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ABSTRACT

SHORT-TERM FORECAST METHODOLOGIES AND

CASE STUDIES IN TRAFFIC FLOW

This thesis gives case studies on short-term traffic flow forecasting strategies

within a time series framework. After discussing the traditional, machine learning

and deep learning methods, one of main goals is to experiment on the uses of hybrid

methods. Besides analyzing approaches that were already used in the traffic flow

literature, we also introduce and test distinct strategies. Further, we supplement our

point forecast results with interval forecasts. In particular, quantiles regression based

intervals such as quantile regression averaging and quantile regression neural network

are implemented. Both point and interval forecasts are evaluated via several evaluation

metrics, and an extensive comparison is provided among the methodologies studied.
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ÖZET

TRAFİK AKIŞINDA KISA DÖNEM TAHMİN

METODOLOJİLERİ VE VAKA ÇALIŞMALARI

Bu tez, zaman serileri çerçevesinde kısa vadeli trafik akışı tahmin stratejileri

üzerine vaka çalışmaları sunmaktadır. Geleneksel, makine öğrenimi ve derin öğrenme

yöntemlerini tartıştıktan sonra, ana hedeflerden biri hibrit yöntemlerin kullanımları

üzerinde de testler gerçekleştirmektir. Trafik akışı literatüründe halihazırda kullanılan

yaklaşımları analiz etmenin yanı sıra, farklı yöntemleri de tanıtıyor ve test ediyoruz.

Ayrıca, nokta tahmin sonuçlarımızı aralık tahminleri de kullanarak destekliyoruz. Tez

içerisinde, kantil regresyon ortalaması ve kantil regresyon sinir ağı gibi kantil regresyona

dayalı aralıklarla özel olarak ilgilenilmektedir. Hem nokta hem de aralık tahminleri,

çeşitli değerlendirme ölçütleri aracılığıyla değerlendirilmektedir ve incelenen metodolo-

jiler arasında kapsamlı bir karşılaştırma sağlanmaktadır.
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ing Points Completed with Mean of the Same Days and the Same

Hours. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Figure 5.13. The Visualization of QRA Prediction Intervals. . . . . . . . . . . 63

Figure 5.14. The Visualization of QRSNN Prediction Intervals. . . . . . . . . 64

Figure 5.15. The Visualization of QRSLSTM Prediction Intervals. . . . . . . . 64



x

LIST OF TABLES

Table 5.1. The Station Information in PeMS. . . . . . . . . . . . . . . . . . . 43

Table 5.2. The Traffic Flow Forecasting Models Features in PeMS. . . . . . . 45

Table 5.3. The Evaluation of the Traditional Approaches for Station 716933. . 46

Table 5.4. The Evaluation of the Seasonal Models for Station 716933. . . . . 47

Table 5.5. The Evaluation of the Hybrid Models for Station 716933. . . . . . 47

Table 5.6. The Evaluation of the Traditional Approaches for Station 717087. . 49

Table 5.7. The Evaluation of the Seasonal Models for Station 717087. . . . . 49

Table 5.8. The Evaluation of the Hybrid Models for Station 717087. . . . . . 49

Table 5.9. The Traffic Flow Forecasting Models Features in İstanbul. . . . . . 55

Table 5.10. The Evaluation of the Traditional Approaches for İstanbul Data
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1. INTRODUCTION

1.1. Motivation and Problem Description

A time series is a sequence of data points listed with respect to time. The time

interval between two consecutive data points is constant, and these times are usually

indexed by natural numbers. Time series emerge in various fields such as economy,

energy, transportation, and environment. Since the conclusions drawn from time se-

ries analysis may have several benefits, forecasting approaches on this subject are of

fundamental importance these days.

A particular example of a time series is the traffic flow, defined as the number of

vehicles in a specific area over time. The number of vehicles in a given region varies

depending on time, and it has seasonal characteristics concerning hours, days, weeks,

and so on. Traffic flow prediction methods have become essential for transportation

systems since they have a significant role in planning, managing, controlling, and im-

proving them. The current study aims to examine the time series models for the traffic

flow and to do case studies for California and İstanbul data. Our contributions include

developments on currently available methodologies. Further, the current thesis con-

tains one of the few attempts to analyze the traffic flow using the İstanbul traffic data

set.

Before continuing, let us note that various factors affect the traffic flow in general,

but the models in this study will be solely based on previous observations, which, as we

shall see below, are significant, determining features for doing forecasts. That said, let

also note that in a further study, one could incorporate exogenous data such as possible

accidents, or presence of rain, and so on in order to improve our current results.
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1.2. Related Work

It is no surprise that there is a vast literature on the topic of this thesis since traffic

forecasting has an essential role in transportation systems. Most studies focus on short-

term or long-term traffic flow forecasting by reasoning about future traffic conditions

based on previous observations. In this section, we discuss time series methods used for

traffic flow predictions in the literature. We may summarize the work on forecasting

methodologies under three main headings for traffic flow context. These are traditional

time series and variations, nonlinear approaches such as machine learning and deep

learning, and hybrid models combining the previous two.

1.2.1. Traditional Methodologies

Traditional methods in time series forecasting refer to variations based on au-

toregressive and moving average models, which take a linear approach to time series

predictions. These models are usually treated as base models in the development of

time series analysis, and still they yield successful results in several cases [2–7]. Al-

though these models, which only provide linear techniques to time series problems such

as traffic flow, are usually not as effective as the more recent deep learning methods,

they provide a base ground for evaluating forecasting results.

It is suggested that the Autoregressive Integrated Moving Average (ARIMA)

model works better if the model parameters are estimated by considering different pe-

riods in a day of the week and hour of the day by [2]. For example, they use four

different categories for days (one category for Monday, one for Tuesday, Wednesday,

Thursday, one for Friday, and one for Saturday and Sunday) and three different cate-

gories (morning peak hour, night rush hours, and off-peak hours) for hours in a day.

On the other hand, the seasonal ARIMA (SARIMA) model has shown to be

relatively more successful for traffic flow forecasting, see [3,5–7]. However, these studies

differ in some aspects regarding the SARIMA model dynamics. While the weekly and
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daily seasonality effects of the SARIMA model with the Kalman filter are compared

by using only the traffic flow data on workdays in [5, 6] supports that the SARIMA

model works better by removing outliers from the data. Moreover, the SARIMA model

with weekly seasonality is more successful in traffic flow forecasting in [5,7]. The study

of [4] estimates the capabilities of the autoregressive space-time model, which includes

spatial and temporal correlations.

1.2.2. Nonlinear Approaches

Besides modeling linear features for time series prediction, many nonlinear ap-

proaches exist. We may try to gather these under the machine learning and deep

learning titles. Here, we review the Support Vector Regression (SVR), k-Nearest Neigh-

bours (k-NN), and gradient boosting algorithms used in time series predictions under

the machine learning frame, and discuss some general deep learning approaches as well

as Recurrent Neural Network (RNN), especially Long Short-Term Memory (LSTM).

The SVR model is one of the widely used models to capture nonlinear features in

time series forecasting. In [5, 8], SVR is used to predict traffic flow, and they include

comparisons to other models such as ARIMA. While Hong [8] asserts that the seasonal

SVR (SSVR) model works better for nonlinear and peak periods in traffic flow changes,

SARIMA with Kalman filter turns out to yield better results in comparison to SVR in

15-minute traffic flow data in [5]. Another machine learning approach used in traffic

models is k-NN which is based on a grouping of similar cases [9, 10]. These studies

present the nonparametric regression model by treating the k-nearest neighborhood

as a dynamic clustering model. These claim that this similarity based approach gives

better results than various others such as ARIMA and Neural Network.

On the other hand, the eXtreme Gradient Boosting (XGBoost) algorithm has very

successful results in traffic flow forecasting [11–14], although it mainly is used to classify

imbalanced data [15, 16]. In particular, it turns out that the Support Vector Machine

(SVM) can be outperformed when XGBoost discrete wavelet denoising algorithm is
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applied using traffic speed, occupancy, and previous traffic flow data [12]. Similarly,

holiday, temperature, rain, weather, and previous traffic volume data are used in [13]

to get predictions for traffic volume by using XGBoost.

Our treatment of the deep learning method applications involve both using ex-

isting methods in the literature [17–21], along with some new suggestions. The main

common focus in these is LSTM, and they indicate that LSTM leads to very success-

ful results in time series predictions. The studies [18, 20, 21] compare the LSTM with

Support Vector Machine (SVM), Artificial Neural Network (ANN), Recurrent Neu-

ral Network (RNN), and Gated Recurrent Units (GRU) while [17] uses ARIMA for

comparison purposes.

Beyond the LSTM model, the seasonal LSTM, also called sequenced LSTM

(SLSTM), is proposed adding seasonal components to model the runoff-sediment pro-

cess by [19]. SLSTM allows determining the autoregressive components and utilizing

the seasonality dependence in the time series. Furthermore, the fuzzy seasonal LSTM

(FSLSTM) model is applied to forecast monthly wind power in [22]. In FSLSTM, the

lower and upper bounds and mode values in data are also crucial since they are used

during training process.

In addition to these deep learning approaches, the language model called n-gram,

proposed by [23], can also be used in time series analysis. The n-gram model is applied

mainly in classification problems, and it is based on the probabilities corresponding

to each possible observation. It has been used for forecasting in time series analysis

earlier in [24], but not in a traffic context. Although we did experimentations on the

use of n-gram model using our data, we will not include the results below since they

did not perform well enough compared to the other methods we discuss.
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1.2.3. Hybrid Models

Hybrid models consist of model combinations. The first such approach focuses on

the straightforward way of combining the predictions obtained from results of distinct

models using a weighted sum [25], [26]. A second approach, which we call additive

models, is based on using the predictions of a selected model, and the residuals obtained

from this model are then modeled with a different approach. The overall result is then

the sum of the forecasts from these two models [27–30]. In yet another approach,

overall results are obtained by inserting the predictions of a model into some other

model. That is, the models are applied one after the other. See, for example, [31]

in which one-dimensional CNN, GRU, and Attention modules are used for traffic flow

forecasting.

Let us next provide some pointers to the literature towards the hybrid methods.

In order to form a hybrid model as a weighted sum of distinct model results, it is

essential to achieve the best balance among the models. LSTM and XGBoost are used

to predict network traffic by [25]. After calculating the LSTM and XGBoost model

results separately using the hourly device traffic data, these results are collected as a

weighted sum to capture the traffic pattern. Furthermore, k-NN and LSTM models

are applied for traffic flow prediction by [26]. Compared to SVR, ARIMA, k-NN and

LSTM, the proposed approach gives better forecast results.

Regarding the additive models, the traffic flow is forecasted by combining the

SVM [29] and Radial Basis Function Artificial Neural Network (RBFANN) with the

ARIMA model [30]. A similar study is done for electricity price forecasting in [27,28].

Lastly, let us not that short-term traffic flow is obtained by applying Gated Recurrent

Unit (GRU) with Attention modules for long temporal features to Convolutional Neural

Network (CNN) forecasts to capture local trend features in [31].
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1.3. Overview

Many of the time series approaches included in the related work section above

will be discussed in detail in Chapter 2. We also investigate the main challenges in the

time series analysis and discuss how to improve the existing approaches. We gather

these methods under the titles of traditional, machine learning, deep learning, and

hybrid approaches.

In Chapter 3, we briefly discuss optimization techniques for traditional models

and deep learning models. The optimization of the models means optimizing both the

model parameters and hyperparameters. The models introduced in Chapter 2 allow

obtaining interval estimates along with the point estimates. Chapter 4 is devoted to

prediction intervals, and the related evaluation metrics.

Chapter 5 discusses the experiments and results of the case studies for California

and İstanbul. We investigate the contents of the data and data processing in detail.

Moreover, we include notes on how to decide the features of the data. We also focus

on the techniques to complete missing data points. We conclude the thesis with some

possible future directions in Chapter 6.
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2. METHODOLOGY

In this chapter, we will discuss the approaches mentioned in the previous chapter

to predict traffic flow. We group the methods into four categories: autoregressive and

moving average model variations (AR, ARMA, ARIMA, SARIMA, and ARIMAX),

machine learning models (SVR, XGBoost), deep learning models (ANN, LSTM) and

hybrid approaches (SVRARIMA, LSTMARIMA).

A basic approach to predict the traffic flow is the naive method. We expect the

traffic flow at time t to be the traffic flow at time t − 1. So, if X̃t is the prediction at

time t, then

X̃t = Xt−1, (2.1)

where Xt−1 is the previous observation.

Another one is the historical average method. The historical average method

predicts the current situation using the mean of the previous observations. It has the

following form:

X̃t =
1

t− 1

t−1∑
i=1

Xi. (2.2)

There are also seasonal historical average approaches, which enable us to catch

seasonal trend in time series. For example, when we have hourly data and want to

apply a daily seasonality trend, the average of the same hours in the previous days is

used as a forecast. The naive method, the historical average method and the seasonal

historical average method are benchmark methods. They are used to check whether

an arbitrary model is promising, or not.
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2.1. Autoregressive and Moving Average Model Variations

The models AR, ARMA, ARIMA, SARIMA, and ARIMAX, which can be clas-

sified as autoregressive and moving average model variations, are to be discussed in

this section. We can define autoregressive and moving average models as regression ap-

proaches defining the following variable with previous variables and errors. To explain

briefly, the AR model allows us to predict the next time by linearly combining traffic

flows from previous times, depending on how much historical data we are looking for.

The ARMA model also includes a linear combination of errors from previous

times. Moreover, the forecasting results of ARIMA are obtained by making calcula-

tions after the time series data is integrated. While the SARIMA model allows us to

add seasonal components, ARIMAX provides forecasting using external features. The

studies of [7, 32–35] can be cited as an auxiliary sources for the explanations in this

section.

First, we discuss the concept of stationarity in time series before presenting varia-

tions of the ARIMA model. A stationary time series has properties independent of the

time at which the series is observed. Hence, the time series with trends or seasonality,

which affect the distribution of the time series at different times, is not stationary.

Conversely, a white noise series, which may be defined as the error at each time step, is

stationary since the observation time does not matter, and it appears almost the same

at any time.

Let us start with an autoregressive model for a time series {Xt}, where Xt is

a random variable at time t. We define the AR model with order p; AR(p), in the

following form:

Xt =

p∑
i=1

ϕiXt−i + εt, (2.3)

where ϕi’s are real numbers and εt’s refer to white noise. In addition, the value of p

indicates the number of time steps in the past are involved to be considered in the
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model, and each ϕi value represents the model parameters, that is, weights.

As an example, let us choose p equal to 2 and have 15-minute traffic flow data.

Suppose that the traffic flow value is 100 at 12:15 and is 90 at 12:30. Therefore, the

traffic flow forecast at 12.45 is expressed as the following:

Xt = ϕ1Xt−1 + ϕ2Xt−2 = 100ϕ1 + 90ϕ2.

We discuss how to optimize the parameters ϕi’s in Chapter 3.

We obtain the ARMA model when we add a part including the linear combination

of previous errors. ARMA(p, q) has the form:

Xt = εt +

p∑
i=1

ϕiXt−i +

q∑
j=1

θjεt−j, (2.4)

where q is the number of time steps to consider the previous errors, and θj’s are real

numbers representing weights for the errors.

The ARIMA(p, d, q) model, which is en extension of ARMA, has an integrated

part, which is d that refers to differencing. Let us explain a particular case, where

d = 1. If d = 1 (first order differencing), then we define yt as

yt = Xt −Xt−1. (2.5)

We can write the equations for Xt and Xt−1 as the following:

Xt = ϕ1Xt−1 + ϕ2Xt−2 + · · ·+ ϕpXt−p + θ1εt−1 + · · ·+ θqεt−q + εt, (2.6)

Xt−1 = ϕ1Xt−2 + ϕ2Xt−3 + · · ·+ ϕpXt−p−1 + θ1εt−2 + · · ·+ θqεt−q−1 + εt−1. (2.7)

Then, subtracting (2.7) from (2.6), we obtain the following expression:

yt = Xt −Xt−1

= εt − εt−1 + ϕ1(Xt−1 −Xt−2) + ...+ ϕp(Xt−p −Xt−p−1)

+ θ1(εt−1 − εt−2) + ...+ θq(εt−q − ε(t− q − 1))

= εt − εt−1 +

p∑
i=1

ϕi(Xt−i −Xt−i−1) +

q∑
j=1

θj(εt−j − εt−j−1). (2.8)
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When second order differencing (d = 2) is utilized, we have a new series as

zt = yt − yt−1 and so on for the case d > 2 . One of the issues we need to notice is that

if we use first order differencing, the predictions belong to the integrated series yt. In

the end, we need to find Xt’s using yt’s.

In order to express the SARIMA model clearly we present the lag operator ∇

and the backshift B operator. We define the lag operator as follows:

∇Xt = Xt −Xt−1. (2.9)

We also define

∇kXt = ∇k−1Xt −∇k−1Xt−1 (2.10)

for k ∈ N. Particularly, the second order differencing can be expressed as

∇2Xt = Xt −Xt−1 − (Xt−1 −Xt−2) = Xt − 2Xt−1 +Xt−2. (2.11)

On the other hand, the backshift operator is defined by

BiXt = Xt−i, (2.12)

where i ∈ {1, . . . , t− 1}. Observe that

(1−B)Xt = Xt −Xt−1 = ∇Xt, (2.13)

where 1 in the above equation is the identity operator, and

(1− 2B +B2)Xt = Xt − 2Xt−1 +Xt−2, (2.14)

where we can observe that the coefficient of Bi is exactly the coefficient of Xt−i for a

given i, from the equation above. Another notation is the following:

∇iXt = Xt −Xt−i (2.15)

which is also called seasonal differencing. We may also express the seasonal differencing

by using backshift operator

(1−BS)Xt = Xt −Xt−S = ∇SXt, (2.16)

where S is length of seasonal part. We express the differenced series Yt with seasonal

differencing D as

Yt = (1−B)d(1−BS)DXt. (2.17)
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We use B as the backshift operator BSXt = Xt−S, {Zt} as identically and nor-

mally distributed noise series with zero mean and σ2 variance. We can also express it

as {Zt} ∼ N (0, σ2). Thus, we can write the SARIMA process by

ϕ(B)Φ(BS)Yt = θ(B)Θ(BS)Zt. (2.18)

We write ϕ,Φ, θ and Θ which refer to autoregressive parameter polynomial, sea-

sonal autoregressive parameter polynomial, moving average parameter polynomial and

seasonal moving average parameter polynomial, as

ϕ(z) = 1− ϕ1z − ...− ϕpz
p,

Φ(z) = 1− Φ1z − ...− ΦP z
P ,

θ(z) = 1 + θ1z + ...+ θqz
q,

Θ(z) = 1 + Θ1z + ...+ΘQz
Q.

The SARIMA(p, d, q)(P,D,Q)S model is equipped with the hyperparameters;

seasonal period S, nonnegative integers d and D for nonseasonal differencing and sea-

sonal differencing orders, parameters p and P seasonal and nonseasonal autoregressive

orders, and finally, the parameters q and Q for seasonal and nonseasonal moving aver-

age orders, respectively. The SARIMA(p, d, q)(P,D,Q)S model assumes the following

process:

Xt =
θ(B)Θ(BS)

ϕ(B)Φ(BS)(1−B)d(1−BS)D
Zt. (2.19)

The ARIMAX model is obtained by adding an exogenous variable to the ARIMA

model. The ARIMAX model is based on the process which has the following form:

Xt = βxt +
θ(B)Θ(BS)

ϕ(B)Φ(BS)(1−B)d(1−BS)D
Zt, (2.20)

where xt is a covariate or an exogenous variable at time t, β is its coefficient, and other

terms are as mentioned before. It is an extension of (2.19).

Although this expression may seem simple with the added term, it is necessary

to interpret the coefficient of this variable correctly. Let us say that when the value
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of xt decreases, the β value cannot be evaluated as an effect of the change on Xt.

The non-intuitive interpretation is that the β value affects the expression of previous

observations and errors on the right side of (2.20) to balance the equation.

2.2. Machine Learning Approaches

The machine learning approaches mentioned in this section are SVR and XG-

Boost. Although SVM enables a classification algorithm to obtain appropriate hyper-

planes separating the data into a finite number of classes, the SVR model allows a

regression algorithm for the time series forecasting. Moreover, XGBoost is used for

traffic flow forecasting as mentioned in Section 1.2.

2.2.1. Support Vector Regression

Although Support Vector Machines are suitable for classification problems, Sup-

port Vector Regression model can be used for the time series forecasting. By using [36],

we write the basic steps of the SVM problem. We generate an SVM by using the ε-

insensitive loss function, proposed by [37], expressed by

|y − ŷ|ε =

|y − ŷ| − ε if |y − ŷ| ≥ ε

0 otherwise

(2.21)

where y and ŷ are the actual and the estimated values. Here we discuss the application

of the SVM to a linear regression problem given by:

ŷ = wTx+ b, (2.22)

where w and b are unknown parameters referring to the feature vector and bias, re-

spectively. The linear regression problem estimates these parameters with the given

independent and identically distributed training data.

The risk function in this problem is expressed by

1

2
||w||2 + C

N∑
j=1

|yi − ŷi|ε (2.23)
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where N is the number of training samples, C is a constant for the tradeoff between

the training error and the penalizing term ||w||2. The constraints of the problem are

the following:

yi − ŷi ≤ ε+ ξi, (2.24)

ŷi − yi ≤ ε+ ξ∗i , (2.25)

ξi ≥ 0, (2.26)

ξ∗i ≥ 0, (2.27)

where i = 1, . . . , N . The optimization for the the SVR problem is done with the

Lagrange multipliers with the dual formulation approach [38]. The expression wTx in

(2.22) can also be in a different form in the kernel function approach.

Kernel functions are also called kernel trick, which enable forming a map between

the input data points and the features. These functions allow us to analyze the problem

in different ways and help us to find an approach that better fits the data. Various

kernel functions are used in the literature, two of which are:

K(w, x) = (wTx+ 1)d, (2.28)

K(w, x) = exp
(
− ||x− w||2

2σ2

)
, (2.29)

where d is the polynomial degree taking the positive values, and (2.28) and (2.29),

respectively, are known to be the polynomial and RBF kernel functions. These kernels

are useful in decreasing computational cost, especially in high dimensional problems.

On the other hand, the seasonal SVR (SSVR) method is proposed by [39] to

use SVR with the seasonal trends of the time series. The SVR needs the regressors

to achieve target variables. However, in time series data, the regressors are usually

previous observations and seasonal trends.
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2.2.2. eXtreme Gradient Boosting

The eXtreme Gradient Boosting, proposed by [40], is based on the structure of

the gradient-based decision tree (GBDT) [41, 42]. We explain briefly the decision tree

to understand the basics of the XGBoost approach. First, decision trees are used for

both classification and regression problems. It contains the decision nodes and leaf

nodes and has the form of a tree. It gets improved by dividing the data into smaller

pieces. The first node in the tree is called the root node.

The decision tree algorithm generates the statements using the attributes of the

data with the aim of the best possible performance. To receive and optimize the data

pattern, it uses uncertainty metrics of the information theory such as Information Gain

and Gini Index [43]. When we have the continuous features, the decision tree becomes

a regression tree.

Let us briefly explain the regression trees. We have a dataset

D = {(xt, yt) : xt ∈ Rk, yt ∈ R, t = 1, ..., T}, (2.30)

where T is the number of observations with k features. Thus, for tth observation, the

estimation of the decision trees, ŷ, is expressed by the following:

ŷt =
N∑

n=1

fn(xt), (2.31)

where N is the number of trees fn ∈ F and F refers to the space of the regression trees

written by

F = {f(x) = wg(x)}, where g(x) : Rk → K,w ∈ RK (2.32)

and where g is the map which shows the relation between x and the leaf node, w is the

weight of the leaf node and K is the number of leaf nodes. The difference between the

decision tree and regression tree is that the regression tree allows a continuous score

wi for ith leaf.
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The gradient boosting algorithm, also called Gradient Boosting Machine (GBM),

enables to optimize the weight using the first-order derivatives [44]. The boosting

means that the models are created sequentially by giving more weight on wrong pre-

dictions instead of using the random data and attributes. Thus, focusing on the wrong

estimates, it tries to improve them. The gradient is used to optimize the weights w of

the leaves.

Furthermore, the second-order Taylor expansion of the loss function is also es-

sential, and regularization terms are added to it in the XGBoost algorithm. Therefore,

it reduces the model complexity and avoids overfitting. The optimization problem in

XGBoost is to minimize the following objective function

L =
T∑
t=1

ℓ(yt, ŷt) +
N∑

n=1

Ω(fn), (2.33)

where yt and ŷt are the actual and forecasted values, respectively, ℓ is the loss function

and Ω(fn) indicates the complexity of nth decision tree which is written by

Ω(fn) = γK +
1

2
λ||w||, (2.34)

where K is the number of leaf nodes, w is the leaf weight and, γ and λ are the penalties

of the number leaves and the leaf node weight, respectively.

In addition to achieve high predictive strength of the model, another most im-

portant features of the algorithm are to prevent overfitting and to manage the missing

data points. The first step in the XGBoost algorithm is to arbitrarily initialize the

values of the leaf nodes, and 0.5 is commonly used for this purpose. Since the model

converges to the actual values by the actions to be taken in the next steps, we randomly

determine the initial values.

Since the number of leaf nodes in best tree may be large, the γ value is used to

remove the necessary parts whose Information Gain score is smaller value than the γ.

Thus, the increasing the γ value enables us to avoid overfitting. The decision process

continues until the small residuals, or the specified number of trees are reached.
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2.3. Deep Learning Approaches

In this section, we mention Artificial Neural Networks (ANN), which may be

considered as a simple version of deep neural networks (DNN), and Long-Short Term

Memory (LSTM), which is a special case of Recurrent Neural Networks (RNN). ANNs

have a structure, which will be discussed in the following subsection, imitating the

learning process in a brain. The difference between ANNs and RNNs can be briefly

given that ANNs are feed-forward networks and do not have connections between

historical and current data, while RNNs have a system that can memorize long-term

dependencies in data. The structure of LSTM will be presented in the section just

after ANN.

2.3.1. Artificial Neural Networks

Artificial neural networks are proposed by [45]. ANNs enable us to create a math-

ematical model using the inspiration of biological neural networks. An artificial neuron,

also called a node, mimics a real neuron in a brain by performing the mathematical

expressions, which comprise multiplication, summation, and activation function. The

mathematical analogy will be clear in the following paragraphs.

The main idea is that we make a regression to a given data by creating a function

composed, in a particular way, of a sequence of functions. The way we represent this

function somehow can be given by simply a graph with nodes and edges (or arrows).

It will be explained through an example soon.

Let f : R → R be a function and x = ⟨x1, x2, . . . , xn⟩ ∈ Rn. Then, the meaning of

f(x) is conventionally defined by the (column) vector f(x) = ⟨f(x1), f(x2), . . . f(xn)⟩

for the sake of simplicity.

Let n1, n2, . . . , nk be positive integers and ℓi : Rni → Rni+1 be functions so that

ℓi(x) = Wix + bi for any x ∈ Rni and i = 1, 2, . . . , k − 1, where Wi ∈ Rni×ni+1 and
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bi ∈ Rni+1 are constants which will be considered as parameters to be optimized in the

next chapter. We also call bi’s as bias weights.

In general, an ANN model is defined so that it is used to regress a training data

simply by a function of the form

R(x) = fk−1(ℓk−1(fk−2(ℓk−2(. . . (f1(ℓ1(x)) . . .))))), (2.35)

where f1, f2, . . . , fk−1 are functions defined on reals (together with their conventional

meanings mentioned above) and x ∈ Rn1 .

In this setting, an input is n1 dimensional (vector) whereas the output is an nk

dimensional (vector). So, an input of the model has n1 components while the target

(output) has nk components. In the expression of the right side of the equation (2.35), a

component of the vector fj(ℓj(x0)), where x0 is in the domain of ℓj, is said to be a neuron

(node) and the collection of these neurons in fj(ℓj(x0)) is said to be a layer. Clearly,

there are k layers and the jth layer contains nj neurons (nodes) for j ∈ {1, 2, . . . , k}.

The 1st layer is said to be the input layer and the kth layer is said to be the output

layer while the jth layer is said to be a hidden layer if 1 < j < k. Furthermore, we call

fj as an activation function of the jth layer for j ∈ {1, 2, . . . , k − 1}.

As seen in the definition of a general ANN given above, an ANN may have any

finite number of layers equipped with any chosen activation functions together with

the flexibility of tuning the number of neurons in the hidden layers. On the other

hand, the number of components in an input vector is exactly the number of neurons

in the input layer while the number of components in the output layer is the number

of neurons in the target vector.

Now, let us present how such a model is represented by a graph by means of

specifying particular values to the variables above. Let k = 3, n1 = 3, n2 = 5, n3 = 1,

f1(x) = tanh(x) and f2(x) = 1
1+e−x . Then the Figure 2.1, noting that it does not

specify the activation functions f1 and f2, represents this model.
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If a neuron is connected to a group of neurons from a previous layer, that means

this group of neurons are multiplied by some weights and added some bias weights and

sent to this following connected neuron. This connection is shown by a directed arrow.

See the Figure 2.1.

Figure 2.1. Simple ANN Structure.

Observe that if all activation functions are taken to be identity function, then the

ANN is turned out to be a linear regression. If, further, the output function is taken

to be the sigmoid function, the ANN is now logistic regression.

There may be extended configurations of an ANN so that the number of hidden

layers is high and/or the output of layer is added/multiplied by the output of a further

layer and/or any other method which leads to fundamentally a different graph. In such

cases, the ANN is called as Deep Neural Network (DNN).
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The most common activation functions are sigmoid, tanh and ReLU which re-

spectively expressed by following equations:

σ(x) =
1

1 + e−x
, (2.36)

tanh(x) =
ex − e−x

ex + e−x
, (2.37)

ReLU(x) = max{0, x}. (2.38)

The components of an output of a layer may be seen as f(x) = ⟨f(x1), f(x2), . . . ,

f(xn)⟩, where f is the activation function, x = ⟨x1, . . . , xn⟩ and f depends on only one

component. However, an activation function may depend on other components as well.

For example, the softmax function defined as follows:

softmax(x) =
〈 ex1

n∑
i=1

exi

,
ex2

n∑
i=1

exi

,
ex3

n∑
i=1

exi

, . . . ,
exn

n∑
i=1

exi

〉
, (2.39)

which is usually used for the output function for multiclassification.

The parameters in ANNs are updated using the backpropagation algorithm based

on the gradients. The details of the process of the optimization of the parameters will

be given in the next chapter.

2.3.2. Long Short-Term Memory

LSTM is a more specific structure of RNN which is usually used for NLP (Natural

Language Processing) problems as well as time-series problems. An RNN model can

be defined as a composition of a sequence of functions. However, the neural network

is designed to be recurrent. So, It is hard to present it as a composition of a sequence

of functions and so for its corresponding graph. We use another method to represent

them as graphs. This method will be explained below through an example given in [1].

For an instance of RNN, as in Figure 2.2, suppose that we have a sequence of

data x1, x2, . . . , xn and assume that the target variable and the input variable are of

the same size. In other words, we predict the next τ targets from given τ terms, where
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τ is taken to be depending on the problem. We give the recurrent equations as

at = b+Wht−1 + Uxt, (2.40)

ht = tanh(at), (2.41)

ot = c+ V ht, (2.42)

ŷ = softmax(ot), (2.43)

where b, c, U, V,W are parameter vectors and matrices which have appropriately

chosen sizes according to the dimension of the input. We apply the above equations

from t = 1 to t = τ by choosing an initial value for h0. In practice, it is 0. If the loss

function Lt is defined as the negative log-likelihood of yt given x1, . . . , xt, then

L({x1, . . . , xτ}, {y1, . . . , yτ}) =
∑
t

Lt

= −
∑
t

log pmodel(yt|{x1, . . . , xt}) (2.44)

Then, the parameters of the model given in the equations above are optimized by

means of the loss function L. Since the runtime of the optimization process is pretty

high, an alternative way is addressed in Section 10.2.2 of [1].

Figure 2.2. RNN Model - reproduced from [1].
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To have an idea on how optimization is processed in a general neural network,

the global minimum value of the loss function is obtained by choosing a random point

in the domain of the loss function, then a second point is selected by moving in the

inverse direction of the gradient of the loss function of a very small length and so on

till the consecutive loss values evaluated at the last points are ignorable. This process

will be presented rigorously in the optimization chapter.

In the setting of such a optimization process, there occurs two main issues which

are vanishing gradient and exploding gradient problem. These are basically due to

complex graphs of models possibly having high number of connections (edges) and

neurons. These problems are treated to be sorted out by creating gated recurrent

neural networks (Section 10.10 of [1]). One of those is LSTM. The example explained

above can be consecutively connected to itself and so on. Each such connection can be

viewed as connections between blocks. An LSTM is designed to have blocks of special

RNNs. Each block is also called as an LSTM cell. An LSTM cell is given below in the

Figure 2.3.

Figure 2.3. LSTM Architecture.
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We do not continue for the details of what happens in an LSTM cell owing to the

fact that otherwise it would be a deviation from our main goal in this thesis. However,

the interpretation of the terminology of the words shown in the Figure 2.3 and basic

ideas behind this architecture can be understood from the Section 10.10 of [1].

Here are the recurrent equations of an LSTM cell for equal size of target and input

variable. Let us define X = (x1, x2, ..., xn) as time series input, H = (h1, h2, ..., hn) as

hidden state of memory cells and Y = (y1, y2, ..., yn) as output. Thus, we write the

following expressions:

ht = H(Whxxt +Whhht−1 + bh), (2.45)

pt = Whyyt−1 + by, (2.46)

where matrices W are weights, b’s are bias vectors and pt is the predicted value of the

LSTM with the corresponding actual value yt.

We need to explain weight matrices in detail. The expression Wab refers to the

weight matrix of b and a indicates which gate it exists. We use i for input gate, h for

hidden state, f for forget gate, c for memory cell and o for output gate. For example,

the weight matrix Whx means the weight of x in the hidden state. Similarly, the by

represents the bias vector of y.

Using the meaning of the variables above, we can compute hidden state of memory

cells by using following equations:

it = σ(Wixxt +Whhht−1 +Wicct−1 + bi), (2.47)

ft = σ(Wfxxt +Whhht−1Wfcct−1 + bf ), (2.48)

ct = ft ∗ ct−1 + it ∗ g(Wcxxt +Whhht−1 +Wccct−1 + bc), (2.49)

ot = σ(Woxxt +Whhht−1 +Wocct−1 + bo), (2.50)

ht = ot ∗ h(ct), (2.51)

where the sigmoid function σ(x) = 1
1+ex

, ∗ refers to scalar product matrices or vectors

and g and h are the functions extending sigmoid function by changing range [-2,2] and
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[-1,1], respectively. Also, we can express these functions with tanh function by using

connection between them, which is tanh(x) = 2σ(2x)− 1.

We would also like to draw attention to the LSTM network with seasonality. A

sequenced LSTM network that detects autoregressive components and realizes seasonal

dependency, proposed by [19] and also called seasonal LSTM (SLSTM).

2.4. Hybrid Models

Some models defined in the previous chapter assume linear features of the input

variable while some of them do nonlinear ones. A model called SVRARIMA first

predicts using the SVR model, which is based on non-linear features by choosing non-

linear kernels, and then applies ARIMA, that carries linear assumptions, to the errors

of the forecast for electricity prices in [27, 28]. We can see the hybrid model approach

in Figure 2.4.

Figure 2.4. The Visualization of the Hybrid Model.

The better we approach the errors after applying any model, the better the hybrid

model will work. The hybrid model in [27] has the following form:

Yt = Nt + Lt (2.52)
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where Nt is the predictions of nonlinear part and Lt is the forecasts of the linear model.

The errors is expressed as

εt = Yt − N̂t (2.53)

where εt is residual at time t, Yt is actual values and N̂t represents predictions of

nonlinear model. Therefore, we apply a linear model, ARIMA, to εt’s. After we

estimate the residuals using these parameters, we obtain hybrid model forecasts by

adding the nonlinear model predictions to the error predictions of the ARIMA model.
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3. OPTIMIZATION

This chapter will discuss optimization techniques for traditional models [34, 46]

and deep learning models [1,47,48]. Parameter optimization in machine learning setting

is already discussed in previous chapter and so we will not go into it again below.

In general, the optimization of models consist of both the model parameters and

hyperparameters. While the model parameters refer to the weights in the structure of

the model, the model hyperparameters are the parameters we use when building the

model. The hyperparameters are assigned at the beginning of the model setup. Con-

versely, the model parameters are determined during the learning process of the model.

Thus, there are different techniques to determine the optimized model parameters and

hyperparameters.

3.1. Maximum Likelihood Estimation

As we mentioned earlier, there are various techniques to optimize model pa-

rameters. The purpose of this section is to discuss optimizing the parameters of

ARIMA model and its variations [46]. Here, after deciding on the model orders

(the values of p, d, and q), one needs to estimate the parameters. Maximum likelihood

estimation (MLE), which explores the values of the parameters ϕi’s and θi’s that max-

imize the likelihood of given observed data is used for this purpose. Our treatment

below will be for a special case, namely, AR(1).

The AR model we discuss will be causal which we discuss next. Recall that when

Xt is expressed in terms of the current and the previous values of Zt, Xt is called causal

of the series of Zt. Also recall that AR(1) model is given by

Xt = ϕXt−1 + Zt. (3.1)
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MA(q) process is clearly always causal since it is expressed as

Xt =

q∑
i=1

θiZt−i + Zt. (3.2)

Here and below we assume that the underlying AR(1) process is causal since otherwise

the process is not stationary, and it blows up as it evolves in time.

Now, we examine a causal AR(1) process. Using the causal AR(1), we can indicate

the steps of Maximum Likelihood Estimation. Let

Xt = µ+ ϕ(Xt−1 − µ) + Zt, (3.3)

where {Zt} ∼ N (0, σ2). Observe that the likelihood of µ, ϕ and σ2 in AR(1) can be

written as

L(µ, ϕ, σ2) = f(X1)f(X2|X1) . . . f(Xn|Xn−1). (3.4)

Since we have Xt|Xt−1 ∼ N(µ+ ϕ(Xt−1 − µ), σ2), we obtain

f(Xt|Xt−1) = fZ((Xt − µ)− ϕ(Xt−1 − µ)), (3.5)

where fZ is the density of Z with mean zero and variance σ2. Furthermore, because of

the iid assumption, we may express the likelihood as

L(µ, ϕ, σ2) = f(X1)
n∏

t=2

fZ((Xt − µ)− ϕ(Xt−1 − µ))

= (2πσ2)−n/2(1− ϕ2)1/2exp
(
− S(µ, ϕ)

2σ2

)
, (3.6)

where

S(µ, ϕ) = (1− ϕ2)(X1 − µ)2 +
n∑

t=2

((Xt − µ)− ϕ(Xt−1 − µ))2 (3.7)

which is called as the unconditional sum of squares. When we take the derivative of

the logarithm of (3.6) with respect to σ2, and set it equal to zero, we get the maximum

likelihood estimator of σ2 as

σ̂2 =
1

n
S(µ̂, ϕ̂), (3.8)

where µ̂ and ϕ̂ are the maximum likelihood estimators of µ and ϕ. For obtaining the

estimators µ̂, ϕ̂, replacing σ2 by σ̂2 and ignoring constants in (3.6), we may now work
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on

ℓ(µ, ϕ) = log
( 1
n
S(µ, ϕ)

)
− 1

n
log(1− ϕ2), (3.9)

which is equivalent to a study of

ℓ(µ, ϕ) ∝ −2 logL(µ, ϕ, σ̂2). (3.10)

Now, a little bit of work, which can be found in [46], can be done to conclude

that maximum likelihood estimators of mu and ϕ conditional on X1 is given by

µ̂ =
X̂(2) − ϕ̂X̂(1)

1− ϕ̂
, (3.11)

ϕ̂ =

∑n
t=2(Xt − X̂(2))(Xt−1 − X̂(1))∑n

t=2(Xt−1 − X̂(1))2
, (3.12)

where

X̂(1) =
1

n− 1

n−1∑
t=1

Xt,

X̂(2) =
1

n− 1

n∑
t=2

Xt.

3.2. Expected Risk and Empirical Risk Minimization

The goal in the optimization in deep learning approaches is to reduce the differ-

ence between forecasted values and actual values as much as possible via supervised

learning techniques. The loss function, also called the cost function or the error func-

tion, is used to evaluate this difference. In particular, the purpose of optimization is

to minimize the following cost function:

J(w) = E(x,y)∼pdata [L(y, f(x;w))], (3.13)

where Lmeans loss function, y is the actual output, f(x,w) is the predicted output with

the input x and the parameter w, and pdata is the true underlying data distribution.

J(w) is called the expected risk ; however, we cannot immediately minimize it because

the true distribution is unknown. For this reason we introduce a different cost function,

Jdata(w), to improve the performance measure over the training set:

Jdata(w) = E(x,y)∼p̂data [L(y, f(x;w))], (3.14)
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where p̂data is the empirical distribution and other variables are the same as in (3.13).

Then the empirical risk minimization problem turns into the minimization of

Jdata(w) = E(x,y)∼p̂data [L(y, f(x;w))] =
1

n

n∑
i=1

L(yi, f(xi, w)) (3.15)

where n is the number of samples in the training set. So, since we can not optimize the

risk directly, we optimize the empirical risk. Note that empirical risk minimization is

likely to cause overfitting and that the models with high capacity can learn the training

data straightforwardly.

There are various cost functions, such as mean squared error, hinge loss, and

cross-entropy. It is critical to choose a suitable loss function for the problem. Its

importance can be explained as the model parameters are determined by minimizing

the loss function. The correct loss function for the problem specifies how well the

estimators will be.

3.3. Gradient-Based Optimization

The gradient descent method is one of the widely used optimization techniques.

The gradient descent algorithm, if it is possible in practice, enables us to find global

minimum of the cost function. We consider two different versions of the gradient

descent algorithms: batch gradient descent and stochastic gradient descent. They

differ in the way of utilizing the data to succeed to find the global minimum. The

main idea is that learning process (finding the optimal parameters) moves in a selected

search direction, which is in the opposite direction of the gradient of the cost function,

i.e. toward the optimal solution.

3.3.1. Batch Gradient Descent

As in the previous section, once the (training) data is fixed, the cost function

J depends only on the parameters w. Hence, Jdata = Jdata(w). The (batch) gradient

descent algorithm start at a randomly chosen point from the domain of J , say w0. The
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next point w1 is evaluated as follows:

w1 = w0 − η∇wJdata(w0), (3.16)

where η is said to be learning rate which is uniformly fixed to be a very small positive

number. Jdata(w1) is now expected to be closer to global or local minimum value

of Jdata because a slightly scaled inverse direction of the gradient at the point w0 is

subtracted from the vector w0 to obtain w1 as well known that the inverse direction

of the gradient is in the direction of most rapid decrease of Jdata. Then, we apply this

step further using

wn = wn−1 − η∇wJdata(wn−1) (3.17)

to find wn. The iteration proceeds until consecutive difference |Jdata(wn)−Jdata(wn−1)|

is sufficiently small and less than an appropriately chosen threshold. The process of

evaluating Jdata(wj) for j = 1, 2, . . . is said to be feed-forward propagation and the

process of finding wn from the equation (3.17) is said to be back-propagation.

Notice that w0 is randomly initialized at the beginning of the learning process.

Normal distribution with zero mean and variance of one is widely used to initialize

parameters. Too small or too large initialization of parameters may cause the handicap

that the sequence wn diverges so does the sequence |Jdata(wn) − Jdata(wn−1)|, which

may also be a result of a choice of a large learning rate. In fact, if the learning rate is

taken to be very small, then the sequence wn may converge to an undesired point where

Jdata attains its local minimum values [49]. So, it should be determined appropriately.

Another problem is that the speed of the algorithm can be very slow because of

high number parameters and a large data makes Jdata a function which has gradients

that are highly time-consuming to calculate. The algorithm given in the next section

is more feasible in the aspect of the speed.
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3.3.2. Stochastic Gradient Descent

Having said that computational cost in the standard gradient descent algorithm

discussed previously, in the Stochastic Gradient Descent algorithm makes calculation

of the gradient faster.

Let D = {(xi, yi) : i ∈ {1, 2, . . . , n}} be a (training) data, where xi’s are input

and yi’s are output (target) and Ω be a subset of D. We define another cost function

which is restricted on Ω.

JΩ(w) =
∑

(x,y)∈Ω

L(y, f(x,w)). (3.18)

The procedure of SGD follows the rules below.

1. Pick a batch size, say b.

2. Choose a random subset of the training data of size b. Call that subset Ω.

3. Apply gradient descent to through wn = wn−1 − η∇w(JΩ(w)) as explained in the

previous section.

4. Apply the Step 2.

5. Continue to evaluate wn = wn−1 − η∇w(JΩ(w)) with the initial w0 chosen to be

the last wn.

Once the procedure above is proceeded, the next iteration goes through from step

2 up to 5 as well as the further iterations. The number of iterations are kept sufficiently

high to reach appropriate threshold conditions mentioned in the previous section.

We may choose b to be 1 or any other positive integer less than the number of

elements in D. If b = 1, it is called Stochastic Gradient Descent (SGD). If b equals to

the size of D, then it is called Batch Gradient Descent which is the treated case of the

previous section. If we make a partition of D so that each subset (mini-batch) in the

partition are of same size and do the procedure above through these mini-batches, it is
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called Mini-Batch Gradient Descent. When the all training procedure cover all of the

elements of D, we say this is one epoch. However, we need to note that the rigorous

definitions of these three algorithms in the literature are still not that certain to be

sure.

Batch gradient descent has computations over the gradients for each parameter

update. However, it is costs much in terms of time consuming for large datasets.

The stochastic gradient descent algorithm overcomes this redundancy computations

by implementing the parameters update with one randomly selected data from the

training set. SGD leads to the frequent updates producing the heavy fluctuations of

the cost function, unlike the full batch gradient descent converges directly.

The learning rate is an hyperparameter which can be taken to be any small

positive number. So, there are large number of possible choice of learning rate. To find

an optimum value of the learning rate is troublesome because it is necessary to check

whether a value of learning rate gives better results after a training procedure, which

means that we need to train the model for each choice of learning rate. That costs

time and energy. To overcome this difficulty in optimization of the learning rate, there

are several variations of SGD, containing Adagrad [50], Adadelta [51] and Adam [52].

These approaches try to adapt the learning rate to the model parameters with gradient-

based optimization. They mostly facilitate the learning rate selection and enable faster

convergence.

3.4. Hyperparameter Optimization

Many hyperparameter parameter optimization techniques exist for traditional

models, machine learning, and deep learning approaches. The selection of hyper-

parameters is crucial for model building. Even a single hyperparameter change can

significantly change the model. Furthermore, they significantly affect the model pa-

rameters since hyperparameters change the structure of the model. Grid search [53,54],

random search [55], and Bayesian optimization [56] are widely used methods to decide
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about the hyperparameters. The grid search method, which generates combinations

among the possible hyperparameter values, will be discussed below. Let us note that in

the traditional approaches, AIC, AICc, and BIC, based on the likelihood, are also use-

ful to decide about model hyperparameters [34,46]. These will also be briefly discussed

right in the next subsection.

3.4.1. AIC, AICc and BIC

Akaike’s Information Criterion (AIC), which helps us to determine the orders of

an ARIMA type model, is defined by

AIC = −2 log(L) + 2(p+ q + 1), (3.19)

where L is the likelihood of the data and (p+ q + 1) is the number of the parameters

in the model. The differencing parameter denoted by d is ignored because it is only

used to create a differenced series from an existing one. It can be seen in the literature

that the value of d is usually at most two. The decision about d is another issue, and

we will not go into its details here.

There are two variations of AIC that are often encountered in the literature: AICc

and BIC. Using n as the number of observations, corrected AIC (AICc) is defined by

AICc = AIC +
2(p+ q + 1)(p+ q + 2)

n− p− q − 2
(3.20)

and Bayesian Information Criteria (BIC) has the following form:

BIC = AIC + (log(n)− 2)(p+ q + 1). (3.21)

While building ARIMA and related models, one is willing to to minimize one of

AIC, AICc, and BIC. These criteria enable us to select the values p and q that takes

the trade-off between the likelihood and the model orders into account.
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3.4.2. Grid Search

Grid search enables us to search over a given subset of the hyperparameters

space for finding out the most useful hyperparameters towards our task. The method

generates all possible combinations of the hyperparameter values in given domain,

independent of the impacts on the elements in the optimization process. In Figure

3.1, we see the visualization of the grid search method when we need to decide about

two hyperparameters. In theory each tuple on this grid may yield the best performing

model in our task. This results with the obvious drawback that it may lead to many

computations and time spent when we have a huge number of combinations. However,

in practice, the hyperparameter space can be easily limited since the hyperparameter

values are usually independent of each other.

Figure 3.1. The Grid Search Visualization of Two Hyperparameters.
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4. PREDICTION INTERVALS BASED ON QUANTILE

REGRESSION

The models mentioned so far provide point forecasts, just a single number as a

prediction for the next value of the time series. Next we will be looking for an interval

forecast for each time in forecast horizon. This is known to be a probabilistic forecast

approach, and is getting more and more popular in the literature. Suppose that we

have n many observations, and that we want to estimate the n+1th observation. The

prediction interval (PI) approach aims to say that the n+ 1th observation is between

the real numbers a < b with a predecided probability.

In the general forecasting literature, confidence intervals and PIs are often con-

fused. The PI is related to a variable not yet observed. On the other hand, the

confidence interval is related to a model parameter, which is assumed to be unknown

and which is to be estimated from the data [57]. For example, a 90% PI contains the

actual value in the interval with a probability of 0.9. A 90% confidence interval includes

the actual parameter with a probability of 0.90. In most forecasting applications we

look for PIs, that contain the the actual values of future observations.

4.1. Basics on Prediction Intervals

Let us start with the point forecast problem and express the actual value of our

time series Xt at time t as the following:

Xt = X̂t + εt, (4.1)

where X̂t is the point forecast at time t and εt is corresponding error between the actual

value and the estimated value. The PI aims to find a lower bound Lt and an upper

bound Ut so that the resulting interval (Lt, Ut) contains the future value with a certain

probability. See Figure 4.1 for a demonstration of PIs.
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Next, we define the term quantile [58]. For the cumulative distribution function

of a random variable X, we write the following expression:

F (x) = P(X ≤ x). (4.2)

For 0 < τ < 1,

F−1(τ) = inf{x : F (x) ≥ τ} (4.3)

is called τth quantile of a continuous random variable X where F−1 is the inverse of

the cumulative distribution function.

Figure 4.1. The Visualization of the Prediction Interval.

There are various approaches for obtaining prediction intervals. Here we will

be focusing on quantile regression averaging (QRA) [59], quantile regression neural

network (QRNN) [60] and (QRLSTM) [61] in detail. Furthermore, we will also briefly

discuss historical PI, also called historical simulation in [62], and distribution-based PI

as benchmark methods.
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4.2. Benchmark Models

Let us start with how to obtain historical PI. Suppose we have t − 1 many ob-

servations. We determine some positive integer m as a corridor size, and use m data

points along with the corresponding point forecasts along this corridor. According to

(4.1), after calculating the corresponding errors as

εi = Xi − X̂i (4.4)

for i = t−m, . . . , t− 2, t− 1, we order εi’s from smallest to largest as

ε(1) < ε(2) < . . . < ε(m). (4.5)

Let ε⃗ = (ε(1), ε(2), . . . , ε(m)). Pick τth and (1− τ)th quantiles in ε⃗, and call them

εL and εU , respectively. Then for the upper and lower bounds of the PI, we use lower

bound error εL and upper bound error εU , and the resulting (1 − 2τ)th PI turns out

to be

(X̂t + εL, X̂t + εU). (4.6)

Note that the corridor size m above should not be too long as it may cause some prob-

lems since otherwise there is the risk of fixing the prediction interval length throughout

the prediction period.

Next we briefly go over distribution-based PIs [63]. Since the time series models,

such as ARIMA models, are driven by Gaussian noise, the PIs can be obtained by

quantiles of this distribution. That is, the lower and upper bounds of PIs are calculated

by this distribution. Similarly, in [64], student-t distribution is used for the noise

distribution.

Let us explain the distribution-based PIs by using an AR(1) example. As we

mentioned before in (3.1), AR(1) is formed via a Gaussian noise Zt. Our goal is to find

an interval (Lt, Ut) such that

P(Xt ∈ (Lt, Ut)) = P(Lt < ϕXt−1 + Zt < Ut) = 1− 2τ. (4.7)
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Since we have previous observation Xt−1 and focus on the distribution of Zt, we

write (4.7) as:

P(Lt − ϕXt−1 < Zt < Ut − ϕXt−1) = 1− 2τ.

Recalling that Zt ∼ N (0, σ2), and doing the standardization zt =
Zt

σ
, we obtain

P
(Lt − ϕXt−1

σ
< zt <

Ut − ϕXt−1

σ

)
= 1− 2τ.

By using the values in z-table, we set

Lt − ϕXt−1

σ
= zτ

Ut − ϕXt−1

σ
= z1−τ

and then, we obtain (Lt, Ut) for a (1− 2τ) PI where

Lt = ϕXt−1 + σzτ

Ut = ϕXt−1 + σz1−τ .

As mentioned above, the historical PIs and distribution-based PIs are the primary

methods to compare with other approaches. Bootstrapped PIs is a another related

tool [65, 66], but we will not be going into this here.

4.3. Quantile Regression and Related Methodologies

Before we discuss the Quantile Regression Averaging (QRA) approach, we note

that it is based on quantile regression which was first proposed by [58]. Let us discuss

the quantile regression first. Below we will be working with the pinball loss function

which is defined on real numbers by

ρτ (e) = e(τ − I(e<0)) =

τ |e| e ≥ 0

(1− τ)|e| e < 0

(4.8)

where τ ∈ (0, 1) and I is the indicator function taking the values 0 and 1. Then the

error function of the QR is calculated by

Eτ =
1

N

N∑
t=1

ρτ (Xt − X̂t) (4.9)
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where Xt and X̂t are real and predicted values at time t for t = 1, . . . , N .

The aim of QR problem is to obtain x̂ minimizing the expected loss. So we are

willing to minimize

Eρτ [X − x̂] = (τ − 1)

∫ x̂

−∞
(x− x̂)dF (x) + τ

∫ ∞

x̂

(x− x̂)dF (x). (4.10)

By differentiating (4.10) and setting it to zero, we obtain:

(1− τ)

∫ x̂

−∞
dF (x)− τ

∫ ∞

x̂

dF (x) = F (x̂)− τ = 0. (4.11)

This either yields a set of solutions {x̂ : F (x̂) = τ} or a unique solution x̂ = F−1(τ).

Now, we write the QR problem as

QXt(τ |Rt) = βτRt (4.12)

where QXt(τ |·) means the conditional τth quantile of the random variable Xt, Rt refers

to the features or regressors and βτ is the parameter vector corresponding to the τth

quantile. The parameters of τth quantile are then computed by minimizing the loss

function as follows:

min
βτ

{ ∑
{t:Xt≥βτRt}

τ |Xt − βτRt|+
∑

{t:Xt<βτRt}

(1− τ)|Xt − βτRt|
}
. (4.13)

Note that this is equivalent to the minimization of

min
βτ

{∑
t

(τ − I(Xt<βτRt)(Xt − βτRt)
}
. (4.14)

In quantile regression averaging (QRA) setting proposed by [59], our features are

the point forecasts of the models. As an example, if we have k individual forecasting

models, then our feature vector is Rt = [1, X̂1,t, . . . , X̂k,t]. The number of individual

forecasts can be decided arbitrarily; for example, it can use a certain number of best

results [67], or dimensionality reduction techniques can be employed [68]. Let us em-

phasize that the QRA method does not combine the PIs of the individual forecasting

models.
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Now, we discuss the QRA problem and the difference between QR and QRA

approaches. The problem in QRA can be expressed as

F−1
Xt

(τ |X̂t) = wtX̂t + F−1
εt (τ |X̂t) (4.15)

where wt is the weight vector, εt is the error or residual, and Fεt is the cumulative

distribution function of εt at time t. Thus, the minimization problem in QRA becomes

min
wt

{∑
t

(τ − I(Xt<wtX̂t)
(Xt − wtX̂t)

}
. (4.16)

Since τ is arbitrary, the QRA method provides point estimates for any quan-

tile, and the proper combination of quantiles gives the chance to form a PI. We note

that strongly correlated exogenous variables should be avoided in the QRA method.

In addition the individual point forecasts in QRA should be kept small to obtain a

computationally efficient model.

4.4. QRNN and QRLSTM

The QRNN, proposed by [60], is based on an artificial neural network with mul-

tilayers, with the given input and outputs. As noted in Chapter 2, the ANN optimizes

the parameters using the gradients of the loss function. However, in QRNN, we need

another loss function to optimize the model parameters and obtain the point forecasts

of the τth quantile. In [69], the loss function is based on the Huber norm, proposed

by [70]. On the other hand, we focus on the pinball loss function defined by (4.8) as

the loss function of QRNN algorithm to reduce the model complexity.

To generate the QRNN structure, we write the following ANN expression

X̂τ (t) = f
( n∑

i=1

tanh
( k∑

j=1

Xj(t)w
(h)
ji + b

(h)
i

)
w

(o)
i + b

(o)
i

)
(4.17)

with the given input vectorXj(t) for j = 1, 2, ..., N and its output X̂τ (t) of τth quantile.

Here, f is the output function, w
(h)
ji and w

(o)
i are the weights of the hidden layer and

output layer, b
(h)
i and b

(o)
i are the hidden layer and output layer biases, respectively.

The input layer has the linear function with the tanh activation function. Similarly,
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in the hidden layer, the linear function is used. Furthermore, the sigmoid function can

be preferred as the output function.

On the other hand, Quantile Regression Long Short-Term Memory (QRLSTM),

improved by [61,71], is based on QR and LSTM, with a similar approach in QRNN. As

in the traditional LSTM, the update of the parameters is achieved by the backpropa-

gation algorithm. However, the loss function is written suitably for the QR approach.

With the altered learning process of the model, the parameters are updated with the

backpropagation of the new loss function. The model is trained two times using the τth

and (1− τ)th quantiles, and the results are the point estimations of τth and (1− τ)th

quantiles. Thus, the prediction interval of QRLSTM is obtained.

4.5. Prediction Interval Evaluation Metrics

In this section, we briefly discuss the unconditional coverage and Winkler score

[72] (proposed by Winkler [73]) that are used to measure the reliability of prediction

intervals.

Let us start with the simple and common approach, unconditional coverage (UC),

to evaluate PIs. The empirical coverage focuses on the indicator series written by

It =

0 if Xt /∈ (Lt, Ut)

1 if Xt ∈ (Lt, Ut).

(4.18)

Unconditional coverage then means that the average of actual values in the forecasted

PIs, which can be written as

UC =
1

n

n∑
i=1

Ii. (4.19)

A second statistic used to evaluate the quality of the PIs is Winkler score. The

goal is to choose the narrowest PIs with large coverage. This is important because it

is not enough for PIs to contain the actual values but they should be thin enough in

order to be useful in applications. In particular, when the length of PI is quite large,
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it may be obvious that the actual value is in this PI. The Winkler score is now defined

as the following:

Wt =


δt if Xt ∈ (Lt, Ut)

δt +
2
α
(Lt −Xt) if Xt < Lt

δt +
2
α
(Xt − Ut) if Xt > Ut

(4.20)

where Lt and Ut are lower and upper bounds of PI, respectively, δt is the length of the

interval, Ut − Lt, and Xt is the actual value for (1 − α)100% PI. Thus, the Winkler

score enables a penalty when the actual value is out of PI and a reward when we have

a narrow PI. So, a smaller Winkler score indicates we have a better PI.
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5. EXPERIMENTS AND RESULTS

5.1. Point Forecast Evaluation Metrics

To compare and evaluate the point forecasts, various loss functions are used.

Some of these are the Mean Absolute Percentage Error (MAPE) and its variations,

MAPE100 and MAPE250, and Mean Absolute Error (MAE).

We give expressions for the evaluation metrics as mentioned above. Let us start

with MAPE which is defined by

MAPE =
1

n

n∑
i=1

∣∣∣yi − pi
yi

∣∣∣100, (5.1)

where yi’s are actual values and pi’s represent predicted values. In MAPE100 and

MAPE250, we are interested in cases only where actual values are greater than 100 and

250, respectively. In other words, if we have 75 as a real value, we do not use it in

calculating MAPE100. Also, we define MAE by setting

MAE =
1

n

n∑
i=1

|yi − pi|, (5.2)

where yi’s and pi’s are the same as in (5.1). By comparing the losses of different

methods, we may reach at a more meaningful comparison of the models’ performances.

5.2. Case Study: California

5.2.1. PeMS Data

We use Caltrans Performance Management System (PeMS) data set. The con-

tent of this data, collected with approximately 30,000 sensors and detectors, is quite

extensive. In this section we discuss how the data is prepared and which parts of it are

used. We examine the content of the data in 17 features which are timestamp, station,

district, freeway, the direction of travel, station length, samples, total flow, average
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occupancy, average speed, among others.

Timestamp, district, station, total flow, and average occupancy are the most

important features among these 17 features for data preparation and modeling in this

study. We can define traffic flow as the number of vehicles passing through the selected

lane between timestamps. For example, when there is 180 as a value of total flow in

PeMS, 180 vehicles have passed through the selected part of the road in five minutes.

Table 5.1. The Station Information in PeMS.

Station Min Occupancy Max Occupancy Avg Occupancy Length

715918 0.0130 0.1744 0.0832 0.885

716933 0.0094 0.5840 0.1388 0.565

717087 0.0000 0.5746 0.0664 0.330

718442 0.0024 0.9989 0.1548 0.300

We have selected District 7 as the region of interest, and then have chosen certain

stations which are to be specified below. The data contains many rows collected from

many points at the same hour. While modeling the traffic flow, we need one point

to focus on spatially. In this study, we have chosen stations 716933, and 717087 and

examined the traffic flow at these stations as a time series. While deciding which

stations to choose, we paid attention to the stations in the literature so that we have

an opportunity to compare the results with them.

As a side note, we also examined the stations 715918 and 718442 other than

716933, and 717087. However, the station 715918 has very small occupancy and thus

too similar patterns emerge between days. For the station 718442, the data shows

abnormal behaviour on an exploratory data analysis, possible from an undesirable

noise. This prevents doing sane forecasts for station 715918. For these reasons we do

not include our results for stations 716933, and 717087, and just focus on the other
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two below.

Original PeMS data is based on 5-minute periods. We have the data for nine

months, from the beginning of January 2021 to the end of September 2021. We use

15-minute data for all stations since 15-minute data is an optimal timestamp in the

literature [4–7,9,10,20,74,75]. Especially in [9], it has been mentioned that 15 minutes

is the best choice for a prediction interval study.

The 15-minute data is obtained by averaging three consecutive 5-minute data

that do not intersect. In the end, the data with 15-minute has 26208 rows. In the

models, we focus on traffic flow in the data. The length of the training data differs

according to the models because some models contain seasonal parts. For this reason,

we decided to fix the test size, which includes the last 7863 rows, and the rest of the

data is kept for training.

5.2.2. Results of Point Forecasts

Before explaining the point forecast results, we need to tell a little bit about

the setup. We previously mentioned that we predict the following traffic behaviors by

focusing only on the traffic flow. Traditional models and LSTM are already based on

previous observations. On the other hand, we need to determine the features for the

SVR and XGBoost models. Since traffic flow has seasonal features, model features are

determined using daily and weekly seasonality trends.

Letting Xt be the traffic flow at time t, the model features are summarized in

Table 5.2. The features are the same for both stations, 716933 and 717087. Since some

of the models in the Table 5.2 are trained with seasonal features, these model names

are denoted as seasonal SVR (SSVR), and seasonal LSTM (SLSTM) as mentioned in

Chapter 2. Moreover, to the best of our knowledge seasonal XGBoost (SXGBoost) has

not been studied in the literature. Inspired by the SSVR and SLSTM methods, we

introduce and implement the SXGBoost method below.
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Table 5.2. The Traffic Flow Forecasting Models Features in PeMS.

Models Features

S-ARIMA Xt−673, Xt−672, Xt−97, Xt−96

SSVR Xt−673, Xt−672, Xt−671, Xt−97, Xt−96, Xt−95, Xt−2, Xt−1

SLSTM Xt−673, Xt−672, Xt−671, Xt−97, Xt−96, Xt−95, Xt−2, Xt−1

SXGBoost Xt−673, Xt−672, Xt−671, Xt−97, Xt−96, Xt−95, Xt−2, Xt−1

The notation of S-ARIMA is used to avoid confusion with SARIMA. Note that in

order to form the S-ARIMAmodel with both weekly and daily components, the features

specified in Table 5.2 were added to the ARIMA model as exogenous variables.

Let us briefly discuss how we decide on these features. Weekly and daily sea-

sonality makes sense for traffic flow since the days and hours in which people are

active/inactive in general follow a pattern. For example, this may lead to a constant

experience of a traffic congestion on a particular road at the same hours every Mon-

day. Moreover, similar situations can be experienced at the same time as the previous

day, such as encountering traffic in the morning as many people work on weekdays.

However, using only daily seasonality may cause problems with the difference between

weekdays and weekends.

Next we will discuss the point forecast results for PeMS data and do the necessary

comparisons. We apply ARIMA(1,0,0) to model residuals after applying nonlinear

models in hybrid approaches SLSTMARIMA, SSVRARIMA, and SXGBoostARIMA.

As mentioned at the beginning of current chapter, we use MAE, MAPE, MAPE100 and

MAPE250 to evaluate the model results.

To train ARIMA variations, AR(5), ARMA(1,1) and ARIMA(4,1,0) are used

for station 716933. Similarly, for station 717087, we use AR(5), ARMA(5,4) and

ARIMA(3,1,5). To obtain S-ARIMA model, we use ARIMA(1,1,2) with exogenous

variables on Table 5.2 for both stations.
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On the other hand, after applying a grid search for SSVR model, we obtain the

RBF kernel among linear and RBF kernels, and 100 for the relevant C value among

and 0.1, 1, 10, 100 for both stations. Also, we utilize the Adam optimizer to optimize

SLSTM model, and we recall that the learning rate is already optimized by the Adam

as mentioned in Chapter 2. To generate the SLSTM model, the softmax activation

function and a linear layer follow the LSTM layer. For SXGBoost approach, we use

the squared error as a criterion and 1000 as a number of trees.

We are now ready to state our results. For station 716933, ARIMA type models

and naive forecasts seem to be close to each other. Among the seasonal approaches,

SSVR has the best model performance for station 716933. Also, since the station

716933 has a minimal flow higher than 100, the values of MAPE and MAPE100 are the

same.

In hybrid models, we have better results when residuals are well modeled. We

apply the ARIMA(1,1,0) model to the errors for both stations. Among the hybrid

method attempts, the SSVRARIMA approach shows the best results, as seen in Table

5.5. We present the point forecasts for station 716933 as a plot in Figures 5.1, 5.2, 5.3

below.

Table 5.3. The Evaluation of the Traditional Approaches for Station 716933.

Models MAE MAPE MAPE100 MAPE250

Naive Method 31.702 7.366 7.366 6.816

Average Method 125.414 42.494 42.494 18.765

AR 36.613 8.047 8.047 7.692

ARMA 34.706 7.740 7.740 7.334

ARIMA 31.701 7.366 7.366 6.816



47

Table 5.4. The Evaluation of the Seasonal Models for Station 716933.

Models MAE MAPE MAPE100 MAPE250

S-ARIMA 29.394 6.649 6.649 6.248

SLSTM 26.842 6.253 6.253 5.619

SSVR 26.015 6.001 6.001 5.469

SXGBoost 26.435 6.099 6.099 5.560

Table 5.5. The Evaluation of the Hybrid Models for Station 716933.

Models MAE MAPE MAPE100 MAPE250

SLSTMARIMA 26.842 6.253 6.253 5.619

SSVRARIMA 26.015 6.001 6.001 5.469

SXGBoostARIMA 26.435 6.099 6.099 5.560

Figure 5.1. The Comparison of the Traditional Approaches for Station 716933.
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Figure 5.2. The Comparison of the Seasonal Models for Station 716933.

Figure 5.3. The Comparison of the Hybrid Models for Station 716933.

As in Table 5.6, similar to station 716933 results, the ARIMA model has better

results for station 717087 among traditional approaches. For seasonal models and hy-

brid methods, SSVR and SSVRARIMA have best performances on the station 717087,

as seen respectively in Table 5.7 and Table 5.8. The point forecasts as a plot for station

717087 can be found in Figures 5.4, 5.5 and 5.6. So, from these we may conclude that

SSVR has captured the seasonal and autoregressive features best in our experiments.
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Table 5.6. The Evaluation of the Traditional Approaches for Station 717087.

Models MAE MAPE MAPE100 MAPE250

Naive Method 21.410 8.254 7.409 5.913

Average Method 125.021 78.546 38.700 21.486

AR 22.241 8.116 7.392 6.267

ARMA 24.499 9.038 8.061 6.900

ARIMA 21.234 8.229 7.314 5.874

Table 5.7. The Evaluation of the Seasonal Models for Station 717087.

Models MAE MAPE MAPE100 MAPE250

S-ARIMA 20.024 7.376 6.567 5.781

SLSTM 18.291 7.581 6.118 4.978

SSVR 17.444 7.200 5.775 4.770

SXGBoost 17.499 6.979 5.809 4.851

Table 5.8. The Evaluation of the Hybrid Models for Station 717087.

Models MAE MAPE MAPE100 MAPE250

SLSTMARIMA 18.291 7.581 6.118 4.978

SSVRARIMA 17.444 7.200 5.774 4.769

SXGBoostARIMA 17.500 6.979 5.810 4.851
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Figure 5.4. The Comparison of the Traditional Approaches for Station 717087.

Figure 5.5. The Comparison of the Seasonal Models for Station 717087.
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Figure 5.6. The Comparison of the Hybrid Models for Station 717087.
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5.3. Case Study: İstanbul

5.3.1. İstanbul Traffic Data

For our study on İstanbul traffic flow, we had access to a traffic data of approxi-

mately one and a half years, namely, from January 2020 to the end of April 2021. The

traffic flow data has 1-hour timestamps. Our data set consists of traffic flow data in

which the locations are defined by geohashes.

A geohash is a geocoding system encoding a location with letters and digits.

We see the geohash areas in İstanbul traffic flow data in Figure 5.7. The latitude

and longitude values given in the data indicate the midpoint of this geohash area. If

the geohash value length is 6, the area consists of 0.0027 latitude error and 0.0055

longitude error. We draw these boundaries using the latitude and longitude errors and

the latitude and longitude of the midpoint.

It is impossible to focus on a specific road in some geohash areas since a geohash

may contain very complex road systems. Therefore, one should select a suitable geohash

which mainly consists of a single road system, preferably whose occupancy is not very

low. Keeping this in mind, as sketched in Figure 5.8, we have selected a geohash whose

code is sxk9wk. The traffic flow forecasts of this road can be interpreted because the

green area around the road in Figure 5.8 refers to the forest.

İstanbul traffic flow data has more missing values compared to PeMS data in our

study. Since 1-hour timestamps are larger in short-term approaches, these missing data

become more critical. Thus, in the next section, we investigate the effect of missing

data in the literature and present the solutions to deal with the missing points in data.
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Figure 5.7. The Geohash Boundaries of Traffic Flow Data in İstanbul.

Figure 5.8. The Selected Geohash Boundary: Kavacık Junction.
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5.3.2. Effect of Missing Data

In İstanbul traffic data, around 5% of the data is missing, so one needs to pay

special attention filling in these properly. More specifically, in our data set, we have

664 missing data points, and further there is significant time difference among them.

Also note that since we have hourly traffic flow data for İstanbul, forecasting model

results are adversely affected.

Let us give some pointers to the literature on taking care of the missing data

problem. The adverse effects of missing data on model performances are indicated, for

example, in [76, 77]. A possible completion of the missing data with an AR model is

advocated in [78]. All these indicate that it is essential to deal with the missing data

for obtaining proper forecasting mechanisms.

Also, [79] uses a technique called the vector autoregressive imputation method

(VAR-IM) for dealing with missing data. [80] evaluates the result of ARIMA time series

analysis with missing data points by applying four different methods: deletion, mean

substitution, mean of adjacent observations, and maximum likelihood estimation.

We use three different completion methods below. The first two of these are based

on mean of properly chosen available observations, and the third one is on deletion of

the missing values. Regarding the former two, we use two different strategies. In the

first one we replace the missing value with the mean of the available data from the

same hour. Also,in the second one the missing data is replaced by the mean of the

available data from both the same hour and the same day. Also let us note that we

also had experimentations on the missing data by completion via an ARIMA model,

but we decided not to keep those results in this thesis since we also have forecastings

based on ARIMA which could be problematic.

After completing the missing data points, we need train and test sets to learn the

models and obtain forecast results. In our case approximately 70 percent of the data is
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the training set, and the rest is used as the test set. Since some models have seasonal

parts, the training set size differs from model to model. However, we fix the test set to

be the last 3500 rows of data.

5.3.3. Results of Point Forecasts

Similar to the PeMS data setting in California, we use methods based on previous

observation to obtain point forecast. The features of the seasonal models contain both

weekly and daily trends. Noting that the İstanbul traffic flow data has 1-hour time

stamps, the components are as in listed in Table 5.9 for S-ARIMA, SLSTM, SSVR and

SXGBoost. To apply both weekly and daily seasonality to the S-ARIMA, we add the

features to the ARIMA as exogenous variables.

One other goal of ours in İstanbul traffic flow data is to compare the forecast

results by filling or deleting missing data points with different techniques. In the

model application part, the hyperparameters of the models should remain the same

for all three data so that we interpret them correctly. Furthermore, the features in the

models should be the same as in Table 5.9 for these three cases.

Table 5.9. The Traffic Flow Forecasting Models Features in İstanbul.

Models Features

S-ARIMA Xt−169, Xt−168, Xt−25, Xt−24

SSVR Xt−169, Xt−168, Xt−167, Xt−25, Xt−24, Xt−23, Xt−2, Xt−1

SLSTM Xt−169, Xt−168, Xt−167, Xt−25, Xt−24, Xt−23, Xt−2, Xt−1

SXGBoost Xt−169, Xt−168, Xt−167, Xt−25, Xt−24, Xt−23, Xt−2, Xt−1

Some notes on hyperparameter selection is in order. We used AR(5), ARMA(1,1)

and ARIMA(0,1,3). Also, similar to the PeMS case, ARIMA(1,1,2) with seasonal

exogenous variables is used to obtain the S-ARIMA model with weekly and daily
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components. The SSVR method has the RBF kernel and 100 for the value of C, again

by using aforementioned hyperparameter optimization techniques. To train SLSTM

model, we utilize 0.01 as the learning rate, MSE as the criterion, Adam optimizer and

2000 as the number of epochs. It has the same structure as the one formed for the

PeMS data. Moreover, SXGBoost uses the squared error to update the parameters and

1000 as the number of estimators which refers to the maximum number of trees.

Before giving the evaluation results of the models, we present the loss change

during the epochs for the SLSTM model. The Adam optimizer provides us a stochastic

gradient approach, and as mentioned Chapter in 3, it gives faster optimization and

convergence. Since it is a stochastic approach occurrence of fluctuations as in Figure

5.9 are expected.

Figure 5.9. The Loss Plot of the SLSTM Model for İstanbul Data with Missing

Points Completed with Mean of the Same Days and Hours.
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Table 5.10. The Evaluation of the Traditional Approaches for İstanbul Data with

Missing Points Completed by Deletion Method.

Models MAE MAPE MAPE100 MAPE250

Naive Method 42.684 31.036 22.967 17.581

Average Method 104.516 134.423 34.316 36.851

AR 45.418 28.870 23.713 21.841

ARMA 46.256 29.060 24.188 22.600

ARIMA 42.692 31.046 22.971 17.585

Table 5.11. The Evaluation of the Seasonal Models for İstanbul Data with Missing

Points Completed by Deletion Method.

Models MAE MAPE MAPE100 MAPE250

S-ARIMA 38.921 27.645 20.601 16.529

SLSTM 31.361 26.084 16.023 11.652

SSVR 30.768 22.780 16.455 11.994

SXGBoost 31.629 24.797 16.783 12.014

Table 5.12. The Evaluation of the Hybrid Models for İstanbul Data with Missing

Points Completed by Deletion Method.

Models MAE MAPE MAPE100 MAPE250

SLSTMARIMA 31.356 26.030 16.041 11.616

SSVRARIMA 30.723 22.728 16.416 12.061

SXGBoostARIMA 31.695 24.839 16.833 12.001
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We present the point forecast results in Tables 5.10 through 5.18. The point

forecast results for the İstanbul traffic flow data after deleting the missing values are

summarized in Tables 5.10, 5.11 and 5.12. The results indicate that the seasonal ap-

proaches outperform the traditional ones. Furthermore, the hybrid approaches enables

us to improve the seasonal methods further, and we see that the SSVRARIMA is the

best mechanism among the ones we implemented. Next we present Tables 5.13, 5.14

and 5.15, which make it clear that we obtain improved results if we complete the

missing data by using the mean of same hours, instead of simply deleting them.

Table 5.13. The Evaluation of the Traditional Approaches for İstanbul Data with

Missing Points Completed with Mean of the Same Hours.

Models MAE MAPE MAPE100 MAPE250

Naive Method 40.466 29.969 21.690 16.743

Average Method 101.837 128.599 34.837 36.257

AR 50.593 31.640 26.658 25.312

ARMA 45.133 28.572 23.500 22.605

ARIMA 40.465 29.969 21.690 16.743

Table 5.14. The Evaluation of the Seasonal Models for İstanbul Data with Missing

Points Completed with Mean of the Same Hours.

Models MAE MAPE MAPE100 MAPE250

S-ARIMA 29.047 21.775 15.154 12.364

SLSTM 23.601 17.652 12.373 10.107

SSVR 22.836 17.155 12.024 9.710

SXGBoost 24.710 18.511 12.981 10.599
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Table 5.15. The Evaluation of the Hybrid Models for İstanbul Data with Missing

Points Completed with Mean of the Same Hours.

Models MAE MAPE MAPE100 MAPE250

SLSTMARIMA 23.644 17.670 12.391 10.107

SSVRARIMA 22.850 17.162 12.036 9.706

SXGBoostARIMA 24.732 18.516 12.997 10.614

Table 5.16. The Evaluation of the Traditional Approaches for İstanbul Data with

Missing Points Completed with Mean of the Same Days and the Same Hours.

Models MAE MAPE MAPE100 MAPE250

Naive Method 40.678 29.919 21.783 16.660

Average Method 103.542 129.963 35.301 36.870

AR 52.294 32.285 27.493 26.359

ARMA 47.101 29.421 24.629 23.556

ARIMA 42.391 31.077 23.077 17.101

Table 5.17. The Evaluation of the Seasonal Models for İstanbul Data with Missing

Points Completed with Mean of the Same Days and the Same Hours.

Models MAE MAPE MAPE100 MAPE250

S-ARIMA 31.579 23.330 16.908 13.140

SLSTM 23.470 17.936 12.365 9.529

SSVR 22.231 16.751 11.773 9.111

SXGBoost 23.977 18.133 12.610 9.925
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Table 5.18. The Evaluation of the Hybrid Models for İstanbul Data with Missing

Points Completed with Mean of the Same Days and the Same Hours.

Models MAE MAPE MAPE100 MAPE250

SLSTMARIMA 23.475 17.908 12.382 9.516

SSVRARIMA 22.233 16.752 11.777 9.104

SXGBoostARIMA 23.987 18.138 12.617 9.920

An analysis of the results we provided clearly indicates the effect of the missing

data points properly. Filling the missing values using the mean observation in the same

days and the hours gives the best forecasting results in our framework. Figures 5.10,

5.11 and 5.12 provide visualizations of the different forecasting results.

Figure 5.10. The Comparison of the Traditional Approaches for İstanbul Data with

Missing Points Completed with Mean of the Same Days and the Same Hours.
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Figure 5.11. The Comparison of the Seasonal Model Approaches for İstanbul Data

with Missing Points Completed with Mean of the Same Days and the Same Hours.

Figure 5.12. The Comparison of the Hybrid Models for İstanbul Data with Missing

Points Completed with Mean of the Same Days and the Same Hours.
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5.3.4. Results of Prediction Intervals

In this section we provide the results of our experimentations on Istanbul data

set for obtaining 90% PIs. Different methods we have are compared in terms of the

unconditional coverage and Winkler score.

Since the traffic flow data with the mean observations at the same days and

hours has better forecasting results than the other two, our experimentation focused

on generating the PIs for this framework. In Tables 5.19 and 5.20, the evaluation results

of the PIs are summarized. Since the historical PI approach uses the forecasting results,

we present them for all models using to obtain the point forecasts in Table 5.19. These

show that the PI corresponding to the SSVR approach has the best performance among

the historical ones. On the other hand, the results of distribution-based PIs has 0.52

for the unconditional coverage and 211.537 for Winkler score.

Moreover, Table 5.20 includes the details regarding the approaches QRA, QRSNN

and QRSLSTM. The QRSNN refers to Quantile Regression Seasonal Neural Network

since it contains seasonal features. In order to obtain the QRA one, we use the predic-

tion results of SLSTM, SSVR and SXGBoost, which are the best three models of the

point forecasts. In the QRSLSTM, we use the same architecture with the SLSTM and

we obtain the 90 % PIs. The features of the QRSNN and QRSLSTM models are the

same. They are given in Table 5.9 and the same components are used as the SLSTM

model to obtain QRSNN and QRSLSTM.

We obtain the best PIs with the QRSLSTM approach when compared the un-

conditional coverage of the results. Moreover, we have the best PIs in the QRSNN

when compared to Winkler scores. Since we compare the length of PIs using Winkler

score, we conclude that the approaches QRSNN and QRSLSTM has similar results.

We present the plot of the PIs of QRA, QRSNN and QRSLSTM results in Figures

5.13, 5.14 and 5.15.
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Table 5.19. The Evaluation of the Historical Prediction Intervals.

Models Unconditional Coverage Winkler Score

AR 0.83 321.137

ARMA 0.82 324.283

ARIMA 0.80 373.314

S-ARIMA 0.82 237.124

SLSTM 0.80 174.928

SSVR 0.81 171.993

SXGBoost 0.81 179.943

Table 5.20. The Evaluation of the Quantile Regression Based Prediction Intervals.

Models Unconditional Coverage Winkler Score

QRA 0.82 178.646

QRSNN 0.89 141.938

QRLSTM 0.92 143.751

Figure 5.13. The Visualization of QRA Prediction Intervals.
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Figure 5.14. The Visualization of QRSNN Prediction Intervals.

Figure 5.15. The Visualization of QRSLSTM Prediction Intervals.
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6. CONCLUSION

In this thesis we studied short-term traffic flow forecasting methodologies by

analyzing the existing literature, and introducing new approaches. In addition to point

forecasting, interval estimation is also discussed. SXGBoost and QRSLSTM, which

have not been previously proposed, have been developed. Both of these two focus

on the seasonal trends of the time series. During this study, besides the well-known

California dataset, we worked on the traffic flow data of İstanbul which had additional

challenges such as the missing data problem. We hope that the approaches in this

thesis will be useful in improving the time series methods for traffic flow forecasting.
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