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ABSTRACT

A DECENTRALIZED FRAMEWORK WITH DYNAMIC

AND EVENT-DRIVEN CONTAINER ORCHESTRATION

AT THE EDGE

Persistent advancements are being made at a rapid pace on enabling edge com-

puting for the Internet of Things technology to capitalize on. Vendors and developers

are exploring new techniques to smooth out the process of navigating through the

inherent heterogeneity of the edge networks. However, application delivery, resource

allocation, fault tolerance, and security issues are yet to be fully solved while also pro-

viding a seamless experience for consumers. With virtualization and lightweight con-

tainer management platforms providing an abstraction layer, it is possible to deploy

the same application on devices with different architectures and achieve uniformity.

Towards a fully decentralized edge, the framework proposed in this thesis lays

down the groundworks for dynamic container orchestration. It provides a blockchain-

based delivery platform for container applications with their updates and resource

specifications through a registry on a distributed file system, namely InterPlanetary File

System (IPFS). Then, enabled by the operating system virtualization, the framework

handles resource allocation, container availability and scaling. A self-adaptive resource

manager running on the metrics scraped from the host and the virtualization platform,

i.e. Docker in our implementation, dynamically optimizes the resources allocated to

each container. The framework ensures that variable workloads of a heterogeneous

environment can co-exist on an edge device that is designed to be further extended to

multiple devices. To achieve a truly distributed system, an event-driven architecture is

built over a lightweight messaging protocol, MQTT, capitalizing on the asynchronous

and distributed nature of the publish/subscribe pattern.
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ÖZET

KENARDA DİNAMİK VE OLAY GÜDÜMLÜ

KONTEYNIR ORKESTRASYONLU DAĞITIK BİR

ÇERÇEVE

Kenar hesaplamada Nesnelerin İnterneti teknolojisinin önünü açacak ilerlemeler

kaydedilmektedir. Firmalar ve geliştiriciler, kenar ağların heterojen yapısında çalışmayı

kolaylaştırmak için yeni teknikler araştırmaktadırlar. Uygulama teslimi, kaynak tahsisi,

hata toleransı ve güvenlik sorunları henüz kenarda tüketicilere pürüzsüz bir deneyim

sunacak şekilde çözülmüş değildir. Soyutlama ve hafif konteynır yönetim platform-

ları ile sağlanan sanallaştırmayla aynı uygulamayı farklı mimarilere sahip cihazlara

dağıtmak ve tekdüzelik sağlamak mümkün olmuştur.

Bu tezde önerilen çerçeve, tamamıyla merkeẑı olmayan bir kenara doğru, dinamik

konteynır orkestrasyonu için temelleri ortaya koymaktadır. Dağıtık bir dosya sistemi

olan Gezegenler Arası Dosya Sistemi (IPFS) üzerindeki bir kayıt sistemi aracılığıyla

konteynır uygulamaları, güncellemeleri ve kaynak özellikleri için blokzincir tabanlı

bir dağıtım platformu sağlamaktadır. Çerçeve kaynak tahsisini, ölçeklendirmeyi ve

konteynır kullanılabilirliğini işletim sistemi sanallaştırmasıyla yönetmektedir. Ana bil-

gisayardan ve Docker sanallaştırma platformundan alınan metrikler üzerinde çalışan,

kendi kendini uyarlayan bir kaynak yöneticisi konteynırlara tahsis edilen kaynakları di-

namik olarak optimize etmektedir. Birden fazla cihaza genişletilmeyi desteklemek üzere

tasarlanmış çerçeve, heterojen bir ortamın değişken iş yüklerinin aynı kenar cihazda

bir arada var olmasını sağlar. Hafif bir mesajlaşma protokolü olan MQTT üzerinde

yayınla/abone ol modelinin zaman uyumsuz ve dağıtılmış yapısından yararlanan olay

güdümlü bir mimari oluşturularak tamamıyla dağıtık bir sistem elde edilebilmiştir.
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1. INTRODUCTION

The term “Internet of Things (IoT)” describes a sophisticated system of hetero-

geneous devices, dynamic environments, and complex sub-systems. This heterogeneous

characteristic of the IoT domain is the root cause of its complexity. Limited resources,

the volume of data, and variable conditions all contribute to this complexity. A sys-

tem without any governance with this many variables cannot sustain itself. Manual

intervention could be a remedy in the short term. Still, in a complex system, a smart

mechanism should be set in place to establish long-lasting stability.

The heterogeneous nature of IoT also opens up the door for a multitude of op-

portunities. Existing architectures rely upon a joint solution spanning multiple fields

of computer systems. However, the primary defining factor is always data. From its

generation to the unit where it ends up for processing, its volume, velocity, and variety

shape the requirements. Everything else is built around it to maintain this flow to ex-

tract meaning from raw data. Changing requirements across different steps of this flow

often means that it should pass through numerous devices and networks. To simplify

this flow and gather dependent steps together, these architectures are often split into

layers. These layers are ordered according to the data flow from the source where it

is generated to its destination. These destinations are usually processing units, which

make inferences from data, storage units, or simply repeaters that relay the data to

the upper layer. Although distinct in nature, layers may share some capabilities. For

example, an intelligent IoT end node can fulfill some of the tasks that would typically

be assigned to the devices at the upper layers. What determines the boundaries of

these layers can be narrowed down to the capabilities of the devices being used and

the nature of the surrounding environment.

The steady flow of data is established by a series of components placed across

the network navigating data to its destination. These components can adopt different

technologies, and their positioning depends on the objective, environment, and require-
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ments. This is why there is not just one solution that can be applied to every problem.

However, these solutions share some characteristics and harbor some recurring pat-

terns. As problems continue to present themselves, past knowledge can be used as

building blocks to build novel solutions for ever-changing requirements.

As the knowledge of IoT technology broadens, the requirements of an IoT net-

work also evolve. Networks utilize emerging technologies whenever possible as the

demands increase. Cloud systems have become especially prominent in the last decade

as they could solve multiple inherent problems with relative ease. With their high

storage capacity, tremendous processing power, and ease of access, they have become

the norm for data processing in IoT quickly. Since then, they are being utilized by

most modern architectures. Yet, they still have their flaws. The abundance of data

brings forth concerns about storage costs. With latency constraints in some domains

like autonomous vehicles, it is no longer feasible to use the cloud so loosely. Hence,

the next generation of IoT architectures have focused on these limitations and started

employing newer technologies such as edge computing. As a paradigm that challenges

the necessity of processing and storing data on the cloud, edge computing tries to find

solutions on devices much closer to the data source.

Edge computing also comes with its own set of challenges because of its het-

erogeneous and resource-constrained nature. Yet, edge solutions can benefit from the

knowledge accumulated by tackling similar challenges on the cloud leading to the recent

advancements in software abstraction provided by virtualization and the availability of

lightweight and distributed alternatives of technologies used on the cloud.

Recently, capitalizing on operating system (OS) level virtualization, applications

packaged with their own dependencies called containers have proven themselves to be

suitable for the edge. Container applications provide means of sharing host resources,

virtualization of services, and modern delivery options. However, the deployment of

applications on the devices at the edge has to be handled very carefully since on-device

resources are scarce and diverse. An orchestrator’s presence is necessary to solve issues
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with fault tolerance, monitoring, container availability, resource allocation, and scaling.

Yet, a fair system design becomes essential to have a solution for the applications

of different vendors and developers to co-exist on the same hardware. This can be

achieved by decentralization. Utilizing technologies like blockchain-assisted backends,

distributed file storages, and publish/subscribe patterns for asynchronous and event-

driven communication across the network can aid in building a decentralized solution.

Hence, within the scope of this thesis, we will build a decentralized framework with a

self-adaptive resource manager for container-based applications on the gateway devices.

The main contributions of this thesis can be summarized as follows:

• A decentralized application delivery platform for container applications with their

updates and resource specifications is implemented with a smart contract, a com-

puter program stored and run on the Ethereum blockchain to ensure their au-

thenticity. The platform depends on a decentralized registry for the storage and

distribution of applications backed with an OS-level virtualization platform called

Docker and a distributed file system, InterPlanetary File System(IPFS).

• A decentralized framework is designed for orchestrating multiple container appli-

cations at a resource-constrained edge gateway. time series forecasting and rule-

based temporal analysis capabilities are built into the framework for self-adaptive

resource management. A set of message schemas are defined to establish asyn-

chronous communication between distributed components of the framework using

a publish/subscribe network protocol, namely MQTT. A second smart contract is

written for framework’s internal long term data management to archive, backup,

and restore the collected system metrics.

Experiments are carried on a resource-constrained edge gateway by scheduling ap-

plications with various workload patterns each representing different types of IoT tasks.

The device used in the experiments is a Raspberry Pi with its resources constrained by

configuring OS-level resource limits. The framework is put through different use cases

with ideal or misconfigured resource specifications and various scheduling sequences

and constraints. The framework is able to dynamically allocate resources, ensure con-
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tainer availability and vertically scale active containers in each scenario to provide a

platform for applications to co-exist by sharing the resources of an edge gateway. A

case study is also made on the load balancing capabilities of the framework when it is

deployed as a cluster on multiple edge devices in the same network.

The remainder of the thesis is organized as follows. In Section 2, previous work

on virtualization, resource allocation, and orchestration for IoT systems is discussed.

Section 3 introduces the proposed framework and explains the technology and design

choices for data storage, application delivery, container orchestration, and decentral-

ization problems. Section 4 analyzes the behavior of the framework under different

experimental setups. The final section presents the conclusion and future work.
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2. RELATED WORK

An IoT system is molded by the data circulating through its components. The

characteristics of data determine the requirements of an end-to-end solution. Zubair

et al. describe the life cycle of IoT data in five steps: Creation, curation, transfor-

mation, collection, deletion [1]. An architecture proposal missing support for any of

these steps will be incapable of covering the problem as a whole. Data has inherent

and domain-specific characteristics. These distinctive properties should be examined

and incorporated into the system design. Inherent characteristics include the volume,

velocity, and heterogeneity of data, as well as collection and storage. Domain-specific

characteristics are more complex. For example, transactional data influences the sys-

tem directly by introducing variation over time. Especially mobility, combined with a

dynamic environment, demands solutions that can withstand the changing conditions.

For the completeness of data, correct labeling has utmost importance.

2.1. IoT System Architecture

The properties above have given birth to unique architectures over the years.

Cloud technologies make storage and processing cheaper. Also, end devices getting

more powerful make diverse designs possible. As modeled by Sarkar and Misra, fog

computing starts processing right after IoT data is transmitted to the system by the

end devices [2]. This ensures that quick action can be taken when there are latency

constraints. In fog computing, data is processed and filtered before being sent to the

cloud. In addition to its clear performance in service latency, total energy consumption

can be improved by offloading some content delivery tasks typically handled by the

cloud [3]. One further step is to move the computing to the IoT data generating device

and include it in the data processing. Another popular option is forwarding data all the

way to the cloud, where storage and computing power are abundant. System designs

proposed in [4, 5] aim to utilize the full potential of cloud computing. This behavior,

although proven effective, leads to the creation of data silos [6]. As the size of data has
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grown, financial concerns with ingesting data have turned out to be more apparent.

Furthermore, there are contracts between service providers and clients called Service

Level Agreements (SLA) which define a commitment on the quality and performance

of the provided services. In some use cases like autonomous vehicles, cloud solutions

are unable to honor the latency SLAs [7]. In such situations, services have to be located

closer to the client to avoid problems in performance.

2.2. Virtualization

Virtualization is a concept for creating an abstract layer over the computing re-

sources of the host by packaging a separate operating system with its own hardware

functionalities. Virtual machines, container technologies like LXD and Docker are ex-

amples of operating system level virtualization [8]. This paradigm makes it possible to

run software packaged with all necessary dependencies and configurations in complete

isolation from each other. Recently, container-based architectures at the edge layer

have gained popularity. Muralidharan et al. utilize a centralized but proven container

management platform called Kubernetes [4]. Each container is directly connected to

a central node which is responsible for orchestration and scaling. Rusek et al., on the

other hand, try to decentralize these commands by capitalizing on the strengths of

swarm algorithms inspired from pheromone robots [5].

Following the success of virtualization, architectural patterns such as microser-

vices with loosely coupled and independent applications have rapidly expanded to the

IoT [9]. As the system becomes more distributed, [10] relies on message queues to han-

dle deployments on a heterogeneous system of independent applications. The reason

behind this quick adoption is its resilience and robustness in large scale systems as well

as the benefits it provides in deployment and development. These loosely coupled ap-

plications can be brought closer to IoT devices and applied at the edge layer. However,

performance and overhead issues are more apparent when these services are deployed

at the edge as Buzachis et al. analyze several network overlays to find the best fit for

this environment [11]. The resilience factor opens up opportunities for fault tolerance
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at the edge. Celeti et al. use passive and active containers simultaneously. Observing

the system with a watchdog service, they determine when an active container goes

down and activate the passive replica of the active container to achieve close to zero

downtime [12].

Containers are built according to a set of configurations and commands on a file

defined as an image. These image files can also be used for upgrading applications sys-

tematically. They can keep the system updated by efficiently adding new capabilities.

Dolui and Kiraly suggest using a layered approach to reduce download sizes by using

the old image as the base image and only downloading the upgrade [13]. Introducing

a new update or upgrade to the system and distributing it is a security challenge in

itself. Lee and Lee propose using blockchains to manage and distribute firmware up-

dates securely. In their proposal, all validation and download occur between peers in

an IoT environment [14]. Westerlund et al. take advantage of the domain name service

of IPFS called InterPlanetary Name System (IPNS) to manage versioning by pointing

an existing domain name to the new version’s hash via an Ethereum smart contract

to make secure delivery of updates possible [15]. Another possible approach is making

use of the blockchain and letting nodes handle the updates between themselves [14].

Both systems can ensure that only the developers themselves can publish updates, and

the update is tamper-proof.

Extending the decentralization and tamper-proof concepts back onto the data

plane, there are several solutions that can prove to be helpful in handling IoT data

[14, 16, 17]. IPFS is one such technology [18] which is a peer-to-peer distributed file

system. It defines a decentralized file storage, transfer, and communication network.

This network also provides a framework for decentralized applications as another option

to the aforementioned smart contracts [19], and makes it possible to check the integrity

of data with a checksum control [18]. An additional capability of IPFS is its support for

publish/subscribe patterns by flooding messages [20]. However, protocols like CoAP,

MQTT, and DDS offer features more befitting for IoT tasks [21, 22]. These protocols

constitute an essential part of data transmission in various IoT systems [23,24].
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2.3. Orchestration

IoT systems, now thriving with virtualization and a multitude of tools for data

management, face the problem of allocating the host system’s resources to applica-

tions correctly [25]. Although it has become a challenge for all layers, the allocation

of resources at the edge becomes a tougher challenge due to their scarcity at the

edge [26–29]. The scarcity caused by limited resources leaves little room for errors. For

sustainable environments at the edge layer, building smart mechanisms is a require-

ment. A layer-independent and proven algorithm for the distribution of resources is

the Dominant Resource Fairness (DRF) proposed by Ghodsi et al. [30]. The resource

allocation using DRF takes memory, CPU, and bandwidth requirements into consid-

eration and tries to share available resources according to diverse resource requests

while maximizing fairness. In the literature, there are resource allocation algorithms

specifically focused on the edge layer as well. Liu et al. tackle the same challenge,

specifically in IoT where communication is the main constraint [27]. They formulate

a utility maximization problem and propose a greedy solution. Such methods favor

cost-efficiency based on the utility of the task. Also, they rely on pair-to-pair com-

munication between devices since their use cases are all decentralized IoT networks

with no central controller [16]. Yigitoglu et al., on the other hand, relies on predefined

metrics like priority, computation, and latency for orchestration [31].

The aforementioned container orchestration tool, Kubernetes, as well as other

orchestration tools like docker compose and docker swarm, also depend on predefined

requests and limit resources for each application for resource management. In [32],

several container orchestration tools are compared based on the functionalities they

offer, and the popularity of Kubernetes is emphasized. However, these tools fall short

of satisfying the requirements of an edge system where the environment is out of reach

of the developer maintaining the application. Therefore, a self-adaptive orchestrator

has been built in [33] for better utilization of the resources at hand and maintaining

the deployments. The framework is able to learn and make decisions on its own. These

decisions can be based on the metrics collected from the system and the application
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such as latency, CPU utilization and response times [34]. A survey [35] on different

machine-learning-based orchestration methods presents a taxonomy of all the ML meth-

ods available in the literature. The four main categories are regression, classification,

reinforcement learning, and time series analysis.

2.3.1. Regression

Logistic regression is used in [36] to make predictions on the expected loads

of individual nodes. Resources are then allocated to applications across these nodes

according to a multicriteria algorithm based on these predictions. Ajila and Bankole

tries to predict the future resource demand by using Support Vector Machine (SVM)

and Linear Regression (LR) [37].

2.3.2. Classification

The premise of using classification is that different applications can have simi-

larities in their workload characteristics. In [38], K-means++ is used to identify these

patterns on CPU and memory usage of applications and set scheduling policies for their

co-location. This ensures that any new application can be categorized swiftly to make

confident scheduling decisions early on. For smart manufacturing use cases, Jiang et

al. propose an improved K-means algorithm to quickly scale the total number of nodes

in the system based on network delay and available resources. [39].

2.3.3. Reinforcement Learning

Reinforcement learning is another popular method for resource allocation. Unlike

the models discussed in the previous two categories, reinforcement learning does not

always pick the most appropriate action. Actions taken differ vastly based on two

concepts called exploration and exploitation [40]. Exploration allows the model to

learn more about the environment and extend its knowledge base. On the other hand,

exploitation is when the model acts according to past knowledge towards a positive
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outcome. However, this means that the model has to make some arbitrary decisions to

understand the environment better. Q-Learning is a reinforcement learning algorithm

that is seeing application in edge systems. Q-learning uses a reward function and keeps

a table with Q values representing the state-action pairs. Chien et al. improves upon

this reward function to design a cache allocation mechanism suitable for edge networks

[41]. Liu et al. challenges the usage of Q-tables as their size can grow increasing the

need for the required computing resource and proposes a solution based on Deep Neural

Networks [27]. Edsinger explores the different implementations of various reinforcement

learning algorithms and points out that although deep Q-learning based algorithm

can have better performance, State-Action-Reward-State-Action (SARSA) is the most

stable [42]

The procedure of training the model beforehand is called offline training. In [43],

a DNN is pre-trained with existing data to determine Q values accurately and make

decisions afterward. However, a dataset may not always be readily available where

the model has to consult online training, meaning that the model is trained as the

data comes in. In order to reduce the negative impact of exploration on the stability

of a newly introduced application, in [40], Dyna-Q and a model-based approach are

preferred for orchestration.

The reinforcement learning solutions discussed up to this point are modeled after a

single actor’s interaction with the dynamic environment. In [44], the resource allocation

problem is formulated as a non-cooperative game across computation tasks identified

as individual agents. Zhao proposes a multi-agent based RL approach with multiple

schedulers for large scale GPU cluster, where a single agent is insufficient to answer

the requirements under heavy workload [45].

2.3.4. Time Series Analysis

The last branch in the taxonomy tree is time series forecasting. For the resource

allocation problem, metrics used for forecasting are sets of data points collected over
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time. Predictions made by [46] depend on this nature of the collected metrics for cloud

service orchestration using Autoregressive Integrated Moving Average (ARIMA) mod-

eling. Li et al. depends on the predictions made with ARIMA to make the final load

prediction by using a neural network [47]. Tan et al. uses Vector Autoregression Model

(VAR) to predict the load on edge data centers (EDC) [48]. In mobile edge computing

(MEC), [29] bases their selective offloading algorithms on the predictions made by the

ARIMA with Back Propagation (ARIMA-BP) model for energy optimization.

Predictive analytics is only a part of the solution for time series analysis. Tempo-

ral characteristics of IoT data open up the way for behavioral analytics, allowing [49,50]

to base their algorithms on hourly aggregates of data. For MEC, [51, 52] exploit the

daily recurring patterns of time series data and point out how identifying peak and

off-peak hours are crucial for their predictions. Tom et al. applies the same on smart

energy management and finds patterns in the day-to-day usage of IoT devices [53].

These daily patterns identified closely represent the human schedule, and [54] makes

use of hourly buckets to make predictions in the long term.

2.4. Review on Edge Container Orchestration Frameworks

A review of edge container orchestration frameworks in the recent literature has

been made. In this review, various aspects of edge container orchestration frameworks

that are important in an edge computing scenario are presented. The full list of eval-

uation criteria used in this review can be found below:

• C1 - Auto-scaling : The container scaling options supported by the framework.

If supported by the system, the options are horizontal (H) or vertical (V). While

vertical scaling describes adapting the resources of an existing container, horizon-

tal scaling refers to changing the number of containers of the same application to

meet the varying load on an application.

• C2 - Predictive Scaling : The autonomous scaling decisions can be made on pre-

dictive system load. These predictions can be based on methods such as ma-
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chine/deep learning, rule-based, or time series forecasting.

• C3 - Software Heterogeneity : Some orchestration frameworks offer limited sup-

port for the type of applications that they can host. The others can handle the

heterogeneity of deployments and accommodate different kinds of applications

like microservices, batch jobs, and streaming applications.

• C4 - Resource Constrained Hardware: Edge computing solutions can be designed

for a multitude of devices from IoT devices to powerful cloudlets. These orches-

tration solutions are designed to be deployed on resource constrained devices such

as IoT gateways.

• C5 - Guaranteed Resource Allocation: An orchestration framework can allo-

cate resources and guarantee minimum and/or maximum amount of resources

for the span of an application’s execution, controlled through a set of resource

constraints.

• C6 - Optimization Metrics : Auto-scaling decisions in each orchestration frame-

work are based on some set of metrics. The two main categories are application

(A) and system (S) level metrics. Application level metrics can be different based

on the application. Some common examples are response time and error rate. Sys-

tem level metrics are resources observed from the system where the application

runs, such as CPU and memory.

• C7 - Monitoring Metrics : In order to evaluate the operation of the system and,

for some orchestration frameworks, take scaling actions most frameworks include

metrics collection and monitoring solutions. These metrics can be application

(A) and/or system (S) level metrics. Some frameworks include monitoring but

do not declare specifically which metrics are collected.

• C8 - Security : There are security concerns on IoT edge computing systems re-

garding network (N), data (D), and application authenticity (U). An orchestration

framework can incorporate solutions for these security concerns.

• C9 - Multi-layer : This literature review only covers frameworks that can be

deployed on the edge. However, some orchestration framework can span both

edge (E) and cloud (C) layers.

• C10 - Event-driven Communication: Event-driven communication is utilized by
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some designs to benefit from asynchronous communication pipelines.

• C11 - Decentralized Application Delivery : Application delivery is a part of every

orchestration framework but mostly handled through a centralized entity.

• C12 - Decentralized Load Balancing : With multiple devices connected to the

system, the deployments can be distributed across all devices. The selection of a

device to host the application can be a decentralized decision depending on the

framework instead of relying on a centralized control plane.

Table 2.1. Literature Review of Edge Orchestration Frameworks.

Criteria1

Authors C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

[55] H/V ✗ ✓ ✗ ✓ S/A S/A ✗ E/C ✗ ✗ ✗

[56] H ✗ ✗ ✗ ✓ S S/A ✗ E ✗ ✗ ✓

[57] ✗ ✗ ✗ ✗ ✗ ✗ S D/U E ✓ ✗ ✗

[58] ✗ ✗ ✓ ✗ ✓ S S ✗ E ✗ ✗ ✗

[59] ✗ ✗ ✓ ✓ ✓ ✗ ✓ N E ✗ ✗ ✗

[60] H ✗ ✓ ✓ ✓ ✗ ✓ N E ✓ ✗ ✗

[13] ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ E ✗ ✗ ✗

[26] H ✓ ✗ ✗ ✗ ✗ ✓ ✗ E/C ✗ ✗ ✗

[61] H ✓ ✗ ✓ ✓ A A ✗ E ✗ ✗ ✓

[4] H ✗ ✓ ✓ ✓ S S N E ✓ ✗ ✗

[62] ✗ ✗ ✓ ✗ ✓ ✗ S U E/C ✗ ✗ ✓

[63] ✗ ✗ ✓ ✗ ✗ ✗ ✓ N E ✓ ✗ ✗

This work V ✓ ✓ ✓ ✓ S S U E ✓ ✓ ✓

1 Description of Abbreviations: C1: Auto-scaling, C2: Predictive Scaling, C3: Soft-

ware Heterogeneity, C4: Resource Constrained Hardware, C5: Guaranteed Resource

Allocation, C6: Optimization Metrics, C7: Monitoring Metrics, C8: Security, C9:

Multi-layer, C10: Event-driven Communication, C11: Decentralized Application

Delivery, C12: Decentralized Load Balancing, H: Horizontal, V: Vertical, A: Appli-

cation, S: System, E: Edge, C: Cloud, N: Network, D: Data, U: Application Au-

thenticity
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Selected studies on edge orchestration frameworks in Table 2.1 show where our

framework stands in the literature. Most of these frameworks offer auto-scaling (C1)

solutions, but almost all of them only support horizontal scaling. This type of scaling

makes auto-scaling decisions more straightforward to manage by updating the deploy-

ments’ replica count. However, frameworks offering only horizontal scaling require

extra configuration and deployments for load management. They typically only sup-

port a single type of application. The scaling type selection is tightly correlated with

software heterogeneity (C3). Our framework focuses on vertical scaling to satisfy the

scaling needs of different types of applications without any extra configuration. We

explore predictive scaling (C2) with vertical scaling of containers, while some works

utilize predictive methods with horizontal scaling. The heterogeneity aspect of the edge

also applies to the choice of hardware (C4). Most frameworks focus on the resource-

constrained devices as we do, while the others are deployed on more powerful devices

on the edge. This variance depends on which aspect or problem of orchestration each

framework focuses on, such as availability, load-balancing, and scaling. Guaranteed

resource allocation (C5) is one of the core aspects of orchestration frameworks. Its

significance can be seen from the attention given by a wide range of frameworks. The

same guarantee is a staple of our framework as well.

Optimization (C6) and monitoring (C7) metrics are closely associated as opti-

mization metrics are limited by those being monitored. In our framework, we limited

the collected metrics to the metrics that can be scraped from the system to be all-

inclusive. Application metrics differ based on the application and do not fit with ap-

plication heterogeneity. Although limited, application metrics can provide additional

information for more accurate optimization. Hence, some frameworks collect appli-

cation metrics and optimize deployments with them. Some of the works explore the

security (C8) aspects alongside operational aspects. We emphasize the authenticity of

applications as the delivery process (C11) is decentralized, unlike the rest of the re-

viewed works. Although only edge orchestration frameworks are compared, some have

support for multiple layers (C9) spanning the cloud layer alongside the edge layer. As

resources are abundant in the cloud, we have limited our framework to the edge to
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concentrate on resource-constrained environments. Ours and several other works rely

on event-driven communication (C10), as its adoption is crucial for any framework that

aims for distributed deployments. It is also strategic for decentralized load balancing

(C12) across a cluster of edge devices autonomously, which is offered by some of the

reviewed orchestration frameworks as well as ours.
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3. FRAMEWORK

The framework developed in this thesis is responsible for enabling resource-

constrained edge systems to run IoT applications backed with a decentralized and

dynamic orchestration platform. The framework manages the lifecycle of containerized

applications, including design, delivery, execution, and optimization steps. The pro-

posed design provides solutions for data storage, resource management, monitoring,

and application registry and delivery which includes service upgrades and software up-

dates. Individual components of the framework are designed with resource constraints,

the authenticity of the applications, and autonomy in mind. Detailed explanations of

the concepts and design choices are presented in the upcoming subsections.
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Figure 3.1. Architectural Overview of the Framework and Task Flow.1

1Licenses for the icons are as follows: IPFS Logo trademark of Juan Benet, CC BY-SA 3.0; Docker

Logo trademark of dotCloud, Inc. Apache License 2.0; MQTT Logo, OASIS, Public domain
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Two separate task flows are illustrated in Figure 3.1. The first task flow is the

application delivery process through the application registry. The flow is triggered by

the release of a new IoT application represented as Release. The Publish and Update

steps represent the application delivery lifecycle. The Update step is a recurring process

for each service upgrade and software update. The released or updated application

is uploaded to an IPFS-based registry and published by the developer via a smart

contract. The developer can also define a set of resource limits on CPU and memory

utilization on the same smart contract executed outside of the edge network.

The second task flow takes place on the edge and is triggered by a User through

the exposed REST API endpoint or a New IoT Device connecting to the network. This

step fires a Deployment Request event through MQTT, which initiates a sequence of

processes and events to fulfill this request. In the Deployment Admission step, the

application and resource limits are pulled from the registry. The Resource Allocation

step predicts the future availability of the system to check whether the device can host

the new application and determines the CPU and memory limits based on the available

resources of the device and provided configuration. Then, in the Execution step, the

container is deployed with the assigned limits. After its execution, the Monitoring step

starts checking its status and scraping system-level metrics. These metrics are initially

stored locally but archived on IPFS based on the framework’s configured retention

time. Optimization step updates container limits periodically based on the knowledge

accumulated from the previous steps.

The framework consists of four separately deployed components: Deployer, An-

alyzer, Forecaster, Monitor. The components responsible for each step are defined in

Figure 3.1. Steps and components do not have a one-to-one relationship; a group of

components can carry out a single step. Communication between these components is

event-driven to ensure a more resilient asynchronous flow. Components are subscribed

to MQTT topics and start consuming messages based on their subscription listed in

the bottom row of Figure 3.1. This task flow is repeated whenever a new application

is deployed on the system.
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3.1. Preliminaries

3.1.1. Data Storage and Distribution

The challenges with data vary based on its characteristics. Methodologies that

are able to provide solutions to multiple problems are given preference. Otherwise,

these challenges have to be addressed individually. For example, application data and

metrics require both short and long-term storage. A specific protocol should be chosen

with multiple devices in the picture for data transmission. Data integrity should also

be ensured no matter where it is stored. An end-to-end IoT system has to find answers

to all of these problems.

It is possible to evaluate the value of the stored data to a degree. Some data could

be discarded, but most have to be retained. This could purely be due to regulations or

for further processing. Historical data is vital in making inferences on future behavior

and improving current systems. However, being bound by limited space will probably

cause the unnecessary disposal of valuable data. As a cheaper alternative, local drives

could be used, but collected data far exceeds the capabilities of a local storage solution.

It does not seem feasible to use a centralized approach to tackle this challenge with all

these in mind.

Using a decentralized solution opens up a couple of possibilities. Firstly, any

device with some storage can be used for data collection, reducing costs. A single local

drive may be limited and packed silos in a cloud may be expensive, but a network of

these units has a vast storage capacity. There is also the issue of reliability. There

needs to be a system with replication features that would typically bloat up central

storage to keep data safe.

IPFS is a protocol developed for similar challenges, and it can fulfill the storage

requirements of the system. The following properties of IPFS make it a desirable

choice. The first property is the data structure used by IPFS. IPFS creates a graph
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structure from the hashes of the content stored in the network called a Merkle Directed

Acyclic Graphs (DAG). This structure can be used to validate the authenticity and

integrity of data. Therefore, any data pushed into the IPFS network is permanent,

and it cannot be altered. Thus, it is safe to say that IoT data stored on IPFS is

tamper-proof. Devices connected to the network, called IPFS nodes, form a peer-to-

peer network. Data replication is another critical feature of IPFS. Data is divided

into separate chunks, replicated, and spread across the network. Therefore, it can be

considered as resilient as cloud-provided storage, if not more. The files are stored as

objects in IPFS. These objects are replicated between nodes to provide fault tolerance

as an inherent feature of IPFS. Therefore, files will be retained forever, even if a node

goes down.

3.1.2. Blockchain Technology and Smart Contracts

Blockchain technology provides a platform for writing and executing applica-

tions without a central authority. Blockchain is a distributed database of transactions

shared amongst the network participants. These participants, called nodes, use secure

mechanisms provided by the underlying blockchain technology to achieve consensus by

themselves. By validating new blocks, an immutable chain can be formed that can be

used to provide a trusted platform without relying on a centralized third party. Such

a platform enables developers to write smart contracts to build decentralized appli-

cations. Decentralized applications run on the blockchain and trigger autonomously

when specific criteria are met. These criteria are defined by smart contracts stored and

executed on the blockchain. Hence, trusted and transparent programs can be written

and executed without a central authority.

The problem with a distributed file system like IPFS is the missing ownership of

data. Data stored on IPFS cannot be traced to its owner unless proof of ownership

is deliberately included. However, IoT application developers can use smart contracts

to prove ownership and manage publicly disclosed data through decentralized appli-

cations. It should be noted that not all blockchains support smart contracts. Based
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on the survey conducted in [64], Ethereum with the Solidity programming language is

determined to be superior to other blockchain-language pairs because of its adoption

rate and extensive documentation. Therefore, Ethereum is chosen to fulfill the role of

data authentication for the framework.

3.1.3. Event-Driven Communication with MQTT

Message Queueing Telemetry Transport (MQTT) is a prominent lightweight pro-

tocol for IoT networks that can transport messages across devices and different compo-

nents of a framework [65]. It is ideal as a messaging protocol for edge IoT applications

with low resource and power consumption. MQTT is also reliable enough to be popu-

lar in the cloud layer for use cases, such as queuing and exchanging messages between

nodes without any prior knowledge to achieve temporal and spatial decoupling where

there are a large number of nodes [66].

MQTT adopts the publish/subscribe communication model. This model enables

applications to send and receive messages and data asynchronously, supporting many-

to-many communication. MQTT brokers are responsible for receiving and transmitting

these messages and managing the connected applications called clients. This model

enables devices to solely focus on transmitting the data and offload the delivery task

to the brokers. The brokers make use of topics to separate data and link connections

together. Data being broadcasted to a specific topic can be forwarded to multiple

clients at once. Clients can subscribe to multiple topics that enable a steady data flow

and open up many opportunities within the framework.

As the MQTT broker, the Mosquitto broker is chosen in this thesis work because

of its small footprint [65]. One downside of MQTT is that it does not store data

locally, and a new client does not receive previously published data. Kafka is a popular

framework that offers these capabilities but leads to a higher overhead than MQTT

while also depending on good infrastructure, and a stable network [67]. MQTT has

some means of achieving this persistence with retained messages. Retained messages
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are kept by the broker and delivered to the clients immediately as they establish a

connection. This feature is essential for sharing the state between components of our

framework as they are spun up on new devices joining the system or after a restart.

3.1.4. RESTful Web Services

An asynchronous communication protocol is not the correct solution for every

scenario. A client can communicate with a server synchronously through an Applica-

tion Programming Interface (API). Representational State Transfer (REST) defines a

set of constraints for these APIs for a uniform method of communication in a hetero-

geneous edge environment. Thus, RESTful web services can handle the synchronous

communication between our framework and users or IoT devices. These external clients

rely on HTTP-based REST API calls to send requests to our framework, such as an

application deployment request. The same APIs are not used within the framework to

keep internal communication asynchronous, albeit being accessible by all components.

3.1.5. Virtualization

Another vital component of each IoT system is the applications producing data

or consuming the generated data. Enhancing the capabilities of the edge layer requires

modularity, and applications can reside independently from the underlying structure

by employing such a strategy. To pursue this modular approach, the virtualization of

applications is imperative.

In this thesis, we achieved virtualization by building an environment over the

Docker platform and delivering applications as containers. A containerized application

is packaged with all of its dependencies. Also, the resources of each container can

be adjusted during runtime. Therefore, the containerized approach lays down the

groundwork for edge computing and orchestration. Most applications do not consume

a constant amount of resources, and some are temporary batch jobs. On a regular

IoT device, resources would be dedicated to a single application that may not be able
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to utilize all available resources continuously. However, other applications can use

idle resources on-demand with virtualization and smart orchestration. Allocating the

excess resources of an idle device to different applications allows multiple applications

to share the same device.

Another opportunity with virtualization is that it makes it possible to ship not

just applications but also components of the framework as containers. It is essential

that the framework and the dependent tools can benefit from the Docker platform.

IPFS is available as a desktop client via command line and a Docker image. Thus, the

IPFS image satisfies the requirements set for components of the framework. MQTT

brokers are also similarly available as Docker images.

The virtualization support comes in handy for data storage management as well.

The container typically has a file system separate from the underlying operating system.

However, folders of the host system can be mounted and used as storage for the node.

As a result of this, the storage limits of a node can be adjusted when necessary.

The framework developed in this thesis interacts with the Docker daemon with

its REST API endpoints [68]. These endpoints provide the full capabilities of the

CLI commands and allow components of the framework to execute commands with

HTTP requests. The RESTful nature of these endpoints makes implementation with

all languages possible, provided that they support HTTP clients. A list of the endpoints

utilized by the framework can be found below:

• ContainerCreate: This endpoint is used upon an incoming deployment request

to create a new container by defining the image, name, and resource limits ac-

cordingly.

• ContainerStart : Containers created can be stopped and restarted on demand.

Therefore creating a container does not automatically deploy a container, and

this endpoint starts the created container.

• ContainerUpdate: Containers configuration can be updated during their runtime.
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This API is used to update resource limits by the orchestration system without

bringing the application down.

• ContainerList : Monitoring is an essential part of the whole system. This endpoint

returns a list of running and stopped containers with their hashes. Following

endpoints can then be used to get extra details by providing the hashes acquired.

• ContainerStats : This endpoint returns the resource usage metrics for the running

containers. These metrics provide a snapshot of the resource usage of CPU,

memory, bandwidth, etc., at the time of the request.

• ContainerInspect : The inspect endpoint provides detailed information for the

requested container. Inspect is required when the information returned by the

previous containers is not detailed enough.

Depending on the OS of the host, redirection of the sockets might be necessary

to expose the API to the host network. Socket redirection can be achieved by running

a relay as a container. Implementation details are discussed in Appendix A.

Another OS-dependent issue is the Docker platform itself, as it has to be versatile

enough to be installed on the gateway devices. As discovered by [69], most gateway

devices are built on similar operating systems based on Linux or Android. Since Docker

can run natively on Linux on CPU architectures like x86-64, ARM, and more, the

framework can rely on Docker for virtualization.

3.1.5.1. Docker Resource Management. Applications deployed on Docker do not have

any constraints enforced by the daemon. The natural limits for each container are the

constraints of the host system. However, Docker API provides parameters on multi-

ple endpoints to control the resource allocation of deployments during their lifetime.

DockerCreate can be used to define the resource limits during container creation, and

DockerUpdate can modify the resource limits of a running container. Following param-

eters are set on various stages for resource management of containers. [70]:
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• memory : This parameter is used to define a hard limit on the amount of mem-

ory a container can use. If the limit is exceeded, the container exits with an

OOMKilled error message, meaning that the memory requested by the applica-

tion has exceeded the defined limits.

• memory-swap: Swap usage allows the container to use the host system’s stor-

age to extend the defined memory limits. The storage device hardware can vary

significantly between systems. Excessive swap usage can result in performance

degradation, and the daemon could be competing for resources with other appli-

cations. Also, this storage usage is not monitored by the framework. Thus, the

memory-swap parameter is always set equal to memory to disable swap usage.

• cpu: The amount of CPU guaranteed for a container’s usage. This parameter

can be configured based on the CPU count of the host system. Furthermore,

Docker provides two additional parameters for fine-grained control directly on

the scheduler with cpu-period and cpu-quota parameters.

• cpu-period : This parameter is used to define the period of the Completely Fair

Scheduler (CFS), which is the default Linux kernel scheduler [70]. Unless the use

case necessitates a different period, the default value of 100000 microseconds is

used.

• cpu-quota: The quota parameter is used in conjunction with the period. It defines

a limit on the CPU time allocated to a container within the specified period before

the application is throttled. The framework adapts this parameter to manage the

CPU limits of the deployments.

3.1.5.2. Decentralized Docker Registry. Containerization concepts touched upon until

this point in this thesis book are based on a set of instructions defined as a Docker

image. These images are built by the developers and distributed over a Docker registry.

The Docker registry, however, is a centralized platform. Whether it is Docker’s own

registry called Docker Hub or a privately hosted one, they are all centralized solutions

[71]. However, images can be regarded as just another piece of data, and as previously

stated, any file can be stored on IPFS as an object. Therefore, IPFS can be used as

the file system for a decentralized Docker registry.
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Docker registry is more than a simple file storage system. It is a tool for storing

and distributing images. Thus, a Docker registry proxy called IPFS-Backed Docker

Registry (IPDR) is utilized alongside IPFS in this thesis [72]. With IPDR in place, the

framework can fully benefit from the REST API of the Docker registry. Versioning,

updates, and upgrades can be managed on top of IPFS using IPDR as a decentralized

and agile solution. Docker images are composed of layers, and these layers can be

downloaded and cached individually. IPDR offers the advantage of downloading image

layers separately, which is necessary for using less bandwidth and local storage overall.

Since all application deployments are containerized, updates and upgrades in the form

of additional layers can minimize their impact on bandwidth usage.

3.2. Edge Framework Architecture

The orchestration flow of a deployment can be represented with a series of tasks

as shown in Figure 3.1. Each task is carried out by one or more components of the

framework. It is crucial to understand the role of each component and their subscription

of events before moving onto the orchestration steps.

3.2.1. Framework Components on the Edge

The four components of the framework with the above-mentioned tools and tech-

nologies forming the framework deployed on the edge gateway as shown in Figure 3.2:

• Monitor : Scrapes metrics from the host system and shares them with the rest of

the framework.

• Deployer : Responds to application deployment and resource optimization re-

quests. New deployment requests are accepted through a REST endpoint.

• Analyzer : Evaluates incoming requests with the data made available by the other

components and makes predictive analysis

• Forecaster : Provides time series forecasting capabilities to the framework

• Docker : Provides an engine with virtualization capabilities to the edge and means
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to execute and monitor containerized applications

• IPFS : Grants the distributed file storage for the Docker registry and long term

storage for application metrics

• Blockchain: Smart contracts connect the application delivery process with the

edge framework

• MQTT Broker : Provide an event-driven communication channel between com-

ponents

• Host File System: A mounted volume through Docker grants short term storage

for application metrics on the host device

The four components of the framework rely on the tools and technologies above

to access the application registry and establish asynchronous communication on the

edge using the publish/subscribe pattern. The dependencies between each component

are also represented in Figure 3.2.

User MonitorDeployer

Analyzer Forecaster 




Metrics

Blockchain

REST

Developer

Host
File System


New Device

Container Application

MQTT

Figure 3.2. Overview of the Framework’s Architecture on the Edge.2

2Licenses for the icons are as follows: IPFS Logo trademark of Juan Benet, CC BY-SA 3.0; Docker

Logo trademark of dotCloud, Inc. Apache License 2.0; MQTT Logo, OASIS, Public domain
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3.2.2. Messaging and Subscriptions

As an event-driven architecture, the messages in circulation are used to commu-

nicate between the framework’s components with the publish and subscribe pattern.

Components publish messages on specific topics to pass events and data for subscribed

components to pick up. Components subscribed to these topics, called consumers, in-

terpret the received messages and act upon the received payload. Messages use the

JSON format. This format includes both the field names called the schema and the val-

ues in a single message. Although the schema increases the overhead of each message,

considering the low amount of messages generated by our framework, the compromise

does not cause a latency overhead. There are schemaless options like AVRO or a

schemaless JSON as well. However, these alternatives require a separate schema reg-

istry. Since the number of nodes and message traffic is limited, there are no major

latency concerns with a JSON implementation. Thus, a schemaless alternative is un-

necessary, especially considering the added complexity of maintaining a registry. In

Figure 3.3, an example message generated by the framework can be seen, with the

schema as part of its payload.

{

” t r a c e i d ” : ”123 e4567 ” ,

” ac t i on ” : ” deployment request ” ,

” image name ” : ”busybox ” ,

”message ” : ” This i s a r eque s t f o r the deployment o f busybox”

}

Figure 3.3. Example Message Format.

All orchestration messages exchanged over MQTT must conform to a set of rules

to ensure uniformity across the pipeline. These rules cover the field names, allowed

values for these fields, and the hierarchy of nested objects. A malformed structure

may result in incoherent, rejected, or misrouted messages. The following fields are

supported:
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• trace id : A unique id generated for each new sequence of events for the observ-

ability of individual task flows.

• action: The identifier for specifying the purpose of the message with the action

set listed in Table 3.1 .

• image name: A list of image names corresponding to the applications currently

running on the framework.

• containers : A list of container ids of running applications on the framework.

• predictions : A list of the expected resource utilization values of a container.

• forecast fields : The framework gives the flexibility to work on specific metrics.

Currently, supported values are CPU, memory, and throttling; the orchestrator

can be configured to ignore some metrics by omitting them from the messages.

The framework can be further extended to take network and block i/o utilization

into account.

• resources : This field defines the CPU and memory limits enforced on an appli-

cation. The values can be acquired from the smart contract provided by the

developer or set by the orchestrator.

• stats : The field shares monitoring results by publishing metrics scraped from the

host system.

• retry count : Deployment sequence of initially rejected requests or exited applica-

tions can be retriggered up to a certain threshold. Some components may adjust

their behavior based on the number of retries. When the maximum number of

retries are exceeded a deployment cancel event is published for reporting.

• availability : Available resources of the host system. This field is used in clus-

ter deployment to share idle resource information across heterogeneous devices.

Supported values are CPU and memory.

• ip address : The IP address of the edge device. This field is used in cluster

deployment to identify the owner of events received through MQTT bridge con-

figuration.

• message: An optional field that can be used for logging purposes.

The complete list of potential messages can be found in Appendix B.
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Table 3.1. Supported Orchestration Actions.

Action Description Topic

Deployment Request A declaration of intention to deploy a new

application to the platform

Deploy

Deployment

Analysis Request

An analysis request for the platform’s

availability of resources to host a new ap-

plication

Analyze

Deployment

Optimization Request

A request for optimization of resource lim-

its imposed on an existing application

Analyze

Forecast Request A request to forecast selected applications’

future resource utilization

Forecast

Forecast Response Forecasted resource utilization values Forecast

Deployment Accept Approval of a deployment request Deploy

Deployment Cancel Rejection of a deployment request Deploy

Deployment Update Approval and new limits for an optimiza-

tion request

Deploy

Monitoring Result Container metrics scraped from the host

device

Monitor

3.3. Application Delivery

The application delivery process provides a pipeline for developers to publish and

deliver applications to their clients. This process requires a decentralized application

registry and means to publish and update applications. The flow is initiated by the

Release step as shown in Figure 3.1.

A decentralized registry based on IPFS and IPDR is used to store and deliver

applications. An interface for this decentralized Docker registry is developed as a

decentralized application. In this thesis, a smart contract is written and deployed to

provide this functionality. Developers start the initial application delivery step of an
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application, called the Release process. The application release flow consists of Publish

and subsequent Update processes. Both processes manipulate the application metadata

stored on the blockchain through the smart contract. In the meantime, Docker images

are stored in IPFS. The metadata primarily consists of the image hash. However,

developers can also publish recommended and baseline resource limits. The smart

contract allows developers to prove the application’s authenticity and deliver updates

and upgrades.

The developers provide the image hash and resource limits on the smart contract.

The image hash field is used to store the IPFS hash of the image uploaded on IPFS

via IPDR. Updating this value ensures that only the updated image can be pulled

from the registry. The limits field has two subfields: base and request. The application

developer can define CPU and memory limits with these fields. These subfields are

suitable for defining SLAs over the availability of resources in the form of minimum

resource commitments. The framework can then take these values as a reference while

setting the resource limits of the deployed containers under diverse conditions. If no

resources have been defined by the developer, the framework will assign a set of default

values during deployment. The framework optimizes the resources allocated to each

container over time. Developers are encouraged to provide these limits to smooth out

the process, decreasing the number of retries and minimizing the potential disruptions

to the system.

Developer IPFS Blockchain

UploadImage()

return image hash

prepareResourceLimits()

Publish(image hash,limits)

Figure 3.4. Developer Publish Sequence Diagram.
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The Publish step is illustrated in Figure 3.4. The application developer first

uploads the Docker image on IPFS and receives the image hash in return which can

be used to locate the image. Then the developer may define the limits. Afterwards,

both the image hash and, if defined, limits should be put on the blockchain via the

provided smart contract.

3.4. Orchestration Flow

The orchestration flow is a step-by-step process executed on the edge to handle the

lifecycle of deployments. The flow is initiated on the edge framework by the User/New

Device as shown in Figure 3.1. It is responsible for managing incoming application

deployments and dynamically adapting allocated resources for each container. The

self-adaptive properties are modeled after Monitor-Analyze-Plan-Execute-Knowledge

(MAPE-K) loops [73]. The framework components listed in Section 3.2.1 carry out

tasks on the edge. They asynchronously pass messages between each other for separa-

tion of concerns and to provide a dynamic orchestration [10].

3.4.1. Deployment Admission

This step handles the application deployment requests by acquiring the infor-

mation stored on the blockchain and interacting with the Docker API. The sequence

of actions taken in this step are illustrated in Figure 3.5. The deployment request is

initiated by a request that is made externally using the REST API provided by the

Deployer. The actor invoking the request can either be the user or an IoT device

connected to the network. The API is only responsible for publishing the request to

the deploy topic as a new event. Publishing such events is essential for notifying all

subscribers about the incoming deployment requests. The only mandatory informa-

tion for a deployment request is the application name which can be matched with an

application on the blockchain. If a matching entry for the application can be found on

the contract, the IPFS hash for the image and optional base and request limits can be

acquired. The high level interaction between the Deployer and the external technolo-
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gies are shown in Figure 3.2. If the developer provides no limits, the Deployer uses

a set of default resource values as a fallback. Then, if another container is deployed

with the same image name, indicating that the application was previously deployed, its

execution is stopped to open up room for redeployment. Finally, a deployment analysis

request with the request limits is published on the analyze topic to be analyzed in the

Resource Allocation step.

Actor Deployer
MQTT
deploy Blockchain Docker IPFS

MQTT
analyze

subscribe()

NewRequest(image name)

PublishDeploymentRequest(image name)

SendDeploymentRequest(image name)

GetImageHash(image name)

return hash

PullImage(image hash)

GetImage(image hash)

return image

return image

ConditionCondition If not locally available

GetResourceLimits(image hash)

return resource limits

KillContainer(image)

return response

ConditionCondition If application is running

PublishAnalysisRequest(image hash, resource limits)

Figure 3.5. Deployment Request Sequence Diagram.
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The deployment request triggers a sequence of events which is called the deploy-

ment workflow. The workflow starts with the request picked up by the Deployer and

includes the steps until the application deployment is rejected or executed in Con-

tainer Execution. The events, topics, and components responsible for concluding the

deployment workflow are depicted in Figure 3.6.

MQTT Broker

Analyze TopicDeploy Topic Forecast Topic

ForecasterDeployer

PushScrape Monitor

AnalyzerDeployer
(REST API)

Analysis Response
Deployment Request

Forecast Response

Forecast RequestAnalysis Request

Pull

Metrics
Docker API

Trigger

Figure 3.6. Deployment Workflow.

3.4.2. Resource Allocation

Each application is deployed with resource limits imposed on its CPU and memory

usage by the framework. Otherwise, they might use as much CPU or memory available

on the host. The Resource Allocation step is responsible for assigning appropriate

limits to each application based on the status of other active deployments and given

base and request resource limits. A deployment request message contains the image

and resource limits of the application. The Analyzer is the component where all the

decisions are made in the framework. A knowledge base in the form of the metrics

and status reports are provided by the Monitor and resource utilization predictions

are made by the Forecaster. The Analyzer, with the data provided by Monitor and

Forecaster, evaluates the available information and returns an approval response. This

response includes the target resource limits, Ltarget
i,j , for the container scheduled for

deployment where i in {cpu,mem}, for CPU and memory resources, respectively, of

container j. Otherwise, the deployment is rejected by publishing a deployment cancel

event.
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Deployer MQTT/analyze Analyzer MQTT/forecast

subscribe()

subscribe()

NewAnalysisRequest(image name)

SendAnalysisRequest(image name)

PublishForecastRequest(image name)

Figure 3.7. Deployment Analysis Sequence Diagram.

3.4.2.1. Deployment Analysis and Forecasting Requests. The Analyzer is subscribed

to two different topics: analyze and forecast. It listens for analysis requests and pub-

lishes the responses on the analyze topic as shown in Figure 3.7. The analysis is for the

feasibility of a new deployment with its resource requirements. A deployment analysis

request is picked up by Analyzer through the analyze topic.

Forecasting provides insight into the future resource usage of active deployments.

Whenever forecasting on future resource utilization is necessary, a request is published

to the forecast topic. Analyzer is subscribed to the forecast topic to pick up the

responses which contain future resource utilization predictions for all active containers

as seen in Figure 3.8 and continue with the rest of the analysis.

3.4.2.2. Forecasting. The Forecaster uses the time series metrics data made available

by the Monitor to predict the future resource utilization of requested containers. Fore-

caster accesses this locally stored data, also known as the knowledge base for the given

container. If the container is a fresh instance, knowledge belonging to the past con-

tainer instances of the same image is used instead. This enables the Forecaster to use

past knowledge aggregated from previous instances of the same container that have

died recently or recurring batch jobs.
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Analyzer MQTT/forecast Forecaster

subscribe()

NewForecastRequest(image name)

SendForecastRequest(image name)

predict

PublishForecastResponse(container list,predictions)

Figure 3.8. Forecast Sequence Diagram.

Forecaster can also be configured to skip some of the available metrics. The

forecasting will only be based on the values provided in the forecast fields field of the

request message in Appendix B. The current implementation of the framework is

configured to predict on three metrics only: CPU, memory, and throttling. However,

any combination of the seven metrics collected by the Monitor can be used. These

metrics are explained in Section 3.4.4.1.

The Forecaster conducts a time series analysis as shown in Figure 3.9. The

ARIMA model is used to interpret the trends in time series data, and predict the

future values with statistical analysis [74, 75]. The historical Cutil
r,c data stored by our

framework is used as the input data. The Auto-Regression and Integrated models

of ARIMA are configured together to capture non-stationary patterns seen in each

analyzed metric and forecast their values for the next optimization cycle. The ARIMA

model is used with an order of (5,1,0), which is able to capture the short time trends

in available metrics data. This configuration sets up a lag order of 5 to smooth the

timeseries data and a degree of differencing of 1 represented as

y′t = c + ϕ1y
′
t−1 + ϕ2y

′
t−2 + ϕ3y

′
t−3 + ϕ4y

′
t−4 + ϕ5y

′
t−5, (3.1)
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where y′t = yt − yt−1. However, this model does not capture trends that can span a

longer period, like daily patterns. Seasonal ARIMA could potentially fulfill this role

given enough data points, but it proved lackluster because of short retention times.

Input: R,C, history(Cutil
r,c ), r ∈ R and c ∈ C

Output: P util
r,c

for c ∈ C do

for r ∈ R do

Putil
r,c := ARIMA.forecast(history(Cutil

r,c ))

hourly max := map()

for h← 0, 24 do

hourly group[h] := group by(history(Cutil
r,c ),′ H24′)

hourly max[h] := max(hourly group[h])

end for

predictionLength := sizeOf(Putil
r,c )

for t← 0, predictionLength do

h := getT imestamp(Putil
r,c [t]).hour

adj hourly max := max(hourly max[h− 1 : h + 1])

Putil
r,c [t] := max(Lcurrent

r,c , adj hourly max)

end for

return Putil
r,c

end for

end for

Figure 3.9. ARIMA Forecasting and Time Series Analysis.

Retention time of historical data is managed by the Monitor as discussed in

Section 3.4.4. When the use case scenarios are examined in this thesis, it becomes

apparent that the daily patterns are a dominant factor. In order to take this temporal

characteristic into account, data points are aggregated hourly. Then, the maximum

value observed in the same or adjacent hours’ aggregate is taken. This value is then

compared with each prediction result. Any prediction lower than the max observed
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value is replaced with the maximum observed value. This step is necessary to lower

the risk of optimization disrupting the lifecycle of a running container, especially with

memory adjustment.

The forecasting process is not responsible for collecting the data or making deci-

sions based on the predictions. It simply publishes the forecasting results back to the

forecast topic.

3.4.2.3. Deployment Analysis Response. Once the forecasting results, P util
r,c (t), are re-

ceived, a response can be derived for the analysis request. The resource allocation for

a new deployment should not be based on the amount of resources currently available

on the system, denoted by Savail
r . If other active deployments on the system need

to be upscaled, their resource allocation requests should be prioritized to maximize

availability and uptime. Deployment analysis should exclude the amount of resources

needed for upscale optimizations in its resource allocation calculations. Therefore, the

future availability of the system’s resources, P avail
r , is calculated first as shown in the

algorithm in Figure 3.10. Then, P avail
r value is used for all subsequent calculations

during the analysis of this particular deployment instead of Savail
r .

The calculation of P avail
r is based on the forecasted utilization of resources P util

r,c

where r in {cpu,mem}, for CPU and memory resources respectively of each container

c. The aim of this calculation is to capture upwards trends in resource utilization of

existing containers. Any prediction below Lcurrent
r,c can stay at the current limit value.

Thus, each prediction in P util
r,c [t] for time t is compared with Lcurrent

r,c and updated with

the maximum of these two values. This ensures that no new deployment can allocate

resources predicted to be allocated to an existing container. Using P util
r,c ensures that

an existing container will not end up being OOMKilled or with excessive throttling.

Finally, the maximum P util
r,c [t] is subtracted from the system’s total available resources,

Stotal
r , to find the predicted availability of resources, P avail

r,S , for the system S.
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Input: S,R,C,Lcurrent
r,c ,Putil

r,c r ∈ R and c ∈ C

Output: Pavail
r,S

Pavail
r,S := Stotal

i

for r ∈ R do

for c ∈ C do

predictionLength := sizeOf(Putil
r,c )

for t← 0, predictionLength do

Putil
r,c [t] := max(Lcurrent

r,c ,Putil
r,c [t])

end for

Pavail
r,S := Pavail

r,S −maxt(P
util
r,c [t])

end for

end for

Figure 3.10. Prediction of the Resource Availability of the System.

The analysis request also contains the resources that should be allocated to the

new deployment indicated by a set of target resource limits, Ltarget
r,c on the container.

Ltarget
r,c is provided with the deployment analysis request message as shown in Figure

B.2. The message contains one of the resource limit values Lrequest
r,c , Lbase

r,c or Ldefault
r

as Ltarget
r,c . If neither Lrequest

r,c nor Lbase
r,c was provided on the smart contract, the default

resource limits, Ldefault
r is sent instead. The handling of rejected deployments are

explained in Section 3.4.3.

The Analyzer compares the previously calculated P avail
r,S with the Ltarget

r,c value

as shown in the algorithm in Figure 3.11. The deployment request is approved if

the Ltarget
r,c is less than P avail

r,S , meaning that the system will have enough resources to

accommodate the incoming application deployment. Otherwise, the request is rejected.

Either way, responses are published on the analyze topic, and the Analyzer does not

take any further action.
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Input: Pavail
r,S , Ltarget

r,c where r ∈ R and c ∈ C

for r ∈ R do

if Ltarget
r,c < Pavail

r,S then

continue

else

publishRejectDeployment() ▷ Reject

return

end if

end for

publishApproveDeployment() ▷ Approve

Figure 3.11. Deployment Availability Analysis.

3.4.3. Container Execution

The execution of a container is handled by the Deployer but depends on an

approval message from the Analyzer. Deployment analysis responses received by the

Deployer can be twofold, corresponding to either an approved deployment or a rejected

one as shown in Figure 3.12. If a deployment is tried with Lrequest
r,c and rejected, the

Deployer sends a second analysis request with Lbase
r,c . For accepted deployments, a con-

tainer is executed with Ltarget
r,c , successfully allocating the required amount of resources.

3.4.4. Monitoring

The monitoring process involves collecting metrics of the application running on

the framework from the underlying host system and keeping the rest of the framework

up to date about the status of deployed applications. The monitoring sequence is

shown in Figure 3.13. The responsibility of the monitoring components consists of

three individual steps:
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• Metrics collection

• Application failure detection

• Optimization request

These three steps are triggered periodically. The trigger intervals have default

values, which can be overridden during the initial setup. The default value for the first

two monitoring steps is one minute, and the optimization request step is five minutes.

Optimization is set to run less frequently to ensure that the system is not disrupted

unnecessarily and there is time for collecting enough metrics between cycles for the

forecasting process.

Analyzer MQTT/deploy Deployer Docker MQTT/analyze

subscribe()

PublishAnalysisResponse(response)

SendAnalysisResponse(response)

RunContainer(image,Ltarget
r,c )

return response

ConditionCondition If deployment accepted

SendAnalysisRequest(image,Lbase
r,c )

ConditionCondition If deployment rejected for Lrequest
r,c

Figure 3.12. Deployment Response Sequence Diagram.

3.4.4.1. Metrics Collection. Metrics collection is where the application resource uti-

lization metrics are scraped from the host system. Metrics are acquired from Docker

API by calling the relevant endpoints and cgroup stats in Linux systems. First, the
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running containers are identified with the ContainerList endpoint, which returns de-

tails about active containers such as image id, image hash, command, etc. Only the

container id information is of particular interest at this point. Their id is then passed

to the stats endpoint for each active container to retrieve the metrics. This endpoint

is very verbose, with a long list of container statistics. It does not make sense to

store each metric returned by this endpoint. Therefore, the response is filtered by the

Monitor to reduce the dataset to 6 metrics:

• CPU utilization percentage

• Memory usage

• Number of bytes transferred from the system (Block read)

• Number of bytes transferred to the system (Block write)

• Number of bytes received from the network

• Number of bytes transmitted to the network

There is one more metric crucial for making forecasts and optimizations, which

is the cpu throttling percentage. This value cannot be retrieved from the Docker API

and should be derived from the raw CPU throttling stats of that particular container’s

scope found in Linux systemd. The following metrics can be acquired from cgroups [76]:

• nr period : Number of periods that the container was runnable

• nr throttled : Number of periods that the whole available cpu-quota was used

• nr throttled time: The total amount of time the container was throttled

The throttling percentage denoted by Cthrottle of a container in the current interval

can then be acquired with

nr throttleddiff = nr throttled− nr throttledprev

nr perioddiff = nr period− nr periodprev

Cthrottle =
nr throttleddiff
nr perioddiff

,

(3.2)
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where prev subscript indicates the values scraped in the previous interval [76]. Then

these seven data points are stored in Comma-separated values (CSV) format on the

local disk with the image name and container id. CSV format is chosen because it is

universal, has minimal overhead, has a static schema, and is lightweight.

Based on the configured retention time of metrics with a default of two days,

historical values are aggregated in a single file, uploaded to IPFS, and removed from

local storage as shown in Figure 3.13. The default retention time is set as two days to

favor recent daily trends, but it can be prolonged to capture weekly or monthly trends

if storage space is abundant by increasing the built-in retention time. As shown in

Figure 3.2, the Monitor depends on IPFS and smart contracts for archive and backup

processes.

Monitor MQTT/monitor Docker IPFS Blockchain

RequestMetrics()

return metrics

PublishMetrics()

StoreMetrics()

UploadStoredMetrics()

return hash
PublishHash(hash)

ConditionCondition If metric retention time reached

Run LoopRun Loop Monitoring loop

Figure 3.13. Monitoring Sequence Diagram.

A smart contract is provided on the blockchain to store the IPFS hashes of the

archived data. These hashes are stored on the blockchain with the user’s unique id for
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retrieval in the following scenarios; if the gateway device is replaced or another device

is added to the same edge network for the past knowledge to be shared across devices.

3.4.4.2. Container Availability. One of the responsibilities of the Monitor is identify-

ing applications that have stopped prematurely. Docker keeps track of such containers

called exited containers and provides a list of them through the ContainerList endpoint.

Then filtering is applied client-side only to keep containers exited in the last hour. The

information acquired from this endpoint is not enough to deduce the reason behind

the container’s termination. Another request must be made to the DockerInspect end-

point to check whether the container exited abruptly or not. Here, information about

whether the container was killed because of running out of memory can also be found.

In such cases, the container is flagged with an OOMKilled exit code. This bit of in-

formation is necessary for determining the resource limits of the container during the

subsequent deployment requests. After the acquired list is filtered, it is grouped by

image name to determine how many times the deployment has failed in the last hour

to determine the retry count set in the deployment request messages. This metric is

also used to determine the resource limits for the next deployment attempt. Similar

to the sequence in Figure 3.5, for each identified application, a deployment request is

published by the Monitor on the deploy topic to be handled by the Deployer.

3.4.4.3. Optimization Request. The Monitor is not directly responsible for optimizing

running applications; however, the Monitor initiates the optimization process. In a

longer interval, as discussed earlier, an optimization analysis request for an active

container is published on the analyze topic for the other components of the framework

to handle.

3.4.5. Optimization

During the optimization step, the framework dynamically adjusts the resource

limits of an active container. In the optimization workflow depicted in Figure 3.14, the
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Deployer has responsibilities similar to that in the deployment workflow. It interacts

with the Docker engine to update the current resource limits of the container, Lcurrent
r,c

if there is a need for optimization. The Analyzer determines if an optimization is

necessary. The target resource limits, Ltarget
r,c are calculated based on the predictions

provided by the Forecaster. Then, an analysis response message is published on the

deploy topic for the container if it is scheduled for resource optimization. Finally, the

Deployer calls the DockerUpdate endpoint to update Lcurrent
r,c with the Ltarget

r,c values

provided in the analysis response.

MQTT Broker

Analyze TopicDeploy Topic Forecast Topic

ForecasterDeployer

Push

Scrape

AnalyzerMonitor

Analysis Response
Optimization Request

Forecast Response

Forecast RequestAnalysis Request

Pull

Metrics
Docker API

Trigger

Figure 3.14. Optimization Workflow.

3.4.5.1. Optimization Analysis. Optimization analysis is the process of identifying

containers that require resource optimization and determining a Ltarget
r,c value satisfying

their scaling needs. The aim is to downscale underutilized containers’ limits, and

upscale containers with increasing resource utilization approaching the limits. The

Analyzer publishes Ltarget
r,c given that optimization is necessary and enough resources

are available on the system as explained in the algorithm in Figure 3.16.

The analysis starts with the calculation of P avail
r,S as the initial predicted availabil-

ity of the system’s resources. This calculation was explained previously in the algorithm

in Figure 3.10. Then, the Analyzer evaluates the scaling needs of each container se-

quentially. After every approved optimization response, P avail
r,S is updated accordingly

before the next container is evaluated. P avail
r,S is adjusted by the scaling amount of

the optimized container. Each published response is unique to the container that is
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scheduled for optimization and published individually on the deploy topic. In order

to proceed with the optimization analysis, current resource limits on each container

should be known. Lcurrent
r,c is requested for each active container from Docker API by

calling the DockerInspect endpoint. Then, the target limits Ltarget
r,c are calculated. Their

calculation is explained in Section 3.4.5.2 and Section 3.4.5.3 for CPU and memory,

respectively. The process of calculating the target limits differs for each resource, the

reason being twofold:

• OOMKilled Error : When a container runs out of memory, it is killed by the

Docker engine. Therefore, while downscaling memory, a more conservative ap-

proach is employed.

• CPU Throttling : Unlike memory, an attempt to surpass the defined CPU limits

will not kill the container. Instead, it will result in throttling. Thus, the predicted

throttling of a container, P throttle
c , is taken into account to optimize the output

further.

Forecaster MQTT/forecast Analyzer MQTT/deploy

subscribe()

New Forecast

SendForecastResponse()

analysis

PublishAnalyzeResponse()

Figure 3.15. Analysis Response Sequence Diagram.

The analysis in the algorithm in Figure 3.16 can continue once Ltarget
r,c for each

active container is calculated. If there is a difference, ∆Lr,c, between Ltarget
r,c and Lcurrent

r,c ,

the Analyzer can make a decision to either downscale or upscale. If ∆Lr,c value equals

0, no optimization is necessary. Positive and negative values for delta represent a need
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for upscaling and downscaling, respectively. Upscaling demands are rejected if ∆Lr,c

exceeds P avail
r,S meaning that the system will not be able to satisfy the upscaling demand.

Otherwise, the Analyzer publishes an approval to the deploy topic to be fulfilled by

the Deployer.

Input: C, Pavail
r,S , Putil

r,c where r ∈ R, c ∈ C

for c ∈ C do

Lcurrent
R,c := dockerInspect(c)

Ltarget
R,c := calculateTargetLimits(R, c,Lcurrent

R,c )

end for

for c ∈ C do

deployF lag := True

for r ∈ R do

∆Lr,c := Ltarget
r,c − Lcurrent

r,c

if (∆Lr,c ̸= 0) and (Pavail
r,S > ∆Lr,c) then

continue

else

deployF lag := False ▷ Reject

end if

end for

if deployF lag then

publishOptimizationAnalysisResponse(c,Ltarget
R,c ) ▷ Approve

Pavail
R,S := Pavail

R,S −∆LR,c

end if

end for

Figure 3.16. Optimization Availability Analysis.

3.4.5.2. Memory Limit Optimization Analysis. The optimization analysis for memory

limit determines the Ltarget
mem,c as shown in the algorithm in Figure 3.17. Afterwards,

the Ltarget
mem,c value is returned to the algorithm in Figure 3.16 to continue with the

optimization analysis. Optimizing memory limits is a task with little room for error,
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especially for downscaling. If Cutil
mem,c tries to pass the memory limit defined by Lcurrent

mem,c

, the container will be killed, i.e., OOMKilled. Thus, if the framework anticipates

that container’s memory utilization will pass Lcurrent
mem,c , the container should be scaled

up to Ltarget
mem,c which is higher than Lcurrent

mem,c . A buffer ratio of Lbuffer
mem is applied in this

comparison to always give memory utilization a buffer between P util
mem,c and Lcurrent

mem,c until

the next optimization cycle. The buffer is configured as 10% margin in our framework.

This ensures that the framework will still be inclined to scale up the container as early

as possible when P util
mem,c is approaching Lcurrent

mem,c . If the prediction is less the memory

utilization will go down, the framework will lower Lcurrent
mem,c by Lscale

mem,down to scale down

the container. Both Lscale
mem,down and Lscale

mem,up values are constant values and can be

configured while setting up our framework.

Input: C, Lcurrent
r,c , Putil

r,c where r ∈ R, c ∈ C

Output: Ltarget
mem,c

for c ∈ C do

prediction := max(Putil
mem,c)

if prediction > Lcurrent
mem,c /L

buffer
mem then

Ltarget
mem,c := Lcurrent

mem,c + Lscale
mem,up ▷ Scale up

else

Ltarget
mem,c := Lcurrent

mem,c − Lscale
mem,down ▷ Scale down

if Ltarget
mem,c < prediction ∗ Lbuffer

mem then

return Lcurrent
mem,c ▷ Reject Scaling

end if

end if

if Ltarget
mem,c between Lmin

mem and Lmax
mem then

return Ltarget
mem,c ▷ Approve scaling

end if

return Lcurrent
mem,c ▷ Reject scaling

end for

Figure 3.17. Memory Optimization Analysis.
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After the Ltarget
mem,c is set, in case of down scaling, the new limit is once again

compared with the max prediction amount to make sure that the the container is not

scaled below the allowed buffer room. Otherwise, Lcurrent
mem,c is returned, and memory is

not scaled down any further.

Finally, for either type of scaling, it should be confirmed that Ltarget
mem,c is between

some default minimum and maximum resource values: Lmin
mem and Lmax

mem. These lim-

its define a general lower and upper limit no matter the container’s workload and

hardcoded in the framework. The upper limit ensures that a single container cannot

allocate a very high share of a system’s total resources, Stotal
mem. The lower limit protects

the container from scaling down indefinitely. The resulting Ltarget
mem,c value is returned to

the algorithm in Figure 3.17 for further analysis.

3.4.5.3. CPU Limit Optimization Analysis. The calibration for Ltarget
cpu,c depends on P util

cpu,c,

and P throttle
c and follows the steps in the algorithm in Figure 3.18. As previously dis-

cussed, if Cutil
cpu,c reaches Lcurrent

cpu,c the container is not killed, unlike an OOMKilled re-

sponse in the memory case. However, this does not mean that the container runs in

an optimal condition. In our framework where application metrics such as response

time are not available, it is not possible to deduce any performance degradation from

memory and CPU utilization alone. However, there is a reliable system metric which

is Cthrottle
c . A high amount of Cthrottle

c will jeopardize the application performance.

Thus, extra precautions are taken while down scaling CPU for containers experiencing

throttling.

First, singular prediction values are taken from P util
cpu, and P throttle

c by getting their

maximums. Then, if the CPU utilization prediction is greater than Lcurrent
cpu,c , Ltarget

cpu,c is

calculated by increasing Lcurrent
cpu,c with a fixed amount of Lscale

cpu,up. In the opposite case

where P util
cpu,c is greater than Lcurrent

cpu,c , the downscale target limit is calculated similarly;

Lcurrent
r,c is lowered by the amount of Lscale

r,down to get Ltarget
cpu,c .
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There are two extra controls to prevent excessive throttling in CPU optimization

analysis. The predicted throttling amount is compared against a maximum allowed

throttling limit value, Lthrottle, which is a constant defined in our framework. If maxi-

mum predicted throttling is greater than Lthrottle, the allowed throttling threshold, the

Ltarget
cpu,c is recalculated. Lscale

cpu,up is lowered by adjusting it with the predicted throttling

value. Then the Ltarget
cpu,c is recalculated with the lowered Lscale

cpu,up for a minor scale up. The

second control is before setting the final scaled down Ltarget
cpu,c . While scaling down, there

exists a possibly that with the Ltarget
cpu,c , the container can start to experience throttling.

In order to prevent sudden throttling, instead of using a constant Lscale
cpu,down, Ltarget

cpu,c is

calculated with the maximum predicted utilization. Ltarget
cpu,c is scaled by increasing the

maximum predicted utilization by the Lbuffer
cpu ratio. Similar to memory optimization,

Lbuffer
cpu is configured as a 10% margin in our framework. This buffer ensures that the

application is given enough room for unexpected load spikes until the next optimiza-

tion without causing unnecessary throttling. After this adjustment, it is possible that

Ltarget
cpu,c can now be above Lcurrent

cpu,c which would scale up the container instead. In that

case, any scaling operations are overturned by returning Lcurrent
r,c as the throttling was

already below Lthrottle.

A final control is made to check if Ltarget
cpu,c is within the allowed boundaries of

Lmin
cpu and Lmax

cpu similar to the memory optimization. If the Ltarget
cpu,c satisfies the final

condition, it is returned back to the algorithm in Figure 3.16 to continue with the rest

of the optimization analysis.

3.5. Cluster Deployment

The event-driven architecture makes it possible to deploy our framework on mul-

tiple edge devices as a cluster in the same network. This deployment strategy supports

load balancing across the connected hosts and decentralized orchestration of deploy-

ments. The setup depends on MQTT bridges. In a bridge setup, a broker can auto-

matically broadcast monitoring and deployment messages to all hosts in the network.

A setup with three connected edge devices is illustrated in Figure 3.19.
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Input: C, Pthrottle
c , Lcurrent

r,c , Putil
r,c where r ∈ R, c ∈ C

Output: Ltarget
cpu,c

for c ∈ C do

prediction := max(Putil
cpu,c)

throttle prediction := max(Pthrottle
c )

if prediction > Lcurrent
cpu,c then

Ltarget
cpu,c := Lcurrent

cpu,c + Lscale
cpu,up ▷ Scale up

else

if throttle prediction > Lthrottle then

adj scale := (Lscale
cpu,up × throttle prediction)/100

Ltarget
cpu,c := Lcurrent

cpu,c + adj scale ▷ Minor scale up

else

Ltarget
cpu,c := Lcurrent

cpu,c − Lscale
cpu,down ▷ Scale down

if Ltarget
cpu,c ≤ prediction× Lbuffer

cpu then

Ltarget
cpu,c := prediction× Lbuffer

cpu ▷ Adjust

end if

if Ltarget
cpu,c > Lcurrent

cpu,c then

return Lcurrent
cpu,c ▷ Reject scaling

end if

end if

end if

if Ltarget
cpu,c between Lmin

cpu and Lmax
cpu then

return Ltarget
cpu,c ▷ Approve scaling

end if

return Lcurrent
cpu,c ▷ Reject scaling

end for

Figure 3.18. CPU Optimization Analysis.

The bridging feature of MQTT connects two brokers in such a way that each

event automatically shares messages between them, as illustrated in Figure 3.20. This
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setup can be configured to share all published messages in selected topics with another

MQTT broker. There are no limits on the number of bridges that can be configured

on a broker.

    Edge Device     Edge Device

    Edge Device

Figure 3.19. Cluster Deployment with Three Devices.

MonitorDeployer

Analyzer Forecaster

Host B

Monitor

bridge-A-to-B

Deployer

Analyzer Forecaster

Host A

bridge-B-to-A

cluster/deploy
cluster/monitor

deploy
monitor

cluster/deploy
cluster/monitor

deploy
monitor

Figure 3.20. Two MQTT Brokers Connected with Bridges.

The cluster deployment requires some extra configuration steps on the MQTT

brokers. In order to set up a bridge with another broker, the MQTT broker should know

the IP address of the target host. In this thesis, we manually provide each device’s IP

address to each other broker. However, it is also possible to set up an MQTT device

discovery mechanism to automatically find other brokers on the network [77]. The
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second configuration is about the shared topics. It is possible to add prefixes to topics

in a bridge configuration. All shared topics of our framework are prefixed with the

cluster keyword. This prefix allows each component to identify whether an event is

generated internally or coming from an external host from the topic name.

In the cluster setup, only the monitor and deploy topics are shared between de-

vices through cluster/monitor and cluster/deploy topics respectively as shown in Figure

3.20. The Deployer on each device is subscribed to both monitor and cluster/monitor

topics. The Deployer keeps an hash map with IP addresses. For each IP address,

a resource pair for CPU and memory resource availability is kept. The hash map is

generated with the information received from both topics. When a monitoring message

is received from a device for the first time, an entry with that device’s IP address is

created in the hash map. The available resource information is also extracted from the

same message and stored alongside the IP address. With every new monitoring result,

the resource availability information is updated. The Deployer uses this hash map to

stay up to date about the available resources of all devices in the network.

The Deployer is also subscribed to the deploy and cluster/deploy topics. On

these topics, Deployer receives deployment requests made on all devices. When a

new request is received, each Deployer selects the device with the highest amount

of available resources from the hash map. The selected device is the most suitable

candidate for the new deployment. Then, only the device that determined itself as

the best candidate continues with the deployment by publishing a deployment analysis

request. The deployment follows the same steps as the regular deployment workflow.

If the available resources, Savail
r , of multiple devices are the same, each device marks

the device with the smallest IP address for deployment. Then, only the device that

has marked itself proceeds with the deployment. As the responsibility of accepting the

deployment is given to each device, it is assumed that they will act fairly. A device

could potentially publish malicious messages on the system. However, the framework

is designed for private networks, and all devices are configured and connected by the

same user. Therefore, the environment in which the framework is deployed is trusted.
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4. Experiments and Results

4.1. Experimental Setup

All experiments are carried out on a Raspberry Pi 4 Model B [78]. The device

has an 8GB LPDDR4-3200 SDRAM and Broadcom BCM2711, Quad-core Cortex-A72

(ARM v8) 64-bit processing unit. Using systemd, a system and service manager for

Linux, a slice unit is created with 1 CPU and 1GB memory with swap usage disabled.

Docker daemon’s cgroup parent is assigned to this slice to limit the maximum allowed

resource usage [79].

Experiments are based on three collected metrics: memory usage, CPU utiliza-

tion, and CPU throttling. These values are calculated from the usage and limit values

stored in the host system’s control group (cgroup) files [80]. The memory usage is

directly acquired from memory.usage in bytes. The memory limit is stored in mem-

ory.stat instead, as the hierarchical memory limit. CPU utilization is not as straight-

forward. How the limit value was set was explained in Section 3.4.2 through the

Docker API. The CPU quota value that was parameterized by Docker, cpu-quota,

can be acquired from cpu.cfs quota us. The CPU time value in nanoseconds found in

cpuacct.usage is used to calculate CPU utilization with

cpuacct.usagediff = cpuacct.usage− cpuacct.usageprev

timediff = time ns− timeprev ns

Cutil =
cpuacct.usage

timeprev

(4.1)

by making two observations. This formula returns the time the CPU was active in a

given timeframe matching the same granularity of nanoseconds. The activity is limited

to the cgroup, which corresponds to a single container. The calculation of Cthrottle
i is

previously explained in Section 3.4.4.1 and given as Equation (3.2).
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In order to create a controlled environment for the tests, two sets of containers

are prepared each set corresponding to a resource type Ri. The requirement for these

containers is that their CPU and memory utilization could be controlled through a set

of variables to create different workload patterns. For memory, a container’s memory

usage should be adjustable which is achieved by setting blocks of memory or freeing

them up. For CPU, mocking the CPU utilization proved to be rather challenging.

In order to create a controllable CPU load, mini units of maximum 1 second sorting

tasks are created. When put together back to back, these tasks are able to replicate

a certain percentage of CPU utilization. As shown in Figure 4.1, these 1 second long

tasks perform a short sorting task using 100% of the CPU and then sleep for the

remaining time. In the examples given in Figure 4.2 first a 30% CPU utilization is

achieved by running the sorting task for 0.3 seconds and sleeping for the rest of the

time. Afterward, the task is set to run for 0.5 seconds to achieve an overall 50% CPU

utilization.

T

sleep(1-t)

1 second

C
PU

 (%
)

100

t

Figure 4.1. A Single Unit of Task.

However, there is no guarantee that a particular sorting task will complete in the

expected 1 second. This is an indicator of CPU throttling caused by the limited quota

assigned to the container. If there is heavy throttling, the individual tasks will exceed

the 1 second window, causing the following tasks to be delayed.
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Figure 4.2. A Sequence of Unit Tasks with Different CPU Utilization.

(a) A sequence of unit tasks with 30% utilization of a single core.

(b) A sequence of unit tasks with 50% utilization of a single core.

To better understand the delay caused by throttling, 100 sorting operations each

with a duration of approximately 0.6 seconds are performed in Figure 4.3 sequentially.

These operations are normal sorting operations with no sleeps in between, different

from the tasks explained above. Given that the whole CPU is dedicated to the sorting

operation, it completes in the expected 60 seconds. The second row of graphs in

Figure 4.3 also shows that the same operation takes double the amount of time if half

the resources are given. It should also be noted that the process is completely throttled

for the whole duration in 50% CPU limit.

Now that it is clear how the CPU limits and throttling works, the unit tasks

can be explored further. In the first row of Figure 4.4, 100 unit tasks are performed

sequentially where the sorting is performed in each unit which takes 0.6s, leaving the

CPU idle in the remaining 0.4s. This results in 60% CPU utilization, and the task

completes in 100 seconds. In the second and third sets of graphs in Figure 4.4, the

container’s CPU resource is constrained by 75% and 60%, respectively. Since the CPU
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utilization was found to be 60%, a 75% limit does not affect the completion time of

the process as it once again completes in 100 seconds. However, for the duration of the

sorting operation, which uses all available CPUs typically, there is constant throttling,

resulting in 60% throttling throughout the process. If the limit is set to 50%, then

there are not enough resources for the sorting operation in a unit task to be completed

in 1 second. Therefore, it takes 20 seconds longer to complete the same number of

tasks as it is being throttled constantly.
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Figure 4.3. Sequentially Executed 100 Sorting Operations.

(a) Unlimited CPU utilization with a single core.

(b) CPU utilization limited to 50% of a single core.

4.2. Workload Patterns

Five different workload patterns are created to replicate workloads of various

kinds of IoT tasks:

• Slowly rising/falling workload pattern

• Drastically changing workload pattern
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• On-off workload pattern

• Gently shaking workload pattern

• Real-world workload pattern
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Figure 4.4. Sequences of Unit Tasks Executed With Various CPU Limits.

(a) Unlimited CPU utilization with a single core.

(b) CPU utilization limited to 75% of a single core.

(c) CPU utilization limited to 50% of a single core.

These workload patterns were proposed by [81] to categorize IoT applications

based on the number of service requests they have made over time. The same princi-

ple is followed in this experiment by measuring the memory and CPU usage statistics

instead. These system-level metrics offer the chance to uniformly assess all IoT tasks

without limiting the IoT applications to microservices which is the case for any system

relying on the application level metrics like service requests. The resource demands of

all workloads are adapted to portray different IoT applications capable of running in

a constrained environment.
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Each workload pattern runs in a separate container. A respective image is pre-

pared for each workload pattern for each resource individually, amounting to a total of

ten container applications. The base and request limit specifications can be found in

the Table 4.1. Both memory and CPU limits are defined with resource units adopted

by Kubernetes [82]. Memory usage and limits are expressed with fixed point integers

for simplicity and are in the power of 10 according to International Electrotechnical

Commission (IEC) standards [83]. These units are represented with symbols such as

KB and MB. CPU limits and utilization are expressed as CPU units, where 1 CPU

is equal to a CPU core. Therefore, fractions of a CPU can be assigned to an appli-

cation with the milli suffix, m. In this representation, 50% of a single CPU core is

represented as 500m. A system with two cores is represented with 2000m, following

the same standards.

Table 4.1. Workload Resource and Limit Specifications.

Workload Application

Name

Resource Base

Limit

Request

Limit

Slowly rising/falling Memory 1 Memory 100MB 150MB

Drastically changing Memory 2 Memory 100MB 150MB

On-off Memory 3 Memory 100MB 150MB

Gently shaking Memory 4 Memory 100MB 150MB

Real-world Memory 5 Memory 100MB 150MB

Slowly rising/falling CPU 1 CPU 100m 300m

Drastically changing CPU 2 CPU 100m 300m

On-off CPU 3 CPU 100m 300m

Gently shaking CPU 4 CPU 100m 300m

Real-world CPU 5 CPU 100m 300m

4.2.1. Slowly Rising/Falling Workload Pattern

This workload represents the resource usage of an IoT application that is either

increasing or decreasing slowly. The pattern has a period of 600 seconds as shown in
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Figure 4.5. The memory workload starts from a minimum value of 0MB and increases

uniformly by 3MB every 10 seconds for the first half of the period up to 90MB. When

the vertex is reached, the resource usage goes on a decline with the same ratio until the

full period is complete. The CPU workload, on the other hand, follows the same pattern

with minimal increments or decrements between 50m and 150m CPU utilization. This

pattern replicates tasks where there is a continuous yet changing usage of resources

at a slow pace. The task can be following slowly changing environmental conditions

especially those following a cyclic pattern.
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Figure 4.5. Slowly Rising/Falling CPU and Memory Workloads.

4.2.2. Drastically Changing Workload Pattern

This workload pattern follows the extremes. Yet, it stays constant once one of

the extremes is reached. The resource usage switches between predefined min and

max values every 300 seconds corresponding to half of its period as shown in Figure

4.6. The utilization of the CPU workload is either 50m or 150m the memory can have

the values of 10MB or 90MB, similar to the first workload presented. A drastically

changing pattern represents tasks executed in mini batches. The behavior changes

instantly once the new mini batch is started. A real world example can be a system
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waiting for a trigger which can switch the behavior in an instant like a routine job

waiting for a signal to process a set of data.
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Figure 4.6. Drastically Changing CPU and Memory Workloads.

4.2.3. On-Off Workload Pattern

This is the first pattern with more than two characteristics in a single period.

This pattern represents a workload that handles a set number of tasks with different

resource requirements within a single period as illustrated in Figure 4.7. In one of

these phases resource utilization is significantly lower than the rest. The possible CPU

workloads are 50m, 100m or 150m whereas the memory workload can be 30MB, 60MB

or 90MB. A device that sleeps briefly and turns back on or some batch requests of

varying sizes are being processed is an example of such a pattern.

4.2.4. Gently Shaking Workload Pattern

This workload has a more conservative pattern compared to the first three. The

amplitude is smaller, resulting in a more consistent workload changing around a fixed

value as demonstrated in Figure 4.8. The CPU utilization changes around a center
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value of 100m and the memory usage changes around 45MB. It also has the same in-

creasing/decreasing characteristic of the first workload pattern but in a more confined

boundary changing more rapidly. This pattern results in the CPU workload to differ-

entiate from the center by ±50m and the memory workload by ±35MB. This pattern is

more constrained than the previous patterns and can be observed on routine IoT tasks

such as monitoring where the behavior stays relatively the same during the lifetime of

the application.
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Figure 4.7. On-Off CPU and Memory Workloads.

4.2.5. Real-World Workload Pattern

This pattern represents tasks with a more erratic pace. The resource usage fluc-

tuates between a predefined range in an irregular pattern as shown in Figure 4.9. These

rangers are (50m, 150m) for CPU utilization and (10MB, 90MB) for memory usage.

The data points are generated randomly between these values to achieve an irregular

pattern. This pattern is used to represent previously uncategorized tasks. An example

could be an extremely dynamic environment for this pattern.
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Figure 4.8. Gently Shaking CPU and Memory Workloads.

In addition to these patterns with generated workloads, a real-time video stream-

ing application is separately deployed on the framework to demonstrate the behavior

with an actual IoT application. The experiments carried out with this real-world ex-

ample can be found in Section 4.4.

4.3. Experiments on the Co-Location of Workloads

The overall limits of the system are determined by the physical limitations of

the system, the number of applications running on the host, and their resource con-

sumption. An edge environment where multiple IoT devices and applications coexist

will be replicated with the following experiments, and the orchestration framework’s

scheduling and resource allocation capabilities will be observed. In each experiment, a

subset of containerized applications listed in Table 4.1 are deployed on the same device

to demonstrate four different scenarios of co-located workloads.
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Figure 4.9. Real-world CPU and Memory Workloads.

4.3.1. All Workloads with Ample Resource Specifications

In the first experiment, all five workloads will be started simultaneously with

their resource limit specification set generously. In the memory workload, both Lbase
mem,j

and Lrequest
mem,j are set higher than their actual usage for both workloads. Lrequest

i,j amounts

to around 50% more than the maximum memory usage, and Lbase
mem,j only 20% more.

For the CPU utilization, Lrequest
cpu,j is given as double the utilization rate expected to

be seen from the container. Lbase
i,j is set to half of the actual value to observe. The

subsequent requests after the Lrequest
cpu,j cannot be assigned because of the limited resource

of the system. As indicated by Figure 4.10, all five memory workloads have started

simultaneously with more than enough resources necessary for them to complete their

actual work. Suppose the limits set by the developer can replicate the customer’s

experience this closely. In that case, the resource limits converge to the actual usage

in a few iterations of optimization steps every 5 minutes. The initial delay before

the first optimization allows the framework to collect enough metrics to understand

the characteristic of the workload and make utilization predictions, P util
i,j (t), for the

upcoming optimization interval.
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Figure 4.10. Co-Located Memory Workloads with Ample Resource Specifications.
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Figure 4.11. Co-Located CPU Workloads with Ample Resource Specifications.

(a) CPU utilization of each container.

(b) Throttling percentage of each container.
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Figure 4.11 draws a scenario for the CPU utilization where the combined value

of Lrequest
cpu,j exceeds the system’s resources, Stotal

cpu . Thus, the first deployment of the 4th

workload with Lrequest
cpu,j is rejected and only deployed afterwards with Lbase

cpu,j in a second

attempt by the framework. With the first four workloads running on the system,

neither Lrequest
cpu,j nor Lbase

cpu,j for the fifth workload can be satisfied. The deployment of

the fifth application is rejected. The limits of the successfully deployed workloads are

initially lowered drastically with a constant Lscale
down,j value, which is later adjusted based

on P util
cpu,j and P throttle

j resulting in more minor decrements. It should be noted that

CPU workloads are generated using a sequence of CPU tasks as previously discussed in

Section 4.1. The throttling percentages seen in Figure 4.11 are based on the individual

CPU tasks as previously shown in Figure 4.4. After the fourth optimization attempt,

all limits converge to an upper limit of 10% above the P util
cpu,j. If the fifth workload were

introduced to the system now, the framework would accommodate it as well.

4.3.2. All Workloads with Drastically Low Resource Specifications

The application developer does not have a complete picture of the actual environ-

ment the application is supposed to run in. They set the necessary Lbase
mem,j, and Lrequest

mem,j

to satisfy the SLAs. If the system cannot honor these, the deployment is expected

to be rejected. The application could potentially be deployed to an edge system with

resources vastly different from the test setups. Also, the customer could be running

multiple applications competing for resources.

The following experiment will create a scenario where these specifications are not

just imperfectly tuned but drastically wrong to observe the framework’s behavior in

less than ideal situations. The simultaneous deployment of all five workloads will be

continued, but their resource limit specifications are set to 10% of the actual maximum

resource usage. Approved memory workload deployments are expected to recover after

a few failed restarts, and CPU workloads are expected to reach the same limits as the

previous experiment.
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Figure 4.12. Co-Located Memory Workloads with Drastically Low Resource

Specifications.

With only 10% of the actual resource available, all five memory workloads failed

to start for the first couple of tries as shown in Figure 4.12. After the initial two de-

ployment attempts with no prior knowledge of the application, the framework begins

assigning rapidly increasing Ltarget
mem,j values based on Lbase

mem,j incremented by Lscale
mem,j by

several retry counts, previously discussed in Section 3.4.4.2. Then, it can be seen that

after the first four tries, the first and second workloads can be deployed as their re-

source usage is comparatively lower than the rest in the first one third of their period.

The remaining three workloads keep getting killed as they immediately try to allocate

more memory than allowed by Lcurrent
mem,j . These frequent restarts cause their Ltarget

mem,j

to increase rapidly, allowing more memory allocation within the workload. However,

the final Ltarget
mem,j value reached by these bursts of up scaling does not represent the

container’s actual Cutil
mem,j. Once the containers are deployed, their limits are lowered

by Lscale
mem,j allowing the system to find a tighter fit based on P util

mem,S.
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Figure 4.13. Co-Located CPU Workloads with Drastically Low Resource

Specifications.

(a) CPU utilization of each container.

(b) Throttling percentage of each container.

The deployment behavior of the CPU workloads vastly differs from the memory

workloads as shown in Figure 4.13. This is tied to the absence of an error similar

to OOMKilled. Therefore, all five deployments are accepted simultaneously with their

misconfigured Lrequest
cpu,j values. These workloads typically exhibit a Cutil

i,j higher than this

Lcurrent
cpu,j . Consequently, they are all immediately throttled. The clearest indicator in

Figure 4.13 is the second phase of the fourth workload, where the Cutil
i,j would typically

amount to 600m, 60% of the CPU time. As shown in Figure 4.7, given enough CPU

time, this workload moves onto the third phase at the 400 seconds mark. However, in

this case, the same milestone is achieved at the 600 seconds mark, indicating that the

application is heavily throttled. The framework optimized these Lcurrent
cpu,j responsible

for the throttling after a couple of optimization cycles, eventually matching the limits

similar to those in Figure 4.11.
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4.3.3. Separate Deployment of Workload Pairs

In the first two experiments, deployments of applications were all requested si-

multaneously. And given enough optimization loops, they always converge to a limit

bounding the resource usage of the applications. However, in an IoT edge system, both

devices and applications are suspect to change. In this experiment, workloads 1 and 2

will be started simultaneously. Once no further optimization is necessary for the first

two workloads, the second pair, workload 3 and 4, will be introduced to a stabilized

system, and their effects will be observed.
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Figure 4.14. Separate Deployment of Memory Workload Pairs.

As shown in Figure 4.14 and Figure 4.15, the outcome is the same for CPU and

memory workloads. The optimization steps adapt to the new workloads without inter-

fering with the past deployments. The frameworks’ optimization loops are independent

of the arrival of the new deployment. Once enough data is collected for predictions to

be performed on the newly introduced applications, optimization cycles will also start

to include those. When they arrive at the system, the framework can reach the same

limits for the application.
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Figure 4.15. Separate Deployment of CPU Workload Pairs.

(a) CPU utilization of each container.

(b) Throttling percentage of each container.

4.3.4. Extreme Resource Constraints on the System

Most applications deployments were successfully accepted in all previous experi-

ments as the system was not previously utilized. The final set of experiments studies

the case where there are tighter resource constraints on the system due to pre-existing

deployments. These deployments are simulated by a sixth workload which can con-

stantly utilize significantly more resources than the rest. Workloads from 1 to 3 will

be deployed on this further limited set up to replicate the system overloaded by appli-

cations.

A sixth workload with a memory limit, Lcurrent
mem,j , of 600MB is initially started to

limit Savail
mem to 400MB as shown in the first graph of Figure 4.16. Then, deployment

requests for the first three memory workloads are sent. First two workloads were able

to be deployed with their Lrequest
mem,j . After these two deployments, the third workload

cannot be deployed as there is not enough memory for Lrequest
mem,j and Lrequest

mem,j specifications

of the third workload.
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Figure 4.16. Memory Workloads Deployed Under Extreme Resource Constraints.

(a) Deployments on a System with 400MB Memory Availability.

(b) Deployments on a System with 200MB Memory Availability.

Then, another experiment is run with a similar configuration, but the memory

limit of the extra workload, Lrequest
mem,j , is increased to 800MB to limit Savail

mem to 200MB.

Then deployment requests for the first three memory workloads are sent. As shown in

the second graph of Figure 4.16. Once the first deployment is accepted, any subsequent

deployments would require more memory than Stotal
mem. These workloads are tried twice

with Lrequest
mem,j and Lbase

mem,j before rejected.

As shown in the first CPU graph of Figure 4.17(a), the extra workload is allo-

cating 650m of the total available CPU, Savail
cpu , of 1000m which limits Savail

cpu to 350m.

When deployment requests for the first three deployments are sent the first one is ac-

cepted. Since the first deployment is never rejected, Lcurrent
cpu,j is set to 300m based on

Lrequest
cpu,j . However, the system now lacks the resources, Savail

cpu to deploy the remaining

two workloads. These workloads are tried twice with Lrequest
cpu,j and Lbase

cpu,j before rejected.

Then, the experiment is run again with even tighter resources by giving the extra

workload 900m CPU utilization to limit Savail
cpu to 100m. A similar deployment pattern
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can be seen in the second CPU graph in Figure 4.17(b). The only difference is that

the first workload is deployed with Lbase
cpu,j as there is not enough Savail

cpu for Lrequest
cpu,j .
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Figure 4.17. CPU Workloads Deployed Under Tighter Resource Constraints.

(a) Deployments on a System with 350m CPU Availability.

(b) Deployments on a System with 100m CPU Availability.

4.4. Experiment with a Real-time Video Streaming Application

Throughout this work, the heterogeneity of IoT hardware and software was em-

phasized. The workload patterns are a logical method to categorize heterogeneous IoT

applications. Nevertheless, the framework’s behavior should also be observed with an

actual IoT application. A real-time streaming application is selected for this experi-

ment. This application transmits the video data generated by a multimedia device such

as a camera through the local network with Real-Time Messaging Protocol (RTMP).

The full application pipeline is illustrated in Figure 4.18.

The RTMP server is a containerized application normally distributed through

DockerHub [84]. The image of the same application can be delivered and deployed

through our framework. This application’s purpose is to share the video footage from



68

Open Broadcaster Software (OBS), which can capture camera, video, or other multime-

dia footage with multiple clients in the same network. After setting Lrequest
mem,c and Lrequest

cpu,c

as 100MB and 100m respectively, an application request is sent to the framework.

OBS Studio

Local Device Play Video

Video Streaming
Application

Camera
Access Point

Container

Local Device Play Video

Figure 4.18. Real-time Video Streaming Application Pipeline.1

After going through the analysis steps, the application is deployed with Lrequest
r,c

where r in {cpu,mem}. The initial observation is the low resource consumption of

the application as shown in Figure 4.19. This indicates that an RTMP server is a

suitable deployment for resource-constrained edge gateways in a real-world scenario.

The application continues to exhibit low and constant resource utilization. After the

optimization steps, limits for both resources are reduced close to Lmin
mem and Lmin

cpu .

Although up to 25% CPU throttling is observed after the CPU utilization optimization,

no extra frame drops were observed on the video playback.

The primary optimization metric should typically be network usage as a video

streaming application. Although transmitted bytes metric is being collected by the

Monitor as shown in Section 3.4.4.1, the optimization workflow does not make use

of network metrics yet. In the future, the Analyzer and Forecaster components of

the framework can be configured to include the remaining fields in the optimization

analysis steps to have more accurate predictions for a broader scope of applications.

4.5. Experiments with Cluster Deployment

The cluster deployment experiment is carried out with three resource-constrained

devices with identical resources. This experiment is the realization of the high-level

1Licenses for the icons are as follows: OBS Logo, Hugh ”Jim” Bailey, Public domain
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design presented in Figure 3.19. As previously discussed in Section 3.5, there are some

extra configuration steps in a cluster deployment. First, the IP address of each device is

noted. Then, on each device, the MQTT configuration file is updated with two bridge

connections towards the other two devices. In the same file, the bridged topics, deploy

and monitor, are also defined. These configurations can be found in Appendix C for

each device. After these configurations, the MQTT broker on each device is started,

and our framework is deployed.
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Figure 4.19. Real-time Streaming Application Deployment.

(a) Memory usage of the container.

(b) CPU utilization of the container.

(c) Throttling percentage of the container.

The experiment consists of sending deployment requests on a single device, device

A, and observing the load balancing capabilities of the framework across all three

devices, as shown in Figure 4.20. The expected behavior is for the monitoring and

deployment messages to be shared across the network. Then based on these messages,

each device should decide on the ideal candidate device to accept the deployment on

its own in a decentralized manner. Therefore, deployment messages for the first four

memory workload patterns are sent sequentially after each accepted deployment.
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Figure 4.20. Cluster Deployment Setup with Three Devices.

These four individual deployments are load-balanced across the three connected

devices based on their resource availability. It should be noted that if the available

resources, Savail
r , of multiple devices are the same, the device that has determined itself

as the best candidate proceeds with the deployment. In this experiment, the value

of IP addresses increases from device A to C, where device A is the device with the

smallest IP address. Since in the beginning, Savail
r is the same for all devices, the first

application is deployed on device A. After this deployment, monitoring result messages

published by device A on cluster/monitor topic start reporting its reduced resource

availability. Devices B and C update the resource availability hash maps that they

keep locally with this decreased value. With each message, all three devices synchro-

nize their resource availability information.
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Following the first deployment, a deployment request for the application with the

second workload pattern is sent to device A. If the framework had been deployed on

a single device, device A would have continued with the deployment. In the cluster

deployment, this request is shared over cluster/deploy topic. Then, each device checks

its resource availability hash maps and identify device B as the processor of the second

deployment request. After the deployment analysis is conducted on device B, the

application is deployed. If the request fails to pass the analysis on device B, the

Deployer of device B picks up the rejected deployment message. A new deployment

message can be broadcasted with the next Ltarget
i,j value on the cluster/deploy topic as

illustrated in Figure 3.12.

The same steps are followed for the remaining two applications. The final dis-

tribution of deployed applications on the devices can be seen in Figure 4.20 after all

deployments are completed. Without the cluster deployment, all four applications

would have been deployed on a single device. An experiment for this case was carried

out previously in Section 4.3.1. It should be noted that the cluster setup does not intro-

duce latency overhead during deployments. If the application is deployed on the same

device that has received the initial deployment request, the workflow is identical to

the single device setup. Only a single extra event is exchanged over the cluster/deploy

topic if another device satisfies the deployment request while the rest of the workflow

stays the same.
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5. CONCLUSION AND FUTURE WORK

In this thesis, a study is made on the decentralization of computing and or-

chestration edge IoT systems. The challenges introduced by the heterogeneity of the

edge layer are investigated. Previous research shows that the computing capabilities

of the edge devices can be utilized to offload some IoT tasks previously done on the

cloud. Although resource-constrained, edge gateway devices are capable of running

such tasks. Typically, these devices are centralized and tightly coupled with their ap-

plications. OS-level virtualization opens up the possibility of a single gateway device

hosting multiple applications. A framework is designed to govern the co-location of

container applications on resource-constrained edge gateway devices. The framework’s

application delivery and orchestration capabilities are presented with the choices made

to achieve decentralization across all components.

A smart contract is written for the application delivery steps where developers can

publish container applications. The same contract can be used to share applications’

resource specifications with the framework running on the edge to establish SLAs. The

Ethereum blockchain and a decentralized image registry are used through a distributed

files system, IPFS, to achieve a fully decentralized workflow. The smart contract

also provides support for updating the application and the resource specifications.

With the separation of concerns in mind, four different containerized components are

implemented to orchestrate the deployed applications. An event-based communication

workflow is introduced for communication within the distributed components of the

framework. This enables the individual components of the framework to coordinate

the orchestration tasks asynchronously using the publish/subscribe pattern. These

components are responsible for monitoring, container availability, resource allocation,

and scaling. Another smart contract is written to manage the archival process of long-

term metrics and use IPFS to back up past knowledge. The dynamic scaling operations

are evaluated within the framework with time series forecasting and analysis.
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A set of containerized applications representing various workload patterns of IoT

tasks is created to analyze the framework’s applicability. These applications are de-

signed in pairs where each application in a pair depicts either CPU utilization or

memory usage. The resource allocation decisions are also based on these two system-

level metrics. The framework’s capabilities are tested on a Raspberry Pi 4 Model

B. A systemd slice is created to limit further the resource available on the device to

a single CPU and 1 GB of memory. Then, these applications are deployed in var-

ious combinations and times, each representing different use cases. The scheduling

and orchestration capabilities of the framework are observed based on the deployment

and resource optimization decisions. In all iterations, the framework was able to ad-

just their resource allocation and ensure the co-location of deployed applications while

honoring the resource specifications defined by the publisher. The framework retries

failed deployments with revised resource constraints and adapts the limits based on

the forecasting results of active containers’ resource utilization.

The framework can be extended by improving the configuration steps and orches-

tration workflow in cluster deployment where the load is distributed across multiple

gateways in the same edge network. Service discovery would be the initial improve-

ment in this setup to automatically discover each gateway device on the network.

Once service discovery is set in place, migration opportunities can be investigated.

Live migration methods like Checkpoint-Restore in Userspace (CRIU) can boost con-

tainer availability under tight resource constraints [85]. A migration analysis step can

be introduced to mark applications for migration to a new host with higher resource

availability. Such migration methodologies ensure that the state of the container is

saved, and once relocated to a new host, its execution can resume from the saved state

with minimal disruption.
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geneous Servers”, L. Borzemski, J. Światek and Z. Wilimowska (Editors), Infor-

mation Systems Architecture and Technology: Proceedings of 38th International

Conference on Information Systems Architecture and Technology – ISAT 2017 ,

Advances in Intelligent Systems and Computing, pp. 262–271, Springer Interna-

tional Publishing, Cham, 2018.

18. Benet, J., “IPFS - Content Addressed, Versioned, P2P File System”, arXiv Com-

puting Research Repository [CoRR] , 2014.

19. Dias, D. and J. Benet, “Distributed Web Applications with IPFS, Tutorial”,

A. Bozzon, P. Cudre-Maroux and C. Pautasso (Editors), Web Engineering , Lec-

ture Notes in Computer Science, pp. 616–619, Springer International Publishing,

Cham, 2016.

20. “Take a Look at Pubsub on IPFS”, https://blog.ipfs.io/25-pubsub/, accessed

in February 2022.

21. Chen, Y. and T. Kunz, “Performance Evaluation of IoT Protocols Under a Con-

strained Wireless Access Network”, International Conference on Selected Topics

in Mobile Wireless Networking (MoWNeT), pp. 1–7, 2016.
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APPENDIX A: SETTING UP DOCKER RESOURCE

CONSTRAINTS

A normal Docker setup runs with no resource constraints on the parent system.

Although, the Desktop version offers resource customization settings there is no such

setting for the server version of Docker. On the Linux kernel, slice units can be used

to manage resources of processes. As long as the Docker daemon is configured to run

on a slice of its own, all containers running will satisfy the constraints set on the same

slice limit. A new slice is created:

• /etc/systemd/system/docker limit.slice

In the slice configuration, it’s possible to set limits for CPU and memory. The

CPUQuota is set to use a single CPU. The MemoryLimit is set to 1GB. MemorySwap is

also disabled. After the slice unit is created, Docker’s cgroup-parent should be assigned

to this newly created slice. The cgroup can be set inside ”/etc/docker/daemon.json”.

By restarting the daemon it can be observed with the docker info command that slice

is active and Docker daemon is restricted by the configuration set.
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APPENDIX B: EXAMPLE ORCHESTRATION

MESSAGES

{

” t r a c e i d ” : ”1” ,

” ac t i on ” : ” deployment request ” ,

” image name ” : ” a p p l i c a t i o n ”

}

Figure B.1. An Example of Deployment Request.

{

” t r a c e i d ” : ”1” ,

” ac t i on ” : ” dep l oyment ana ly s i s r eque s t ” ,

” image name ” : ” a p p l i c a t i o n ” ,

” r e s o u r c e s ” : {

”cpu ” : 5 ,

”memory ” : 300000000

} ,

” f o r e c a s t f i e l d s ” : [ ” cpu usage , memory usage ” ]

}

Figure B.2. An Example of Deployment or Optimization Analysis Request.
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{

” t r a c e i d ” : ”1” ,

” ac t i on ” : ” f o r e c a s t r e q u e s t ” ,

” image name ” : ” a p p l i c a t i o n ” ,

” r e s o u r c e s ” : {

”cpu ” : 5 ,

”memory ” : 300000000

} ,

” f o r e c a s t f i e l d s ” : [ ” cpu usage ” , ”memory usage ” ] ,

” images ” : {

” a p p l i c a t i o n 1 ” : {

” c o n t a i n e r s ” : {

”9d15 . . . 4 4 dc ” : {}

}

} ,

” a p p l i c a t i o n 2 ” : {

” c o n t a i n e r s ” : {

”be23 . . . 5 bee ” : {}

}

} ,

” a p p l i c a t i o n 3 ” : {

” c o n t a i n e r s ” : {

” 3 9 5 0 . . . 0 2 a9 ” : {}

}

}

}

}

Figure B.3. An Example of Forecast Request.
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{

” t r a c e i d ” : ”1” ,

” ac t i on ” : ” f o r e c a s t r e s p o n s e ” ,

” image name ” : ” a p p l i c a t i o n ” ,

” r e s o u r c e s ” : {

”cpu ” : 5 ,

”memory ” : 300000000

} ,

” f o r e c a s t f i e l d s ” : [ ” cpu usage ” , ”memory usage ” ] ,

” images ” : {

” a p p l i c a t i o n 1 ” : {

” c o n t a i n e r s ” : {

”9d15 . . . 4 4 dc ” : {

” p r e d i c t i o n ” : {

” cpu usage ” : [ 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 , 0 . 0 ] ,

”memory usage ” : [ 1839104 . 0 , 1839104 .0 ,

1839104 .0 , 1839104 .0 , 1839104 .0 ]

}

}

}

} ,

” a p p l i c a t i o n 2 ” : {

” c o n t a i n e r s ” : {

”be23 . . . 5 bee ” : {

” p r e d i c t i o n ” : {

Figure B.4. An Example of Forecast Response.
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” cpu usage ” : [6 .071608496023066 ,

6 .0519568969621504 , 5 .966500648610864 ,

5 .674217082010118 , 5 .633116742073893 ] ,

”memory usage ” : [ 6 2 2 5 9 2 . 0 , 622592 .0 , 622592 .0 ,

622592 .0 , 622592 . 0 ]

}

}

}

} ,

” a p p l i c a t i o n 3 ” : {

” c o n t a i n e r s ” : {

” 3 9 5 0 . . . 0 2 a9 ” : {

” p r e d i c t i o n ” : {

” cpu usage ” : [5 .384377813287831 ,

6 .991252506916891 , 9 .493952140427064 ,

10.357942298607727 , 11 .192738901089502 ] ,

”memory usage ” : [5562666 .274354553 ,

5564592.8728406355 , 5562953.402692312 ,

5562986.773036226 , 5563218 .888662458 ]

}

}

}

}

}

}

Figure B.4. An Example of Forecast Response. (cont.)
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{

” t r a c e i d ” : ”1” ,

” image name ” : ” a p p l i c a t i o n ” ,

” ac t i on ” : ” deploy ok ” ,

”message ” : ”Enough fu tu r e r e s o u r c e s ” ,

” r e s o u r c e s ” : {

”cpu ” : 5 ,

”memory ” : 300000000

}

}

Figure B.5. An Example of Deployment Accept.

{

” t r a c e i d ” : ”2” ,

” image name ” : ” a p p l i c a t i o n ” ,

” r e s o u r c e s ” : {

”cpu ” : 30 ,

”memory ” : 150000000

} ,

” a c t i on ” : ” cance l ” ,

”message ” : ”Not enough r e s o u r c e s ”

}

Figure B.6. An Example of Deployment Reject.
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{

” t r a c e i d ” : ”3” ,

” ac t i on ” : ”update ” ,

” image name ” : ” a p p l i c a t i o n 1 ” ,

” c o n t a i n e r i d ” : ” 3 9 5 0 . . . 0 2 a9 ” ,

” r e s o u r c e s ” : {

”cpu ” : 6 . 0 ,

”memory ” : 10000000

}

}

Figure B.7. An Example of Deployment Update.

{

” a p p l i c a t i o n 2 ” : {

” c o n t a i n e r s ” : {

”54 aa . . . 1 f96 ” : {

” s t a t s ” : {

” cpu usage ” : 8429 ,

”memory usage ” : 5292032 ,

” b lock read ” : 0 ,

” b l o c k w r i t e ” : 0 ,

” network read ” : 62639 ,

” network wr i te ” : 690 ,

” read t ime ” : ”2022−01−01 1 0 : 0 6 : 4 4” ,

” t h r o t t l e ” : 82

}}

}}

}

Figure B.8. An Example of Monitor Output.
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APPENDIX C: MQTT BRIDGE CONFIGURATIONS

# dev i ce A address 1 9 2 . 1 6 8 . 1 . 1

connect ion bridge−A−to−B

address 1 9 2 . 1 6 8 . 1 . 2 : 1 8 8 3

t o p i c monitor out 0 fw/ fw/ c l u s t e r /

t o p i c deploy out 0 fw/ fw/ c l u s t e r /

connect ion bridge−A−to−C

address 1 9 2 . 1 6 8 . 1 . 3 : 1 8 8 3

t o p i c monitor out 0 fw/ fw/ c l u s t e r /

t o p i c deploy out 0 fw/ fw/ c l u s t e r /

Figure C.1. Device A Mosquitto Configuration.



93

# dev i ce B address 1 9 2 . 1 6 8 . 1 . 2

connect ion bridge−B−to−A

address 1 9 2 . 1 6 8 . 1 . 1 : 1 8 8 3

t o p i c monitor out 0 fw/ fw/ c l u s t e r /

t o p i c deploy out 0 fw/ fw/ c l u s t e r /

connect ion bridge−B−to−C

address 1 9 2 . 1 6 8 . 1 . 3 : 1 8 8 3

t o p i c monitor out 0 fw/ fw/ c l u s t e r /

t o p i c deploy out 0 fw/ fw/ c l u s t e r /

Figure C.2. Device B Mosquitto Configuration.

# dev i ce C address 1 9 2 . 1 6 8 . 1 . 3

connect ion bridge−C−to−A

address 1 9 2 . 1 6 8 . 1 . 1 : 1 8 8 3

t o p i c monitor out 0 fw/ fw/ c l u s t e r /

t o p i c deploy out 0 fw/ fw/ c l u s t e r /

connect ion bridge−C−to−B

address 1 9 2 . 1 6 8 . 1 . 2 : 1 8 8 3

t o p i c monitor out 0 fw/ fw/ c l u s t e r /

t o p i c deploy out 0 fw/ fw/ c l u s t e r /

Figure C.3. Device C Mosquitto Configuration.




