGO images and classified by a sparse Bayesian classifier. In ChaLearn Looking at

People Challenge 2014 [43], a winning solution for gesture recognition used hand-crafted

features. The solution extracted HOG features, skeletal joint position and distance fea-

tures. Camgöz et al. [44] proposed SLR system to help deaf people come to a hospital.

The proposed system uses a Kinect sensor to collect signer’s data. Features extracted

for hand position, hand movement, hand shape, upper body pose and Principal Com-

ponent Analysis (PCA) are applied for each feature to combine them. Dynamic Time

Warping (DTW) and Temporal Templates (TT) are used to model temporal informa-

tion. K-Nearest Neighbors (KNN) and Random Decision Forest (RDF) are used for

classification. Özdemir et al. [45] introduced an architecture for isolated SLR. Firstly,

IDT [23] features are extracted. Then, the proposed method uses Gaussian Mixture

Model (GMM) and PCA to increase efficiency and decrease sizes of feature vectors.

These features are represented by Fisher Vectors [24] and SVM is used to classify them.
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Advancements in deep learning model architectures and techniques, improve-

ments of specialized hardwares especially in GPUs, publication of large and high-quality

available datasets attracts researchers to propose deep learning based solutions to video

related tasks. Deep learning models are proposed for human action recognition [10,29]

and gesture recognition [46]. Researchers also introduced deep learning solutions for

SLR due to its similarity with other domains.

Neverova et al. [47] worked on hand gesture recognition from depth images to

improve human-computer interactions. The study proposed a 2D CNN model trained

on depth labeled synthetic hand gestures images and unlabeled real depth images taken

from consumer level depth sensors. Koller et al. [48] proposed a model architecture for

continuous SLR by combining a CNN with HMM and achieved state of the art results

on three datasets, RWTH-PHOENIX-Weather 2012 [49], SIGNUM single signer [50]

and RWTH-PHOENIX-Weather 2014 Multisigner [51]. Koller et al. [52] proposed

using parallelism for continuous SLR. The introduced architecture trains multiple CNN-

LSTM models with full frame inputs and based on their loss functions they become

sign language, hand shape and mouth shape classifiers. Outputs of these classifiers are

improved by an HMM in several Expectation Maximization (EM) iterations.

3D CNN based architectures were adopted in the SLR domain due to their spatio-

temporal modeling abilities. Joze and Koller [53] proposed using I3D [30], a model in-

troduced for action recognition, to recognize isolated ASL. Wei et al. [54] introduced a

new architecture for continuous SLR. 3D ResNet, BLSTM and global temporal pooling

are used at early stages of the architecture. While 3D ResNet extracts spatio-temporal

features, BLSTM learns contextual relationships in videos. Global temporal pooling

takes outputs of BLSTM and produces fixed length feature vectors to represent video

content. Word-independent classifiers (WIC) take the feature vectors and recognize

words. The architecture also has an n-gram classifier (NGC) for sentence recognition.

Gökçe et al. [13] proposed using multiple 3D ResNet models with mixed 2D-3D con-

volution layers for Turkish isolated SLR. Each of these cue models are specialized in

different regions, namely, hand, upper-body and face. Each model makes its predictions
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independently. A weighted fusion algorithm based on models’ success on validation sets

is used to fuse output probabilities of cue models and make final class predictions.

2.2.1. Sign Language Recognition Datasets

Sign languages differ from each other in different countries like the spoken lan-

guage. Therefore an SLR model for a specific language needs to be trained with a SL

dataset of that language. Large scale SL datasets are needed to increase model success

and to teach complex structures to the deep learning models [37]. Another important

characteristic of SL datasets besides language is the annotation type of the dataset.

Isolated SL datasets have gloss level labels and continuous SL datasets have sentence

level labels [2]. Summary information about SLR datasets can be found in Table 2.2.

Neidle et al. [55] introduced American Sign Language Lexicon Video Dataset

(ASLLVD) in 2012. The dataset is developed by computer scientists and linguists. It

is an isolated ASL dataset with 2742 sign classes and 9794 video clips performed by 6

signers. 4 synchronized video cameras were used to collect data (see Figure 2.9).

Figure 2.9. Example signs from ASLLVD. From left to right signs are: wash and

chew.

Zhang et al. [56] introduced an isolated CSL dataset with 500 sign classes and

2500 video clips performed by one signer. The dataset is collected with Kinect v2. It

is used to get RGB data and 3-D coordinates of skeleton points (see Figure 2.10).
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Figure 2.10. Example signs from CSL dataset. From left to right signs are: mother,

father and thin.

Joze and Koller [53] published isolated MS-ASL datasets in 2019 with four sub-

sets. The biggest subset contains 25513 videos from 1000 sign classes performed by 222

signers. The dataset is signer independent and collected in unconstrained conditions.

Özdemir et al. [11] published BosphorusSign22k which is a Turkish isolated SL

dataset in 2020. The dataset has 744 sign classes and 22542 videos performed by six

signers. The dataset is recorded with Kinect v2 and contains RGB videos, depth map

and skeleton information (see Figure 2.11).

Figure 2.11. Example signs from BosphorusSign22k. From left to right signs are:

insurance and price.
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Agris et al. [50] published the SIGNUM dataset in 2008. The dataset has both

isolated and continuous sign videos for German Sign Language (DSL). 25 singers per-

formed 455 basic signs and about 19k sentences (see Figure 2.12).

Figure 2.12. Example from Signum dataset showing brother sign.

Forster et al. [49] introduced the RWTH-PHOENIX-Weather dataset. It is col-

lected from a weather forecast programme of Phoenix which is a German TV station.

It is a continuous DSL dataset performed by seven signers. The dataset has over three

hours of data showing 1980 sign sentences and 911 distinct glosses (see Figure 2.13).

Figure 2.13. Example from RWTH-PHOENIX-Weather showing slippery sign.

Huang et al. [57] introduced a modern CSL dataset for continuous SLR. It consists

of 25k videos annotated with a complete sentence and total video duration is over 100

hours. Videos in the dataset are performed by 50 signers and recorded with Kinect.

Data for depth and body joints are recorded in addition to RGB videos.
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3. ATTENTION MODELING WITH TEMPORAL SHIFT

IN SIGN LANGUAGE RECOGNITION

We have applied attention modeling with temporal shift [31] in order to recognize

isolated sign language videos. Attention modeling modules and temporal shift modules

(TSM) are added on top of the 2D CNN backbone. TSM enables 2D CNN to model

temporal information. Attention modeling enables the model to focus on important

and distinctive body parts, motions, places and times in the video. We chose the

ResNet-18 [7] model as the backbone but other popular 2D CNN models can also be

used as alternatives.

This 2D CNN based model architecture used for video classification takes inputs

with the same shape used in image classification models. Input shape is T×C×H×W

where T is batch size times number of frames per video, C is the number of channels

(3 for RGB images), H×W is the spatial size of frames (see an example in Figure 3.1).

3.1. Temporal Shift Module

Advancements in deep learning techniques, improvements of specialized hard-

wares and publication of large datasets have made deep learning models the standard

solution for video understanding tasks such as action recognition and sign language

recognition [17,31] . Early studies with deep learning in this field focused on 2D CNN

models [9, 10]. Classic 2D CNN models learn spatial features but they can not learn

temporal information well enough. This issue decreases models’ success on video tasks.

It causes studies to use 3D CNN networks because they can learn spatio-temporal fea-

tures [29, 30, 58]. Thanks to the ability to capture motion information from adjacent

frames, 3D CNN networks are widely used [58]. Despite its capabilities, 3D CNN

networks require high available memory, also have high computation cost and lots of

parameters. These downsides forced researchers to find alternative solutions [31, 59].
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Figure 3.1. Visualization of model’s input shape.

TSM was introduced as one of these solutions and managed to get successful

results in the action recognition domain. It uses 2D CNN models as backbone instead

of 3D CNNs because of their lower computational cost and memory need. 2D CNN

models can not model temporal information in videos without using extra preprocessed

inputs that represent motion between consecutive frames (e.g. optical flow) or trainable

submodels developed to be used with sequential data (e.g. Recurrent Neural Networks

(RNN), LSTM). The strength of TSM is that it provides the ability of temporal mod-

eling without adding extra parameters to the backbone networks. Normally, 2D CNN

networks used in the video domain take frames one by one, extract feature channels

from each frame independently and give an output accordingly. On the contrary, when

a 2D model with TSM takes one frame and extracts feature channels it shifts some

of these channels with ones extracted from previous and following frames (see Figure

3.2). A 2D model with TSM is informed about motions in different moments when it

gives an output for a frame. In this way, it can model temporal information in videos.
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Figure 3.2. Illustration of how feature channels of consecutive video frames are

shifted in Temporal Shift Module.

Lin et al. [31] used the ResNet-50 [7] model as the backbone network. On the

other hand, we used the ResNet-18 model (see Figure 3.3 for architecture) as the

backbone in order to reduce memory need, number of parameters and training time.

The ResNet-18 model has 4 stages and 8 building blocks. A shift module is added

before the first CNN layer of each of these building blocks (see Figure 3.4). We placed

the shift module in the residual branch of the building block as advised in [31]. In this

way, the model can still use original feature channels because they are transferred as

unchanged via identity mapping.

Feature channels of different frames in video produced by previous parts of the

network are given as input to the shift operation in TSM. First one eighth of the feature

channels of a frame is replaced with corresponding channels of the previous frame.

Second one eighth of the feature channels of a frame is replaced with corresponding

channels of the following frame. In this way, the 2D CNNmodel gets temporal modeling

ability. Thanks to the shift operation, the model gets temporal modeling ability without

introducing new trainable parameters.
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Figure 3.3. Visualization of the ResNet-18 model architecture.
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Figure 3.4. Detailed visualization of the ResNet-18 model’s building block with

temporal shift operation.

3.2. Attention Modeling

CNN models learn filters to detect both low-level and high-level features in an

input image. These filters are traversed and applied to every part of an input image.

When a filter that detects a specific feature finishes traversing the input image, the

feature located anywhere in the image will be extracted. Model uses information

gathered from feature occurrences all over the input image to interpret the scene in the

visual data.

Characteristics of convolution operation may cause it to give redundant or unnec-

essary information to the model because not all occurrences of a feature are helpful to

understand the input. This problem has encouraged researchers to develop new model

architectures that can produce better representations [60].



25

Human visual system has an attention mechanism to solve this specific problem.

Humans focus on the most important objects, motions or moments in the scene to

understand what they see. This mechanism also inspired researchers to adopt attention

into computer vision problems. It enables models to focus on important, distinctive

parts of features and suppress unnecessary parts [61]. Attention mechanism combined

with deep learning models are used in image [61,62] and video [17,63] related computer

vision tasks.

Attention modules must learn to focus on different aspects of information ac-

cording to the input data type. In natural language processing (NLP) studies [64],

attention modules focus on what and when dimensions of the data. In computer vision

tasks with 2D images, attention is on what and where dimensions. Attention modules

have two dimensions to focus in both of these study areas. On the other hand, when

working with video data attention modules must focus on three dimensions: what,

where and when.

The addition of a third dimension into attention modeling causes challenges in

model design and training process [17]. Wang et al. [65] showed that self-attention

related non-local models achieved competitive results in video classification. How-

ever, non-local models come with a considerable computational cost [17]. Dhingra and

Kunz [63] introduced a 3D residual attention network for hand gesture recognition in

videos. The model uses 3D ResNet as its backbone and adds three attention blocks

with different complexities. These attention blocks also include 3D CNNs. Using an

architecture with many 3D CNN layers causes this model to have an extremely high

number of parameters. A new attention module that can be used with 2D CNNs is

introduced by Pérez-Rúa et al. [17]. The proposed module enables the model to per-

form attention in all three dimensions of the input data without introducing significant

computational cost.

Attention modules take feature maps (F ) as inputs. Shape of feature maps,

like input video frames, is T × C × H × W (see an example in Figure 3.1). When
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considered from a wider perspective, attention modules aim to generate masks (M)

that have the same size with feature maps. Masks are element-wise multiplied with

the corresponding feature maps. With this multiplication operation, effects of features

that are important and distinctive are emphasized while irrelevant ones are suppressed

[17]. These attention modules are placed after each stage of the ResNet-18 model.

Each module has two submodules respectively: channel-temporal attention and spatio-

temporal attention (see Figure 3.5 for model architecture).

Figure 3.5. Visualization of the proposed model’s architecture. Overview of attention

modules are shown at the top of the figure.

3.2.1. Channel-Temporal Attention

The first submodule of attention, channel-temporal attention, enables the model

to focus on information in what and when dimensions of input videos respectively.

The submodule finds the importance of objects, motions and how that importance is

changing over time. Architecture of the channel-temporal attention submodule can be

seen in Figure 3.6.
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The first step in the submodule is squeezing the spatial dimension of feature

maps in order to learn what to attend to in an efficient way. Average pooling is used

commonly to aggregate spatial information in feature maps. Hu et al. [60] showed

that average pooling is more successful for squeezing spatial dimensions compared to

max pooling. Furthermore, Zhou et al. [66] used average pooling to get the extent

of an object. However, Woo et al. [61] proposed using max pooling in addition to

average pooling. They suggested that using max pooling will be beneficial because it

can extract most distinctive features in the spatial dimension [61]. In our study, feature

maps for each video frame with size C×H×W are squeezed with average pooling and

max pooling operations.

These operations generate two channel descriptors (dc avg and dc max) with size

C × 1 × 1. The channel descriptors are given as input to a multi-layer perceptron

(MLP) network with one hidden layer. Outputs of MLP for both channel descriptors

are element-wise summed and processed with a sigmoid function to generate frame-level

channel attention mask (Mc frame) with size C × 1× 1.

These steps are repeated for feature maps of each frame and their outputs are

concatenated. The concatenation forms a tensor with size T ×C×1×1 and it contains

frame-level channel attention masks. These masks have coefficients that emphasize or

suppress channels of feature maps of corresponding frames in the video. In other words,

frame-level channel attention masks give models the ability to learn what to attend.

Frame-level channel attention masks are not sufficient for video tasks because

they do not take temporal relationships into account. A CNN model with two layers

of 1D convolution takes a tensor of frame-level channel attention masks as input. This

model discovers temporal relations in corresponding channels between different frames.

Output of the CNN model is further processed with a sigmoid function. The final

output is video-level channel attention mask (Mc video). Video-level channel attention

mask contains coefficients to modify feature maps of the corresponding video. The

mask has size T ×C × 1× 1 and enables the model to learn what and when to attend.
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3.2.2. Spatio-Temporal Attention

Second submodule of attention, spatio temporal attention, enables the model

to focus on information in where and when dimensions of videos, respectively. The

submodule finds important and informative regions and how they are evolving over

time. The architecture of the submodule can be seen in Figure 3.7.

The first step in the submodule is squeezing the channel dimension of feature

maps in order to learn where to attend. Average pooling and max pooling operations

are applied to squeeze channel dimension of feature maps with size C×H×W . Similar

to what happens in the channel-temporal attention module, these pooling operations

generate two feature descriptors (ds avg and ds max). The difference is that since pooling

is applied to squeeze the channel dimension, resulting feature descriptors have size

1×H×W . The two descriptors are concatenated and given to a model with one layer

of 2D convolution. Output of this model is further processed with a sigmoid function.

The final output is frame-level spatial attention mask (Ms frame) with size 1×H ×W .

Steps to generate frame-level spatial attention masks are repeated for feature

maps of each frame in video. Resulting masks are concatenated to form a tensor with

size T×1×H×W . Each of these masks contain coefficients that emphasize or suppress

spatial information in feature maps of corresponding frames in the video. In this way,

frame-level spatial attention masks give models the ability to learn where to attend.

These frame-level spatial attention masks are computed without considering tem-

poral information. Therefore, they are not suitable to be used with video data. Another

model with two layers of 3D convolution is used to learn temporal relations between

frame-level spatial attention masks of different frames. Another sigmoid function is

applied to the output of the model. Resulting tensor with size T × 1 × H × W is

a video-level spatial attention mask (Ms video). The tensor has coefficients to modify

spatio-temporal dimensions of feature maps of the video and enables the model to learn

where and when to attend.
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3.2.3. How Attention Works

Four attention modules are placed after each residual building block with tem-

poral shift. These building blocks output feature maps (F ) with size T ×C ×H ×W .

Attention modules apply channel-temporal attention and spatio-temporal attention,

respectively. Thanks to channel-temporal attention module, channel attention mask

(Mc video) with size T ×C×1×1 is produced. Since corresponding feature map (F ) has

spatial dimensions H×W , channel attention mask is broadcasted during element-wise

multiplication operation and outputs the modified feature map (Fc).

Spatio-temporal attention takes Fc as input and outputs spatial attention mask

(Ms video) with size T ×1×H×W . (Ms video) is the final output of the whole attention

module. Spatial attention mask is broadcasted over channel dimension of (Fc) during

element-wise multiplication, outputting modified feature maps (Fs) with size T ×C ×

H ×W . Equations of submodules can be written as follows

Mc video = ac(F ) , Fc = Mc video ⊗ F

Ms video = as(Fc) , Fs = Ms video ⊗ Fc ,
(3.1)

where ac() and as() represent channel-temporal and spatio-temporal attention func-

tions.

One way of going forward at this point is forwarding feature maps (Fs) to the

classification part of the ResNet-18 model. However, as shown by Pérez-Rúa et al. [17]

and observed in our experiments, success of models using this architecture is respec-

tively low due to the vanishing gradient problem. Pérez-Rúa et al. [17] introduced

two solutions in order to overcome this problem. We also adopted these solutions and

integrated them into our model architecture.

The first solution aims to build a special pathway for attention modules’ gradients

to overcome the vanishing gradient problem. Since the model has four residual stages
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and four attention modules, four spatial attention masks (Ms video) will be calculated.

At first, Ms video generated by attention modules are processed with adaptive average

pooling (AAP). AAP is designed to align all spatial dimensions to spatial size of feature

maps obtained from the last residual stage. Spatially aligned masks are concatenated

and forming a new mask (Mmeta). This mask has size N × H × W where N is the

number of stages in the model, H × W is the spatial size of last stage’s feature map.

A one layer 2D CNN model uses mask Mmeta as input and outputs a feature

refining mask (Mfrm). The 2D CNN model uses 1 × 1 kernel to align channel size of

Mfrm with F 4
s . The mask Mfrm is element-wise summed with final feature maps (F 4

s )

produced before classification layers of the model to refine features. The refined feature

map (Fagm) is used for classification. This solution method is called Attention Guided

Feature Refinement (AGFR) and calculates (Fagm) as following

F 4
s = M4

s video ⊗ F 4
c ,

Mfrm = CNN(Mmeta) ,

Fagm = F 4
s +Mfrm .

(3.2)

The second solution requires training a student model that has the same architec-

ture as a teacher model (see Figure 3.8). The teacher model has attention modules and

AGFR. Also the teacher model used cross-entropy loss in the training process. On the

other hand, loss function used to train the student model is different. It contains an

additional regularization term to cross-entropy loss. This term is the distance between

final feature maps of teacher and student model. It is calculated as follows

Lmfgr = ||F s
agm − F t

agm||2 . (3.3)

This solution method is called Mature Feature Guided Regularization (MFGR).

The regularization term helps the model to improve predictive power by reaching a

better local optimum [17]. The regularization term and cross-entropy is combined

using a weight coefficient. The student loss is calculated as follows
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Lce = − 1

N

N∑
i=1

yi log(ŷi) ,

Ls = αLce + (1− α)Lmfgr ,

(3.4)

where Lce is cross-entropy loss, N is number of samples, yi is label, ŷi is predicted class,

Ls is loss of the student model and α is the weight coefficient.
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4. EXPERIMENTS AND RESULTS

4.1. Dataset

The proposed model is trained and tested with Turkish isolated sign language

dataset BosphorusSign22k [11]. The dataset contains 22,542 videos from 744 sign

classes. The videos are from health, finance and commonly used sign glosses categories.

Glosses were performed by six native signers. Özdemir et al. [11] proposed using

18,018 videos performed by five signers to train models and 4,524 videos performed

by the other signer to test models (see Figure 4.1). The introduced train-test split

makes it a signer-independent dataset. We also applied this splitting strategy in our

experiments.

Figure 4.1. Right most signer is used for testing, other ones are used for training.

All videos in the dataset were recorded with a Kinect v2 placed 1.5 meter away

of signers that stood in front of a Chroma-Key background. The dataset has RGB

videos, depth map, skeleton information and OpenPose [67] joint information. In this

study, we used RGB videos and OpenPose data. RGB videos have 1920x1080 pixels

resolution and 30 frames per second frame rate.
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4.2. Data Preprocessing and Transformations

Certain preprocessing and transformation steps are applied to video frames in

order to adapt data to model and improve the model’s success (Figure 4.2). As the

first step of data preprocessing, short edges of video frames are resized to 256 pixels.

The aspect ratio is preserved during resizing operation. Since ResNet-18 pre-trained

on ImageNet dataset is used as a backbone model, input images must satisfy certain

conditions regarding spatial size. Resized video frames are cropped to size of 224×224

pixels in order to meet these conditions. Frames are cropped at random locations in the

model training process. However, to evaluate different models under equal conditions,

frames are cropped from the center in the testing process.

Moreover, the pre-trained model expects input values in a specified range. There-

fore, values of video frames are scaled to [0-1] range, then normalized by using mean

and standard deviation of ImageNet dataset. Video frames are also horizontally flipped

randomly according to a given probability in the training process. If a video is decided

to be horizontally flipped, then all frames selected from the video will be transformed.

The flip probability is a hyper-parameter that needs to be fine-tuned. Horizontal flip

is not applied during the testing process.

Figure 4.2. Illustration of the image preprocessing and transformation pipeline used

in the training process.
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4.3. Frame Selection

Video recognition models produced their final outputs according to predictions

for selected frames from videos. Frames do not contain equally important information

for the task. Some of them might be irrelevant or might contain redundant informa-

tion [68]. Therefore, model success is directly related to which frames are selected

from videos. Four frame selection methods are tried in this study (see Figure 4.3 for

visualization):

(i) Linear Frame Selection: This method starts by selecting the first frame in the

video. Then next ones are selected uniformly by skipping a number of frames.

Number of frames to be skipped is decided according to the number of frames in

the video and the number of frames that will be selected.

(ii) Segment Frame Selection: This method divides frames into multiple segments

according to the given segment number. Then a frame from each segment is

randomly selected.

(iii) Active Frame Selection According to OpenPose Data: The method aims to find

frames where signers are actively performing some hand gestures. In this way,

frames carrying more information about the sign gloss can be found. We named

these frames as active frames. The method uses joint position data of signers in

each video frame extracted with OpenPose pose estimation [67] in order to find

active frames. More specifically, lunate bone positions in both hands, left and

right hip positions together with neck position is used. Weighted ratio of hip

and neck positions are used to determine a threshold position between them. If

the signer’s hand is above the threshold position in the frame then the frame is

marked as active. Model’s input frames are selected among these active frames

in a temporal order.

(iv) Active Frame Selection According to MMPose Data: This method has the same

logic with the previous one. The difference is the pose estimation algorithm

used to find joint positions of signers. This method uses MMPose [69] instead of

OpenPose.
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Figure 4.3. Illustration of different frame selection methods. From left to right:

linear, segment and active frame selection. Green squares show selected 4 frames out

of 16 in an example input video.

4.4. Temporal Shift Modules

Temporal shift modules (TSM) are inserted before the first CNN layer of each

residual building block in the backbone model (Figure 3.4). The backbone network,

ResNet-18, can perform temporal modeling thanks to TSMs. Since temporal modeling

is crucial for video recognition, models with this ability should achieve better results

than classic 2D CNNs.

We firstly compared the original ResNet-18 model and its TSM added version

under the same conditions in order to see the effect of TSMs without attention modules

and extra training procedures (AGFR and MFGR). Top-1 and Top-5 classification

accuracy of models can be seen in Table 4.1. We can see that temporal modeling with

TSM even in its basic settings greatly improves model accuracy.

After seeing the sole effect of TSM, we tested different approaches and settings

to improve the model’s classification accuracy. We tried image transformations, frame

selection methods, using different numbers of video frames, batch sizes and model

architectures.
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Table 4.1. Comparison of ResNet-18 and ResNet-18 + TSM.

Model Top-1 (%) Top-5 (%)

ResNet-18 26.20 59.92

+ TSM 68.50 89.88

Horizontal flip is an image transformation technique to improve image and video

classification models’ accuracy scores by increasing generalization ability. We trained

different models with changing flip probabilities. Results of the experiments can be

seen in Table 4.2. Flip probability of 0.5 gives the best results in both Top-1 and Top-5

accuracy.

Table 4.2. Effects of using different horizontal flip probabilities tested with ResNet-18

+ TSM.

Model Flip Probability Top-1 (%) Top-5 (%)

ResNet-18 + TSM 0 54.75 79.22

ResNet-18 + TSM 0.3 66.97 89.83

ResNet-18 + TSM 0.5 68.50 89.87

Frame selection has a direct impact on a model’s success as explained in Section

4.3. In this study, we applied linear frame selection, segment frame selection and active

frame selection with both OpenPose and MMPose data. Linear frame selection assumes

information is distributed uniformly in the video. While segment frame selection also

has a similar logic, it adds some randomness and can increase the generalization power

of a model. On the other hand, active frame selection focuses on informative and dis-

tinctive frames under assumption of frames with hand motions is more important for

SLR. Experimental results presented in Table 4.3 are in line with previous explana-

tions and the active frame selection with OpenPose achieves the highest classification

accuracy.
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Table 4.3. Effects of using different frame selection methods tested with ResNet-18 +

TSM.

Model Frame Selection Top-1 (%) Top-5 (%)

ResNet-18 + TSM Linear 63.19 88.04

ResNet-18 + TSM Segment 68.50 89.87

ResNet-18 + TSM Active (OpenPose) 75.44 93.52

ResNet-18 + TSM Active (MMPose) 71.35 90.67

SLR models produced their final sign class prediction by combining individual

frame predictions. Therefore, selecting more frames from videos is expected to increase

models’ accuracy. On the other hand, using more frames increases computational cost

of the model. Selecting the correct number of frames is important to find an optimum

point for both model performance and efficiency. Performance of models trained with

different numbers of frames is presented in Table 4.4. The SLR model gave the best

results when 32 frames were used to train and predict. However, additional improve-

ment of using 32 frames in accuracy is insignificant compared to its computational cost.

Therefore, we decided to select 24 frames from sign videos.

Table 4.4. Effects of selecting different number of frames from videos tested with

ResNet-18 + TSM.

Model Number of Frames Top-1 (%) Top-5 (%)

ResNet-18 + TSM 8 66.64 89.43

ResNet-18 + TSM 16 75.44 93.52

ResNet-18 + TSM 24 82.62 96.55

ResNet-18 + TSM 32 82.63 96.59

When we analyzed train and test accuracies of TSM models, we saw that models

are overfitting. We proposed two solutions to decrease overfitting and increase model

performance with its ability to generalize. Firstly, we implemented two new models by

adding dropout layers. The first of these models have dropout layers after its first three
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building blocks with probability 0.3, 0.5 and 0.5, respectively. The second model has

another dropout layer with probability 0.5 before its fully connected layer (see Figure

4.4 for model architectures). As for the second solution, we decreased batch size to

improve accuracy because using large batches can cause to poor generalization [70].

Results of both approaches can be seen in Table 4.5. When batch size is 4, both

models with dropout layers improved accuracy and adding another dropout layer had

a positive effect in performance. Decreasing batch size to 2, improved accuracy of both

models with and without dropout layers. Impact of decreasing batch size became more

apparent in model without dropout layers. In this setting, the best performance is

observed when TSM inserted ResNet-18 model is used with batch size of 2.

Figure 4.4. Visualization of the dropout layer inserted ResNet-18 + TSM

architectures. From top to bottom: TSM with 3 dropout layers, TSM with 4 dropout

layers.
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Table 4.5. Comparison of selecting different model architectures and batch sizes.

Model Batch Size Top-1 (%) Top-5 (%)

ResNet-18 + TSM 4 82.62 96.55

ResNet-18 + TSM 2 89.89 99.22

+ 3 Dropout layers 4 84.43 97.41

+ 4 Dropout layers 4 85.85 97.94

+ 4 Dropout layers 2 88.17 98.98

Firstly, we present results for adding TSM into a ResNet-18 model in Table 4.1.

Then, we tested different hyper-parameters, frame selection methods, number of frames

and model architectures. The best setting options according to performance become

a guideline for attention model experiments. We set flip probability as 0.5, selected

number of frames as 24 and model selection method as active frame with OpenPose.

4.5. Attention Modeling

Attention modules are added after each stage of the ResNet-18 model with TSM

(Figure 3.5). The modules emphasize important and distinctive parts of extracted

feature channels and suppress unnecessary parts. Training attention modules in the

ResNet-18 backbone without additional arrangements limits it to reach its full potential

due to the vanishing gradient problem as stated by Pérez-Rúa et al. [17].

In this section, we tested attention models with and without additional training

procedures as explained in Section 3.2.3. Attention modeling reaches its top perfor-

mance when both Attention Guided Feature Refinement (AGFR) and Mature Feature

Guided Regularization (MFGR) is applied. In Table 4.6, we compare best results ob-

tained with TSM models, their attention and AGFR added versions. While adding only

attention modules decreases Top-1 accuracy by 1.48%, the best attention model with

AGFR improves Top-1 accuracy by 1% compared to the best TSM model architecture.

Moreover, AGFR improves Top-1 accuracy of attention model by 2.48%.
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Table 4.6. Comparison of ResNet-18 + TSM with attention models.

Model Top-1 (%) Top-5 (%)

ResNet-18 + TSM 89.89 99.22

+ Attention 88.41 98.93

+ Attention + AGFR 90.89 99.13

4.5.1. Mature Feature Guided Regularization

Training models with applying MFGR has two main differences than other train-

ing processes. Firstly, we use a teacher model while training the student model. Sec-

ondly, a regularization term is added to cross-entropy loss to create loss function of the

student model. We conducted experiments to try different options for both of these.

Loss function used in the student models’ training has two main terms namely

Lce and Lmfgr. The two terms are multiplied with α and 1− α. The α coefficient is a

hyperparameter that needs to be optimized. If α value gets closer to 1, cross-entropy

dominates loss functions. Both terms have equal effect on loss function when α is set

to 0.50. Our experiments with different α values can be seen in Table 4.7. Best Top-1

accuracy is obtained when α is 0.90 so it is the value used in the next experiments.

Table 4.7. Effects of different α values in attention models with AGFR and MFGR.

Model α Top-1 (%) Top-5 (%)

Attention + AGFR + MFGR 0.99 91.29 99.11

Attention + AGFR + MFGR 0.98 92.30 99.11

Attention + AGFR + MFGR 0.95 90.89 99.13

Attention + AGFR + MFGR 0.90 92.57 99.07

Attention + AGFR + MFGR 0.80 91.22 99.20

Attention + AGFR + MFGR 0.50 90.60 99.04
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MFGR loss leads the student model to mimic feature maps of the teacher model

in training process. MFGR introduced in study [17] uses a teacher model with attention

modules and AGFR. Our best model so far is a student model shown in Table 4.7 with

92.57% Top-1 accuracy. This student model uses a regular teacher model as proposed

in [17]. In this study, we proposed 2 new options to be used as a teacher model.

Firstly, since the former student model has better classification accuracy, we used it as

a teacher model in the training process of the new student model. Secondly, we tried

using a teacher and a former student model as teacher models to train the new student

model. As it can be seen from the results in Table 4.8, using a former student model

as teacher model gave the best result with 92.97% Top-1 and 99.35% Top-5 accuracy.

Table 4.8. Effects of using different teacher model architectures in attention models

with AGFR and MFGR.

Model Teacher Model Top-1 (%) Top-5 (%)

Attention + AGFR + MFGR Teacher 92.57 99.07

Attention + AGFR + MFGR Student 92.97 99.35

Attention + AGFR + MFGR Teacher + Student 90.71 98.65

4.6. Comparison With Other Studies

Different isolated sign language recognition models trained and published their

results using BosphorusSign22k dataset. We compared our best result with these stud-

ies [3, 11,13] in Table 4.9.

The proposed model with 92.97% Top-1 and 99.35% Top-5 accuracy gave bet-

ter results than introduced solutions used Temporal Accumulative Features (TAF) [3],

Mixed Convolution (MC) with 3D-2D ResNet models [11] and Improved Dense Tra-

jectories (IDT) [11]. However, the proposed architecture using 3 MC models with

spatio-temporal sampling and weighted score fusion [13] remains state-of-the-art with

its 94.94% Top-1 and 99.76% Top-5 accuracy.
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Table 4.9. Comparison of our model with other studies used BosphorusSign22k

dataset.

Model Top-1 (%) Top-5 (%)

TAF [3] 81.37 97.47

MC3 [11] 78.85 94.76

IDT (HOG + HOF + MBH) [11] 88.53 -

MC3 + Spatio-Temporal Sampling + Score Fusion [13] 94.94 99.76

Proposed Model 92.97 99.35

We compared our proposed model with the state-of-the-art in Table 4.10. Even

though our model didn’t improve state-of-the-art in terms of classification accuracy,

it has advantages in training process, number of parameters and memory need. Our

proposed architecture uses one model to predict gloss of the sign. On the other hand,

state-of-the-art fuses outputs of three models to predict the gloss. Our model has ap-

proximately 55% less parameters than the state-of-the-art. Furthermore, the proposed

solution needs only full-frame RGB video frames and OpenPose data while the com-

pared model requires cropped right hand, left hand, face images in addition to RGB

video frames and OpenPose data. When both solutions were trained and tested by

using only full frame RGB and OpenPose data, our model improves state-of-the-art by

6.06% in Top-1 and 1.18% in Top-5 accuracy.

In addition to performance comparisons with other studies, we checked inference

duration of our best model. In order mimic conditions in a system without powerful

GPU to some extent, we measured inference time of the model while running it on a

Intel i7 CPU with 2.30 GHz. Average inference time for a video is measured as 0.567

seconds.
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Table 4.10. Comparison of the proposed model with the state-of-the-art.

Proposed Model Gokce v.d. [13]

Backbone Network 2D CNN 3D CNN

Number of Predictive Models 1 3

Used Data
RGB Video Frames

OpenPose Data

RGB Video Frames

Right and Left Hand Crop

Face Crop

OpenPose Data

Number of Parameters 15.79 Million 35.07 Million

Performance with Same Data 92.97% / 99.35% 86.91% / 98.17%

4.7. Attention Visualization

We visualized spatio-temporal attention regions at different moments of a sign

video (see Figure 4.5). At the beginning, the model attends both hands. However,

motion of the left hand shifts the model’s focus on that hand. When the signer raises

her hands up to her mouth, the model mainly attends that region. When the signer

starts to lower her hands, the model focuses on both of them. With completion of the

sign, model attention shows similar characteristics to the beginning of the video.

Figure 4.5. Visualization of spatio-temporal attention regions.



47

5. CONCLUSION

Deaf communities use sign languages to communicate with each other. The com-

munication is performed through multiple visual cues performed simultaneously or in

sequence. Therefore proposed models in the sign language recognition field should be

able to learn certain motions in specific body parts together with relations between

each other.

In this thesis, we worked on the Turkish isolated SLR problem and developed

an attention model with temporal shift. The model aims to focus on specific parts of

information extracted from sign video to predict glosses in BosphorusSign22k dataset.

The dataset has 744 different sign glosses from health, finance and commonly used

glosses categories.

The proposed approach has different contributions in the field than the solution

introduced by Gökçe et al. [13]. Our architecture uses ResNet-18, a 2D CNN model,

as its backbone model instead of a 3D CNN in order to reduce required memory and

computational cost. Our study shows that TSM integrated 2D CNN models can be an

alternative to 3D CNN for temporal modeling in SLR.

Since signs are performed through hand gestures, upper body movements and

facial expressions, explicitly using them is helpful to increase model success. However,

preparing crop images of these body parts from RGB video frames requires additional

preprocessing. Moreover, it decreases reusability of proposed architecture with differ-

ent datasets and problems. Our model uses channel-temporal attention and spatio-

temporal attention to focus on important movements, locations and moments in the

video frame while suppressing irrelevant ones. In this way, the model can give its atten-

tion to hands, upper body and face whenever they are informative without requiring

additional data.
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Results obtained in our experiments allowed us to make some inferences. Firstly,

2D CNN models with temporal shift and attention modules can give competitive scores

in the SLR domain. Secondly, usage of 2D CNN as backbone model and solving tem-

poral modeling issues without adding extra parameters to architecture keeps number of

parameters, required memory and computational cost low. Moreover, achieving 92.97%

Top-1 and 99.35% Top-5 accuracy by using only full frame RGB and OpenPose data

increases the proposed model’s adaptability to other datasets and to similar problems.

As future work, several improvements can be made in the model architecture.

Firstly, the backbone model ResNet-18 could be substituted with deeper ResNet mod-

els. They are more generalizable and have lower training error than ResNet-18 [7].

Secondly, current architecture always selects 24 frames from videos. Designing an ar-

chitecture that can dynamically adjust how many frames it should select according to

video properties can be helpful to increase performance. Thirdly, changing how TSM

works could improve model success. In this study, each TSM shifts the same ratio of

feature channels in every depth of the network. However, modeling capacity is likely

to change at different depths of the network [71]. Therefore, implementing a new TSM

that shifts channels in different ratios according to depth of the residual block can

increase model accuracy.
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43. Escalera, S., X. Baró, J. Gonzàlez, M. Á. Bautista, M. Madadi, M. Reyes, V. Ponce-
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