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ABSTRACT

PARALLEL ANALYSIS OF BLOCKCHAIN

TRANSACTION GRAPHS

Blockchain is more prominent in the finance sector than ever. Stablecoins build

a bridge between traditional finance ecosystems and the blockchain ecosystem. Ma-

jor payment processors adopt cryptocurrency solutions and integrate them into their

systems. Blockchain transaction analysis is needed to enforce cryptocurrency regula-

tions, trace fraudulent activities, and create business intelligence solutions. Transac-

tion throughput of blockchains is expected to rise with the transition to proof-of-stake

(PoS) consensus mechanism, sharding, and the use of zero-knowledge proofs. New

tooling is needed to handle massive transaction graphs. In this thesis, we propose

a parallel blockchain transaction graph system for analyzing blockchain transaction

graphs. The system utilizes distributed data structures and graph algorithms and is

implemented in C++ using message passing interface (MPI). The system constructs the

transaction graph from blockchain data using our proposed parallel graph construction

algorithm. The transaction graph is then analyzed using our distributed and parallel

transaction trace and trace forest algorithms. In addition, we implemented PageR-

ank, connected component calculation, degree distribution calculation algorithms. We

collected 12-year Bitcoin and 5-year Ethereum blockchain transaction data as well as

some blacklisted blockchain addresses from various websites to test our system. The

system is benchmarked using a 16-node high performance computing (HPC) cluster on

Amazon Cloud. We report timings obtained for our tests and analysis results like top

10 pageranked addresses, the degree distribution of addresses, trace visualizations. We

were able to construct the transactions graph for our Ethereum and Bitcoin transaction

data on our cluster in less than 4 minutes and 32 minutes, respectively.
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ÖZET

BLOKZİNCİR İŞLEM ÇİZGELERİNİN PARALEL ANALİZİ

Blokzincirinin finans sektöründeki önemi giderek artıyor. Sabitkoinler gelenek-

sel finans ekosistemleri ile blokzincir ekosistemi arasında bir köprü oluşturuyor. Büyük

ödeme işlemcileri kripto para çözümlerini benimseyip bu çözümleri sistemlerine entegre

ediyor. Blokzincir işlem analizi kripto para düzenlemelerini uygulamak, dolandırıcılık

faaliyetlerini izlemek ve iş zekası çözümleri oluşturmak için gereklidir. Blokzincir-

lerinin işlem hacminin, hisse ispatı (PoS) konsensüs mekanizmasına geçiş ve sıfır bilgi

ispatlarının kullanımı ile artması bekleniyor. Büyük işlem çizgelerini işlemek için yeni

araçlara ihtiyaç var. Bu tezde, blokzincir işlem çizgelerinin analizini yapmak için par-

alel bir blokzincir işlem çizge sistemi öneriyoruz. Sistem dağıtık veri yapılarını ve

dağıtık çizge algoritmalarını kullanıyor ve mesaj aktarma arayüzü (MPI) kullanılarak

C++ programlama dilinde yazıldı. Sistem, önerilen paralel çizge oluşturma algorit-

mamızı kullanarak blokzincir verilerinden işlem çizgesini oluşturur. İşlem çizgesi daha

sonra dağıtık ve paralel işlem izleme ve izleme ormanı algoritmalarımız kullanılarak

çözümlenir. Ayrıca PageRank, bağlantılı bileşen hesaplama, derece dağılımı hesaplama

algoritmalarını da kodlayıp sistemimize ekledik. Sistemimizi test etmek için 12 yıllık

Bitcoin ve 5 yıllık Ethereum blokzinciri işlem verilerini ve çeşitli web sitelerinden bazı

kara listeye alınmış blokzincir adreslerini topladık. Sistem, Amazon Bulut üzerinde 16

düğümlü yüksek başarımlı hesaplama (HPC) kümesi kullanılarak değerlendirildi. Test-

lerimiz için elde edilen zamanlamaları ve en iyi 10 pagerank adresi, adreslerin derece

dağılımı, izleme görselleştirmeleri gibi analiz sonuçlarını raporladık. Kümemizde Ether-

eum ve Bitcoin işlem verilerimiz için işlem çizgesini sırasıyla 4 dakika ve 32 dakikadan

daha kısa sürede oluşturabildik.
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1. INTRODUCTION

Blockchain is a type of distributed ledger technology where the records of trans-

actions are stored as an immutable sequence of blocks. Building on cryptographic

technologies, blockchains can provide programmable transaction services directly to

the masses in a trustless, speedy, and low-cost manner by removing middleman organi-

zations that operate in a classical centralized fashion. Blockchains also keep ownership

records of cryptocurrencies and tokens representing various assets such as company

shares, stablecoins (tokenized forms of fiat currencies), media, and works of art.

Blockchain has numerous applications in various sectors. It can be used to moni-

tor supply chains, securely share medical data, automate insurance operations, collect

royalties, verify official documents, create digital identities, create decentralized finance

services, manage the distribution and trade of energy, and many more. Although

blockchain has use cases in many fields, it is commonly known for cryptocurrencies

because it makes it easy to transfer and trade crypto-assets worldwide.

Blockchain is more prominent in the finance sector than ever. Here is some re-

cent news about blockchain adoption in the finance sector. Large payment networks

such as Mastercard [3], Visa [4], PayPal [5] announce that they are now accepting

cryptocurrencies as a payment method. Mastercard and Bakkt partner to offer loyalty

rewards in cryptocurrencies [6]. El Salvador becomes the first country to adopt Bitcoin

as national currency [7]. Countries around the world are researching or piloting cen-

tral bank digital currencies (CBDCs). Some even launched it. Visa is researching to

make stablecoins and CBDCs interoperable [8]. Coinbase, the largest cryptocurrency

exchange in the United States, is directly listed in the Nasdaq stock exchange [9],

allowing cryptocurrencies to gain exposure and legality.

New technologies require new tooling. When the Internet first appeared, there

was a need for web page search services. This need has led to the development of search
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engine companies. There is a similar need in the case of blockchain networks, and that

is the need to get information on addresses, tokens, and transactions on the blockchain.

This need has led to the development of block explorer services offered by companies

like Etherscan, which is currently the most famous explorer service for Ethereum. Block

explorer services provide basic information on individual addresses, tokens, and trans-

actions such as amounts, balances, and times of transactions. Blockchain transactions,

however, form a directed graph, and there is a need to analyze this graph.

ERC20 token contracts act like bridges between the public Ethereum blockchain

ecosystem and the traditional finance ecosystems. Valuable blockchain assets such as

cryptocurrencies can be exchanged with stablecoins, and stablecoins can, in turn, be

redeemed as fiat money in the traditional finance ecosystem. Therefore, assets obtained

fraudulently can go through various transfers on the blockchain and end up as stable

coins in different jurisdictions. As a result, a company that accepts stablecoins may be

paid by stablecoins that can be traced to addresses involved in fraudulent activities.

Holding stable coins that originated from fraudulent or sanctioned addresses can be

risky for the company.

Blockchain transaction analysis is necessary to enforce cryptocurrency regula-

tions, trace fraudulent activities like ransomware, get provenance information about

tokens representing products, and create business intelligence solutions. Financial Ac-

tion Task Force (FATF) has published guidance [10] in which it requires that “Virtual

Asset Service Providers (VASPs) be regulated for anti-money laundering and combating

the financing of terrorism (AML/CFT) purposes, licensed or registered, and subject to

effective systems for monitoring or supervision.” The Office of Foreign Assets Con-

trol (OFAC) in the United States compiles a specially designated nationals (SDN)

list [11] and prohibits U.S. citizens from dealing with them. This list also contains

cryptocurrency addresses. Recently, fraud-related activities such as hacks, scams, and

ransomware have increased. For example, in the recent Colonial Pipeline ransomware

incident [12, 13], hackers demanded and got paid approximately 75 bitcoins after tak-

ing part of the company’s infrastructure out of operation. In 2021, Poly Network [14],
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DAO Maker [15], Liquid Exchange [16], Coinbase [17] and pNetwork [18] are hacked.

These developments are necessitating the development of tools and services that will

help to analyze transactions on blockchains.

A blockchain transaction analysis system has to be fast, parallel, and scalable.

The system must be fast to take swift action against fraudulent activities while the

new transactions are executed. It also needs to be parallel and scalable to handle the

ever-increasing blockchain transaction data. Such a system can simply be scaled out

by using a larger number of cluster nodes. In addition to the increasing numbers of

transactions, the blockchain transaction throughput is expected to rise. The current

Proof-of-Work (PoW) based Bitcoin and Ethereum blockchains have very low trans-

action throughput, as shown in Table 1.1. Newer Proof-of-Stake (PoS) based systems

like Ethereum2, Avalanche, and Cardano will be able to achieve thousands of trans-

actions per second (tps). Sharding and zero-knowledge proofs will also increase the

transaction throughput. Permissioned Hyperledger, which is designed for enterprises,

can also achieve thousands of tps. Such a high transaction throughput will enable the

transaction graphs to grow to billions and billions in size.

Table 1.1. Transaction throughputs.

Blockchain Type Transaction Throughput (tps)

Bitcoin permissionless, PoW 7

Ethereum permissionless, PoW 14-30

Hyperledger Fabric permissioned 3.5K [19]

Ethereum2 permissionless, PoS first 2-3K, then 100K [20]

Cardano permissionless, PoS 1K per stake pool with Hydra [21]

Avalanche permissionless, PoS > 4500 [22]

The current tools are not fit to handle or access large amounts of transaction data.

Blockchain data is only accessible in sequential form. Each block or transaction can

be retrieved from blockchain data using the blockchain client’s application program-
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ming interface (API). The blockchain data can be extracted and stored in a relational

database, but making complex queries to such a database will be slow. By complex

queries, we mean the queries like tracing an address back to a blacklisted address or

calculating the Pagerank of an address. In addition, graph algorithms cannot run on

relational databases. Graph databases like Neo4j can be used instead. However, they

are not distributed and only replicate data when run on multiple nodes. Therefore,

they will not be able to handle increasing amounts of transactions.

Some of the materials contained in this thesis were previously submitted to “Sec-

ond International Conference on Blockchain Computing and Applications” and ac-

cepted as a conference paper [23]. An extended version of this conference paper is

published in the “Cluster Computing” journal [24]. Some of the materials will be

published in the “Big Data and Artificial Intelligence in Digital Finance” book as a

chapter [25].

1.1. Contributions of the Thesis

The main contributions of this thesis are:

(i) Extract Bitcoin, Ethereum, and popular ERC20 [26] token transaction informa-

tion,

(ii) Compile a list of blacklisted addresses for Bitcoin and Ethereum blockchains,

(iii) Propose a parallel graph system for blockchain transactions using message passing

interface (MPI [27]),

(iv) Develop a parallel scalable graph construction algorithm,

(v) Implement parallel graph traversal for transaction tracing,

(vi) Integrate an existing parallel graph partitioner into the system,

(vii) Analyze transaction graphs using graph traversal for fraudulent activities,

(viii) Benchmark the parallel system with different number of processors and nodes.
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1.2. Outline of the Thesis

The rest of this thesis is organized as follows. Chapter 2 gives a background

on blockchain and parallel programming to help the readers understand the follow-

ing chapters of the thesis. Chapter 3 reviews the previous works about Bitcoin and

Ethereum transaction graph analysis. Chapter 4 explains the details of the blockchain

and blacklist data collection processes. Chapter 5 presents our proposed blockchain

transaction graph system and explains its architecture, data structures, and algorithms.

Chapter 6 covers the details of the test environment, the benchmark timing results, and

the results obtained from the transaction graph analysis. Finally, Chapter 7 concludes

the thesis and discusses future work.
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2. BACKGROUND

2.1. Blockchain

2.1.1. Token Models

The two common models for tokens in blockchains are unspent transaction output

(UTXO) and account models. Bitcoin uses the UTXO model, and Ethereum uses the

account model. In the UTXO model, each transaction takes UTXOs as input, consumes

them, and outputs new UTXOs. An UTXO is indivisible. For example, one cannot

spend 0.4 value from an UTXO with 1 value. However, if you want to spend 0.4 value,

you can use the UTXO with 1 value and create two UTXOs with 0.4 and 0.6 values,

the UTXO with 0.6 value is returned to you and the other one is sent to the recipient

of the transaction. A user’s balance is the sum of all UTXOs a user own. Each account

has a balance in the account model, increasing or decreasing with transactions. Our

system that is presented in Chapter 5 supports both types of models.

2.1.2. Token Types

Ethereum defines several standards to create a common interface between tokens.

ERC20 token standard [26] introduces fungible tokens. ERC721 [28] defines a standard

for non-fungible tokens. ERC1155 [29] is the standard for multi tokens (both fungible

and non-fungible).

In a ERC20 contract, a user can check his balance of tokens, transfer his tokens

to another user, allow a specific user to withdraw tokens from his account up to a

specified amount (allowence amount), check this allowence amount, and transfer the

tokens of a user (if that user allowed him) to another user.
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2.2. Parallel Programming

2.2.1. MPI

In message passing interface [27] programs, the copy of the same program is run

on multiple processors, and these copies communicate with each other via message

passing. The copies of the program are called MPI processes. We will refer to an MPI

process simply as a process from now on. Each process has an identifier (ID) called a

rank. The ranks are zero-indexed, i.e., they start from zero. MPI employs a distributed

memory model (excluding the commands introduced after MPI-1). Therefore, the value

of a variable on each process can be different. To refer to the value of a variable on

a specific process, we will use a superscript notation. For example, if A is a variable,

A2 is the variable’s value on the process with rank 2. This thesis uses the words local,

remote, and global to refer to different parts of distributed data structures. When we

use the word local, we refer to the part of data on the current process. When we use

the word remote, we refer to the part of data on the other processes. When we use the

word global, we refer to all of the data as a whole on all processes. The MPI programs

are usually run on a cluster of nodes, and a single process is run on each core of a node

in a cluster.

2.2.2. Distributed Data Structures

Distributed data structures are utilized when implementing MPI programs. The

simplest example is a distributed array. The structure of an example distributed array

can be seen in Figure 2.1. An array is divided into multiple parts, and each part is

stored on a different process. In this example, there are three processes, and processes

0, 1, and 2 store 3, 2, and 3 elements, respectively. The first element of the process

with ID 1 has the value 2. Its index is 0 if you only consider the local part of the array.

Its index is 3 if you consider all of the arrays. The conversion between local and global

index can be done by storing a value for the global index of the first value in the local

array, which is presented as the start index in the example. You get the global index
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when you add the local index with the start index.

Process ID 0 1 2

Start index 0 3 5

Global index 0 1 2 3 4 5 6 7

Local index 0 1 2 0 1 0 1 2

Array values 3 7 4 2 3 8 4 4

Figure 2.1. How a distributed array is stored on three processes.

Distributed compressed sparse row (CSR) format is another distributed data

structure. Figure 2.2 illustrates the serial CSR format. Let A be the adjacency matrix

of a directed graph, where the rows stand for the tail nodes, the columns stand for the

head nodes, and the cell value stands for the weight of the edge. The arrays row begin,

values, and col indices represent the CSR format. The values array contains non-zero

entries in the matrix in row-wise order. The array col indices gives the corresponding

column indices of these values. The array row begin stores the beginning index of each

matrix row in the values. Distributed CSR can be thought of as a combination of the

serial CSR and the distributed array concepts.

A =


4 0 3

0 0 8

7 3 0


row begin =

[
0 2 3 5

]
values =

[
4 3 8 7 3

]
col indices =

[
0 2 2 0 1

]
Figure 2.2. Compressed sparse row matrix format.
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3. LITERATURE REVIEW

3.1. Bitcoin Transaction Graph Analysis

The work [30] is an early analysis of Bitcoin from the privacy perspective. They

extracted Bitcoin transactions from January 2009 to July 2011 and analyzed the user

and transaction networks. They reported degree distribution, cumulative component

size, edge count, density, and average path length for both transaction and user net-

works. They show that the identity of some users may be disclosed by collecting

information from Bitcoin Faucet, voluntary disclosures, TCP/IP layer information.

In the work [31], Bitcoin blockchain transactions from January 2009 to May 2012

are analyzed. They downloaded the first 180 000 blocks as HTML files from a bitcoin

explorer. Since Bitcoin encourages its users to create a new address to receive payments,

one user may have multiple addresses. This paper merges the addresses using the

Union-Find algorithm [32] and calls it an entity. They report various statistics about

Bitcoin, such as the distribution of the addresses per entity, the distribution of the

current balance, maximum balance ever seen, the distribution of transactions. They

analyzed the subgraph of one large transaction more closely.

BlockSci [33] proposes a blockchain analysis platform for Bitcoin. This platform

uses an analytical in-memory database and works on a single node. The source code

of this platform is available at [34].

3.2. Ethereum Transaction Graph Analysis

The work reported in [35] presents the statistical properties of the Ethereum

transaction graph. They analyzed more than 680 000 transactions from the blocks

between 200 000 and 300 000, representing an early stage of Ethereum, and 610 000

transactions extracted from blocks 3 000 000 and 3 200 000, representing a later state
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of Ethereum. They show that some statistics, such as transaction volume and degree

distribution, are heavy-tailed, and the transaction graph has a bow-tie structure.

In the work [36], a part of Ethereum transactions is loaded into the Neo4j graph

database and analyzed. They found addresses related to transactions from the Gate-

coin hack. They downloaded transaction information from an Ethereum blockchain

explorer.

The work presented in [37] analyzes Ethereum transactions between July 2015

and August 2017. They analyze three types of transactions: user-to-user, user-to-smart

contract, and smart contract deployment. They report the number of transactions

and transferred ether amount over time. The statistics about indegree, outdegree,

betweenness centrality, left eigenvector centrality of transaction graph are presented.

Chen et al. [38] analyze Ethereum transactions between July 2015 and October

2018. They construct money flow, smart contract creation, and smart contract invo-

cation graphs. The degree distribution, clustering coefficient, degree correlation, node

importance, assortativity coefficient, and Pearson coefficient metrics are calculated for

the three graphs in their work. They also analyze the evolution of the graphs. They

propose new approaches for attack forensics, anomaly detection, and deanonymization.

Victor and Lüders [39] analyze the top 1000 ERC20 token transactions of the

first 6.3 million Ethereum blocks. They provide information about degree distribution,

clustering coefficients, degree assortativity, and network activity of token transaction

networks. For 64000 ERC20 tokens, they provide only an overview and show that the

networks follow either a star or hub-spoke pattern.

Somin et al. [40] analyze ERC20 token transactions between February 2016 and

February 2018. They collected 18517 token addresses. They report buying popularity,

selling popularity of tokens. They report indegree, outdegree of ERC20 token trans-

action graph. They show that the degrees of nodes in the graph follow a power-law
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distribution. In a more recent work [41], they add 4 more months of ERC20 token

transactions to their data set and show that ERC20 token transaction graph develop-

ment over time can be modeled as an underdamped harmonic oscillator.

XBlock-ETH [42] extracts the first 8.1 million blocks of Ethereum. They prepare

six data sets from the extracted raw data: block and transaction, internal ether trans-

action, contract information, contract calls, ERC20 token transactions, and ERC721

token transactions. The data sets are available at [43]. The data sets are updated to

the first 9 million blocks of Ethereum as of writing this thesis.



12

4. DATA COLLECTION

We collected the transaction data and blacklisted addresses of Bitcoin and Ether-

eum blockchains to test our system. We choose Bitcoin and Ethereum because they

are the most popular two blockchains and have the largest market capitalization [44]

as of writing this thesis. In addition, Bitcoin and Ethereum are the most prominent

representatives of the two important blockchain categories, namely blockchain 1.0 and

2.0. Bitcoin is the first blockchain and started the blockchain 1.0 phase. The intro-

duction of smart contracts started blockchain 2.0, and Ethereum is one of the most

important blockchains in this category. We also collected the transaction data of major

tokens and stablecoins that are implemented as ERC20 tokens. The tokens are listed

in Table 4.1.

Table 4.1. List of symbols of 40 major ERC20 tokens.

BNB DAI HPT LEO OMG renBTC SUSD VEN

BTCB EURS HT LINK PAX REP SXP WBTC

BUSD HDG imBTC MKR pBTC SAI TRYb XAUt

CRO HEDG INB MOF PLUS sBTC USDC XIN

cWBTC HOT INO OKB QCAD SNX USDT ZRX

4.1. Blockchain Data Collection

The blockchain transaction data can be collected in various ways, such as syncing

a node, accessing a node, and using already extracted data. Each of the listed methods

has different advantages and disadvantages.

Syncing a node can be considered the most official way of collecting blockchain

data. A full node has to be run and synced to download and verify the blockchain

blocks. This method requires high bandwidth and large disk space, and the sync-
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ing process can take days if not weeks. For example, the Go Ethereum client needs

more than six terabytes of disk size for the full node archive sync of the Ethereum

mainnet [45]. Depending on the blockchain and client, this method may also require

a high processing power because the downloaded block must be verified. The advan-

tage of using this method over the other methods is that you can get the transaction

trace data. For example, you can run the methods prefixed with debug (e.g. de-

bug traceTransaction) in Go Ethereum client.

The second method for collecting blockchain data is accessing a node. For exam-

ple, both Infura [46] and Cloudflare [47] provide a gateway for Ethereum. In addition,

another website [48] provides access to many other blockchains including Bitcoin, and

Ethereum. The advantage of such a gateway is that Ethereum can be interacted with

using the JSON RPC API without syncing a node. This method may require you to

pay for the gateway services. At the time of writing this thesis, the Cloudflare Ether-

eum gateway was free, and the Infura Ethereum gateway has a free tier for a limited

number of requests per day. The disadvantage of this method is that you need to pay

extra for accessing trace data, or the service may not even provide the trace data. The

trace data is only necessary to examine the internal Ethereum transactions.

A third method for collecting blockchain data is using the already extracted data.

This method requires you to trust the provider of the data. There are various extracted

blockchain data that are available on the internet [43,49,50]. The most comprehensive

data is provided by Google BigQuery [49]. The tools that Google uses to extract the

blockchain data are available online [51].

The Ethereum data used in this thesis is collected from the Cloudflare Ethereum

gateway. We choose this method because it is easier than syncing a node. The dataset

we created for Ethereum is available at [52]. The Bitcoin data used in this thesis is

collected from Google BigQuery. We chose this method because there was no Bitcoin

gateway at the time we collected the data and syncing a Bitcoin node and extracting

the Bitcoin transaction data from a synced node is a time-consuming process, especially
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finding the address from an input UTXO because you need to go back to the block

that the UTXO is output for each UTXO input to a transaction. How the Bitcoin and

Ethereum data are collected is explained in more detail in Subsection 4.1.2 and 4.1.3,

respectively. The statistics of the collected data are given in Table 6.1.

4.1.1. Transfer Transaction Schema

The extracted blockchain and ERC20 token transfer transactions are stored in

plain text files in a space-separated values format. The blockchain transfer transaction

schema used in this thesis is presented in Table 4.2. The sender, recipient, and amount

fields are the required fields to represent a transfer transaction. The sender is the sender

address of the transaction (called from in Ethereum). The recipient is the recipient of

the transaction (called to in Ethereum). The amount is the amount of the asset that

is transferred. It is stored in hexadecimal form for Ethereum. In addition, there is a

need to store the type of the transaction since there are different ERC20 tokens. We

used the symbol field for this purpose. The symbols for the assets are taken from the

symbol field of the ERC20 token smart contracts. The block number and transaction

index fields are used to be able to order the transactions. In addition, they uniquely

identify a transaction, and you can find the transaction in a blockchain explorer using

this information. The transaction index represents the index of transactions inside the

block.

Table 4.2. Transaction schema for Ethereum transactions.

Symbol Block No. Tx. Id. Sender Recipient Amount

ETH 9400000 2 0xeea...bfb 0x179...d72 0x5a0257dae3c19f

USDT 9400000 5 0x8f2...11d 0x6b2...1a6f 0x82a7440

Tx. Id.: transaction index inside the block

In Bitcoin, a transaction has multiple senders (input UTXOs) and recipients

(output UTXOs). To convert the Bitcoin transactions to the format represented in
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Table 4.2, we treated the transaction IDs (TXID) in Bitcoin as addresses. We created

a transaction from input address to TXID with the symbol BTC-IN for each input,

and a transaction from TXID to output address with the symbol BTC-OUT for each

output. An example of the output of this conversion for a transaction [53] is presented

in Table 4.3. The Bitcoin transaction amounts are stored in decimal form.

Table 4.3. Transaction schema for Bitcoin transactions.

Symbol Block No. Tx. Id. Sender Recipient Amount

BTC-IN 618000 1 396...piq 26f...0a3 29983720

BTC-OUT 618000 1 26f...0a3 3Qw...2zi 26956164

BTC-OUT 618000 1 26f...0a3 3DG...qGx 3000000

Tx. Id.: transaction index inside the block

4.1.2. Bitcoin Transaction Data Collection

The Bitcoin transaction data can be collected using getblockhash, getblock, and

getrawtransaction functions from the Bitcoin RPC API [54]. getblockhash queries the

block hash with the block number. The block information can be obtained with this

block hash using getblock. If you use verbosity = 2 with getblock, transaction infor-

mation is embedded into the block. When you use verbosity = 1, you can get each

transaction by calling getrawtransaction with transaction id listed in the tx field of the

block. The UTXOs can be found under vout in the transaction data. The value field

in each UTXO represents the transaction amount. The address of the UTXO can be

found under scriptPubKey.addresses[0].

We used Google BigQuery to collect Bitcoin data. The SQL query we used is

available in Figure A.1. The result of the query is exported as compressed JSON files.

After downloading the files, they are parsed and converted to the format described in

Subsection 4.1.1. We sorted the transactions by block number since the SQL query

result returned is unordered. The Bitcoin data in Google BigQuery does not contain
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the index of transactions in blocks. We had to extract this information from Bitcoin

RPC API and add it to our transaction files.

4.1.3. Ethereum Transaction Data Collection

4.1.3.1. Ether Transactions. The block data for Ethereum is downloaded from Cloud-

flare Ethereum gateway [47] using the eth getBlockByNumber JSON-RPC function [55].

If the second parameter of this function is set to true, it also returns the transaction

data inside the block. The block object and transaction object format can be seen

in Figures 4.1 and 4.2, respectively. Every field is in hexadecimal format. The block

number, transaction index, sender address, recipient address, and transaction amount

information are parsed from the blockNumber,transactionIndex, from, to, and value

fields, respectively. If the transaction is a contract creation transaction, the field to

will have the value null instead of the recipient address. When parsing the transactions,

we replaced this null value with 0x0 to mark the transaction as a contract creation

transaction.

{

"difficulty":"0xc5d598778bd91",

"extraData":"0x737061726b706f6f6c2d636e2d6e6f64652d3132",

"gasLimit":"0x7a121d",

"gasUsed":"0x79c7bf",

"hash":"0x6b855d4ca375a859bb00ee9a70b0e51bcefac0b075e5855a39bc9e361005af89",

"logsBloom":"0x0008484...",

"miner":"0x5a0b54d5dc17e0aadc383d2db43b0a0d3e029c4c",

"mixHash":"0x752aa195c7f86065068ee7800d7246d4456a65eda1abdcf7d3f28804bb95ae7f",

"nonce":"0xda299d681573218d",

"number":"0x5b8d82",

"parentHash":"0xa618c3ac198431ead17dd143f3fab8a73da6a3c506764dff84108bd06f72eb82",

"receiptsRoot":"0x01b161b3548f26e828eb995140ac3727d1378eebcbe0034965ad08b6d404ab5b",

"sha3Uncles":"0x1b4bc85c0f4b02f6ca8bd1b48e3ae72b64d7131a530d91bb41a679115cc5b07e",

"size":"0x3ebb",

"stateRoot":"0x31152daddddd075c01bf7c2c8ecfca2a9e75c02b67d47466226aeb7c1b14d229",

"timestamp":"0x5b524653",

"totalDifficulty":"0x12950c319cf9901c8a5",

"transactions":[ {"...": "..."}, {"...": "..."}],

"transactionsRoot":"0xd01ba0158ef1b57a183848f1029532ce8c9fbdabd89ce056c056d212e2172a5f",

"uncles":[

"0x1867ebdfbd39b6638a792fcf297c515d858198ea7c27fe90d10270e745cbb608"

]

}

Figure 4.1. Ethereum block object in JSON.



17

{

"blockHash": "0xfc8c6fc69291422825ebb826f9eed0e360f1da6837281c652542c8074b01ff35",

"blockNumber": "0xb74404",

"from": "0x49b21bdfa30333858956342f4028ce72e37eb851",

"gas": "0x186a0",

"gasPrice": "0x2540be400",

"hash": "0xdb627936c0d5f9b97dc2a5a939a416c9ec3ec081f762c03dd1b3dee82ae765d2",

"input": "0x",

"nonce": "0x32697",

"to": "0x4a4aa09ee61939e2e544a940d03cc0f796e2abe8",

"transactionIndex": "0x0",

"value": "0xe2717cab4642000",

"v": "0x25",

"r": "0x639b3d18ac170188338f8fb4098bedc524ce8c6468a0be76ac6294137b198bff",

"s": "0x4adf43fdafb198272827d6f1c237fb85194e7de3320ccb744e85386c217a7389"

}

Figure 4.2. Ethereum transaction object in JSON.

4.1.3.2. ERC20 Token Transactions. Until now, the parsing of the Ethereum transfer

transactions is explained. We also extracted the transactions of popular ERC20 tokens.

There are two ways to extract ERC20 transactions. One way is to listen to the Transfer

events emitted from the token smart contracts. The other way is to parse the function

call data. We choose the latter since the former requires you to be connected to a node

and the latter can be extracted from the transaction data we already downloaded.

Another reason for choosing the call data parsing is that there may be some ERC20

token contracts that have not implement the ERC20 standard properly and do not

emit Transfer events.

The function call data can be found in the input field of the transaction data. In

Figure 4.2, it can be seen that this field is empty because no function is called in this

transaction. In Figure 4.3, an ERC20 transfer function call in the input field of the

transaction can be seen. In Figure 4.4, the decoded version of the input data of the

transaction can be seen. The input data’s first 4-bytes (8 characters in hexadecimal

format) represents the function signature. For transfer function, it is a9059cbb in hex.

For transferFrom function, it is 23b872dd in hex. The next part is the arguments of the

function. The first argument has the type address and represents the recipient address.

An Ethereum address is 20 bytes, but it is encoded as 32 bytes with zero padding in the

input data. The second argument is the amount of the transaction. It is also 32 bytes

and zero-padded. The sender address is the from field in the transaction. The to field in
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the transaction is the contract address whose function is called. The type of token can

be found using this address. We manually collected this ERC20 token contract address

and token symbol mapping information before parsing the transactions. In Figures 4.5

and 4.6, an example transaction for transferFrom function call can be found. The only

difference here is that instead of taking the sender address from the from field in the

transaction data, we take the sender address from the first argument of the function

call in the input field.

{

"blockNumber": "0x7a1200",

"from": "0x6748f50f686bfbca6fe8ad62b22228b87f31ff2b",

"hash": "0xeaa62fbad7a4bb97f34bda732b2ba5df4bb3c8b593eb80d91cb9a1f2b91d784c",

"input": "0xa9059cbb000000000000000000000000add72aeef293eebe69a0592baf583fdaa47d8cbe0000000000000000

000000000000000000000000000000000000000053448740",

"to": "0xdac17f958d2ee523a2206206994597c13d831ec7",

"transactionIndex": "0x19",

"value": "0x0",

"...": "..."

}

Figure 4.3. Ethereum ERC20 transfer transaction example in JSON (unrelated fields

are omitted) (input field is splitted into two lines since it did not fit to the page).

// Function: transfer(address _to, uint256 _value)

0xa9059cbb // Transfer function signature

000000000000000000000000add72aeef293eebe69a0592baf583fdaa47d8cbe

// Recipient address: 0xadd72aeef293eebe69a0592baf583fdaa47d8cbe

0000000000000000000000000000000000000000000000000000000053448740

// Amount: 0x53448740 or 1397000000

Figure 4.4. Ethereum ERC20 transfer input data (splitted and annotated).

{

"blockNumber": "0x8e9623",

"from": "0xe6cab379cfa1ee999ca7d5fae3ceb2247eca9640",

"hash": "0x56d3594e13861c1efa58929b98c4bdede6741f0120447d513036d3e3e748980c",

"input": "0x23b872dd0000000000000000000000006903b4ab7d5a1a01cca0fc9fe1531bc5cbba26e40000000000000000

0000000057e52d2d195359ae566e45c164d7243596ddf735000000000000000000000000000000000000000000

000000000000006679c192",

"to": "0xdac17f958d2ee523a2206206994597c13d831ec7",

"transactionIndex": "0x2f",

"value": "0x0",

"..." : "..."

}

Figure 4.5. Ethereum ERC20 transferFrom transaction example in JSON (unrelated

fields are omitted) (input field is splitted into several lines).
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// Function: transferFrom(address _from, address _to, uint256 _value)

0x23b872dd // TransferFrom function signature

0000000000000000000000006903b4ab7d5a1a01cca0fc9fe1531bc5cbba26e4

// Sender address: 0x6903b4ab7d5a1a01cca0fc9fe1531bc5cbba26e4

00000000000000000000000057e52d2d195359ae566e45c164d7243596ddf735

// Recipient address: 0x57e52d2d195359ae566e45c164d7243596ddf735

000000000000000000000000000000000000000000000000000000006679c192

// Amount: 0x6679c192 or 1719255442

Figure 4.6. Ethereum ERC20 transferFrom input data (splitted and annotated).

4.1.3.3. Failed Transactions. Unlike Bitcoin blocks, the blocks in Ethereum can con-

tain failed transactions. An Ethereum transaction may fail because the transaction is

reverted. Such a transaction is included in the block because the transaction execution

consumes blockchain resources, and when it is included, the user has to pay gas. It is

a precaution against the spamming of the blockchain network.

The status field of the transaction receipt of a transaction can be checked to

find whether a transaction is failed for the transactions after the Byzantium fork [56]

(for the blocks whose block number is greater than or equal to 4 370 000). This field

has the value 0 for failed transactions and 1 for successful transactions. For example,

the transaction in Figure 4.7 is a failed transaction. The transaction receipt can be

obtained via eth getTransactionReceipt() function [55].

{

"blockHash": "0xb1fcff633029ee18ab6482b58ff8b6e95dd7c82a954c852157152a7a6d32785e",

"blockNumber": "0x42ae50",

"contractAddress": null,

"cumulativeGasUsed": "0x4f037",

"from": "0xa1619bda3f5160d19df5f9358f76a3e9bc893ed6",

"gasUsed": "0xc350",

"logs": [],

"logsBloom": "0x00...0",

"status": "0x0",

"to": "0x1f573d6fb3f13d689ff844b4ce37794d79a7ff1c",

"transactionHash": "0xeec4ccd13fe05907f9d732a8ad245bcb7f918217157b89baaa23895c12eb329a",

"transactionIndex": "0xa"

}

Figure 4.7. Ethereum transaction receipt in JSON.
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Finding whether a transaction is failed for the blocks before Byzantium fork is

more complex. We need to check the transaction trace using debug traceTransaction()

function [57] and find if the trace contains any errors.

Checking every transaction receipt and trace would be time-consuming, and we

had to connect a node to get the trace information. Therefore, we used the Google Big-

Query service to find the block number and transaction index of the failed transactions

instead of using eth getTransactionReceipt() and debug traceTransaction(). The SQL

queries that we used to get failed transaction information can be seen in Figures A.2

and A.3. We downloaded the results of these queries and input them into our Ethereum

transaction parser.

We added the failed transactions to our data with their symbol field prefixed

F-. We did not omit the failed transactions in case they may provide some extra

information for the analysis that we will make.

4.1.3.4. Block Rewards. There are four types of block rewards in Ethereum, namely

static block reward, uncle reward, uncle inclusion reward, and transaction fee. The

static block reward is the reward that the miner of a block gets for mining the block.

The reward amount is hardcoded to the clients [58] and may be updated with the

new hard forks. We collected the reward amount and the block range of the reward

manually and added this information to our Ethereum transaction parser. We used

the same symbol for the static block reward with the ether transactions. We set the

sender address as ETHMAINBLOCK. The reward recipient is the miner field in the

block (see Figure 4.1). We set the transaction index as zero and shifted the transaction

index of all other transactions by one.

The uncle reward is the reward that the miner of the uncle block gets when

that block is included in a block. The reward amount is (uncle block number + 8 −

block number) ∗ block reward/8. We did not include this reward in our data because

we only downloaded the blocks for the valid chain. To add this reward, we also need to
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download the uncle blocks, but to download them, first, we need to know which uncle

blocks are included in a block. So, this was a two-step process and would slow down

the data collection step.

The uncle inclusion reward is the reward that the miner of a block gets because

it includes uncle blocks. The reward amount is block reward/32 for each included

uncle block. We used the same symbol for the uncle inclusion reward with the ether

transactions. We set the sender address as ETHMAINUNCLE. The recipient of the

reward is the miner field in the transaction. We set the transaction index as zero. The

number of uncle blocks included in the block can be found by finding the length of the

uncles array field in the block (see Figure 4.1).

We did not include transaction fees in our data since its calculation required the

transaction receipt information.

4.1.3.5. Genesis Block Transactions. Genesis block contains all the necessary informa-

tion to configure a blockchain network. It has a alloc field to define the initial balance

of the wallets. The genesis block for Ethereum mainnet has 8893 account and balance

pairs. These accounts belong to anyone who bought ether in the presale period. We

take this information from [59] and add it as the zeroth block transactions. It can also

be found in the source code of the Go Ethereum client in recursive length prefix (RLP)

encoded form [60].

4.2. Blacklisted Address Data Collection

We collected blacklisted addresses for Bitcoin and Ethereum from various websites

manually. The count of the blacklisted addresses is given in Table 6.1(f).
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4.2.1. Bitcoin Blacklisted Address Data Collection

4.2.1.1. Data Sources. The blacklisted addresses for Bitcoin are collected from Bitcoin

Who’s Who blog post [61], Chainalysis blog posts [62–65], Sextortion Spam Bitcoin

list [66], COVID-19 themed cryptocurrency scams list [67], Ciphertrace blog [68], Ran-

somware in the Bitcoin Ecosystem dataset [69, 70], CryptoScamDB [71], and OFAC

SDN list [11].

4.2.1.2. Data Cleaning. The dataset [69] contains 11 entries that are not Bitcoin ad-

dresses but Bitmessage addresses. Ten of these addresses start with 2, and one address

starts with N. Bitcoin mainnet addresses only start with 1, 3, or bc1. We removed

them from our blacklist data.

4.2.2. Ethereum Blacklisted Address Data Collection

4.2.2.1. Data Sources. The blacklisted addresses for Ethereum are collected from

MyEtherWallet blacklist [72], CryptoScamDB [71] (previously called EtherScamDB),

Etherscan Label Word Cloud [73], and USDC banned addresses list [74]. From Ether-

scan, the addresses with the following labels are collected: Bitpoint Hack, Cryptopia

Hack, EtherDelta Hack, Heist, Lendf.me Hack, Phish / Hack, Plus Token Scam, Ponzi,

Spam Token, and Upbit Hack.

4.2.2.2. Data Preprocessing. The collected addresses are lowercased since the Ether-

eum addresses are hexadecimal, and multiple different address strings can represent the

same address in the hexadecimal form. For example, ”0xa” and ”0xA” represent the

same value, but they are different strings. After lowercasing, the duplicate addresses

are removed.
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5. BLOCKCHAIN TRANSACTION GRAPH SYSTEM

5.1. System Architecture

Figure 5.1 depicts the architecture of the blockchain transaction graph system.

The ether, ERC20 token, and bitcoin transaction are extracted from Ethereum and Bit-

coin blockchains, parsed, and stored as text files, as explained in Section 4.1. Blacklisted

addresses are collected from various websites manually, as explained in Section 4.2. The

blockchain transactions are input into the HPC cluster, and distributed transaction

graph is constructed. This transaction graph is analyzed using graph algorithms.

Our system
Cloud

Ethereum
Blockchain

Bitcoin
Blockchain

HPC Cluster

Blockchain 

transactions

(big dynamically 

growing data)

Extract ether and ERC20
token transactions

Extract bitcoin
transactions

Blacklisted
addresses

Websites
Parse blacklisted

addresses

Distributed graph 

data structures

Blockchain 

transaction parser


Analysis results

Figure 5.1. Blockchain transaction graph system architecture.

Figure 5.2 depicts the software stack of the blockchain transaction graph system.

The undermost blue layer illustrates the parallel programming libraries. We used

C++ language and the MPI library to implement this system. The second layer of the

stack is responsible for the parallel scalable graph construction, sorting, and dynamic

distributed graph data structures components of our system. This layer gives service
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to the third layer, the graph analysis layer that includes graph queries and algorithms.

MPI was chosen to implement the system since it is the de-facto standard com-

munication library that is used on high-performance clusters. In addition, the system

can be better optimized since MPI is a low-level library.

Parallel Programming Libraries
MPI - distributed memory

Parallel Scalable Graph Construction / Sorting / 

Dynamic distributed graph data structures

Graph Algorithms / Graph Queries

Figure 5.2. Blockchain transaction graph system software stack.

5.2. Data Structures

Distributed data structures are used while implementing the system. We fre-

quently used distributed arrays. Distributed compressed sparse row (CSR) format is

used when storing the transaction graph because the transaction graph is sparse. This

format is prevalently used when storing graphs. We followed [75] for this format, and

you can find its details in it. We also explained the basics of distributed array and CSR

in Subsection 2.2.2. We modified the CSR format slightly since there can be multiple

edges between nodes, i.e., multiple transactions between a sender and receiver. We

stored an array of edge weights (transaction amounts) in each matrix cell instead of

storing a single weight value.

5.2.1. Transaction to Graph Mapping

Blockchain transactions can be thought of as a directed graph. The tail of an

edge is the address of a transaction sender. The head is the recipient, and the weight

of the edge is the amount of transaction. Since Bitcoin and Ethereum have different
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token models (described in Subsection 2.1.1), we converted them to a common format

(see Subsection 4.1.1).

The symbols and definitions of the transaction graph are given in Table 5.1. For

Ethereum, we have both ether and ERC20 token transfer transactions of tokens listed

in Table 4.1. The union of the set of externally owned account addresses Vc and the

set of smart contract addresses Vs makes up the nodes V of the distributed transaction

graph. Each Ethereum transaction EETH and token transfer transaction Et is an edge

E of the transaction graph.

Table 5.1. List of symbols and their meanings for transaction graph.

Symbol Meaning

E All transfer transactions. E = EETH ∪Et for Ethereum or E = EBTC

for Bitcoin

EBTC Transfers between accounts and transaction IDs

EBTC = {<a, t>: a ∈ Va ∧ t ∈ Vt} ∪ {<t, a>: t ∈ Vt ∧ a ∈ Va}

EETH All Ethereum blockchain transactions with zero or more ether pay-

ments

Et ERC20 token t transfer transactions, t ∈ T

T Set of major ERC20 tokens tracked, T = {USDT,PAX,TRYB, . . .},

full list given in Table 4.1

V All blockchain addresses. V = Vc ∪ Vs for Ethereum or V = Va ∪ Vt

for Bitcoin

Va Set of Bitcoin addresses

Vc Set of Ethereum externally owned account addresses

Vs Set of Ethereum smart contract addresses

Vt Set of transaction IDs (TXIDs)

For Bitcoin, the union of the set of addresses Va and the set of transaction IDs

Vt makes up the nodes V of the distributed transaction graph. Each input and output
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UTXO of a Bitcoin transaction is an edge E of the transaction graph. From now on,

when we refer to the nodes, we will only mention the addresses and not the transaction

IDs because mentioning both make the descriptions complicated. However, note that

the nodes of the transaction graph for Bitcoin also contain the transaction IDs.

Figure 5.3 shows the distributed transaction graph for (a) account-based and (b)

UTXO-based blockchain graphs. In Figure 5.3(b), transaction IDs are shown with

a square shape to make the graph more understandable. The nodes at the tail of

incoming edges to the square shapes are the addresses that own the input UTXOs.

The nodes at the head of outcoming edges from the square shapes are the addresses

that own the output UTXOs.

P0 P1 P2 P0 P1 P2

(a) (b)

Figure 5.3. Distributed data structures of (a) account-based and (b) UTXO-based

blockchain graphs.

5.3. Distributed Transaction Graph Construction

The distributed transaction graph construction algorithm is presented in Fig-

ure 5.4 and the symbols used in it are described in Table 5.2. The details of the nodes

and edges for Ethereum and Bitcoin graphs are explained in Subsection 5.2.1 and will

not be repeated here.

The first phase (lines 2-6) of distributed transaction graph construction involves

building the whole node set V of the graph by finding unique addresses and giving them

global IDs. We need these global IDs to build the transaction graph. Our blockchain

transaction data is stored in multiple files. Each line in these files stores the information
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of one transaction, such as sender address, receiver address, and transaction amount.

The detailed transaction format is given in Subsection 4.1.1. Each process takes a

subset of these files as input, reads the files, and creates the set of sender (s) and

receiver (t) addresses (line 2). This is the local address set.

Table 5.2. List of symbols and their meanings for graph construction.

Symbol Meaning

E All transfer transactions

Ep Transfer transactions on process p

G(V,E) Transaction graph

Gp(V p, Ep) Transaction subgraph on process p

ID(v) Global ID of address v, ID(v) ∈ [0, |V | − 1]

P Number of processes

p ID of current process (0-indexed)

V All blockchain addresses

V p Blockchain addresses on process p

The address set is copied to an array because we cannot sort a set. The address

set is sorted using parallel sample sort (line 3) [76]. This parallel sample sort is not

local. It sorts globally all addresses in the address array in each process. For better

understanding, the global sorting can be thought of as taking the address array of

each process, concatenating these arrays, sorting the concatenated array, splitting the

sorted array, and putting the addresses back into the address array in each process.

The sample sort is not centralized but distributed and works in parallel.

Before sorting the addresses, the addresses in each process were locally unique,

but they are not necessarily unique after sorting them. Suppose that the same address

is on the first and second processes. These two addresses will be on the same process

when the addresses are globally sorted. Therefore, the duplicate addresses need to be

removed after the sorting operation. The duplicate addresses are removed by comparing



28

the consecutive addresses and taking only the addresses that are not the same (line 4).

Comparing the boundary values, i.e., the last address in one process and the first one

in the next process, is unnecessary since sample sort places the same elements on the

same processes.

At this point, we have the unique addresses and need to give each address a global

ID. The addresses in all processes as a whole stand for our addresses. The ID of the

first address in the current process is found by summing the number of addresses in

the processes, whose ID ranges from 0 to the current process ID (excluding) (line 5).

The ID of an address is the sum of the first address’s ID and the address’s index in the

array (line 6).

In the second phase (lines 7-28), the adjacency list of the graph is constructed from

the transactions and global IDs of the transaction addresses. The sender and receiver

addresses must be mapped to their corresponding global IDs. Since the address set

is distributed, each process has only a part of the addresses. However, we need to

know the global ID of all addresses to be able to map them. To solve this problem,

each process sends its addresses to the next process and receives the addresses from

the previous process in a ring fashion. This send and receive operation is done for the

number of process times. At each iteration, the process will have new addresses and

will be able to map these addresses to their corresponding global IDs. Two buffers

with the size of the largest address set are used to be able to both send the addresses

to the next process and receive the addresses from the previous process simultaneously

(lines 7-8). The buffer that contains the addresses will alternate with every iteration

(line 10). The other buffer only receives the addresses for the next iteration (line 11).

Each process iterates the number of process times (line 9) and processes the address

information again (line 12). If the sender or receiver address is found in the address

set (located in the buffer), the address is given its global ID (lines 13-20). The search

for an address in the buffer can be done using binary search since the addresses are in

order. The current address set is sent to the next process (line 22). The address set to

be used at the next iteration is received from the previous process (line 23).
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1: function GenerateGraph(Ep, p)

2: V p ←
⋃

(s,t)∈Ep{s, t}

3: SAp ← parallelSampleSort(V p) . sorted array

4: V p ← {SAp
i | i = 1 ∨ (i ∈ [2. . |SAp|] ∧ SAp

i 6= SAp
i−1)} . rem. duplicates

5: IdStart←
∑p−1

j=0 |V j| . by parallel scan

6: ID(vj) = IdStart + j ∀j ∈ [0. . V p − 1]

7: SRp
0 ← {(v, ID(v)) | v ∈ V p} . send/recv buffer

8: SRp
1 ← ∅ . send/recv buffer

9: for i ∈ [0. . P − 1] do

10: j ← i mod 2 . index of current SR

11: k ← i + 1 mod 2 . index of SR to recv.

12: for each (s, t) ∈ Ep do

13: sID ← binarySearch(SRp
j , s)

14: if sID 6= null then

15: ID(s)← sID

16: end if

17: tID ← binarySearch(SRp
j , t)

18: if tID 6= null then

19: ID(t)← tID

20: end if

21: end for

22: Send SRp
j to process (i + 1) mod P . send SR to next proc.

23: Receive SRp
k from process (i− 1 +P ) mod P . recv. from prev. proc.

24: end for

25: IDEp ← {(ID(s), ID(t)) | (s, t) ∈ Ep}

26: SIDEp ← parallelSampleSort(IDEp)

27: formAdjacencyListofGraph(SIDEp)

28: return Gp(V p, Ep)

29: end function

Figure 5.4. Distributed transaction graph construction algorithm.
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p = 0 p = 1 p = 2

Tx 0x3 0x9 0x2 0x3 0x2 0x7 0x1 0x2

V 0x3 0x9 0x2 0x2 0x7 0x1 0x2
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SA 0x1 0x2 0x2 0x3 0x7 0x9
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0x2

V 0x1 0x2 0x3 0x7 0x9
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2 2 1
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Step 5 - Read transactions and create address set

0x3 → 0 0x9 → 1 0x2 → 2 0x2 → 0 0x7 → 1 0x1 → 0 0x2 → 1

0 1 2 1 0 1 0 1

Step 6 - Create send / receive buffer

0x1, 0 0x2, 1 0x3, 2 0x7, 3 0x9, 4SR0
0

SR1
0

SR0
1

SR1
1

SR0
2

SR1
2

0 →ID 1 → 2 → 1 0 → 1 → 3 0 → 1 →

Step 7 - Send and receive addresses

0x1, 0 0x2, 1 0x3, 2 0x7, 3 0x9, 4

0x9, 4 0x1, 0 0x2, 1 0x3, 2 0x7, 3

SR0
0

SR1
0

SR0
1

SR1
1

SR0
2

SR1
2

0 →ID 1 → 4 2 → 1 0 → 1 1 → 3 0 → 1 →

Step 8 - Send and receive addresses

0x3, 2 0x7, 3 0x9, 4 0x1, 0 0x2, 1

0x9, 4 0x1, 0 0x2, 1 0x3, 2 0x7, 3

SR0
0
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0
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1
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1
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2

0 → 2ID 1 → 4 2 → 1 0 → 1 1 → 3 0 → 0 1 → 1

Step 9 - Convert local IDs to global IDs

0x3 → 2 0x9 → 4 0x2 → 1 0x2 → 1 0x7 → 3 0x1 → 0 0x2 → 1

2 4 1 4 1 3 0 1

Step 10 - Sort edges

0 1 1 41 3 2 4

Step 11 - Form adjacency list

0: 1 1: 3, 4 2: 4 3: 4:

Local graph Local to global mapping Global graph Active buffer

Figure 5.5. Example showing the steps of distributed transaction graph algorithm.
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The edges of the graph are converted from local IDs to global IDs (line 25).

The edges are sorted according to IDs of address pairs, (ID(s), ID(t)), making up the

transactions (line 26), and the adjacency list representation of the graph is formed.

This adjacency list is the output of the algorithm. Figure 5.5 illustrates the execution

of our algorithm on a small example dataset.

In addition to the directed graph, we also constructed the transpose and undi-

rected graphs. We can construct the transpose graph by continuing at line 26, switching

the tail and head node IDs, sorting the edges again, and building the adjacency list

representation. We can construct the undirected graph by adding the reverse edges,

sorting edges, removing duplicates, and building the adjacency list representation.

5.4. Graph Algorithms

Figure 5.6 shows an overview of the functionalities of our system and which

graph algorithm uses which graph. The directed, transpose, and undirected graphs are

constructed as described in Section 5.3. We do not show the graphs as distributed in

Figure 5.6 not to complicate the figure. However, note that our graphs are stored in

a distributed form. The constructed graphs are input to parallel graph algorithms of

our system.

5.4.1. Distributed Calculation of the Blacklisted Address Trace Forest

When fraudulent activities are carried out on the blockchains, addresses that en-

gage in fraud are usually posted on the Internet by companies or government agencies.

We refer to these addresses as blacklisted addresses. We are interested in transactions

that originate from these blacklisted addresses. Our system provides the capability to

return subgraphs that contain transactions that trace to blacklisted addresses. We have

also developed an additional algorithm that will output a more compact and optionally

prunable forest of trace trees. Such a compact trace can be used by a web server to

provide fast answers to trace queries since the traces are small and precomputed.
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Figure 5.6. Parallel algorithms of the system.

The distributed calculation of the blacklisted addresses trace forest algorithm is

presented in Figures 5.7 and 5.8, and the symbols used in it are described in Table 5.3.

This algorithm takes distributed transaction graph and the ID of blacklisted nodes (ad-

dresses) and outputs a transaction trace forest of trees, whose roots are the blacklisted

nodes, in a distributed array format. The algorithm can calculate the full shortest path

based forest of trees. It can also calculate the forest of pruned trees up to depth D.

The algorithm traverses the nodes of the graph starting from blacklisted nodes

and adds the visited nodes to the trace forest. Since the graph is distributed, not every

node can be visited on a process. The algorithm first visits all local nodes and stores the

remote nodes that need to be visited. The stored node information is then exchanged

between processes. These new nodes are traversed locally again. This traversal and

communication cycle continues until no remote node is left to be visited.

Each node in the forest F points to its parent. The root, which are blacklisted

nodes in our case, points to itself. The depth D is used to store the distance of the node

from the blacklist. It is also equivalent to the depth in the forest. The nodes that need

to be visited are stored on a stack (line 2). Each process adds the blacklisted nodes
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that belong to the current process to the forest as a root and to its stack (lines 6-12).

The total number of nodes in the stack of all processes is calculated (line 13). While

there are nodes to be visited, the traversal and communication cycle will continue

(lines 14-43).

Table 5.3. List of symbols and their meanings for trace forest calculation.

Symbol Meaning

Ap Set of addresses to be traversed on process p

B Set of blacklisted addresses

C Total number of parent node and depth pairs to be sent

Dp Distance of addresses on process p from blacklisted address

E All transfer transactions

Ep Transfer transactions on process p

F p Trace forest on process p

G(V,E) Transaction graph

Gp(V p, Ep) Transaction subgraph on process p

P Number of processes

p ID of current process (0-indexed)

Rp Set of parent node and depth pairs received from other processes

Sp Set of parent node and depth pairs on process p to be sent to remote

processes

V All blockchain addresses

V p Blockchain addresses on process p

In the traversal part (lines 15-28), a node is popped from the top of the stack

(line 17) and its edges are visited if there is any node in the stack. If the head node

of the edge is a local node (line 19), and if the node is unvisited or it is visited and a

shorter path is found, the node is added to the stack, the tail node of the edge is set

as its parent in the forest, and its depth is set as one added to the depth of the tail

node (lines 47-51). If the head node of the edge is a remote node (line 21), the tail
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node and depth information is stored in a map S to be sent to the corresponding node

in the communication part (lines 22-25). This tail node and depth information in the

map is updated if a shorter path is found.

After the traversal part, the number of cut edges (edges whose tail and head are

in different processes) is calculated to determine whether the cut edge communication

part is needed (line 29). If there are cut edges, the cut edge information is sent and

received. For each received node (line 37), if the node is unvisited or it is visited and

a shorter path is found, the node is added to the stack, the tail node of the edge is set

as its parent in the forest, and its depth is set as one added to the depth of the tail

node (line 39).

At the end of the loop, the total number of nodes in the stack of all processes

is calculated again (line 42). If there is any node in the stack, the traversal and com-

munication cycle will continue. If not, the algorithm will return the forest. Figure 5.9

illustrates the execution of our algorithm on a small example dataset.

5.4.2. Distributed Blacklisted Address Transaction Tracing

Given a blockchain address of a customer and a set of blacklisted addresses,

we want to identify a subgraph that traces transaction activities between the black-

listed addresses and the queried customer address. Two example trace subgraphs are

presented in Figure 6.7. Such trace subgraphs are returned by the parallel tracing

algorithm that is presented in this section.

The parallel blacklisted address transaction tracing algorithm is given in Fig-

ures 5.10 and 5.11. The symbols used in it are described in Table 5.4. The algorithm

finds the subgraph between two sets of nodes. We use it to trace the set of queried

addresses Q back to the set of blacklisted addresses B. The algorithm first finds the

nodes (addresses) reachable from B denoted with RB by depth-first traversal (line 2).

Then, it finds the nodes that can reach Q denoted with RQ by traversing the edges in
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1: function BuildTraceForest(p,B,Gp(V p, Ep))

2: Ap ← ∅

3: for all v ∈ V p do . initialize the forest

4: F p(v)← ∅

5: end for

6: for all b ∈ B do . add blacklisted addresses as root nodes

7: if b ∈ V p then

8: F p(b)← b . root node points to itself

9: Dp(b)← 0

10: Ap ← Ap ∪ {b} . add to stack to visit later

11: end if

12: end for

13: |A| ←
∑P−1

i=0 |Ai| . allreduce

14: while |A| > 0 do . while there is nodes to visit

15: Sp ← ∅

16: while Ap 6= ∅ do . until no local node remained to visit

17: Ap ← Ap \ {s} ∃s ∈ Ap . pop a node from stack

18: for all (s, t) ∈ Ep do . visit the neighbors of s

19: if t ∈ V p then . if local node

20: VisitNode(F p(t), s, t,Dp(s) + 1, Dp(t))

21: else . if remote node

22: if (Sp(t) = ∅)∨

23: ((Sp(t) 6= ∅)∧ (Dp(s) + 1) < d | (v, d) ∈ Sp(t))) then

24: Sp(t)← (s,Dp(s) + 1)

25: end if

26: end if

27: end for

28: end while

Figure 5.7. Distributed calculation of the blacklisted address trace forest algorithm -

part 1.
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29: C ←
∑P−1

i=0 |Si| . allreduce

30: if C > 0 then . if there is any node info to send/recv

31: for all i ∈ ([0 . . P − 1] \ {p}) do

32: Send {t | t ∈ Sp ∧ t ∈ V i} to process i

33: end for

34: for all i ∈ ([0 . . P − 1] \ {p}) do

35: Receive Rp from process i

36: end for

37: for all t ∈ Rp do

38: (s, d)← Rp(t)

39: VisitNode(F p(s), s, t, d,Dp(t))

40: end for

41: end if

42: |A| ←
∑P−1

i=0 |Ai| . allreduce

43: end while

44: return F p

45: end function

46: procedure VisitNode(f, s, t, d1, d2)

47: if (f = ∅) ∨ ((f 6= ∅) ∧ (d1 < d2)) then . is null or shorter

48: Ap ← Ap ∪ {t} . add head node to stack

49: F p(t)← s . head node points to tail node in tree

50: Dp(t)← d1

51: end if

52: end procedure

Figure 5.8. Distributed calculation of the blacklisted address trace forest algorithm -

part 2.
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Figure 5.9. Example showing the steps of distributed calculation of the blacklisted

address trace forest algorithm.
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1: function Trace(p, P,Gp(V p, Ep), B,Q, Ts, Te)

2: RBp ← DFS(p, P,Gp(V p, Ep), B, Ts, Te, false) . nodes reachable from B

3: RQp ← DFS(p, P,Gp(V p, Ep), Q, Ts, Te, true) . nodes that can reach Q

4: V ′p ← RBp ∩RQp . nodes of subgraph

5: V ′ ←
⋃P−1

i=0 V ′p . MPI Allgatherv

6: E ′p ← {e | e ∈ Ep ∧ e = (s, t, b) ∧ s, t ∈ V ′ ∧ b ∈ [Ts . . Te]} . edges of

subgraph

7: return G′p(V ′p, E ′p)

8: end function

9: function DFS(p, P,Gp(V p, Ep), F, Ts, Te, Rev)

10: Rp ← ∅ . nodes reachable from F

11: Cp ← ∅ . remote nodes to be visited

12: Mp ← ∅ . remote nodes that are already visited

13: Sp ← F ∩ V p . stack of nodes to visit

14: TCN ← 1 . total number of remote nodes to be visited in all processes

15: while TCN > 0 do

16: while Sp 6= ∅ do . while there are nodes to visit

17: Sp ← Sp \ {cur} ∃cur ∈ Sp . pop a node from stack

18: Rp ← Rp ∪ {cur} . mark the node as visited

19: for all e ∈ Ep do

20: if Rev then

21: (t, s, b)← e

22: else

23: (s, t, b)← e

24: end if

25: if s = cur ∧ b ∈ [Ts . . Te] then

26: if t ∈ V p ∧ t /∈ Rp then . if node is local and not already

visited

Figure 5.10. Distributed blacklisted address transaction tracing algorithm - part 1.
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27: Rp ← Rp ∪ {t} . mark node as reached

28: Sp ← Sp ∪ {t} . push node to stack

29: else if t /∈ V p ∧ t /∈Mp then . if node is remote and not

already visited

30: Cp ← Cp ∪ {t} . save the node send it later

31: end if

32: end if

33: end for

34: end while

35: TCN ←
∑P−1

i=0 |Cp| . MPI Allreduce

36: if TCN > 0 then

37: for all i ∈ ([0 . . P − 1] \ {p}) do

38: Send {t | t ∈ Cp ∧ t ∈ V i} to process i

39: end for

40: CRp ← ∅

41: for all i ∈ ([0 . . P − 1] \ {p}) do

42: Receive CRi from process i

43: CRp ← CRp ∪ CRi

44: end for

45: Mp ←Mp ∪Cp . save sent nodes as visited not to send them again

46: Cp ← ∅ . clear the send nodes

47: Sp ← Sp ∪ (CRp \Rp) . push the not visited received nodes to the

stack

48: end if

49: end while

50: return Rp

51: end function

Figure 5.11. Distributed blacklisted address transaction tracing algorithm - part 2.
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the reverse direction (line 3). The intersection of RB and RQ gives us the set of nodes

in the subgraph V ′p (line 4). Each local set of nodes of the subgraph is exchanged

between the processes and we get the global set of nodes V ′ in all processes (line 5).

Each process finds the local edges whose tail and head are in the V ′ and is between

the given block range from Ts to Te (which also represents the time since all of the

transactions in a block have the same timestamp) (line 6). Ts is the block range start

and denotes the start time range of trace. Te is the block range end and denotes the

end time range of trace. The algorithm returns the subgraph (line 7).

The depth-first search function takes current process ID p, total process count P ,

the graph Gp, set of starting addresses F , block start Ts, block end Ts, and traversal

direction Rev. It returns the set of nodes Rp that are reachable from the set of starting

nodes F . Cp is the set of nodes that needs to be visited and is located on remote

processes. Mp is the set of remote nodes that are already visited. Sp is the stack of

nodes to be visited. At the start, Sp contains the nodes that are in F and is a local

node (line 13). The algorithm first traverses the local reachable nodes (lines 16-34) and

then sends the remote nodes to be visited Cp to corresponding processes (lines 36-48).

This loop continues until no node is left in the stack of any processes. TCN is the

total number of nodes in Cp in all processes. It is initialized with 1 to run the first loop

(line 14). The nodes in the stack Sp is traversed until it is empty. At each step, a node

cur is taken from the stack and marked as visited (lines 17-18). The nodes at the head

of the outcoming edges of the node cur are traversed if Rev is false. The nodes at the

tail of the incoming edges of the node cur are traversed if Rev is true (lines 19-33). If

the edge is between the given block time range, it needs to be visited (line 25). If it

is a local node and is not already visited, it is added to the stack (line 26). If it is a

remote node and not already sent to other processes to be visited, it is added to the

set of remote nodes to be visited Cp (line 29). The total number of nodes in Cp in all

processes is calculated (line 35). If any nodes need to be send to remote processes and

visited in any of the processes, the nodes Cp are exchanged between processes. The

Cp is added to Mp not to send them again (line 45). The Cp is cleared. The received

nodes are added to the stack Sp.
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Table 5.4. List of symbols and their meanings for blacklisted address transaction

tracing.

Symbol Meaning

B Set of blacklisted addresses

Cp Set of unvisited remote addresses on process p

E All transfer transactions

Ep Transfer transactions on process p

E ′p Transfer transactions of trace subgraph on process p

e A transaction e ∈ E and e = (s, t, b) where s is the sender (tail of

edge), t is the recipient (head of edge), and b is the block number of

transaction

F Set of starting addresses for graph traversal

G(V,E) Transaction graph

Gp(V p, Ep) Transaction subgraph on process p

Mp Set of remote addresses that are already visited on process p

P Number of processes

p ID of current process (0-indexed)

Q Set of queried addresses

Rp Set of addresses reachable from F on process p

Rev Traversal direction. Outcoming edges if true. Incoming edges if

false.

Sp Set of addresses to be visited on process p

Te Block range start

Ts Block range end

TCN Total number of remote addresses to be visited in all processes

V All blockchain addresses

V ′ Set of addresses of trace subgraph

V ′p Set of addresses of trace subgraph on process p
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5.4.3. Parallel Graph Partitioning

Since our system is distributed, we cannot access all the data on the local process.

We need to communicate with other processes to access remote data. For example, let

two nodes be on different processes and a directed edge connect them. When visiting

these two nodes via graph traversal, we need to transfer data from one process to

another. Graph partitioning is an optimization where we try to minimize the number

of edges that connect nodes in two different partitions while keeping the partitions

load balanced (have a roughly equal number of nodes). Graph partitioning decreases

the amount of communication required while processing the graph, thus increasing the

system’s performance.

Initially, we tried to parallel partition the blockchain transaction graphs with

PT-SCOTCH 6.0.9 [77] and ParMETIS 4.0.3 [75]. Since PT-SCOTCH was slower

than ParMETIS in our experiments, we opted for ParMETIS and integrated it into

our system.

5.4.4. Connected Component Calculation

We implemented the parallel connected components algorithm of [78] named

FastSV on our blockchain transaction graph system. The algorithm is presented as

Algorithm 2 in the paper. We can find the connected component ID of a node and the

total connected component count.

5.4.5. Node Feature Extraction

We calculated the following features for each node (address): outdegree, indegree,

unique outdegree, unique indegree, total outgoing amount, total incoming amount, net

balance, timestamp of the first transaction, timestamp of the last transaction, the

difference between first and last transaction timestamps, whether the last transaction

is outgoing, last transaction amount, average outgoing amount per transaction, average
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incoming amount per transaction.

5.4.6. Other Algorithms

In token transfer count, the number of ERC20 tokens is counted. In node degrees

and degree distribution, we find the indegree and outdegree of every node and the

number of nodes for each indegree and outdegree. In Pagerank, we calculate a ranking

value for each node of the graph by using Pagerank.
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6. EXPERIMENTS AND RESULTS

6.1. Test Environment Setup

We tested our blockchain transaction graph system on a 16 node (machine in-

stance) cluster on Amazon Elastic Compute Cloud. For Ethereum tests, we used

c5.4xlarge machine instances, each of which had 16 virtual central processing units

(CPUs) (8 physical cores with hyper-threading), 32 GiB memory, up to 10 Gbps net-

work bandwidth, and 4.750 Mbps storage bandwidth. For Bitcoin tests, we used

r5b.4xlarge machine instances, each of which had 16 virtual CPUs, 128 GiB mem-

ory, up to 10 Gbps network bandwidth, and 10.000 Mbps storage bandwidth. We

launched the cluster using StarCluster [79]. Since the development of StarCluster is

stopped, we had to patch its source code by adding the instance types we used in the

file static.py. StarCluster sets the placement group of machines as cluster so that the

cloud service packs the instances close together. StarCluster also sets up Network File

System (NFS) on the nodes so that the compute nodes can read data from the master

node. We created a 450 GB gp3 elastic block storage (EBS) volume for Ethereum data

to store that input and output data. We connected this storage to the master node of

the cluster. For Bitcoin, we created a storage volume with 1200 GB. We did not use

any job scheduler like Slurm. We run the MPI code directly with mpirun command.

6.2. Test Dataset

As datasets, we have used roughly twelve years of Bitcoin and five years of Ether-

eum blockchain data. Our Ethereum dataset also contains major ERC20 token transfer

transactions. The details of the datasets are given in Table 6.1. How these datasets

are collected is explained in Chapter 4. Our Ethereum dataset is available at [52].
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Table 6.1. Bitcoin and Ethereum blockchain dataset statistics.

Statistic Bitcoin Ethereum

(a) Blocks 0 - 674 999 0 - 10 199 999

(b) Time coverage of blocks 3.1.2009 - 17.3.2021 30.7.2015 - 4.6.2020

(c) No. of transactions 625 570 924 766 899 042

(d) No. of addresses 800 017 678 78 945 214

(e) No. of 40 major ERC20 token

transfer transactions

N/A 43 371 941

(f) Number of blacklisted addresses 21 028 5 830

(g) Uncompressed dataset size 382 GB 81 GB

6.3. Description of Tests

The descriptions of the tests that are carried out are given in Table 6.2. All these

tests are programmed in C++ using the MPI libraries. All of the tests are distributed

and parallel. In test T1, the transactions are read from text files, the directed, trans-

posed, and undirected transaction graph is constructed, and the constructed graphs

are saved to files. The distributed directed transaction graph construction algorithm

is presented in Section 5.3. In test T2, we use ParMETIS [75] software in order to

partition the undirected transaction graph in parallel. Test T3 runs the parallel pager-

anking algorithm on the transaction graph. Test T4 computes the node indegrees and

outdegrees (number of incoming and outcoming transactions for each address) and

degree distribution of the transaction graph. Test T5 computes the total number of

transfer transactions of 40 major tokens. In test T6, the number of connected com-

ponents in the transaction graph is calculated. In test T7, the shortest path based

trace forest of blacklisted addresses is built. The algorithm for test T7 is presented

in Subsection 5.4.1. In test T8, the following features are calculated for each address:

outdegree, indegree, unique outdegree, unique indegree, total outgoing ether, total in-

coming ether, net ether balance, timestamp of the first transaction, timestamp of the

last transaction, the difference between first and last transaction timestamps, whether
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the last transaction is outgoing, last transaction amount, average outgoing ether per

transaction, average incoming ether per transaction. In test T9, the subgraph between

a blacklisted node and a query node for a given time range is found. The algorithm

for test T9 is presented in Subsection 5.4.2.

Table 6.2. Description of tests.

Test Description

T1 Transaction graph construction

T2 Graph partitioning using ParMETIS [75]

T3 Pageranking on transaction graph

T4 Node degrees and degree distribution of transaction graph

T5 No. of transfer transactions of 40 major ERC20 tokens

T6 Connected component count

T7 Shortest path based blacklisted address trace forest

T8 Extracting node features

T9 Example of trace subgraph of a blacklisted address

6.4. Test Results

We ran the tests two times and took the average of the timings. We ran the test

with different numbers of nodes. The Ethereum tests are run on 4, 8, 12, and 16 nodes.

We could not run the tests with 1 or 2 nodes because the memory of the instances was

insufficient. Since the program uses distributed memory, the memory used per node

increases when we decrease the number of nodes. The Bitcoin tests are run on 8, 12,

and 16 nodes. Since each node in the cluster has 16 virtual CPUs, we also run the tests

with different MPI processes per node, namely 1, 2, 4, 8, 12, and 16 MPI processes per

node.

In the timing result figures, we grouped the timings by MPI processes per node.

The connected lines show the execution time when we increase the number of nodes
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and keep the MPI processes per node constant.

The timing result for transaction graph construction is given in Figure 6.1. Since

graph construction involves reading transactions from disk and then uses a ring com-

munication (see the algorithm in Figure 5.4) to implement an all-to-all communication

in order to construct the graph, we can expect its timing to level off and even increase

after the number of nodes is increased. Figure 6.1 shows this happening. In the case of

Ethereum, the timing levelled off. For Bitcoin, since the number of addresses is much

higher, we see the times decreasing and then increasing due to increased communication

cost.
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Figure 6.1. Test T1: Graph construction times for (a) Bitcoin and (b) Ethereum on

the HPC cluster.

Test T2, which is about graph partitioning, takes hours for Ethereum and gives

out of memory error for Bitcoin. Since tests T3-T9 take minutes or seconds for the

Ethereum transaction graph and the sum of their timings is smaller than T2, it is not

worth applying graph partitioning using ParMETIS.
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Figure 6.2 shows the execution times for the Pagerank computation. Note that

the graph resides in memory after graph construction, and the pagerank computations

are run on the distributed data structures. We see faster processing times when the

number of processors is increasing.
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Figure 6.2. Test T3: Pageranking times for (a) Bitcoin and (b) Ethereum on the

HPC cluster.

Table 6.3 shows the addresses that ranked in the top 10 in Pagerank. For Bitcoin,

the most important addresses belong to exchange companies and popular gambling

sites. For Ethereum, the most important addresses belong to exchanges and token

contracts. Plus Token, which ranked fourth in our Pagerank calculation for Ethereum,

is a ponzi scheme [80] that operated for more than one year and collapsed in 2019.

Table 6.4 shows the total number of distinct addresses at the tail/head of in-

coming/outcoming transactions to/from k most important addresses. Since Bitcoin

is UTXO-based, it is expected that address reuse is seldom, so we have lower per-

centages. On the other hand, since Ethereum is account-based, address reuse is more

frequent, and the distinct address percentages are higher than Bitcoin. About half of

the addresses directly transacted with the most important 1000 Ethereum addresses.

Most of the exchanges verify the identity of their users as a part Know Your Customer
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(KYC) procedure, so the transactions coming from exchanges can be associated with a

user and are less risky. The efforts can be concentrated on this small set of important

addresses to see if their identity verification procedures are strong. If they are strong,

then lower risk scores can be assigned to the addresses who transacted with them.

Table 6.3. Top 10 ranked addresses on Bitcoin and Ethereum transaction graph.

Rank Bitcoin Ethereum

1 1HckjUpRGcrrRAtFaaCAUaGjsPx9oYmLaZ

Huobi (exchange)

0x3f5ce5fbfe3e9af3971dd833d26ba9b5c936f0be

Binance (exchange)

2 1NDyJtNTjmwk5xPNhjgAMu4HDHigtobu1s

Binance (exchange)

0xdac17f958d2ee523a2206206994597c13d831ec7

Tether USDT (token contract)

3 1NxaBCFQwejSZbQfWcYNwgqML5wWoE3rK4

LuckyB.it (gambling)

0x70faa28a6b8d6829a4b1e649d26ec9a2a39ba413

ShapeShift (exchange)

4 1dice8EMZmqKvrGE4Qc9bUFf9PX3xaYDp

Satoshi Dice (gambling)

0xf4a2eff88a408ff4c4550148151c33c93442619e

Plus Token (ponzi [80])

5 1FoWyxwPXuj4C6abqwhjDWdz6D4PZgYRjA

Binance (exchange)

0xac08809df1048b82959d6251fbc9538920bed1fa

MSD (contract)

6 1G47mSr3oANXMafVrR8UC4pzV7FEAzo3r9 0xfa52274dd61e1643d2205169732f29114bc240b3

Kraken (exchange)

7 1dice97ECuByXAvqXpaYzSaQuPVvrtmz6

Satoshi Dice (gambling)

0xbcf935d206ca32929e1b887a07ed240f0d8ccd22

Million Money (contract)

8 37Tm3Qz8Zw2VJrheUUhArDAoq58S6YrS3g

OKEx (exchange)

0x689c56aef474df92d44a1b70850f808488f9769c

KuCoin (exchange)

9 17kb7c9ndg7ioSuzMWEHWECdEVUegNkcGc 0x86fa049857e0209aa7d9e616f7eb3b3b78ecfdb0

EOS (token contract)

10 3CD1QW6fjgTwKq3Pj97nty28WZAVkziNom

The Shadow Brokers

(hacker group [81])

0x0d8775f648430679a709e98d2b0cb6250d2887ef

BAT (token contract)
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Table 6.4. Total number and percentage of distinct addresses at the tail/head of

incoming/outcoming transactions to/from k most important addresses.

Ranking Range No. of Addresses Percentage of Addresses

Bitcoin Ethereum Bitcoin Ethereum

Incoming Transactions

1 442 218 2 153 020 0.05 2.73

1-10 8 069 235 12 308 446 1.01 15.59

1-100 18 406 620 24 623 414 2.30 31.19

1-1000 56 795 882 38 110 110 7.10 48.27

1-10000 105 329 533 47 182 270 13.17 59.76

Outcoming Transactions

1 1 012 509 1 524 220 0.13 1.93

1-10 12 315 379 1 689 862 1.54 2.14

1-100 21 608 153 5 234 996 2.70 6.63

1-1000 43 235 102 15 698 561 5.40 19.88

1-10000 63 023 109 24 008 947 7.88 30.41

The degree distribution of Ethereum transaction graph nodes is illustrated in

Figure 6.3. The majority of Ethereum addresses (about 50 million) created less than

three transactions. About 21 million addresses created 3 to 10 transactions. 36049

addresses have created more than 1000 transactions. The indegree distribution follows

a similar distribution to outdegree distribution, except that the indegree distribution

is more concentrated around one and two.

Figure 6.4 shows the numbers of transfer transactions of ten major ERC20 tokens.

USDT token has the largest transfer transaction count among our 40 major ERC20

token list with about 33 million transfer transactions. OMG takes second place and

has around 1.8 million transfer transactions. USDC is the third token with about 1.6

million transactions.
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Figure 6.3. Degree distributions of Ethereum transaction graph nodes.
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Figure 6.4. Number of transfer transactions of ten major ERC20 tokens.

Figure 6.5 shows the timing results for shortest path based blacklisted address

trace forest. Figure 6.6 shows (a) a forest of trees, whose roots are blacklisted blockchain

addresses, computed to depth 5 from Ethereum transaction graph and an example tree

trace to a blacklisted address of the DragonEx hacker [1] and (b) transaction details of

one path on the DragonEx hacker trace tree.

Figure 6.7 shows two example trace subgraphs: (a) for the DragonEx Hacker [1]

on the Ethereum blockchain and (b) for the July 15 Twitter Hack [2] on the Bitcoin

blockchain. These subgraphs are visualized from the results of our test T9. In Fig-

ure 6.7(a), the stolen ethers first go through several addresses, then split into four
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addresses, and finally are consolidated in a single address (our query address). Since

the blockchain addresses are pseudoanonymous, we cannot be one hundred percent sure

whether the final address belongs to the hacker or not. In Figure 6.7(b), the stolen

bitcoins are transferred from 3 hacker addresses to an address.

Table 6.5 shows the timing results of the tests.
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Figure 6.5. Test T7: Shortest path based blacklisted address trace forest times for (a)

Bitcoin and (b) Ethereum on the HPC cluster.

Table 6.5. Timing results of tests in seconds.

Bitcoin Ethereum

1 MPI process per node

Test P=8 P=12 P=16 P=4 P=8 P=12 P=16

T1 4204 3119 2693 1314 748 509 443

T2 -1 -1 -1 -1 5768 6056 5718

T3 9711 5897 4687 991 622 370 372

T4 88 76 60 14.5 10.8 8.3 7.5

1out of memory
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Table 6.5. Timing results of tests in seconds. (cont.)

T5 N/A N/A N/A 149 85.6 53.4 45.1

T6 16648 10533 8289 1319 855 580 491

T7 7198 889 747 11243 3383 1082 323

T8 67 44 33 116 70.5 39.9 34.1

T9 5 3.4 2.6 4.0 1.9 1.4 1.2

2 MPI processes per node

P=16 P=24 P=32 P=8 P=16 P=24 P=32

T1 2868 2563 2127 712 430 331 297

T3 4403 2913 2139 566 369 276 247

T4 77 78 69 10.2 8.2 7.1 6.8

T5 N/A N/A N/A 81 45.3 26.8 20.8

T6 9065 5720 4994 841 487 355 329

T7 594 390 241 2178 355 108 58.2

T8 32 22 16 66.4 32.3 26.3 22.3

T9 2.6 2.1 1.7 1.9 1.1 0.9 0.8

4 MPI processes per node

P=32 P=48 P=64 P=16 P=32 P=48 P=64

T1 2557 2198 1909 480 327 286 256

T3 2247 1502 1069 401 232 206 167

T4 72 71 66 8.3 7.1 11.1 11.0

T5 N/A N/A N/A 43 20.7 33.8 21.3

T6 5191 3570 2885 505 309 254 219

T7 270 173 169 260 58.2 46.1 33.5

T8 16 11 9 34.2 21.1 18.7 14.3

T9 1.7 1.2 0.9 1.2 0.7 0.6 0.5

8 MPI processes per node

P=64 P=96 P=128 P=32 P=64 P=96 P=128

T1 2505 2433 2163 401 287 227 218
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Table 6.5. Timing results of tests in seconds. (cont.)

T3 1143 876 605 252 163 150 156

T4 67 74 68 7.1 10.5 14.5 18.3

T5 N/A N/A N/A 20.8 20.2 19.8 19.3

T6 3207 2502 2149 324 224 197 180

T7 145 199 172 57.5 37.2 37.6 32.4

T8 9 6 5 22.3 14.2 12.7 12.7

T9 2.1 0.8 0.7 0.8 0.5 0.5 0.5

12 MPI processes per node

P=96 P=144 P=192 P=48 P=96 P=144 P=192

T1 2684 2874 2675 506 303 251 234

T3 898 745 512 213 212 211 219

T4 85 91 84 14.2 15.9 25.6 35.5

T5 N/A N/A N/A 44.4 30.9 25.7 25.3

T6 2855 2395 2037 305 229 177 186

T7 168 236 185 53.7 51.9 33.0 37.6

T8 8 6 4 24.8 15.9 16.2 14.9

T9 1.0 7.7 9.1 0.8 0.6 0.7 1.5

16 MPI processes per node

P=128 P=192 P=256 P=64 P=128 P=192 P=256

T1 2920 3716 3619 426 352 331 331

T3 723 602 445 247 219 209 224

T4 87 96 95 14.2 24.6 38.3 55.0

T5 N/A N/A N/A 29.5 28.2 27.7 31.6

T6 2599 2159 1984 284 216 188 184

T7 144 332 441 39.0 34.9 42.3 42.7

T8 7 5 4 20.0 17.1 14.8 16.1

T9 3.5 6.3 0.8 0.9 0.6 0.5 1.5
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(a)

DragonEx hacker
0xa7f72bf63edeca25636f0b13ec5135296ca2ebb2

0x0aa773832e0234f360101cb41f361d5b29265c1e

0x0c4d76487da235efd624519a159fc8defc8a2ef9

0x0ebe87971e2756079279eb490727422d56e852b6

261.4 Ether Mar-26-2019 05:51:59 AM

1 Ether Mar-26-2019 10:59:01 AM

0.995 Ether Mar-28-2019 06:49:16 AM

(b)

Figure 6.6. (a) Blacklisted addresses trace forest for Ethereum data and example tree

trace to the blacklisted address of the DragonEx hacker [1] and (b) transaction details

of one path on the DragonEx hacker trace tree.
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Figure 6.7. Trace subgraphs of (a) DragonEx hacker (Ethereum) [1] and (b) July 15

Twitter Hack (Bitcoin) [2].
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7. CONCLUSION

In this thesis, we propose a distributed, parallel, and scalable blockchain transac-

tion graph system for analyzing transaction graphs. The system is written in the C++

programming language using the MPI library and supports both account-based and

UTXO-based tokens. The system constructs the directed, transpose, and undirected

transaction graphs in a parallel and distributed fashion from the parsed blockchain

transactions stored as plain text files. We were able to construct these graphs for a

5-year Ethereum transaction data in less than 4 minutes and a 12-year Bitcoin data in

less than 32 minutes. After the graph construction, the transaction graphs are input

to graph algorithms and analyzed.

We developed distributed and parallel blacklisted address trace forest and trans-

action tracing algorithms to analyze blockchain transactions. In addition, we imple-

mented Pagerank, connected component calculation, degree distribution, token count

calculation algorithms to analyze the transaction graph. We also extracted blockchain

address features, such as in/outdegree, unique in/outdegree, in/out average transac-

tion amount. To parallel partition the graph, we used ParMETIS. Graph partitioning

was not useful in our case since it gave out of memory error for our Bitcoin data and

took a longer time than the total time of our other tests for Ethereum data.

We extracted and parsed bitcoin transactions from Bitcoin blockchain; ether and

popular ERC20 token transactions from Ethereum blockchain. For transaction trac-

ing, we collected blacklisted addresses for Bitcoin and Ethereum from public scam

databases, various blog posts, previously published academic papers, and a govern-

ment agency website.

We benchmarked our transaction graph system on a 16 node cluster on Amazon

cloud using different graph algorithms and reported the timings obtained for these

algorithms. We presented our graph analysis results, such as top 10 pageranked ad-
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dresses, the degree distribution of addresses, the number of transfer transactions for

ERC20 tokens, trace forest visualization.

7.1. Future Work

• A future research topic may be the parallel partitioning of blockchain transac-

tion graphs. Partitioning will be important since the transaction throughput

of blockchains is expected to rise. Although well-established partitioners like

ParMETIS exist, transaction graph partitioning takes a long time and consumes

much memory. Since some users use the blockchain addresses (wallets) in a dispos-

able manner, a heuristic may be developed that excludes the inactive addresses,

i.e., nodes of the transaction graph, from the graph partitioning calculations.

Working on a subset of nodes will speed up the calculations. In addition, pri-

oritizing the speed over partitioning quality may be helpful because there will

always be new transactions in the blockchain, and the transaction graph will be

updated or reconstructed regularly.

• Another future research topic may be the analysis of blockchain transaction

graphs from a graph motiv perspective.
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APPENDIX A: CODE SNIPPETS

SELECT ‘hash‘,

block_number,

ARRAY(SELECT STRUCT(index,addresses,value) FROM t.inputs) as inputs,

ARRAY(SELECT STRUCT(index,addresses,value) FROM t.outputs) as outputs

FROM ‘bigquery-public-data.crypto_bitcoin.transactions‘ as t

Figure A.1. SQL code to query Bitcoin transactions from Google BigQuery.

SELECT DISTINCT block_number, transaction_index

FROM ‘bigquery-public-data.crypto_ethereum.traces‘

WHERE block_timestamp < "2017-10-18" AND block_number < 4370000 AND status = 0

Figure A.2. SQL code to query the block number and transaction index of failed

Ethereum transactions before Byzantium fork from Google BigQuery.

SELECT block_number, transaction_index

FROM ‘bigquery-public-data.crypto_ethereum.transactions‘

WHERE block_timestamp > "2017-10-16" AND

block_number >= 4370000 AND

receipt_status = 0

Figure A.3. SQL code to query the block number and transaction index of failed

Ethereum transactions after Byzantium fork from Google BigQuery.
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