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ABSTRACT

3D SHAPE GENERATION AND MANIPULATION

Computer graphics, 3D computer vision and robotics communities have pro-

duced multiple approaches to represent and generate 3D shapes, as well as a vast

number of use cases. These use cases include, but are not limited to, data encoding

and compression, shape completion and reconstruction from partial 3D views. How-

ever, controllable 3D shape generation and single-view reconstruction remain relatively

unexplored topics that are tightly intertwined and can unlock new design approaches.

In this work, we propose a unified 3D shape manipulation and single-view reconstruc-

tion framework that builds upon Deep Implicit Templates [1], a 3D generative model

that can also generate correspondence heat maps for a set of 3D shapes belonging to

the same category. For this purpose, we start by providing a comprehensive overview of

3D shape representations and related work, and then describe our framework and pro-

posed methods. Our framework uses ShapeNetV2 [2] as the core dataset and enables

finding both unsupervised and supervised directions within Deep Implicit Templates.

More specifically, we use PCA to find unsupervised directions within Deep Implicit

Templates, which are shown to encode a variety of local and global changes across each

shape category. In addition, we use the latent codes of encoded shapes and metadata

of the ShapeNet dataset to train linear SVMs and perform supervised manipulation

of 3D shapes. Finally, we propose a novel framework that leverages the intermediate

latent spaces of Vision Transformer (ViT) [3] and a joint image-text representational

model, CLIP [4], for fast and efficient Single View Reconstruction (SVR). More specifi-

cally, we propose a novel mapping network architecture that learns a mapping between

the latent spaces ViT and CLIP, and DIT. Our results show that our method is both

view-agnostic and enables high-quality and real-time SVR.
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ÖZET

3 BOYUTLU MODEL JENERASYONU VE

MANİPÜLASYONU

Bilgisayar grafikleri, 3B bilgisayarlı görü ve robotik komüniteleri 3B şekilleri ifade

etmek, modellemek ve jenere etmek için pek çok yöntem geliştirmiş ve kullanım alanı

oluşturmuştur. Bu kullanım alanlarının bazıları 3B şekilleri kodlama ve sıkıştırma ve

kısmi 3B şekillerin tamamlanması olup; 3B şekil manipülasyonu ve tek resimden 3B

şekil üretme hala görece az çalışılmış konulardır. 3B şekil manipülasyonu ve tek resim-

den 3B şekil üretme konuları birbirleriyle ilişkili olup, bu konular üzerindeki çalışmalar

yeni dizayn metodolojilerini mümkün kılacaktır. Bu tezde 3B şekil manüpülasyonu

için bir çerçeve geliştirip, baz model olarak Deep Implicit Templates’i [1] kullandık. Bu

model 3B şekil üretmenin haricinde, aynı kategoriye ait şekiller için topolojik benzerlik

haritaları çıkarabilmektedir. Bunun için öncelikle 3B şekil temsil formatlarını ve ilgili

araştırmaları anlatmakla başlayıp, daha sonra geliştirdiğimiz metodları ve çerçeveyi

anlattık. Tezimizde ana veriseti olarak ShapeNetV2’yi [2] kullanarak Deep Implicit

Templates katmanları içinde denetimli ve denetimsiz yönler bulduk. Deneylerimiz

sonucunda, PCA uygulayarak bulduğumuz denetimsiz yönlerin pek çok lokal ve global

özelliği temsil ettiğini gördük: sandalye yüksekliği, araba uzunluğu, dizayn trendleri

ve şekil alt kategorileri gibi. Ek olarak, ShapeNetV2 meta verisini ve öğrenilmiş şekil

kodlarını kullanarak eğitilmiş lineer SVM modelleriyle başarılı şekilde denetimli ma-

nipülasyon yapabileceğimizi gösterdik. Son olarak, eğitilmiş bir Vision Transformer

(ViT) [3] modelinin ve eğitilmiş bir birleşik resim-yazı temsili modeli olan, CLIP’in [4]

ara katmanlarını kullanarak gerçek zamanlı ve efektif bir tek resimden 3B şekil üretme

metodu geliştirdik. Geliştirdiğimiz metod, ViT ve CLIP’in ara katmanlarıyla DIT’in

ara katmanları arasında köprü görevi görmekte olup, poz ve perspektiften bağımsız

olarak gerçek zamanlı ve yüksek kalitede resimleri 3B şekillere dönüştürebilmektedir.
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1. INTRODUCTION

Generative Adversarial Networks (GANs) [7] are generative models that revolu-

tionized computer vision. Today, GANs are widely used for various visual tasks due to

their success in generating high-quality images. To name a few, image generation [8,9],

image manipulation [10], image denoising [11, 12], image super-resolution [13] and do-

main translation [6] are only some of the many creative uses of generative models.

Despite the impressive capabilities of GANs, these advances are overwhelmingly

limited to 2D image generation tasks whereas 3D generation and manipulation remains

challenging. This is mainly because one of the greatest challenges to the development

of generative models for 3D content is converging on the right representation as it is

often not possible to apply image-based methods to 3D data. Whereas RGB images

have become the quasi-standard in 2D vision tasks, common 3D representations such

as point clouds, meshes and other compact surface representations all pose significant

problems during training, which makes it difficult to agree on a common representation.

Preprocessing images to train models is relatively simple compared to preprocessing 3D

shapes, as the input 3D shapes require to be aligned and scaled, in addition to each 3D

representation posing its unique additional challenges. For example, direct extension

of 2D pixel grids to 3D voxel grids [14] to train convolutional networks significantly

limits resolution due to the high memory demands of 3D convolutions. Mesh datasets,

on the other hand, often require remeshing of mesh objects to create an even number

of faces and vertices across the dataset, which often leads to a loss in detail depending

on the shape topologies and the remeshing method used. Similarly, while point clouds

are very popular for generative tasks [15–17], they are limited in their ability to model

sharp features or high-resolution color textures. Hence, the quality, flexibility and

fidelity of 3D encoding and generation approaches are limited by the representation

used. To address these issues, several alternative representations such as NeRF [18]

and DeepSDF [5], as well as hybrid methods collectively known as neural implicit

representations, have been proposed in the last 3 years.
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These methods use neural networks to define implicit surface or volume represen-

tations. While most recent works on 3D shape generation adopt implicit representa-

tions to generate high-quality shapes and overcome the shortcomings of previous work,

these methods are difficult to deploy in practice with no means of real-time genera-

tion and manipulation. We note that the majority of previous work focus solely on

high-quality and high-fidelity 3D generation without exploring 3D manipulation and

controllable generation.

In this thesis, we focus on the task of interactive and controllable 3D genera-

tion, and propose a unified framework for unsupervised and supervised manipulation

of 3D generative models, one-shot co-segmentation and Single View Reconstruction

(SVR). Unlike previous work that directly operates on explicit 3D representations, our

proposed framework solely operates within the latent space of a base 3D generative

model, Deep Implicit Templates (DIT) [1] to enable real-time reconstruction and ma-

nipulation. More specifically, we use PCA and linear SVM models trained on shape

metadata to find unsupervised and supervised manipulation directions within the latent

space of DIT. Moreover, we propose a highly effective and fast method that leverages

Vision Transformer (ViT) [3] and CLIP [4], a joint image-text representation model

trained on a huge dataset, to map images to the latent space of DIT in a view-agnostic

manner. Furthermore, we propose a one-shot category-level consistent segmentation

method that directly capitalizes the information generated by DIT. While we apply

the proposed manipulation and SVR methods on DIT, we note that these methods are

applicable to any differentiable generative model that either learns an implicit repre-

sentation and has intermediate latent layers that can be manipulated, or directly used

to generate explicit 3D representations. For all experiments, we use the car, airplane,

sofa and chair categories of the ShapeNetV2 dataset [2] and compare our proposed SVR

method to state-of-the-art competitor methods: AtlasNet [19] and IM-NET [20]. We

note that we are not able to perform comparative experiments for shape manipulation

tasks as previous works that do not involve per-shape optimization schemes confine

shape manipulation to simple interpolation.
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We show through extensive experiments that our framework achieves fast and

highly effective manipulations and reconstruction while preserving generated shape

quality and fidelity. We list our main contributions as follows:

• We propose unsupervised and supervised methods to discover meaningful, global

and effective semantic directions in the latent space of a 3D generative model,

DIT.

• We show that our method is able to find several distinct and fine-grained direc-

tions for a variety of categories such as cars, airplanes, chairs, and sofas.

• We propose a novel, view-agnostic SVR network architecture that can map input

images to the learned latent space of a 3D generative model, enabling image-based

reconstruction and direct manipulation.

• We propose a simple yet highly effective category-level, one-shot 3D segmentation

method.
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2. RELATED WORK

2.1. Classical 3D Shape Representations

One of the most pressing research questions in the domain of 3D vision is how to

best represent 3D data. Unlike the 2D vision domain, where RGB pixel representations

have become the standard for research, 3D vision research still uses a wide variety of

explicit (e.g. point clouds, voxels, meshes), implicit and hybrid shape representations,

mostly due to each representation having its own set of advantages and disadvantages.

One of the most popular explicit shape representations is the point cloud, which

represents shapes as a set of 3D coordinates in (x, y, z) format. As many sensors used

in the industry, such as LIDAR and depth cameras, output point clouds, the point

cloud format is extensively used in popular 3D vision problems such as reconstruc-

tion of 3D shapes [21], 3D object classification [22, 23], and segmentation [23]. While

popular, point clouds provides no information on how the points are connected, are

order invariant and often yield noisy reconstructions and generations. Another very

popular 3D representation is the mesh format, which describes each shape as a set of

triangles, where each edge of each face is a connection between two vertices. While

meshes are better suited to describe the topology, they pose significant problems such

as the question of how to deal with shapes with unequal number of vertices and faces.

Voxel format is yet another popular 3D representation format that describes objects

as a fixed-sized volume occupancy matrix. While this dense grid structure is partic-

ularly suitable for CNN-based architectures, voxel format requires high-resolution in

order to describe fine-grained surface descriptions and hence, cannot be generalized to

articulate shapes.
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2.2. Neural Implicit Representations

Finally, there have been a large number of neural implicit representations pro-

posed in the recent years. These methods seek to overcome the shortcomings of the

classical 3D shape representations as described in Section 2.1. Neural implicit represen-

tations represent 3D shapes as learned functions that map 3D coordinates to a signed

distance function (SDF) [5], or a binary occupancy value [20, 24]. While SDF values

denote how far a given point (x,y,z) is from the closest normal surface point, occupancy

fields tell if the query point (x, y, z) is within the shape surface boundaries. Hence,

both SDF based and occupancy based representations aim to create a lightweight and

continuous shape representation that is infinitely scalable in resolution. Despite their

significant advantages, a drawback of implicit representations is they require aggres-

sive sampling and querying of 3D coordinates in order to construct explicit surfaces.

Neural volume rendering methods such as NeRF [25] are tangent to this problem as

NeRF proposes a method to synthesize views with user specified camera intrinsics and

perspective without explicitly constructing a surface. In practice, this is achieved by

generating radiance fields along specified ray paths. We note that while works that

use implicit representations for 3D shape generation have achieved tremendous success,

the model outputs require conversion to an explicit representation such as the mesh

or point cloud format in order to be used in downstream application. This conversion

process is often performed via ray-marching or spherical tracing, which are not only

time-consuming but also non-differentiable.

2.3. 3D Shape Generation

3D generation and reconstruction methods can be classified into two broad cate-

gories based on their main motivations: shape encoding and generation, and reconstruc-

tion from single or multi-view images. Shape encoding is arguably the most popular

3D vision task as learning compact 3D representations is important in a vast number

of applications and areas such as object recognition, data compression and retrieval,

navigation (e.g. SLAM) and symbol generation.
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Previous work on shape encoding use a wide array of shape representations and

methods. PointNet [22,23], for example, processes point cloud data and extracts global

shape features via max-pooling operations for object classification. The shape features

extracted by PointNet are also widely used as an encoder for point and occupancy

generation networks [20]. As described in Section 2.1, an important limitation of work-

ing with point clouds is that they consist of unordered points and converting them

to meshes often fail to produce watertight surfaces. Other works such as [26] pro-

pose using convolutional restricted Boltzmann machines for unsupervised learning of

mesh features, which can be used for training linear and non-linear 3D object clas-

sifiers. AtlasNet [19] proposes representing 3D shapes as a collection of parametric

surface elements and tries to learn a mapping from 2D squares sampled from images or

point clouds coupled with learned latent shape features to 3D points. However, their

approach does not exploit locality information, resulting in lower fidelity generation.

Works such as [1,5,24] propose conditional frameworks to learn implicit surface or vol-

ume functions while simultaneously learning an encoding for each training shape. Sim-

ilarly, IM-GAN [20] proposes to use an implicit decoder IM-NET in conjunction with

features learned by a latent-GAN model [15] to yield a general 3D generative model.

Because the outputs of this method and related methods are implicit in the network

weights, high-resolution results typically cannot be visualized or exported in real time.

Other work, [27,28] propose overfitting a neural implicit function per shape to encode

and reconstruct objects as needed. Another branch of research focuses on learning

continuous data distributions for novel shape synthesis. For example, SP-GAN [17]

proposes an unsupervised sphere-guided generative model for directly synthesize point

clouds. Others propose various CNN-based GAN architectures [15, 29, 30] to generate

novel shapes in the point cloud format.

2.4. 3D Shape Reconstruction

Another important line of research in 3D computer vision is 3D reconstruction

from single or multi 2D views, or partial 3D views, often in the point cloud format.



7

As 3D data is often acquired from LIDAR sensors in the form of points clouds, and

thus suffer from issues such as occlusion, most work on 3D reconstruction focuses on

reconstruction from partial point clouds or even multi-view partial point clouds. Works

such as PoinTr++ [31] and IM-NET [20] operate on point clouds and employ iterative

refinement schemes that seek to minimize the average Chamfer distance between the

completed point cloud to the ground truth shape. Moreover, SDF and occupancy based

representations have been successfully used for reconstruction and 3D shape completion

using partial point clouds [24,32,33]

Another line of work seeks to reconstruct 3D shapes from single or multi-view

images. For example, works such as [34, 35] leverage the grid-like architecture of the

voxel format to train CNNs on single and multi 2D views respectively to reconstruct

the 3D object in voxel format. Other work such as Pixel2point [36] and AtlasNet

propose CNN-based architectures that directly maps pixels of a single-view image to

3D points to create point cloud and mesh outputs respectively. Similarly, work such

as DeepI2P [37] tries to register each pixel in a single-view to a point in a LIDAR

acquired point cloud for SLAM purposes. In our work, we show that it is possible to

perform higher quality reconstructions without a time-consuming optimization scheme

by restricting the mapping process to the dense latent space of the generative model

instead of working directly with meshes or point clouds. For the sake of brevity, we

exclude multi-view reconstruction from related work.

2.5. Latent Space Manipulation

While 3D shape manipulation is a largely unexplored topic, several methods have

already been proposed to exploit the latent space of generative models for image manip-

ulation. These methods are collectively known as latent space manipulation methods

and can be further divided into two categories: supervised and unsupervised methods.

Supervised manipulation methods often leverage pre-trained binary classifiers to opti-

mize an input sample in order to enhance or remove the target attribute, or to learn

meaningful style directions that can be applied to unseen samples.
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Alternatively, they use small labeled datasets to train binary classifiers in an effort

to learn a boundary for the target attribute [38, 39]. Other work investigate whether

it is possible to find unsupervised directions in the latent space of pre-trained GANs

that encode meaningful attributes [40, 41]. For example, GANSpace [42] proposes a

simple unsupervised manipulation method that applies principal component analysis

(PCA) [43] to randomly selected latent vectors of the intermediate layers of BigGAN

[44] and StyleGAN [8] models. The components obtained are then used to manipulate

random or real images embedded in the latent space. SeFA [45] proposes a closed-form

optimization method to directly optimize the intermediate weight matrix of a pre-

trained GAN. Typically, these methods use the found directions to modify the image

semantics by shifting the latent code by a certain amount in the identified direction to

strengthen, negate, or remove the attribute of interest.
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3. METHODOLOGY

In this chapter, we provide an overview of our proposed manipulation and SVR

framework. We start by giving background information on DeepSDF, DIT, ViT and

CLIP, and then describe our unsupervised and supervised manipulation methods. We

then describe our SVR framework and real-to-synthetic image translation module in

detail, as well as our one-shot co-segmenntation method.

3.1. Background on DeepSDF and DIT

A Signed Distance Function (SDF) is a function f : R3 → R where d = f(x,y, z)

denotes the shortest signed distance from a point (x,y, z) to a watertight surface S

belonging to a shape. Moreover, the sign of d indicates whether (x, y, z) is within

or outside the surface, and points on the surface are implicitly represented with f as

formulated as

S = {f(x,y, z) = 0}, (3.1)

where S denotes the shape surface. DeepSDF proposes learning an implicit surface

representation such that a neural network fθ learns an SDF via training and can be

used to reconstruct an object via coordinate sampling and forward propagating the

samples through fθ. Hence, for a given 3D coordinates (x,y, z), the signed distance

can be computed with fθ((x,y, z)) = d̂. The parameters θ are optimized with the loss

J(θ) = E(x,y,z),dL (fθ((x,y, z)), d), where d is the ground-truth signed distance and L

is a traditional distance metric such as the L2 distance. However, this formulation is

not sufficient to learn a single function that encodes multiple shapes. Hence, DeepSDF

proposes an auto-decoder architecture to learn a function fθ((x,y, z, s)) where s ∈ Rm

is an input shape feature vector that is unique to each shape. In practice, the shape

feature vectors are randomly initialized for each shape separately and learned via the

back-propagation of a 3D loss during training. Overall architecture of DeepSDF to

learn a single or multiple shapes is shown in Figure 3.1.
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Figure 3.1. An overview of the DeepSDF architecture [5]: DeepSDF network predicts

the SDF value of the input 3D query location. The network can be trained (left) on a

single shape or (right) conditioned with a latent vector that allows DeepSDF to

model a large space of shapes, where each latent vector encodes a unique shape and

optimized through training.

Deep Implicit Templates (DIT) is an extension of DeepSDF and proposes using

an intermediate mapping between the input (x, y, z, s) to a global shape template T

to learn the average shape of a shape category (e.g. cars, planes) to improve encoding

quality and prevent generation artifacts. In practice, this intermediate mapping takes

the form of an LSTM network where the input is an ordered sequence of sampled

coordinates (x, y, z) and a shape feature vector s. While DIT produces significantly

better results than DeepSDF in categories such as cars, where there is a prominent

common shape template, it tends to produce more artifacts in more diverse categories

such as chairs.

3.2. Background on ViT and CLIP

In our work, we leverage two pre-trained vision models: ViT and CLIP. Vision

Transformers (ViT) [3] are powerful models that have emerged as an alternative to

CNN-based architectures for visual tasks such as image classification and object detec-

tion, and quickly achieved state-of-the-art results in numerous visual tasks. Further-

more, ViT-based models have shown better robustness to occlusions and adversarial

attacks, as well as less texture bias compared to CNN-based architectures [46].
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The ViT architecture represents an image as n non-overlapping patches {pi}i∈1..n.

These patches are linearly projected to a multi-dimensional space and concatenated

with positional embeddings that are learned through training to generate spatial tokens.

An additional token is added in order to represent global visual properties and then the

tokens are forward propagated through the transformer’s encoder layers, where each

layer l ∈ L consists of Multihead Self-Attention modules (MS), normalization layers

(LNorm) and MLP blocks with skip connections. This process is formulated as

T̂ l = MS(LNorm(T l−1)) + T l−1

T l = MLP(LNorm(T̂ l)) + T̂ l,
(3.2)

where T l=
[
⊔l

0, . . . ,⊔l
n

]
denote layer l’s output tokens. Furthermore, each Multihead

Self-Attention block linearly projects T l into queries, keys and values as follows

qli = W l
q · ⊔l−1

i , kl
i = W l

k · ⊔l−1
i , vli = W l

v · ⊔l−1
i , (3.3)

where l: {kl
i, q

l
i, v

l
i, t

l
i} is the set of key, query, value and token that directly corresponds

to the image patch pi at each layer l. The richness of ViT’s latent space and ViT’s

SOTA results across several vision tasks led to the exploration of using deep ViT

features as general dense visual descriptors [47,48].

In addition to ViT, we leverage CLIP [4] - a powerful joint image-text represen-

tation model - to map single-view images to the latent space of pre-trained DIT, our

base 3D generative model. CLIP is a multi-modal contrastive learning framework that

consists of a text encoder module and an image encoder module. The two modules are

trained simultaneously with the joint objective of mapping the image and text inputs

to a shared embedding space. To achieve this, CLIP is trained on over 400 million

image-text pairs with the goal of maximizing the similarity between the embeddings

of matched image and text instances and minimizing those of unmatched pairs, result-

ing in a powerful joint representation model. Moreover, previous work has shown that

CLIP is robust to pose variation and much more sensitive to content differences. In our

work, we exploit this finding and use CLIP, to extract dense pose invariant features,

which are then used to train a view-independent SVR network.
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Figure 3.2. An overview of the ViT architecture [3]: Each image is split into n

non-overlapping patches and are sub-sequentially forward propagated through

positional embedding and transformer layers. Each image patch pi has a

corresponding set of unique features in each layer: {kl
i, q

l
i, v

l
i, t

l
i}. Each feature set at

each layer can be used as a dense feature descriptor.

We note that it is also possible to directly train CLIP-like multi-modal models to

jointly represent encoded 3D shape, text and image triplets. For example, AudioCLIP

[49] and Wav2CLIP [50], are recent CLIP-based multi-modal works that seek to jointly

encode audio and image data. While AudioCLIP extends CLIP with a third branch

that jointly encodes audio along with text and images, Wav2CLIP uses the trained

CLIP model to distill the weights of the image encoder and train a new CLIP model

for joint audio-image representation with audio-image streams extracted from videos,

removing text from the equation. We refrain from directly training a CLIP-based

model as our base DIT models are trained on each shape category separately and not

suitable for contrastive learning schemes.

3.3. Unsupervised Manipulation

We start by exploring unsupervised manipulation for controlled 3D generation by

finding global linear directions in the latent space of DIT.
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To do this, we use the randomly initialized and learned latent vectors that encode

each shape. Given a set of n latent vectors p with shape (1, 512), we concatenate the

vectors to create a matrix of shape (n, 512) and apply PCA to this matrix to obtain k

number of principal components with each component representing a new transformed

axis that is a linear combination of original features. Moreover, the principal compo-

nents are ranked by how much variation they encode, hence higher ranked components

represent more prominent and less entangled directions.

After acquiring the principal components, we can manipulate a randomly gener-

ated latent vector or the encoding of a shape by directly applying a component as a

style direction vector to steer the generation and enhance or remove the target attribute

encoded by the component. This transformation is formulated as follows

p
′
= p+ (α× t× PCi), (3.4)

such that α denotes the step size, t denotes the number of steps, and PCi is the ith

principal component (direction) used. Once the new latent vector p
′
is computed, it

can be used as input to DIT to generate a mesh with the desired attributes. We note

that the attributes encoded by each principal component is determined upon manual

visual inspection.

3.4. Supervised Manipulation with SVMs

The ShapeNet dataset does not only consist of shapes but also include metadata

such as text descriptions and sparse labels for 3D models. We leverage this metadata

to create binary labeled datasets that consists of learned latent vectors for each shape

and their corresponding value for the target attribute (e.g. 0 or 1 for “sports car”).

Inspired by InterfaceGAN [51], we assume that for any binary attribute, we can find

a hyperplane in latent space that separates positively labeled shape encodings from

negatively labeled ones. Our manipulation method is as follows: Assume we have a

attribute scoring function fS : p → S, where S ⊆ Rm represents the semantic space

with m attributes and p represents the encoded shape vectors learned by DIT.
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We can bridge the latent space p and the semantic space S with s = fS(p),

where s and p denote the attribute scores and the sampled latent code respectively.

Assuming S changes continuously, we can train a Support Vector Machine (SVM)

on latent vectors and corresponding binary labels, and use the normal vector to the

separation hyperplane to enhance or diminish the target attribute. More formally,

assume we found a separation hyperplane that has a unit normal vector n ∈ Rd. Then,

we can formulate the distance between a sample latent vector p and this hyperplane

as follows

d(n, p) = nTp, (3.5)

where the distance may be negative depending on which side of the hyperplane p lies.

We note that when p is near the separation hyperplane and is steered toward or away

from the hyperplane, both the distance and the semantic evaluation vary accordingly.

In practice, we perform this control / manipulation with:

p
′
= p+ (α× t× nT ), (3.6)

where α is the step size, t is the number of steps, and nT is the unit normal vector to the

hyperplane. p
′
can be used as input to DIT to generate shapes that are manipulated in

the target semantic direction. In our experiments, we train five linear SVMs on various

attributes where sufficient number of labels are available within the metadata: “sports

car”, “jeep” for cars, “cantilever” for chairs and “L shaped” for sofas.

3.5. Single-View Reconstruction with Multi-Modal and Positional Cues

In this section, we propose our multi-module Single-View Reconstruction frame-

work: 3D-LatentMapper. Before describing our framework, which is trained in two

stages, we first describe our dataset generation process, as well as the preprocessing

steps to extract features from pre-trained ViT and CLIP models. Finally, we describe

our framework, and training procedure, as well as our real-to-synthetic image transla-

tion module in detail.
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3.5.1. Dataset Generation

We train our proposed SVR network using sets of matching synthetic images and

encoded 3D shapes for each shape category. Based on the size of the ShapeNetV2 cat-

egories, intra-category diversity of shapes and availability of real-world image datasets,

we choose to use car and airplane categories and create synthetic datasets for these

categories as follows. We first encode each 3D shape into DIT’s latent space by initial-

izing a latent vector and optimizing it via back-propagation. To this end, we randomly

sample 10, 000 3D coordinates from a unit sphere and forward propagate the sampled

coordinates through the trained DIT model to acquire their corresponding predicted

SDF values. We then compute the L1 loss between the ground truth and predicted SDF

values of the query coordinates, and optimize the latent vector via back-propagation

using the Adam optimizer. After converging to an optimized latent vector, we use the

latent vector to compute the SDF values of randomly sampled coordinates and acquire

its corresponding mesh via ray-marching of SDF values. We save the latent vectors

(encoded 3D shapes) along with the meshes for quantitative evaluation purposes. In

order to train a view-agnostic SVR model, we render N=9 views of each generated

mesh from a fixed camera view by rotating each mesh M by 0, 30, 60, 90, 120, 150,

180, 210 and 240 degrees around the y-axis. Our reasoning in rendering generated

meshes instead of ground truth meshes is generated meshes are better representatives

of of DIT’s learned latent space and are easier to learn from.

In addition to synthetic image datasets, we use two publicly available car and

airplane image datasets to be used for real-to-synthetic image translation as described

in Section 3.5.3: the Car Connection Dataset, which consists of 66,079 car images,

and the FGVC-Aircraft dataset, which consists of 10,200 airplane images. While the

FGVC-Aircraft dataset is a manually labeled dataset that does not require additional

preprocessing, the Car Connection Dataset is automatically scraped from various web-

sites and includes partial car images and detail views such as the car interior or zoomed-

in interior and exterior detail images. As these images lead to non-optimal training

results, we seek to filter them out.
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In order to filter faulty/irrelevant images, we use a set of engineered text tem-

plates that describes the target category (e.g. “Photo of a car”) and compute the

average cosine distance between the CLIP embeddings of each image and the set of

text templates. A full list of the text templates used can be found in Appendix B.1.

This process is formulated as follows

DCLIP =

∑N
j=1 DCLIP(I, Tj)

N
, (3.7)

where I is an image from the dataset to be filtered, Tj is a text description of the

target shape category embedded in a text template from a list of N templates. Once

the average CLIP distance of each image is computed, we use the mean (µ) and the

standard deviation (σ) of the computed distances to set a threshold such that images

that yield distances that are larger than the threshold are filtered out. The filtering

process outputs a binary label CI :

CI =

0, if DCLIP(I) > µ+ 2 ∗ σ.

1, otherwise,

(3.8)

such that images with a distance score of more than two standard deviations from the

mean are assigned a label of 0, and 1 vice versa.

3.5.2. Single-View Reconstruction

Next, we propose a novel SVR network architecture that leverages ViT and CLIP

to map single-view images to the learned latent space of DIT. Our motivation is as

follows: DeepSDF and DIT learn SDF functions and do not generate meshes. Instead,

they rely on aggressive point sampling, SDF value retrieval and ray marching to gen-

erate a mesh. This mesh generation process is not only time-consuming (90 seconds

per generation) but also non-differentiable, meaning we cannot optimize the generated

shapes directly. In our work, we aim to overcome this issue by directly predicting the

latent code that corresponds to the input image without generating a mesh. Addition-

ally, the predicted latent vector can be directly manipulated with the unsupervised and

supervised manipulation methods proposed in Section 3.3 and Section 3.4 respectively.



17

Given a set of 3D shapes (m0,m1, ...,mN) and a DIT model G trained on a target

shape category, let ci ∈ Rd denote a d-dimensional latent vector that corresponds to

the ith 3D shape such that 0 ≤ i ≤ N . Our goal is to map a single-view image Ii to a

latent vector ci, such that concatenating ci with sampled 3D coordinates and feeding

it into DIT and sub-sequently ray-marching the predicted SDF values reconstructs the

corresponding 3D shape. To achieve this, we propose a two-stage mapping network

architecture, which we denote as 3D-LatentMapper, and leverage ViT and CLIP as

dense feature descriptors. We use CLIP and ViT instead of popular dense feature

descriptors such as ResNet trained on large datasets for two main reasons: (i) CLIP

has been shown to provide relatively pose invariant embeddings, which are crucial for

view-agnostic 3D reconstruction from images, a notoriously difficult task; (ii) The ViT

architecture provides a rich latent space with positional information and has been show

to be more robust to variations and less biased to textures and lighting. This provides a

significant opportunity to use ViT as a dense feature descriptor. As stated above, train-

ing 3D-LatentMapper requires preprocessing images to extract dense features followed

by a two-stage training process.

For preprocessing, we use a pretrained CLIP model’s image encoder to extract

512-dimensional embeddings of the input images: CLIP (I) = zCLIP such that zCLIP ∈

R512. Additionally, we use a pre-trained ViT model and leverage the findings of pre-

vious work to extract dense features from images by forward propagating the input

image Ii through ViT. Unlike CNN-based models, where earlier layers represent coarse

features such as edges or local textures, and deeper layers capture higher level concepts,

it has been shown [48] that ViTs feature a different type of representation hierarchy.

The latent spaces of the shallow layers mainly capture the position of the image patch,

while this position bias is reduced in deeper layers in favor of semantic features.

As described in Section 3.2, ViT represents each image as a collection of n patches,

where each image patch pi is directly associated with its own query, key, value, and

token in each layer l: {qli, kl
i, v

l
i, t

l
i}.
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CLIP zCLIP

Input Images

Key Descriptors

Clustering zViT

Figure 3.3. An overview of the preprocessing pipeline: each image is fed into CLIP’s

image encoder to extract image embeddings and into ViT to extract key descriptors

from all layers. The extracted key descriptors from N = 100 images are then

clustered to assign descriptor labels and create dense descriptors.

Leveraging the findings of previous work on ViT’s latent spaces [48], we extract

the key values kl
i across all layers and all images to use as dense ViT descriptors,

as they have been shown to be less sensitive to background noise in images. As the

extracted keys are across multiple layers, it is not possible to train a model directly

on the descriptors due to memory constraints. To overcome this issue: (i) we extract

all key descriptors from N = 500 randomly sampled synthetic images and additionally

subsample 20% of all descriptors; (ii) we adopt a bag-of-descriptors approach and

cluster the descriptors using the K-means algorithms with the number of clusters set

to K = 20. We note that clustering the descriptors of an image Ii yields a dense

feature vector zV iT such that zV iT ∈ R4235. An overview of our preprocessing pipeline

is shown in Figure 3.3. After extracting descriptors from synthetic images, we train

a three-stage, multi-module framework to map the descriptors of each image to the

latent space of DIT. A diagram of our proposed framework is shown in Figure 3.4 and

the architecture schemes of the two modules are provided in Appendix A.1 and A.2.
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zCLIP

zViT

Autoencoder

zI
ViT

Mapper c

Figure 3.4. An overview of our framework: (i) an autoencoder is trained to compress

and reconstruct ViT descriptors. Once trained, the autoencoder’s weights are frozen

and the model is used to extract dense features from the bottleneck layer. (ii)

Compressed ViT descriptors and CLIP embeddings are concatenated and used as

input to a mapping module that maps the combined dense features to the latent

space of DIT.

3D-LatentMapper consists of an autoencoder with feed-forward layers and a feed-

forward network. The autoencoder’s encoder and decoder each consist of a single hid-

den layer and is trained on extracted ViT features zV iT for 100 epochs. By training an

autoencoder, we seek to further compress the dense ViT features to a 512-dimensional

space such that, after the autoencoder is trained, we freeze the model weights and

use it to extract latent vectors from the autoencoder’s bottleneck. We denote these

latent vectors as z̄V iT and concatenate them CLIP embeddings to create a combined

descriptor z ∈ R1024. Finally, we use the combined dense feature descriptors as input

and corresponding DIT latent vectors c as output into a feed-forward network with

two hidden layers with hyperbolic tangent activations. We train this model using an

L1 loss and the Adam optimizer for 1000 epochs. Once trained, our proposed model

learns a mapping z → c, such that the predicted latent vector can be directly fed into

DIT to generate a mesh or can be manipulated using our proposed unsupervised and

supervised manipulation methods.
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3.5.3. Real-to-Synthetic Image Translation

While our trained SVR model is highly effective at reconstructing 3D shapes from

single-view synthetic images, a real-word use case would require using real images as

input. Hence, we propose an additional module to convert real images to synthetic

images, such that the translated images can be used as input to our 3D-LatentMapper

framework. To this end, we use an existing bidirectional image translation framework,

CycleGAN [6], which consists of two generators and two discriminators that are trained

simultaneously.

More specifically, CycleGAN learns a bidirectional mapping between two un-

aligned image datasets of images, X and Y , using the generators G : X → Y and

F : Y → X. The two generators are trained jointly with discriminators Dx, Dy that

encourage the generation of realistic images in the corresponding domain, with a cycle

consistency loss F (G(x)) ≈ x,G(F (y)) ≈ y for x ∈ X, y ∈ Y in addition to the GAN

losses of G and F . The cyclic loss ensures that translated images of each domain can be

translated back into their original domain without a significant loss. For a schematic

representation of CycleGAN, see Figure 3.5. The composite loss of CycleGAN is for-

mulated as

LCycleGAN (G,F,Dx, Dy) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ λcycle Lcycle (G,F ),

(3.9)

where Lcycle (G,F ) is the cyclic loss and is given as

Lcyc (G,F ) = Ex∼pdata (x) [∥F (G(x))− x∥1]

+ Ey∼pdata (y) [∥G(F (y))− y∥1] ,
(3.10)

such that cyclic loss enforces a realistic bi-directional mapping. In practice, we use

CycleGAN to solely map real car images to synthetic images to be used as input to

our proposed SVR model.
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Figure 3.5. An overview of the CycleGAN architecture [6]: The model consists of two

generators G(X) and F (Y ), and two discriminators DY and DX . DY and DX

encourages G and F to translate input samples from their respective domains to

samples that are indistinguishable from their respective target domains.

3.6. One-Shot Segmentation

An important benefit of generating implicit dense correspondence maps is that it

enables part co-segmentation on a category of 3D shapes such that shapes belonging

to a specific category such as cars can be simultaneously segmented into semantically-

consistent parts. Achieving consistent co-segmentation, in return, can enable part-

based manipulations (i.e changing the size of the wheels of a car without changing

irrelevant attributes). The intuition behind this is as follows: DIT learns an average

category template via training and generates a dense correspondence map that en-

codes where each point of the generate shape correspond to in the learned template.

Hence, surface points across different encoded shapes are said to correspond to the

same semantic part if they have the same RGB value. In our work, we leverage this

observation for one-shot segmentation. More specifically, we start by creating a 3D

annotation map of a single randomly selected generated mesh in Blender, a popular

3D software, by selecting and assigning a color to generic parts such as doors, wheels,

hood, and windows. Next, we unwrap both the original and annotated meshes via

spherical projection to create 2D geometry images that are aligned with each other.
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Figure 3.6. From left to right: a sample car mesh with projected correspondence heat

map, its corresponding raw geometry image and annotated geometry image with

discreet labels.

A sample mesh with projected correspondence heat map, and its corresponding

unwrapped geometry image and annotations are shown in Figure 3.6.

We use the unwrapped geometry image and the corresponding segmentation map

to map each RGB value to a discreet label and hash this mapping. To segment unseen

shapes, we use the saved mapping to map RGB values to discrete labels: f(r, g, b) = d

where (r, g, b) denote the RGB value of a given generated mesh vertex and d denotes

the assigned discreet label. In case of unseen RGB values (due to the varying number

of faces and vertices), we identify the closest labeled mesh vertex and assign its label.

If the vertex has multiple labeled neighbors, we use the rule of consensus to assign

labels.
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4. EXPERIMENTS

In this section, we start by describing our dataset, experimental setup and evalu-

ation metrics. We then present the experimental results of the proposed unsupervised

and supervised manipulation methods, SVR framework and one-shot segmentation

method. We evaluate our results based on reconstruction fidelity and manipulation

quality. Furthermore, we compare our SVR framework to two state-of-the-art methods

- AtlasNet and IM-NET - and show that our method achieves higher quality recon-

structions without compromising from speed.

4.1. Datasets

For the quantitative comparisons, we use the car, airplane and chair categories of

the ShapeNetV2 dataset [2], consisting of 3509, 4045 and 3500 shapes respectively. We

choose these three categories as they contain sufficiently structurally distinct shapes

and demonstrate the range of our method. For Real-to-Synthetic image conversion,

we use two publicly available datasets - the Car Connection Dataset, which consists of

66,079 car images, and the FGVC-Aircraft dataset, which consists of 10,200 airplane

images. While the FGVC-Aircraft dataset is a manually labeled dataset that does not

require additional preprocessing, the Car Connection Dataset is automatically scraped

from various websites and includes partial car images and detail views (e.g. interior,

texture details). As described in Section 3.5, we use CLIP to filter the dataset and

create a dataset of 41,122 car images.

4.2. Evaluation Metrics

For manipulation experiments, we perform qualitative evaluation as it is not

possible to compare our manipulation methods to previous work. For SVR tasks, we

compare the generated shapes to ground truth shapes using Chamfer distance (CD)

and Earth Mover’s Distance (EMD) metrics.
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CD and EMD metrics are computed by sampling 5000 points from the generated

and ground truth shapes, matching the nearest points across the sets of points and

computing their sum of Euclidean and Manhattan distances respectively. In addition

to CD and EMD, we use the Light Field Distance (LFD) [52] as a visual similarity

metric. To compute LFD, the generated and ground truth shapes are rendered from

various camera angles. The rendered images are then encoded using Zernike moments

and Fourier descriptors to compute similarity. For reconstruction from single-view real

images, we perform qualitative and quantitative evaluation and compare our method

to state-of-the-art SVR methods. Finally, we report the average inference time of ours

and competing methods as real-time manipulation and reconstruction is critical for

interactive applications, such as shape exploration and design.

4.3. Experimental Setup

For all experiments, we train generative, manipulation and reconstruction models

on each shape category separately. We use ShapeNetV2 and we use create training,

validation and test sets with a split ratio of 80-10-10% for each shape category. We use

the official implementation of Deep Implicit Templates and train models from scratch

for the “Car”, “Airplane”, “Chair” and “Sofa” categories. For DIT training, we create

an improved preprocessing pipeline to eliminate non-watertight meshes, implement a

new point sampling strategy to increasingly aggressive sampling near the surface and

set the latent vector size the 512 and keep the rest of hyperparameters the same. To

encode ground truth 3D meshes into the latent space of DIT, we use a fixed 500-step

optimization process and use the Adam optimizer with the default hyperparameters.

For manipulation experiments, we use the Scikit-Learn implementations of PCA

and SVM to find unsupervised and supervised directions within the latent space of

DIT. We perform PCA and train linear SVM models on the training sets and use

the found directions to manipulate encoded test shapes (latent vectors), and use the

validation set to select the best SVM model. We set the manipulation step size α to

0.1 for PCA experiments and to 0.02 for SVM experiments.
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To extract CLIP features, we use the official implementation of CLIP [4] and

the pre-trained RN50x64 model, which uses ResNet [53] to extract dense features and

train the image encoder module. Similarly, we use the official implementation of Dino-

ViT [48] to extract key descriptors from input images. Due to memory constraints, we

use Scikit-Learn’s Mini Batch K-means implementation to cluster the extracted key

descriptors. Furthermore, we apply random zoom-in and zoom-out transformations to

all images to improve the generalization capabilities of our method to real images. For

the autoencoder module of our SVR framework, we use L2 loss and the Adam optimizer

with default hyperparameters and train the model for 100 epochs for each category.

For the mapper module of our SVR framework, we use L1 loss and the Adam optimizer

with default hyperparameters and train the model for 1000 epochs with early stopping

enabled after 5 epochs to avoid overfitting. To map real images to synthetic images and

vice versa, we train a bidirectional image-to-image translation model separately for car

and airplane shape categories using the official implementation of CycleGAN [6]. Each

model is trained on unaligned pairs of real images of the target category and rendered

images of encoded 3D shapes. We train each CycleGAN model for 500 epochs with

batch size of 8, using the default hyperparameters.

For comparisons with other 3D generation and SVR methods, we use the official

Pytorch implementations of AtlasNet and IM-NET with the default hyperparameters.

Additional details of single-view reconstruction experiments with AtlasNet and IM-

NET are provided in Appendix A.3. We run all experiments, including model training

and inference on a single NVIDIA TitanRX GPU.
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Figure 4.1. From top to bottom: top 5 principal components encoding length, roof

height, width, roundness and design era applied to a pair of car meshes. The middle

image of each row denotes the original, left and right images denote the manipulations

applied in negative and positive directions with varying number of steps.
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Figure 4.2. From top to bottom: top 4 principal components applied to a pair of test

sofa meshes. For each row, the middle image denotes the original, left and right

images denote the manipulations applied in negative and positive directions with

increasing number of steps with strength parameter α = 0.1. From top to bottom:

components encode width, L-shaped, leg/cushion height, and backrest height

respectively.
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4.4. Unsupervised Manipulation

We start by applying PCA on the encoded shape vectors of a set training shapes

and retrain the 10 highest ranking principal components. Next, we test the generaliza-

tion capability of the found components by applying them in the negative and positive

directions with varying number of steps with a fixed strength parameter α as described

in Section 3.3. We show the manipulation results for the first 5 components on two

random and unseen encoded car meshes in Figure 4.1. As can be seen in the figure,

our method is capable of performing consistent and high quality edits without creating

artifacts. We note that while the manipulation results indicate that the attributes en-

coded by each principal component are not completely disentangled (affecting multiple

attributes), the component succeed in encoding important directions such as “length”,

“width”, “roundness” and prominent subcategories (i.e. SUV type cars and classic cars

from the 50s and 60s are common within the ShapeNetV2 Car category). In addition to

cars, we perform the same experiment on the sofa category ShapeNetV2, a significantly

less diverse category compared to cars, and present the results in 4.2. Similar to the

first experiment, we show the manipulation results for the first 5 components on two

random and unseen encoded sofas and interpret the components as width, L-shaped,

leg/cushion height, and backrest height directions. We note that, unlike the car, which

is more diverse, the shapes of the sofa category can significantly deviate from the av-

erage category shape template and feature outliers such as L-shaped sofas, daybeds

and love seats. Furthemore, our experiments show that pushing latent vectors too far

along the target direction causes unexpected changes, such as the over-application of

the width direction transforming the input shapes into semi- U-shaped sofas, a very

rare sub-category within the ShapeNetV2 dataset.

4.5. Supervised Manipulation

Next, we train linear SVMs using both manually and automatically (using ShapeNet

metadata) labeled subsets of encoded shape vectors learned through training by DIT

and their corresponding binary labels (i.e. 1 or 0 for “sports car”).
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However, we note that the metadata of ShapeNet is automatically scraped from

3D model captions and often inadequate or inaccurate. Due to lack of high-quality

metadata, we train 4 SVM models for the binary attributes “sports car”, “jeep car”,

“cantilever chair”, and “L shaped sofa”. Furthermore, we note that all SVM models are

trained with less than 50 positive samples. To perform supervised manipulations, we

apply the normal vectors to separation hyperplanes of trained SVMs as manipulation

directions and move the encoded shape vectors along the normal vectors. We present

the results of the supervised manipulation experiments in Figure 4.3.

Figure 4.3. From top to bottom: “jeep”, “race car”, “cantilever chair”, “L-shaped

sofa” manipulations. For each row, the middle image denotes the original, left and

right images denote the manipulations applied in negative and positive directions

with increasing number of steps with strength parameter α = 0.02.

Despite using tiny datasets to train the SVM models, Figure 4.3 shows that

our method can perform accurate and highly complex manipulations without creating

significant artifacts. For example, the Jeep manipulation changes not only the overall

shape of the car but introduces more subtle changes that are specific to the target

manipulation, such as increasing car tire size and adding headlights and bumpers to

the shape. Similarly, moving the encoded shape along the negative direction has the

opposite effect, such as decreasing the car height and roof height.
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On the other hand, manipulations such as cantilever chair, while successfully

achieving the target edit, creates artifacts. We believe this is due to the chair category’s

lack of a common shape template as the height and width of chairs vary significantly

within ShapeNet.

Original Sample 1 Sample 2 Sample 3

Figure 4.4. One-shot segmentation using corresponding heat maps. From top left

clockwise: Original mesh, annotated original mesh, segmented mesh samples.

4.6. One-Shot Segmentation

Next, we perform one-shot segmentation by annotating the generated correspon-

dence heat map of a single shape and applying the continuous-to-discreet mapping

described in Section 3.6 to new shapes. For this experiment, we randomly select a

generated car mesh and unwrap its correspondence heat map and assign discreet labels

to 6 semantic regions: rear window, front window, side windows, bumpers, wheels and

body. We then used to generated continuous-to-discreet mapping to segment unseen

cars and present the results in Figure 4.4. As shown in Figure 4.4, our one-shot seg-

mentation method can be successfully applied to generate 3D segmentation maps of

unseen shapes. However, we note that our method requires a one-to-one part map-

ping constraint such that each part to be segmented needs to exist across all shapes

within the category. For example, the bottom right corner of Figure 4.4 shows that

shapes that are drastically different from the average shape, such as a sports car with

a convertible top, might lead to partial segmentation failures.
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We note that since generative models synthesize novel samples, we cannot quan-

titatively evaluate the segmentation outputs of generated meshes as there is no ground-

truth data available. Furthermore, we note that our method is limited to shape cat-

egories with a prominent common shape template, such that samples of the category

do not deviate too much from the template and have equal number of parts. Hence,

our method is more suitable to categories such as cars and airplanes and less suitable

to categories such as chairs and handbags.

4.7. Single-View Reconstruction

We evaluate our SVR model’s performance on single-view reconstruction tasks

and present both quantitative and qualitative results. We compare our method to two

state-of-the-art 3D shape generation methods that use triangular mesh and implicit

representation formats respectively: AtlasNet [19] (with 1-Sphere and 25-Squares tem-

plates) and IM-NET [20]. Our results show that our method achieves significantly

better results both in terms of reconstruction quality and fidelity without compromis-

ing from speed. We note that we omit comparing our method to voxel-based SVR

methods, which suffer from much lower visual fidelity due to resolution constraints

inherent to voxel-based generative methods. Finally, we show that our method enables

reconstruction from real images without any preprocessing.

Figure 4.5. Qualitative Reconstruction Results on Cars: our method can successfully

reconstruct 3D shapes from a variety of views.
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Figure 4.6. Qualitative Reconstruction Results on Planes: our method can

successfully reconstruct 3D shapes from a variety of views.

We start with a qualitative results of single-view reconstruction and present re-

constructions samples of our method for cars and airplanes in Figure 4.5 and Figure

4.6 respectively. As shown in Figure 4.5, our method not only reconstructs cars with

high fidelity but also can infer unseen features such how the front of a sports car should

look like. Similarly, a seemingly uninformative input image that depicts truck’s trunk

is sufficient to reconstruct a truck. We also include cases where training set includes

no similar samples, such as the Tortoise Beetle car depicted on the far left. In this

case, we see that our method reconstructs a similar car that is able to capture the

high-level semantics of the input image such as the overall size of the car, roundness of

the roof and hood and to a certain extent the profile curves around the wheels. While

the results on planes produce slightly more artifacts, Figure 4.6 shows that our method

can successfully reconstruct a variety of airplanes from different views. Note how our

method is able to capture fine details such as the number of the engines and artifacts

present in the input image.

Furthermore, we present a comparative qualitative analysis AtlasNet (with 1-

Sphere and 25-Squares templates) and IM-NET using fixed-angle images and present

the results in Figure 4.7. As shown in Figure 4.7, our method’s performance signifi-

cantly surpasses both AtlasNet 1-Sphere and 25-Squares methods and produces finer

and accurate surface details compared to IM-NET. We note that while IM-NET’s per-

formance is close to our method in terms of capturing the overall shape, it produces

more artifacts. Moreover, IM-NET is not view-agnostic and is trained on fixed-view

synthetic images.
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Figure 4.7. Qualitative Reconstruction Results: note that our method achieves the

highest-fidelity 3D reconstruction and runs in real-time. Input images for SVR are

shown in top row.

We also notice that even when our method cannot accurately reconstruct details

such as the prominent front bumper of the car in the first input image, it successfully

captures the overall design and style of the car such as the characteristic sharp profile

curves. Similarly, we see that our method can successfully reconstruct fine details

competitor methods cannot capture, such as the visible front landing gear seen in the

commercial airplane image input. Interestingly, we see in the third sample of a fighter

plane that our method introduces torpedoes to the reconstruction, a common feature

within the fighter plane sub-category but not present in the input image. Hence, we

deduce that our trained 3D-LatentMapper acts as a conceptual search engine and can

map the input image to the closest/most relevant point within the latent space. In

future work, we aim study how text and position supervised features are mapped to

3D dense features and how we can leverage them to train 3D generative models.
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In order to validate our qualitative results, we next perform a quantitative analysis

to measure the reconstruction fidelity all our method and all competitor methods. To

this end, we use the ground-truth meshes that correspond to the input synthetic images

and compute the Earth Mover’s Distance(EMD) and the Chamfer Distance between

each reconstructed shape and the ground truth shape, and report the average Chamfer’s

Distance and EMD values in Table 4.1.

Table 4.1. Quantitative results on Single View Reconstruction. Note that the CD

values are multiplied by 103 and EMD are multiplied by 102.

SVR error

Chamfer ↓ EM Dist. ↓

Car Airplane Car Airplane

AtlasNet-Sph 92.48 46.17 21.03 14.32

AtlasNet-25 82.34 38.45 18.23 13.29

IM-Net 3.539 4.166 3.24 3.04

Ours 2.438 3.144 2.62 2.16

Results in Table 4.1 show that our method achieves the best CD and EMD on the

car and airplane categories. We note that this is especially significant as both AtlasNet

and IM-NET models are trained on fixed-view images for a fair comparison whereas

our method is view-agnostic and trained on multi-view images. Given that airplanes

often have many sharp and spiky features, view-agnostic SVR is a more difficult task

for the plane category. These results also demonstrate that our method is qualitatively

and quantitatively superior to competitor methods. In addition to quantitative and

qualitative analysis, we measure and report the run times of our SVR framework and

all competitor methods, and present the results in Table 4.3. For a fair comparison,

we take both inference time to predict the latent vector and the time required for

ray-marching to construct a mesh into account.
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Table 4.2. Comparison of 3D generative methods by the capabilities and inference

time. We include quantitative and qualitative comparisons with AtlasNet and

IM-NET methods in our experiments.

Ours AtlasNet IM-NET

Real-time generation No Yes No

Real-time manipulation Yes Yes No

High-quality surface Yes No Yes

High-quality reconstruction Yes No Yes

View-agnostic reconstruction Yes No No

As shown in Table 4.3, our method is significantly faster than IM-NET while

achieving better reconstruction results. While AtlasNet is much faster than our method

due to directly outputting meshes, we note that our method is vastly superior to

AtlasNet’s performance in terms of reconstruction fidelity and quality.

Table 4.3. Comparison of inference time of our method and all competitor methods.

Inference Time (s)

AtlasNet-Sph 0.078

AtlasNet-25 0.112

IM-Net 13.280

Ours 8.030

Finally, we perform SVR using unseen real images, a notoriously difficult task.

We note that our real image datasets are solely filtered in order to exclude irrelevant

images and are not processed in any other way (e.g. background removal). This process

is described in Section 3.5.3 in detail. For this experiment, we use our Real-to-Synthetic

image translation models and translate real images to synthetic images. We then feed

the synthetic image into our 3D-LatentMapper framework to predict the corresponding

latent vector and reconstruct a mesh via ray-marching. We present the input images,

predicted synthetic versions and reconstruction results of sample cars in Figure 4.8.
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Figure 4.8. Reconstruction from real images: we first perform real-to-synthetic image

translation and use the predicted synthetic images as input to our 3D-LatentMapper

framework.

As shown in Figure 4.8, while our real-to-synthetic image translation model does

not produce plausible synthetic images, it successfully learns to remove background

clutter and change the color scale of the target object (cars) to resemble that of our syn-

thetic image dataset. Furthermore, despite the shortcomings of the image translation

module, we find that our 3D-LatentFramework can still capture important, definitive

attributes of the input images. Notice how in the first sample, the reconstructed car

resembles both a Sedan and Hatchback car. Similarly, the reconstruction of the sec-

ond sample, which is an Aston Martin, features characteristic Aston Martin attributes

such as the front hood curves. However, the reconstruction of the fourth sample is not

nearly as successful and does not feature any of the prominent attributes in the input

image. We note that this is partly due to reconstructing from unseen views and partly

due to rather low-quality image translation.



37

5. CONCLUSION AND FUTURE WORK

5.1. CONCLUSION

We propose a unified 3D shape reconstruction and manipulation framework that

directly operates within the learned latent space of a 3D generative model, DIT. While

previous work 3D shape manipulation is limited to shape interpolation, we show that

our method can find interesting, meaningful and disentangled directions with the latent

space. Furthermore, we propose a novel Single View Reconstruction framework that is

view-agnostic and can effectively map both synthetic and real images into the latent

space of DIT in real-time while outperforming state-of-the-art models both qualitatively

and quantitatively. To the best of our knowledge, our method is the first that leverages

deep positional and multi-modal features for Single-View Reconstruction. Our key

takeaways are as follows:

• As in image generative models, it is possible to find accurate and disentangled

directions within the latent space of a 3D generative model. However, the disen-

tanglement of the found directions largely depends on the diversity of the dataset.

• It is possible to find accurate supervised directions in a few-shot manner, indi-

cating that most features are linearly separable within the latent space of DIT.

• CLIP is an effective tool to extract pose-invariant features and can be successfully

used to train view-agnostic SVR models. Furthermore, key descriptors extracted

from the intermediate layers of ViT act as highly effective dense descriptors.

• All of the proposed methods are limited by the capabilities and expressiveness of

the base 3D generative model’s latent space. Hence, we believe a deeper network

with a richer latent space would lead to better results.
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5.2. FUTURE WORK

While the results of our experiments are very promising, we note that the auto-

decoder architecture of DIT makes it difficult to learn continuous data distributions and

generate novel, realistic shapes since they seek to learn a shape encoding latent vector

for each shape. Hence, we believe a 3D generative network with a GAN architecture

could yield significantly better results.

Secondly, our current work is completely dependent on the information encoded

in the intermediate latent space of models. Given that most implicit representation

models feature shallow architectures that consist of 1 or 2 hidden layers, we believe

we could strongly benefit from exploring 3D generative models with a richer latent

space. Furthermore, we note that constructing a mesh via ray-marching takes around

8 seconds on a single GPU, making direct optimization of meshes very time-consuming.

Hence, we propose an alternative method for faster and more fine-grained manipulation

of meshes using DIT: extending DIT with a differentiable ray-marching method that

would enable directly mapping a set of SDF values to a mesh in a differentiable manner.

Finally, our experiments are limited to the ShapeNet dataset, which consists of rigid

objects. In the future, we would like to extend our method to other rigid 3D datasets,

as well as morphable 3D datasets such as human faces or human bodies.
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APPENDIX A: SVR FRAMEWORK

A.1. Deep ViT Autoencoder Architecture

We use an autoencoder architecture with feed forward layers to further compress

extracted ViT descriptors. Our proposed network consists of 2 dense layers followed

by ReLU activations. Once the model is trained, we use the frozen model and extract

dense features from the bottleneck (output of the encoder).

Figure A.1. A diagram of our ViT autonetwork to compress dense descriptors: the

model consists of 2 dense layers followed by ReLU activations.
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A.2. Latent Mapper Architecture

We employ a dense neural network to map dense embeddings extracted from

ViT and CLIP to the latent space of DIT. Our proposed network consists of 3 dense

layers followed by hyberbolic tangent activations. We note that we use the hyberbolic

tangent function instead of more ReLU and such, since the learned latent space of DIT

is observed to have a Gaussian distribution with a mean of 0.

A.3. Single View Reconstruction Experiment

For SVR with AtlasNet [19] and IM-NET [20], we used the official implementa-

tions and the renderings of ShapeNet data provided by 3D-R2N2 [35] with a 90-10%

split for training and testing. For AtlasNet experiments, we trained image encoders on

car and airplane categories and used the decoder from the respective autoencoder with

fixed parameters to compute a Chamfer distance loss between the resulting mesh and

the ground truth mesh corresponding to the input image. For IM-NET experiments, we

trained ResNet encoders on car and airplane categories and used the trained implicit

decoder with fixed parameters to train a mapping network that maps images to the la-

tent space of IM-NET. More specifically, we used grayscale images as input and trained

ResNET encoders to minimize the mean squared loss between the predicted feature

vectors and the ground truth feature vectors encoded by the pre-trained autoencoder.
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Figure A.2. A diagram of our Latent Mapper network for SVR: the model consists of

3 dense layers followed by hyberbolic tangent activations.
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APPENDIX B: REAL-TO-SYNTHETIC IMAGE

TRANSLATION

B.1. Sentence Templates for Prompt Engineering

We leverage CLIP to filter out irrelevant images in our real image datasets. Our

method uses 60 sentence templates to compute the average CLIP distance between

the target category and the content of each image. The list of templates we use for

augmentation can be found in Table B.1.
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Table B.1. List of templates that our method uses for augmentation. The input text

prompt is added to the end of each sentence template.

‘a bad photo of a’ ‘a sculpture of a’

‘a photo of the hard to see’ ‘a low resolution photo of the’

‘a rendering of a’ ‘graffiti of a’

‘a bad photo of the’ ‘a cropped photo of the’

‘a photo of a hard to see’ ‘a bright photo of a’

‘a photo of a clean’ ‘a photo of a dirty’

‘a dark photo of the’ ‘a drawing of a’

‘a photo of my’ ‘the plastic’

‘a photo of the cool’ ‘a close-up photo of a’

‘a painting of the’ ‘a painting of a’

‘a pixelated photo of the’ ‘a sculpture of the’

‘a bright photo of the’ ‘a cropped photo of a’

‘a plastic’ ‘a photo of the dirty’

‘a blurry photo of the’ ‘a photo of the’

‘a good photo of the’ ‘a rendering of the’

‘a doodle of a’ ‘a close-up photo of the’

‘a photo of a’ ‘the in a video game.’

‘a doodle of the’ ‘a low resolution photo of a’

‘the toy’ ‘a rendition of the’

‘a photo of the clean’ ‘a photo of a large’

‘a rendition of a’ ‘a photo of a nice’

‘a photo of a weird’ ‘a blurry photo of a’

‘a sketch of the’ ‘a pixelated photo of a’

‘itap of the’ ‘a good photo of a’

‘a photo of the small’ ‘a photo of the weird’

‘a drawing of the’ ‘a photo of the large’

‘itap of a’ ‘graffiti of the’

‘a photo of a cool’ ‘a photo of a small’

‘a 3d object of the’ ‘a 3d object of a’


