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immense experience and knowledge.

I would like to thank my jury members Prof. Olcay Taner Yıldız and Assist.

Prof. İnci Meliha Baytaş for accepting to be in my thesis committee, and devoting

their time to read the dissertation.

I would like to give my thanks to Enis Simsar to help our heatmap based in-

painting method, Umut Kocasarı for helping Conditional GANSpace method, Yasin

Durusoy for medical support and helping to find X-ray directions in GANSpace and

Dr. Görkem Durak for his time to listen our works in this thesis and giving us valuable

feedback.

I would also like to thank my family and my close friends who always give me

emotional support whenever I need. They have lived all this journey with me and are

always there for me.

In the middle of my M.S. years, COVID-19 crisis has arisen. We have lived with

great fear in our homes for a while. I would like to thank all the people who work

in the hospitals and put themselves at risk without any doubt. I would like to thank

the scientists that have been working to find vaccines and other treatments by giving

everything they have.



iv

ABSTRACT

DATA AUGMENTATION ON CHEST X-RAYS FOR

IMPROVING PATHOLOGY CLASSIFICATION

PERFORMANCE

In recent years, deep learning techniques have made great progress. We can

see applications of it in many fields such as economics, military, healthcare, and so

on. Healthcare, in particular, is one of the most critical of these areas. While the

world population is growing every day, healthcare professionals need more computer-

ized technologies to make things faster. Proposed new methods are making important

contributions to the healthcare system, but the lack of data is limiting development.

Privacy issues prevent more patient data from being collected to use for training mod-

els. For example, chest X-rays are commonly used in pathology classification. However,

studies are limited due to the lack of public datasets. To solve this problem, we focus on

data augmentation on chest X-rays to improve pathology classification results. To this

end, we demonstrate three methods. In the first, we propose a heatmap based image in-

painting that uses X-ray images with observations and inpaints the large healthy areas

to create new X-rays while preserving the labels. The second proposed method synthe-

sizes images using an extended version of GANSpace by adding a conditional generator

StyleGAN2-ADA. Finally, we demonstrate the manipulation of real and healthy X-ray

images using latent space manipulation and GAN inversion. Our quantitative experi-

ments show that heatmap based inpainting improves classification results from 86.1%

to 87.7%. To provide a basis for our Conditional GANSpace method, the results of

X-ray image generation experiments using StyleGAN2-ADA are also provided. The

classification result of the dataset augmented using StyleGAN2-ADA is 87.36% and

our Conditional GANSpace improves this result with the highest result of 88.5%.
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ÖZET

PATOLOJİ SINIFLANDIRMA PERFORMANSINI

GELİŞTİRMEK İÇİN GÖĞÜS X-RAY FİLMLERİNDE

VERİ ÇOĞALTMA

Son yıllarda derin öğrenme teknikleri müthiş gelişme göstermektedir. Ekonomi,

askeri, sağlık ve birçok alanda uygulamalarını görebiliriz. Özellikle sağlık alanı en

kritiklerinden birisidir. Dünya nüfusu her gün hızla artarken, sağlık çalışanları işleri

hızlandırabilmek için teknolojiye daha fazla ihtiyaç duymaktadır. Bu sebeple üretilen

yeni yöntemler ciddi katkılar sağlamakta ama veri yetersizliği fazlasına engel olmak-

tadır. Modelleri daha fazla eğitmek için kullanılacak veriler kişisel verilerin gizliliği

sebebiyle toplanamamaktadır. Örneğin, göğüs X-ray’leri patoloji sınıflandırması için

sıklıkla kullanılmaktadır. Bunun üzerine çalışılan derin öğrenme yöntemleri ise sınırlı

kalmaktadır çünkü çok az verikümesi bulunmaktadır. Bu problemi çözmek için göğüs

X-ray’lerindeki patoloji sınıflandırma sonuçlarını arttırmak amacıyla veri çoğaltma

konusuna odaklandık. Sunduğumuz ilk yöntem ısı haritası tabanlı imge tamamlama

yöntemi. Bu, X-ray’lerdeki sağlıklı bölgenin büyük bir bölümünün tamamlanmasıyla

yeni X-ray’ler oluşturmuş oluyor. Böylece, X-ray’in etiketi de korunmuş oluyor. İkinci

yöntemde ise, koşullu üretici StyleGAN2-ADA eklenmiş GANSpace modeli ile imge

sentezleme üzerine çalışma yaptık. Son olarak, sağlıklı ve gerçek X-ray’leri vektörlere

dönüştürerek GANSpace ile manipüle etme çalışmasını gösterdik. Sayısal sonuçlara

bakıldığı zaman imge tamamlama yöntemi orjinal dataset ile elde edilmiş sınıflandırma

sonucunu %86.1’den %87.7’ye yükseltmiştir. Koşullu GANSpace yöntemi deneylerine

bir taban oluşturmak için StyleGAN2-ADA modeli ile X-ray’ler ürettik ve çoğalttığımız

verilerin sınıflandırılması bize %87.36 sonucunu verdi. Sunduğumuz Koşullu GANSpace

methodu ise bunu da geliştirerek en yüksek sonuç olan %88.5’i elde etti.
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1. INTRODUCTION

The world population is increasing day by day. This situation is leading to the

emergence of serious problems. Healthcare is one of the services most affected by the

unexpected population growth. The healthcare system must be carefully organized

because it directly affects people’s lives. Diagnosis, detection or treatment of diseases

is extremely important in many cases. However, the dramatic increase in population

prevents these services from being provided in the desired way and quickly. The number

of patients per doctor is much higher than it should be. More patients mean that there

is less time available for each examination. X-rays of the chest are often used for

diagnosis or detection. According to [2], 1.5 billion chest X-ray examinations will be

performed in 2018. Due to the extreme number of examinations, specialists have to

work hard and take time out of their other workload to perform these examinations.

This can lead to some problems, such as misinterpreting X-rays, or they may fail to

detect a serious problem.

Computerized systems are playing an increasingly important role in healthcare.

Especially in the last decade, deep learning has become one of the hottest topics in

computer science. As a result, many techniques are also being used in the medical

field. They aim to automate prediction, detection, classification or other examination

methods. Analyzing blood samples, detecting heart problems and tumors, or diag-

nosing cancer are some concrete examples of deep learning applications in healthcare.

Ortega et al. published a study on breast cancer detection [3]. Sun et al. present a

deep model [4] for lung cancer detection. Multiple sclerosis is a disease that severely

damages nerves and brain. Zhung et al. is working on a method for multiple sclerosis

detection by classification [5]. [6] is published by Lakhani et al. to detect pulmonary

tuberculosis by deep learning.

Deep learning models require huge amounts of data to successfully generalize

their example domain. People generally think that deeper models can learn better,
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but this is not always true. Amount of data is just as important as model depth. Deep

models can overfit when trained with small datasets and memorize the input dataset.

With more powerful systems, deeper neural network models can be trained. For this

purpose, researchers need more and more data in each study. Therefore, data scientists

or big data experts try to obtain new data for different domains. In addition to the

amount of data, data diversity is another important issue. Experts must take care to

collect a wide variety of data to obtain generalized models.

Although collecting data is easy for some domains like animals, trees, flowers, and

houses, there are some others for which there are few public records, and collecting more

data is impossible due to privacy concerns. For example, it is forbidden to share health

data. This type of data can only be collected by hospitals, but the authorities do not

allow this without the patient’s consent. The lack of data prevents deep learning from

improving for these types of domains. Therefore, researchers use data augmentation

techniques to increase the amount of data available to them. Some simple methods

such as rotating, scaling, and flipping have been used for many years. However, these

do not always provide desired variations in data. Hence, studies focus on generating

new images rather than manipulating existing images. Generative models are used for

this task. These aim to generate unobserved and diverse images through learning.

The introduction of Generative Adversarial Networks (GANs) opens a new era for

generative models and deep learning. Following the publication of Goodfellow et al. [7],

many studies in this field have focused on these models, leading to a rapid improvement

in the field GAN. In the short time, many different types of GAN models have been

proposed and applied in various fields. Some of the different variants of GANs are

Deep Convolutional GAN (DCGAN) [8], Wasserstein GAN [9], StyleGAN [1] and many

others. The original GAN structure contains a generator network and a discriminator

network. The generator network aims to learn the joint probability distribution of

the given data for a given domain and tries to fool the discriminator network. The

discriminator network, on the other hand, tries to detect whether the given input is

real or generated by the generator. These two networks compete with each other and
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make each other better models. While the discriminator distinguishes whether the

given input is real or fake, it also gives feedback to the generator. If it finds the correct

results most of the time, it means that the generator cannot do its job well. Hence,

the generator optimizes itself according to the coming feedback and tries to generate

more realistic images.

In addition, the other GAN models contribute to the original or earlier GANs

and achieve better results or specialize for different tasks. Although Goodfellow’s GAN

model is revolutionary, it has drawbacks and needs improvement. Radford et al. in-

troduced DCGAN to solve its stability problem. They replace the max-pooling layer

with convolutional layer and add batch normalization to make it more stable. Wasser-

stein GAN introduces a new metric called Earth Mover (Wasserstein distance) for its

discriminator. This provides a real valued output to evaluate how much fake or real a

generated image is. In other words, it measures the fakeness value of an image instead

of a binary classification. Another variant StyleGAN introduces a mapping network

that converts the given random input into a meaningful latent vector to make it more

informative. A new method, adaptive instance normalization, is also introduced in this

paper. This makes the model more stable and standardizes the model during train-

ing. The results of StyleGAN can fool the real people in addition to the discriminator

network.

In this study, we aim to augment chest X-ray data to improve the classification

results. To this end, we use several GAN methods. The first is a GAN based deep image

inpainting model with the combination of the Probabilistic Class Activation Mapping

[10] model. We create a pipeline that finds the location of the labeled observation.

In this way, we can create a random mask that has no intersection with this given

location. Finally, the masked region is inpainted with RFR-Net [11]. In this way, a

new X-ray image is created while preserving its label. The next method is augmentation

with Conditional GANSpace. This is extended version of GANSpace [12], a state-of-

the-art latent space manipulation method. While GANSpace uses StyleGAN2 [1] as

a generator, we have integrated StyleGAN2-ADA [13] to generate X-ray images with



4

observation conditions. We introduce this method to create a conditional GAN that

also has control over the output X-ray images. Thanks to this extension, the output

X-ray images have the desired features at any strength. Finally, we demonstrate the

manipulation of the encoded latent vectors. We combine the study of Restyle [14] and

GANSpace. While Restyle encodes images to find their latent vector, GANSpace finds

directions to manipulate the original image.

The contributions of this thesis to the literature can be counted as the followings:

• We create a pipeline that is a combination of a heatmap module and an im-

age inpainting module. The heatmap module is chosen to preserve label after

inpainting operation.

• Our second method extends the GANSpace study. StyleGAN2-ADA, conditional

GAN model, is integrated to the GANSpace. This allows to synthesise and ma-

nipulate X-ray images with the desired labels.

• The method of manipulating inverted images is used in the medical field. We

encode healthy X-ray images and pass latent vectors to GANSpace. We can

manipulate them with any direction of observation.

• We improve pathology classification results with two different augmentation meth-

ods. Heatmap-based inpainting improves the score by 1.6% and achieves a final

score of 87.7%. Conditional GANSpace also improves this score by 0.7% more

and reaches 88.5%.

• Experiments show that our Conditional GANSpace method, which provides con-

trollable conditional image generation, gives better results than the conditional

image generation method of StyleGAN2-ADA. While result of the StyleGAN2-

ADA is 87.35%, our Conditional GANSpace method improves it by 1.12% and

got 88.47%. This means that controlling the features of X-ray images during

generation improves classification results and contributes to data augmentation.

• We show how powerful GANs are even in the medical field and data augmen-

tation task. Our proposed methods heatmap based inpainting and conditional

GANSpace improve the score of classification by augmenting the CheXpert dataset.
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The rest of the work is divided into 5 further chapters:

Chapter 2 contains an extensive literature review. It contains recent studies on

the techniques used in this thesis.

Chapter 3 explains the theoretical background information on the topics used in

this thesis. In this chapter, brief definitions, examples, and visual representations are

added to make the studies more understandable.

Chapter 4 contains the complete methodology with all details. All modern models

used are explained in detail. All extensions and contributions to the literature are

included in this chapter.

Chapter 5 shows the experiments and their results for the proposed models. It

also gives details about the dataset. All qualitative and quantitative results are demon-

strated in this chapter.

Chapter 6 is the conclusion of the thesis. It summarizes the thesis and gives an

overall view of the study. It also includes some possible future work.
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2. RELATED WORKS

In this section, we overview state of the art researches related to our study. These

are image inpainting, latent space manipulation, GAN inversion, and data augmenta-

tion in the medical domain.

2.1. Image Inpainting

Inpainting (also called completion or retouching) is the process of filling the miss-

ing, removed, or damaged part in an image. One of the main goals of this is to make

sure that inpainted area is not noticeable and looks as realistic as possible. Researchers

have been focusing on the image painting task for almost the last two decades. One of

the first papers was published by Bertalmio et al. [15] in 2001. After that, many other

methods in the same field have been improved [16–18] in order to inpaint images more

realistically and less prone to error. These methods include statistical and patch-based

operations.

In recent years, with the great advances in Deep Learning, researchers have ap-

plied methods based on neural networks. One of them is the context encoders [19]

proposed by Pathak et al. They aim to fill in missing parts from their environment by

using a convolutional neural network. In their proposed method, they use a classical

encoder-decoder method. The encoder aims to extract fixed length features into the

latent space and the decoder tries to generate the inpainted image by using the fea-

tures. They use AlexNet for the encoder part. The decoder needs additional layers to

pass on the relationship between pixels. The encoder is connected to the decoder by

channel-wise, fully connected layers to pass the information. Up-convolutional layers

receive the features one by one and try to reproduce the original image with inpainted

version. Reconstruction loss (L2 norm) and adversarial loss are used together. The

reconstruction loss checks the coherence of the whole image with its context. The ad-

versarial loss works as a discriminator in the generative adversarial network, while the
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context encoder works as a generative model. By using the adversarial loss, the system

tries to distinguish the original and the generated images.

Yangi et al. [20] introduce a method that uses image content and texture con-

straints with joint optimization. They call this approach multi-scale neural patch

synthesis. They use a deep classification network that matches and adjusts patches

according to features in the middle layers. This preserves contextual structure and

produces high-frequency details. Their network is an encoder-decoder convolutional

neural network. The approach uses the following operations to maintain consistency.

The first is that the output of the encoder-decoder framework generates global content

constraints. The second is to use the similarity between the missing region and the

remaining region, which provides texture constraint information via local neural patch

similarity. The model uses a three-level pyramid in the multi-scale local neural patch

synthesis approach. At each level, the size of the images is scaled by half and they

have 3 images with different resolutions. Then they perform inpainting task by starting

the most downsampled version of the image to the original image in a coarse to fine

manner. The inpainting task is performed by 2 different subnetworks. One subnet-

work, called the Content Network, uses an encoder-decoder framework and is trained

to fill in missing areas. It uses holistic loss to compute the error in the output. The

other subnetwork, the texture network, uses some layers of the pretrained VGG-19 to

enhance the visual content produced by the content network. It uses local texture loss

to find pixel-wise errors.

A novel approach is proposed by Yu et al. [21]. Their proposed method consists

of a deep generative model that can inpaint multiple and arbitrary holes in an image.

Their contribution is the context attention layer, which generates patches for missing

regions by learning where the background pixels should come from. Their network

consists of two subnetworks that operate coarse to fine. The first subnetwork takes the

image and the mask for hole region as input and generates a coarse, inpainted output.

This is a dilated convolutional network. It uses the reconstruction loss to generate a

draft patch. The second subnetwork, the refinement network, uses two encoders that
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work in parallel. One of them focuses on hallucinating content while the other focuses

on the background feature. The context attention layer is used in the encoder that

focuses on the background feature. The information provided by the context attention

layer is used in the generation of the patch. In this refinement network, they use

reconstruction loss with the GAN losses for global and local consistency. They also

introduce a spatially discounted reconstruction loss that is different from the coarse

network. This loss uses a weight mask because missing pixels close to boundaries are

less problematic than the ones close to the center of the hole.

The last image inpainting method mentioned here is proposed by Yu et al. [22].

Their method consists of a network that has a dynamic feature selection mechanism

that can be learned during training. All layers consist of this mechanism for each chan-

nel to extract better spatial features. This increases the quality of inpainting and color

consistency. They realize that these gated convolutions involve semantic segmentation

while selecting the features besides background, mask and sketch. Furthermore, they

use the contextual attention model [21] for the inpainting task. After getting inpainted

image from the model, they present a practical discriminator SN-PatchGAN which is

fast and produces high quality inpainted images. It is also stable during training. This

discriminator is based on a convolutional network. An important difference of this

network is that it provides a 3D shape feature as output. GAN loss is applied to each

output feature. This allows the system to focus on different locations and different

semantics of the input.

2.2. Image Inpainting in Medical Field

Medical inpainting has been studied for many years. In the early studies, some

classical computer vision and machine learning methods are applied to inpaint the

needed areas in the X-ray images. After the great advances of deep learning, new and

more successful methods have used in the literature.
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Hogeweg et al. [23] have published a study that detects and removes foreign

objects in chest radiographs to improve the analysis of these images. They first detect

the objects by applying the K-nearest neighbor classification method to each pixel.

For each group of pixels, they apply some post-processing methods and segment the

foreign objects. After segmentation, they remove the objects. To fill in missing pixels,

they select the best matches from the neighbor square patches by calculating the sum

of square differences. This was one of the most important studies before deep learning

methods are applied for this purpose. In recent years, many deep learning models have

been used for X-ray inpainting.

In 2018, Sogancioglu et al. [2] proposed to apply some existing methods of im-

age inpainting to chest radiographs. They applied three methods, namely Context

Encoder [19] by Pathak et al, Semantic Image Inpainting [24] by Yeh et al, and Con-

textual Attention [21] based inpainting by Yu et al. The first method contains two

opposing frameworks, namely encoder and decoder. Both of them are convolutional

neural networks. The encoder takes the images with masks and converts them into

smaller compressed data. The decoder then takes this compressed data and attempts

to create the original image by filling the missing region. The second method, Semantic

Image Painting, uses the DCGAN architecture for inpainting. They train the DCGAN

with natural images and then use the generative model to fill in missing areas in im-

ages. Generating pixels of the missing region with this model gives better results than

computing over distant pixels. The last model is Contextual Attention, which uses

neighbor pixels of the missing region. It first fills the region with coarse pixels as an

initial result. Then this coarse result is passed to 2 different paths, namely a dilated

convolutional network and a contextual attention layer. The results of these networks

are passed to another neural network and the final refined region is generated.

Armanious et al. propose a method [25] in order to inpaint MRI scans differently

than chest radiographs. Although the inputs are different, the purpose is the same. It

is based on a generative adversarial network (GAN), more specifically, a conditional

GAN. Cascaded U-Net [26] is employed for the generator. Two discriminators are
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used for different purposes. One of them is a global discriminator that focuses on the

entire image, while the other, called a local discriminator, focuses only on inpainted

region. The generator takes an input of size 256 × 256 with random masking. It

inpaints the missing area using the context information of the remaining part. Then,

the discriminator takes the output of the generator and the target image and tries to

figure out which image is real using cross entropy. The local discriminator, on the

other hand, takes only the generated region and the target region as input. This model

uses additional loss functions when training the network, namely style reconstruction

loss and perceptual loss. While the former loss function uses the features extracted

from the whole image using VGG-19 for loss calculation, the latter concerns pixel-wise

differences.

Armanious et al. recently published a new paper [27], which is an extended

version of [25]. This new model can inpaint the random missing regions instead of

fixed and square regions. This work takes a 256 × 256 image with a random mask,

while previous work uses an input of the same size with a centered 64 × 64 mask.

This model is also based on the conditonal GAN, but MultiRes-UNet [28] is chosen

in the generator instead of Cascaded UNet. Similar to the previous work [25], two

discriminators are used. The global discriminator focuses on finding real images by

taking an inpainted image and a target image as input. The local discriminator, in

turn, checks the only inpainted region with the same region in the target image. Non-

adversarial losses are also used in this model. VGG-19 is used as a feature extractor

to compute style reconstruction loss while the perceptual loss focuses on pixel-wise

differences by computing the mean absolute error (MAE).

Another recent study was published by Le et al. [29]. They proposed a deep

learning model for removing foreign objects and inpainting the missing region. For this

purpose, they detect the objects in the chest radiographs and then segment the areas

with foreign objects. After segmentation, the area is masked and removed from the

original image. The masked object is inpainted seperately by using the Fast Marching

algorithm. Finally, the inpainted areas are inserted back into the original image.
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Tran et al. [30] proposed a state of the art method in 2020. Their goal is to

inpaint missing or damaged regions in chest radiographs. For this purpose, they use

a two-stage model with a coarse-to-fine method. The first network is based on the

U-Net [31] and produces a coarse output from images with random holes. This output

is passed to the second network, which is an encoder-decoder framework. It has a more

complex structure than the first network as it tries to find more significant features to

produce a higher quality image. The second network has a discriminator to inpaint

images better and more realistically.

2.3. Latent Space Manipulation

Generative Adversarial Networks (GANs) use latent vectors that are randomly

selected during image generation. Some methods use these vectors only as an input

of first layer, while others can perform more computations in the deeper layers. More

computations with latent vectors offer some advantages to these methods. It can

contribute to different features in deeper layers. In StyleGAN2 [1], style vectors are

used as input in each layer of the generator network. Because latent vectors are a

critical component of generative models, even though they are just random vectors,

the researchers start to study whether manipulating them makes a difference in the

output images. They show that the manipulations give the user a great deal of control

over the output images. Moreover, this process requires no additional supervision or

computation. Only basic arithmetic operations are applied to the latent vector and a

new image is generated from the manipulated vector.

Goetschalckx et al. [32] present one of the earliest studies of latent space manip-

ulation called GANalyze. The authors aim to find high-level attributes in the images

that BigGAN [33] generates. They focus mainly on memorability as a fine-grained

attribute, but also use aesthetic and emotional valence for other pattern attributes.

They show that memorability is not only related to object class, but also to color,

shape, or size. Therefore, finding directions to edit these attributes in the images can

make them more memorable or less memorable. For example, in the study, the image
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of a cheeseburger becomes more memorable when it is made rounder, larger, and more

colorful. They show that the aesthetic and emotional valence of images also change

when they are brighter or clearer. Their method has a transformation function

Tθ(z, α) = z + αθ (2.1)

that takes latent vector with a coefficient α indicating how much the vector moves in a

predefined direction. They also try to find the best assessor function A that calculates

memorability score of the output image and optimizes the MSE loss.

The face specific latent space manipulation method called InterFaceGAN is in-

troduced by Shen et al. [34]. This work aims to find the connection between latent

vectors and output image semantics. For this purpose, they employ some well-known

classifiers from the literature. Then, a large set of latent vectors is randomly selected

and the corresponding images are generated using GANs, namely StyleGAN and PG-

GAN [35]. The generated images are classified according to different categories such

as gender, age, smile, and so on. Since the latent vector of each image is known, the

classification is also applied to latent vectors. In other words, the latent vectors are

linearly separated according to their semantics. This process allows finding latent sub-

spaces so that authors can determine the correlation between latent vectors and image

semantics. Therefore, latent codes can be manipulated by the desired subspace and

images can be edited by age, gender, eyeglasses, smile.

Another study called Closed Form Factorization was published by the same au-

thors Shen et al. [36]. They claim that previous work in finding directions requires too

much computation. They may need to query a large set of latent vectors and compute

directions. This also requires synthesizing images and annotating them [36]. Some

other methods train more models to synthesize an image with the desired features.

Instead of all these workload, authors present a novel method that focuses only on

pretrained layers of the generator. They show that each layer of the generator projects

the input into a different visual space. This means that the variations in the images
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come from the pretrained weights of the layers. The paper shows that decomposing

the weights and finding eigenvectors provides the directions of the generator. Since the

operation depends only on the weights of the generator, this method can be applied

to any kind of GAN such as StyleGAN, BigGAN, ProGAN. Their experiments show

that they can manipulate object orientation, shape, posture, zoom and many other

disentangled features.

2.4. GAN Inversion

Image synthesis has reached a new level in recent years. Major advances in

Generative Adversarial Networks (GANs) play the main role in this success. While

they synthesize high-quality images, they have some intermediate latent codes (or

style codes for StyleGAN [1]) that allow the user to manipulate images. StyleGAN,

for example, maps latent vectors to style vectors using a pretrained network. The

output of this network corresponds to W space. The generator synthesizes an image

from this style vector. When the style vector is modified by adding another vector, the

output image is manipulated in a particular direction. Therefore, the real images must

be inverted into the latent vectors to manipulate them. If the inverted code is given

directly to the generator, the original image is synthesized again. If it is manipulated

by other directions, edited version of the original image is synthesized.

Previous studies have attempted to encode images into theW space of StyleGAN.

However, the results failed because the reconstructed images were not close enough to

the original images. Drawing lessons from these, researchers have introduced new

studies [37–39] which work based on optimization based inversion. These methods

invert images into a new space called W+. It contains 18 style vectors for each layer

of StyleGAN. Their problem is that it takes several minutes to generate only one

single image. Therefore, encoder-based inversion methods are introduced. Richardson

et al. propose a method called pixel2style2pixel (pSp) [40]. They create an encoder

based on Feature Pyramid Network [41]. This network extracts feature maps of a

given random image at 3 different scales. Each feature map is used to obtain some
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of the 18 style vectors. The extracted feature maps are given to a pretrained small

map2style network [40] to find style vectors. The final style vectors are passed to the

appropriate layers in the StyleGAN generator. Another novelty of this method is that

the discriminator is not trained from scratch but an pretrained StyleGAN generator is

used.

Although recent works have achieved successful results for inversion, encoding

images into W+ space may not yield the best style codes for editing. The style vectors

in the output style code need to be closer to W space. Tov et al. present a novel

encoder [42] called Encoder for Editing (e4e). This study aims to invert images to

style codes where the style vectors are closer to W space. According to the authors,

style vectors become less editable when they move further away from W space. They

improve the encoder of [40] and it returns only one style code w and 18 offsets indicating

the style vectors of each StyleGAN layer. They try to regularize the offsets, since

the variance of the offsets must be as small as possible to achieve high quality and

editability.

2.5. Data Augmentation in Medical Field

Data in medical imaging is quite inadequate due to privacy and lack of labeled

data. Researchers are trying to augment the existing data using some techniques, but

they do not provide the desired variations in medical images. They are only changes in

the angle, the size of the images or the coordinates of the pixels in the images. Thanks

to the development of Generative Adversarial Networks (GANs), data augmentation

becomes more realistic. This technique generates new and unseen images in the domain.

In medical imaging, there are some research works on data augmentation with GANs.

In 2018, Moradi et al. published a study [43] on data augmentation in chest radio-

graphs for classification. They used normal frontal chest radiographs and radiographs

with cardiovascular disease from the dataset NIH PLCO. They modify the model of

Radford et al. [8] by changing the structure and number of convolutional layers. Their
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next step is to classify normal and abnormal X-ray images by using a model simi-

lar to VGG. They create 3 different experimental setups to test if the augmentation

works. The first experiment contains only original images from the NIH dataset. The

second experiment contains images with traditional augmentations such as transfor-

mation and cropping. The last experiment is performed with original images and the

images generated by GAN.

Kora et al. [44] proposed to use a Deep Convolutional Generative Adversarial

Network (DCGAN) [8] model to generate new chest X-ray images to augment limited

dataset. They use the dataset [45] published by Kermany et al. in 2018. The number

of normal and abnormal chest X-ray images is quite small, which leads to overfitting

of deep learning models in some other studies. They train the DCGAN and generate

images by giving 100× 1 vectors to the system.

2020 is a difficult and unexpected year for the whole world because of the out-

break of Covid-19. This disease is unknown at the beginning of the outbreak, but the

drastic increase of patients gives more information about it. Experts have discovered

that computed tomography (CT) of the chest provides more accurate results than other

diagnostic tests. In the field of medical imaging, research began on how to get com-

puters to detect COVID-19 disease from chest X-rays. One such study was pulished

by Waheed et al. [46]. They propose a data augmentation model of chest radiographs

because there are only hundreds of public datasets to study on Covid-19. Therefore,

they propose a model called CovidGAN based on Auxiliary Classifier Generative Ad-

versarial Network (ACGAN) to augment the chest X-ray images. For this purpose,

they collected public images from 3 different chest X-ray datasets [47–49] for Covid-19.

After the generation of new chest X-ray images, a classification model is applied to

check the quality of the images. This model is a modified version of VGG16 by adding

some extra convolutional layers at the end of it. Then they compare the result of the

classification experiment with and without generated chest X-ray images.
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Another study published to classify chest X-ray images for Covid-19 disease is

proposed by Saleh Ablahli [50] in 2020. As mentioned earlier, due to the limited data

for X-ray images for Covid-19, they first try to generate synthetic images by using

GAN model by [51]. After generating new images, they show them to the experts

and eliminate the bad images based on their comments. Then they perform different

experiments to find the best classification method for Covid-19. In the first experiment,

they use a convolutional neural network they created for classification. In the second

experiment, they use Inception-V3 [52]. In the last experiment, they use ResNet-

152 [53] for classification.

A different type of augmentation technique is proposed by Guendel et al. [54] in

2020. Instead of generating entirely new chest X-ray images with generative models,

they used a technique called local feature augmentation. They take the X-ray images

having some diseases like lung cancer because they have small nodules somewhere on

the lung, and extract those nodules to implant other healthy images. Their solution

consists of two steps. The first step uses an inpainting method that is a modified

version of [19]. A predefined bounding box is extracted from the X-ray image and the

nodule at the center of the box is inpainted. Then, the difference between the original

and inpainted nodule section is determined. This provides the extraction of the nodule.

In the second step, this extracted nodule is implanted into other healthy X-ray images.

During implantation, some traditional augmentation methods such as rotation or flip

are applied to the nodule.
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3. BACKGROUND

Although our main interest in this thesis is the Generative Adversarial Network

(GAN), which is one of the most commonly used generative models, it is better to

analyze both generative and discriminative models to provide a better ground.

3.1. Discriminative Models

Discriminative models essentially compute the conditional probability of a given

vector, which may be raw data from a text, an image, or extracted features. These

models output the probability distribution over the target classes y for the given input

x which is represented as P (y|x). Discriminative models attempt to classify a given

input by using information from observed data. This information must be essentially

gathered from large datasets containing data with their labels. These models have

some parameters and these parameters are optimized by observing each input label

pair. Then new and unseen data is passes as input and the model tries to find its

correct class with the highest probability.

Although discriminative models are considered supervised learning because most

methods use them, there are also some counter examples. For example, some clus-

tering algorithms can be used for classification. These methods do not require prior

information while classifying data. For given data, clusters can be created and it is

said that these data belong to the same class. However, it cannot give the exact label

of the data because it does not know the actual label of the data in a cluster.

Discriminative models aim to learn to create boundaries for classes in a given

dataset. These models should have the best mapping functions that can discriminate

classes by learning from input-output pairs in the training set. These training sets can

be really huge and the models need to be designed accordingly to achieve minimum

error rate. For instance, there are 1000 different classes with more than 14 million
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images in ImageNet [55] dataset in the current version. Even though complex models

may be required for optimal classification, they are generally simpler models than

generative models. The reasons for this will be explained in the next chapter.

Humans also learn by methods of discernment from birth to death. When babies

are born, they have no idea about the world. As they grow up, they experience the

world and learn about everything in it. For example, they see animals and categorize

them based on their specific characteristics. If an animal sounds like “meow”, it should

be a cat. Likewise, animals with wings should be birds. At babies’ early ages, they

may misclassify animals because they do not see enough data yet. They may match a

zebra and a horse in their mind because they have common characteristics, and a baby

who has never seen a zebra may say it is a horse. When they get to know the animals

in more detail by looking at the shape of the nose, the length and color of the feathers,

the length and shape of the tail, etc., they can determine the exact breed.

The best discriminative models are designed based on the human brain and are

called artificial neural network. It is similar to the neural connections in our brain.

There are many layers, neurons and countless connections between them. Each layer

learns different things. While some of them are small but crucial details, others are

big and obvious features. Neural networks take an image and divide it into small parts

in the first layers. Each small part can activate a different part of the network and it

can recognize the shape or size of the nose, ear and tail. Then it can combine different

features and classify the whole image.

Some examples of discriminative models are logistic regression, conditional ran-

dom fields, and random forests. Besides, there are some deep learning based classifi-

cation models such as Res-Net [56], Inception [57], Alex-Net [58], and their variants.

These models are some of the most successful baseline methods for classification. They

are also adopted by many other deep learning applications. The ImageNet dataset men-

tioned earlier has been used in many competitions. In each competition, great base

models or state of the art models are presented. Since ImageNet contains numerous
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images, the models that are trained with it have hundreds of millions of parameters.

EfficientNet [59] is one of the latest and best classifications tested on ImageNet. It

has a top-1 accuracy of 88.4% and was the best when it was released. In early 2021,

another method Meta Pseudo Labels [60] is proposed based on EfficientNet. It is the

best model with a top-1 accuracy of 90.2% at the time of its publication.

Measuring discriminative models can be simple and completely objective. There

are some quantitative metrics that can show how successful these models are. This

makes it possible to compare different discriminative models and decide which model

gives the better results, unlike generative models whose results are quite subjective

and difficult to measure, as we will see in the next section. This makes it advanta-

geous for use in industry. It can be used for various applications in industry. For

example, the military or national defense of countries are quite critical areas for their

power. Applications that use discriminative models can be used in this field to detect

enemy units or unexpected vehicles at the borders or aircrafts. This ensures unlimited

protection without constant human surveillance if they are successful enough to be ap-

plied. Another application could be healthcare systems. With the world’s population

increasing rapidly every year, some systems are no longer adequate to protect human

health. Most of these systems require interpretation by experts, and each expert has

to examine patients whose numbers are much larger than they should be. This has

absolutely undesirable consequences. The systems with discriminative models help the

experts to examine many more patients in less time. This can save some people’s lives.

3.2. Generative Models

Unlike discriminative models, generative models attempt to learn the joint proba-

bility distribution, p(x, c), of the data. They create a space by using the features of the

given data and generate new ones by sampling from that space. The joint probability

formulation is formally described as

p(x, c) = p(x) · p(c|x) = p(c) · p(x|c). (3.1)
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We can also see this formulation inside of the Bayes’ Theorem which is

p(c|x) = p(x|c) · p(c)
p(x)

=
p(c, x)

p(x)
. (3.2)

Generative models must have the following characteristics to be a successful model.

The model must generate new data which must be in the sample space. In other

words, the generated outputs must be the same category as the data in the training

set. The second characteristic is that the outputs must be different from the observed

data. The parameters of the model must be optimized to generate unseen data. To

illustrate this, we can imagine a dataset consisting of tens of thousands of dogs. These

may contain many different breeds, colors, angles, or positions, as they are taken in

real life. Generative models aim to learn the complete data distribution of this set.

While doing this, the models do not require any kind of annotation or label.

Since generative models can be considered unsupervised learning because they

can learn with unlabeled data, they can also be supervised learning. These models

can generate data for some specific categories. Unsupervised learning gives generative

models the advantage that they usually do not require annotations.

While discriminative models have a simpler task, which is only to classify based

on some features of the inputs, generative models have a much more difficult task.

Discriminative models can accomplish their task by checking whether the image has

certain features. For example, the shape of the nose, teeth, ears, tail, or color may

be sufficient to predict whether the given image is a dog. Their exact position or

location relative to each other does not matter much. However, in a generative model

that is intended to produce a realistic dog image, each part must be in the correct

position relative to each other. Otherwise, the image is completely different from the

training set and looks uncanny when viewed. Learning a joint probability distribution

requires a more complex architectural model and parameters. Another difficulty is that

optimizing these parameters requires more data.
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Another difference between discriminative and generative models is that the for-

mer finds the boundaries between classes in the set. For the digit space, discriminative

models find the best function that separates each digit and maps the given inputs for

each output. Generative models, on the other hand, find where the distribution of the

data lies in the space.

In the previous section, we have already mentioned how the human brain func-

tions as a discriminative model. Similarly, the brain is also a great generative model.

As humans speak or think about something, they can generate anything with a single

word. This happens so quickly that even humans cannot understand this process them-

selves. In fact, this can happen whether man wants to do it or not. It is a completely

instantaneous process in the brain. Moreover, there are no limits to these generations

because people have experienced countless things in their lives and collect unlimited

data. Even if conditions change simultaneously, they can easily create new images.

These images can be very diverse. This proves how complex the human brain is and

how successful the generative model is.

One of the disadvantages of generative models is the difficulty of measuring their

outputs. The evaluation of the generated images is a subjective matter. There is no

metric to measure how successful the output of a generated image is. If a quantitative

evaluation must be made, the question for these models is what the real valued results

might be. Therefore, the qualitative results, which may be expert judgments, do not

provide an objective comparison between different models. One result of this problem

is that the number of people working in the field is smaller than for discriminative

models. This prevents the rapid improvement of generative models compared to other

models. Nevertheless, new methods have been introduced in recent years that show

the improvement of generative models.

Generative models can be helpful when creating characters in games or anima-

tions. They can speed up the processes and save money and time. However, one of the

most important applications of generative models is data augmentation. To achieve
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better results in deep learning, large amounts of data may be needed. In some fields,

such as medical imaging, this is sometimes not possible. Even if the models are great

candidate for some purposes, they cannot be trained and give poor results due to lack

of data. To overcome this problem, data augmentation has been proposed as a solution.

Although some basic techniques are applied, generative models are the best option be-

cause they can provide unobserved and diverse data to expand current dataset. This

also contributes to the development of discriminative models.

Figure 3.1. Difference Between Discriminative and Generative Models in Space.

Naive Bayes, autoregressive model, Gaussian mixture model, Hidden Markov

model, latent Dirichlet allocation are some traditional models that have been used for

data generation. In recent years, with the great development of deep learning, these

have been replaced by Variational Autoencoders and Generative Adversarial Networks.

Since methods applied in this thesis are developed based on Generative Adversarial

Networks (GANs), we will give information and some details about them in the next

section. Then, famous variants of GANs will be presented. Finally, the application

of GANs will be described in detail with numerous examples. While these works

include the earliest ones to show how they improve, they also consist of state-of-the-art

methods.
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3.3. Generative Adversarial Networks

This chapter will focus on what Generative Adversarial Network is, how it works

and where it is used.

3.3.1. Introduction

Generative models have taken a completely different path after Goodfellow et al.

published one of the most famous papers in Deep Learning: Generative Adversarial

Network (GAN). This study is the beginning of a new era for generative models.

The generative adversarial network consists of two parts, the generative and the

discriminative network. The task of the generative network is to generate plausible

new samples from a given random vector. The discriminative network, on the other

hand, tries to figure out whether a given input is generated or is a real image. Figure

3.2 shows the general architecture of GANs.

Figure 3.2. Visualization of GAN Architecture.

A generative network takes an input from a random distribution such as the

Gaussian distribution and learns to generate realistic and unobserved outputs in the

problem domain. The main task of this network is to fool the discriminative network.

Since the discriminative network learns whether the given input is a generated image or

a real image, it tries not to be fooled by the generative network and finds the fake images
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with the highest probability. With this system, both networks make each other better.

The generative network uses the values from the backpropagation of the discriminative

network to optimize its parameters. Similarly, the discriminative network learns from

the inputs, either generated or real, to produce better results. However, the goal in

this system is to make the discriminative network to succeed half of the time. In other

words: If it gives the correct result with a probability of 0.5, the generator works best.

Goodfellow et al. summarize this in the paper [7] as follows: ”D and G play the

following two-player minimax game with value function V (G,D).” General formula is

min
G

max
D

V (G,D) = Ex pdata(x)[logD(x)] + Ez px(z)[log(1−D(G(z)))]. (3.3)

Generative adversarial networks become so popular after the publication of the first

model because they solve some difficult problems such as image super-resolution, image-

to-image translation, and are the most commonly used method for data augmentation.

Data augmentation may be the most critical issue in deep learning. Because the models

require large amounts of data to learn the problem domain, sometimes the available

datasets for the problem may not be large enough to produce good results. Less data

can cause problems such as overfitting, which means the model can memorize the

training data. This happens because the model is too complex for the limited data.

To solve this problem, some basic data augmentation techniques are applied to the

data, however they do not generate new and unseen data. These basic techniques are

zooming, cropping, flipping, transformations, scaling, and some other physical changes

to the current data. They do not provide unobserved data and may not always increase

the success of the models. The modern models from GAN are quite successful in

generating realistic data in the problem domain. In particular, in some areas such

as medical imaging, where the amount of data is quite limited, these models provide

thousands of new data for detection, classification, or other types of problems.
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3.3.2. Variants of GANs

Generative adversarial networks have been used since the GAN paper by Goodfel-

low et al. [7] used to synthesise new images for different problems. Different problems

may require different architectures or modifications to existing GANs to solve their

own problems. Until the revolutionary GAN paper is published, many new studies

are proposed to reflect the current state of the art. Some important studies are Deep

Convolutional GAN by Radford et al. [8], Wasserstein GAN by Arjovsky et al. [9], and

StyleGAN by NVIDIA Labs [1].

3.3.2.1. Deep Convolutional GAN. The concept of generative adversarial networks is

revolutionary, but the models introduced are unstable. Although some studies are

conducted to solve this problem, no successful solution can be found. In 2016, Rasford

et al. [8] proposed a GAN model improved with convolutional layers. They removed the

max-pooling layers from the GAN model of [7] and added convolutional layers instead.

The name of the network comes from this improvement.

To create a more stable system, they also added batch normalization [61] before

most of the layers in their GAN. Thanks to the batch normalization, the flow of the

gradient in the model becomes more efficient and successful.

Even though generative adversarial networks are designed to synthesize data,

they may be used for unsupervised classification. The layers of both generative and

discriminative networks can be modified as feature extractors. While DCGAN is intro-

duced with a new type of GAN, the authors prove that these networks can perform well

in image classification. They train the DCGAN on the ImageNet-1k dataset and use

the trained network as a feature extractor. They convert the network into a complete

classifier and test it on the CIFAR-10 dataset.

Another contribution of the study is that they can visualize and manipulate the

intermediate results to obtain different outputs. These results are promising for future
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studies. They show that there might be many different applications for generative

adversarial networks.

Figure 3.3. Overview of the StyleGAN Architecture taken from paper [1].

3.3.2.2. Wasserstein GAN. The discriminator of GAN is introduced to determine

whether a given input is real or fake. The other proposed GANs are also used it

in this way. This leads to the problem that the loss value may not decrease even if

the generated images are visually better and more realistic. Since the system does not

focus on whether the quality of the image is getting better, it only makes a binary clas-

sification. In 2016, Arjovsky et al. propose a new model called Wasserstein GAN [9].

They calculate a score which shows how much the image is fake or real as a floating

value.

They introduce a new distance metric called Earth Mover (also referred as Wasser-

stein distance). It calculates the cost of transferring from one probability distribution

to another. The authors’ goal is to find the minimum value of this cost. This distance

method is used as a loss function in this model because it allows the calculation of how

much real or fake the image in terms of a floating number. Using this score instead

of a binary classification between 2 classes provides more detailed and better feedback
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to the generator. As a result, generator optimizes itself better and generates more

realistic results.

Previous generative adversarial networks use Adam optimizers based on momen-

tum, which makes the model unstable in the training phase. In this paper, the authors

use the RMSProp optimizer instead and their model works more stable.

3.3.2.3. StyleGAN. Each new type of generative adversarial network focuses on im-

proving the discriminative network. Researchers do not change anything in the genera-

tive network and consider it as a closed book. They assume that improving the discrim-

inative network will ensure that more realistic images are generated. Researchers from

NVIDIA Labs propose a new method in 2019 called Style-Based Generator Architecture

for Generative Adversarial Networks [1]. In this paper, Karras et al. make no changes

to the discriminative network of previous GANs, but make major improvements to the

generator.

This model differs from the previous ones in its input. While other networks take

a vector from a random distribution, the input of this network is always constant and

its size is 4 × 4 × 512. When the input reaches deeper layers, it is upsampled and its

size is doubled in width and height in each layer. In other words, the size becomes

8×8×512 at the output of the first convolutional layer, then 16×16×512 in the second

and so on until the last layer, which produces an output of size 1024 × 1024 × 512.

Each layer affects the style in a different part of the image. According to the paper [1],

each resolution affects the style in different level. For example, the first layers of the

network control the pose and hairstyle. The layers at the end of the network control

the skin or eye color and fine details. After each process in the convolutional layers, a

different noise is added to the results as bias. Their experiments show that adding noise

to different layers results in significant changes in style. For example, adding noise to

all layers or reducing the number of layers changes the curly in the hair or synthesizes

a less realistic (as in animation) background or skin. After noise is added, each image

is normalized using an operation called adaptive instance normalization (AdaIN). This
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provides stable and standardized intermediate steps in the network. The style of each

detail can also be strongly controlled with these new additions to GAN.

Figure 3.4. Example results of generated faces taken from paper [1].
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Another contribution of this study is that it proposes a new element, called

the mapping network, which replaces the input from the latent space with a new

one generated using a fully connected neural network. This network generates a new

intermediate space from the latent space, which is used to obtain a sampled vector.

These vectors from the mapping network are added to the images in the AdaIN step.

Two different vectors, namely w1 and w2, created using two different mapping networks

are included in the network. These vectors are called style vectors because they transfer

the style of two different images to synthesize and create a new image. These two styles

reflect the different sides of the images. For example, while one vector transfers the

hairstyle of the first image, the other vector transfers the hair color of the second image.

In the Figure 3.4 from the paper [1], the result of this transfer can be clearly seen.

3.3.3. Applications of GANs

The great advances in generative adversarial networks make them very popular in

the field of deep learning. While some researchers try to find better way to obtain more

realistic and high-resolution images by improving GANs, others try to apply existing

GANs to new domains that also may require some modifications or improvements.

This section contains the most popular application areas of GANs.

3.3.3.1. Conditional Image Generation. The original paper of GAN proposes a model

where the discriminator network determines whether the input is real or fake. It has

no idea what the label, class, or category of the image is. Later works start to focus

conditional generation of images according to their labels. The difference between

the standard GAN and conditional GAN can be found in the Figure 3.5. In classical

GAN [7], the system just takes a random noise as input and generates an image in the

given domain. In conditional GANs, a new input is introduced, namely a class that

specifies to which category the synthesized image belongs. While the class is given as

input to the generator, it may also be given to the discriminator. In another method,

the discriminator can calculate the probability to which class the image belongs.
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Figure 3.5. Difference between GAN vs Conditional GAN.

The pioneering work for this task was done by Mirza et al. [62]. In this study,

the authors added label variables for both the generative and discriminative networks.

While the random vector z is given to generator, a label which contains the information

about the category of the generated image is also given as input. On the other hand,

the discriminator not only determines whether the given input is real or fake, it also

finds the class based on the trained data. This new type of discriminator provides

more information to the generator so that it can learn better than the original GAN

model. The authors conduct experiments on the MSNIST dataset and show that it

can perform better than some existing models while outperforming some unconditional

GAN models. Nevertheless, they note that although it is not the best model for the

task, it is a proof of concept for conditional GANs.

As previous methods have suggested, generative adversarial models can generate

images from a class with conditioning. However, the effects of the large number of

classes were unknown until Odena et al. published a new method called Auxiliary

Classifier GAN (ACGAN) [63]. This method uses all 1000 classes of the ImageNet

dataset [64]. They show that conditioning network with a large number of classes is

also possible. The discriminator network of the method gives two outputs. One of
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them shows whether the given input is real or fake and the probability distribution

of the input for the classes. Moreover, this method produces images with a size of

128 × 128. Another contribution of this work is that generating a higher resolution

allows higher accuracy in distinguishing the classes.

Earlier methods in conditional generative adversarial networks suffered from con-

trollable diversity in the specified domain. It is also important to synthesize a realistic

image by keeping it in the domain. Bodla et al. [65] introduce a conditional GAN called

FusedGAN that solves all these problems. Their model has two generators, including

a conditional GAN and an unconditional GAN. The unconditional GAN is responsible

for sketching images without any conditions. It does not know or care about condi-

tions. For example, this generator may generate a dog image, but it does not paint

the image because it depends on the conditions. Then the conditional generator takes

the sketch as input and completes it according to the given conditions. This generator

now paints the image of the dog for the given example in black and white or with some

shapes on its body.

Generative adversarial networks can be applied for specific purposes that might

take too much time for humans. LoGAN [66] was introduced by Mino et al. for

generating logos. Since designing a logo can be a lengthy process and requires too

much effort, the authors try to use GANs to make this process short and simple. They

improve AC-GAN with the loss function of WGAN-GP, to provide stability during

training. They use the twelve different colors while conditioning GAN. The architecture

of GAN consists of three parts, a generator, a discriminator, and a classifier, which is

used to classify the logos as in AC-GAN.

In addition to conditioning the generative adversarial network with labels, the

use of textual content is another method. Instead of just using the name of the class or

category, some networks can generate an image based on the description given as text.

Stap et al. [67] present a method that first generates an image from a textual description

and then manipulates the result to look like a person’s thoughts using the same textual
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data. For the generation step, they modified StyleGAN [1] and added a conditioning

mechanism and called it textStyleGAN. They create kind of preprocess network that

takes the textual description and the image and creates joint embedding space. They

feed the StyleGAN network from this space and synthesize the images. They also

use an attention mechanism for words to determine critical features in descriptions.

After generating images, they use a second network to manipulate the results. The

manipulation is based on features such as age, smile, and gender.

3.3.3.2. Image Editing. The development of Generative Adversarial Networks creates

new application areas. After conditional GANs generate plausible results, more studies

are published that improve them and use them for specific purposes such as image

editing. As the name suggests, studies for this purpose aim to synthesize new outputs

based on an image by modifying features of the image.

Peranau et al. [68] propose a model called IcGAN based on the conditional GAN

model of [62]. In cGAN, a conditioning label is given to GAN with the latent space

variable z. This study uses a different approach while giving these inputs to GAN.

They use two encoder frameworks to create the inputs from GAN. One of them creates

the latent variable z by encoding a given input image. The other encoder extracts

features of the same image such as hair color, hairstyle, and gender and creates a one

hot encoder vector named y. Then the features extracted by the encoder are edited

as desired. These two latent space and conditioning vectors are passed to cGAN and

the system generates a new image accordingly. For a given image with a man with

black hair and eyeglasses, it can be edited as a blonde woman without eyeglasses by

changing the encoded feature representation of vector y.

Generating high-resolution images with GAN is becoming a problem. Previous

methods cannot create realistic and visually plausible images at high resolution. Want

et al. propose a new GAN [69] for generating high-resolution images while editing

images with conditional GAN. Their input to the model is a semantic label map of

images. Therefore, they use the map and image tuples in training. They use two
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generators in their model. The first is called the global generator and is employed to

synthesize an image with the desired changes. This generator takes the label map with

a size of 1024×512 and generates the output according to the manipulation. Then the

second network, the Local Enhancer, takes this output and increases the resolution by

4 times. The result is an image with a resolution of 2048 × 1024. They also choose 3

discriminators to distinguish images with 3 different scales. They downscale image by

a factor of 2 and 4. While the discriminator trained with the lowest resolution gives

feedback to the generator about global details, the one trained with the original output

focuses on fine details.

Face aging is more specific subcategory of image editing and can also be overcome

with GANs. Antipov et al. claim that previous face aging methods which are based

on prototyping and modeling have some problems needed to overcome. Prototyping

based methods apply same kind of changes to each image and all of them looks like each

other eventually. Modeling based methods require many images from different ages for a

model (or person) to learn specific changes. However to get that many images for every

person is quite challenging task itself. Authors propose a new method [70] to overcome

these problems. They aim to preserve identity with their model. Their approach

includes two steps. In the first one, they try to find the best vector which can identify

the features of the person in the input image and will be used to preserve identity. They

employ an encoder to find the initial attribute vector. Then, this vector is given to

FaceNet model [71] as input for face recognition. This network makes the optimization

for the best identity preserving attributes. In the second step, they introduce a new

GAN model called Age-cGAN which can takes the optimized attribute vector and the

age conditions to generate most realistic images while preserving identity.

Karras et al. present a new model [35] that focuses on the growth of both the

generator and the discriminator network in GAN. Their contribution to this study

is that they start from a low resolution image and enhance it in the deeper layers.

Therefore, they generate images with large resolutions such as 1024× 1024, unlike the

previous models. This system also solves the problem of instability and slowness of the
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previous GANs. A new metric that improves the Wasserstein distance is also presented

in this work. Finally, they contribute CELEB-HQ dataset, which is a higher quality

version of the CELEBA dataset.

In image editing methods, models generally create a vector of image attributes

and synthesis operation is done after these attributes are changed. These vectors

contain binary attributes and when one of them is changed from 0 to 1 or vice versa,

the image changes. Lin et al. consider this approach to be quite limited and inefficient

for image editing. Therefore, they introduced a new method RelGAN [72] that uses

relative attributes rather than binary ones. For attribute editing, they use real-valued

attributes so that the difference between modified and original values gives the relative

attributes. They also claim that interpolation of edited attributes is not successful

in the previous methods. Hence, they add a new discriminator to the system that

is responsible for controlling the interpolation success of the generated image. The

generator in the model takes the relative attributes of the original image and creates

a new one and passes it to 3 discriminators. One discriminator checks the realness of

the image, one evaluates whether the output matches the input and relative attributes.

The last discriminator, as mentioned before, evaluates the interpolation of the output.

Shen et al. published a paper on editing faces with GANs [73]. They propose a

model called Interpreting Face GAN (InterFaceGAN). We have provided the details in

the Latent Space Manipulation section of Related Works chapter. They synthesize an

image from some random latent vectors. Then they classify images using predefined

SOTA classifiers. While separating the images linearly, they also create latent sub-

spaces. These subspaces allow the correlation of image semantics and latent vectors.

Finally, they can use these correlations for image editing.

3.3.3.3. Image to Image Synthesis. Generative adversarial networks are applied var-

ious domains, as mentioned in the previous two sections. With the development of

GANs, new application areas are proposed. One of these areas is image-to-image syn-

thesis, which is a kind of style transfer. This work aims models to learn to combine
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visual representation of one image with the content of the other image. In other words,

mapping features of a source image to a target image while preserving its content or

predefined features.

Image-to-image translation is an application area for which other methods were

applied before GANs. However, in training, these methods require pairs of images to

learn the relationships between two domains and map them. Since this is a difficult

problem in any domain and image, Zhu et al. introduce a GAN method called Cycle-

GAN [74]. They introduce a model that uses two model functions for images X and

Y . While one mapping function generates image Y from image X, the other function

does the opposite. If the model succeeds in converting Y to X, which is its original

version, it can be used as an image-to-image translator with minor modifications. With

this idea, they create two generative models that map images between two domains.

However, when converting images from Y to X, they use some specific features of the

image of Y . As a result, the output image becomes a synthesis of X and Y . For the

discriminator part, they again use two discriminators, one for each generator. One of

them discriminates images from X to Y and the other vice versa.

Another method for image-to-image synthesis is introduced by Huang et al. It

is called Multimodal Unsupervised Image-to-Image Translation (MUNIT) [75]. To

overcome the problem of required image pairs, they use a system that includes two

encoders and GANs. They assume that images from different domains can be encoded

in a common latent space for their content. However, their styles come from different

domains. For translation purposes, they first encode an image with the encoder of its

domain and create a content variable. Then the style vector is taken from the other

domain. The GAN model, trained in the second domain, takes the content vector

and the style vector as constraints and creates a new image. This image contains the

content property of the first image, while the style of the image comes from the other

domain.
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Generative adversarial networks are commonly used in the medical field. MRI

images suffer from insufficient contrast due to cost and time issues. Contrast can

play an important role in MRI images in detecting certain medical problems. With

the recent development of deep learning and GANs, many methods are proposed to

solve this problem. Dar et al. present a model [76] to improve contrast in MRI

as an image-to-image synthesis application. They apply two different networks and

compare them to find the better approach. The first model uses a classical generator

and discriminator network with VGG16 as the feature extractor. The source image is

passed to the generator to learn the contrast features and the new image is synthesized

accordingly. Then, the discriminator distinguishes between the real image and the

generated image, while the VGG16 extracts the features of the generated image and

the original image and calculates the perceptual loss for the feedback. The second

model uses two generators and two discriminators. The two generators are trained

with different sets of images, namely images with high and low contrasts. One of

the generators tries to synthesize images with higher contrast, while the other does

not. Then one discriminator distinguishes original high contrast images from generated

images and the other discriminates original low contrast images from generated images.

Then the generators use cycle loss to improve their results.

One of the earliest studies using GANs to generate biological images is introduced

by Osokin et al. [77]. The authors attempt to generate cells that originally have two

different types. Some of them have red signals while the others have green signals.

The cells with red signals have only one type of red signal, indicating that the cell is

actively growing in that area. Green signals, on the other hand, may indicate that

the cell has at least one of 41 different proteins. These provide information about the

geometry of the cells. Generating new images provides information about green signals

because current technology does not allow us to observe how many different proteins

the green signals contain. Observing the process of generating the GAN layers and

the results could provide the opportunity to find out what is happening in the green

signals and learn details about different types of proteins in these cells. In addition,

cells that generate red signals could provide a better understanding of growth and
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division phases. For these purposes, they propose a GAN based on DCGAN [8]. Their

model consists of two different GANs. While one of them learns to generate cells with

red signal, the other learns the connection between green and red signals. The latter

focuses on the green channel, but deeper layers link the intermediate results of the

earlier GAN so that it can generate images containing both channels. They modify the

original DCGAN by adding a Wasserstein objective function to it.

Previous methods for image-to-image synthesis cannot generate images by taking

sample images as input. They also cannot generate high-resolution images, as shown

in the study by Xiao et al. [78]. They propose a new method based on GAN to solve

these problems. While previous GANs use a sampled latent space code as input, this

method takes two images as input. One image has the attribute to be transferred to

the second image, which does not have that attribute. They also provide a method to

transfer multiple attributes at the same time. An encoder framework is used for this

purpose. It creates disentangled attribute vectors and these vectors are modified as

desired to transfer them to the target image.

In generative adversarial networks, the discriminator is used only to determine

whether the input image is real or fake. Some studies also try to find a score of realness

or fakeness of images. Another approach is to use a discriminator to find the exact

difference between real and fake images. For this purpose, Emami et al. propose a

method called SPA-GAN [79] that uses an attention mechanism in the discriminator.

This mechanism gives feedback to the generator on how to distinguish the real and fake

images. More specifically, it indicates the feature locations in the image in determining

process. They also use a new loss function called feature map in order to preserve the

special features of the original image.

3.3.3.4. Image Inpainting. Inpainting is the process of filling missing, removed or dam-

aged parts of an image. With this application one can restore old images that are

somehow damaged. Similarly, the broken parts found during archeological excavations

can be completed in the digital environment with the help of inpainting. This can be
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done by human experts, but successful models can do it in less time. From a deep

learning perspective, models can provide results that match the original because they

can train many samples that the expert has not yet seen. In addition, removing objects

is another difficult task that takes too much time to do manually. The task of image

inpainting is also used for this problem. Researchers in this field assume that with this

technique it is possible to remove objects from the image and fill the hole with suitable

background or neighbor pixels.

The improvement of the technique over the years and the successful results are

prompting researchers to apply image inpainting in certain fields such as medical imag-

ing. In particular, removing unwanted objects from medical images can be great benefit

to experts who examine and interpret them. In recent years, many studies have been

published to solve this problem using image inpainting. Image inpainting cannot only

provide complete and realistic medical images for interpretation, but also augments the

available data for future studies. Since the publicly available data for medical imaging

is quite limited, data augmentation becomes a very important task.

Following the rapid improvements in generative adversarial networks, this tech-

nique is now being applied to image inpainting area. Previous neural network models

applied for image inapinting can achieve good results, but they also have some draw-

backs. For example, while they complete the missing region in a face, inpainted region

looks like the one in the training set. The model learns from the observed data and

completes the area that is similar to them. To solve this problem, Dolhansky et al. [80]

proposed to use GANs for this task. They introduced a GAN called Exemplar GANs

(ExGANs) specifically designed for inpainting eyes. This model uses the conditional

GAN approach and extends the system to include the specific features of the face.

These features ensure that the identity of the original face is preserved by contributing

to the model in different layers of the model.

In the early years of generative adversarial networks and other deep learning

methods, models were trained and images were inpainted with known masks or oc-
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clusions. Therefore, the results for some random images with occlusions are not very

successful. Chen et al. [81] introduce a method for inpainting random occlusions in

images at GAN. For this purpose, they use a detection algorithm to mask the oc-

cluded area. After masking, the generative model inpaints the area. Their generative

model first encodes the given input and finds the closest vector in the domain. Then

it generates the inpainted image using that vector, and a discriminator evaluates the

image.

Autonomous cars have improved greatly in recent years. They have a multiview

system with multiple cameras and different angles of view for better and safer driving.

When recording video images, some images may be partially or completely lost. For

partial loss of images, Yuan et al. proposed an inpainting method [82] based on con-

ditional GANs. This method uses the same scene from different perspectives. For a

missing region in an image, they use left and right views of the same image to recover

the region. They use an encoding network in the generator and create latent vectors

for the image with the missing region, right and left view images. They obtain the

spatial transformation using these three images and get a final latent vector that con-

tains the information about the missing region. The next steps are similar to classical

GANs. The generator takes this vector and creates an image that is inpainted. The

discriminator distinguishes between the real and the fake images.

Chen et al. propose a GAN model [83] to complete the missing regions in images.

They use a generative network and two discriminative networks, a global discriminator

and a local discriminator. The local discriminator works like the classical discriminators

in GANs and distinguishes whether the generated (or inpainted) image is real or fake.

The global discriminator is used to measure the quality of the generated image. It

checks the integrity of the image and the coherence of the texture. The generator

network in this model is different from previous GANs. It takes the broken image as

input instead of random noise. The authors show that this method provides higher

quality and better inpainting compared to previous classical GAN methods.
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After the outbreak of Covid-19 in 2020, we encounter a new disease. Although

it is completely mysterious at first, rapid spread of the disease is needed to find rapid

diagnostic methods for it. Various types of diagnostic kits have been developed, but

none of them provide as accurate results as computed tomography (CT) of the chest.

As the whole world is affected, it has become very difficult to perform quick tests and

get results. Therefore, models have begun to be developed to detect Covid-19 disease

in the chest by checking CT. However, data are very limited due to privacy concerns.

Waheed et al. [46] present a GAN based data augmentation method to increase the

amount of data for disease detection. The model called CovidGAN is based on the

Auxiliary Classifier GAN (ACGAN). To check the quality of the generated data, they

use a classifier by modifying VGG16.

The studies focus on first to augment the existing data and then classifying it

to detect the disease. Another study was published by Saleh Albahli et al. [50]. The

main purpose of the study is to classify Covid-19 disease using CT images. However,

due to the limited amount of data, the authors are forced to generate synthetic data

to train models and achieve better classification results. They use the model of Bao et

al. [51] to generate new CT images. Their classification experiments consist of three

different convolutional networks. First, they create their own CNN model. Then they

use Inception-V3 [52] and ResNet-152 [53] for the last experiment.

3.3.4. Evaluation Metrics

Evaluating generative adversarial networks is more difficult than evaluating other

types of networks, and there is no metric on which there is consensus. The first thing

we think of to evaluate the result is people’s observations. They can rate or comment

on the results, but this method has some problems. Objectivity cannot be guaranteed

and the ratings may be biased for some reasons. The people who evaluate the results

must be experts in the field of the problem. Since many images are generated for each

experiment, manual evaluation may take hours or days, which is not practical. Never-

theless, some evaluation metrics have been introduced. Salimans et al. introduced the
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Inception Score for evaluating generative adversarial networks [84]. Fréchet Inception

Distance was introduced by Heusal et al. [85]. Another score is the nearest neighbor

accuracy proposed in the work of Paz et al. [86].

3.3.4.1. Inception Score. In 2016, Salimans et al. proposed a metric that can be used

in place of human evaluation for generated images by GANs. They named it Inception

Score because this metric is based on a successful classifier Inception-V3 [52]. They

give a large number of generated images to the classifier and calculate the score to

measure how successful the GAN model is. They consider two important rules in the

calculation.

• The diversity in generated images. For a car space, each images must be different

type of car.

• Quality of the generated images, e.g, images must look like their real life versions.

They assume that both rules are valid in the generated images to get a high score.

The calculation logic for the score is as follows. The images are given to the classifier

and the result is a probability distribution of the labels in the set. This can be expressed

mathematically as p(y|x). According to the paper [84], if the images contain meaningful

and unique objects, they have low entropy. Of course, if the opposite is true, the image

has high entropy. The authors believe that the sum of distributions
∫
p(y|x = G(z))dz

must have high entropy if the images produced contain diversity as in Rule 1. They

call this marginal distribution. Then they calculate the Kullback-Leibler divergence

using the label and the marginal distribution and take the exponential value of the

result. The formula is expressed as

exp (ExKL(p(y|x)||p(y))). (3.4)

3.3.4.2. Fréchet Inception Distance. The Inception Score (IS) considers only the im-

ages generated when measuring the success of the network. This method may not be
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right, because the real samples are also important to understand in what domain the

network is working. Therefore, an improved version of the Inception Score, the Fréchet

Inception Distance (FID), is proposed by [85]. FID computes the distance between the

real and the fake (generated) samples, where a smaller distance represents better gen-

erated images. Similar to IS, this metric also uses Inception-V3 for computation, but

instead of obtaining the probability distribution of the labels, it uses the feature extrac-

tion layer of the model. This layer is then used to estimate the mean and covariance

values for both real and generated images. The general formula for FID is

FID = ||µt − µf ||22 + Tr(Σt + Σf − 2(ΣtΣf )
1
2 ). (3.5)

3.3.4.3. Nearest Neighbor Accuracy. The Two-Sample Testing classifier is used by Paz

et al. [86] proposed. This technique aims to determine whether two different samples

are from the same distribution or not [87]. It is basically a classification of samples

from two different classes, therefore any type of model can be applied. In this case,

the classification is applied to distinguish whether the images are real or fake (gen-

erated). This task provides us information about how close these two distributions

are. In [88], a 1-Nearest Neighbor (1-NN) Leave-One-Out (LOO) method is proposed

for the aforementioned technique. The reason for choosing this technique is that it

is an unsupervised technique that does not require training. The application of this

technique can be summarized as follows. For a selected sample, the nearest neighbor

for each pixel is found using Euclidean distance. Then, the distribution of the selected

sample is determined based on the label of this neighbor. After classifying many other

samples in this way, the overall accuracy is about 50%, which means that these distri-

butions are very close. The authors assume that the real samples are positive and the

fake samples are negative. If the accuracy closes to 0%, it shows that GAN is overfit-

ting and generating the samples in the real data. If the generated data is completely

different from the real data, the accuracy closes to 100%.
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4. METHODOLOGY

In this section we will describe our methods in detail. We choose to use different

types of deep learning techniques for our purpose and compare them quantitatively.

Our first method is based on Deep Image Inpainting. We use a state-of-the-art tech-

nique [11] and create a heatmap-based inpainting by creating a pipeline using Prob-

abilistic Class Activation Mapping [10]. Another method is to generate images using

Conditional GANSpace. We will refer this method cGANSpace. GANSpace [12] is

one of the best latent space manipulation techniques that uses the StyleGAN2 [1]

generator. We extend this method by using StyleGAN2-ADA [13] and conditionalize

GANSpace. This method provides more controllable conditional generation of X-ray

images. Finally, we also demonstrate manipulation of real X-ray images using GAN

inversion and latent space manipulation. This method uses Restyle [14] study which

encodes images and returns the latent vector of the input image. Then GANSpace

is used again to generate the desired X-ray images with various manipulations. The

details of all methods can be found in the following sections.

4.1. Deep Image Inpainting

4.1.1. Recurrent Feature Reasoning for Image Inpainting

Recurrent Feature Reasoning (RFR-Net) model was introduced by Li et al. [11].

It aims to complete large missing regions in images. They propose a method in which

the image is recurrently inpainted. In each recurrence, they fill the pixels at the border

and reduce the size of the missing region. They apply these processes in three steps.

These are area identification, feature reasoning and adaptive feature merging. The area

identification step uses Partial Convolutions [89] method to find features for missing

pixels near the boundary and then updates the mask according to the results. This

updated feature map and mask are passed to the second step, feature reasoning. The

goal is to fill missing pixels with the best possible value to make the patch unrecogniz-
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able and more realistic. This step consists of an encoder-decoder framework with an

attention mechanism, namely the Knowledge Consistent Attention. This mechanism

is different from the existing methods because this system is recurrent and each patch

is dependent. All other intermediate images (some of them inpainted partially) con-

tribute to the current attention in this system. After area identification and feature

reasoning create partially inpainted images. In the last step, adaptive feature merging,

the final image is generated by combining all intermediate images. In computing the

final image, the pixels of each intermediate image are considered. For each image, the

average of all valid pixels is calculated. This process is done for all the pixels and the

final inpainted image is displayed as the result.

Figure 4.1. Inpainting of Chest-1 Without Artifact.

Figure 4.2. Inpainting of Chest-2 Without Artifact.
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Figure 4.3. Inpainting of Chest-3 Without Artifact.

Figure 4.4. Inpainting of Chest-4 With Artifact.

Figure 4.5. Inpainting of Chest-5 With Artifact.
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Figure 4.6. Inpainting of Chest-6 With Artifact.

4.1.2. Heatmap Based Inpainting

The last layer in classifiers is used to categorize images by calculating the prob-

ability based on the extracted features. Zhou et al. [90] have recognized that these

feature maps in CNNs provide a clue to the placement of objects in the images. They

show that using global average pooling instead of a final classifier layer (such as Soft-

max) can activate the position of objects that belong to a particular category of images.

This happens because discriminative models aim to find the class of objects in a given

image. Finding the class of an object requires finding the object pixels in the image,

even if this process is not intentional. Finding an object means extracting the features

of the object from a group of pixels. If these features are manipulated in some way,

they can be used for mapping in the images, according to Zhou et al. [90].

They propose a new method for creating class activation maps (CAMs) of im-

ages. They use global average pooling after the last convolutional layer and before the

softmax layer, as mentioned earlier. They use popular classification networks such as

AlexNet, GoogLeNet because they do their job well and can find the features of objects

in images with great success. Their final convolutional layers show the activation of

units in the specific pixels of the image. Since each unit in this layer has information

about specific shapes of objects, it can indicate the importance of pixels for specific

objects. Moreover, the optimized weights show how important the units are for these

specific objects. Hence, the authors claim that the sum of each unit multiplied by the

corresponding weight for certain objects can give the activation of these pixels for the



47

object. Their results also confirm that this system works correctly.

In their work, Ye et al. [10] use the CAM method mentioned above as a basis for

finding the localization of certain observations in chest X-ray images. They first use

a convolutional neural network to extract the features of a given chest X-ray image.

This yields the feature map of the image. Then, feature embeddings of fixed length

are determined. These embeddings are computed for each pixel of the image. Mul-

tiplying these embeddings by the weights of classifier layer gives the likelihood of the

observations. Thus, these embeddings indicate the importance of the pixels for each

observation.

They also apply sigmoid to each likelyhood result to constrain it. These values

give the probability of the observations for each embedding. The name of the method

Probabilistic CAM comes from here. Then they use Multiple Instance Learning [91]

to compute attention weights of embeddings for specific observations. These weights

are used in computing the global average pooling. These weighted embeddings yield

the final class activation values for each pixel. A threshold is applied to find areas that

indicate the location of the observation. Example results can be found in Figure 4.7.

Finding a heatmap to locate observations allows us to avoid inpainting these

areas. This is important because inpainting these areas can change the observational

situation of X-ray images. While one X-ray image may obtain one or more observations,

it may not contain any observation after operation. This may result in the need to

change label of that X-ray image, which we cannot detect. Therefore, we must avoid

to inpaint these areas.
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Figure 4.7. Each row shows results for different observations and X-ray images while

each column shows different steps of our method. First Column: Original X-ray

Image, Second Column: Heatmap is created for 5 different observations, Third

Column: Regions with observations are masked, Forth Column: Masked region is

chosen randomly to inpaint, Fifth Column: Inpainted X-ray Image.

We use the PCAM heatmap model for our method and apply it before the in-

painting step. Although it provides the results as a colored heatmap of X-ray images,

we use only probabilistic map results to create a kind of masks containing only 0s

and 1s. After computing the probabilities of each pixel, we store the results where 1s

indicate that these areas have observation with high probability, while 0s indicate the

opposite. We calculate probabilistic map values for 5 different observations, namely

cardiomegaly, edema, consolidation, atelectasis, and pleural effusion. Then, we add
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the results of the individual pixels for each observation. This gives us an overall mask

for the area containing at least one of the observations. We then use this when cre-

ating random masks in the inpainting process to prevent masking an area containing

one observation for the reasons mentioned above. The example masks for probabilistic

CAM results can be found in Figure 4.7

The steps above are used to determine the random mask without changing the

label of the current X-ray image. Once the random mask is selected, we check the

overlap with the heatmap mask. If the overlap is more than 20%, we select another

random mask until we find the one that has less than 20% overlap. The area that

overlaps is removed from the image mask and the remaining area becomes the final

mask. After that, we add the mask to the X-ray image and give it to RFRNET [11].

Our module has been trained with the CheXpert dataset and is suitable for inpainting

chest X-ray images. Inpainting radiographs with a mask large enough can provide

the ability to obtain unobserved radiographs with predefined labels. This allows us to

augment original CheXpert dataset with unlimited size. To this end, we write a small

application that uses this pipeline end to end. For a given image, the application finds

its heatmap, creates a random mask according to the mentioned rules, and inpaint the

masked image. We use this application in our experiments. For more details on the

inpainted images, see the Experiments chapter.

4.2. Conditional GANSpace

In this section, we will discuss another method for data augmentation on chest

X-ray images. Our goal is to control the features of the X-ray image while applying

conditional generation. To this end, we extend the GANSpace method by integrating

the conditional generator StyleGAN2-ADA.
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4.2.1. Stylegan2-ADA

Generative Adversarial Networks (GAN) require very large amount of data to

generate realistic and high quality images. The reason for this is that the discrimina-

tor of GANs overfits when a small dataset is used for training. This results in poorer

gradient values passing from the discriminator to the generator. Therefore, the gen-

erator cannot improve itself to generate better images. To learn better, hundreds of

thousands of images are used in training GANs. These types of datasets must also have

a large variety of images. Although some datasets with millions of images have been

introduced in recent years, the number of these datasets is limited. Moreover, there

are limitations in some areas that do not allow collecting large datasets. As mentioned

at the beginning of this thesis, the medical domain is at the top of these domains.

Some data augmentation strategies are used to overcome the problem of small

datasets leading to overfitting in many studies. These can be rotation or adding noise

to images in classifiers [13]. While these augmentation techniques improve classification

models, they can be harmful to generative adversarial networks. This is because GANs

can learn from noisy data and generate some images accordingly, even if there is no

such image in the dataset [13]. This is referred to as ”leaking” in the work of Karas et

al. because it leads to undesirable results due to unobserved data in the training set.

Karas et al. [13] present the paper Training Generative Adversarial Networks

with Limited Data (also called Stylegan2-ADA ) to apply appropriate augmentation

techniques with probability that prevents discriminator overfitting. They show that

this method ensures that there is no leakage to the output images from augmentations.

This allows each domain to use GANs in generating new data, even when only a

small amount of training data is available. In their study, they use different sized

subsets of large datasets such as FFHQ or LSUN CAT, to find out how the size of

the subsets affects the overfitting. They also categorize 18 different augmentation

methods such as X-flips, rotations, color transforms, and additive noise and apply

them to these subsets. Since there are many augmentation options, the authors conduct
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many experiments to measure their effect and contribution to training. They proceed

from different perspectives. One of them is whether applying different augmentations

together improves the overfitting time. The experiments are conducted on different

datasets. They show that augmentations do not always improve the results. Some of

them work better on small datasets and others are helpful on larger ones. Another

approach is that applying some augmentations with a certain probability improves the

generator. For example, random rotation may confuse the generator during training

and it may produce images with nonsensical orientation. Applying rotation with a

probability makes the generator to see unrotated images. This makes the generator

more robust and less likely to generate images with incorrect orientation. In their

method, the discriminator is trained using only augmented images and this is one of

their contributions with this study. Another conclusion from the experiment is that

lower values of probability p give better results while the amount of data increases.

Therefore, they conclude that the optimization of the augmentation depends entirely

on the size of the training dataset and the optimal value of p, which is about 0.5.

This paper also introduces the conditional StyleGAN2. In the original StyleGAN2

[1], the output image is generated from a random latent vector without any interference.

The only known information about the output image is the domain type that is trained.

In StyleGAN2-ADA study, StyleGAN2 is extended by including the condition variable

while training. The number of conditions adds an embedding layer to the generator

network. The condition is given to it and the output is concatenated to the random

latent vector z. This concatenated vector is passed to the mapping network and the

style vector is obtained exactly as in the original StyleGAN2. The rest of the network

works in the same way. Thus, StyleGAN2-ADA can be conditionally trained with a

small amount of data. This is especially important for those areas that suffer from a

lack of data.
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4.2.2. GANSpace

Although Generative Adversarial Networks (GANs) are the most powerful im-

age synthesis models, it is really difficult to edit or control the output images. By

selecting random vectors from the latent spaces of GANs, many different images can

be generated. However, it is problematic to make changes to an image generated from

a fixed latent vector. It requires very expensive processes such as training multiple

GAN models or using supervised models. Training a deep learning model for a specific

purpose can require a lot of computational power and time. Therefore, controlling

GAN with desired results becomes a difficult problem. Some initial works [92,93] have

been published for manipulating the output of GAN models, but they have quite lim-

ited editable options. In addition, some studies [94, 95] work with supervised models

to produce controllable images. Even though some of these works do the desired job,

they are far from easy to process the output images with many different options.

In late 2020, Härkönen et al. introduce a new method called GANSpace [12] that

allows to control the generated images. They show that the latent or feature space

of GANs can be manipulated in different directions, which can be found by applying

Principle Component Analysis (PCA) to these spaces. This operation can be easily

performed without requiring too much computational power and can be very effec-

tive on many different features of images such as shape, pose, lighting [12]. Another

advantage of this method is that it does not depend on a particular GAN. It is appli-

cable to different types of GAN. For example, StyleGAN2 [96] uses a mapping network

that converts the latent vector z into the style vector w. The vector space W allows

GANSpace to find directions, since these vectors are responsible for creating the style

of the output image. On the other hand, BigGAN [33] does not have a style vector like

StyleGAN. The output of the early layers allows to manipulate and control the output

images.

The basic logic of the GANSpace method for StyleGAN2 is as follows: N sample

vectors (z1:N) are randomly selected from the latent space. These are converted to style
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vectors w1:N via a mapping network. Then, PCA is applied to the w1:N vectors. The

number of components can be arbitrary, but the studies in the paper [12] show that 120

components are sufficient to control general features of images. The later components

have no significant effect on the output images. Finally, any component you choose

can manipulate, with varying strength, any style vector wi. In the equation

w′ = w + V x (4.1)

V refers to the direction vector and x refers to the value that indicates how strongly

it can be applied. This vector wi is passed to the StyleGAN model normally and it

proceeds to generate the output image.

The effect of components on output images changes the layer range they are

applied to. While some components show successful control and changes after being

moved along some layers, others can be effective by moving along all layers [12]. Some-

times moving along more layers causes entangled changes in the output images. For

example, moving along component v at all layers can change both the gender and hair

shape for the model trained on the FFHQ dataset. However, if the number of layers

is reduced and it is applied to only some of the early layers, only the gender can be

changed. These changes can be bidirectional. The value x, indicating the strength of

the manipulation, can be either negative or positive. For example, a latent vector z

that produces the image of a young man can be manipulated as a little boy or an old

man with the same component.

4.2.3. Proposed Solution

Our main goal in this study is to augment existing chest X-ray datasets using

deep learning methods. The augmented data must consist of chest X-ray images with

one of the 5 observations we discussed previously. Aforementioned studies StyleGAN2-

ADA [13] and GANSpace [12] are perfect candidates for our purposes. We think
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StyleGAN2-ADA can be conditionally trained with 5 observations and the generated

X-ray images can be manipulated as desired. This allows controllable generation of

conditional X-ray images. While the generation process gives us the data with the

desired observation, the manipulation gives us the flexibility to change the strength of

the observation or to edit observation-independent features of X-rays to create data

diversity.

Our study extends the GANSpace method in a conditional way. The original

method works with StyleGAN2, an unconditional generator that provides the simplest

controllable directions. Our Conditional GANSpace consists of StyleGAN2-ADA in-

stead of StyleGAN2 to generate conditional X-ray images. This allows us to synthesize

images in a more controllable way. We can manipulate and determine not only the

class, but also the features of the output X-ray images. In GANSpace, PCA is applied

to style vectors w1:N mapped from randomly sampled latent vectors z1:N . Our con-

tribution is to add a condition vector to the random latent vectors before converting

them to style vectors, just as StyleGAN2-ADA does. When PCA is applied to condi-

tional style vectors, the components come from the distribution of a particular class.

This means that the components must be found separately for each class. When using

unconditional GANSpace, a single PCA operation is sufficient to find the directions.

In our case, it is a conditional GANSpace and the number of PCA operations that

must be performed is equal to the number of classes for which the generator has been

trained.
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Figure 4.8. N samples are chosen randomly from latent space. Embedded conditional

vectors are concatenated to them. Obtained vectors converted to style vectors via

mapping network of pretrained StyleGAN2-ADA. PCA is applied on each style space

and components are computed for each class.

Figure 4.9. One random sample is chosen from latent space and converted to style

vector as showed in Figure 4.8. Predefined components found for each class from

their own component set are added to style vectors. Manipulated vectors are given to

pretrained StyleGAN2-ADA. Final output X-ray images are obtained. Output X-ray

images are obtained from our augmented dataset.
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More precisely, we trained a generator model with 5 classes representing the ob-

servations. Therefore, the PCA operation is performed 5 times for each class separately.

While the same directions can be found in each component set, completely different

ones can also be obtained. Our 5 different component sets belong to the classes of

cardiomegaly, edema, atelectasis, pleural effusion, and consolidation. For instance, the

directions found for cardiomegaly may consist of some directions about the change in

heart size while others do not. This is because the training patterns identified with

cardiomegaly are directly associated with this feature. Since the distributions of the

style vectors of the classes are separated in space, their PCA calculations result in

different directions. In this way, we can create X-ray images that show observations

more clearly.

Now, we will explain how Conditional GANSpace works. In Figure 4.8, N random

samples from the latent space are repeated 3 times for 3 different classes. Embedded

conditional vectors are created for each class using the embedding layer of the pre-

trained StyleGAN2-ADA model. These vectors are concatenated with the latent vec-

tors and passed to the mapping network. The result of this operation is a class-based

style vector space. After PCA is applied to these spaces, 3 different sets of compo-

nents are available to find directions for 3 classes. In Figure 4.9, the latent vector is

randomly selected and converted into a style vector. Predefined direction components

are added to them for manipulation. The manipulated vectors are passed to the pre-

trained StyleGAN2-ADA model and the output images are generated as seen at the

end of the figure.

4.3. Manipulation of Encoded Latent Vectors

As mentioned in the previous section, we use an extended version of GANSpace to

manipulate the latent space to find useful directions that can be used for augmentation.

In this method, the latent vectors are randomly selected for each operation. Although

we know at the beginning of the process to which class the output image will belong,

there is no way to find out the more detailed features of the generated X-ray image
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in this process. We believe that we have a different kind of control over the output

X-ray images when we decide which X-ray images to manipulate. We can manipulate

X-rays with no observation. To do this, we need to find their latent vectors, which

allows us to reconstruct the original X-ray image and which can be manipulated before

reconstruction. The search for latent vectors is another problem referred to in the

literature as image inversion. In recent years, some successful methods have been

presented. We use Restyle Encoder [14] to invert an image into its latent code.

4.3.1. ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refine-

ment

Latent space manipulation has become a popular topic in recent years. These

methods add meaningful direction vectors to the latent vectors of generative models

such as StyleGAN. This allows a variety of changes to be made to the output images.

Although new and more effective methods have been introduced in this area, they are

limited to manipulating only random vectors. The solution to overcome this limitation

is to invert real images into their latent vectors. Some previous works focused on two

different types of methods, namely, encoder based and optimization based inversion.

Encoder based methods attempt to generalize the inversion process and work with a

trained model. They use a pretrained generator that reconstructs images from the

inverted latent code and provides feedback to the encoder during the training phase.

At the end of training, the trained encoder model can invert the given images into

latent vectors in a forward pass. On the other hand, optimization based methods work

per image. They start with a random vector for each image. A pretrained generator

produces an output image in each iteration. The loss value is calculated based on the

original image and the generated image. The loss value gives feedback to the model and

it updates the vector accordingly until the loss value is small enough. Optimization

based methods give better results but they can work per image and slower. Encoder

based methods are preferable as they are faster and can generalize the encoding process.
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Alaluf et al. introduce an encoder based method [14] that can provide better

visual results compared to previous methods according to their comments in the paper.

Their method departs from previous ones by providing an iterative solution. Others

use a single forward pass in their learning phase. Restyle method concatenates the

input image and the generated image from the previous iteration for a step t. The

concatenated 6-channel image is passed to the encoder model. Residual latent vector

∆t is obtained from the encoding operation. It indicates the offset between the previous

and the current latent vector and is therefore added to the latent vector of the previous

iteration wt−1. This updated latent code wt becomes the input to the generator, which

is StyleGAN2. The generated image yt goes back and becomes the input for the next

iteration t + 1. This process repeats a small number of times. The iteration number

does not exceed 10. Initially, a random latent vector w0 is given to the generator and

the output of y0 becomes the first input, which is concatenated with the original image.

The 6-channel input is generated by the input x and the generated image y0.

4.3.2. Applied Method

GANSpace [12] allows to edit images by manipulating latent vectors. As men-

tioned earlier, this method takes a generator and uses its style space or feature space

to find directions. Principle Component Analysis (PCA) is applied to the latent space

of the generator and many different directions can be found. The directions are rep-

resented by some vector values that can edit images in different ways. The directions

are used in many different studies to manipulate the latent random code as in the

method that we demonstrate. Although this process is very useful in many fields, the

randomness of the latent code may make the method useless in some cases. The status

of the output image generated from the original latent code must be known before

manipulation. Therefore, we use the inverted latent code from chest X-ray images that

we selected earlier. Restyle Encoder [14] is used to invert X-ray images to their latent

code. This inversion ensures that we get the latent code of X-ray images of healthy

people. Any kind of observation can be added to this base X-ray image. In this way,

we can generate hundreds of thousands of X-ray images as long as we have healthy
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X-ray images.

Restyle Encoder is trained with the CheXpert [97] dataset for the inversion of

chest X-ray images. An important detail here is that the generated X-ray images must

resemble the original image as closely as possible. The loss of information must be

minimal. In the original Restyle work [14], the authors use general purpose ResNet-50

feature extractor while computing the loss of similarity for non-face domains. However,

we replace it with DenseNet-121 feature extractor that we trained on the CheXpert

dataset. Our goal is to reduce the loss value while training Restyle Encoder and obtain

better reconstructed images.

The inverted latent code in the Restyle Encoder corresponds to the style vector

of StyleGAN2 [96]. This prevents the use of StyleGAN2-ADA as our proposed solution

in the previous section, since StyleGAN2-ADA adds the condition vector to the latent

vector before mapping it to the style vector. This means that the style vector contains

the class information of the image to be generated. Therefore, we use the StyleGAN2

generator and unconditional generation.

Figure 4.10. Healthy X-ray is given to Restyle Encoder. Output style vector can

manipulate with GANSpace manipulation. Without manipulation, original image

(Inverted Image) can be reconstructed. In the example, heart size is manipulated in

both positive and negative direction.
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Principal Component Analysis (PCA) is applied and 120 components are cal-

culated using our pre-trained StyleGAN2 generator. Each component was carefully

analyzed and many useful directions were found. Some of these directions include symp-

toms of cardiomegaly, edema, atelectasis, pleural effusion, and consolidation. Shoulder,

lung or text on X-rays related changes are other examples of directions. Although this

method can edit healthy X-rays in many ways, accurate labeling of output images must

be monitored. This prevents us from producing thousands of X-ray images for each

class without monitoring.

Figure 4.10 shows the pipeline of this method. A healthy chest X-ray is taken

from the CheXpert dataset. Inversion is performed using a previously trained Restyle

Encoder. When this latent code is passed to the generator without any manipulation,

it provides the exact image with the encoder input. On the other hand, predefined

directions can be moved along this inverted latent code. In our representative illus-

tration, we add two different components to the latent code and get two manipulated

latent vectors. When these are given in sequence to the StyleGAN2 generator, two

different X-ray images are generated. In the figure, we select the component as the

direction that can add or remove Cardiomegaly. This observation is diagnosed by look-

ing at the heart size. If the size of the heart is much larger than a healthy heart, this

can be diagnosed as Cardiomegaly. As we move along this component in both positive

and negative directions, the output images will show a smaller or larger heart than the

original image. In the negative direction, the heart becomes smaller; in the positive

direction, it becomes larger.

4.4. Dataset

As we mentioned earlier, there are not many options for medical imaging datasets.

We chose the CheXpert [97] dataset because it consists of the most X-ray films with

the best labeling system, which we will explain in detail later. The CheXpert dataset is

introduced by a team of 20 people from the departments of computer science, medicine,

and radiology at Stanford University. The dataset includes 224,316 chest radiographs
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taken from 65,240 patients. These radiographs were taken at Stanford Hospital between

October 2002 and July 2017. According to the general diagnosis in the reports, it is

decided that each radiograph will be labeled with 14 different observations. While 12

of these labels include the presence or absence of an observation, one of the labels is

“No finding” in order to indicate that none of the observations were found. The last

label, “Support Devices”, indicates whether any auxiliary devices were used on the

patient during the radiography. The other labels can be seen in the Figure 4.11. The

dataset also consists of a validation set containing 200 labeled radiographs taken to

evaluate uncertainty labeling. These radiographs were labeled by 3 experts, unlike the

other 224K radiographs.

Figure 4.11. All observations with presence, absence and uncertainty numbers of

CheXpert dataset.

Because it takes too much time and effort to label 224,316 X-ray images, the

researchers use a labeler to annotate each image. This labeling program is rule-based

and finds the observations in the X-ray reports in 3 steps. These are mention extraction,

mention classification, and mention aggregation [97].

The first step of the automatic labeling system finds mentions about the obser-

vations in the list in the impression section of the X-ray reports. This section contains

the experts’ comments on the findings in the report.
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Mention classification step aims to determine whether found mentions are pos-

itive, negative or uncertain. To classify any of them, each sentence or phrase is pro-

cessed. These processes are the rules that were previously defined. These processes

include classification steps used in Natural Language Processing. First, the sentences

are split and tokenized using the NLTK library. If a sentence consists of a assessment

about presence of one of the pathologies, it is classified as positive for that pathology.

If it does not contain an indication of a pathology, it is marked as negative. If there are

expressions of possibility that could be sentences containing “may” or “might”, they

are classified as uncertain.

Finally, mention aggregation step is applied each mention to obtain the final

annotations on the radiographs. The previous step determines the positive, negative

or uncertain situations of each sentence. This step determines the overall classes by

reviewing each sentence. The X-ray image is labeled positive if there is at least one

positive mention for an observation. An uncertain label is assigned if there is no positive

mention. In this situation, one uncertain mention is sufficient to be noted as uncertain.

Similarly, if mention does not contain any of these, it is annotated as negative. If none

of these three labels exist, blank is assigned for that observation. A positive label

is indicated as “1”, a negative label is indicated as “0”, and uncertainty is indicated

as “u” in the dataset. If all 12 pathologies are labeled as negative, “No Finding” is

labeled as a positive “1”. Table 4.1 shows the example labels for the radiographs given

in Figure 4.12. Positive labels are “1.0”, negatives are “0.0” and uncertain ones are

“-1.0” to match the data type.

Figure 4.12. Different type of radiograph examples from CheXpert dataset.
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Table 4.1. Label information of the radiographs in the Figure 4.12.

No Finding
Enlarged

Cardiomediastinum
Edema Consolidation Pneumothorax

Pleural

Effusion

Support

Devices

1.0 0.0 0.0 0.0

1.0 0.0 0.0 0.0

-1.0 1.0 -1.0 -1.0 -1.0 1.0

They also evaluate the labels to verify the success of the labeler. For this purpose,

they randomly select 1000 radiographs from the dataset and 2 experts annotated each

of these images separately. Then they become together and review the annotated

images in different ways. For another approach to evaluate the auto labeler, they use

another labeling program proposed by Peng et al. [98]. They compare these two labelers

with the NIH dataset. The labeler presented by Stanford outperforms the other in all

categories.

Since the dataset does not contain binary labels for the observation, the authors

offer several approaches to the problem of uncertain labels. The first approach is

U-Ignore, where they propose to ignore uncertainty labels during training. Another

approach converts all uncertainty labels to positive (1), which they call U-Ones, or

to negative (0) which they call U-Zeroes. In Self-Training approach, the U-Ignore

approach is first applied and the system is trained accordingly. After training, the

dataset is evaluated to fill the uncertain labels with 0s or 1s. The last approach is to

treat the dataset with 3 classes and train it accordingly.
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5. EXPERIMENTS AND RESULTS

This section will provide detailed information about the training settings for each

method used and how the augmented datasets are created. Then we will give details

about the classification method and its training settings. Finally, we show how the

methods affect the classification results.

5.1. Visual Results of Image Inpainting Model

Our method was implemented based on RFR-Net [11]. The details of the network

remain the same, as they are very well designed for the task of image inpainting. The

Adam optimizer was used for the generator network. Training was performed using a

mini-batch of size 6. Since our dataset contains 224k images, the model was trained

with 37k iterations in an epoch. The model was trained for 10 epochs (370k iterations)

with a learning rate of 0.0001 and the results were somewhat fuzzy. Therefore, we

continued training by decreasing the learning rate to 0.00001. We trained 8 more

epochs (296k iterations).

The size of the original X-ray images in the dataset is not square. The size of

height and weight varies from 320 to 390. Since our inpainting method requires an input

size of 224× 224 and a square shape, we resized all images in the dataset to 224× 224.

Since the original size was not necessarily square, we also padded the resized images

to preserve the original aspect ratio of the X-ray image itself.
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Figure 5.1. Original, randomly masked and inpainted radigraphs of patient00003.

Figure 5.2. Original, randomly masked and inpainted radigraphs of patient00004.

Figure 5.3. Original, randomly masked and inpainted radigraphs of patient00005.

We created random and square masks because other studies in the literature

generally use square masks. Since our images were 224 × 224 in size, we thought a

64 × 64 mask would be sufficient. In general, the top, bottom, left, and right sides of

the X-ray images are not useful for the inpainting task. These areas are usually black

and just provide a blank background. Therefore, when creating random masks, we left

30 pixels of space on 4 sides of the X-ray images. This ensures that the masks are

located on the chest and prevents irrelevant masks in empty areas.
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We added another step to the masking process of the model. When creating

random masks, we were careful not to mask the region where the observation takes

place. This was necessary because inpainting these regions can cause the observation

to be distorted and the X-ray image may no longer have the same label. Consequently,

if an observation disappears due to inpainting, the entire labeling process must start

over. This step guarantees that none of the labels on the X-ray images will change.

For this purpose, we took the masks from the heatmaps mentioned in Section 4.1 and

checked if there was any overlapping with the randomly generated mask. If there was

more than 20%, we generated another one until we had more separate masks. If the

overlapping was less than 20%, we removed the overlapping area from the generated

mask and inpainted the remaining area. If we removed the overlapping area that

was more than 20%, the remaining masked area became too small and inpainting was

meaningless.

After obtaining the model, we created a new set of images by completely inpaint-

ing the original dataset. Using this method, we created 3 new datasets. In the next

step, we measured whether these datasets helped to improve the classification results.

First, we classified the original dataset, then we classified the augmented datasets by

adding inpainted sets.

5.2. Evaluation Of Inpainted X-rays

The evaluation of this type of task can be done in 2 ways. One is based on purely

human judgment, and the other is based on verification of improvement in other tasks

such as classification. While the first method can be subjective and does not allow

comparison with similar tasks, the result of the second method can provide the desired

results. In addition, the inpainting task can also be used for data augmentation in

many domains. The success of data augmentation can be tested in classification. For

these reasons, we decide to use a good classification model for chest X-ray to test

whether our inpainted images can improve the result.
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Stanford University also held a competition [97] on the occasion of the release

of the CheXpert dataset. The goal of this competition is to find the best model that

can classify the X-rays in the CheXpert dataset according to the given labels. Since

we are using the CheXpert dataset [97] from Stanford, we chose a model that has an

open source code and gives one of the best results in this competition. This model was

proposed by the authors of PCAM [10].

Because the project contains randomness, we ran each experiment 3 times. Then

we averaged the 3 results. We first trained the original dataset without any augmenta-

tion and took the model with the highest AUC. Next, we created 3 different datasets

by randomly inpainting the X-ray images. During the inpainting process, we controlled

the area where the observation takes place as mentioned in the previous sections to

preserve the labels. After we finished the inpainted sets, we trained our model with the

new set. We improve the classification results by 1.6%. While the AUC of the original

dataset is 86.1%, the AUC of the augmented set is 87.7%. The results can be seen in

the Table 5.1.

5.3. Evaluation of Conditional GANSpace

In this section, we refer to the dataset augmented with StyleGAN2-ADA as ADA,

the dataset augmented with our cGANSpace method as CGA, the dataset augmented

with our inpainting based method as IA.

To provide a basis for our cGANSpace experiment, we first decided to analyze the

generation of X-ray images using StyleGAN2-ADA. This experiment was performed to

determine whether feature control during conditional image generation can improve the

classification result of it. cGANSpace method generates X-ray images with controlled

X-ray features, while StyleGAN2-ADA generates only conditioning with classes. To

this end, we generated 40K X-ray images of each class using our pre-trained StyleGAN2-

ADA generator without any manipulation. This means that 200K unobserved X-ray

images with labels were added to the filtered CheXpert dataset containing 100K images.
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Figure 5.4. Manipulation of cardiomegaly on X-ray generated with cardiomegaly.

Figure 5.5. Manipulation of consolidation on X-ray generated with consolidation..

Figure 5.6. Manipulation of edema on X-ray generated with edema class.

Figure 5.7. Manipulation of pleural effusion on X-ray generated with pleural effusion.
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Figure 5.8. Manipulation of lung size on X-ray generated with atelectasis.

Figure 5.9. Manipulation of lung size on X-ray generated with cardiomegaly.

Figure 5.10. Manipulation of artifact on X-ray generated with cardiomegaly.

Figure 5.11. Manipulation of artifact on X-ray generated with consolidation.
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Table 5.1. Quantitative results of experiments. CheXpert Classifier [10] is used for

experiments. First column shows 5 different observations that are classified. Second

column indicates classification experiments only with original CheXpert [97] dataset.

Experiments in the third column includes dataset augmented with inpainted images.

The forth column indicates the classification results of dataset augmented with

StyleGAN2-ADA without any manipulation. Finally, last column shows the results of

dataset augmented with Conditional GANSpace.

Class/Dataset Original Set

Augmentation

Using Heatmap

Based Inpainting

Augmentation

Using

StyleGAN2-ADA

Augmentation

Using

cGANSpace

Atelectasis 0.8506 0.8416 0.8534 0.8636

Cardiomegaly 0.7598 0.8099 0.8046 0.8232

Consolidation 0.8947 0.9270 0.8991 0.9170

Edema 0.8993 0.9132 0.9002 0.9076

Pleural Effusion 0.9009 0.8925 0.9105 0.9224

Mean AUC 0.8611 0.8768 0.8736 0.8847

Thus, we had an augmented dataset with a total of 300K images. The experimental

setup was the same as for the IA dataset. We trained the classifier [10] with this

augmented set. We ran it three times. The experiment resulted in a mean AUC

of 87.36%. This improves the result of the original set, which is 86.11%, by 1.25%.

However, the result of the IA dataset cannot be surpassed. Its mean AUC, which is

87.68%, is higher than the ADA dataset. Detailed results can be seen in the Table 5.1.

Following the StyleGAN2-ADA experiment, we performed the experiment for the

cGANSpace method. Our proposed method includes three steps for data augmentation.

In the first step, PCA was applied to each class in our experiments. The number of

classes is 5, corresponding to the observations of cardiomegaly, edema, atelectasis,

pleural effusion, and consolidation. After PCA, we obtained 120 components for each

of 5 different classes.
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Table 5.2. The first column contains brief information about directional changes on

X-ray images. The first number in the other columns indicates the component

number and the numbers in parentheses indicate the range of layers where the

directions are effective.

Explanation

of Direction
Cardiomegaly Edema Atelectasis Pleural Effusion Consolidation

Add & Remove

Artifact
1 (7-8) 4 (2-4) 2 (4-5) 1 (5-7) 2 (4-6)

Shift & Tilt

X-ray
2 (2-4) 4 (3-4) 3 (1-5) 2 (1-3) 5 (4-6)

Add & Remove

Artifact-2
6 (6-8) 8 (3-4) 4 (5-7) 5 (1-2) 6 (6-9)

Expand Lung 8 (5-7) 6 (3-5) 6 (4-8) 3 (4-6) 7 (1-2)

Edit Text 13 (0-4) 11 (6-7) 10 (1-2) 10 (1-3) 9 (8-9)

Expand & Narrow

Shoulder
19 (2-4) 16 (5-6) 18 (1-3) 19 (3-5) 19 (2-3)

Edit Clavicle 20 (2-4) 21 (5-6) 28 (3-5) 13 (1-2) 18 (7-9)

Elongate Lung 21 (4-6) 29 (2-3) 23 (7-8) 22 (6-9) 25 (4-5)

Enlarge Lung 22 (2-5) 20 (2-4) 22 (3-4) 26 (1-2) 23 (1-2)

Edit Ribs 32 (1-2) 30 (2-3) 29 (7-9) 34 (4-6) 30 (1-2)

Cardiomegaly 10 (3-5) - - - -

Edema - 29 (4-6) - - -

Atelectasis - - 33 (6-7) - -

Pleural Effusion - - - 18 (6-7) -

Consolidation - - - - 11 (7-9)
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In the second step of the experiment, medical student Yasin Durusoy and ra-

diology specialist Dr. Görkem Durak helped us analyze the components. Since this

process requires medical expertise, we needed their help to find and verify directions.

We prepared an experimental setup on Google Colab so that Yasin could analyze each

component to find directions. Each component was analyzed in a different range of

layers. Finally, effective directions were found and 10 of them were selected to manip-

ulate the random vectors in the X-ray generation phase. On the other hand, another

direction was found for each class to manipulate its own observation. In other words,

another direction was added to the predefined 10 directions to either increase or de-

crease the effect of the observation on the X-ray image. All of these directions, along

with their functions and layers at which they are effective can be found in the Table

5.2. When we had created the images and videos of the manipulated X-ray images, we

showed them to Dr. Görkem Durak. We asked his opinion as a specialist in radiology

and were informed about which directions could be useful and what benefits they could

have from a medical point of view.

In the final step, conditional image generation was used for 5 observations. As

mentioned earlier, conditional image generation was performed using the extended ver-

sion of GANSpace with StyleGAN2-ADA. The total number of X-ray images generated

was 200K. For each class, 40K images were generated so that the data generation pro-

cess was balanced. Random and different seeds were used for each latent vector. After

obtaining the style vectors from the mapping network, we applied manipulations se-

lected from 11 predefined directions. To create opposite samples from each direction,

we moved along the components in a positive and a negative direction for each random

vector. The negative direction can decrease the effect of a feature or make the feature

disappear. On the other hand, a positive direction can increase the effect of a feature.

It can add a feature even if it is not in the original latent vector. For example, the

heart size component was applied in a negative direction to create a smaller heart, and

applied in a positive direction to create a larger heart. We continued this process until

we generated 40K X-ray images for each class.
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Using the cGANSpace method, we were able to increase our dataset threefold.

After generating 200K new labeled images as in the StyleGAN2-ADA experiment, we

added 100K images from the filtered CheXpert dataset to obtain a dataset of 300K

size. Our classification scenario was also the same as the previous experiments to

achieve consistent results. Employed classifier was trained with the current augmented

dataset. When we compare the results with the original dataset, we improved the

mean AUC from 86.11% to 88.47%. The score increased by almost 2.4%. Similarly,

we improved the mean AUC of the IA dataset by almost 0.8%. In this experiment,

our main concern was whether we could improve the score of the ADA dataset. While

its mean AUC score is 87.36%, the score of the CGA dataset is 88.47%. Controllable

generation improves the score by 1.1%. All these results can be found in the Table 5.1.

We provide details of our experimental setup and quantitative results for our

cGANSpace method. We also show qualitative results for this method. We chose ran-

dom seeds and generate X-ray images by manipulating predefined directions. While we

can use conditions to determine the label when generating images, directions provide

the ability to control the strength of the observation or other features of the images. In

other words, we can increase the visibility of observations on X-ray images by moving

along the appropriate directions. Figures from 5.4 to 5.11 show X-ray images created

with different classes. We generated X-ray images with the classes cardiomegaly, con-

solidation, edema, and pleural effusion. Then we manipulated them with directions

that change the effect of observation. The results for both directions are given for each

observation in the Figures from 5.4 to 5.11. We also show that we can control other

types of features of X-ray images such as lung size in cardiomegaly and atelectasis or

the visibility of artifacts in cardiomegaly and consolidation.

5.4. Visual Results of Manipulation of Encoded Latent Vectors

As explained in Section 4.3, we combine two state-of-the-art methods to augment

the current CheXpert dataset. Our goal is to manipulate healthy X-ray images by

adding the desired observation in addition to other observation-independent manipu-
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lations. Therefore, we use the Restyle encoder to invert X-ray images into their latent

code. In its original version, Restyle uses ResNet for the MoCo loss function [14] in

determining the similarity between input and synthesized image. Since ResNet was

trained with ImageNet for general purposes and not for the X-ray domain, we decided

to add DenseNet-121 model that we trained with CheXpert. In this way, we wanted to

obtain lower loss values during training. After these changes, we trained our Restyle

encoder and made it ready for X-ray image inversion.

On the manipulation side, we use GANSpace with the unconditional StyleGAN2

generator. First, we applied PCA with our pre-trained StyleGAN2 generator. Then we

found useful and important directions. Some of these directions are those that increase

heart size (an indication of cardiomegaly), lung size, shoulder height, or rib shape. By

manually controlling each direction, we found disentangled directions for each of the 5

observations. In the next step, we manipulated the inverted vectors of the healthy X-

ray images with these directions. After manipulation, we synthesized the final images

using our generator.

In this method, we decided that the randomly synthesized thousands of images

pose a problem in labeling. We cannot be sure that each direction is applied as desired

and that the output images match the labels. Therefore, we did not perform a clas-

sification experiment on the augmented dataset. We report only qualitative results in

this section.
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Figure 5.12. Qualitative results of Manipulation of Encoded Latent Vectors method.

Four different directions are shown as example. First row shows changes in heart size,

second one is example of lung size direction, next is pleural effusion direction and

widening of shoulders-clavics.
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6. CONCLUSION

In this thesis, we apply three methods for data augmentation on chest X-rays

to improve pathology classification results. Our first method is based on Deep Image

Inpainting, the second involves image synthesis with Conditional GANSpace, which is

our extension in this thesis and the last is a manipulation of inverted healthy X-ray

images.

For our first work, we create a heatmap-based inpainting method. We add the

Probabilistic Class Activation Mapping [10] model to find the location of the observa-

tion on the X-ray image in the first step. This localization operation helps to prevent

masking of critical areas, since we do not want to change the label of the X-ray image.

After the location is determined, a random mask is chosen that does not overlap with

the specified area. When the conditions are met, the masked image is passed to the

RFR-Net [11] model, which is selected for the inpainting module.

GANSpace is a successful model for manipulating latent space, but it does not

work with the conditional generator StyleGAN2-ADA. We extend the model so that

it can work with it. This allows us to apply the conditional PCA operation and find

directions accordingly. This means that the component groups of each observation

cannot contain other observation specific directions when we analyze the components

obtained by conditional generator. Thanks to this advantage, we can synthesize X-ray

images manipulated by observation specific directions. A large set of data generation

options is available for data augmentation.

Finally, we show the combination of image inversion and latent space manip-

ulation. Unconditional latent space manipulation is meaningless because we do not

know the label of the image synthesized from the random latent vector. To solve this

problem, we invert healthy images into their latent vector and then use it for manip-

ulation. If we find cardiomegaly or edema direction, we can manipulate the healthy
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image accordingly. This creates freedom in synthesizing images with observation.

The results of the experiment show that improvement is achieved with two types

of separate augmentation. The classification module is first trained with the original

CheXpert data and achieved an mean AUC of 86.1%. The first augmentation method,

heatmap-based inpainting, yields an improvement of almost 1.6% and the mean AUC

increases to 87.7%. The conditional GANSpace method improves the mean AUC even

more. The highest mean AUC value is obtained with this augmentation and is 88.5%.

These results also show that data augmentation can always be an option for model

training. It can make an important contribution to big data studies. Moreover, this

study shows how powerful GANs are as synthesizers. All qualitative and quantitative

results highly support this idea.

As future work, we can work on a new type of GAN inversion method that can

function as a conditional method. This could allow the conditional generator to be

used as a discriminator. Also, the conditional GAN inversion method can work with

the conditional GANSpace.

Another future work could be to use computed tomography as another type of

medical data instead of X-ray images for deep learning models. Computed tomography

is one of the most commonly used techniques in healthcare. It could be interesting

to apply inpainting or latent space manipulation techniques to tomography images.

Working on the same patient with many images from different angles could bring

further benefits.
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16. Ružić, T. and A. Pižurica, “Context-Aware Patch-Based Image Inpainting Us-

ing Markov Random Field Modeling”, IEEE Transactions on Image Processing ,

Vol. 24, No. 1, pp. 444–456, 2015.



80

17. Alilou, V. and F. Yaghmaee, “Exemplar-Based Image Inpainting Using SVD-Based

Approximation Matrix and Multi-scale Analysis”, Multimedia Tools and Applica-

tions , Vol. 76, p. 13795–13809, 2016.

18. Lu, H., Q. Liu, M. Zhang, Y. Wang and X. Deng, “Gradient-Based Low Rank

Method and Its Application in Image Inpainting”, Multimedia Tools and Applica-

tions , Vol. 77, No. 5, pp. 5969–5993, 2017.

19. Pathak, D., P. Krahenbuhl, J. Donahue, T. Darrell and A. Efros, “Context En-

coders: Feature Learning by Inpainting”, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2536–2544, 2016.

20. Yang, C., X. Lu, Z. Lin, E. Shechtman, O. Wang and H. Li, “High-Resolution Image

Inpainting using Multi-Scale Neural Patch Synthesis”, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6721–6729,

2016.

21. Yu, J., Z. Lin, J. Yang, X. Shen, X. Lu and T. Huang, “Generative Image Inpainting

with Contextual Attention”, Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 5505–5514, 2018.

22. Yu, J., Z. Lin, J. Yang, X. Shen, X. Lu and T. Huang, “Free-Form Image Inpainting

with Gated Convolution”, Proceedings of the IEEE/CVF International Conference

on Computer Vision (ICCV), pp. 4471–4480, 2018.

23. Hogeweg, L., C. I. Sánchez, J. Melendez, P. Maduskar, A. Story, A. Hayward and

B. van Ginneken, “Foreign Object Detection and Removal to Improve Automated

Analysis of Chest Radiographs”, Medical Physics , Vol. 40, No. 7, p. 071901, 2013.

24. Yeh, R., C. Chen, T. Lim, A. Schwing, M. Hasegawa-Johnson and M. Do, “Se-

mantic Image Inpainting with Deep Generative Models”, Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6882–6890,



81

2017.

25. Armanious, K., Y. Mecky, S. Gatidis and B. Yang, “Adversarial Inpainting of

Medical Image Modalities”, IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), pp. 3267–3271, 2018.

26. Shah, S., P. Ghosh, L. S. Davis and T. Goldstein, “Stacked U-Nets: A No-Frills Ap-

proach to Natural Image Segmentation”, arXiv preprint arXiv:1804.10343 , 2018.

27. Armanious, K., V. Kumar, S. Abdulatif, T. Hepp, S. Gatidis and B. Yang, “ipA-

MedGAN: Inpainting of Arbitrarily Regions in Medical Modalities”, IEEE Inter-

national Conference on Image Processing (ICIP), pp. 3005–3009, 2019.

28. Ibtehaz, N. and M. S. Rahman, “MultiResUNet : Rethinking the U-Net Architec-

ture for Multimodal Biomedical Image Segmentation”, Neural Networks , Vol. 121,

pp. 74–87, 2020.

29. Le, H. X., P. D. Nguyen, T. H. Nguyen, K. N. Q. Le and T. T. Nguyen, “A Novel

Approach to Remove Foreign Objects from Chest X-ray Images”, arXiv preprint

arXiv:2008.06828 , 2020.

30. Tran, M.-T., S. Kim, G.-S. Lee and H.-J. Yang, “Deep Learning-Based Inpainting

for Chest X-ray Image”, The 9th International Conference on Smart Media and

Applications , pp. 267–271, 2020.

31. Ronneberger, O., P. Fischer and T. Brox, “U-Net: Convolutional Networks

for Biomedical Image Segmentation”, Medical Image Computing and Computer-

Assisted Intervention (MICCAI), pp. 234–241, 2015.

32. Goetschalckx, L., A. Andonian, A. Oliva and P. Isola, “GANalyze: Toward Vi-

sual Definitions of Cognitive Image Properties”, Proceedings of the IEEE/CVF

International Conference on Computer Vision (ICCV), pp. 5744–5753, 2019.



82

33. Brock, A., J. Donahue and K. Simonyan, “Large Scale GAN Training for High

Fidelity Natural Image Synthesis”, 7th International Conference on Learning Rep-

resentations (ICLR), 2019.

34. Shen, Y., C. Yang, X. Tang and B. Zhou, “InterFaceGAN: Interpreting the Disen-

tangled Face Representation Learned by GANs”, IEEE Transactions on Pattern

Analysis and Machine Intelligence, Vol. PP, pp. 1–1, 2020.

35. Karras, T., T. Aila, S. Laine and J. Lehtinen, “Progressive Growing of GANs

for Improved Quality, Stability, and Variation”, Sixth International Conference on

Learning Representations (ICLR), 2018.

36. Shen, Y. and B. Zhou, “Closed-Form Factorization of Latent Semantics in GANs”,

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 1532–1540, 2021.

37. Abdal, R., Y. Qin and P. Wonka, “Image2StyleGAN: How to Embed Images Into

the StyleGAN Latent Space?”, Proceedings of the IEEE/CVF International Con-

ference on Computer Vision (ICCV), pp. 4432–4441, 2019.

38. Abdal, R., Y. Qin and P. Wonka, “Image2StyleGAN++: How to Edit the Embed-

ded Images?”, IEEE/CVF Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pp. 8296–8305, 2020.

39. Abdal, R., P. Zhu, N. J. Mitra and P. Wonka, “StyleFlow: Attribute-conditioned

Exploration of StyleGAN-Generated Images using Conditional Continuous Nor-

malizing Flows”, ACM Transactions on Graphics , Vol. 40, No. 3, p. 1–21, 2021.

40. Richardson, E., Y. Alaluf, O. Patashnik, Y. Nitzan, Y. Azar, S. Shapiro and

D. Cohen-Or, “Encoding in Style: a StyleGAN Encoder for Image-to-Image Trans-

lation”, Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-

tern Recognition (CVPR), pp. 2287–2296, 2021.



83

41. Lin, T.-Y., P. Dollár, R. Girshick, K. He, B. Hariharan and S. Belongie, “Feature

Pyramid Networks for Object Detection”, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 2117–2125, 2017.

42. Tov, O., Y. Alaluf, Y. Nitzan, O. Patashnik and D. Cohen-Or, “Designing an En-

coder for StyleGAN Image Manipulation”, ACM Transactions on Graphics (TOG),

Vol. 40, No. 4, pp. 1–14, 2021.

43. Moradi, M., A. Madani, A. Karargyris and T. Syeda-Mahmood, “Chest X-ray Gen-

eration and Data Augmentation for Cardiovascular Abnormality Classification”,

Medical Imaging 2018: Image Processing , p. 57, 2018.

44. Kora, S., “Evaluation of Deep Convolutional Generative Adversarial Networks for

Data Augmentation of Chest X-ray Images”, Future Internet , Vol. 13, No. 1, pp.

1–13, 2020.

45. Kermany, D. S., M. Goldbaum, W. Cai, C. C. Valentim, H. Liang, S. L. Baxter,

A. McKeown, G. Yang, X. Wu, F. Yan, J. Dong, M. K. Prasadha, J. Pei, M. Y.

Ting, J. Zhu, C. Li, S. Hewett, J. Dong, I. Ziyar, A. Shi, R. Zhang, L. Zheng,

R. Hou, W. Shi, X. Fu, Y. Duan, V. A. Huu, C. Wen, E. D. Zhang, C. L. Zhang,

O. Li, X. Wang, M. A. Singer, X. Sun, J. Xu, A. Tafreshi, M. A. Lewis, H. Xia and

K. Zhang, “Identifying Medical Diagnoses and Treatable Diseases by Image-Based

Deep Learning”, Cell , Vol. 172, No. 5, pp. 1122 – 1131.e9, 2018.

46. Waheed, A., M. Goyal, D. Gupta, A. Khanna, F. Al-Turjma and P. R. Pinheiro,

“CovidGAN: Data Augmentation Using Auxiliary Classifier GAN for Improved

Covid-19 Detection”, IEEE Access , Vol. 8, pp. 91916–91923, 2020.

47. IEEE, “IEEE Covid Chest X-Ray Dataset, 2020”,

https://github.com/ieee8023/covid-chestxray-dataset, accessed in Mar. 7,

2020.



84

48. Kaggle, “Covid19 Radiography Database, 2020”,

https://www.kaggle.com/tawsifurrahman/covid19- radiography-database,

accessed in Mar. 7, 2020.

49. DarwinAI Corp., C., Vision and C. Image Processing Research Group, Uni-

versity of Waterloo, “COVID-19 Chest X-Ray Dataset Initiative, 2020”,

https://github.com/agchung/Figure1-COVID-chestxray-dataset, accessed in

Mar. 7, 2020.

50. Albahli, S., “Efficient GAN-Based Chest Radiographs (CXR) Augmentation to

Diagnose Coronavirus Disease Pneumonia”, International Journal of Medical Sci-

ences , Vol. 17, No. 10, p. 1439, 2020.

51. Bao, J., D. Chen, F. Wen, H. Li and G. Hua, “CVAE-GAN: Fine-Grained Im-

age Generation through Asymmetric Training”, IEEE International Conference

on Computer Vision (ICCV), pp. 2764–2773, 2017.

52. Szegedy, C., V. Vanhoucke, S. Ioffe, J. Shlens and Z. Wojna, “Rethinking the In-

ception Architecture for Computer Vision”, IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), pp. 2818–2826, 2015.

53. Zagoruyko, S. and N. Komodakis, “Wide Residual Networks”, arXiv preprint

arXiv:1605.07146 , 2017.

54. Guendel, S., A. A. A. Setio, S. Grbic, A. Maier and D. Comaniciu, “Extracting

and Leveraging Nodule Features with Lung Inpainting for Local Feature Augmen-

tation”, Machine Learning in Medical Imaging , pp. 504–512, 2020.

55. Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li and L. Fei-Fei, “ImageNet: A Large-

Scale Hierarchical Image Database”, IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pp. 248–255, 2009.

56. He, K., X. Zhang, S. Ren and J. Sun, “Deep Residual Learning for Image Recog-



85

nition”, IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 770–778, 2016.

57. Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-

houcke and A. Rabinovich, “Going Deeper with Convolutions”, IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), pp. 1–9, 2014.

58. Krizhevsky, A., I. Sutskever and G. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks”, Advances in Neural Information Processing Sys-

tems , Vol. 25, 2012.

59. Tan, M. and Q. V. Le, “EfficientNet: Rethinking Model Scaling for Convolutional

Neural Networks”, International Conference on Machine Learning (ICML), pp.

6105–6114, 2019.

60. Pham, H., Z. Dai, Q. Xie, M.-T. Luong and Q. V. Le, “Meta Pseudo Labels”,

Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-

nition (CVPR), pp. 11557–11568, 2021.

61. Ioffe, S. and C. Szegedy, “Batch Normalization: Accelerating Deep Network Train-

ing by Reducing Internal Covariate Shift”, Proceedings of the 32nd International

Conference on Machine Learning , Vol. 37, pp. 448–456, 2015.

62. Mirza, M. and S. Osindero, “Conditional Generative Adversarial Nets”, arXiv

preprint arXiv:1411.1784 , 2014.

63. Odena, A., C. Olah and J. Shlens, “Conditional Image Synthesis With Auxiliary

Classifier GANs”, Proceedings of the 34th International Conference on Machine

Learning (ICML), Vol. 70, p. 2642–2651, 2017.

64. Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,

A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg and L. Fei-Fei, “ImageNet Large

Scale Visual Recognition Challenge”, International Journal of Computer Vision,



86

Vol. 115, pp. 211 – 252, 2015.

65. Bodla, N., G. Hua and R. Chellappa, “Semi-supervised FusedGAN for Conditional

Image Generation”, Proceedings of the European Conference on Computer Vision

(ECCV), pp. 669–683, 2018.

66. Mino, A. and G. Spanakis, “LoGAN: Generating Logos with a Generative Adver-

sarial Neural Network Conditioned on Color”, 17th IEEE International Conference

on Machine Learning and Applications (ICMLA), pp. 965–970, 2018.

67. Stap, D., M. Bleeker, S. Ibrahimi and M. ter Hoeve, “Conditional Image Generation

and Manipulation for User-Specified Content”, arXiv preprint arXiv:2005.04909 ,

2020.

68. Perarnau, G., J. van de Weijer, B. Raducanu and J. M. Álvarez, “Invertible Con-
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APPENDIX A: Permission for Copyright of Visuals Used In

Thesis

The images that emerged within the scope of this thesis work and whose copy-

rights were transferred to the publishing house, were used in the thesis book in accor-

dance with the publication policy of the publisher, which is valid for the reuse of the

texts and graphics produced by the author, on his own web page.

Because we have used some figures from other publications, we have asked per-

mission from the copyright holders, who are the authors of the articles. Figures 3.3

and 3.4 are from the publication “A Style-Based Generator Architecture for Generative

Adversarial Networks” [1] by Karras et al. To get permission, we sent an email to the

author and he said, “Feel free to use the figures in your thesis”. Our email and their

response can be found in Figure A.1.

Figure A.1. Permission to use visuals from official publication of StyleGAN2 [1].


