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ABSTRACT

SIMD EXTENSIONS FOR ETHEREUM VIRTUAL
MACHINE

Ethereum and its smart contracts have been growing their popularity. Therefore,
there is a need for higher transaction throughput in every other day. Ethereum Virtual
Machine is a Turing-complete computer which executes Ethereum bytecode encoded
instructions of smart contracts. Every instruction uses 256-bit wide stack items as
input and output operands. They pop required inputs from the stack and push the
result into it after an execution. A gas consumption cost is assigned to them relative
to the complexity of the instruction as it prevents halting problem. Consumed gas
multiplied by gas price is charged as transaction fee by the transaction sender, so that
Denial of Service (DoS) attacks can be avoided. Current supported instruction set has
some weaknesses. Firstly, transactions containing large size of vector operations require
excessive amount of gas cost. Secondly, transaction throughput is limited because of no
parallelism in execution. Therefore, we extend the instruction set by Single Instruction
Multiple Data (SIMD) operations to benefit from data level parallelism. We show
how EVM can benefit from the SIMD instructions by lowering gas consumption and

increasing transaction throughput.



OZET

ETHEREUM SANAL MAKINESI ICIN SIMD
KOMUTLARI

Ethereum ve akilli sozlesmelerin popiilerligi artmaktadir. Bu nedenle, her gegen
giin daha fazla islem hacmine ihtiya¢ duyulmaktadir. Ethereum Sanal Makinesi, akill
sozlegsmelerin Ethereum-baytkoduyla kodlanmig talimatlarini yiirtiten bir Turing tam
bilgisayaridir. Her talimat, giris ve cikig islenenleri olarak 256 bit genisliginde yigin
ogeleri kullanir. Yigindan gerekli girdileri ¢ikarirlar ve bir yiiriitmeden sonra sonucu
yigina geri koyarlar. Durdurma sorununu engelledigi icin talimatin karmasikligina
gore onlara bir gaz tiikketim maliyeti atanir. Tiketilen gazin, gaz fiyatiyla carpimi,
igslemi gonderen tarafindan iglem iicreti olarak harcanir ve bu sekilde Hizmet Reddi
(DoS) saldirilar1 énlenebilir. Mevcut desteklenen komut kiimesinin bazi zayif yonleri
vardir. Bunlardan birincisi, biiyliik boyutlu vektor iglemleri igeren iglemlerde asgir
miktarda gaz maliyeti gerektirmesidir. Ikincisi, yiiriitmede paralellik olmamasi ne-
deniyle saniye bagina yapilabilen iglem sayist sinirhidir. Bu nedenle, veri seviyesi par-
alelliginden yararlanmak igin Tek Komutlu Coklu Veri (SIMD) iglemleriyle komut
kiimesini genigletiyoruz. Gaz tiikketimini azaltarak ve iglem hacmini artirarak EVM nin

SIMD komutlarindan nasil yararlanabilecegini gosteriyoruz.
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1. INTRODUCTION

Blockchain is a technology to store data in blocks that are linked to each other in
chains. It is used for the nodes in the distributed system to store transaction data. The
difference from other databases is the immutability of the data stored in the chain. Its
combination with cryptography has paved the way for the cryptocurrencies and smart
contracts, which are currently very popular and continue to be widely adopted. Besides
the immutability and security, it offers anonymity to its users via public private key
transaction signatures. Cryptocurrency chains are often called as distributed ledgers

due to their properties.

Bitcoin is the first ever distributed ledger that is used widely by people around the
world. It allows only coin transfers to be stored in its ledger. That kind of distributed
ledgers are called Blockchain 1.0. On the other hand, Ethereum not only stores coin
transfer transactions, but also records immutable code and its data storage that can be
changed via transactions. This addition, which boosted Blockchain 1.0 to Blockchain
2.0, means a lot for humanity, because many real life business logic can make sense
in cryptocurrency world. For example, a decentralized voting system like [1] would
be possible in a smart contract. New terms like NFT (non fungible token) and DeFi
(decentralized finance) appeared as smart contracts [2]. In addition to external personal
accounts’ addresses, Ethereum lets the smart contracts have addresses that enables
them to take part in transactions. What makes smart contract execution possible
is the Ethereum Virtual Machine (EVM) which is a Turing complete computer. Its
input is portable Ethereum bytecode. Every operation the EVM can process, which
is documented in [3], has its own bytecode representation. EVM uses the concept of
the gas to solve the halting problem and DoS attacks [4]. Each instruction consumes
an EVM specific amount of gas which is chosen by considering the CPU cycles they
take. Sender puts an estimated unitless gas quantity for its transaction to successfully
complete [5]. Transaction senders also puts a gas price in terms of ether which is driven

by the demand and supply among users for the gas price [6].



Senders have to pay the cost of total consumed gas for the transaction. Therefore,
it would incentivize people to move into Ethereum’s decentralized world if gas costs
can be reduced. The network also needs to execute EVM instructions faster to scale
efficiently considering the increasing popularity of Ethereum. Thus, efficient solutions

are required for EVM’s scalability problems.

1.1. Related Work

An EIP on [7], which is still in draft, was created by Greg Colvin. It suggests
SIMD instruction set extension into EVM and speaks of the design and the rationale
behind it. EVM stack consists of 256 bit items and that is appropriate to take advantage

of SIMD to increase EVM performance and also to reduce gas consumption.

As shown by [8], the performance of vector operations can be boosted because
SIMD instructions offer a means of improving the ratio of processor performance to
power usage due to reduced and effective data movement. They obtain up to 13.88x
performance improvement on ARM architectures and 5.54x performance improvement

on Intel architectures.

Some other studies show how SIMD improved performance of algorithms. [9]
shows that 7x speedup boost on SHA-512. [10] shows that 4x speedup boost on elliptic
curve scalar multiplication. [11] shows that 3-4x speedup boost on BLAKE2b. [12]
shows that 3x speedup boost on OpenSSL. [13] shows that 2-3x speedup boost on
elliptic curve modular multiplication. [14] shows that 1.7-1.9x speedup boost on SHA-
256. [15] shows that 1.3x speedup boost on RSA-encryption.

1.2. Contributions of the Thesis

In this thesis, we consider the scalability problems of EVM. Current version of

EVM has two drawbacks in terms of scalability:



(i) Low throughput because of no parallelism in the execution,

(ii) High gas costs incurred by big loop executions.

To solve the scalability problems, we extended current EVM with the help of
SIMD instructions.

In Chapter 2, we review the background material about Ethereum and EVM
internals. Chapter 3 presents our solution in details. It shows and discusses internal
design decisions about the bytecode representation and the gas cost model for SIMD
instructions. Chapter 4 presents a helper bytecode generator for our solution. Chapter
5 shows some examples of bytecode execution with comparison between both versions
of EVM. In chapter 6, we present our experiments and benchmark comparison between
current version of EVM and SIMD extended EVM. Finally in chapter 7, we conclude

the thesis with results and future possible extensions.



2. PRELIMINARIES

2.1. Ethereum

Ethereum is a digital ledger that securely stores all the transactions that can be
either a coin transfer or a contract call. Transactions are propagated to some special
nodes called "miner node” through the Ethereum network. Miners pick transactions
and put them into what is called a "block” which is linked to previous blocks in the

chain as depicted by Figure 2.1.

— —
Block 1 = Block 2 Block k
Transaction 1 Transaction 1 Transaction 1
Transaction 2 <«—| Transaction 2 — 000 < Transaction 2
[eXeXe] [e)e}e] [eXeXe]
Transaction n l Transaction n I

World_State_1 World_State_2 . . . World State k
- World_State_|

Figure 2.1. Blockchain.

2.2. Blocks

Transactions contains gas price to incentivize the miners. Each transaction con-

sumes a certain amount of gas. Gas fee is calculated by
GasFee = GasPrice - ConsumedGas. (2.1)

Miners often prioritizes the transactions with high gas fees and include them first in

the block.



After picking transactions for the block, the block finalisation step is taken place by
applying each transaction into current world state. Finally, they try to solve a mathe-
matical puzzle to prove their effort to create the block. After solving the puzzle, they
dissipate the block with the solved puzzle parameters to all other nodes. Puzzle solving

makes the irreversibility of the past transactions extremely difficult [16].

2.3. Consensus and Common State

Because there are many miners that are trying to solve the puzzle, many blocks
will race with each other in the network. The network should decide on the same state
after a period. That is where the consensus protocol comes in. Despite of the many
racing blocks, the consensus protocol will choose the longest valid chain which contains
the longest proof of work chain as shown in Figure 2.2. In this way, the network agrees

on a common state [17].

Blocks in out of sync branches are discarded

{4

Figure 2.2. Consensus.

2.4. Block Verification

Blocks that are spread to the network are verified by the other nodes before being

counted in the chain. Verification steps can be summarized by [18]:



(i) Existence of the previous block is checked.

(ii) The block’s timestamp should not be longer than 15 min after the previous block’s
timestamp,

(iii) Validate the block number, difficulty, transaction root, uncle root and gas limit
are valid,

(iv) Validate the proof of work on the block,

(v) Apply transactions in the block one by one and update world state accordingly.
Abort transaction in case of an error,

(vi) Add block reward to the miner’s account.

Execute Execute Execute
Tx 0 Tx_1 Tx_n

rer —{1m ]

Figure 2.3. Finalisation.

2.5. Accounts

An account can be either an externally owned account(EOA) or a contract ac-
count as shown in Figure 2.4. Account state consists of nonce and balance for both
types of accounts. Nonce helps to prevent double spending of the same transaction.
Nonce is incremented after every successful transaction and if a transaction has lower
nonce than current nonce, it is rejected. Storage hash and code hash only exists for

contract accounts. They respectively maps to data storage and code for the contract.



p[address] ——>» 1 Nhonce

________________________

p[address] ——> i honce

| balance

storage hash

code hash

Figure 2.4. Externally owned and contract accounts’ properties.

2.6. Transactions

There are 2 types of transactions which are, namely, contract creation and mes-
sage call. When an EOA sends a contract creation transaction, a contract address is
created by using transaction sender address and nonce. Contract code is put into trans-
action’s init parameter by transaction sender. Message transactions can be between
any types of accounts. In case of a contract call, input parameters is passed to the
transaction’s data parameter. Transaction contains "to” parameter to specify recipient
address which is 0 in case of contract creation. ”Value” parameter specify the amount
of the transfer if any. It also contains ”gas price” and ”gas limit” parameters [19]. Gas
price assigns a value per gas unit. Gas limit specifies the maximum amount of gas unit
that transaction sender would accept. If gas limit is exceeded by EVM, transaction is
aborted [20]. All the parameters are specified by a transaction structure as shown by

Figure 2.5.



Transaction

nonce
gas price
gas limit
to

value

V, T, S

Init or data

Figure 2.5. Transaction properties.

2.7. Ethereum Virtual Machine

EVM is a Turing compete machine which updates its world state upon every
transaction execution. World state stores all account related information belonging to

all account address.

[t is an run time environment for smart contracts. It mainly consists of immutable
virtual ROM that contains EVM code, machine state and world state. Machine state
contains virtual registers which store ”available gas” and ”program counter” as shown
by Figure 2.6. Machine state also contains a stack with 1024 items and memory. On
the other hand, it has a non-volatile account storage area, which is called world state,

stores mapping between account addresses and account information.



Each stack item has a width of 256 bits. All operations are performed on the
stack. That means all inputs and outputs of an EVM instruction is pushed and popped
onto the stack. After every transaction EVM updates its world state.

EVM Architecture

o(volatile machine state)

Stack Memory
Program data
H(persistent world state)
000
I:I Immutable code area

PC Reg Available Gas Reg

Figure 2.6. EVM Internal State.

2.8. SIMD

According to Flynn’s Taxonomy, SIMD means that the same instruction is exe-
cuted on multiple parts of a large register as shown in Figure 2.7. Every scalar operation
needs to operate in CPU registers. After the operation finalizes, its result is written
back to a memory location from register. Even though registers can accommodate
multiple data and execute the same operation for them, they have to execute the same

operation for multiple data in sequence if there is no support for SIMD.
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Intel first introduced MMX instruction set which support SIMD operations. Reg-
isters are named MMO-7 and had 64 bits width. They could operate up to 8 integers of
8 bits. Then, they extended MMX with SSE instruction set. MMX was only capable
of operating on integers. 128 bit width SSE registers (XMMO0-7) can also operate on
single precision floating point numbers. Then SSE2 further extended SSE to be able
to operate on double floating point numbers. After those extensions, AVX and AVX2
registers appeared with its 256 bit width registers (YMMO-T7).

SIMD vector operations takes fewer CPU cycles than sequential calls to a scalar
instructions. EVM uses its 256 bit wide stack for instruction operands. Therefore,
SIMD instructions can be perfect fit for EVM in order make it to consume less CPU
cycles and, hence, less gas. That is why data parallelism via SIMD registers is im-
portant for EVM to improve performance and reduce the cost of data parallelizable

algorithms, e.g. by elementwise vector operations.

)(/r 3\ / a0 ala2a3

R761 + | Reg2 \ Simd Reg1

Reg1 + Reg2 +
Simd Reg2

Reg1 + Reg2

Reg1 + Reg2

Figure 2.7. a) Scalar vs b) SIMD operation.
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3. ETHEREUM VIRTUAL MACHINE SIMD EXTENSION

We chose Aleth, which is the C++ implementation of EVM, to perform the
SIMD extension to EVM operations. After detailed benchmarking [21] between com-
piler intrinsics, and libsimdpp (a user friendly and performant SIMD library) versus
scalar operations, we chose libsimdpp because of both competitive performance to the
compiler intrinsics and easier integration than the compiler intrinsics. We integrated
libsimdpp into Aleth in order to extend EVM operation set. libsimdpp uses the most
advanced SIMD instruction set available on host CPU to get maximum performance.
In case of no SIMD support for any operation, then it fallbacks to scalar operation

mode.

3.1. SIMD Instruction Representation

We base our approach on [7] in order to implement our solution. As shown by
Table 3.1, each SIMD instruction is encoded into 2 bytes in bytecode. First byte
represents SIMD opcode. First bit of the second byte is utilized to differentiate integer
and floating arithmetic. While bits 3-4 of second byte contains information about

operand width, bits 6-8 tells us operand count for the operation.

Table 3.1. SIMD Opcode Specification [7].

N bits Field
8 Opcode
1 scalar type 0:=unsigned integer, 1:=floating
1 reserved

2 Lane width (00:=1byte, 01:=2bytes, 10:=4bytes, 11:=8bytes)

1 reserved

3 Lane count (000:=2, 001:4, 010:=8, 011:=16, 100:=32)




Supported SIMD instructions is shown on Table 3.2. Args represents the count

of stack items popped whereas Returns shows the count of the stack items pushed for

the related operation.

Table 3.2. EVM SIMD Operations [7].

3.2. SIMD Instructions

Opcode | Operation | Args | Returns | Gas
0xC1 XADD 2 1 3
0xC2 XMUL 2 1 5
0xC3 XSUB 2 1 3
0xC4 XDIV 2 1 5
0xC6 XMOD 2 1 3
0xDO0 XLT 2 1 3
0xD1 XGT 2 1 3
0xD4 XEQ 2 1 3
0xD5 XISZERO 1 1 3
0xD6 XAND 2 1 3
0xD7 XOOR 2 1 3
0xD8 XXOR 2 1 3
0xD9 XNOT 1 1 3
0xDB XSHL 2 1 3
0xDC XSHR 2 1 3
0xEO0 XPUSH 0 1 3

3.2.1. Operation Descriptions

3.2.1.1. XADD. Pops 2 vectors from stack, adds them, and pushes the vector result

into the stack back.
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3.2.1.2. XSUB. Pops 2 vectors from stack, subtracts them, and pushes the vector

result into the stack back.

3.2.1.3. XMUL. Pops 2 vectors from stack, multiplies them, and pushes the vector

result into the stack back.

3.2.1.4. XDIV. Pops 2 vectors from stack, divides them, and pushes the vector result

into the stack back.

3.2.1.5. XMOD. Pops 2 vectors from stack, modulos them, and pushes the vector

result into the stack back.

3.2.1.6. XIT. Pops 2 vectors from stack, compares them with less than relation, and

pushes the boolean vector result into the stack back.

3.2.1.7. XGT. Pops 2 vectors from stack, compares them with greater than relation,

and pushes the boolean vector result into the stack back.

3.2.1.8. XEQ. Pops 2 vectors from stack, compares them with equality relation, and

pushes the boolean vector result into the stack back.

3.2.1.9. XISZERQO. Pops 1 vector from stack, compares it with zero, and pushes the

boolean vector result into the stack back.

3.2.1.10. XAND. Pops 2 vectors from stack, bitwise-ands them, and pushes the vector

result into the stack back.
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3.2.1.11. XOOR. Pops 2 vectors from stack, bitwise-ors them, and pushes the vector

result into the stack back.

3.2.1.12. XXOR. Pops 2 vectors from stack, xors them, and pushes the vector result

into the stack back.

3.2.1.13. XNOT. Pops 1 vector from stack, bitwise nots it, and pushes the vector

result into the stack back.

3.2.1.14. XSHL. Pops 1 vector and 1 integer from stack, shifts left the vector by the

integer, and pushes the vector result into the stack back.

3.2.1.15. XSHR. Pops 1 vector and 1 integer from stack, shifts right the vector by the

integer, and pushes the vector result into the stack back.

3.2.1.16. XPUSH. Pushes a vector into the stack.

3.3. Gas Consumption

The reason gas consumption for XMUL and XDIV is chosen 5 while it is chosen
3 for all other operations is because by comparison, on most Intel and ARM SIMD
units, instructions take approximately cycle counts as shown in Table 3.3, independent

of register width.
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Table 3.3. EVM SIMD Operation Cycles [7].

Operation | Intel Cycle | ARM Cycle
XADD 0.5 1
XMUL 2 1
XSUB 0.5 1
XDIV 10 12

3.4. EVM Interpreter Loop

EVM interprets the bytecode in its loop as described by the equations given

below:

SP = SPP (3.1)

SPP = SPP + Returns — Args (3.2)

and the steps given as follows:

(i) Fetch instruction from code,

(ii) Adjust input and output stack pointers SP and SPP using Equation (3.1),
(iii) Go and execute fetched instruction and update gas,
)

(iv) Increment instruction counter and repeat all the steps again.
3.4.1. Scalar XOR

For XOR operation, stack is updated by

SPP[0] = SP[0]xorSP|[1]. (3.3)
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3.4.2. SIMD XOR

For SIMD XOR operation, stack is updated by the following algorithm:

(i) Parse first byte and obtain SIMD related information which contains data type,
lane width and lane count,

(ii) Jump and execute XOR SIMD operation as shown by Figure 3.1 [22].

template<class SimdVec, class UnderlyingType>

void simdXor(){
auto vec_lbytesA = reinterpret_cast<UnderlyingTypex>(&m_SP[0]);
auto vec_lbytesB = reinterpret_cast<UnderlyingType*>(&m_SP[1]);

SimdVec xmmA = simdpp::load_u(vec_1lbytesA);
SimdVec xmmB = shmdpp::load_u(vec_lbytesB);
SimdvVec xmmC = simdpp::bit_xor(xmmA, xmmB);
simdpp::store_u(reinterpret_cast<UnderlyingType*>(m_SPP), xmmC);

Figure 3.1. EVM SIMD XOR Execution.
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4. ETHEREUM VIRTUAL MACHINE SIMD BYTECODE

GENERATOR

We need a SIMD opcode parser because we extend EVM instruction set and

there is no compiler support for the extension yet. We used EVM SIMD parser [23],

which is developed by us in Haskell, that converts human readable SIMD instruction

format into EVM bytecode. This helps us generate massive lines of SIMD bytecodes

to benchmark our implementation.

4.1. Grammar

Attribute grammar rules for the parser can be summarized as below:

(Start)

(SIMDByte)

(Op)

(SIMDOp) (SIMDByte)

(Push) (SIMDByte) (Vec)

if ( (Vec).elems ! = (SIMDByte).elems ) {
error;

}

(Xpush) (SIMDByte) (Vec)

if ( (Vec).elems | = (SIMDByte).elems ) {
error;

}

(OpType) (LW) (LC)

if ( (LW).width % (LC').elems > 32 ) {
error;

} else {
(SIMDByte).width = (LW).width;
(SIMDByte).clems = (LC).elems;



(OpType)
(LW)

(Op)

(SIMDOp)

(I) | (F)

(LW1)

{ LW.width = LW1.width; }
(LW2)

{ LW.width = LW2.width; }
(LW4)

{ LW.width = LW4.width; }
(LWS)

{ LW.width = LW8.width; }
(LC2)

{ LC.elems = LC2.elems; }
(LC4)

{ LC.elems = LC4.elems; }
(LCS)

{ LC.elems = LC8.elems; }
(LC16)

{ LC.elems = LC16.elems; }
(LC32)

{ LC.elems = LC32.elems; }

18

n= (Add) | (Mul) | (Sub) | (Div) | (Mod) | (Lt) | (G?) | (Eq)
| (Iszero) | (And) | (Or) | (Xor) | (Not) | (Shl) | (Shr) |

(Pop)

= (Xadd) | (Xmul) | (Xsub) | (Xdiv) | (Xmod) | (XIt) | (Xgt)
| (Xeq) | (Xiszero) | (Xand) | (Xoor) | (Xzor) | (Xnot) |

(Xshl) | (Xshr)

‘00’

q0

‘000’

{(LW1).width =1}
‘000’

{ (LW2).width = 2 }



(LW4)

(LWS)

(LC2)

(LCY)

(LC8)

(LC16)
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‘100’

{ (LW}).width =4 }
‘110’

{ (LW8).width = 8 }
‘000’

{(LC2).elems = 2 }
‘001’

{(LC}).elems = 4 }
‘010’

{ (LC8).clems = 8 }
‘011’

{ (LC16).elems = 16 }
‘100’

{ (LC32).elems = 32 }
‘1’

‘o’

<C37



(Vecltem)

(Number)

(Nonzero)

‘01’
‘09’

03’

‘04’

‘06’

q0

qp

qa

qE

‘e

q7

qg

qg

‘91’

‘99

‘50’

‘[ (Vecltem) ‘1’

{ (Vec).elems = (Vecltem).elems }
(Number) ¢, (Vecltem)

{

(Vecltem_l).elems =

(Number).elems + ( Vecltem_r).elems

}
(Number)

{ (Vecltem).elems = (Number).elems }

(Nonzero) (Number) | (Nonzero) | (Zero)
{ (Number_l).elems =1 }

417 | 427 | 437 | (47 | 457 | 467 | 47? | 487 | 49’

20
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(Zero) =0’

We take advantage of attribute grammar because we give permission only to
specific pairs of LC and LW values. We add CFG with that semantic rule. Each EVM
stack item spans 256bits (32 bytes) width in memory. Therefore, we only allow specific
counts of elements for a specific element width. For example, when an element width
8 bytes is used in SIMD operation, maximum element count would be 4 in order not

to overflow EVM stack size.

4.2. Example Bytecode Generation

We generate bytecode by parsing input files containing SIMD operations or scalar

operations and generate corresponding EVM bytecodes.

Parser takes consecutively 4 command line arguments:

e rawRepeat = Bytecode generated for scalar input file is repeated rawRepeat times
and appended to stdout.

e rawPath = Path of input file for scalar operations.

e SIMDRepeat = Bytecode generated for SIMD input file is repeated SIMDRepeat
times and appended to stdout.

e SIMDPath = Path of input file for SIMD operations.

An input file consists of some SIMD operations to add 2 SIMD vectors of element
width=8 and element count=4.
SIMD Input File:
Xpush (SIMDByte I LW8 LC4) [1,2,3,4]
Xpush (SIMDByte I LW8 LC4) [1,2,3,4]
Xadd (SIMDByte I LW8 LC4)

Pop.
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Another input file consists of a scalar operations to add 2 scalars of width=S8.
Scalar Input File:
Push LW8 15
Push LW8 15
Add

Pop.

After running ethparser with the proper parameters and an input file, output

would be Ethereum bytecode representation for the input file.

4.3. Input Generation for Benchmark

Note that, element count=4 for 1 SIMD addition computationally equal to 4
scalar additions. The examples above computes the same amount of additions which

corresponds to 4 scalar additions.

We generate computationally same amount of computation for both SIMD and
scalar operations in our benchmarks. Then, we compared scalar version of the operation
to SIMD version of it. For example, total of 3,200,000 1 byte scalar addition is equal
to 100,000 SIMD addition operation when LC=32.

We generated every combination of bytecodes of possible lane width and lane
count for all SIMD operations for both unsigned int and floating types. Anyone who
want to generate SIMD bytecode can check how it works on [10].
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5. EXAMPLE SIMD EXECUTIONS ON ETHEREUM
VIRTUAL MACHINE

5.1. Addition of 2 Vectors of 8 Items in Scalar

In first iteration as shown by Figure 5.1, we push first items of the vectors, then

pop and add them.

Stack State

e L L]

Stack State

e o—— [ L L]
cL

Stack State

o —— L L]

Figure 5.1. Scalar Vector Addition Step 1.

In second iteration as shown in Figure 5.2, we push second items of the vectors,

then pop and add them.
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Stack State

e L]
L]

Stack State

' Y Y Y Y N
PUSH 2 » 2 I
A\, P P <> <
s Y Y z'
: I
\ A Do P A <
e Y Y Y Y 3
\ A A A A J

Stack State

ADD > | >

4

Figure 5.2. Scalar Vector Addition Step 2.

Similar operations are executed until all items are added. In the last iteration as

shown in Figure 5.3, we push last items of the vectors, and then pop and add them.



' Y
—_—
PUSH 8 2 T

' Y
PUSH 8 > | 2 T

ADD

Stack State

6

A v, y, b,
8
10
12

A v, y, b,
14

b, b, . b,
8

A A A A A A

Stack State

A,
A
A,

[_A_A_A_Jk_/\_/k_/k_/\_/ {_/\_/k_ﬁ—/\_/k_}k—/\_/

Stack State

' Y
2 T

E
|
|
|
|
|
|
ANEREREn

Figure 5.3. Scalar Vector Addition Step 8.
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5.2. Addition of 2 Vectors of 8 Items in SIMD

As shown in Figure 5.4, we push both the vectors in one step and pop and add

them using SIMD instruction in one step again.

Stack State
YT Y

XPUSH INT LW4 LC8 [1,2,3,4,56,7,8] ——» 1 2 3

B
-
-

) B
g
Stack State
Y Y
XPUSH INT LW4 LC8 [1,2,3,4,56,7,8] ——— > [ 1 2 3 4 5 6 7 8
A 2
1 2 3 4 5 6 7 8
S N N, N
Stack State
XADD INT LW4 LC8 T 2 4 6 8 10 12 14 16
S, N S N

Figure 5.4. SIMD Vector Addition.



27

6. EXPERIMENTS AND RESULTS

6.1. Benchmark Setup

We benchmarked optimized release binary of SIMD-extended aleth on a system
as shown in Table 6.1. Note that total number of operations is set to 3,200,000 scalar
operation. Bytecodes for both SIMD and scalar operations, which are computationally
equal to 3,200,000 scalar operations, are generated by [23]. We generated bytecodes,

and evaluated benchmark results for each SIMD instruction in the next sections.

Table 6.1. Benchmark Environment

Parameter Specification
Operating System Linux/Ubuntu 20.04 LTS
Memory 16 GB
CPU i7-10510U CPU @ 1.80 GHz (8 CPUs)
Supported SIMD Instruction Set AVX2
Total Scalar Operation Count 3,200,000

6.2. Operation Support

Even though EVM does not natively support floating point arithmetic for scalar
operations, EVM SIMD instructions support both integer and floating addition ranging
from lane width (LW) of 1 byte to LW of 8 bytes. It is added because of the future
possible floating point support. Currently, there is no way for nodes to agree on
the same floating point values due to precision errors yet by [24]. For example, lane
count (LC) of 32 and LW of 1 byte integers can be operated for the same instruction
considering EVM stack item size which is 256 bits. The best possible SIMD instruction
set is chosen by the libsimdpp library. libsimdpp lets us check SIMD capabilities of the

host during compile time.
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When there is no SIMD support for an operation in the chosen instruction set, it
fallbacks to scalar operations and hence there is no gain or loss in speedup and gas

consumption at the end. All supported operation results are listed in the next sections.

6.3. Addition Benchmark

As shown in Table 6.3, speedups up to 7.3x for 1 byte, 5.6x for 2 byte, 4.6x for 4
byte, 3.9x for 8 byte can be obtained for integer vector addition if all possible register
space is used. Speedups up to 5.7x for single precision floating, and 3.9x for double

precision floating point can be obtained.

6.4. Subtraction Benchmark

As shown in Table 6.4, speedups up to 7.3x for 1 byte, 5.6x for 2 byte, 5.7x for
4 byte, 3.9x for 8 byte can be obtained for integer vector subtraction if all possible
register space is used. Speedups up to 9.2x for single precision floating, and 3.9x for

double precision floating point can be obtained.

6.5. Multiplication Benchmark

As shown in Table 6.2, speedups up to 7.9x for 1 byte, 6.6x for 2 byte, 5.6x for
4 byte, 4.4x for 8 byte can be obtained for integer vector multiplication if all possible
register space is used. Speedups up to 6.3x for single precision floating, and 4.5x for

double precision floating point can be obtained.

6.6. Division Benchmark

As shown in Table 6.5, speedups up to 14.5x for 1 byte, 8.3x for 2 byte, 6.8x for
4 byte, 4.8x for 8 byte can be obtained for integer vector division if all possible register
space is used. Speedups up to 8.0x for single precision floating, and 6.11x for double

precision floating point can be obtained.
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6.7. Modulo Benchmark

As shown in Table 6.6, speedups up to 3.6x for 1 byte, 2.7x for 2 byte, 3.3x for 4
byte, 2.2x for 8 byte can be obtained for integer vector modulo if all possible register

space is used. There is no modulo operation for floating point.

6.8. Push Benchmark

Table 6.7 shows that speedups up to 3.1x for 1 byte, 3.7x for 2 byte, 3.2x for
4 byte, 2.0x for 8 byte can be obtained for integer vector push if all possible register

space is used. There is no push operation for floating point.

6.9. Equality Benchmark

Table 6.8 shows that speedup up to 6.9x for 1 byte, 5.4x for 2 byte, 5.6x for 4
byte, 3.9x for 8 byte can be obtained for integer vector equality if all possible register
space is used. Speedups up to 5.6x for single precision floating, and 3.9x for double

precision floating point can be obtained.

6.10. Iszero Benchmark

Table 6.9 shows that speedup up to 8.8x for 1 byte, 5.6x for 2 byte, 5.5x for 4
byte, 3.8x for 8 byte can be obtained for integer vector zero equality if all possible
register space is used. Speedup up to 5.5x for single precision floating, and 3.8x for

double precision floating point can be obtained.

6.11. Greater Than Benchmark

Table 6.10 shows that speedup up to 6.6x for 1 byte, 5.3x for 2 byte, 5.5x for

4 byte, 3.8x for 8 byte can be obtained for integer vector greater than relation if all

possible register space is used.
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Speedup up to 5.5x for single precision floating, and 3.8x for double precision floating

point can be obtained.

6.12. Less Than Benchmark

Table 6.11 shows that speedups up to 6.8x for 1 byte, 5.3x for 2 byte, 5.6x for 4
byte, 3.8x for 8 byte can be obtained for integer vector less than relation if all possible
register space is used. Speedups up to 5.5x for single precision floating, and 3.8x for

double precision floating point can be obtained.

6.13. Shift Left Benchmark

Table 6.12 shows that speedups up to 3.0x for 1 byte, 2.7x for 2 byte, 3.2x for 4
byte, 2.0x for 8 byte can be obtained for integer vector shift left if all possible register

space is used. There is no shifting operation for floating point.

6.14. Shift Right Benchmark

Table 6.13 shows that speedup up to 2.9x for 1 byte, 2.8x for 2 byte, 3.1x for 4
byte, 2.0x for 8 byte can be obtained for integer vector shift right if all possible register

space is used. There is no shifting operation for floating point.

6.15. Bitwise And Benchmark

Table 6.14 shows that speedups up to 7.6x for 1 byte, 5.7x for 2 byte, 5.8x for
4 byte, 4.0x for 8 byte can be obtained for integer vector bitwise and if all possible
register space is used. Speedup up to 5.7x for single precision floating, and 4.0x for

double precision floating point can be obtained.
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6.16. Bitwise Or Benchmark

Table 6.15 shows that speedup up to 7.6x for 1 byte, 5.6x for 2 byte, 5.8x for 4
byte, 4.0x for 8 byte can be obtained for integer vector bitwise or if all possible register
space is used. Speedup up to 5.7x for single precision floating, and 4.0x for double

precision floating point can be obtained.

6.17. Bitwise Not Benchmark

Table 6.16 shows that speedups up to 9.6x for 1 byte, 6.0x for 2 byte, 5.8x for 4
byte, 3.9x for 8 byte can be obtained for integer vector not if all possible register space
is used. Speedup up to 5.8x for single precision floating, and 3.9x for double precision

floating point can be obtained.

6.18. Xor Benchmark

Table 6.17 shows that speedups up to 7.5x for 1 byte, 5.6x for 2 byte, 5.8x for 4
byte, 4.0x for 8 byte can be obtained for integer vector xor if all possible register space
is used. Speedup up to 5.7x for single precision floating, and 4.0x for double precision

floating point can be obtained.



Table 6.2. EVM SIMD Vector Multiplication benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 41600000 0,5546
Int 1 2 20800000 0,3750
Int 1 4 10400000 0,2222
Int 1 8 5200000 0,1250
Int 1 16 2600000 0,0917
Int 1 32 1300000 0,0705
Int 2 1 41600000 0,7397
Int 2 2 20800000 0,2582
Int 2 4 10400000 0,1640
Int 2 8 5200000 0,1130
Int 2 16 2600000 0,1118
Int 4 1 41600000 1,1451
Int 4 2 20800000 0,3414
Int 4 4 10400000 0,2502
Int 4 8 5200000 0,2024
Int 8 1 41600000 1,6562
Int 8 2 20800000 0,4790
Int 8 4 10400000 0,3771

Floating | 4 2 20800000 0,5293
Floating | 4 4 10400000 0,2391
Floating | 4 8 5200000 0,1808
Floating | 8 2 20800000 0,4639
Floating | 8 4 10400000 0,3677
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Table 6.3. EVM SIMD Vector Addition benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3736
Int 1 2 17600000 0,2356
Int 1 4 8800000 0,1370
Int 1 8 4400000 0,0908
Int 1 16 2200000 0,0693
Int 1 32 1100000 0,0510
Int 2 1 35200000 0,7171
Int 2 2 17600000 0,2734
Int 2 4 8800000 0,1743
Int 2 8 4400000 0,1223
Int 2 16 2200000 0,1288
Int 4 1 35200000 1,1197
Int 4 2 17600000 0,3505
Int 4 4 8800000 0,2416
Int 4 8 4400000 0,1953
Int 8 1 35200000 1,5574
Int 8 2 17600000 0,4980
Int 8 4 8800000 0,3988

Floating | 4 2 17600000 0,3469
Floating | 4 4 8800000 0,2408
Floating | 4 8 4400000 0,1954
Floating | 8 2 17600000 0,4916
Floating | 8 4 8800000 0,3993

33



Table 6.4. EVM SIMD Vector Subtraction benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3678
Int 1 2 17600000 0,2353
Int 1 4 8800000 0,1367
Int 1 8 4400000 0,0863
Int 1 16 2200000 0,0644
Int 1 32 1100000 1,5728
Int 2 1 35200000 0,7132
Int 2 2 17600000 0,2716
Int 2 4 8800000 0,1754
Int 2 8 4400000 0,1213
Int 2 16 2200000 0,1283
Int 4 1 35200000 1,1217
Int 4 2 17600000 0,3464
Int 4 4 8800000 0,2416
Int 4 8 4400000 0,1951
Int 8 1 35200000 1,5531
Int 8 2 17600000 0,4883
Int 8 4 8800000 0,3967

Floating | 4 2 17600000 0,3447
Floating | 4 4 8800000 0,2404
Floating | 4 8 4400000 0,1224
Floating | 8 2 17600000 0,4943
Floating | 8 4 8800000 0,3992
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Table 6.5. EVM SIMD Vector Division benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 41600000 0,9696
Int 1 2 20800000 0,6414
Int 1 4 10400000 0,2878
Int 1 8 5200000 0,1741
Int 1 16 2600000 0,1343
Int 1 32 1300000 0,0669
Int 2 1 41600000 1,1823
Int 2 2 20800000 0,5333
Int 2 4 10400000 0,2416
Int 2 8 5200000 0,1655
Int 2 16 2600000 0,1417
Int 4 1 41600000 1,5846
Int 4 2 20800000 0,5700
Int 4 4 10400000 0,3700
Int 4 8 5200000 0,2338
Int 8 1 41600000 2,4218
Int 8 2 20800000 0,6766
Int 8 4 10400000 0,5069

Floating | 4 2 20800000 0,5240
Floating | 4 4 10400000 0,2437
Floating | 4 8 5200000 0,1971
Floating | 8 2 20800000 0,4853
Floating | 8 4 10400000 0,3958
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Table 6.6. EVM SIMD Vector Modulo benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,1323
Int 1 2 17600000 0,4639
Int 1 4 8800000 0,2262
Int 1 8 4400000 0,1159
Int 1 | 16 | 2200000 0,0675
Int 1 32 1100000 0,0419
Int 2 1 35200000 0,2812
Int 2 2 17600000 0,4188
Int 2 4 8800000 0,2240
Int 2 8 4400000 0,1284
Int 2 16 2200000 0,1024
Int 4 1 35200000 0,5158
Int 4 2 17600000 0,4483
Int 4 4 8800000 0,2486
Int 4 8 4400000 0,1580
Int 8 1 35200000 0,4919
Int 8 2 17600000 0,4243
Int 8 4 8800000 0,2255

Floating | 4 2 0 0,0000
Floating | 4 4 0 0,0000
Floating | 4 8 0 0,0000
Floating | 8 2 0 0,0000
Floating | 8 4 0 0,0000
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Table 6.7. EVM SIMD Vector Push benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 16000000 0,1138
Int 1 2 8000000 0,3948
Int 1 4 4000000 0,2131
Int 1 8 2000000 0,1092
Int 1 | 16 | 1000000 0,0620
Int 1 | 32 500000 0,0368
Int 2 1 16000000 0,2786
Int 2 2 8000000 0,4237
Int 2 4 4000000 0,2013
Int 2 8 2000000 0,1137
Int 2 16 1000000 0,0908
Int 4 1 16000000 0,4613
Int 4 2 8000000 0,4021
Int 4 4 4000000 0,2280
Int 4 8 2000000 0,1429
Int 8 1 16000000 0,4640
Int 8 2 8000000 0,4001
Int 8 4 4000000 0,2278

Floating | 4 2 0 0,0000
Floating | 4 4 0 0,0000
Floating | 4 8 0 0,0000
Floating | 8 2 0 0,0000
Floating | 8 4 0 0,0000
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Table 6.8. EVM SIMD Vector Equality benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3408
Int 1 2 17600000 0,2338
Int 1 4 8800000 0,1363
Int 1 8 4400000 0,0891
Int 1 16 2200000 0,0664
Int 1 32 1100000 0,0495
Int 2 1 35200000 0,6925
Int 2 2 17600000 0,2719
Int 2 4 8800000 0,1748
Int 2 8 4400000 0,1221
Int 2 16 2200000 0,1277
Int 4 1 35200000 1,0945
Int 4 2 17600000 0,3462
Int 4 4 8800000 0,2426
Int 4 8 4400000 0,1965
Int 8 1 35200000 1,5585
Int 8 2 17600000 0,4898
Int 8 4 8800000 0,4008

Floating | 4 2 17600000 0,3463
Floating | 4 4 8800000 0,2440
Floating | 4 8 4400000 0,1972
Floating | 8 2 17600000 0,4891
Floating | 8 4 8800000 0,4007
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Table 6.9. EVM SIMD Vector Iszero benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 25600000 0,2375
Int 1 2 12800000 0,1615
Int 1 4 6400000 0,0917
Int 1 8 3200000 0,0541
Int 1 16 1600000 0,0350
Int 1 32 800000 0,0269
Int 2 1 25600000 0,4034
Int 2 2 12800000 0,1817
Int 2 4 6400000 0,1100
Int 2 8 3200000 0,0715
Int 2 16 1600000 0,0724
Int 4 1 25600000 0,6018
Int 4 2 12800000 0,2162
Int 4 4 6400000 0,1425
Int 4 8 3200000 0,1091
Int 8 1 25600000 0,8392
Int 8 2 12800000 0,2907
Int 8 4 6400000 0,2206

Floating | 4 2 12800000 0,2180
Floating | 4 4 6400000 0,1448
Floating | 4 8 3200000 0,1098
Floating | 8 2 12800000 0,2914
Floating | 8 4 6400000 0,2210
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Table 6.10. EVM SIMD Vector Greater Than benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3265
Int 1 2 17600000 0,2348
Int 1 4 8800000 0,1373
Int 1 8 4400000 0,0865
Int 1 16 2200000 0,0656
Int 1 32 1100000 0,0496
Int 2 1 35200000 0,6828
Int 2 2 17600000 0,2753
Int 2 4 8800000 0,1759
Int 2 8 4400000 0,1222
Int 2 16 2200000 0,1285
Int 4 1 35200000 1,0851
Int 4 2 17600000 0,3480
Int 4 4 8800000 0,2417
Int 4 8 4400000 0,1954
Int 8 1 35200000 1,5403
Int 8 2 17600000 0,4979
Int 8 4 8800000 0,4014

Floating | 4 2 17600000 0,3483
Floating | 4 4 8800000 0,2428
Floating | 4 8 4400000 0,1979
Floating | 8 2 17600000 0,4906
Floating | 8 4 8800000 0,3991
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Table 6.11. EVM SIMD Vector Less Than benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3333
Int 1 2 17600000 0,2374
Int 1 4 8800000 0,1350
Int 1 8 4400000 0,0865
Int 1 16 2200000 0,0642
Int 1 32 1100000 0,0492
Int 2 1 35200000 0,6819
Int 2 2 17600000 0,2778
Int 2 4 8800000 0,1756
Int 2 8 4400000 0,1214
Int 2 16 2200000 0,1284
Int 4 1 35200000 1,0873
Int 4 2 17600000 0,3501
Int 4 4 8800000 0,2420
Int 4 8 4400000 0,1956
Int 8 1 35200000 1,0431
Int 8 2 17600000 0,4933
Int 8 4 8800000 0,4002

Floating | 4 2 17600000 0,3442
Floating | 4 4 8800000 0,2413
Floating | 4 8 4400000 0,1966
Floating | 8 2 17600000 0,4917
Floating | 8 4 8800000 0,4001
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Table 6.12. EVM SIMD Vector Shift Left benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,1186
Int 1 2 17600000 0,4047
Int 1 4 8800000 0,2067
Int 1 8 4400000 0,1088
Int 1 | 16 | 2200000 0,0611
Int 1 32 1100000 0,0398
Int 2 1 35200000 0,2702
Int 2 2 17600000 0,4082
Int 2 4 8800000 0,2189
Int 2 8 4400000 0,1218
Int 2 16 2200000 0,0999
Int 4 1 35200000 0,4988
Int 4 2 17600000 0,4476
Int 4 4 8800000 0,2418
Int 4 8 4400000 0,1563
Int 8 1 35200000 0,4919
Int 8 2 17600000 0,4266
Int 8 4 8800000 0,2452

Floating | 4 2 0 0,0000
Floating | 4 4 0 0,0000
Floating | 4 8 0 0,0000
Floating | 8 2 0 0,0000
Floating | 8 4 0 0,0000
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Table 6.13. EVM SIMD Vector Shift Right benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,1171
Int 1 2 17600000 0,3926
Int 1 4 8800000 0,2052
Int 1 8 4400000 0,1093
Int 1 16 2200000 0,0606
Int 1 32 1100000 0,0400
Int 2 1 35200000 0,2697
Int 2 2 17600000 0,4147
Int 2 4 8800000 0,2242
Int 2 8 4400000 0,1199
Int 2 16 2200000 0,0973
Int 4 1 35200000 0,4830
Int 4 2 17600000 0,4341
Int 4 4 8800000 0,2414
Int 4 8 4400000 0,1568
Int 8 1 35200000 0,4866
Int 8 2 17600000 0,4374
Int 8 4 8800000 0,2405

Floating | 4 2 0 0,0000
Floating | 4 4 0 0,0000
Floating | 4 8 0 0,0000
Floating | 8 2 0 0,0000
Floating | 8 4 0 0,0000
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Table 6.14. EVM SIMD Vector Bitwise And benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3754
Int 1 2 17600000 0,2345
Int 1 4 8800000 0,1377
Int 1 8 4400000 0,0885
Int 1 16 2200000 0,0643
Int 1 32 1100000 0,0492
Int 2 1 35200000 0,7322
Int 2 2 17600000 0,2772
Int 2 4 8800000 0,1740
Int 2 8 4400000 0,1231
Int 2 16 2200000 0,1290
Int 4 1 35200000 1,1388
Int 4 2 17600000 0,3520
Int 4 4 8800000 0,2440
Int 4 8 4400000 0,1973
Int 8 1 35200000 1,6130
Int 8 2 17600000 0,4909
Int 8 4 8800000 0,3999

Floating | 4 2 17600000 0,3463
Floating | 4 4 8800000 0,2426
Floating | 4 8 4400000 0,1988
Floating | 8 2 17600000 0,4938
Floating | 8 4 8800000 0,4001
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Table 6.15. EVM SIMD Vector Bitwise Or benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3741
Int 1 2 17600000 0,2345
Int 1 4 8800000 0,1355
Int 1 8 4400000 0,0872
Int 1 16 2200000 0,0639
Int 1 32 1100000 0,0495
Int 2 1 35200000 0,7302
Int 2 2 17600000 0,2770
Int 2 4 8800000 0,1759
Int 2 8 4400000 0,1219
Int 2 16 2200000 0,1298
Int 4 1 35200000 1,1335
Int 4 2 17600000 0,3468
Int 4 4 8800000 0,2428
Int 4 8 4400000 0,1967
Int 8 1 35200000 1,5904
Int 8 2 17600000 0,4893
Int 8 4 8800000 0,3978

Floating | 4 2 17600000 0,3485
Floating | 4 4 8800000 0,2436
Floating | 4 8 4400000 0,1982
Floating | 8 2 17600000 0,4899
Floating | 8 4 8800000 0,3977
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Table 6.16. EVM SIMD Vector Bitwise Not benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 25600000 0,2570
Int 1 2 12800000 0,1618
Int 1 4 6400000 0,0906
Int 1 8 3200000 0,0537
Int 1 16 1600000 0,0355
Int 1 32 800000 0,0269
Int 2 1 25600000 0,4337
Int 2 2 12800000 0,1799
Int 2 4 6400000 0,1106
Int 2 8 3200000 0,0724
Int 2 16 1600000 0,0725
Int 4 1 25600000 0,6374
Int 4 2 12800000 0,2147
Int 4 4 6400000 0,1422
Int 4 8 3200000 0,1089
Int 8 1 25600000 0,8551
Int 8 2 12800000 0,3068
Int 8 4 6400000 0,2202

Floating | 4 2 12800000 0,2186
Floating | 4 4 6400000 0,1437
Floating | 4 8 3200000 0,1100
Floating | 8 2 12800000 0,2884
Floating | 8 4 6400000 0,2200
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Table 6.17. EVM SIMD Vector Xor benchmark.

Type | LW | LC | Gas Used | Time Elapsed(sec)
Int 1 1 35200000 0,3733
Int 1 2 17600000 0,2315
Int 1 4 8800000 0,1361
Int 1 8 4400000 0,0866
Int 1 16 2200000 0,0646
Int 1 32 1100000 0,0498
Int 2 1 35200000 0,7296
Int 2 2 17600000 0,2746
Int 2 4 8800000 0,1743
Int 2 8 4400000 0,1223
Int 2 16 2200000 0,1296
Int 4 1 35200000 1,1453
Int 4 2 17600000 0,3430
Int 4 4 8800000 0,2445
Int 4 8 4400000 0,1955
Int 8 1 35200000 1,0784
Int 8 2 17600000 0,4905
Int 8 4 8800000 0,3998

Floating | 4 2 17600000 0,3471
Floating | 4 4 8800000 0,2542
Floating | 4 8 4400000 0,2000
Floating | 8 2 17600000 0,4894
Floating | 8 4 8800000 0,4001

47



48

6.19. Gas Consumption

The results indicate that for all operations when the lane count is incremented by
2 times, the gas consumption is reduced by 2 times. That is because total operations
per CPU cycle is doubled when lane count is doubled. Gas consumption is lowered 32x
at maximum compared to scalar operation when LW=1 and LC=32 which is maximum
number of elements that can be put into 32 byte register. It is very crucial for EVM

to do more reducing gas consumption.
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7. CONCLUSION AND DISCUSSION

EVM suffers from low transaction throughput and high gas costs. In this thesis,
we address those problems. We extend EVM instruction set with 15 different types
of SIMD instruction so that we can improve performance and reduce gas cost. As a
result, gas consumption is reduced by 2-32x and 2-8x speedup is obtained for different

type of operations on average as shown in Chapter 6.

Portability of SIMD code is an issue because different host CPUs supports dif-
ferent types of SIMD support. Portable SIMD integration library (libsimdpp) made
a SIMD portable EVM as much as possible. It first checks the best possible instruc-

tion set in the host CPU and fallbacks to scalar operation mode if an operation is not

possible with SIMD.

One of the obstacles during the thesis is to generate SIMD bytecode. We actually
need an EVM compiler that fully supports SIMD operations. All the benchmark is done
thanks to our own implemented mini SIMD bytecode generator. Bytecode generation

for SIMD is currently complicated because of no native compiler support.

In addition to current SIMD operations, many other useful operation that can
be speedup via SIMD (e.g. reduction, shuffle), can be further added to the set in
future. Secondly, we currently only support data parallelism. In future, instruction
level parallelism via pipelining can be taken advantage to further improve transaction

throughput [25].
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APPENDIX A: SIMD EVM SPEEDUP PLOTS
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Speedup by SIMD can be seen for some of the SIMD instructions as shown by

below figures.
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simd operation times for lw=8
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APPENDIX B: SIMD EVM GAS COST REDUCTION
PLOTS

We explained in design section that gas costs that are assigned to operations
are the same for all SIMD operations except for xmul and xdiv. For that reason the
gas consumption in our benchmark branched into 2 different groups as seen by below
figures.
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