
SOLVING TURKISH MATH WORD PROBLEMS BY

SEQUENCE-TO-SEQUENCE ENCODER-DECODER MODELS

by

Esin Gedik

B.S., Computer Engineering, Yıldız Technical University, 2019

Submitted to the Institute for Graduate Studies in

Science and Engineering in partial fulfillment of

the requirements for the degree of

Master of Science

Graduate Program in Computer Engineering

Boğaziçi University

2022



iii

ACKNOWLEDGEMENTS

First of all, I would like to express my thankfulness to my supervisor Prof. Tunga

Güngör, who is one of the persons I respect the most and whose work I admire, for his

continuous support and guidance throughout my research.

Thanks to my committee members, Prof. Banu Diri and Assist. Prof. Susan

Michele Üsküdarlı for their valuable time and reviews.

Last but not least, I would like to express my deepest gratitude to my family,

friends, and colleagues for the prodigious support and hope they have given to me.

Thank you for believing me even the times that I do not.



iv

ABSTRACT

SOLVING TURKISH MATH WORD PROBLEMS BY

SEQUENCE-TO-SEQUENCE ENCODER-DECODER

MODELS

It can be argued that solving math word problems (MWP) is a challenging task

due to the semantic gap between natural language texts and mathematical equations.

The main purpose of the task is to take a written math problem as input and produce a

proper equation as output for solving that problem. This thesis describes a sequence-

to-sequence (seq2seq) neural model for automatically solving MWPs based on their

semantic meanings in the text. The seq2seq model has the advantage of being able

to generate equations that do not exist in the training data. It comprises a bidirec-

tional encoder to encode the input sequence and comprehend the problem semantics,

and a decoder with attention to track semantic meanings of the output symbols and

extract the equation. In this thesis, we investigate the successes of several pre-trained

language models and neural models, including gated recurrent units (GRU) and long

short-term memory (LSTM) seq2seq models. Our research is novel in the sense that

there exist no studies in Turkish on this natural language processing (NLP) task that

utilize the pre-trained language models and neural models. There is also no Turkish

dataset designed to implement the neural models for MWP task. Due to the lack of

data, we translated the well-known English MWP datasets into Turkish using a ma-

chine translation system. We performed manual adjustments, and built the corpora to

contribute to the literature. Although Turkish is an agglutinative and grammatically

challenging language to work on, our system correctly answers 71% of the questions in

the corpora.



v

ÖZET

TÜRKÇE MATEMATİK PROBLEMLERİNİ

KODLAYICI-KOD ÇÖZÜCÜ DİZİ-DİZİ MODELLERİYLE

ÇÖZME

Matematiksel kelime problemlerini (MWP) çözmenin, doğal dil metinleri ve

matematiksel denklemler arasındaki anlamsal boşluk nedeniyle zorlu bir görev olduğu

söylenebilir. Görevin temel amacı, yazılı bir matematik problemini girdi olarak al-

mak ve bu problemi çözmek için çıktı olarak uygun bir denklem üretmektir. Bu tez,

metindeki semantik anlamlarına dayalı olarak MWP’leri otomatik olarak çözmek için

diziden diziye (seq2seq) bir sinir modelini açıklamaktadır. Seq2seq modeli, eğitim

verilerinde mevcut olmayan denklemleri üretebilme avantajına sahiptir. Giriş sırasını

kodlamak ve problem semantiğini kavramak için çift yönlü bir kodlayıcı ve çıkış sem-

bollerinin semantik anlamlarını izlemeye ve denklemi çıkarmaya yarayan bir kod çözücü

içerir. Bu tezde, geçitli tekrarlayan birimler (GRU) ve uzun-kısa vadeli bellek (LSTM)

seq2seq modelleri dahil olmak üzere, önceden eğitilmiş çeşitli dil modelleri ve nöral

modellerin başarılarını araştırıyoruz. Araştırmamız, önceden eğitilmiş dil modellerini

ve nöral modelleri kullanan bu doğal dil işleme (NLP) görevi hakkında Türkçe’de

herhangi bir çalışma olmaması açısından yenidir. MWP görevi için nöral model-

leri uygulamak için tasarlanmış bir Türkçe veri seti de bulunmamaktadır. Veri ek-

sikliğinden dolayı, iyi bilinen İngilizce MWP veri setlerini makine çeviri sistemi kulla-

narak Türkçe’ye çevirdik. Literatüre katkı sağlamak için manuel ayarlamalar yaptık ve

bir derlem oluşturduk. Türkçe sondan eklemeli ve gramer açısından üzerinde çalışılması

zor bir dil olmasına rağmen, sistemimiz derlemdeki soruların %71’ini doğru yanıtlar.



vi

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ACRONYMS/ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. What is Math Word Problem Solving? . . . . . . . . . . . . . . . . . . 1

1.2. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4. Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5. Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2. RELATED WORKS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1. Rule-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2. Statistic-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3. Tree-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4. Neural-Based Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5. Related Works on Turkish MWP . . . . . . . . . . . . . . . . . . . . . 10

3. BACKGROUND THEORY . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1. Recurrent Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1.1. Deep Recurrent Neural Networks . . . . . . . . . . . . . . . . . 13

3.1.2. Bidirectional Recurrent Neural Networks . . . . . . . . . . . . . 14

3.1.3. Long Short-Term Memory . . . . . . . . . . . . . . . . . . . . . 14

3.1.4. Gated Recurrent Units . . . . . . . . . . . . . . . . . . . . . . . 16

3.2. Sequence to Sequence Model . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1. Encoder-Decoder Architecture . . . . . . . . . . . . . . . . . . . 17

3.2.2. Attention Mechanism . . . . . . . . . . . . . . . . . . . . . . . . 18



vii

3.2.2.1. Bahdanau Attention Mechanism . . . . . . . . . . . . 19

3.2.2.2. Luong Attention Mechanism . . . . . . . . . . . . . . . 21

3.3. Word Embeddings & Pre-trained Language Models . . . . . . . . . . . 24

3.3.1. Word2vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3.2. GloVe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.3. fastText . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3.4. BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.3.5. ConvBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.6. ELECTRA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4. DATASETS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.1. Available Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2. Turkish MWP Benchmark Datasets . . . . . . . . . . . . . . . . . . . . 32

4.2.1. Combined Dataset from MAWPS, ASDiv-A, and SVAMP . . . 33

4.2.2. MathQA Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . 35

5. METHODOLOGY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.1. Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5.2. Embedding Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.1. Equation Embeddings . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2. Question Embeddings . . . . . . . . . . . . . . . . . . . . . . . 42

5.2.2.1. Word2vec, fastText, and GloVe Embeddings . . . . . . 43

5.2.2.2. BERT, ELECTRA, and ConvBERT Embeddings . . . 43

5.3. Encoder Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.4. Decoder Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.5. Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

6. EXPERIMENTS AND RESULTS . . . . . . . . . . . . . . . . . . . . . . . . 50

6.1. Dataset Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6.2. Word Embedding and Pre-Trained Language Models Results . . . . . . 52

6.3. Seq2seq Model Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.4. Comparison with Other MWP Studies . . . . . . . . . . . . . . . . . . 56

6.5. Hyperparameters and Implementation Details . . . . . . . . . . . . . . 57

7. CONCLUSION AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 59



viii

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

APPENDIX A: SAMPLES FROM MWP DATASETS . . . . . . . . . . . . . 69



ix

LIST OF FIGURES

Figure 1.1. An MWP example. . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Figure 2.1. UDG example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.1. Architecture of RNN. . . . . . . . . . . . . . . . . . . . . . . . . . 13

Figure 3.2. Architecture of BiRNN. . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 3.3. LSTM memory cell. . . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 3.4. Visualization of the encoder-decoder seq2seq model. . . . . . . . . 18

Figure 3.5. Bahdanau’s attention mechanism. . . . . . . . . . . . . . . . . . . 20

Figure 3.6. Luong global attention mechanism. . . . . . . . . . . . . . . . . . 22

Figure 3.7. Luong local attention mechanism. . . . . . . . . . . . . . . . . . . 23

Figure 3.8. CBOW and skip-gram architectures. . . . . . . . . . . . . . . . . . 26

Figure 5.1. Overall architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 6.1. Distribution of word counts in the problem texts according to the

datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 6.2. Total number of tokens in the equations according to the datasets. 51



x

LIST OF TABLES

Table 4.1. Statistics of MWP datasets . . . . . . . . . . . . . . . . . . . . . . 32

Table 4.2. Number tagging in the problem text . . . . . . . . . . . . . . . . . 34

Table 5.1. Word vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 5.2. Equation vocabulary . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 6.1. Number of samples in train and test sets . . . . . . . . . . . . . . 50

Table 6.2. Effect of removing long equations from the MathQA dataset . . . . 52

Table 6.3. GoogleTrans API tranlation quality . . . . . . . . . . . . . . . . . 52

Table 6.4. Dimensionality of the word vectors . . . . . . . . . . . . . . . . . . 53

Table 6.5. Test set performance of the word2vec, GloVe, and fastText models 53

Table 6.6. Test set performance of the BERT, ELECTRA, and ConvBERT

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Table 6.7. GRU seq2seq model results for the combined dataset . . . . . . . . 54

Table 6.8. LSTM seq2seq model results for the combined dataset . . . . . . . 55

Table 6.9. Comparison with English MWP studies . . . . . . . . . . . . . . . 57

Table 6.10. Hyperparameters of the model with the highest accuracy . . . . . 58



xi

Table A.1. Samples from MWP datasets. . . . . . . . . . . . . . . . . . . . . . 69



xii

LIST OF SYMBOLS

a Alignment model

b Bias

c Memory cell

ct Context vector at time step t

et,i Attention score of the ith word at time step t

f Nonlinear transition function, and forget gate

ht Hidden state at time step t

h̃t Attention vector at time step t

i Input gate

o Output gate

p Aligned position

r Reset gate

Rate→num Numerator unit in the unit dependency graph

Rate→den Denominator unit in the unit dependency graph

s Hidden state of the decoder

u Source vector in the unit dependency graph

U Hidden-to-hidden recurrent weight matrix

Ur Hidden-to-hidden weight matrix for the reset gate

Uz Hidden-to-hidden weight matrix for the update gate

v Destination vector in the unit dependency graph

V Input word matrix in word2vec

Whh Hidden-to-hidden weight matrix

Why Weight matrix from the hidden state to the decoder output

Wh′h Weight matrix from previous hidden state to current state

Wr Weight matrix for the reset gate

Wxh Weight matrix from the input to the hidden state

Wz Weight matrix for the update gate

xt Input at time step t



xiii

yt Output at time step t

z Update gate

α Attention weight

⊙ Element-wise multiplication

ϕ Activation function

σ Element-wise logistic sigmoid function



xiv

LIST OF ACRONYMS/ABBREVIATIONS

API Application Programming Interface

BLEU Bilingual Evaluation Understudy

BiRNN Bidirectional Recurrent Neural Network

CASS Copy and Alignment Mechanism to the Sequence-to-sequence

CBOW Continuous Bag-of-Words

CLS Classification Token

CNN Convolutional Neural Networks

DRNN Deep Recurrent Neural Network

GRU Gated Recurrent Units

ID Identifier

LSTM Long Short-Term Memory

MWP Math Word Problems

NER Named Entity Recognition

NLP Natural Language Processing

PAD Padding Token

POS Part-of-Speech

RNN Recurrent Neural Network

SEP Separating Token

Seq2prog Sequence-to-program

Seq2seq Sequence-to-sequence

SVM Support Vector Machine

TF-IDF Term Frequency–Inverse Document Frequency

UDG Unit Dependency Graphs

UNK Unknown

Word2vec Word-to-vectors



1

1. INTRODUCTION

1.1. What is Math Word Problem Solving?

A math word problem (MWP) is a descriptive paragraph that depicts a real-world

event or scenario, with mathematical relations stated in the narrative rather than ex-

plicit algebraic equations. Figure 1.1 represents an MWP and its generated equation.

A semantic parsing component for building mathematical expressions receives a prob-

lem text as input. The output is an equation that symbolically describes the same

mathematical relationship: “(36 + 34) * x = 420”. The structure of the equation may

vary according to the designed system, but the ultimate goal is to find the numerical

answer of the problem. In other words, an answer is sought for the variable “x” in the

equation.

The two cars are going in opposite directions at the same time. One

car goes at a speed of 36 km/h, while the other goes at a speed of 34

km/h. In how many hours will they be 420 kilometers apart?

Problem Text

Equation

(36 + 34) * x = 420

Figure 1.1. An MWP example.

There are several types of MWPs. Those containing equations with one-unknown,

where the result is a mathematical statement containing numbers and arithmetic op-

erators (+, −, /, *), are among the commonest. More sophisticated MWPs have

systems of equations as output, include operators other than the four operations, or

have problems involving more advanced calculations and domain knowledge.



2

1.2. Motivation

The system improvements that generate an automatic answer to an MWP have

not progressed as successful as expected. One reason is that systems must map natural

language text into machine-readable form in terms of semantic meaning of each number

in the problem, and reasoning based on the comprehension to determine the equation.

Another reason is that MWP complexity is determined by several dimensions, including

reasoning, linguistic complexity, and domain knowledge.

For the last few decades, studies on solving MWPs using rule-based models have

been conducted with a limited amount of data [1–5]. These models require pre-defined

problem and equation templates. It is not possible to address problems that have

never been encountered before or whose rules have not been stated. Because of this

limitation, the MWP subtask is enhanced with the state-of-the-art neural models which

provide further progress. There are many studies in the literature, particularly with

English and Chinese MWP datasets comprised of manually constructed questions from

websites [6–8]. However, there is neither a neural-based study nor corpus for solving

Turkish MWPs, and the number of rule-based research is also relatively low [9–12].

1.3. Approach

Based on the previously stated motivation, in this thesis, we propose a deep neural

solver to automatically solve Turkish MWPs. In contrast to prior template-based and

statistical learning techniques, we utilize a sequence-to-sequence (seq2seq) model with

an attention mechanism to directly translate MWPs to equation templates, with no

complicated feature engineering. Seq2seq is a recurrent neural network (RNN) model,

which employs an encoder to map the input sequence in a fixed-dimensional vector,

followed by a decoder to generate the target sequence from this vector [13]. In our

study, the encoder is intended to comprehend the semantics of the problem texts. In

contrast, the decoder employs self-attention to vectorize the quantities and determine

which symbol to generate next. There are two types of seq2seq models in our study.



3

One has the LSTM encoder-decoder, while the other has the gated recurrent units

(GRU) encoder-decoder.

Computers can not understand the concepts of words. Therefore, word embed-

dings are used to represent words as real-valued vectors in a vector space. An em-

bedding layer can be defined as the first hidden layer of a neural network model [14].

The problem texts are fed to the embedding layer before they are given to the en-

coder. In this layer, the embedding algorithms (word2vec and GloVe), and pre-trained

language models (BERT, fastText, ConvBERT, and ELECTRA) are implemented for

comparison.

Further, we also introduce new Turkish MWP corpora, by translating and com-

bining English benchmark datasets to solve elementary level problems. After manual

arrangements and preprocessing, we publish the corpora consisting of problem texts,

equations, and answers customized to our model.

As a result of the comparative analysis, 71% accuracy and 72% bilingual eval-

uation understudy (BLEU) score are obtained with the seq2seq model using BERT

embeddings and GRU encoder-decoder.

1.4. Contributions of this Thesis

The key contributions of the thesis are listed as follows:

• We construct the first Turkish MWP dataset to be used as a benchmark dataset.

• We deploy the first neural-based models to solve the MWP task.

• We achieve high accuracies and thus create a benchmark study for the future

works on this task.



4

1.5. Outline

The organization of the thesis is as follows:

• Chapter 2 presents the literature review on the MWP domain.

• Chapter 3 covers the background theory of the associated models.

• Chapter 4 introduces the novel Turkish MWP dataset created from scratch.

• Chapter 5 describes the neural-based Turkish MWP solving system and method-

ologies.

• Chapter 6 provides the system analysis, model comparisons, model parameters,

and the results of the experiments.

• Chapter 7 includes the final evaluations, describes the future work, and concludes

the thesis.



5

2. RELATED WORKS

Previous works on automatically solving MWPs can be grouped into four main

categories in terms of the models used: rule-based models, statistic-based models, tree-

based models, and neural-based models. This chapter also covers Turkish MWP studies

that have been carried out.

2.1. Rule-Based Models

Most previous works on solving MWPs focus on rule-based methods and feature

engineering, which need more human sensitivity [2]. Since these features are frequently

at the lexical level, it is unclear whether such models truly comprehend math prob-

lems. These models also include a substantial number of manually generated templates

associated with specific problem spaces.

Bakman [3] solves free-format multi-step MWPs by developing a schema-based

system and defining six types of schemas which are transfer-in-ownership, transfer-

out-ownership, transfer-in-place, transfer-out-place, creation, and termination. After

instantiating the schemas using lexical verb-based rules, the MWP system extracts the

suitable equation. As an alternative, to provide a new perspective on the solution of

MWPs, Liguda and Pfeiffer [4] suggest augmented semantic networks. According to

this network, nodes indicate quantities while edges indicate transition states. For multi-

step addition and subtraction MWPs, Yuhui et al. [5] demonstrate the problem text

with frames to store the essential semantic relations. Each preposition in the problem

text is categorized into a slot consisting of the object, quality (number), specification,

time, and role. The main limitation of the approach is that it only covers addition and

subtraction problems.



6

2.2. Statistic-Based Models

Earlier studies tend to use semantic parsing methods [15] or statistical learning

methods [16–20] for solving the task. Although these models work effectively on large

datasets, they could not preserve specific MWP properties.

Semantic parsing methods parse the problem text into an intermediate structured

representation, typically annotated in the training set. In other words, they attemp

to establish a direct mapping from the problem text to the equation structure. One

of the most well-known studies that used this method binds the specific lexicon-based

properties to the equation operators [15]. The equation is constructed by applying

state transitions depending on the operators activated by the verb categories.

Statistical learning methods utilize typical machine learning models to recog-

nize entities, quantities, and operators in the problem text and provide the numerical

solution using a basic logic inference. They improve the semantic parsing methods

by pre-defined logic templates. Kushman et al. [16] extract the templates about math

expressions from the training answers, train models to select templates, and map quan-

tities of the problem to the slots of the template. In another study [20], there are also

templates with multiple unknown slots to select a suitable template, then complete

both the number and unknown slots with the extracted information from the problem

text. Mitra and Baral [18] categorize addition and subtraction problems and propose

three problem templates which are part-whole, change, and comparison. Concerning

the categories for problems, they generate the equation.

As a different perspective, Liang et al. [19] present a tag-based statistical MWP

model to identify the desired operand and remove irrelevant quantities. The system

analyzes the text corresponding to the syntactic tree and linguistic information, and

then annotates with resolved co-reference chains. The text is transformed into logic

form by using the mapping rules. For instance, “Marry borrowed 20 books from

a bookstore.” can be written as “quan(q1, #, book)&verb(q1, borrow)&nsubj(q1,



7

Marry)=20”, where “&” links each of the tags together. The quantity “20” is labeled

by “q1” and is related to the associated tags to provide syntactic and semantic infor-

mation. Upadhyay et al. [17] use a semi-supervised technique to forecast templates and

match alignments by combining explicit and implicit supervision. Statistical learning

methods increase the complication of the text annotation with the appropriate tem-

plate, which can be extremely costly when learning from large-scale datasets.

2.3. Tree-Based Models

An MWP can be shown with a tree structure, with the highest priority operators

at the bottom and lowest priority operator at the top. The benefit of this approach

is that no extra annotations such as equation templates or tags are required. Roy et

al. [6] construct an equation tree by parsing the problem to generate the described

mathematical equation in the sentence and map the variables in the equation to their

corresponding noun phrases. In this approach, the tree comprises a series of predic-

tions, eliminates irrelevant quantities, detects grounded variables, and generates the

final equation tree. A support vector machine (SVM) classifier retrieves the relevant

quantities and variables, then uses them as the leaf nodes in the equation tree.

The necessary linguistic information can be obtained through tokenization, sen-

tence splitting, part-of-speech (POS) tagging, named entity recognition (NER), pars-

ing, and co-reference resolution. Dries et al. [7] design an automated approach for

solving probability problems by generating multiple parse trees for each of the sen-

tences in the problem. They find all numbers in the problem with POS tags and

capture the set of actions with a Bayesian network. On the other hand, declarative

rules can be also defined to govern the translation of natural language description for

basic operations such as addition, subtraction, multiplication, and division. Suppose

that there is an MWP example like “Tom has 4 apples. John has 9 more apples than

Tom. How many apples does John have?”. Roy and Roth [8] indicate that the unit of 4

and 9 refer to apples in the sentences. The system may then conclude that these same

type of units should be added together. Therefore, the output is an equation of 4+9.



8

This approach shows how to link textual expression patterns formed from dependency

parsing to specific operations.

how many plates?

8

50 2

u

vi vj

Rate→num Rate→num

Rate→den

Same Unit

Figure 2.1. UDG example.

Units related to the quantities provide information to support the reasoning, such

as election results, news about casualties, or finance. Roy and Roth [21] aim to indicate

the relationships among the units of different numbers and questions. The study sug-

gests the unit dependency graphs (UDG), representing the dependencies between units

of numbers described in a problem compactly. However, constructing a UDG involves

extra annotation effort since it needs to train two classifiers for the nodes (vertices)

and edges [22]. Assume that there is such an MWP: “Anna made 50 cookies for her

birthday party. When she places the cookies on plates in groups of eight, she increases

by 2 cookies. How many plates does she use in total?”. In Figure 2.1, there is the

UDG representation of the mentioned MWP. The source vertex u is labeled as rate,

which refers to any quantity that is a measure that corresponds to one unit of another

quantity. An undirected edge has the label same unit which is the connected vertices

with the same unit. On the other hand, a directed edge from vertex u to vertex v can

be either the numerator unit or the denominator unit. The numerator unit refers that

the unit of vertex u matches the unit of the destination vertex v. The denominator

unit means that the source of the vertex u matches the unit of the destination vertex



9

v. Here, “50” and “2” are connected via the same unit, thereby they can be added or

subtracted. “8” is connected to a question by the denominator unit. It shows that an

expression is divided by “8” for the unit of the final answer.

2.4. Neural-Based Models

As in many areas of NLP, neural models have recently been frequently preferred

in solving MWPs, and successful results have been obtained. These utilize an encoder-

decoder architecture and train it end-to-end without requiring customized rules or

templates.

In the study conducted by Wang et al. [23], which is one of the most known

and first applied neural approaches, an RNN model is developed to map the problem

statements to the equation templates without feature engineering. They solve MWPs

by generating the equation templates through a seq2seq model. The input of the

seq2seq model is a word sequence after number mapping, and the output is an equation

template. They use GRU as the encoder since it has fewer parameters and is less likely

to be overfitted on a small dataset and a two-layer LSTM as the decoder.

There are two popular complementary directions for learning to solve MWPs

which are semantic and purely data driven. Data-driven models easily learn to match

problem texts in the MWP with the equations given sufficient training data. On the

other hand, semantic methods figure out how to map problem texts to a semantic

representation to generate an equation. Robaidek et al. [24] generate equation tem-

plates with seq2seq models with attention mechanism and evaluate the model with

both LSTMs and convolutional neural networks (CNN) as the encoder and decoder.

As a different neural approach to improve the seq2seq model with reinforcement

learning, the copy and alignment mechanism to the sequence-to-sequence (CASS)

model is proposed to solve MWPs. Copy model directly copies the numbers in the

problem text to the equation. Alignment means connection between the numbers in



10

the equations and the numbers in the problem description. The model could learn the

alignment in a supervised way. Experimental results show that reinforcement learn-

ing leads to improve the performance [25]. According to another research [26], a new

intermediate meaning representation scheme for solving MWPs reduces the semantic

gap between natural language and equations. They claim that using the intermediate

forms for training performs better than directly mapping problems to equation systems.

Their baseline model is seq2seq with attention and copy mechanism. The encoder is

implemented as a single-layer bidirectional RNN with GRUs. It reads words of the

input text and produces a sequence of hidden states. The decoder receives the word

embedding of the previous one and an attention function is applied to attend over the

input words. At each step, the model decides whether to generate a word from target

vocabulary or to copy a number from the problem description. They choose the seq2seq

model because it provides a chance to generate equations of which problem types do

not present in the training data.

2.5. Related Works on Turkish MWP

The primary motivation for this study is that deep learning models are not ap-

plied for solving MWPs in Turkish. However, several studies use rule-based and shallow

models. The two earliest Turkish studies suggest a program which can solve primary-

school-level MWPs [9, 10]. This program consists of several sub-tasks which are mor-

phological analysis of each word in the input, syntactic analysis of each sentence, se-

mantic analysis of words, and providing a description of the commonsense world large

enough to allow correct answers to the problems. The commonsense knowledge re-

quired includes many items such as “Cows have 4 legs” and “There are 52 weeks in

a year”. The basic idea is to have a template that will handle all sentences for the

semantic categories. A semantic preprocessor rearranges the sentences with verbs that

have the same semantic effect before finding the appropriate template. For example,

the verbs “to get out”, “to die”, “to be sold”, “to sell” all indicate a decrease, but the

noun phrase is in the subject position for “to get out” and in the direct object position

for “to sell”. The preprocessor detects it and passes the components to the semantic



11

template in a standardized order.

Çakıroğlu [11] also presents an MWP solving system that uses semantic networks

for storing data. The proposed system has three main steps, which are morphology,

syntax, and semantics. The difference from other systems is that data is modeled as

semantic networks in semantic analysis. This type of modeling realizes correct and

fast understanding by reducing unnecessary data. During the morphological analysis,

word types are determined, affixes and suffixes of the words are searched, and affix

types are identified. The syntactic analysis is a hierarchical structure of the sentence

units. The semantic networks in the implemented system can recognize the subjects,

objects, cases, adverbs, and verbs in the sentence. Before the semantic analysis, the

word groups are checked to determine whether the analyzer recognizes a sentence. The

problem texts are grouped as addition, subtraction, division, and multiplication.

Another Turkish study investigates the morphological analysis of the words, the

definition of the problem types (addition, subtraction, division, multiplication), and

the computing of the results [12]. The problem types are determined by an XML

document. The program can evaluate and conclude specific problem patterns that

consist of no more than three sentences and contain no more than two numbers. In

order to determine which pattern the problem belongs to, the question sentence is

divided into words and numbers, and it is decided whether it is addition, subtraction,

multiplication, or division. These procedures are carried out using keywords contained

in XML. Since the keywords in XML are root or stem, the words in the question

sentence should also have roots and stems. Zemberek, an open-source NLP library

developed for Turkish languages, is used for this process.



12

3. BACKGROUND THEORY

This chapter gives a brief introduction to neural networks. In particular, we will

discuss several RNN-based models, including recurrent language models, the encoder-

decoder paradigm, and the seq2seq model with attention.

3.1. Recurrent Neural Networks

RNNs are a type of neural network architecture mainly used to detect useful

patterns in a sequence of data. They have been used in state-of-the-art problems such

as language modeling [27], text generation, speech recognition [28], image description

generation, and video tagging. RNNs can process any length sequence by recursively

applying a transition function to their internal hidden states for each token in the input

sequence. They have a memory that tracks the history based on their long-distance

characteristics [29–31].

RNNs consist of an input layer x, hidden layer h, and output layer y. The

activation of the hidden state h at time step t is computed as a function f of the

current input symbol xt and the previous hidden state ht−1 as shown in

ht = f(xt, ht−1), (3.1)

where the transition function f is defined as the product of an element-wise non-

linearity with the transformation of both the input xt and previous hidden state ht−1.

The activations of RNNs can be formulated by

ht = ϕ(Wxhxt +Whhht−1 + bh), (3.2)

where ϕ is the activation function which is generally a logistic sigmoid function or a

hyperbolic tangent function, Wxh is the input-to-hidden-state weight matrix, Whh is

the hidden-state-to-hidden-state recurrent weight matrix, and bh is the bias term [32].

RNNs are capable of constructing sentence vectors by making use of word vectors. In

this scenario, the output layer at each time step is not necessary, and the sentence vector



13

is generally the last hidden state vector ht. Figure 3.1 demonstrates the architecture

of RNNs.

xt

Wxh

Input

ht

Who

yt

Output

bh

Whh

ht−1

Figure 3.1. Architecture of RNN.

3.1.1. Deep Recurrent Neural Networks

Compared to shallow RNNs, deep recurrent neural networks (DRNN) have showed

the ability to learn feature representations at increasingly higher levels of abstractions

and capture more non-linearities within the data in a variety of applications, including

character-level and word-level language modeling [33]. DRNNs leverage previous out-

put or historical information as inputs in addition to the input at the current time step.

This makes them useful for recognizing sequential data features and using sequential

patterns to forecast the next likely scenario [34].

The hidden state in the intermediate levels is made up of two states: one from

the previous layer and one from the same layer. The hl
t indicates the hidden state in

the lth layer at time step t, W l
h′h specifies a weight matrix between the hidden state in

the previous layer and the hidden state in the current layer, and W l
hh is also a weight

matrix between the hidden states in the same layer, as formulated by

hl
t = ϕ(W l

h′hh
l−1
t +W l

hhh
l
t−1 + bh). (3.3)



14

3.1.2. Bidirectional Recurrent Neural Networks

One of the constraints of standard RNNs is that the information gathered at

time step t only encodes information from the previous parts in the sequence [35].

Bidirectional recurrent neural networks (BiRNN) combine two separate RNNs. In one

of the networks, the input sequence is fed in regular time order, while in the other

the input is in reverse time order. At each time step, the hidden states of the two

networks are typically concatenated, as shown in Figure 3.2. This structure allows the

network to obtain a knowledge about the sequence in both the backward and forward

directions.

Backward hidden states:

Forward hidden states:

Inputs:

Outputs:

xt−1 xt xt+1

Figure 3.2. Architecture of BiRNN.

3.1.3. Long Short-Term Memory

LSTM is a kind of RNN that can learn and remember through long sequences

of input data using gating units that govern the information about the network [36].

LSTM solves the following problems of RNNs.

• Vanishing gradient : The weights of the neural networks are updated using a

gradient value. When the gradient is extremely small, it no longer contributes to



15

the training. In the vanishing gradient problem, the gradient gets smaller as it

propagates back over time.

• Exploding gradient : It is the case where gradients increase exponentially during

backpropagation and cause learning divergence.

• Short-term memory : In the next time steps, information from distant previous

time steps is ignored. It causes essential information to be lost.

Solving exploding gradients is reasonably straightforward using gradient clipping

and truncated backpropagation [37]. However, vanishing gradient is a slightly more

challenging problem due to adding skip connections through time. The main idea of

LSTM used to solve these problems is replacing each regular node in the hidden layer

with a memory cell [32]. Memory cells contain a node with a self-recurrent connection

with a fixed weight. It allows gradients to update lightly through time.

it ot

ctx x ht
xt, ht−1

xt, ht−1 xt, ht−1

ft

xt, ht−1

x

Input Gate Output Gate

Forget Gate

Figure 3.3. LSTM memory cell.

Figure 3.3 visualizes a single LSTM memory cell. The input node accepts xt and

ht−1 as inputs and computes the activation [28]. The gates are the sigmoidal units

that regulate data flow from one node to another and control the reading, writing, and

resetting of the cells. The input to the memory cell ct is multiplied by the activation



16

of the input gate. The previous cell values are multiplied by the forget gate. The

activated output of the memory cell is multiplied by that of the output gate, and ht is

obtained. The internal state of the cell is maintained with a recurrent connection.

3.1.4. Gated Recurrent Units

GRUs are popular alternatives to LSTM [38]. They adaptively reset or update

the memory content. Similar to the forget and input gates of LSTM, GRUs have reset

gate rt and update gate zt. The reset gate determines how much of the past information

to forget. It is equivalent to combining the input gate and the forget gate in the LSTM.

In other words, the reset gate is responsible for the short-term memory of the network.

The update gate reflects how much previous information must be transferred to the

next. It corresponds to the output gate in the LSTM. In contrast to LSTM, GRUs do

not have a separate memory cell state ct and they only have a hidden state ht [30]. At

time step t, the hidden state ht of the GRU is calculated by

ht = (1− zt)ht−1 + zth̃t, (3.4)

where ht−1 is the previous activation, h̃t is the new candidate activation, zt is the

update gate and governs how much of the previous memory content is to be forgotten

and how much new memory content is to be inserted. The update gate is derived from

zt = σ(Wzxt + Uzht−1) (3.5)

and based on the previous hidden state. xt is the input vector, Uz denotes the state-

to-state recurrent weight matrix, Wz is the update gate weight matrix, and σ is the

logistic sigmoid function. This is a linear sum procedure between the current state and

the newly calculated state. The candidate activation h̃t can be obtained by

h̃t = tanh(Wxt + rt ⊙ Uht−1), (3.6)

where W and U are weight matrices, rt is the reset gate, and ⊙ is the element-wise

multiplication. The reset gate rt modifies the previous hidden state ht−1. It enables

GRUs to discard the previous hidden states if required, taking into account the previous

hidden states and the current input. The reset mechanism makes optimal use of model

capacity by permitting it to reset anytime the identified feature that is no longer



17

required. The reset gate rt is calculated as

rt = σ(Wrxt + Urht−1), (3.7)

where Wr and Ur are weight matrices.

3.2. Sequence to Sequence Model

Once the alignment between inputs and outputs is known in advance, RNNs can

efficiently map sequences to sequences [13]. However, it is not clear how to apply RNNs

to problems with input and output sequences of different lengths. The seq2seq model

is an RNN architecture used in tasks such as machine translation, image captioning,

and speech recognition. It solves sequence-based issues, particularly changeable input

and output sizes. We can examine seq2seq models in two different backgrounds, the

vanilla seq2seq model and the seq2seq model with attention.

3.2.1. Encoder-Decoder Architecture

The vanilla seq2seq model combines an encoder and a decoder, whose roles are to

encode the input into a state and decode this state to a target output, respectively [39].

A state is either a vector or a tensor. One RNN (usually LSTM or GRU) can be used as

an encoder, and another as a decoder. Figure 3.4 represents the proposed architecture.

The encoder is a set of multiple recurrent units, each of which receives a single

input sequence element, stores information for that element, and propagates it forward.

For example, the input sequence in a question-answering problem is a collection of all

words in the question. The encoder vector contains information for all input elements

so that the decoder can provide correct predictions. The ht(encoder) represents the

hidden states in the encoder and can be implied as

ht(encoder) = ϕ(Wxhxt +Whhht−1 + bh). (3.8)



18

RNN

h0

x1

RNN

h1

x2

RNN

h2

x3

E
n
coder

V
ector

RNNRNN

y1y2

Encoder

Decoder

Figure 3.4. Visualization of the encoder-decoder seq2seq model.

The final hidden state obtained from the encoder is the beginning hidden state of

the decoder. The decoder is also a set of several recurrent units and predicts an output

at time step t. Each recurrent decoder unit takes a hidden state from the previous unit

and generates both an output and its hidden state [40]. In the same question-answering

example, the output sequence consists of all of the words in the answer. Each word is

represented by yi, where i indicates the order of the word. The hidden states of the

decoder are obtained by

ht(decoder) = ϕ(Whhht−1 + bh) (3.9)

and the output of the decoder is formulated by

yi = ht(decoder) ∗Why, (3.10)

where Why is the weights matrix from the hidden state to the decoder output.

3.2.2. Attention Mechanism

According to Cho et al. [41], in the vanilla seq2seq models, the encoder generates

a fixed length representation from a variable length input sentence, and the decoder

creates a proper output based only on this representation. This model works reasonably

well on short sentences with few unseen words, but its performance decreases dramat-



19

ically as the sentence length and number of unseen words increase. In opposition, the

attention mechanism handles this bottleneck directly by storing and using all hidden

states of the input sequence during decoding. It accomplishes this by establishing a

different mapping between each time step of the decoder output and all of the encoder

hidden states. The attention mechanism implies that the decoder has access to the

complete input sequence and may attend particular components from the sequence to

generate decoder outputs [42]. There are two types of the attention mechanisms that

have the same basic principles but differ in terms of architecture and computation, as

explained in Section 3.2.2.1 and Section 3.2.2.2.

3.2.2.1. Bahdanau Attention Mechanism. As the first approach, Bahdanau et al. [43]

suggest to align the decoder with the relevant input positions and implement the atten-

tion mechanism. The suggested method can also be described as the additive attention

since it conducts a linear combination of the encoder and decoder states. The steps

applied in Bahdanau’s attention mechanism are as follows:

• In contrast to the vanilla seq2seq model, which uses only the latest encoder hidden

state, all hidden states of the encoder and decoder are utilized to build the context

vector [44].

• The attention mechanism aligns the input and output sequences using a feed

forward network to calculate an alignment score. It is beneficial to focus on the

most important information in the source sequence.

• Depending on the context vectors related to the source positions and the previ-

ously created target words, the model predicts a target word.

Figure 3.5 shows the attentional seq2seq model. The encoder is formed of BiRNNs

with two hidden state vector sequences [45]. A forward RNN reads the input sequence

(x1, x2, ..., xTx) and generates the forward hidden states
(−→
h1,
−→
h2, ...,

−→
hTx

)
. A backward

RNN reads the input sequence in the opposite order (xTx , xTx−1 , ..., x1) and produces

the backward hidden state vector sequence
(←−
h1,
←−
h2, ...,

←−
hTx

)
, where T is the total

number of words. At each time step, the hidden state vectors are appended from



20

x1 −→
h1

←−
h1

x2 −→
h2

←−
h2

xT −→
hT

←−
hT

+

yt−1st−1

ytst

yt+1st+1

αt,1

αt,2

αt,T

Encoder Decoder

Figure 3.5. Bahdanau’s attention mechanism.

BiRNNs to create a sequence of annotation vectors (h1, h2, ..., hT ). For each word

xj, an annotation hj is created by concatenating the
−→
h j forward and

←−
h j backward

hidden states, where j is the order of the word in the sequence. The annotation hj of

word xj can be indicated by using

hj = [
−→
hT
j ;
←−
hT
j ]

T . (3.11)

The decoder is a unidirectional RNN that measures the impact of each annotation

vector to the output prediction [31]. It receives each annotation and forwards the

annotation and the previous hidden state of the decoder st−1 to an alignment model a.

After that, it creates an attention score et,j representing how closely the inputs at the

jth position fit the output at the tth position. The alignment model a combines st−1

and hj with an addition operation and calculates the attention score et,j with

et,j = a(st−1, hj). (3.12)

The attention score is put into a softmax function to get the attention weight by

αt,j = exp(etj)/
I∑

j′= 1

exp(et′j). (3.13)



21

The context vector ct is the weighted sum of the attention weight αt,j and the hidden

state hj of the encoder according to

ct =
T∑

j= 1

αt,jhj. (3.14)

Given the context vector ct, previously predicted word yt−1, and previous hidden state

st−1 of the decoder utilize the next hidden state st in

st = f(st−1, ct, yt−1). (3.15)

For each target word yt, a probability p is conditioned as

p(yt|{y1, ..., yt−1}, x) = g(st, ct, yt−1), (3.16)

where g is a nonlinear function.

3.2.2.2. Luong Attention Mechanism. An alternative attention mechanism, which we

also used in our study, is proposed by Luong et al. [46]. Unlike Bahdanau, this approach

is referred as the multiplicative attention [44]. It uses simple matrix multiplications,

which are quicker and save space, to convert encoder and decoder states into the

attention scores. Depending on where the attention is positioned in the source sequence,

Luong suggests two types of attention approaches: global and local. The common point

of these approaches is that they receive the hidden state ht at the top layer of the

LSTM as input at each time step in the decoder. On the other hand, they differ in the

derivation of the context vector ct.

A simple concatenation layer combines the information from the target hidden

state ht and context vector ct to create an attention vector h̃t by implying

h̃t = tanh(Wc[ct;ht]). (3.17)

The attention vector h̃t is given to the softmax layer as

p(yt|y<t, x) = softmax(Wsh̃t) (3.18)

to obtain the predictive distribution and current target word yt [47]. The global atten-

tion approach pays attention to all the hidden states of the encoder as it derives the

alignment score and the context vector. The global attention forms a variable length



22

alignment weight vector at depending on the current target hidden state ht and all

source hidden states hs at time step t can be calculated by using

at(s) =
exp(alignmentScore(ht, hs))∑
s′ exp(alignmentScore(ht, hs′))

. (3.19)

The alignment score is a content-based function for which three possible possibilities

are considered as

alignmentScore
(
ht, hs

)
=


vTa tanh

(
Wa

[
ht; hs

])
concat

hT
t hs dot

hT
t Wahs general

(3.20)

where the first approach is similar to Bahdanau’s model and concatenates the ht and

hs. Here, Wa is a weight matrix, and va is a weight vector. Other two approaches

apply the multiplicative attentions.

hs ht

yt

h̃t

at

ct
Attention Layer

Figure 3.6. Luong global attention mechanism.

The global context vector ct is calculated as the weighted average of all the

source hidden states hs with the alignment weight vector at. The general architecture



23

of the global attention approach is demonstrated in Figure 3.6. The global attention

approach is computationally expensive since it attends to all source words and may

become unfeasible to process long sentences. In order to solve this shortcoming, a local

attention approach, which relies on a small subset of source positions for each target

word, is recommended. The model generates the aligned position pt for each target word

at time step t. The context vector ct is obtained as a weighted average of the source

hidden states inside the window [pt − D, pt + D], where D is chosen experimentally.

The aligned position pt can be computed with two methods: monotonic alignment or

predictive alignment. In the monotonic alignment, it is considered that the source and

target sentences are monotonically aligned.

hs ht

yt

h̃t

at

ct
Attention Layer

pt

Figure 3.7. Luong local attention mechanism.

On the other hand, the predictive alignment predicts an aligned position pt by

using the model parameters, which are vp and Wp, and multiplying them with the

length of the source sentence S. The aligned position pt is computed by the predictive

alignment method as shown in

pt = S.sigmoid(vTp tanh(Wpht)). (3.21)



24

In contrast to the global approach, the local alignment vector at has a fix dimen-

sion ∈ R2D+1. Figure 3.7 illustrates the local attention model. As a summary, the

model tries to predict the aligned position pt of the current target word. The window

[pt−D, pt+D] for the source position pt helps to determine the context vector ct. The

alignment vector at (as the local weight) is formed by the source states hs within the

window and the current target state ht.

3.3. Word Embeddings & Pre-trained Language Models

It is a well-known fact that computers are not competent in understanding texts.

Nevertheless, thanks to the ability of computers to process numerical data, word em-

bedding models have emerged that convert textual data into numerical form. These

models are word vector representation techniques in a lower-dimensional space. They

can capture the context of a particular word, the syntactic and semantic similarity of

that word and its relation to other words [48]. These word embeddings are vital as

they are used as the input to machine learning and deep learning models.

The classical word representation methods such as bag-of-words, countVectorizer,

and term frequency-inverse document frequency (TF-IDF) depend on the word count

in the sentence. The vector size in these methods is equal to the number of elements in

the vocabulary. A sparse matrix is occured when the majority of the elements are zero.

Also, these methods do not preserve any syntactical or semantic information. For the

learning algorithms, the large input vectors require a large number of weights, resulting

in high computing requirements. The state-of-the-art word embedding models, which

will be discussed in the next sub-sections, solve these issues.

3.3.1. Word2vec

Word-to-vectors (word2vec) is a common approach for learning word embeddings

with a shallow neural network and was proposed by Mikolov et al. [49]. Word2vec

employs two iteration-based models to generate the vector representations of the words.



25

The first model is continuous bag-of-words (CBOW), which predicts the current

word relying on the context [50]. It estimates the center word from its surrounding

context and maximizes the likelihood of a word existing in a given context via

P (wi|wi−c, wi−c+1, ..., wi−1, wi+1, ..., wi+c−1, wi+c), (3.22)

where wi is the word at ith position in the sentence and c is the window size.

It produces a model that depends on the continuous distributed representation

of the context. Assume that W is a vocabulary containing all the words. The CBOW

model creates a randomly initialized input word matrix denoted by V ∈ RN×|W |. For

the input word vi, the ith column of the matrix V indicates an N -dimensional em-

bedding vector. The CBOW model also constructs a randomly initialized output word

matrix called as U ∈ R|W |×N . The jth row of the output matrix U has anN -dimensional

embedding vector for the output word uj. The one-hot-encoding for each word is pre-

ferred to create word vector embeddings. The V T is used to handle the relevant word

vector embeddings in the N -dimensional space. The UT is adopted to an input word

vector to produce a score vector. It is then added to a softmax function to transform

the score vector into a probability vector in the W -dimension. The goal of this oper-

ation is to produce a probability vector that corresponds to the vector representation

of the output word.

The second model of the word2vec is skip-gram [51]. Unlike the CBOW, the

skip-gram model tries to estimate the surrounding context words given a center word.

It is beneficial to develop high-quality distributed vector representations which contain

a massive number of syntactic and semantic words. According to

P (wi−c, wi−c+1, ..., wi−1, wi+1, ..., wi+c−1, wi+c|wi), (3.23)

the model maximizes the likelihood of the context words for a given center word. The

optimization process is identical to the CBOW model, but the order is reversed for the

context and center words. Figure 3.8 clearly shows the primary difference between the

CBOW and skip-gram models.



26

wt−2

wt−1

wt+1

wt+2

wt

SUM

wt−2

wt−1

wt+1

wt+2

wt

SUM

CBOW Skip-gram

Figure 3.8. CBOW and skip-gram architectures.

3.3.2. GloVe

GloVe is an unsupervised learning algorithm developed by Pennington et al. [52]

to generate word embeddings by aggregating global word co-occurrence matrices. The

primary idea of the GloVe model is to use statistics to identify the relationship between

words. Unlike the occurrence matrix, the co-occurrence matrix indicates how frequently

a particular word pair appears together. GloVe merges two approaches to obtain the

word vectors. The first approach is global matrix factorization for representing the

classical vector space models. On the other hand, the local context window is for the

local context information of the words such as word2vec uses.

3.3.3. fastText

fastText makes explicit use of subword information and allows the embeddings

for rare words to be represented appropriately [53]. It uses the skip-gram model, in

which each word is denoted as a bag of character n-grams or subword units. The

character n-grams are assigned to the vector representations, and the average of these

vectors yields the final expression of the word. According to Wang et al. [50], the

fastText model considerably increases the performance of the syntactic tasks, but not

remarkably on the semantic problems.



27

3.3.4. BERT

BERT is a pre-trained language representation model, published by Devlin et

al. [54]. BERT utilizes a transformer model and an attention model in which each

output element is linked to each input element, and the weights between them are

dynamically computed according to the connections [55]. The most straightforward

architecture of the transformer consists of two distinct mechanisms: an encoder that

reads the input text and a decoder that generates a prediction for the input. Since

the purpose of BERT is to build a language model, only the encoder mechanism is

sufficient. The encoder reads the complete sequence of words at once, in contrast to

the directional models, which read the text input sequentially from left to right or right

to left, but could not do both at the same time. As a result, the transformer model

is regarded bi-directional. It enables the BERT model to learn the word’s context

depending on its surroundings.

Thanks to bidirectional ability, BERT is pre-trained on two NLP tasks: masked

language modeling and next sentence prediction. The goal of the masked language

model is to conceal a word in a sentence and then have the system guess what word

is hidden based on its context. The next sentence prediction estimates whether two

provided sentences have a logical and sequential link or whether their relationship

is purely random. BERT outperforms previous embedding models such as word2vec

and GloVe, which are limited in interpreting context and ambiguous words. BERT

successfully solves ambiguity, which is one of the most difficult problems in NLP.

Given a set of tokens X = (x1, x2, ..., xn), BERT model pads the input with the

classification [CLS] and separating [SEP] tokens [56]. A single vector containing the

whole input sentence must be supplied to the classifier of the BERT for the classification

tasks. In BERT, the hidden state of the first token is used to cover the entire sentence.

In order to provide this, the [CLS] token is manually inserted at the beginning of the

input sentence. In the next sentence prediction task, the [SEP] token is used to inform

the model where the first sentence ends and the second sentence begins. When it is a



28

classification task, the [SEP] token is added to the end of the input sentence, as each

input sample contains a single text sentence. The BERT model takes fixed length of

sentences as inputs. For sentences shorter than a certain threshold, the padding token

[PAD] is added to provide the same length.

In a pre-trained model, each token (word) has a unique identifier. Therefore, it is

necessary to convert each token in the input sentence to its associated unique identifier

in the fixed vocabulary of the pre-trained model. The tokens that do not have a unique

identifier in the vocabulary are mapped with the identifier of the unkown token [UNK].

However, transforming all unseen words to the [UNK] token destroys information from

the input text. To solve this problem, BERT employs the WordPiece tokenization

method, which divides a word into several subwords, allowing the model to better

represent both the frequently encountered tokens and also the unseen tokens.

3.3.5. ConvBERT

BERT depends on the global self-attention block, resulting in a huge memory

footprint and computation cost [57]. It is observed that although all attention heads

query the entire input sequence to construct the attention map from a global perspec-

tive, some heads are only required to learn local dependencies. Therefore, ConvBERT,

a new span-based dynamic convolution model, is recommended to convert the self-

attention heads to the local model dependencies. The state-of-the-art convolution

heads and the remaining self-attention heads create a new mixed-attention block that

is more efficient at learning both global and local contexts. The ConvBERT model is

created by equipping the BERT model with the new mixed-attention block.

3.3.6. ELECTRA

ELECTRA is a self-supervised language representation model that trains two

transformer models, the generator and the discriminator [58]. The generator replaces

tokens in a sequence and is trained as a masked language model. The discriminator



29

attempts to determine which tokens in the sequence are replaced by the generator.

Since ELECTRA is a pre-training approach, no modifications are made to the funda-

mental BERT model. The only manipulation is the separation between the hidden and

embedding dimensions. An extra linear layer is utilized to project embeddings from

the embedding dimensions to the hidden dimension. The linear layer is not used if the

embedding dimension is the same as the hidden dimension.



30

4. DATASETS

Due to the rise of the use of neural models in the MWP task, the need for datasets

containing more data and comprehensive equations has increased. The simplest MWPs

have a text question, a mathematical equation that includes numbers and one or more

basic arithmetic operators, which are (+, −, /, *). More complex MWPs have systems

of equations as output, include other operators like square root and exponential ex-

pression, or contain more advanced topics and specialized information such as volume

calculation and physics knowledge. Recent studies seem to focus on solving complex

and challenging MWPs, such as geometry problems [59, 60], multiple unknown linear

problems [61], and IQ problems [62].

4.1. Available Datasets

As we mentioned in the previous sections, mostly English and some Chinese

studies are pioneers in the MWP task. Therefore, almost all of the available datasets

are prepared in these languages. A list of prior benchmark datasets for MWP solving

is provided below.

• Alg514 : It is published by Kushman et al. [16] and consists of 514 algebra word

problems annotated with linear equations. The problems with lack of knowledge

or requiring explicit background knowledge are removed.

• Verb395 : Hosseini et al. [15] created it by combining three diverse datasets.

The problems include combinations of subtractions and additions, money word

problems, and one-unknown equations. In total, there are 395 word problems.

• Dolphin1878 : The data collection is built by Shi et al. [63] and includes 1878

problems crawled from algebra.com and Yahoo!.

• Dolphin18K : It is a large-scale and challenging dataset with 18460 problems, and

5871 equation templates [61]. Since the dataset was created from online forums,

there may be errors in the annotations and answers.



31

• DRAW1K : It is a dataset consisting of 1000 algebra word problems [64]. It

ensures the alignment between numerical coefficients in the equations and the

numbers in the text.

• SingleEQ : There are 508 grade-school algebra word problems, including addition,

subtraction, multiplication, division, and non-negative rational numbers [65].

• AQuA: It is another large-scale dataset with 100000 algebraic word problems and

is published by Ling et al. (DeepMind) [66]. Each problem consists of four parts,

which are question, answer options (A, B, C, D, and E), rationale (the natural

language description of the solution), and correct answer option.

• Math23K : The dataset is composed of 23161 Chinese MWPs and 2187 templates

which are suitable for elementary schools. These are all linear algebra problems

with only one unknown variable [23].

• MAWPS : It is a frequently used English benchmark dataset containing equation

templates and 3320 questions [67]. However, in some research [68], a simplified

version with only 1920 questions is used.

• ASDiv-A: It is a diverse corpus in terms of lexicon patterns and wide problem

types. Miao et al. [69] suggest that the dataset diversity is more crucial than the

size to measure the actual performance of an MWP solver. They compute the

diversity of ASDiv-A with a lexicon usage diversity metric that uses BLEU. It

is an arithmetic subset of original ASDiv dataset, which requires also additional

domain knowledge.

• SVAMP : It is a challenging and newly introduced dataset by Patel et al. [68] and

injected several types of modifications into a set of seed problems derived from

the ASDiv-A dataset. Each equation template is converted to prefix form and all

numbers are masked with a meta symbol.

• MathQA: This is a large-scale dataset of 37200 English multiple-choice MWPs

from geometry, physics, and probability questions and improves the AQuA dataset

by annotating the rationales, which means explanatory solutions [70].

The general statistics of the MWP datasets are summarized in Table 4.1, and

samples are given in Table A.1.



32

Table 4.1. Statistics of MWP datasets.

# Problems Operators Problems Types Language

Alg514 514 +, −, /, * algebra, linear English

Verb395 395 +, − addition, subtraction English

Dolphin1878 1878 +, −, /, * number word English

Dolphin18K 18460 +, −, /, * linear, nonlinear English

DRAW1K 1000 +, −, /, * algebra, linear English

SingleEQ 508 +, −, /, * linear English

AQuA 100000 +, −, /, * algebra English

Math23K 23161 +, −, /, * algebra, linear Chinese

MAWPS 1920 +, −, /, * algebra English

ASDiv-A 1218 +, −, /, * algebra, linear English

SVAMP 1000 +, −, /, * algebra, linear English

MathQA 37200 +, −, /, * probability, physics,

geometry, gain-loss

English

4.2. Turkish MWP Benchmark Datasets

In order to eliminate the lack of MWP studies in Turkish, we converted four

English datasets, which are MAWPS, ASDiv-A, SVAMP, and MathQA, into Turkish

using a machine translation system in this thesis. To create an MWP dataset from

scratch, normally a significant number of questions are collected from websites or text-

books, the equations are created for the questions, and data is served in an acceptable

format to train the neural model. Instead of this process, we preferred to translate ex-

isting English benchmark MWP datasets into Turkish to compare the performance of

the models using the questions of the same difficulty but in different languages. Using

an existing dataset translated from one language to another saves time and provides

the opportunity for multi-lingual question-answering systems.



33

We generated two distinct datasets which differ in their complexity levels. The

details of the relevant datasets are explained in Section 4.2.1 and Section 4.2.2. Within

the scope of the MWP task, our datasets are the first comprehensive benchmarks

datasets created in Turkish and will contribute to future works.

4.2.1. Combined Dataset from MAWPS, ASDiv-A, and SVAMP

The first dataset is formed by combining the MAWPS, ASDiv-A, and SVAMP

datasets, all containing elementary school arithmetic questions. These three datasets

were chosen to merge since the problem sentences do not require extensive handling,

the question types are comparable, and the mathematical equations can be interpreted.

In total, 4164 MWP data are provided by adding a few manual questions.

Only the problem texts in the datasets have been translated. In the case of ASDiv-

A and SVAMP, the problem text was created by combining the body and question

fields. The SVAMP is required the most preprocessing operation before the translation

out of the three. As can be seen in Table A.1, in the problem texts of the SVAMP,

the punctuation marks should be appropriately placed, and the extra spaces or foreign

characters should be eliminated for a good translation. The numbers in the questions

of the original version of the SVAMP were replaced with the numberX tags, where

X is the rank of that number among all the numbers in the sentence. As a result

of the tests, the quality of the translations with tags is not satisfactory. For this

reason, the numbers field in the dataset and the numberX tags in the sentences have

been substituted based on their indices. The arranged problem texts were extracted

from the dataset, divided into chunks of 300 due to the restrictions of the application

programming interface (API), and translated into Turkish by using Googletrans, a

Python library that implements Google Translate API [71]. We examined different

machine translation systems and observed that Google produces the best results.

As used in the original form of SVAMP, tagging the numbers with numberX tags

according to the order in which they are mentioned provides a generic structure. Since



34

each different number receives a different token in the embedding model, the learning

success of the model is negatively affected. However, when the same tokens are included

in each problem text thanks to tags (e.g., number0, number1), the attention mechanism

tends to pay attention to these tokens as crucial points of the sentence. Therefore, the

numbers in each problem text were extracted and stored as a new field, then changed

with new tags according to their order. On the other hand, a space has been added

before and after all punctuation marks in the sentence so that each punction mark is

considered as an embedding token, and all letters are converted into lowercase. The

conversion process can be examined in Table 4.2.

Table 4.2. Number tagging in the problem text.

Original Data Sample Data Sample After Tagging

question: Lana’nın en sevdiği grup,

biletlerin her birinin 6 dolar olduğu

bir konser veriyordu. Lana kendisi ve

arkadaşları için 8 bilet ve başka biri

gitmek isterse diye ekstra 2 bilet aldı.

Toplam kaç dolar harcadı?

question: lana ’ nın en sevdiği grup ,

biletlerin her birinin number0 dolar olduğu

bir konser veriyordu . lana kendisi ve

arkadaşları için number1 bilet ve başka biri

gitmek isterse diye ekstra number2 bilet

aldı . toplam kaç dolar harcadı ?

numbers : [6, 8, 2]

In order to generate the equations more consistently and accurately, a common

template structure is applied to the equations in the dataset. This structure is already

used in SVAMP. Conversion to the template structure has been made for MAWPS,

ASDiv-A, and then MathQA. The original versions of the equations are referred as the

infix notation, where the mathematical operators are between the numbers (operands)

in the expression such as (A+B)*(C-D). In our equation template, the operator to be

applied to two operands is declared just before these operands. This type of notation

is called the prefix notation (e.g. *+AB-CD). The operators shift to the left while the

operands remain in their current positions. However, this logic does not work correctly

in parenthetical equations. For this reason, the stack data structure is used in the



35

conversion from the infix to the prefix notation. The algorithm employed is as follows:

(i) Create an empty operator stack for the operators, and an empty operand stack

for the numbers.

(ii) Determine whether a particular element is an operator, an operand, or a paren-

thesis.

(iii) If it is an operand, push it into the operand stack.

(iv) If it is a left parenthesis, push it into the operator stack.

(v) If it is a right parenthesis, pop the operator stack, and pop two operands from

operand stack. Merge them as a string and push into the operand stack.

(vi) If it is an operator, check the precedence of the current operator and the operator

at the top of the operator stack. The precedence of the operators from low to

high is as follows: “-+”, “*/”.

(a) If the current operator has a higher or equal precedence than the top of the

operator stack, push the current operator into the operator stack.

(b) If the current operator has a lower precedence, hold the current operator, pop

the operator stack, and pop two operands from the operand stack. Merge

them as a string and push it into the operand stack. Continue this loop until

the held operator precedence is greater than the top of the operator stack.

(vii) When the infix equation is completely processed, pop the operator stack, pop two

operands from the operand stack, merge them as a string and push it into the

operand stack until the operation stack is empty.

4.2.2. MathQA Dataset

The MathQA benchmark dataset consisting of 37200 data was employed as the

second dataset. This dataset was adopted because it is one of the most challeng-

ing datasets, the amount of data is satisfactory, and it covers a variety of questions

from many aspects. The dataset requires much more preprocessing than the MAWPS,

ASDiv-A, and SVAMP datasets, as the questions and solutions are collected from web-

sites. An annotated equation template is used to formulate the absolute equations.



36

However, there are unknowns, constant terms, and complex mathematical operations

even in the annotated equations. The numerical answer in the dataset is not always

the same as the result of the annotated formula. Despite all the difficulties, many

operations were carried out to translate MathQA into Turkish, and it was evaluated

in the model training.

Following visual inspections of 37200 data points, the dataset was reduced to

19555 data samples. Physics, geometry, and some of the probability, economics, and

interest problems that require knowledge of formulas and equations with many un-

knowns have been eliminated. Apart from these, the samples that have unknown

characters in the problem text and may affect the translation performance have also

been removed. Outlier questions with more than 15 tokens in their equations were also

deleted.

Several processing operations were carried out before and after the translation.

Although there are a great number of operations we performed, we include here the

important ones to serve as a guideline for future works to translate the datasets into

different languages. Some of the pre-translation processes are listed below.

• English abbreviations in the problem texts were written in their long forms. The

Googletrans API can not translate abbreviations properly. The dots and spaces

of the abbreviations also vary. There are multiple versions of an abbreviation.

Some example abbreviations are:

p.c.→ percent, c.i.→ compound interest, s.i.→ simple interest, p.a.→ per annum,

h.c.f.→ highest common factor, l.c.m.→ least common multiple, @→ at, a.p.→

arithmetic progression, avg→ average, rs→ $, no→ number, m→meter, m∧2 →

square meter, cm∧3 → cubic centimeter.

• It is critical in our problem that numeric values are expressed in numbers rather

than in written form. For this reason, the values such as “one”, “two”, “a hun-

dred”, “million” were translated into numbers.

• Sentences starting with find/solve/calculate keywords but ending with a question



37

mark, and sentences starting with what/how keywords but ending with a dot were

edited.

• A caret (∧) sign was used to prevent the incorrect translation of the exponential

expressions (e.g. “5 power 2”→ “5∧2”).

• The commas used as the thousands of separators in English are removed. The

reason for this removing is that Googletrans API translates the comma, which

is the thousands separator, and the period, which is the decimal separator, as a

period.

• The decimal expressions that continue as zero are removed (e.g. “52.00”→ “52”).

• The mixed numbers in the question were updated with the addition operation

due to the errors in the translation (e.g. 32
5
→ 3 + 2

5
).

• The expressions such as “×”, “x”, “÷” were converted to “*” and “/”.

• The different Unicode characters used in place of apostrophes, double quotes, and

dashes were adjusted.

• The sequential expressions were shown in written form (e.g. “1st”→ “first”,

“2nd”→ “second”).

• The expressions such as vulgar fraction one half (½) and vulgar fraction three

quarters (¾) are written in the division forms.

After translation, the corrections made in the problem text are as follows.

• All letters were converted to lowercase.

• The translation errors in problem texts containing equations were fixed as a result

of visual inspections.

• A space was added between the numbers and operators of the equations in the

problem text. Thus, the numbers are masked and each operator is treated as a

separate token.

Problem text: (18∧a)*9∧(3a-1)=(2∧2)(3∧b) için a ve b pozitif tam sayılarsa, a’nın

değeri nedir?

Processed text: ( number0 ∧ a ) * number1 ∧ ( number2 a - number3 ) = (

number4 ∧ number5 ) ( number6 ∧ b ) için a ve b pozitif tam sayılarsa , a ’ nın



38

değeri nedir ?

Following that we turned the annotated formulas into the prefix templates as we

used in the previous dataset. In the annotated formula, there were constant numbers

in the form of const X, for example, const 100 for the percentile problems. We used

these constants in their numerical forms. On the other hand, apart from the four ba-

sic mathematical operations (add, subtract, divide, and multiply) that we considered,

there are some advanced mathematical operations such as round, log, and cosine. Since

all operations are displayed in written form rather than signs, these operations are eas-

ily extracted, and related data samples are removed from the dataset. We deleted the

samples with more than 15 tokens in the equation that reduces the success of the model.

It can be said that the formula is generally suitable for the prefix structure. After the

written operators were translated into the signs, we obtained our final equations. An

example is shown below:

“multiply(divide(80, 160), const 100)”→ “* / 80 160 100”

Eventually, we constructed the final version of the dataset in JSON data format,

including the “Question”, “Equation”, “Numbers”, and “Answer” fields.



39

5. METHODOLOGY

In this thesis, the steps of the MWP solving system are summarized below, and

detailed in the following sections.

• Process the data as the input.

• Feed the input to the embedding model.

• Encode the embedded question text in the encoder.

• Generate the equation with the Luong attention mechanism in the decoder.

• Evaluate the generated equations with the accuracy and BLEU score metrics.

5.1. Data Processing

Until now, we thought that the first step of the system is the embedding model.

However, the first thing to do in a neural model is to read the data and make other

adjustments rather than feature engineering. As soon as our bulk data is read in

JSON format, it is shuffled, split into the train and test sets, grouped to contain a

specified number of data, and each group is called a batch. In order not to increase

the computation time by doing the same operations each time, we stored the train and

test batches in the DataLoader objects belonging to the PyTorch library, and we saved

them to the local system. In case of data or batch size change, the shuffling, splitting,

and grouping procedures are initiated, and the DataLoader is updated.

Suppose that each space-separated word, number, or operator in the problem

texts and equations is a token. We recorded each distinct token in the problems to

a word vocabulary, and each distinct token in the equations to an equation vocabu-

lary. They are simply mapping files. Both vocabularies are used to create the tensor

arrays for the embedding. The word vocabulary contains the unique identifiers (ID)

corresponding to each token in the questions, the tokens corresponding to the relevant

unique IDs, the number of times each token occurs, and the total number of tokens in



40

both train and test sets. In the following steps, the <s> tag is used to indicate the

beginnings of the questions, </s> tag implies the endings, and <unk> is the dummy

tag. Since these tags can also be considered as tokens, they were added to the word

vocabulary. The fields of the word vocabulary are demonstrated in Table 5.1. The idea

of the equation vocabulary is the same as that of the word vocabulary, as shown in

Table 5.2. It takes into account all operators, constant numbers and numberX tags in

the equations, in addition to the <unk>, <s>, and </s> tags, where the <unk> tag

is a placeholder for the unknown words if needed. We stored the word and equation

vocabularies in the local system for reuse, just as we did for the train and test batches.

Table 5.1. Word vocabulary.

Key Value

words voc {“<unk>”: 0, “<s>”: 1, “</s>”: 2, “ali”: 3,

“number0”: 4, “şekeri”: 5, “sınıfındaki”: 6, “num-

ber1”: 7, “kişi”: 8, “arasında”: 9, ..., “vanilya”:

7249, “tarifleri”: 7250, “gereklidir”: 7251}

word ids voc {0: “<unk>”, 1: “<s>”, 2: “</s>”, 3: “ali”, 4:

“number0”, 5: “şekeri”, 6: “sınıfındaki”, 7: “num-

ber1”, 8: “kişi”, 9: “arasında”, ..., 7249: “vanilya”,

7250: “tarifleri”, 7251: “gereklidir”}

word by count {“<unk>”: 1, “<s>”: 1, “</s>”: 1, “ali”: 19,

“number0”: 4245, “şekeri”: 37, “sınıfındaki”: 4,

“number1”: 4113, “kişi”: 222, “arasında”: 26, ...,

“vanilya”: 4, “tarifleri”: 1, “gereklidir”: 1}

number of distinct words 7252



41

Table 5.2. Equation vocabulary.

Key Value

operators voc {“<unk>”: 0, “<s>”: 1, “</s>”: 2, “+”: 3,

“number0”: 4, “number1”: 5, “*”: 6, “/”: 7,

“number2”: 8, “-”: 9, ..., “5”: 27, “‘10”: 28}

operator ids voc {0: “<unk>”, 1: “<s>”, 2: “</s>”, 3: “+”,

4: “number0”, 5: “number1”, 6: “*”, 7: “/”, 8:

“number2”, 9: “-”, ..., 27: “5”, 28: “10”}

operators by count {“<unk>”: 1, “<s>”: 1, “</s>”: 1, “+”: 1916,

“number0”: 3991, “number1”: 3820, “*”: 859,

“/”: 795, “number2”: 1618, “-”: 1974, ..., “5”: 2,

“10”: 1}

number of distinct operators 29

For some embedding models, the tensor arrays with padding were created for

each batch. The tokens of each sample in a batch were encoded by its unique ID in

the relevant vocabulary. The unique ID of our end of sentence tag </s> is 2 and

is appended to the end of each sample. In order for all the samples of the batch to

be in the same size, the </s> tag is padded at the end of the samples, taking into

account the max-length sample. Thus, for each batch, we formed a tensor array, which

has a shape of the max-sample-length and the batch size. An equation batch and the

resulting tensor array are given below as an example.

Equation batch (batch size = 8) → [“/ number1 number2”, “+ number0 num-

ber1”, “* / number1 number0 number2”, “- number0 number2”, “/ + number0 num-

ber1 number0”, “+ number0 number1”, “* number0 number1”, “- number1 number0”]

Encoded equation batch with padding → [[7, 5, 8, 2, 2, 2], [3, 4, 5, 2, 2, 2], [6, 7,

5, 4, 8, 2], [9, 4, 8, 2, 2, 2], [7, 3, 4, 5, 4, 2], [3, 4, 5, 2, 2, 2], [6, 4, 5, 2, 2, 2], [9, 5, 4, 2,

2, 2]]



42

Equation tensor → tensor([[7, 3, 6, 9, 7, 3, 6, 9],

[5, 4, 7, 4, 3, 4, 4, 5],

[8, 5, 5, 8, 4, 5, 5, 4],

[2, 2, 4, 2, 5, 2, 2, 2],

[2, 2, 8, 2, 4, 2, 2, 2],

[2, 2, 2, 2, 2, 2, 2, 2]])

5.2. Embedding Models

In this thesis, we have integrated many different word embedding models and

pre-trained language models into our system to make robust analyses and comparisons.

The embeddings are created for both questions and equations. However, the question

embeddings are processed by the language models for their contextual representations.

In contrast, the equation embeddings are simply constructed for tokenization so that

they can be fed into the attention decoder.

5.2.1. Equation Embeddings

The equation embedding model has as many tensors as the number of distinct

operators in the equation dictionary. The tensors can be thought of as the embedding

vectors, and they are frequently used to store and obtain the word embeddings with

indices. The size of each embedding vector, i.e., embedding dimension, should be

appropriately set so that there is no size mismatch when given as input to the decoder.

The weights of the equation embeddings are initialized using uniform distribution.

5.2.2. Question Embeddings

One of the most critical steps of the MWP system is to represent the question

tokens accurately and comprehend their contexts. Although the implementation of the

embedding models is almost identical, some steps may differ, such as their binaries,

input forms, and tokenizers.



43

5.2.2.1. Word2vec, fastText, and GloVe Embeddings. The use of the word2vec, fast-

Text, and GloVe models in the embedding layer is similar. They employ the pre-trained

word vectors, accessible as binary or text forms. For these three embedding models,

we used the binary forms of the vectors. The pre-trained word2vec and GloVe models

were loaded as the keyed vector, a mapping structure between keys and vectors. Each

vector is distinguished by its lookup key, which is often a short string token. On the

other hand, the fastText model was obtained as a model object over the binary file

with its library.

We generated the tensors filled with random numbers from the standard normal

distribution with a zero-mean and unit variance for the three models. The tensor size

is related to the number of distinct words in the word vocabulary and the input embed-

ding dimension. The embedding models have different input embedding dimensions.

For example, 400-dimensional space is suitable for Turkish pre-trained word2vec, and

300-dimensional space is for the fastText and GloVe models. We obtained the vector

representations of each distinct token in the word vocabulary by the pre-trained em-

bedding model and wrote to the relevant index in the tensor array. A random tensor

is initialized for the token, which does not exist in the word2vec and GloVe models.

In contrast, the fastText model provides the word vectors even for unseen words by

aggregating the n-grams included in the word.

The embedding layer stores word embeddings of a fixed dictionary and was con-

structed from given tensor array. The padded question batch was given to the embed-

ding layer, and the output of the embedding model, in other words, the input of the

encoder model was generated.

5.2.2.2. BERT, ELECTRA, and ConvBERT Embeddings. Instead of using any bi-

nary file to load the BERT, ELECTRA, and ConvBERT pre-trained language models,

it is sufficient to give the model ID of the predefined tokenizer to the function in the

Python transformers package. For the BERT model, we used a package with an un-

cased vocabulary of 128000. In the ELECTRA and ConvBERT implementations, we



44

preferred the uncased packages trained with the Turkish part of the Multilingual C4

corpus and have a vocabulary of 32000.

In contrast to the usage of padded question batches in the word2vec, fastText,

and GloVe models discussed in Section 5.2.2.1, different padding and tokenization

procedures were utilized for the BERT, ELECTRA, and ConvBERT models. Firstly,

the problem text in an unprocessed question batch was given to the BERT tokenizer

as input without any operation. As mentioned in Section 3.3.4, certain tokens mark

the beginning and end of the text due to the classification and separating operations

of the BERT model. Accordingly, the [CLS] token was added to the beginning of the

tokenized problem text and the [SEP] token to the end. After including the [CLS]

and [SEP] tokens, the tokenized texts were padded with the [PAD] token so that all

sequences have the same length with the longest sequence in the batch. Then, the

tokens were converted to the corresponding IDs in the BERT model and the tensor

was created for each problem.

We utilized an attention mask to prevent the model from weighting the [PAD]

token in the sequence. In order to obtain contextualized representations of each to-

ken, the attention mask was fed through the BERT model. The processing stages for

ELECTRA and ConvBERT are the same as for BERT. The only difference is in the

packages where the models are loaded.

5.3. Encoder Model

In order to encode the input sequence and store the information, we implemented

a two-layer bidirectional encoder as a part of the seq2seq model. The encoder retrieves

the semantic meanings from the problem text and produces a sequence of hidden states.

We employed both GRU and LSTM encoders, which have similar architectures.

When initializing the RNN layers of the encoder, the number of expected features

is the same as the embedding size used in the embedding layer. The dimensions must



45

be consistent so that the output of one layer can be the input of another. Depending

on the embedding model used, the number of features in the encoder also changes. The

size of the hidden units in each layer is crucial since the hidden states in the encoder

will be used to calculate the attention which generates the output in the decoder. The

number of recurrent layers is another initialization parameter. Building a two-layer

encoder model entails creating a stacked RNN model which feeds the outputs of the

first layer as inputs to the second layer and calculates the final results. On the other

hand, a dropout layer was added to the outputs of all RNN layers except the last layer.

As mentioned earlier, the embedding model produces a padded contextualized

question tensor per batch. Even though the lengths of the sequences in the padded

question tensor are the same, many redundant values are appended to the sequences.

Feeding the padded tensor to the RNN layer wastes computing resources and causes

output errors for the forward computations. Therefore, before passing the tensor to

the RNN layer, we used the packing padded sequence operation, which compresses the

redundant padded values in order for the RNN model to read data during the training

accurately. Before the packing operation, the padded question tensor should be sorted

in descending order by the length of its non-padded question tokens. Following these

steps, the padded tensor was fed to the RNN layer.

After the RNN layer, the padded question tensor was still compressed. We refilled

the compressed tensor with another operation to perform the subsequent calculations,

such as adding the backward and forward hidden states of the RNN. A unidirectional

RNN can not address the future context. Therefore, we fed the input vectors into

two RNN layers in opposite directions and combined their hidden state vectors. The

bidirectional RNN makes use of both past and future information. By combining the

bidirectional outputs, our encoder model returns both its outputs and hidden states

for use in the decoder.



46

5.4. Decoder Model

The encoder model is a stack of bidirectional RNNs, whereas the decoder is a

recurrent sequence generator that combines a unidirectional RNN with an attention

mechanism. The attention mechanism has the capacity to learn the alignment between

the input and output sequences. Based on this, we implemented the Luong attention

mechanism. As in the encoder, we preferred to use GRU and LSTM models as the

RNN in the decoder.

We inserted the <s> tag ID at the beginning of the equation tensor to indicate the

start of the sequence and appended the </s> tag ID to signify the end of the sequence.

It is crucial to feed this information into the equation tensor since the decoder model

runs until it predicts the </s> tag, then the equation generation is completed.

The decoder reads the whole source sequence using the last hidden state and

cell state of the encoder and estimates the following word in the target sequence.

During training, both the question tensor from the encoder and its equation tensor

were inserted into the decoder. In the test case, we only give the question and then

expect the equation to be produced. We ran the decoder model at the first time step

with the equation tensor and the internal hidden states of the encoder. The output is

a token from the equation vocabulary with the highest probability at time step t. We

also used this token as the input for the next time step t+1, and updated the internal

hidden states with that of the decoder. We continue iterating using the hidden state

and output of the previous time step until estimating the </s> tag.

The encoder produces the hidden states in the source sequence at each time

step. In the meantime, the decoder releases the hidden state for each step in the

target sequence. We calculated an alignment score depending on which word in the

source sequence is aligned with the equation token in the target sequence using the

score function, as examined in Equation 3.20. The alignment score was determined

by combining all the source hidden states (encoder) with the current target hidden



47

state (decoder). We derived the general alignment score by using the attention weight

matrix. The alignment score was then normalized using the softmax function to extract

the attention weights.

It is a known fact that both the question sequences as input and the equations as

output are not of fixed length. We calculated an intermediate fixed-size context vector

to learn about the variable length sequences and relate them to the variable length

outputs. On the other hand, the attention mechanism relies on the most relevant parts

of the input sequence rather than the complete sequence. Instead of constructing a

single context vector from the last hidden state of the encoder, the attention constructs

shortcuts between the whole sequence and the context vector. The context vector

weights are adjustable for each output. As a result, the context vector establishes an

alignment between the source and target sequences.

The context vector was obtained by multiplying the alignment weight vector with

the weighted average of all the source hidden states. We performed the unidirectional

RNN to produce the tokens of the equation sequence in a one-by-one manner with the

context vector. We concatenated the decoder and weighted context vector in the given

dimension and added them to the ReLU activation function. A softmax activation

function was utilized for the next token prediction over all the tokens in the equation

vocabulary. Figure 5.1 shows the general architecture of our MWP system.



<
s>+

n
u
m
b
e
r0

<
/
s>

<
s>

a
li

<
/
s>

In
p
u
t
Q
u
es
ti
on

E
m
b
ed

d
in
g
L
ay
er

T
w
o-
la
y
er

B
id
ir
ec
ti
on

al

E
n
co
d
er

T
w
o
-l
ay
er

U
n
id
ir
ec
ti
o
n
a
l

D
ec
o
d
er

a
t

h
t

h
s

h̃
t

y t

C
on

te
x
t
V
ec
to
r

y t
−
1

y t
y T

−
1

y T
y t

+
1

h̃
t
:
A
tt
en

ti
on

v
ec
to
r

c t

c t
:
C
on

te
x
t
v
ec
to
r

a
t
:
A
li
g
n
m
en

t
w
ei
g
h
t
v
ec
to
r

h
t
:
C
u
rr
en

t
ta
rg
et

h
id
d
en

st
a
te

h
s
:
A
ll
so
u
rc
e
h
id
d
en

st
a
te
s

y t
:
D
ec
od
er

ou
tp
u
t

F
ig
u
re

5.
1.

O
ve
ra
ll
ar
ch
it
ec
tu
re
.



49

5.5. Evaluation Metrics

The model was evaluated with two different methods, which are explained in

detail below.

• BLEU-4 Score: Although the equations predicted by our model are not exactly

the same as the reference equations in the dataset, it is also a measurable result

that several terms overlap with the reference equations. Therefore, instead of

just calculating the output accuracy, a BLEU-4 score metric was used, which

calculates a score for up to 4-grams using uniform weights. As the BLEU score

gets closer to 1, the similarity of the candidate and reference equations increases.

The closer to 0, there is no n-gram overlap in any order of n-grams. A smoothing

function was applied to handle this severe behavior when no n-gram overlaps

are identified. We obtained the BLEU score for each predicted equation and its

corresponding reference equation in the batch. We summed up all the BLEU

scores in the batch and divided them by the total number of samples in that

batch. We averaged the scores of the batches across the entire test dataset. We

computed the sentence-level BLEU with a single reference sentence.

• Accuracy : It is calculated by counting the cases where the equation produced by

the model and the corresponding reference equation are precisely the same. The

number of exactly matching samples in the batch is divided by the total number

of samples in the batch. By taking the average among the batches, the accuracy

across the dataset is found.



50

6. EXPERIMENTS AND RESULTS

6.1. Dataset Statistics

We split each dataset to use 80% of it for training and the remaining 20% for

testing. The number of samples in the train and test sets are shown in Table 6.1.

Table 6.1. Number of samples in train and test sets.

Dataset # Samples in Train Set # Samples in Test Set

Combined 3301 862

MathQA 15651 3904

Figure 6.1 is a histogram plot and shows the distribution of the total number

of words in the problem texts based on the train and test sets from both datasets.

Although the MathQA set is shuffled before dividing it into train and test sets, there

are different distributions between train and test sets according to the length of the

problem texts. One reason is that the dataset has a huge number of samples. On the

other hand, the train and test sets of the combined data set have a more consistent

distribution.

Figure 6.2 visualizes how many equations have a given length in the datasets. In

other words, it shows the distribution of the equations in the dataset according to the

number of tokens they have. Especially in the MathQA dataset, there were equations

with too many tokens that could not be learned and solved. In order to purify the data

from this situation, which negatively affects the success of the model, we deleted the

samples with more than 15 tokens in the equation. The positive effect of this process

on the GRU encoder-decoder model can be seen in Table 6.2.



51

Figure 6.1. Distribution of word counts in the problem texts according to the

datasets.

Figure 6.2. Total number of tokens in the equations according to the datasets.



52

Table 6.2. Effect of removing long equations from the MathQA dataset.

Max. Token Length in the Equation Accuracy (%) BLEU (%)

209 16.10 22.46

15 18.69 32.32

We made simple random sampling from both datasets to measure the success of

the GoogleTrans API, which we use to translate the problem texts from English to

Turkish. We randomly selected the problem texts from both datasets with a sample

size of 20. We evaluated the translation results of the GoogleTrans API with the BLEU

score, assuming the versions of the problem texts translated by us without using the

API are true. The translation quality of GoogleTrans API can be seen in Table 6.3.

Table 6.3. GoogleTrans API tranlation quality.

Dataset BLEU Score(%)

Combined 91.46

MathQA 94.89

6.2. Word Embedding and Pre-Trained Language Models Results

As previously mentioned, we generated embedding vectors for our problem texts

using word2vec, BERT, GloVe, fastText, ConvBERT, and ELECTRA models and fed

them into the neural model. The embedding models are critical for exploring the

syntactic and semantic relationships between significant contexts in the problem texts

and equations. As a result, we conducted an experimental analysis in which we tested

several embedding models.

In word embeddings models, dimensionality, i.e., input embedding size, specifies

the total number of encoded features. In other words, it refers to the size of word

vectors and is distinct from the size of the vocabulary, which is the number of words



53

for which we preserve. Table 6.4 presents the dimensions of the word vectors used in

the embedding models.

Table 6.4. Dimensionality of the word vectors.

Embedding Model Dimension of the Word Vector

Word2vec 400

GloVe 300

fastText 300

BERT 768

ConvBERT 768

ELECTRA 256

For example, if a word in our problem text is an unseen word for the word2vec

and GloVe models, we generated a random embedding vector from the standard normal

distribution with a zero-mean and unit variance. However, the fastText model can

vectorize an unseen word into its n-grams. The results of these two approaches are as

in Table 6.5 when all parameters are the same except for the embedding models and

their dimensional spaces.

Table 6.5. Test set performance of the word2vec, GloVe, and fastText models.

Model Accuracy (%) BLEU (%)

Word2vec 65.30 62.26

GloVe 60.79 63.39

fastText 62.88 64.50

In the BERT, ELECTRA, and ConvBERT models, we employed an attention

mask to prevent the model from weighting the padding token in the sequence. Com-

paring these three models, we obtained the results in Table 6.6. The ConvBERT can be



54

considered as an enhancement of the ELECTRA. It proposes an orthogonal approach

to augment the attention mechanism with a small parameter size and a faster training.

In general, the BERT outperforms all other embedding models.

Table 6.6. Test set performance of the BERT, ELECTRA, and ConvBERT models.

Model Accuracy (%) BLEU (%)

BERT 71.69 72.84

ELECTRA 63.23 64.26

ConvBERT 69.84 71.55

6.3. Seq2seq Model Results

We constructed the seq2seq models with the attention mechanism based on the

Luong’s approach to solve MWPs. One of the main reasons to use the seq2seq model

is that its input and output length are not fixed and can be of very different sizes,

unlike other RNN models. Our seq2seq models consist of a bidirectional RNN encoder

and an unidirectional RNN decoder. The datasets were one of the most crucial parts

influencing the success of the our model during the tests. Since the MathQA dataset

contains problems of various types and difficulties, it achieved much lower success than

the combination of other MAWPS, ASDiv-A, and SVAMP datasets.

Table 6.7. GRU seq2seq model results for the combined dataset.

BERT ConvBERT Word2vec GloVe

GRU Model Acc. BLEU Acc. BLEU Acc. BLEU Acc. BLEU

[1 layer x 128 hidden units] 67.05 70.20 68.45 69.63 56.96 61.26 54.75 59.22

[1 layer x 256 hidden units] 67.40 69.03 68.33 69.16 59.28 62.12 58.93 63.03

[2 layers x 128 hidden units] 67.87 70.60 68.56 69.24 60.09 62.72 59.51 62.90

[2 layers x 256 hidden units] 71.69 72.84 69.84 71.55 62.30 65.26 60.79 63.39



55

We first created the seq2seq model with the GRU encoder and GRU decoder and

tested it on the combined dataset. The GRU seq2seq model yielded good results with

the BERT embedding model, as shown in Table 6.7. During the tests with different

hyperparameters, we observed the direct effect of the number of layers and hidden units

on the model success. Since there is only one layer, no dropout is used at the end of

the GRU model.

We also applied the GRU model to our Turkish MathQA dataset. The results

are not very satisfactory as the MathQA dataset is challenging and does not have a

uniform format and problem distribution as the combined dataset. There are cases in

the dataset where the equation for the problem is incorrect, or the answer when the

equation is solved does not match the labeled answer. All these negatively affected the

success of the model.

Table 6.8. LSTM seq2seq model results for the combined dataset.

BERT
Accuracy 70.19 (%)

BLEU 71.82 (%)

ConvBERT
Accuracy 68.33 (%)

BLEU 70.79 (%)

ELECTRA
Accuracy 63.69 (%)

BLEU 66.65 (%)

Word2vec
Accuracy 60.79 (%)

BLEU 65.00 (%)

GloVe
Accuracy 60.56 (%)

BLEU 65.29 (%)

fastText
Accuracy 59.28 (%)

BLEU 60.92 (%)

Our second seq2seq model consists of the LSTM encoder-decoder. When the

model was tested on the combined dataset with the parameters that allowed success in



56

the GRU, an accuracy of 70.19% and a BLEU score of 71.82% were achieved, as shown

in Table 6.8.

Experiments on our second dataset MathQA did not produce the desired results.

During the tests, the GRU model achieved the highest accuracy of 18.69% and BLEU

score of 32.32%. In the meantime, the LSTM model obtained the highest accuracy of

18.29% and BLEU score of 32.20%. We see the reason for the failure as the lack of

pattern in the questions, the wide variety of question types, and the existence of the

equations unrelated to the questions.

6.4. Comparison with Other MWP Studies

Since there are no Turkish MWP studies with the neural models in the literature,

we have compiled the results of the studies conducted with the English versions of

our datasets. Amini et al. [70] measure the performance of the English MathQA

dataset by using a sequence-to-program model, which provides an additional layer of

supervision to limit the impact of statistical bias in the dataset. They performed

a test accuracy of 51.9%. Patel et al. [68] propose a seq2seq model provided with

the RoBERTa pre-trained embeddings. Using the MAWPS and ASDiv-A datasets for

training and the SVAMP dataset for testing, they achieved 40.3% accuracy. Since

SVAMP is a more challenging dataset than the other two, utilizing it directly in the

test decreased accuracy. We combined and then shuffled the three datasets to use

more homogeneously. Lan et al. [72] implemented a seq2seq LSTM encoder-decoder

model and made separate analyzes on the MAWPS, ASDiv-A, and SVAMP datasets.

Through their experiments, they found that the MAWPS has an accuracy of 79.7%,

ASDiv-A has 55.5%, and SVAMP has 24.2%. Table 6.9 summarizes the comparison

results.



57

Table 6.9. Comparison with English MWP studies.

Study Model Dataset Test Accuracy

Amini et al. [70] Seq2prog English MathQA 51.9%

Lan et al. [72] Seq2seq English MAWPS 79.7%

Lan et al. [72] Seq2seq English ASDiv-A 55.5%

Lan et al. [72] Seq2seq English SVAMP 24.2%

Patel et al. [68] Seq2seq
English MAWPS and ASDiv-A

for training, SVAMP for testing
40.3%

Our study Seq2seq Turkish MathQA 18.7%

Our study Seq2seq
Combined Turkish MAWPS,

ASDiv-A, and SVAMP
71.7%

6.5. Hyperparameters and Implementation Details

During the experiments, we constructed the model with many different hyper-

parameters. For the Turkish MWP solving system, we provided our most successful

results with the hyperparameters given in Table 6.10. Our system has a BERT em-

bedding model with 768 units, a two-layer bidirectional GRU with 256 hidden units

as the encoder, a two-layer unidirectional GRU with 256 hidden units as the decoder,

an Adam optimizer with a learning rate of 2e-4 for the word embeddings and a learn-

ing rate of 8e-6 for the equations embeddings. We applied standard dropout during

training after each RNN layers with a probability of 0.1. We trained the model with

a batch size of 8 over 50 epochs. To avoid exploding gradients, we used gradient clip-

ping technique by norm. We calculated a negative log likelihood loss over the decoder

outputs. We added the softmax activation function to the output layer of the decoder.

We subscribed to a high-performance computing cluster owned by Boğaziçi Uni-

versity TETAM for training and testing the model. We carried out our developments

by using the PyTorch library in Python.



58

Table 6.10. Hyperparameters of the model with the highest accuracy.

Hyperparameter Value

Dataset MAWPS + ASDiv-A + SVAMP

Model GRU encoder + GRU decoder

Epoch 50

Number of layers 2

Batch size 8

Embeddin hidden size 768

Hidden size 256

Dropout 0.1

Uniform distribution bound 0.05

Learning rate 2e-4

Embedding learning rate 8e-6

Embedding dimension for equations 16

Max norm of the gradients 1



59

7. CONCLUSION AND FUTURE WORK

In the literature, solving math word problems in English plays a dominant role.

Although there are a few Turkish studies carried out by creating problem templates

with rule-based methods, there are no studies conducted with neural models. To

remedy this shortcoming, in this thesis, we introduced a sequence-to-sequence neural

model with the attention mechanism and aimed to contribute to machine translation

systems by using our model, which solves a given written mathematical problem in

Turkish by creating an equation.

We contributed to the literature by publishing new Turkish math word prob-

lem solving benchmark datasets. We created our first novel dataset by combining the

MAWPS, ASDiv-A, and SVAMP datasets in English and translating them into Turk-

ish. We generated our second dataset by translating another English dataset, MathQA.

We provided experimental variation using the word2vec, GloVe, BERT, fastText, Con-

vBERT, and ELECTRA embedding models. On the other hand, we also employed

different RNN models, which are GRU and LSTM, in the encoder and decoder to

make comprehensive comparisons.

We achieved our best performance with a test accuracy of 71.69% and a BLEU

score of 72.84% on the combined dataset using the BERT embedding model and GRU

encoder-decoder model. Despite the relatively low accuracies in the second dataset, we

gained a corpus that could be worked on and achieved much better results thanks to a

large amount of samples.

A promising future work would be exploring techniques to improve our results

in the MathQA dataset, implement different neural models such as transformers, and

integrate Bahdanau’s attention mechanism. We also plan to provide the commonsense

knowledge we need while solving problems through semantic networks. Integration

with GPT-3, a state-of-the-art language model, is one of our future goals.



60

REFERENCES

1. Bobrow, D., “Natural Language Input for A Computer Problem Solving System”,

Massachusetts Institute of Technology , 1964.

2. Mukherjee, A. and U. Garain, “A Review of Methods for Automatic Understand-

ing of Natural Language Mathematical Problems”, Artificial Intelligence Review ,

Vol. 29, pp. 93–122, 2008.

3. Bakman, Y., “Robust Understanding of Word Problems with Extraneous Informa-

tion”, ArXiv:math/0701393 [math], 2017.

4. Liguda, C. and T. Pfeiffer, “Modeling Math Word Problems with Augmented Se-

mantic Networks”, Proceedings of the International Conference on Applications

of Natural Language Processing to Information Systems , Vol. 7337, pp. 247–252,

2012.

5. Yuhui, M., Z. Ying, C. Guangzuo, R. Yun and H. Ronghuai, “Frame-Based Calcu-

lus of Solving Arithmetic Multi-Step Addition and Subtraction Word Problems”,

Second International Workshop on Education Technology and Computer Science,

Vol. 2, pp. 476–479, 2010.

6. Roy, S., S. Upadhyay and D. Roth, “Equation Parsing: Mapping Sentences to

Grounded Equations”, Proceedings of the 2016 Conference on Empirical Methods

in Natural Language Processing , pp. 1088–1097, 2016.

7. Dries, A., A. Kimmig, J. Davis, V. Belle and L. De Raedt, “Solving Probabil-

ity Problems in Natural Language”, Proceedings of the 26th International Joint

Conference on Artificial Intelligence, pp. 3981–3987, 2017.

8. Roy, S. and D. Roth, “Mapping to Declarative Knowledge for Word Problem Solv-

ing”, Transactions of the Association for Computational Linguistic, Vol. 6, pp.



61

159–172, 2018.

9. Say, C., H. L. Akın and S. Özsoy, “A Program which Solves Arithmetic Problems

in Turkish”, Proceedings of the Ninth International Symposium on Computer and

Information Sciences , pp. 550–557, 1994.

10. Say, C., “Understanding Arithmetic Problems in Turkish”, International Journal

of Pattern Recognition and Artificial Intelligence, Vol. 15, No. 2, pp. 359–374, 2001.

11. Çakıroğlu, Ü., “Can Computer Understand and Solve Turkish Arithmetic Prob-

lems?”, World Applied Sciences Journal , Vol. 2, pp. 196–202, 2009.

12. Eken, S., E. Ekinci and A. Sayar, “Understanding and Solving Turkish Arithmetic

Problems via XML Keywords”, Düzce Üniversitesi Bilim ve Teknoloji Dergisi ,

Vol. 2, pp. 48–55, 2014.

13. Sutskever, I., O. Vinyals and Q. V. Le, “Sequence to Sequence Learning with

Neural Networks”, Proceedings of the 27th International Conference on Neural

Information Processing Systems , Vol. 2, pp. 3104–3112, 2014.

14. Brownlee, J., What Are Word Embeddings for Text? , 2017, https://

machinelearningmastery.com/what-are-word-embeddings/, accessed on May

2022.

15. Hosseini, M. J., H. Hajishirzi, O. Etzioni and N. Kushman, “Learning to Solve

Arithmetic Word Problems with Verb Categorization”, Proceedings of the Confer-

ence on Empirical Methods in Natural Language Processing EMNLP , pp. 523–533,

2014.

16. Kushman, N., L. Zettlemoyer, R. Barzilay and Y. Artzi, “Learning to Automati-

cally Solve Algebra Word Problems”, Association for Computational Linguistics ,

pp. 271–281, 2014.



62

17. Upadhyay, S., M.-W. Chang, K. W. Chang and W. T. Yih, “Learning from Explicit

and Implicit Supervision Jointly for Algebra Word Problems”, Proceedings of the

Conference on Empirical Methods in Natural Language Processing EMNLP , pp.

297–306, 2016.

18. Mitra, A. and C. Baral, “Learning To Use Formulas to Solve Simple Arithmetic

Problems”, Association for Computational Linguistics , Vol. 1, pp. 2144–2153, 2016.

19. Liang, C. C., K. Y. Hsu, C. T. Huang, C. M. Li, S. Y. Miao and K. Y. Su, “A

Tag-based English Math Word Problem Solver with Understanding, Reasoning and

Explanation”, Proceedings of the 2016 Conference of the North American Chap-

ter of the Association for Computational Linguistics: Demonstrations , pp. 67–71,

2016.

20. Zhou, L., S. Dai and L. Chen, “Learn to Solve Algebra Word Problems Using

Quadratic Programming”, Proceedings of the Conference on Empirical Methods in

Natural Language Processing EMNLP , pp. 817–822, 2015.

21. Roy, S. and D. Roth, “Unit Dependency Graph and its Application to Arithmetic

Word Problem Solving”, Proceedings of the 31st AAAI Conference on Artificial

Intelligence, pp. 3082–3088, 2017.

22. Zhang, D., L. Wang, N. Xu, B. T. Dai and H. Shen, “The Gap of Semantic Parsing:

A Survey on Automatic Math Word Problem Solvers”, ArXiv:1808.07290 [cs], 2018.

23. Wang, Y., X. Liu and S. Shi, “Deep Neural Solver for Math Word Problems”, Pro-

ceedings of the Conference on Empirical Methods in Natural Language Processing ,

pp. 845–854, 2017.

24. Robaidek, B., R. Koncel-Kedziorski and H. Hajishirzi, “Data-Driven Methods for

Solving Algebra Word Problems”, ArXiv:1804.10718 [cs], 2018.

25. Huang, D., J. Liu, C.-Y. Lin and J. Yin, “Neural Math Word Problem Solver



63

with Reinforcement Learning”, Proceedings of the 27th International Conference

on Computational Linguistics , pp. 213–223, 2018.

26. Huang, D., J. G. Yao, C. Y. Lin, Q. Zhou and J. Yin, “Using Intermediate Repre-

sentations to Solve Math Word Problems”, Proceedings of the 56th Annual Meeting

of the Association for Computational Linguistics , pp. 419–428, 2018.

27. Mikolov, T., M. Karafiát, L. Burget, J. Cernocký and S. Khudanpur, “Recurrent

Neural Network based Language Model”, Proceedings of the 11th Annual Confer-

ence of the International Speech Communication Association, Vol. 2, pp. 1045–

1048, 2010.

28. Graves, A. and J. Schmidhuber, “Framewise Phoneme Classification with Bidi-

rectional LSTM Networks”, IEEE International Joint Conference on Neural Net-

works , Vol. 4, pp. 2047–2052, 2005.

29. Huang, Z., W. Xu and K. Yu, “Bidirectional LSTM-CRF Models for Sequence

Tagging”, ArXiv:1508.01991 [cs], 2015.

30. Chung, J., Ç. Gülçehre, K. Cho and Y. Bengio, “Gated Feedback Recurrent Neu-

ral Networks”, Proceedings of the 32nd International Conference on International

Conference on Machine Learning , Vol. 37, pp. 2067–2075, 2015.

31. Schmidt, R. M., “Recurrent Neural Networks (RNNs): A Gentle Introduction and

Overview”, ArXiv:1912.05911 [cs], 2019.

32. Yu, L., “Tackling Sequence to Sequence Mapping Problems with Neural Networks”,

ArXiv:1810.10802v1 [cs], 2018.

33. Pascanu, R., C. Gulcehre, K. Cho and Y. Bengio, “How to Construct Deep Recur-

rent Neural Networks”, ArXiv:1312.6026 [cs], 2013.

34. Viswambaran, R. A., G. Chen, B. Xue and M. Nekooei, “Evolving Deep Recur-



64

rent Neural Networks Using A New Variable-Length Genetic Algorithm”, IEEE

Congress on Evolutionary Computation, pp. 1–8, 2020.

35. Schuster, M. and K. Paliwal, “Bidirectional Recurrent Neural Networks”, IEEE

Transactions on Signal Processing , Vol. 45, No. 11, pp. 2673–2681, 1997.

36. Williams, R. and J. Peng, “An Efficient Gradient-Based Algorithm for On-Line

Training of Recurrent Network Trajectories”, Neural Computation, Vol. 2, No. 4,

pp. 490–501, 1990.

37. Lin, T., W. Horne, P. Tino and C. Giles, “Learning Long-term Dependencies

in NARX Recurrent Neural Networks”, IEEE Transactions on Neural Networks ,

Vol. 7, No. 6, pp. 1329–1338, 1996.

38. Chung, J., Ç. Gülçehre, K. Cho and Y. Bengio, “Empirical Evaluation of Gated

Recurrent Neural Networks on Sequence Modeling”, ArXiv:1412.3555 [cs], 2014.

39. Alla, S., Introduction to Encoder-Decoder Sequence-to-Sequence Models (Seq2Seq),

2021, https://blog.paperspace.com/introduction-to-seq2seq-models/, ac-

cessed on May 2022.

40. Kostadinov, S., Understanding Encoder-Decoder Sequence to Sequence Model ,

2019, https://towardsdatascience.com/understanding-encoder-decoder-

sequence-to-sequence-model-679e04af4346, accessed on April 2022.

41. Cho, K., B. van Merrienboer, D. Bahdanau and Y. Bengio, “On the Properties

of Neural Machine Translation: Encoder-Decoder Approaches”, ArXiv:1409.1259

[cs], 2014.

42. Loye, G., Attention Mechanism, 2019, https://blog.floydhub.com/attention-

mechanism/, accessed on April 2022.

43. Bahdanau, D., K. Cho and Y. Bengio, “Neural Machine Translation by Jointly



65

Learning to Align and Translate”, Computing Research Repository (CoRR), 2015.

44. Khandelwal, R., Attention: Sequence 2 Sequence Model with Attention Mecha-

nism, 2020, https://towardsdatascience.com/sequence-2-sequence-model-

with-attention-mechanism-9e9ca2a613a, accessed on May 2022.

45. Cristina, S., The Bahdanau Attention Mechanism, 2021, https:

//machinelearningmastery.com/the-bahdanau-attention-mechanism/, ac-

cessed on May 2022.

46. Luong, M. T., H. Pham and C. D. Manning, “Effective Approaches to Attention-

based Neural Machine Translation”, Association for Computational Linguistics ,

pp. 1412–1421, 2015.

47. Cristina, S., The Luong Attention Mechanism, 2021, https://

machinelearningmastery.com/the-luong-attention-mechanism/, accessed

on May 2022.

48. Naseem, U., I. Razzak, S. K. Khan and M. Prasad, “A Comprehensive Survey on

Word Representation Models: From Classical to State-of-the-Art Word Represen-

tation Language Models”, Association for Computing Machinery , Vol. 20, No. 5,

pp. 1–35, 2021.

49. Mikolov, T., K. Chen, G. Corrado and J. Dean, “Efficient Estimation of Word

Representations in Vector Space”, The International Conference on Learning Rep-

resentations Workshop, 2013.

50. Wang, B., A. Wang, F. Chen, Y. Wang and C. C. J. Kuo, “Evaluating Word

Embedding Models: Methods and Experimental Results”, APSIPA Transactions

on Signal and Information Processing , 2019.

51. Mikolov, T., I. Sutskever, K. Chen, G. Corrado and J. Dean, “Distributed Repre-

sentations of Words and Phrases and Their Compositionality”, Proceedings of the



66

26th International Conference on Neural Information Processing Systems , Vol. 2,

pp. 3111–3119, 2013.

52. Pennington, J., R. Socher and C. Manning, “GloVe: Global Vectors for Word

Representation”, Association for Computational Linguistics , pp. 1532–1543, 2014.

53. Bojanowski, P., E. Grave, A. Joulin and T. Mikolov, “Enriching Word Vectors

with Subword Information”, Transactions of the Association for Computational

Linguistics , Vol. 5, pp. 135–146, 2017.

54. Devlin, J., M. W. Chang, K. Lee and K. Toutanova, “BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding”, ArXiv:1810.04805 [cs],

2018.

55. Vaswani, A., N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser

and I. Polosukhin, “Attention Is All You Need”, ArXiv:1706.03762 [cs], 2017.

56. Yeung, A. A., BERT - Tokenization and Encoding , 2020, https://

albertauyeung.github.io/2020/06/19/bert-tokenization.html/, accessed on

May 2022.

57. Jiang, Z., W. Yu, D. Zhou, Y. Chen, J. Feng and S. Yan, “ConvBERT: Improving

BERT with Span-based Dynamic Convolution”, ArXiv:2008.02496 [cs], 2020.

58. Clark, K., M.-T. Luong, Q. V. Le and C. D. Manning, “ELECTRA: Pre-training

Text Encoders as Discriminators Rather Than Generators”, The International

Conference on Learning Representations , 2020.

59. Sachan, M. and E. Xing, “Learning to Solve Geometry Problems from Natural Lan-

guage Demonstrations in Textbooks”, Association for Computational Linguistics ,

pp. 251–261, 2017.

60. Seo, M., H. Hajishirzi, A. Farhadi, O. Etzioni and C. Malcolm, “Solving Geometry



67

Problems: Combining Text and Diagram Interpretation”, Association for Compu-

tational Linguistics , pp. 1466–1476, 2015.

61. Huang, D., S. Shi, C.-Y. Lin, J. Yin and W.-Y. Ma, “How Well Do Computers

Solve Math Word Problems? Large-Scale Dataset Construction and Evaluation”,

Association for Computational Linguistics , Vol. 1, pp. 887–896, 2016.

62. Wang, H., F. Tian, B. Gao, C. Zhu, J. Bian and T.-Y. Liu, “Solving Verbal Ques-

tions in IQ Test by Knowledge-Powered Word Embedding”, Association for Com-

putational Linguistics , pp. 541–550, 2016.

63. Shi, S., Y. Wang, C.-Y. Lin, X. Liu and Y. Rui, “Automatically Solving Number

Word Problems by Semantic Parsing and Reasoning”, Proceedings of the 2015

Conference on Empirical Methods in Natural Language Processing , pp. 1132–1142,

2015.

64. Upadhyay, S. and M. W. Chang, “DRAW: A Challenging and Diverse Algebra

Word Problem Set”, Microsoft , 2015.

65. Koncel-Kedziorski, R., H. Hajishirzi, A. Sabharwal, O. Etzioni and S. D. Ang,

“Parsing Algebraic Word Problems into Equations”, Transactions of the Associa-

tion for Computational Linguistics , Vol. 3, pp. 585–597, 2015.

66. Ling, W., D. Yogatama, C. Dyer and P. Blunsom, “Program Induction by Rationale

Generation: Learning to Solve and Explain Algebraic Word Problems”, Proceed-

ings of the 55th Annual Meeting of the Association for Computational Linguistics ,

Vol. 1, pp. 158–167, 2017.

67. Koncel-Kedziorski, R., S. Roy, A. Amini, N. Kushman and H. Hajishirzi, “MAWPS:

A Math Word Problem Repository”, Proceedings of the 2016 Conference of the

North American Chapter of the Association for Computational Linguistics: Human

Language Technologies , pp. 1152–1157, 2016.



68

68. Patel, A., S. Bhattamishra and N. Goyal, “Are NLP Models Really able to Solve

Simple Math Word Problems?”, Proceedings of the 2021 Conference of the North

American Chapter of the Association for Computational Linguistics: Human Lan-

guage Technologies , pp. 2080–2094, 2021.

69. Miao, S. Y., C. C. Liang and K. Y. Su, “A Diverse Corpus for Evaluating and

Developing English Math Word Problem Solvers”, Proceedings of the 58th Annual

Meeting of the Association for Computational Linguistics , pp. 975–984, 2020.

70. Amini, A., S. Gabriel, P. Lin, R. Koncel-Kedziorski, Y. Choi and H. Hajishirzi,

“MathQA: Towards Interpretable Math Word Problem Solving with Operation-

Based Formalisms”, Proceedings of the 2019 Conference of the North American

Chapter of the Association for Computational Linguistics: Human Language Tech-

nologies , pp. 2357–2367, 2019.

71. Han, S., Googletrans , 2020, https://pypi.org/project/googletrans/, accessed

on December 2021.

72. Lan, Y., L. Wang, Q. Zhang, Y. Lan, B. T. Dai, Y. Wang, D. Zhang and E. P.

Lim, “MWPToolkit: An Open-source Framework for Deep Learning-based Math

Word Problem Solvers”, ArXiv:2109.00799 [cs], 2021.



69

APPENDIX A: SAMPLES FROM MWP DATASETS

Table A.1. Samples from MWP datasets.

Dataset Sample

Alg514 sQuestion: In a chemistry class, 5 liters of 4% silver solution must

be mixed with a 10% solution to get a 6% solution. How many liters

of the 10% solution are needed?,

lEquations: .01*4*(5)+.01*10*x=.01*6*(5+x),

lSolutions: 2.5,

Template: a * m - b * m = b * c - c * d,

iIndex: 300319,

Alignment: [{coeff: d, SentenceId: 0, Value: 4.0, TokenId: 8},

{coeff: c, SentenceId: 0, Value: 5.0, TokenId: 5}, {coeff: a, Senten-

ceId: 0, Value: 10.0, TokenId: 17}, {coeff: b, SentenceId: 0, Value:

6.0, TokenId: 23}],

Equiv: [[0, 17, 10], [1, 5, 10]]

SVAMP question: julia played tag with number0 kids on monday . she

played tag with number1 kids on tuesday . how many more kids

did she play with on monday than on tuesday ?,

numbers: 18 10,

equation: - number0 number1,

answer: 8.0,

group nums: [1, 2, 3, 4, 5, 6, 12, 13, 14, 28, 29, 30],

type: Subtraction,

variation type: 11,

body: julia played tag with number0 kids on monday . she played

tag with number1 kids on tuesday .,

ques: how many more kids did she play with on monday than on

tuesday ?



70

Table A.1. Samples from MWP datasets. (cont.)

Dataset Sample

Dolphin18K original text: what is 30 divided by half plus 10? 1st correct

answer gets 10 points!!!!!?,

text: what is 30 divided by half plus 10?,

flag: 0,

ans: 70,

equations: unkn: x, equ: x=30/(1/2)+10,

id: yahoo.answers.20061213041448AAxoy5z

AQuA question: A grocery sells a bag of ice for $1.25, and makes 20%

profit. If it sells 500 bags of ice, how much total profit does it make?,

options: [A)125, B)150, C)225, D)250, E)275],

rationale: Profit per bag = 1.25 * 0.20 = 0.25, Total profit = 500

* 0.25 = 125. Answer is A.,

correct: A

MathQA question: A train running at the speed of 48 km/hr crosses a pole

in 9 seconds. what is the length of the train?,

options: a ) 140 , b ) 130 , c ) 120 , d ) 170 , e ) 160,

rationale: Speed = (48*5/18 ) m/sec = (40/3 ) m/sec. length of

the train = (speed*time). length of the train = (40/3*9) m = 120

m. answer is c.,

correct: C,

annotated formula: multiply(divide(multiply(48, const 1000),

const 3600), 9)

MAWPS iIndex: 1,

sQuestion: Joan found 70.0 seashells on the beach . She gave Sam

some of her seashells . She has 27.0 seashells . How many seashells

did she give to Sam ?,

lEquations: X=(70.0-27.0),

lSolutions: 43.0



71

Table A.1. Samples from MWP datasets. (cont.)

Dataset Sample

ASDiv-A id: nluds-0064,

grade: 2,

source: http://www.k5learning.com,

body: Gino has 63 popsicle sticks. I have 50 popsicle sticks.,

question: What is the sum of our popsicle sticks?,

solution-type: addition,

answer: 113 (popsicle sticks),

formula: 63+50=113

Dolphin1878 id: algebra.com.117395,

index: 1043,

text: one number is 11 more than another number. Find the two

numbers if three times and the larger exceeds four times the smaller

number by 4.,

sources: algebra.com.117395,

equations: [unkn: x, y, equ: x=y+11, equ: 3*x=4*y+4],

ans: {40;29},

ans simple: [40, 29]




