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ABSTRACT

A GAN-BASED HYBRID DATA AUGMENTATION

FRAMEWORK ON CHEST X-RAY IMAGES AND

REPORTS

Classical data augmentation techniques are widely used by many image classifi-

cation applications in the absence of adequate training data. These data augmentation

techniques consists of but not limited with reflection, random cropping, re-scaling exist-

ing images and transformations. These techniques are widely used in practice during

training classifiers with extended versions of real-world datasets. Increasing dataset

size with realistic synthetic data allows us to improve the classification accuracy by

making use of additional realistic variety. With the great representational power of

GANs, learning the distribution of real data with a consistent level of variety allows

us to generate samples with nearly-unobserved discriminative features. In our ap-

proach we used the aforementioned generative capability of GANs by utilizing state of

the art GAN augmentation framework titled as StyleGAN2-ADA. After the training

SytleGAN2-ADA in class conditional setting, we extended the dataset with different

numbers of additional generated samples in order to observe the correlation of accu-

racy and augmentation strength. We extended our approach by using StyleCLIP to

experiment disentangled feature augmentations which is a novel approach in the field

of GAN augmentation. To make use of StyleCLIP more efficiently, we fine-tuned CLIP

with X-ray images and modified entities which are extracted from corresponding med-

ical reports. We used the DeepAUC framework which is proven to be efficient for

multi-disease labelled X-ray classification tasks to test the performance of the GAN

augmentation. In our approach, we observed that the classification accuracies were

improved compared to without text-manipulated GAN augmented setting.
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ÖZET

GÖĞÜS X-RAY GÖRÜNTÜLERİ VE RAPORLARI

ÜZERİNE GAN TABANLI HİBRİT VERİ GÜÇLENDİRME

YÖNTEMİ

Klasik veri artırma teknikleri, yeterli eğitim verisinin olmadığı birçok görüntü

sınıflandırma uygulaması tarafından yaygın olarak kullanılmaktadır. Bu veri artırma

teknikleri, yansıtma, rastgele kırpma, mevcut görüntülerin yeniden ölçeklenmesi ve

dönüşümlerden oluşur. Bu teknikler yardımıyla gerçek veri kümelerinin artırılmış

halinin sınıflandırıcıların eğitimi sırasında kullanılması günümüzde popülerdir. Gerçek-

çi sentetik verilerle veri kümesi boyutunu artırmak, veri kümesine yeni ve gerçekçi

varyasyonlar katılması vesilesiyle bu veri kümesi üzerinde eğitilen sınıflandırıcıların

doğruluğunu artırmamızı sağlamaktadır. GAN’ların temsil gücü ile birlikte gerçek ver-

ilerin dağılımını tutarlı bir çeşitlilik düzeyiyle öğrenmesi, neredeyse gözlemlenmeyen

ayırt edici özelliklere sahip örnekler oluşturmamızı sağlar. Yaklaşımımızda, StyleGAN2-

ADA şeklinde adlandırılan GAN veri artırma yöntemini kullanarak GAN’ların yukarıda

bahsedilen yaratıcı yeteneklerinden faydalandık. Sınıf koşullu SytleGAN2ADA eğiti-

minden sonra, başarım ve veri artırma miktarı arasındaki korelasyonu gözlemlemek

için veri kümesini farklı miktarlarda oluşturulan ek örneklerle genişlettik. Ayrıca GAN

vasıtasıyla veri kümelerini güçlendirme alanında yeni bir yaklaşım olan ayrıştırılmış

özelliklere yönelik veri artırma yöntemini denemek için StyleCLIP’i kullandık. Style-

CLIP’ten daha iyi faydalanabilmek amacıyla CLIP modelini X-ray görüntüleri ve rapor-

lardan ayıklanmış anahtar cümleciklerle tekrar eğittik. GAN veri artırma yöntemlerinin

performansını test etmek için CheXpert yarışması birincisi olan DeepAUC yöntemini

kullandık. Yaklaşımımızda sınıflandırma başarımlarının GAN veri artırma yöntemleri-

nin kullanılmadığı durumlara göre daha yüksek olduğunu gözlemledik.
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1. INTRODUCTION

Contemporary developments in CNNs have improved the state of the art results in

numerous domains such as agriculture, manufacturing, self-driving cars, surveillance,

toll-collection, medical imaging and so on. The main source of this success are the

high availability of the datasets and enhanced low-priced computing resources. To

develop deep learning based computer vision applications, data collection process must

be carefully conducted. However, if the collected data is not sufficient, the computer

vision application may not be successful as it is desired. Image segmentation, object

detection and image classification is the hearth of the almost every deep learning based

computer vision application. These tasks utilizes gigantic layers with huge number

of parameters that requires to be optimized. Since the “engine” of computer vision

applications gets bigger day by day, the engine requires more and more fuel of “data”.

However, while the number of datasets is increasing, most of the datasets suffers from

lack of representational power which is similar to using low-quality fuel. In our approach

we used text-based style manipulated GAN augmentation in order to improve the

quality and quantity of the data.

Image classification problem one of the fundamental problems in computer vision.

To solve this problem, classifiers learn to frame crucial discriminative features for an

object in an image. Beside learning these representative features, classifiers also ignore

the unimportant parts of an image such as noise, bare background, orientation of

an object or size of an object. Most of the widely used deep learning based image

classification models are fed with an input image and pass these information throughout

several convolutional filters and pooling layers. In the one hand, convolutional filters

enable computer vision models to extract discriminative features. On the other hand,

pooling layers compresses the data in order to reduce the size of information without

hurting representation power. By employing these convolutional filters and pooling

layers in a structure, in the end it yields feature maps. All these feature maps are then

flattened into a single tensor which is input of the later-coming fully connected layers.
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These layers outputs the probability distribution of class scores. In order to predict a

class for an image, the index of the highest value among these classes is selected.

Classical data augmentation techniques are widely used by many image classifi-

cation applications in the absence of adequate training data. These data augmentation

techniques consists of but not limited with reflection, random cropping, re-scaling exist-

ing images and transformations. These techniques are widely used in practice during

training classifiers with extended versions of real-world datasets. Increasing dataset

size with realistic synthetic data allows us to improve the classification accuracy by

making use of additional realistic variety. With the great representational power of

GANs, learning the distribution of real data with a consistent level of variety allows us

to generate samples with nearly-unobserved discriminative features. In our approach

we used the aforementioned generative capability of GANs by utilizing state of the

art GAN augmentation framework titled as StyleGAN2-ADA [1]. After the training

SytleGAN2-ADA in class conditional setting, we extended the dataset with different

numbers of additional generated samples in order to observe the correlation of accu-

racy and augmentation strength. We extended our approach by using StyleCLIP [2] to

experiment disentangled feature augmentations which is a novel approach in the field

of GAN augmentation. To make use of StyleCLIP more efficiently, we fine-tuned CLIP

with X-ray images and modified entities which are extracted from corresponding med-

ical reports. We used the Probabilistic Class Activation Maps framework (PCAM) [3]

which is proven to be efficient for multi-disease labelled X-ray classification tasks to

test the performance of the GAN augmentation. In our approach, we observed that the

classification accuracies were improved compared to without GAN augmented setting.

1.1. Motivation

Data is the new “petrol” thanks to the advanced data processing approaches.

However, collection of expert-annotated data is one of the bottlenecks in the field of

deep learning. Gathering labeled data for object recognition tasks is rather straight-

forward compared to collecting data for medical decision support applications. Data
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collection for medical downstream tasks require expert examinations and cross valida-

tions. On the contrary, object recognition tasks do not require further expert knowl-

edge. In practise, even a children can annotate and compile such datasets. Yet, we

require board-certified expert medical doctors with years of experience for annotating

and creating such datasets. With our approach, we aimed to decrease the need of

expert knowledge for medical downstream tasks. Moreover, creating such datasets is

not the only challenge since some of the annotations include personal information. In

order to make the dataset public, it must be de-indentified. In other words, the annota-

tions should be free of any kind of sensitive personal information. Since the generated

data with our approach does not belong to any real person. Our approach relaxes

the de-identification processes. This facilitates the contribution to public datasets.

Our approach is also able to reveal development phases of the medical conditions with

interpolation videos. This media could be used as educational material for medical

students.

1.2. Problem Statement

Image classification using deep learning techniques requires large number of image

samples in order to train accurate and precise classifiers. However, training classifiers

with small and unbalanced datasets such as medical datasets is a challenging task. Ac-

cording to Sampath et al. [4] image classifiers mostly designed for performing well with

balanced datasets. However, they stated that most of the real-world datasets suffers

from imbalance of observed classes. According to their research, the class imbalance

problem is well known for image classification tasks. They indicated several different

categories for imbalance and size problems of real-world datasets. According to their

description, the ideal dataset should include enough amount of data for each class. If

a dataset has sufficient amount of data yet the data is not distributed for each class

evenly, they categorized that kind of datasets as uneven datasets. If the data is evenly

distributed within a dataset yet the total number of samples are not sufficient, they

categorized this kind of datasets as tiny datasets. The final category in their work is

absolute rare datasets which neither has sufficient data nor inter-class balanced sam-
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ples. In our research, we worked on chest X-ray dataset titled as CheXpert [5] which

could be considered as absolute rare dataset since the sample counts for each class is

extremely uneven distributed. In Figure 1.1, the properties of absolute rare datasets is

shown. To compensate the downsides of the dataset, we employed GAN augmentation

techniques. Thanks to GANs, it is possible to create realistic samples and augment

datasets to train better performing classifiers.

Figure 1.1. The visualization of the dataset types.

1.3. Summary of Contributions

In this work, we presented several contributions in the field of medical GAN

augmentation;

• synthetic additional data generation by using StyleGAN2-ADA,

• rule-based algorithm for information extraction from X-ray reports,

• evaluating CLIP by fine-tuning with different text extraction methods for medical

domain adaptation,

• using text-based latent space manipulations for data augmentation.

For our best knowledge, we are the first who uses StyleGAN2-ADA to generate

additional data for the CheXpert dataset. After data generation in class conditional

setting, we trained several classifiers to observe the effect of GAN augmentation to the



5

accuracies of the classifiers. The results showed that the performance of the classifiers

were improved with the help of additional GAN generated samples.

Although CLIP is a very powerful zero-shot classifier, we believed that it has

nearly no chest X-ray data in its original training set since the style manipulations with

original CLIP model was not consistent. Therefore, we fine-tuned original CLIP model

to leverage CLIP’s text-image embedding abilities in our problem domain. In our case,

since it is not possible to feed all the report data due to the context length constraint

of CLIP, we wanted to develop an algorithm which extracts important portions of the

reports. To manage this, we used scispaCy models which are trained on large corpus of

biomedical text. We extracted entities and entity relations with scispaCy models and

build our logic on the top of these outputs to create more machine-friendly reports that

do not exceed the size of the original CLIP’s context length. By using the fine-tuned

CLIP, we experimented with StyleCLIP to see if it is possible to augment the dataset

with style manipulations. Our preliminary results showed that it is possible to control

disease specific attributes to increase the classification score for a particular disease.
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2. BACKGROUND

This chapter covers the background information of our work. For the beginning,

we covered the basic concepts of Generative Adverserial Networks (GANs). Then, we

included advanced GAN approaches. In the end, we explained GAN augmentation

which is one of the key concepts of our research.

2.1. Introduction to GANs

There are different types of approaches when it comes to capture the probability

distribution for a given data set. Once the probability distribution for a given data

set is captured successfully, it enables us to populate realistic data samples by simply

drawing from the captured probability distribution. These approaches mainly lever-

age statistics, probability theory, linear algebra, multivariate calculus and optimization

theory. By utilizing the combinations of these mathematical tools, some popular gen-

erative models had been forged. Some of the examples from these generative models

could be given as Boltzmann Machine [6], Variational Autoencoders [7], Bayesian Net-

works [8] and Generative Adverserial Networks [9].

Deep Generative Modeling is an unsupervised learning method in deep learning

that includes auto-discovery of the consistencies or patterns in input samples so that

the model can be utilized to create new samples that might have been drawn from the

original data. However, the main area of this research is Deep Generative Modeling

with a focus on Generative Adversarial Networks.

Generative Adversarial Networks were firstly proposed by Ian Goodfellow et al.

in 2014 [9]. The proposed model consists of two different deep neural networks which

are the generator and the discriminator. On the one hand, the goal of the discriminator

is to classify whether the output of the generator is fake or real. On the other hand,

the objective of the generator is to deceive the discriminator network by generating
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realistic fake outputs as shown in Figure 2.1. During the training, both of the networks

learn internal representations to master their specific tasks by playing a mini-max game

where one is trying to outperform the other. In theory, at the end of this adversarial

game, they shall reach an equilibria point which leads the outputs of the generator to

be indiscriminable to the actual samples.

Figure 2.1. The concept of generative adversarial networks.

The generator network takes a fixed-size arbitrary one dimensional tensor as input

and creates a sample in the input domain. The tensor is usually drawn a Gaussian

distribution, and the tensor is utilized to trigger this creative operation. After the

training of GANs, points in this vector space shall represent the points in the input data

domain, modeling a squeezed representation of the input data distribution. This vector

spaces named as latent or hidden space. Hidden space consists of hidden variables or

latent variables which are beyond our observation space. That is the reason why it is

also called “hidden” space. The discriminator network is a simple binary classification

model and the aim of this network is to determine whether the input data is real or fake.

To this end, the discriminator network is fed with real and generated samples. The

ratio of real and generated samples used for feeding the discriminator network might

vary depending on the training strategy. However, using same number of generated

and real data for feeding the discriminator is widely used in most of the approaches.
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In the training phase, the discriminator is fed with both real and generated sam-

ples. For each real and generated samples, the discriminator assigns probabilities in

between 1 and 0. The assigned probability is the degree of reality for a given input

from the perspective of the discriminator. Therefore, realistic samples supposed to

be assigned to higher probabilities which are just about 1. Contrariwise, if the input

samples are considered as fake the samples are assigned to the probabilities which are

close to 0. The discriminator tries to minimize the distance between actual labels and

predicted labels. To do so, the discriminator needs to maximize the classification per-

formance. Nevertheless, in the generator’s training, the generator is fed with random

noise and expected to create such realistic outputs that confuse the discriminator. By

confusing the discriminator, the generator tries to maximize the distance between ac-

tual labels and predicted labels and that leads the classification performance of the

discriminator to decrease.

To comprehend GANs training completely, minimax GAN loss should be exam-

ined. For

min
G

max
D

V (D,G) = Ex∼pdata (x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))], (2.1)

the discriminator tries to maximize both logD(x) and log(1 − D(G(z))), which also

maximizes the classification accuracy of the discriminator. Conversely, the genera-

tor aims to minimize log(1 −D(G(z))) by forcing the discriminator to misclassify its

outputs.

Once the GANs training is completed, it enables us to generate almost anything.

There are high variety of applications which use the creativity of GANs. Alqahtani1

et al. [10] categorizes these applications in five sections which are image based applica-

tions, domain adaptation, sequential data based applications, improving classification

and recognition, miscellaneous applications. Image based applications includes genera-

tion of high quality images, image inpainting, super-resolution, person re-identification,

object detection, video prediction and generation, facial attribute manipulation, anime

character generation, image to image translation, text to image translation, face aging,
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human pose estimation, de-occlusion and image blending. Sequential data based ap-

plications consists of music and speech generation. Miscellaneous applications covers

drug discovery and molecule development in oncology.

2.2. GAN Frameworks

Since GANs firsty proposed by Goodfellow et al. [9] a new era in deep learning

has been emerged. According to Google Scholar, “Generative Adverserial Nets” [9]

paper recieved over 25000 citations until the begining of 2021. The overall citation

count of Ian Goodfellow’s academic papers which are mostly related to GANs is over

124.000. A simple comparison can describe the real meaning of the aforementioned

citation counts. Albert Einstein who considered to be one of the exceptional scientist

throughout the human history received nearly 136.000 citations until the end of 2020.

Charles Robert Darwin, the pioneer of “The Theory of Evolution”, also received nearly

170.000 citations until 2021. These numbers show that even for 7 years of period

GANs are influential on not only deep learning history but also entire science history.

From another point of view, the growing numbers of citations with respect to GANs

indicate that it is a highly active research field. In the literature, numerous variants

of GANs have been proposed. Some of the fundamental GANs variants could be given

as CGAN [11], DCGAN [12], LapGAN [13], InfoGAN [14], EBGAN [15], WGAN [16]

and so on.

Mirza and Osindero [11] proposed CGAN in 2014. Conditional GAN (CGAN) is

basically the conditional version of vanilla GANs. While training both of the generator

and the discriminator, there is also an additional condition parameter is included during

the learning process. The conditional parameter helps CGAN to model different output

data domains in only a pair of neural architectures which are the conditional generator

and the conditional discriminator. In other words, with this approach we are able to

compress many GANs into just one CGAN with a single controlling parameter. By

applying their method, it becomes possible to overcome scalability problem of output

classes. Moreover, their approach also tackles the problem of one-to-one mappings
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from input to output in the context of GANs. They experimented with two different

datasets which are MNIST and Flickr image dataset with user tags. They managed to

generate realistic class conditional outputs for each digit class after the training with

MNIST. For the second dataset, they adopted their approach for generating user tags

for a given input image. Once the training is done, their class conditional model was

able to create semantically meaningful tags with respect to input images.

Radford et al. [12] addressed the issue that unsupervised learning with CNNs

has seen little adaptation compared to supervised learning in computer vision appli-

cations. They proposed Deep Convolutional Generative Adverserial Networks (DC-

GANs) framework to lure attention on unsupervised learning applications. In their

approach, they described a set of constraints for Convolutional GANs’ architectural

topology in order to make the training process stable without scalability issues. To do

so they replaced all kinds of pooling layers with stride convolutions. They also used

Batch Normalization for both the generator and the discriminator. For the generator,

they used only ReLU for activations. For the discriminator, they chose Leaky-ReLU

as squashing function. In their work, they compared the trained discriminators with

other unsupervised classifiers and showed the performance likelihood between them.

Moreover, they visualized the learned filters by generator and they explored the latent

space with the help of vector arithmetics. Denton et al. [13] described a sequential

generative model which is able to produce high quality and natural looking images.

With LapGAN, they brought convolutional networks, GANs and Laplacian pyramid

framework together. They trained GANs layer by layer within the Laplacian pyramid

structure in order to encapsulate particular levels of details in each layer. In the gen-

eration phase, they consubstantiate generative models sequentially to build a single

high grade realistic output sample. In their approach, they used LSUN and MNIST,

STL and CIFAR10 datasets. For quantitative evaluation, they applied Parzen window

based log-likelihood estimates in order to compare their method with original GANs.

For qualitative evaluation, they developed an application which shows an image to

the participants and ask whether the shown image is real or fake. They analyzed the

results after obtaining the output of the evaluations.
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Chen et al. [14] introduced a framework named Information GAN (InfoGAN)

which extends GANs to the direction of information theory. In their approach, Info-

GAN model is capable of learning interpretable disentangled representations of input

data without any supervision. The objective function of InfoGAN is to maximize

the variational mutual information between a small set of hidden variables and the

observed samples. With the help of lower bound thresholding of mutual information

objective, their model managed to extract writing style from digit forms on the MNIST

dataset. Their model is also able to disentangle some visiual concepts which are hair

styles, absence or presence of eyeglasses and emotions. Their experiments show that

their approach archived to disentangle pose, lightning, elevation, rotation and width

on 3D objects with the aid of latent vector manipulation. Their method consumes

negligible additional computational resources compared to vanilla GANs. Therefore,

authors stated that their method does not bring any extra computational cost during

the training procedure.

Energy-Based GAN (EBGAN) was proposed by Zhao et al. [15] in 2016. EBGAN

could be described as the naive combination of auto encoders and GANs. Unlike

conventional GANs, EBGAN utilizes the discriminator as an auto encoder with energy

function where the real samples are assigned to low energy values and the generated

samples are assigned to high energy values. Therefore, the objective of the generator is

the minimize the energy value of generated samples and maximize the energy value of

actual samples. With EBGANs, authors managed to stabilize the training process and

scale the generation of high-quality images. They compared the convergence patterns

between conventional GANs and EBGAN with the aid of a variant of the Inseption

Score (IS) . They also analyzed Ladder Network bottom layer cost of EBGAN and

two of the Ladder Network variants. In their work they also observed that when the

generator in their framework was distant from convergence, the perfomance and the

quality of the gradients were increased.

Arjovsky et al. [16] introduced a GANs framework named Wasserstein GAN

(WGAN). In the contrast to conventional GANs, WGAN includes a novel loss function
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derived from Earth-Mover or Wasserstein distance. With this approach, they were

able to make the training process more stable and partially overcome the problem of

mode collapse. They also tackled vanishing gradient problem. Thanks to the expres-

sive learning curves they provided, hyperparameter tuning and debugging became less

effort consuming.

Boundary equilibrium GAN (BEGAN) was described by Berthelot et al. [17]. In

their proposed approach, they introduced a novel equilibrium enforcing method com-

bined with Wasserstein distance based cost function and auto encoder based GANs.

The main purpose of their proposed equilibrium enforcing concept is to balance the

discriminator and the generator at training time. Their method also offered a control-

ling technique for the trade-off between quality and diversity of the generated samples.

Moreover, they provided a global convergence measure with the help of the equilib-

rium concept. With the global convergence measure, it became possible to understand

whether the model has collapsed or the model reached its final stage.

Karras et al. [18] proposed a different framework named as Progressively-Growing

GAN (PGGAN) which is able to grow both the discriminator and the generator stage

by stage. The model starts to training with low resolution images and progressively

increases the depth of both the discriminator and the generator with additional layers.

At the end of the training, the model becomes to be able to generate high resolution

images. This approach offers high resolution (1024 × 1024) and high quality image

generation along with optimized training stability and decreased training time.

Generation of high resolution images with high fidelity is one of the challenging

tasks in the context of generative modeling. In order to overcome this challenge,

Brock et al. [19] proposed a computationally expensive yet effective framework called

BigGAN. Compared to prior state of the art frameworks, the neural networks in this

framework have nearly four times as many parameters. However, they were confronted

by stability issues due to the huge number of parameters and architectural changes.

They introduced a novel approach named as “Truncation Trick” in order to stabilize
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the training. Compared to prior works, they also improved Inception Score (IS) from 52

to 166 and Frechet Inception Distance (FID) from 19 to 7 for the down-scaled version

(128 × 128) of ImageNet dataset. Moreover, they also presented image interpolation

application which could be simply described as predicting the middle image between

to consecutive images.

Although generating high quality images with high resolution is an immense chal-

lenge, disentanglement of the style from an original image in a controlled manner is

another essential challenge. To tackle that issue, Karras et al. [20] presented another

framework titled as StyleGAN which is a style-based generator architecture for GANs.

In fact, this framework could be considered as improved version of PGGAN [18] with

additional style disentanglement and stochastic variation features. Their approach en-

ables unsupervised controllable separation of fine-grained features without damaging

the quality and the fidelity of the generated images. One of the significant contributions

of this approach is the utilization of the mapping network to create intermediate la-

tent vectors along with Adaptive Instrance Normalization (AdaIN) which provides the

control over the generator during the style transfer process. For quantifying the style

disentanglement, they described two novel metrics which are perceptual path length

and linear separability. After this work, they proposed an improved version of Style-

GAN called StyleGAN2 [21] after discovering the fact that water droplet-like artifacts

was caused by instance normalization. They redesigned the generator normalization

and improved progressive growing. In the end, StyleGAN2 outperformed the prior

state of the art results in the field of unconditional image modeling.

2.3. GAN Augmentation

GAN Augmentation is a relatively new approach for augmenting training data.

Before GAN augmentation there were some classical augmentation techniques which

includes yet not limited with random cropping, translation, transformation, reflection,

change of orientation, re-sampling and re-scaling. The training data is extended via

these operations to improve the classification accuracy . However, using GANs for
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generating additional training data is becoming active area of research in recent years

due to the facts that it does not require hand-crafted techniques and it has impressive

representational power of input data. The concept of GAN augmentation could be

found in Figure 2.2.

Figure 2.2. The concept of GAN augmentation.

Bowles et al. [22] proposed that the generated samples could be used for populat-

ing the training data. To do so, they used the PGGAN [18] architecture for modeling

the input data distribution. They combined the classical data augmentation techniques

with GANs augmentation in their experiments. Their experiments showed that using

both of these augmentation techniques are beneficial for improving classification preci-

sion. They also compared the classical augmentation techniques with GANs augmen-

tation. They conducted their experiments on different datasets in order to measure

the generalization performance of synthetic data augmentation strategy. Moreover,

they applied different extends of augmentations to observe the effect of augmentation

strength.
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Mariani et al. [23] created a framework named as Balancing GAN (BAGAN)

which aims to regularize unbalanced datasets in order to improve deep learning based

image vision tasks. They utilized adversarial learning for both majority and minority

classes. The model learned discriminative features from majority classes and extends

the minority class samples by effectively utilizing the learned features. Their architec-

ture includes an encoder module of an auto-encoder for improving latent space repre-

sentation of class specific features. Their experiments showed that BAGAN generated

images outperformed other state of the art adversarial networks in terms of fidelity in

the presence of imbalanced training data.

AugGAN is an GANs augmentation framework proposed by Huang et al. [24].

With this framework, they improved the results of classical deep learning based image-

to-image translation methods with adversarial training. The network consists of en-

coders, generators, disciminators and parsing networks. They observed that, training

Faster-RCNN and YOLO models with additional augmented data generated by Aug-

GAN was improved the object detection performance.

Lim et al. [25] introduced Doping framework in order to generate realistic sam-

ples for extending training datasets. Unlike other approaches, they focused on GANs

augmentation for unsupervised anomaly detection task. In their methodology, they

oversampled infrequent normal samples which are the main cause of false positives in

anomaly detection. However, working with high-dimensional data with multi-model

distributions is a challenging task for additional data generation. They reduced the

complexity of the datasets by using adverserial autoencoders. After, they collected

samples at the edge of the latent data manifolds which populates infrequent normal

samples successfully. According to their statement, their technique is the first data

augmentation method which deals with unsupervised anomaly detection problem. In

their experiments, they observed improvements on several datasets.
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3. RELATED WORK

In this chapter, we will cover the literature review related to our approach. Our

literature review focuses on Medical Image GAN augmentation, Latent Space Image

Manipulation on GANs and Medical Latent Space Manipulations on GANs.

3.1. Medical Image GAN Augmentation

Medical GAN augmentation is an active area of research. There are numerous

approaches use GAN data augmentation in medical domain. For instance, Frid-Adar

et al. [26] collected data from Sheba Medical Center for three specific diseases. They

adapted DCGAN, ACGAN and ACGAN discriminator to their experiments in order

to explore the effect of GAN augmentation for the classification task. They trained

classifiers for three different settings which are augmentations only, with additional

real images and with additional generated images. In their experiments, the classifier

which trained with additional generated images performed best. Kiyasseh et al. [27]

augmented time series dataset for their medical diagnosis classification problem. They

proposed their own framework called PlethAugment which utilizes three different con-

ditional GAN architectures which are CGAN with data sensitivity, DeLiGan with data

sensitivity and MADGAN. According to their experimental results, MADGAN out-

performed two of the other conditional GANs. Frid-Adar et al. [28] also used GAN

augmentation for medical data. The aim of their work is classificaiton of three different

liver lesions. Their classification experiments focused on training models with classical

data augmentation and additional generated images. For generating class conditional

samples, they adapted DCGAN architecture. The results of their experiments showed

that compared to classical data augmentation, they observed nearly 7% improvement

on sensitivity and 4% improvement on specificity. Similarly, Madani et al. [29] also ex-

amined effects of classical data augmentation and GAN data augmentation. For GAN

augmentation, they used DCGAN architecture. They utilized DCGAN for generating

more training samples. They compared the classification accuracies for no augmen-
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tation, classical data augmentation and GAN data augmentation. The classification

accuracies where 81.93%, 83.21% and 84.19% respectively. Bhattacharya et al. [30] aim

was to classify three medical conditions from chest X-ray images. They used DCGAN

architecture for augmenting training data. They conducted experiments on NIH Chest

X-ray dataset. The results of their experiments showed that the CNN classifier trained

with augmented dataset performs better than the classifier without any augmentations.

Xing at al. [31] also experimented on NIH Chest X-ray dataset. Their approach ex-

plores the effect of GAN augmentations for lung disease classification and localization .

The authors used StarGAN, Pix2Pix and Pix2Pix-N architectures in their experimen-

tal settings. They invited certified radiologists to evaluate their generated samples.

Both qualitative and quantitative results showed that generated images from Pix2Pix

and Pix2Pix-N are better quailty than StarGAN generated images. Moreover, dataset

augmentations with Pix2Pix and Pix2Pix-N performs better at disease localization

compared to StarGAN augmention. Kora Venu et al. [32] conducted experiments with

both classical data augmentation and GAN data augmentation in pneumonia recog-

nition task. Their results showed that data augmentation performs well compared to

no augmentation settings. However, DCGAN augmentated classifier performs best in

terms of accuracy, recall and F1 score. In this work, Ganesan et al. [33] discussed

traditional augmentations and GAN based augmentations in the context of pneumo-

nia recognition task. They compared the results of the experiments that cover the

effects of classical augmentations and PGGAN. Unlike other related work, their results

show that classical augmentations outperform GAN based augmentations in terms of

disease classification accuracy. Malygina et al. [34] experimented with CycleGAN in

order to augment their data for multi-class disease classification problem. In their

experiment settings, they genareted opposite class samples from CycleGAN trained

with ChestXray14 dataset. Their approach performed well on pneumonia and pleural-

thickening classification task compared to non-augmented setting. However, the classi-

fication accuracy of fibrosis decreased. Mahapatra [35] proposed a method for domain

adaptation for medical image registration. He experimented with NIH ChestXray14

dataset. His method facilitate deep learning models to learn different types of images

apart from their learned domain. He utilized convolutional autoencoders and Cycle-
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GAN to enable domain adaptations. According to his experiment results, a model

trained on one of chest X-ray, brain or retinal MR datasets performs better on other

two domains compared to conventional methods. Motamed et al. [36] also utilized

GAN augmentation in medical setting. Their aim was to examine the effects of GAN

augmentations on multi class disease prediction task. They trained RANDGAN and

AnoGAN models with Covidx dataset. After training, the results showed that com-

pared to AnoGAN, RANDGAN poses better classification accuracy. Segal et al. [37]

also explored GAN data augmentation on medical domain. Their approach includes

experimentation with PGGAN. They trained PGGAN model with NIH ChestXray14

dataset. They managed to reach 8.02 FID score from their GAN training. For data aug-

mentation, Menon et al. [38] applied transfer learning from Kaggle Pneumonia X-Ray

dataset to their own approach named MTT-GAN. After employing transfer learning,

they trained MTT-GAN with covidchestxray-dataset. They compared binary Covid

classification results between several ablations of their method. Khalifa et al. [39]

used GANs to augment the dataset they used. Their proposed method utilizes deep

transfer learning and fine tuning on AlexNet, GoogLeNet, Squeeznet, and Resnet18

architectures to classify pneumonia cases. They used 10% of real samples and 90% of

generated samples. The classifier with Resnet18 backbone performed best according to

their experimental results. In another academic work, Kovalev and Kazlouski [40] em-

ployed DCGAN and PGGAN architectures to create realistic samples. They trained

classifier with only real images and with only generated images and compared the

classification results. Salehinejad et al. [41] argued that class inbalance is one of the

possible reasons for low classification accuracies for medical datasets. They balanced

the dataset by sampling outputs from DCGANs. The experiments showed that the

classifiers trained on balanced medical dataset performs better compared to other clas-

sifier trained on inbalanced medical dataset. Chen et al. [42]proposed a novel GANs

based technique for domain adaptive chest X-ray image segmentation method. Their

method transforms the test image to the source domain of the pretrained segmentation

model. For preserving pixel level and semantic structural content, they introduced a

cycle-consistency loss and a semantic-aware loss respectively. The experiments in their

work showed comparable results to the state-of-the-art supervised transfer learning
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methods. Terzopoulos et al. [43] proposed a framework named MAVENs which is a

combination of GANs and VAEs. Their framework consolidates both adversarial learn-

ing and variational inference simultaneously. They experimented with several datasets

including chest X-ray datasets. Lanfredi et al. [44] employed VA-GAN, DeFI-GAN to

ADNI and COPD datasets. Their approach indicates deformation fields of medical

images and shows evidance of anormalies. Deepshikha and Naman [45] proposed a

framework for GANs augmentation named Polarity-GAN. With Polirity-GAN, they

offered a solution for class overlap problem in conditional GANs. Their approach com-

pares several augmentation methods which are SMOTE-SVM, Resnet+RF, Resnet5,

AC-GAN, BAGAN, WGAN-GP and Polarity-GAN in terms of classification accuracy.

Training on CovidX dataset is also covered by their experiments. Choong et al. [46]

proposed a training pipeline which utilizes ACGAN, PGGAN and transfer learning.

They compared results of their pipeline within several ablations of their method. They

showed that using only one component from the components of their pipeline is not

sufficient for archiving best performance. Research by Sundaram and Hulkund [47]

indicated that using GANs for improving the classification performance of underrepre-

sented classes outperforms classical data augmentation techniques. However, they only

reported the results in terms of ROC-AUC score which is not sensitive to data imbal-

ance. In our paper, we reported PR-AUC scores along with ROC-AUC scores. We also

used conditional StyleGAN2-ADA model for synthetic data generation. However, they

used CGAN which is a primitive GAN architecture compared to StyleGAN2-ADA.

They also focused on only three rare classes which are not subjects of the CheXpert

competition. In our approach, we focused on five classes which are the main subjects

of the CheXpert competition. In their approach, they used DenseNet-121 architecture

for classification. However, we used DeepAUC framework which is the top solution of

CheXpert competition.

3.2. Latent Space Image Manipulation on GANs

Latent Space Manipulation on GANs is a very hot topic since GANs attract

deep learning practitioners’ attention extensively recently. However, the first spark for
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Latent Space Manipulation came from Radford et al. [12] by applying vector arithmetic

to Z space and showing the first results of latent space manipulation. In their work,

they showed it is possible to add glasses or smile to the generated outputs by applying

vector arithmetic in Z space. To this end, they averaged the Z values generate smiling

woman faces and they also averaged the Z values generate neural woman faces. They

subtracted the second average from the first and they added the resulting vector to

the averaged Z values generate neutral man faces. After the addition, they fed the

generator with the output of the addition and the generator yielded an image with

a smiling man. In this approach they were able to disentangle smiling attribute in

the latent space. Moreover, they also conducted a series of experiments for finding

the face position attribute vector. After finding the attribute vector, they applied the

interpolants of the attribute vector. The resulting generated images showed the effect

of a face turning left from right gradually.

The latent space was also examined in terms of geometrical representations by

Arvanitidis et al. [48] and they showed using Riemannian metric improves the proba-

bility distribution of the latent space in VAEs. Yet, they stated that it is applicable

for all generative models. Bojanowski et al. [49] proposed GLO for learning better

latent space during the training. Their experiments show smooth interpolation results

on CelebA. They also studied 4 principle vectors in Z space and showed that these

principle vectors control background brightness, face pose and gender attributes. How-

ever, their semantic control over the Z space was highly entangled and their principle

vectors was only able to control course attributes of the generated images. In other

words, according to their experiments, the principle vector controls the brightness also

controls hair style and even gender. Upchurch et al. [50] proposed Deep Feature In-

terpolation for controlling image attributes such as facial hair or age. Their method

is depending on linear interpolation on deep convolutional features from pre-trained

CNN such as VGG-19 trained on ILSVRC2012. They showed comparable results with

respect to AEGAN in terms of controlling semantic attributes.Antipov et al. [51] pro-

posed Age-cGAN for generating aged face images without losing face identity.Jahanian

et al. [52] worked on “steerability” of GANs. They observed that simple walks on la-
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tent space achieve as powerful transformations as complex walks for the output space.

They also showed that there is a hard limit for each transformation depending on the

dataset variability. They observed the transformations show different disentanglement

properties with respect to different architectures. By using data augmentation, they

showed larger transformation effects. Goetschalckx et al. [53] proposed a framework

named GANanalyze which is able to control memorability, aesthetic and valance at-

tributes. However, their transformation function is only able to capture the attributes

depending on the assessor network therefore it requires additional network for control-

ling each attribute. Shen et al. [54] further investigated the latent space in the field of

face generation. They observed that after linear transformations, latent space is able

to learn disentangled representations for well-tuned generative models. In their exper-

iments, they showed their approach controls eye-glasses, smile, age, pose and gender

attributes of the generated faces without touching other semantic attributes. They also

used GAN inversion methods for finding the exact Z value for a particular face image.

The inversion method allows semantic latent space manipulation for a real face image.

Galatolo et al. [55] used CLIP in order to find the optimal Z value for generating text to

image and vice verse. They experimented their approach with StyleGAN, BigGAN and

GPT2.With the recent developments from OpenAI [56], Patashnik et al. [2] proposed

a framework called StyleCLIP which enables semantic meaningful latent space manip-

ulation with text guidance. In their framework, they worked on the latents spaces of

StyleGAN, StyleGAN2 and StyleGAN2-ADA. They employed and experimented with

three different approaches which are text-guided latent optimization, latent residual

mapper, mapping a textual input-agnostic data into global direction. In one hand,

text-guided latent optimization works on W+ space and takes several minutes to find

an optimal style manipulation direction vector for a given text and image pair. On

the other hand, Latent residual mapper requires 10 to 12 hours for training the map-

per network on a single NVIDIA GTX 1080Ti GPU. Latent residual mapper has the

control over several attributes per text for an image. For instance, they were able to

generate Angela Merkel’s face image with curly and long hair by only inputting “Curly

long hair” in the text field. For a given pair of text which defines neutral and target

attributes, global direction method exploits the colinearity between CLIP’s image em-
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bedding space and StyleGAN’s style space for the difference of the given text pair. In

other words, they found that given a pair of text, the corresponding difference vector

in the image embedding space is colinear with the StyleGAN’s style space. Collins et

al. [57] also worked on StyleGAN pre-trained model and observed that the representa-

tions learned by the generator are highly disentangled corresponding to the semantic

attributes of the generated image. They managed to transfer semantic attributes from

a reference image to target image partially. Harkonen et al. [58] applied PCA to latent

space and feature space of StyleGAN. With the help of the principle vectors, they

controlled semantically meaningful attributes of the generated image. A sample figure

of image manipulation could be found in Figure 3.1. Their experiments also showed

the semantic attributes of the generated image by BigGAN could be manipulated by

using principle vectors. Wu et al. [59] showed a method for exploring high number of

distinct and disentangled style channels. They expanded their method with the help

of pre-trained image classifier and small set of sample images.

Figure 3.1. Sample text-based latent space manipulation by StyleCLIP.

3.3. Medical Latent Space Manipulations on GANs

Latent space manipulations of GANs is a novel direction of research and it has

been studied for just a couple of years. Thus, there are limited studies cover latent

space manipulations on GANs in medical approaches. One of the these studies were

conducted by Fetty et al. [60]. They used StyleGAN with both Computed Tomography
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(CT) and T2- weighted Magnetic Resonance (MR) images and explored the latent space

walks between modalities. In their experiments, they were able to generate synthetic

CT image corresponding to a MR images and vice versa. Yet, they did not further

experiment the disentanglement properties of the style transfer. Fernandez Blanco et

al. [61] worked on histopathological image dataset and produced Grad-cam heatmap

to show the features of real and manipulated images match.

3.4. Visual-Language Joint Representations

There are many recent approaches for the joint representations of visual-language

domain. Research by Desai and Virtex [62] showed that using a pre-trained VirTex

model, it is possible to use the pre-trained model for other downstream tasks such as

instance segmentation, object recognition and image classification by re-training the

model with a few samples. In other work, Sarıyıldız et al. [63] proposed a method

named ICMLM which is a proxy task that learns visual representations from text and

image pairs. In ICMLM, they combined image and text encoders to match visual

and textual embeddings. By using ICMLM, they were successfully predict the masked

word for a given text-image pair. Another work [64] also combined language and

vision domains within a model named LXMERT and tested their approach on several

downstream tasks such as masked language modeling, masked object prediction, and

image question answering. They reported that their approach was able to reach SOTA

results on GQA and VQA visual question answering datasets. With the emergence of

BERT [65], which offers quite powerful language modeling representations, some visual-

language approaches employed BERT just like VL-BERT [66]. VL-BERT is built on top

of transformer and accepts text and image embeddings as input. In VCR benchmark

competition, VL-BERT managed to take the first place on the leadership. A recent

approach named as CLIP [56] from OpenAI offers zero-shot image classification with the

help of the image-text similarity estimations. To enable zero-shot image classification,

OpenAI used nearly 400 million image-text pair collected from web during CLIP’s

training. It is showed that CLIP was able to predict class labels from various domains

without any further training or fine-tuning.
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Figure 3.2. Contrastive Pre-training visualization for a batch size of 5.

3.5. CLIP: Connecting Text and Images

Radford et al. [56] developed a generic zero-shot approach for bridging the gap

between visual and textual domains. For this purpose, they utilized image and text

encoder with joint training strategy in order to learn multi-modal embedding space.

During training, CLIP uses batches of text-image pairs and for each text it combines

the text to all images of the batch. For a batch of M image-text pairs, it yields M

accurate pairs and M2 −M inaccurate pairs. For accurate pairs, the objective func-

tion maximizes the cosine similarity of the text-image embeddings. On the contrary,

objective function minimizes the cosine similarity of the text-image embeddings for in-

accurate pairs. The main objective function optimizes a symmetric cross entropy loss

by using the cosine similarity scores of all similarity scores for a given batch. This sort

of training strategy is named contrastive pre-training. See Figure 3.2 for visualization

of the contrastive pre-training of CLIP.
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CLIP consists of two main networks which are image encoder and text encoder.

As image encoder, they experimented with modified version of ResNet-50 [67] and Vi-

sion Transformer (ViT) [68] with minor differences. As text encoder they employed

Transformer [69] with slight architectural modifications. Due to the computational

efficiency, they fixed the sequence length of the text encoder to 76. Because of this

constraint, we trimmed our text sequences in our experiments. All in all, CLIP com-

bines all of these components and approaches in order to train a single model which is

able to perform well on different downstream tasks without any further dataset specific

training. The authors tested CLIP with over 30 different computer vision tasks for in-

stance object classification, optical character recognition, action recognition in video

footage. It is observed that the performance of the CLIP is mostly comparable to the

corresponding complete-supervised baselines.



26

4. DATASETS

This chapter covers the datasets we used in our work. We used MIMIC-CXR to

obtain medical report and X-ray image pairs. We also used CheXpert for measuring

the performance of the augmentation techniques employed in this work.

4.1. CheXpert

Figure 4.1. The aim of the CheXpert classification task [5] is to compute the

probability scores for each candidate diagnosis.

Irvin et al. [5] provided a large dataset named CheXpert that includes nearly

225.000 chest radiographs of 65.000 patients. They developed an automatic labeling

tool which looks for appearances of 14 conditions in chest X-ray radiology reports

corresponding to the X-ray image samples. In the validation set, there are 200 chest X-

ray images labeled with corresponding diseases. Unlike the training data, the validation
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set was labeled by certified radiologists instead of automatic labeling tool. For each

sample in the dataset, there are at least one indicator for each medical condition. In

the data collection and label selection process, they used mention extraction, mention

classification and mention aggregation techniques. After employing these techniques,

they compared their label classification performance with respect to NIH Labeller [70].

Despite the fact that they extracted the labels from the radiology reports, they were

unable to share the radiology reports publicly due to the lack of de-identification of

the reports according to 25th issue of the their GitHub repository [5] .The overview of

CheXpert classification task could be found in Figure 4.1. The analysis of validation

set for disease count per image and disease distribution could be found at Figure 4.2

and Figure 4.3 respectively.

Figure 4.2. The graph for diagnosed disease count per image in the validation set of

CheXpert.

4.2. MIMIC-CXR

MIMIC-CXR is a publicly available dataset with 377,110 images and 227,835

corresponding medical studies with respect to these images. The dataset was created

by Jonhson et al. [71] in collaboration with Beth Israel Deaconess Medical Center

in Boston. The dataset was de-identified compliant with the US Health Insurance
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Portability and Accountability Act of 1996 (HIPAA) Safe Harbor regulations. For

the regulation compliance, they removed Protected health information (PHI) on both

radiology images and reports. They used image processing and NLP techniques in

order to find the pixel coordinates where PHI burned in the radiology images and they

blacked out the bounding boxes including PHI. The PHI removal action could be seen

in some of the radiology images as rectangular black censor boxes on the left upper

part of the radiology image. They also replaced PHI in the radiology reports with

three underscores to protect sensitive information of the patients. In the radiology

reports, normal and abnormal findings were placed such as “lung volumes are normal”

and “mild enlarged cardiomediastinal silhouette”. Their aim of creating and making

the dataset public was to improve the efficiency of the medical resources especially for

the healthcare centers with limited medical resources with the help of the accurate

automated analysis of radiology images.

Figure 4.3. The pie-chart for diagnosed diseases in the validation set of CheXpert.
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5. METHOD

In this chapter, we will cover the details of our approach. First of all, we will

explain how we augment the CheXpert dataset by using GANs. Afterwards, we will

cover how text-driven medical image manipulation helps dataset augmentation in our

case.

5.1. Synthetic Medical Data Augmentation

We propose to use the synthetic data augmentation pipeline titled as ChestGAN

in order to improve the multi-label disease classification performance. Our GAN based

augmentation pipeline consists of StyleGAN2-ADA framework [1] to augment CheX-

pert [5] dataset and Probabilistic-CAM pooling (PCAM) framework [72] for multi-

disease classification. To our best knowledge, our approach is the first one which

utilized StyleGAN2-ADA framework to augment chest X-ray datasets.

StyleGAN2-ADA [1] is a GAN framework which is designed for generating real-

istic samples without requiring extensive dataset volume. In this method, the authors

proposed to use an adaptive discriminator augmentation technique which stabilizes the

training of GANs with tiny datasets. Their GAN augmentation method allows us to

generate diverse yet realistic outputs without any augmentation leakage or distortion.

According to their experimental results, they improved FID score from 5.594 to 2.42

for CIFAR-10 dataset. Probabilistic-CAM pooling framework [72] is a novel approach

which utilizes global pooling operation for indicating the findings of chest diseases with

image-level supervision. PCAM pooling utilizes CAM [3] with probabilistic training.

Probability maps generated from their approach show sharp and accurate boundaries.

In their experiments, PCAM pooling framework improved state of the art results for the

classification and localization tasks for the ChestX-ray14 [70] dataset. Their framework

also performed best in CheXpert competition with 0, 929 AUC score.
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In our approach, we aimed to generate synthetic data samples in order to aug-

ment the CheXpert dataset. Unlike traditional data augmentation techniques, GAN

augmentation offers both creative and realistic sample generation which enables us

to model the data distribution of existing datasets with an conservative extent. By

employing this approach, we believed that we were able to create fake samples pre-

serving the distinctive features with enough variation and fidelity. We will show our

quantitative results based on classifiers and the utilization of the synthetic data set in

experiments section in detail.

5.2. Text-Driven Medical Image Manipulated Augmentation

With the recent developments from OpenAI [56] , we decided to utilize the rep-

resentational power of the CLIP pre-trained model in the context of latent space ma-

nipulation. Patashnik et al. [2] proposed a framework called StyleCLIP which enables

semantic meaningful latent space manipulation with text guidance. In their frame-

work, they worked on the latents spaces of StyleGAN, StyleGAN2 and StyleGAN2-

ADA. They employed and experimented with three different approaches which are

text-guided latent optimization, latent residual mapper, mapping a text prompt into

an input agnostic global direction. In one hand, text-guided latent optimization works

on W+ space and takes several minutes to find an optimal style manipulation direction

vector for a given text and image pair. On the other hand, Latent residual mapper re-

quires 10 to 12 hours for training the mapper network on a single NVIDIA GTX 1080Ti

GPU. Latent residual mapper has the control over several attributes per text for an

image. For instance, they were able to generate Angela Merkel’s face image with curly

and long hair by only inputting “Curly long hair” in the text field. In our approach, we

did not experimented with both of these methods. Instead, we only experimented with

the input agnostic global direction method which does not require further optimization.

For a given pair of text which defines neutral and target attributes, global direction

method exploits the colinearity between CLIP’s image embedding space and Style-

GAN’s style space for the difference of the given text pair. In other words, they found

that given a pair of text, the corresponding difference vector in the image embedding
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space is colinear with the StyleGAN’s style space. In our work, we used that prop-

erty for finding disease specific difference vector to generate semantically meaningful

manipulated images.

Figure 5.1. A sample dependency parser output of a medical report.

During our initial experiments on StyleCLIP with default CLIP weights, we saw

that global optimization method does not yield desired image manipulations in the

context of chest X-rays. We believed that this is due to lack of medical data in CLIP’s

training set. Thus, we fine-tuned CLIP with medical image - text pairs. Our simple

yet effective fine-tunning approach yielded promising results. We improved fine-tuning

process by introducing NLP techniques for medical reports. To create more informative

reports, we extracted entities by using scispaCy [73] which contains spaCy [74] models

for processing biomedical-specific textual data. In our experiments, we used the entities

which is yielded by en core sci scibert model. This model is a complete spaCy pipeline

built on top of transformer and pre-trained on a large biomedical corpus consists of

nearly 785 thousand words. In one hand we only used the entities extracted for each

report instead of full report. On the other hand, we used dependency relations between

words and we modified the entities to create less complex semantics for each report.

For instance, for an X-ray image, the corresponding report is “There is no focal con-

solidation, pleural effusion or pneumothorax”. The entities found by scispaCy model

are “no focal consolidation”, “pleural effusion” , “pneumothorax”. The dependency

relation graph in Figure 5.1 also yields us “No” is related to “no focal consolidation”,

“effusion” and “consolidation” directly. “No” is also related to “pneumothorax” in-

directly. However, our rule-based approach yields us “no focal consolidation”, “no

pleural effusion” and “no pneumothorax” by combining the entities which are directly
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or indirectly related to word “No”. If the entity includes “No”, we remove it from the

entity. Of course “No” is not only the word that affects the semantic complexity of the

medical reports. We analyzed the frequency of the words for all reports and formed a

generic list of words that affect semantic complexity. In the end, we transformed all

the entities for each report according to the generic list and fine-tuned the CLIP with

modified entities-image pairs. We named this fine-tuning strategy as rule-based. How-

ever, the results of our experiments showed that rule-based approach performs poorly

for some classes. To fix this issue, we conducted further analysis and discovered new

indicator words. The fine-tuning strategy that includes this words in the generic list

was named as rule-based-v2.
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6. EXPERIMENTS

In this chapter, we covered the key evaluation metrics which we used in our re-

search. Afterwards, we explained the experiments we conducted for both synthetic

medical data augmentation and text-driven latent space manipulated GAN augmenta-

tion. For each experiment section, we reported, compared and discussed the results in

detail.

6.1. Evaluation Metrics

In this section, key evaluation metrics are explained to convey better understand-

ing of the results of our experiments. In short, Frechet Inception Distance (FID) is

used for measuring the quality of synthetic images. ROC-AUC and PR-AUC scores

are used for computing classifier’s overall performance across all classes.

6.1.1. Frechet Inception Distance

It is a challenging task to measure the divergence and literalness of generated

samples in the same time. However, to tackle this problem, Frechet Inception Distance

(FID) was introduced by Heusel et al. [75] in order to quantitatively evaluate the syn-

thetic images generated by generative models in terms of how realistic yet divergent

they appear. FID metric was specifically developed for performance measurements

of GANs. Unlike pixel-wise comparison between real and generated samples, roughly

speaking, FID metric computes the distance between feature vectors of real images

and feature vectors of generated images with the use of Inception V3 [76] architec-

ture. Mostly it outputs closer results to human-grade evaluation compared to the prior

evaluation metrics. FID was well-understood and adopted by most of the influencive

approaches in the domain of GANs.
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FID basically measures the distance of distributions for real and synthetic images.

The distributions are obtained from the final pooling layer of Inception V3 model. FID

is computed as follows:

FID(r, g) = ‖µr − µg‖22 + Tr

∑
r

+
∑
g

−2

√∑
r

∑
g

 . (6.1)

Mean and covariance of the real and generated data are (µr,
∑

r) , (µg,
∑

g) respectively.

Tr means trace linear algebra operation which is the summation of all diagonal entities

of a given square matrix. Since FID computes the difference of the distributions for

real and generated images, scores which are close to 0 means the generated samples

are realistic. Therefore, during the performance comparison of the two different GANs

approaches, we state the approach with lower FID score is better.

6.1.2. ROC-AUC

ROC is short for Receiver Operation Characteristic and AUC is the acronym for

Area Under the Curve. ROC curve is used for building a better understanding of the

classifier’s performance. In order to plot ROC curve for a binary classifier, probability

scores of a class are collected by feeding the classifier with a subset of the validation or

the test data. After obtaining the classification scores, True Positive Rate and False

Positive Rate is calculated for different decision thresholds. Each threshold corresponds

to a True Positive Rate and False Positive Rate which are computed as follows:

TruePositiveRate = TruePositive/(TruePositive+ FalseNegative), (6.2)

FalsePositiveRate = FalsePositive/(FalsePositive+ TrueNegative). (6.3)

After sorting the list of pairs by False Positive Rates ascending, the projection of the

data points yields us the ROC curve. Moreover, the calculation of the area under the

ROC curve yields ROC-AUC score. ROC-AUC score is expected to be in between 0.0

and 1.0. If a classification result gives 1.0 ROC-AUC score for test data, that means

the classifier works perfectly. However, if a classification result gives 0.0 ROC-AUC

score, it means the classifier did not learn anything from the training data. See Figure



35

6.1 for a sample ROC curve. In this example, the AUC score is 0.80 which is a fairly

good binary classification performance.
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Figure 6.1. Receiver Operation Characteristic Curve graph for an example binary

classifier.

Although ROC-AUC score indicates well the overall classification performance for

balanced datasets, in case of inbalance between positive and negative samples, ROC-

AUC score may perform poorly for the assessment of classification accuracy since it

gives equal importance to positive classification performance and negative classification

performance. If a dataset contains mostly negative samples, negative classification

performance may dominate ROC-AUC score. The classifier trained with this kind of

imbalanced dataset may have poor classification performance for positive classes.

6.1.3. PR-AUC

PR-AUC is the area under the precision-recall curve. PR curve is plotted nearly

the same with ROC-AUC curve with a slight difference.
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Instead of True Positive Rate and False Positive Rate, Precision and Recall met-

rics are used as axis. The equations of Precision and Recall are as follow:

Precision = TruePositive/(TruePositive+ FalsePositive), (6.4)

Recall = TruePositive/(TruePositive+ FalseNegative). (6.5)

Except with this minor change, PR curve is computed and plotted same as ROC

curve. An example PR curve could be found in Figure 6.2. In this figure, an arbitrary

classification model was used. AP value means average precision. Mathematically, it

is also the same value as PR-AUC. AP and PR-AUC could be used interchangeably

depending on the writers’ convention. In Figure 6.2, we used AP instead of PR-AUC.

According to [77], PR-AUC metric is suitable for imbalanced datasets since it is

more sensitive to the classification performance of minority classes compared to ROC-

AUC metric. Therefore, we also report PR-AUC scores of our experiments.

Figure 6.2. Precision Recall Curve graph for an example binary classifier.
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6.2. Synthetic Medical Data Augmentation

CheXpert dataset is a relatively large dataset compared to other medical ra-

diographic datasets. We used the down-sampled version of CheXpert dataset which

consists of nearly 225.000 chest radiographs of the patients who underwent medical ex-

aminations from Stanford University Medical Center. The dataset includes samples of

14 different classes with uncertain labels. Each sample in the dataset is labelled either

positive(1), negative(0) or uncertain(−1). In our experiments we focused on 5 classes

which are Atelectasis, Cardiomegaly, Consolidation, Edema and Pleural Effusion since

the classification in between these classes is the subject of the CheXpert competition.

We removed the samples with multi-class-labels from the dataset and used the samples

with only positive or negative labels. That yielded us a dataset with nearly 85.000

samples. Since StyleGAN2-ADA only performs on square images with the size of pow-

ers of 2, we resized the samples to 256×256 resolution with black padding. We trained

StyleGAN2-ADA with default configurations in class conditional setting on 4 NVIDIA

Tesla V100 GPUs. We saved the model for each 100 training iteration. After two

days of training, we selected the best performing model which has nearly 17 FID score.

We generated 5000 samples for each class. In Figure 6.3 an example class conditional

generated sample for cardiomegaly class could be found.

Figure 6.3. The class conditioned generated sample for cardiomegaly.
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Table 6.1. The results of classification experiments with PCAM.

Augmentation
Cardiomegaly

(AUC)

Edema

(AUC)

Consolidation

(AUC)

Atelectasis

(AUC)

Pleural Effusion

(AUC)
Mean AUC

No Aug

(Original)
0,789 0,903 0,887 0,872 0,883 0,867

5k 0,820 0,904 0,890 0,853 0,912 0,876

10k 0,838 0,903 0,927 0,854 0,915 0,887

15k 0,845 0,895 0,926 0,847 0,887 0,880

20k 0,842 0,894 0,928 0,828 0,911 0,881

In our experiments, we trained PCAM framework with original dataset in order

to provide a strong baseline for our augmentation pipeline. We also extended the orig-

inal dataset with different numbers of additional generated samples. To observe the

correlation between the number of additional synthetic samples and the improvement

on classification accuracy, we added 5000, 10000, 15000, 20000 samples per each class.

We reported the results at Table 6.1 for our initial experiments. Results showed that

the amount of augmentation affects classification performance depending on the class.

For instance, The augmentation of 20k additional samples yielded best result for Con-

solidation. However, additional data injection degraded the performance of Atelectasis

classification. If we look at the big picture, 10K additional samples per each class

performs best for overall classification.

In our following experiments, we are aiming to augment the dataset with class

specific numbers of generated samples to solve the class imbalance problem. In CheX-

pert dataset analysis, we saw that the minority class has nearly 4000 samples whereas

the majority class has nearly 35000 samples. Therefore we aimed to balance the dataset

with certain number of generated classes. We also changed the classifier due to the

classical augmentation techniques they used in their implementation. Moreover, we

run the new classifier on our generated samples to understand our class conditional

generation performance. After understanding the feature representational power of

the generated dataset, we balanced the dataset with certain levels of generated images

and we compared the results with their trained model without GAN augmentation.

The classification results for only synthetic dataset with 5000 samples per medical con-
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dition, semi-balanced dataset with 16000 samples for each minority classes and bare

dataset (original dataset without any additional synthetic sample) could found in Table

6.2.

Table 6.2. GAN augmentation experiment results in terms of ROC-AUC.

Medical Condition Synthetic Only Bare Dataset
Semi-balanced

Dataset

Atelectasis 0,490 0,847 0,839

Cardiomegaly 0,667 0,831 0,821

Consolidation 0,592 0,899 0,933

Edema 0,715 0,871 0,897

Pleural Effusion 0,649 0,900 0,925

AUROC mean 0,623 0,870 0,883

6.3. Text-Driven Latent Space Manipulation

In this section, we used StyleCLIP framework with global direction method. To

conduct experiments with this approach, we needed two different pre-trained models

which are StyleGAN2-ADA with conditional setting (cifar10c) and CLIP model. In our

initial experiments, we used the original CLIP model trained with almost 400 million

text-image pair. However, we could not obtain any meaningful style transfer output

since the CLIP model is not well suited for chest X-ray image domain. In order to

adopt CLIP’s domain to chest X-ray image domain, we fine-tuned pre-trained CLIP

ViT-B/32 model with MIMIC-CXR dataset since the reports of CheXpert dataset is

not currently available. Because of the fact that the original CLIP model restraints

maximum positional embedding size with 77, we trimmed the medical report texts

accordingly. After fine-tuning, we repeated the experiment. Our results could be

found at Figure 6.4 and 6.5.
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Figure 6.4. Experiment for neutral text normal and target text lung volumes.

To quantify the augmentation effects of text-driven style manipulation, we sam-

pled 100 images for each particular medical condition (cardiomegaly, pleural effusion,

edema, consolidation and atelectasis) from CheXpert dataset. We inverted the samples

using e4e to get the latent variables which generates almost identical synthetic image

of the original image. We manipulated each inverted image depending its medical con-

dition by using global optimisation method of StyleCLIP. For instance, we applied no

cardiomegaly to cardiomegaly manipulation direction to the inverted samples which

are originated from cardiomegaly tagged X-ray samples.

Figure 6.5. Experiment for neutral text normal and target text cardiomegaly.
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To obtain meaningful manipulations, it is important to adjust disentanglement

threshold and manipulation strength. Disentanglement threshold determines if the

manipulation alters course features or fine-grained features. Manipulation straight

controls the degree of the manipulation. In our experiment, we adjusted disentangle-

ment threshold for each medical condition to ensure the manipulation does not distort

the overall structure of the each inverted X-ray sample. In other words, we set the

manipulation threshold empirically. After finding the optimal manipulation threshold

value, we applied negative and positive values of manipulation strength to all the sam-

ples. While positive values increase the target feature, negative values decreases the

target feature on an inverted image. To be more concrete, while we were manipulat-

ing inverted samples of the cardiomegaly class from no cardiomegaly to cardiomegaly

direction, we observed that using positive values of manipulation strength enlarges the

heart on the synthetic X-ray image. When we used negative values we saw that the

heart on the synthetic X-ray image was shrunken.

To asses the effects of the manipulations in our preliminary experiments, we used a

classifier which is trained on CheXpert dataset. We labelled each image according to its

original label and run the classification for four different dataset. The first experiment

consists of the original images only. The second one contains only inverted samples.

The third one includes manipulated images only with positive manipulation strength.

The final experiment consists of manipulated images only with negative manipulation

strength.

To understand the original CLIP model’s attribute based manipulation capabili-

ties, we conducted an experiment with untouched CLIP model. In this experiment we

used 100 samples for each class. Results could be seen in Table 6.3. The results showed

that style manipulations with original CLIP model does not control disease attributes

well except for two diseases which are cardiomegaly and consolidation.
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Table 6.3. The classification results of style manipulations for original CLIP model

for 100 samples.

Original X-Rays

(AUC)

Negative Directions X-Rays

(AUC)

Inverted X-Rays

(AUC)

Positive Directions X-Rays

(AUC)

Atelectasis 0,6054 0,5647 0,5116 0,5440

Cardiomegaly 0,7317 0,3846 0,5749 0,8353

Consolidation 0,6774 0,4513 0,4687 0,5143

Edema 0,8448 0,7802 0,6459 0,5756

Pleural Effusion 0,8208 0,4659 0,4931 0,4719

AUC mean 0,7360 0,5293 0,5388 0,5882

The results are shown in Table 6.4 is for fine-tuned CLIP for 100 samples. Ex-

ample images could also could be found in Figure 6.6. According to the results, our

approach managed to control disease specific features in most of the cases except con-

solidation and edema classes. We believed that lack of inversion performance affects

these classes. On the other hand, we confirmed that we are able to control the disease

specific features by considering AUC means of all experiments since the AUC mean

of positive directions is greater than the AUC mean of only inverted images. AUC

mean of only inverted images are also greater than negative directions which confirms

that we are also able to extract the disease specific features from the inverted sample.

In our next experiment, we manipulated the attributes for 1000 samples to develop

better understanding of the style manipulations. In Table 6.5 the results could be

found. According to the results, attribute manipulations for atelectasis, cardiomegaly

and pleural effusion is well captured by our approach.

Table 6.4. The classification results of style manipulations for fine-tuned CLIP for

100 samples.

Original X-Rays

(AUC)

Negative Directions X-Rays

(AUC)

Inverted X-Rays

(AUC)

Positive Directions X-Rays

(AUC)

Atelectasis 0,6054 0,4287 0,5116 0,5620

Cardiomegaly 0,7317 0,5255 0,5749 0,7652

Consolidation 0,6774 0,4893 0,4687 0,3803

Edema 0,8448 0,5499 0,6459 0,5390

Pleural Effusion 0,8208 0,4860 0,4931 0,8472

AUC mean 0,7360 0,4959 0,5388 0,6187
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Table 6.5. The classification results of style manipulations for fine-tuned CLIP for

1000 samples.

Original X-Rays

(AUC)

Negative Directions X-Rays

(AUC)

Inverted X-Rays

(AUC)

Positive Directions X-Rays

(AUC)

Atelectasis 0,5835 0,3771 0,5101 0,6085

Cardiomegaly 0,7545 0,4026 0,5964 0,7858

Consolidation 0,6585 0,4972 0,5174 0,4502

Edema 0,7907 0,5446 0,6551 0,3745

Pleural Effusion 0,8168 0,5857 0,5723 0,8340

AUC mean 0,7208 0,4814 0,5703 0,6106

For our first style based manipulation augmentation experiment, we trained the

classifier for the bare CheXpert dataset, GAN augmented CheXpert dataset and style

manipulation based GAN augmented Chexpert dataset. The augmentations for two

augmented datasets which are GAN (StyleGAN2-ADA class conditional generation)

augmented and style based GAN augmented datasets includes 1k extra samples for

each class. Bare dataset accuracies are shown as baseline results since bare dataset

does not contain any kinds of augmentations. The results from Table 6.6 show us style

manipulation augmentation method performs better for Atelectasis, Cardiomegaly and

Edema classes. Moreover, considering overall performance, style manipulation based

GAN augmentation technique outperforms conventional GAN augmentation method.

Table 6.6. Classifier training accuracies with respect to bare dataset, GAN

augmented and style manipulation based GAN augmentation.

Bare Dataset

(AUC)

GAN Augmentation

(AUC)

Style Manipulation Augmentation

(AUC)

Atelectasis 0,84716 0,81834 0,82760

Cardiomegaly 0,83088 0,79979 0,81556

Consolidation 0,89929 0,90532 0,89809

Edema 0,87125 0,88912 0,90218

Pleural Effusion 0,89981 0,92671 0,91474

AUC mean 0,86968 0,86786 0,87163
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After obtaining the preliminary results which are promising, we expended our

experiments with various CLIP fine-tuning strategies. We used impressions section of

MIMIC-CXR dataset for fine-tuning. We also used WGSum framework [78] for impres-

sion generation and used the generated impressions for the fine-tuning. Moreover, we

analyzed our rule-based approach in order the improve the entanglement of the disease

specific features. Especially, our rule-based approach is not able to generate semanti-

cally meaningful style manipulation directions for Edema and Consolidation classes. To

resolve this issue, we improved our rule-based approach and named it Rule-Based-v2.

We generated style manipulated images for both positive and negative directions to see

if the manipulation direction is able to control the disease specific attributes. In order

to assess style manipulations with a classifier, we utilized DeepAUC framework [79]

which is the top solution of the CheXpert competetion. We trained the classifier with

bare dataset without any built-in augmentations or data enhancement strategies to

see the pure effect of our approach. Finally, we trained the classifier with augmented

datasets to evaluate the results. Since the CheXpert dataset is imbalanced, we reported

PR-AUC scores along with ROC-AUC scores to examine the effects of augmentations

independently. This allows us to compare the difference between ROC-AUC scores and

PR-AUC scores.

The fine-tuning strategies we applied in our experiments are:

• rule-based: The CLIP we used in StyleCLIP for sample generation is fine-tuned

with the outputs of our rule-based POS tagging algorithm and corresponding

X-ray images. Findings sections of MIMIC-CXR reports are used as input.

• impression: The CLIP we used in StyleCLIP for sample generation is fine-tuned

with impressions sections of MIMIC-CXR radiology reports and corresponding

X-ray images.

• rule-based-V2: The CLIP we used in StyleCLIP for sample generation is fine-

tuned with the outputs of our newer version of rule-based POS tagging algorithm

and corresponding X-ray images. Findings sections of MIMIC-CXR reports are

used.
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• original-CLIP: The CLIP we used in StyleCLIP for sample generation is un-

touched.

• randomized: The CLIP we used in StyleCLIP for sample generation is fine-tuned

with MIMIC-CXR reports with random word order and corresponding X-ray

images. Findings sections of MIMIC-CXR reports are used as input.

• inverted: The CLIP we used in StyleCLIP for sample generation is fine-tuned with

inverted X-ray images and corresponding radiology reports. Findings sections of

MIMIC-CXR reports are used as input.

• WGSum-generated: The CLIP we used in StyleCLIP for sample generation is

fine-tuned with the WGSum-generated summaries of radiology reports and cor-

responding images. Findings sections of MIMIC-CXR reports are used as input.
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Figure 6.6. Original, inverted and manipulated images with positive and negative

directions generated by StyleCLIP with fine-tuned CLIP model.
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Table 6.7. Classification results on only synthetic style manipulated data in terms of

ROC-AUC score.

Fine-Tuning Strategy
Cardiomegaly

(ROC-AUC)

Edema

(ROC-AUC)

Consolidation

(ROC-AUC)

Atelectasis

(ROC-AUC)

Pleural Effusion

(ROC-AUC)
Mean AUC

rule-based (-) 0,366 0,526 0,471 0,493 0,450 0,4611

impression (-) 0,459 0,561 0,411 0,448 0,438 0,4633

rule-based-V2 (-) 0,525 0,605 0,233 0,460 0,565 0,4776

original-CLIP (-) 0,385 0,717 0,518 0,493 0,668 0,5562

WGSum-generated (-) 0,650 0,602 0,548 0,487 0,506 0,5586

randomized (-) 0,442 0,634 0,445 0,559 0,664 0,5485

inverted 0,535 0,637 0,542 0,504 0,571 0,5576

rule-based (+) 0,709 0,605 0,451 0,626 0,783 0,6347

impression (+) 0,600 0,566 0,748 0,639 0,772 0,6649

rule-based-V2 (+) 0,507 0,799 0,583 0,635 0,803 0,6654

original-CLIP (+) 0,656 0,731 0,724 0,559 0,518 0,6377

WGSum-generated (+) 0,328 0,846 0,635 0,567 0,636 0,6025

randomized (+) 0,637 0,487 0,661 0,524 0,477 0,5570

In the Table 6.7, the dataset contains 1k generated X-ray image per each class.

The dataset includes 5k synthetic data in total. Minus sign denotes negative ma-

nipulation direction. Plus sign means positive manipulation direction. According to

Table 6.7, positive direction of style manipulated synthetic images generated by rule-

based method impose the best attribute control for Cardiomegaly specific attributes.

WGSum-generated images with the positive style manipulation direction perform bet-

ter than any other method for Edema. For Consolidation and Atelectasis, positive

directional style manipulations outperform other style manipulation strategies. In case

of Pleural Effusion, rule-based-V2 with positive direction is the top performing style

manipulation strategy for the enhancement of the disease specific attributes. If we

look at overall attribute enhancement performance, rule-based-V2 is the top perform-

ing manipulation strategy in terms of ROC-AUC score.

Table 6.8 shows the classification results in terms of PR-AUC score. Results are

mostly parallel to Table 6.7 considering the attribute enhancement ability. However,

the PR-AUC scores are rather lower than the ROC-AUC scores since the training and

the validation set of CheXpert dataset is imbalanced. Another significant difference is

the mean AUC score. According to PR-AUC scores, impression with positive direction
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performs best at attribute enhancement for all classes combined. However, according

to the ROC-AUC scores, the overall attribute enhancement ability of rule-based-v2

technique outperforms other techniques. If we have to choose a single manipulation

strategy for enhancing disease specific features , we should go for impressions with

positive direction method instead of rule-based-V2.

For tables 6.9 to 6.12, we present the results of style manipulated GAN augmen-

tations. Since the dataset is imbalanced, during the training when the classification

performance for a fine-tuning strategy reach the maximum mean ROC-AUC score, it

does not need to reach the maximum mean PR-AUC score. This statement is also valid

for vice versa. Therefore, we present two pairs of result tables for two different states

of the classifier. One state is when the mean ROC-AUC score is maximum for each

fine-tuning strategy. The other state is when the mean PR-AUC score is maximum for

each fine-tuning strategy.

Our style manipulated GAN augmentation experiments cover both single train-

ing strategy and multiple fine-tuning strategies combined. The last three lines on the

result tables show the combination of multiple fine-tuning strategies. Specifically, en-

semble covers the maximum PR-AUC scored generated samples from various training

strategies. To select the data we used Table 6.8. For instance, we included synthetic

Cardiomegaly samples originated from rule-based(+) method. We injected synthetic

Edema samples from WGSum-Generated(+) method. Since there may not be available

impressions section for any other dataset, we employed ensemble-without-impression

method. In this method, we ignored the data created by impression fine-tuning strat-

egy and select the data with maximum PR-AUC score. For instance, we included data

created by original-CLIP (+) method for Consolidation. We also selected data gen-

erated by rule-based-V2(+) method instead of impression (+) method. Considering

Table 6.12, our data gathering strategy performs the best for overall classification in

terms of PR-AUC score.
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Table 6.8. Classification results on only synthetic style manipulated data in terms of

PR-AUC score.

Fine-Tuning Strategy
Cardiomegaly

(PR-AUC)

Edema

(PR-AUC)

Consolidation

(PR-AUC)

Atelectasis

(PR-AUC)

Pleural Effusion

(PR-AUC)
Mean AUC

rule-based (-) 0,147 0,198 0,196 0,194 0,193 0,186

impression (-) 0,191 0,203 0,159 0,169 0,175 0,179

rule-based-V2 (-) 0,234 0,228 0,126 0,169 0,227 0,197

original-CLIP (-) 0,151 0,410 0,225 0,197 0,411 0,279

WGSum-generated (-) 0,254 0,241 0,207 0,247 0,240 0,238

randomized (-) 0,190 0,269 0,182 0,261 0,312 0,243

inverted 0,241 0,294 0,219 0,221 0,277 0,251

rule-based (+) 0,579 0,235 0,170 0,364 0,432 0,356

impression (+) 0,270 0,232 0,353 0,516 0,455 0,365

rule-based-V2 (+) 0,208 0,382 0,222 0,281 0,619 0,342

original-CLIP (+) 0,339 0,380 0,336 0,260 0,205 0,304

WGSum-generated (+) 0,159 0,579 0,281 0,221 0,315 0,311

randomized (+) 0,318 0,181 0,288 0,217 0,187 0,238
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Table 6.9. Classification results of fine-tuning strategies on augmented dataset in

terms of ROC-AUC score. Each line was obtained when the mean ROC-AUC score is

maximum.

Fine-Tuning Strategy
Cardiomegaly

(ROC-AUC)

Edema

(ROC-AUC)

Consolidation

(ROC-AUC)

Atelectasis

(ROC-AUC)

Pleural-Effusion

(ROC-AUC)
Mean AUC

pure-dataset 0,836 0,928 0,919 0,843 0,924 0,890

impression (+) 0,826 0,913 0,936 0,844 0,923 0,888

WGSum-generated (+) 0,846 0,918 0,911 0,852 0,927 0,891

rule-based (-) 0,860 0,923 0,910 0,842 0,927 0,892

impression (-) 0,868 0,920 0,913 0,847 0,933 0,896

original-clip (-) 0,871 0,928 0,920 0,828 0,932 0,896

original-clip (+) 0,845 0,919 0,935 0,860 0,918 0,896

rule-based (+) 0,867 0,928 0,926 0,828 0,929 0,896

rule-based (+) and inverted 0,840 0,938 0,929 0,846 0,925 0,896

randomized (+) 0,859 0,927 0,924 0,850 0,926 0,897

WGSum-generated (-) 0,866 0,918 0,930 0,834 0,937 0,897

rule-based (+), inverted and rule-based-V2(+) 0,835 0,924 0,923 0,877 0,927 0,897

ensemble 0,866 0,926 0,905 0,846 0,940 0,897

inverted 0,867 0,927 0,928 0,835 0,937 0,899

randomized (-) 0,859 0,930 0,932 0,846 0,935 0,900

rule-based-V2 (+) 0,866 0,924 0,931 0,844 0,935 0,900

ensemble-without-impression 0,863 0,927 0,929 0,854 0,929 0,900

rule-based-V2 (-) 0,857 0,933 0,929 0,847 0,937 0,901
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Table 6.10. Classification results of fine-tuning strategies on augmented dataset in

terms of PR-AUC score. Each line was obtained when the mean ROC-AUC score is

maximum.

Fine-Tuning Strategy
Cardiomegaly

(PR-AUC)

Edema

(PR-AUC)

Consolidation

(PR-AUC)

Atelectasis

(PR-AUC)

Pleural-Effusion

(PR-AUC)
Mean AUC

pure-dataset 0,716 0,790 0,639 0,696 0,850 0,738

WGSum-generated (+) 0,680 0,751 0,583 0,750 0,853 0,723

impression (+) 0,717 0,743 0,642 0,674 0,858 0,727

ensemble 0,763 0,777 0,526 0,696 0,873 0,727

inverted 0,756 0,772 0,568 0,682 0,873 0,730

rule-based (+) 0,747 0,784 0,587 0,682 0,856 0,731

rule-based (-) 0,746 0,767 0,582 0,704 0,859 0,732

impression (-) 0,772 0,747 0,553 0,736 0,867 0,735

ensemble-without-impression 0,747 0,773 0,569 0,730 0,865 0,737

original-clip (-) 0,763 0,782 0,580 0,694 0,868 0,737

original-clip (+) 0,749 0,760 0,648 0,684 0,846 0,737

rule-based-V2 (-) 0,740 0,777 0,588 0,703 0,876 0,737

WGSum-generated (-) 0,762 0,755 0,608 0,689 0,871 0,737

randomized (-) 0,749 0,784 0,578 0,723 0,873 0,742

randomized (+) 0,733 0,784 0,610 0,726 0,861 0,743

rule-based-V2 (+) 0,760 0,773 0,593 0,730 0,872 0,746

rule-based (+), inverted and rule-based-V2(+) 0,738 0,788 0,614 0,786 0,832 0,752

rule-based (+) and inverted 0,723 0,796 0,658 0,743 0,847 0,753
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Table 6.11. Classification results of fine-tuning strategies on style manipulated GAN

augmented dataset in terms of ROC-AUC score. Each line was obtained when the

mean PR-AUC score is maximum.

Fine-Tuning Strategy
Cardiomegaly

(ROC-AUC)

Edema

(ROC-AUC)

Consolidation

(ROC-AUC)

Atelectasis

(ROC-AUC)

Pleural-Effusion

(ROC-AUC)
Mean AUC

pure-dataset 0,831 0,930 0,920 0,802 0,912 0,879

rule-based (-) 0,755 0,930 0,932 0,818 0,910 0,869

WGSum-generated (-) 0,770 0,927 0,920 0,825 0,907 0,870

rule-based-V2 (+) 0,779 0,930 0,924 0,821 0,908 0,873

impression (-) 0,775 0,931 0,939 0,829 0,893 0,873

rule-based-V2 (-) 0,770 0,929 0,932 0,837 0,907 0,875

rule-based (+) 0,793 0,929 0,934 0,830 0,902 0,877

inverted 0,813 0,921 0,926 0,818 0,913 0,878

ensemble-without-impression 0,802 0,926 0,930 0,838 0,897 0,879

randomized (+) 0,798 0,934 0,909 0,851 0,905 0,879

randomized (-) 0,795 0,923 0,941 0,839 0,901 0,880

ensemble 0,780 0,931 0,939 0,836 0,916 0,880

original-clip (-) 0,781 0,933 0,939 0,852 0,903 0,882

rule-based (+), inverted and rule-based-V2(+) 0,833 0,922 0,930 0,795 0,929 0,882

impression (+) 0,829 0,933 0,894 0,827 0,927 0,882

original-clip (+) 0,843 0,933 0,894 0,824 0,923 0,884

WGSum-generated (+) 0,831 0,934 0,921 0,830 0,925 0,888

rule-based (+) and inverted 0,840 0,938 0,929 0,846 0,925 0,896
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Table 6.12. Classification results of fine-tuning strategies on style manipulated GAN

augmented dataset in terms of PR-AUC score. Each line was obtained when the

mean PR-AUC score is maximum.

Fine-Tuning Strategy
Cardiomegaly

(PR-AUC)

Edema

(PR-AUC)

Consolidation

(PR-AUC)

Atelectasis

(PR-AUC)

Pleural-Effusion

(PR-AUC)
Mean AUC

pure-dataset 0,719 0,745 0,615 0,633 0,842 0,711

rule-based (+), inverted and rule-based-V2(+) 0,707 0,756 0,592 0,644 0,847 0,709

impression (+) 0,688 0,766 0,562 0,680 0,855 0,710

original-clip (+) 0,738 0,779 0,566 0,667 0,843 0,719

rule-based-V2 (+) 0,658 0,800 0,643 0,660 0,841 0,720

rule-based (-) 0,641 0,782 0,728 0,624 0,837 0,722

inverted 0,700 0,788 0,660 0,651 0,841 0,728

rule-based (+) 0,684 0,796 0,659 0,693 0,821 0,731

WGSum-generated (-) 0,659 0,791 0,671 0,698 0,834 0,731

randomized (+) 0,678 0,818 0,614 0,712 0,835 0,731

rule-based-V2 (-) 0,649 0,787 0,703 0,707 0,838 0,737

randomized (-) 0,682 0,791 0,688 0,701 0,827 0,738

WGSum-generated (+) 0,687 0,790 0,669 0,691 0,852 0,738

ensemble-without-impression 0,694 0,796 0,690 0,701 0,818 0,740

impression (-) 0,664 0,796 0,758 0,682 0,823 0,744

original-clip (-) 0,670 0,810 0,706 0,727 0,827 0,748

rule-based (+) and inverted 0,723 0,796 0,658 0,743 0,847 0,753

ensemble 0,672 0,802 0,783 0,667 0,845 0,754
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For tables 6.9 to 6.12, we present the results of style manipulated GAN aug-

mentations. Augmented dataset covers full CheXpert dataset and the corresponding

generated data depending on the fine-tuning strategy. Pure-dataset is present for

benchmarking. Minus sign denotes negative manipulation direction. Plus sign means

positive manipulation direction. Since the dataset is imbalanced, during the training

when the classification performance for a fine-tuning strategy reach the maximum mean

ROC-AUC score, it does not need to reach the maximum mean PR-AUC score. This

statement is also valid for vice versa. Therefore, we present two pairs of result tables

for two different states of the classifier. One state is when the mean ROC-AUC score

is maximum for each fine-tuning strategy. The other state is when the mean PR-AUC

score is maximum for each fine-tuning strategy.

Our style manipulated GAN augmentation experiments cover both single fine-

tuning strategy and multiple fine-tuning strategies combined. Lines with multiple

fine-tuning strategy names on the result tables show the combination of multiple fine-

tuning strategies. To be more concrete, “rule-based (+) and inverted” strategy covers

the generated data which are generated by both rule-based (+) and inverted fine-

tunning strategy. However, ensemble strategies mix generated data without combining

all the data. Specifically, “ensemble” covers the maximum PR-AUC scored generated

samples from various training strategies. To select the data we used Table 6.8. For

instance, we included synthetic Cardiomegaly samples originated from rule-based(+)

method. We injected synthetic Edema samples from WGSum-Generated(+) method.

Since there may not be available impressions section for any other dataset, we employed

ensemble-without-impression method. In this method, we ignored the data created by

impression fine-tuning strategy and select the data with maximum PR-AUC score. For

instance, we included data created by original-CLIP (+) method for Consolidation.

We also selected data generated by rule-based-V2(+) method instead of impression

(+) method. Considering Table 6.12, our data gathering strategy performs the best

for overall classification in terms of PR-AUC score.



55

7. CONCLUSION

Conventional data augmentation strategies broadly utilized by many image clas-

sification applications without sufficient training samples. These data augmentation

methods comprises of yet not limited with reflection, arbitrary cropping, re-scaling ex-

isting samples and changes. These procedures are utilized during training the classifiers

with augmented forms of real-world datasets. Expanding dataset with synthetically

generated data samples permits us to improve the overall accuracy, decline overfitting

and settle the training. With the substantial representation abilities of GANs, learning

the distribution of real-world data with a reliable degree of variance allows us to produce

image data with almost-in-secret discriminative features. In our methodology we uti-

lized the previously mentioned generative ability of GANs by using the state-of-the-art

GANs framework named as StyleGAN2-ADA. After the training of SytleGAN2-ADA in

class conditional setting, we expanded the dataset size with various quantities of extra

synthetic samples to explore the connection of classification performance and augmen-

tation strength. We also introduced text-based style manipulated GAN augmentation

technique for the medical domain. We utilized DeepAUC, the top solution of CheXpert

competetion, to show the effectiveness of our GAN augmentation techniques. In our

methodology, we saw that the classification performance of text-based manipulated

GAN augmentation is better than classical GAN augmentation techniques.
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