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Karabulut for sharing their knowledge and experiences.

Also, I would like to thank my family and friends for their emotional support.

Without that support I could not have succeeded in completing this thesis.

At last but not in least, I would like to thank all who helped and motivated us

to work on this project.



v

ABSTRACT

SYMPLECTIC GEOMETRY AND HAMILTONIAN

MONTE CARLO METHOD

Hamiltonian Monte Carlo (HMC) method is an application of a non-Euclidean

geometry to an inverse problem. HMC is a probabilistic sampling method with the basis

of Hamiltonian dynamics. One of the main advantages of HMC algorithm is to draw

independent samples from the model space with a higher acceptance rate than other

Markov Chain Monte Carlo (MCMC) methods. In order to understand how higher

acceptance rate is achieved, I have studied HMC in the light of symplectic geometry.

Hamiltonian dynamics is defined on the phase space (cotangent bundle), which has a

natural symplectic structure, i.e. a differential two-form which is non-degenerate and

closed.

Hamiltonian function is defined on the phase space, which corresponds to the sum

of misfit and the square of the generalized momentum. By using the non-degeneracy

property of symplectic form, a vector field can be found in which Hamiltonian function

is invariant along the integral curves of the vector field. The invariance of the Hamil-

tonian function results in high acceptance rate, where we apply accept-reject test to

satisfy detailed-balance property.

In this thesis, we define some basic concepts and theorems in symplectic geometry,

then describe the relation between symplectic geometry and HMC, namely Hamiltonian

dynamics. Lastly, we show an implementation for HMC algorithm to a 2D-tomography

problem and analyze the tune parameters for application of HMC.



vi

ÖZET

SİMPLEKTİK GEOMETRİ VE HAMILTONIAN MONTE

CARLO METODU

Hamilton Monte Carlo (HMC) yöntemi, Öklidyen olmayan bir geometrinin ters-

çözüm problemlerine uygulanmasıdır; Hamilton dinamiğine dayanan olasılıksal bir

örnekleme yöntemidir. HMC algoritmasının temel avantajlarından biri, diğer Monte

Carlo Markov Zinciri yöntemlerine göre daha yüksek bir kabul oranı sahip ve bağımsız

örnekler çizmesidir. Daha yüksek bir kabul oranının nasıl elde edildiğini anlamak için,

simplektik geometri ışığında HMC metodunu inceledim. Hamilton dinamiği, dejenere

olmayan ve kapalı bir diferansiyel 2-forma (simplektik form) sahip olan faz uzayında

(kotanjant demeti) tanımlanır.

Hamilton fonksiyonu, gözlemlenen data ile tahmini data arasındaki fark toplamı-

na ve genelleştirilmiş momentumun karesine karşılık gelir ve faz uzayında tanımlıdır.

Simplektik formun dejenere olmama özelliğini kullanarak, Hamilton fonksiyonunun

vektör alanının integral eğrileri boyunca değişmez olduğu bir vektör alanı bulunabilir.

Hamilton fonksiyonunun değişmezliği, ayrıntılı denge özelliğini sağlamak için kabul-red

testi uyguladığımız yüksek kabul oranı ile sonuçlanır.

Tezimde, önce simplektik geometrideki bazı temel kavramları ve teoremleri tanım-

layacağız, ardından simplektik geometri ile HMC arasındaki ilişkiyi yani Hamilton di-

namiğini anlatacağım. Son olarak, bir 2D tomografi problemi için HMC algoritmasının

uygulanışını göstereceğim ve ayar parametrelerini analiz edeceğim.
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1. INTRODUCTION

Geophysics is mainly based on inverting a non-observable physical property from

an observed data, e.g. velocity structure of the subsurface from the travel time data,

earthquake location from traveltime data, fault position and its properties from earth-

quakes. Backus and Gilbert [1,2] had contributed to the establishment of inverse theory

by combining the instrumental measurements and mathematical formulations. Most

of the physical inversion process do not have a unique solution because of complexity,

high-dimensionality, discontinuity, sparsity in the model; or measurement error in the

observed data. Therefore, instead of trying to find the exact solution of the inverse

problem, it can be easier to understand its characteristics from a distribution. This

distribution can be described comprehensively with the posterior probability density

function (pdf) of model which contains the prior knowledge and the likelihood which

is the misfit between observed and predicted data [3].

Bayes’ theorem describes the posterior probability [4]. Calculating the posterior

via Bayes’ theorem is simple, but it requires sampling from the model space which

means solving the forward relation for each sample. Grid search is also possible, how-

ever it is not practical for a high-dimensional inverse problem. To decrease the compu-

tational cost and time, we need an effective sampling instead of grid search to estimate

the model with less samples [5]. Bayesian inference methods are increasingly preferred

for solving geophysical problems, thanks to the developments of computational era and

effective sampling strategies [6,7]. One can use several various algorithms for sampling

which is derivative-free or not. For example, neighborhood algorithm [8,9] and genetic

algorithm [10] are derivative-free. However, it is not guaranteed to find the optimal

model for global scales.

Hamiltonian Monte Carlo (HMC) algorithm can work well in a global scale, high-

dimensional problem, however it requires calculating derivative [11, 12]. Its efficiency

is more apparent in the case that derivatives can be calculated rapidly. Surely, there
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is no single best optimization algorithm according to the No Free Lunch theorem [13].

If taking derivative of the forward relation is easy, then we can say that HMC can be

used as an effective sampling method [5].

One of the advantages of describing Hamiltonian dynamics using symplectic ge-

ometry is that all of the properties and theorems can be stated geometrically [14].

In view of geometrical perspective, it can be better understood why computational

algorithms work well and how we can improve significantly. The characteristics of

Hamiltonian dynamics is that the problem is solved in a higher dimensional space

(phase space) with additional the generalized momentum p to the generalized position

q. Hence, the problem can be solved in a more abstract, naive and easy way. The phase

space consists of the pair of numbers (q,p). As an example, if the physical phenomena

occur in the three-dimensional space, e.g. wave propagation then the computations

are done in the six-dimensional space. The advantages of transforming the problem to

the phase space are based on several geometric results. Firstly, Hamiltonian value is

invariant in phase space due to the existence of a symmetry in Hamiltonian equations.

Secondly, it is possible to find the Hamiltonian vector field along which Hamiltonian

function is invariant. Furthermore, Liouville theorem states that volumes are also pre-

served along the integral curves of the Hamiltonian vector field. Hence, this abstraction

provides us tools to solve not only mechanical problems but also optimization problems

such as Hamiltonian Monte Carlo method.

In this thesis, we first describe Hamiltonian dynamics by using symplectic ge-

ometry in Section 2.1. We also describe Lagrangian mechanics and use Legendre

transformation to obtain Hamiltonian function and Hamilton’s equations of motion

in Section 2.2. Then, in Chapter 3, we explain how to use Hamiltonian dynamics in a

probabilistic inversion problem. More precisely, we define probabilistic spaces, Markov

chains and state Ergodic theorem which enables us to draw sample from a distribution

and to evaluate the approximate expectations by using samples. The method of Hamil-

tonian Monte Carlo is explained comprehensively in Chapter 4, and then in Chapter 5,

we implement HMC algorithm to tomography problem. Lastly, we explain the use of
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HMC in a tomography problem by considering the associated mathematical spaces.

More precisely, the physical ray-tracing problem considered is a two dimensional-space

representing a subsurface; the dimension of the model space (configuration space) is

the number of grids in the physical space and also the phase space. The tomography

problem using HMC works in all these spaces with different mathematical structures.
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2. HAMILTONIAN DYNAMICS AND SYMPLECTIC

GEOMETRY

Hamiltonian dynamics originated as an advanced and relatively abstract formu-

lation of classical mechanics which describes the motion of a system. It can be shown

that it is totally equivalent to the Newtonian mechanics. The main difference is that

Hamiltonian dynamics uses the energy of the system to describe its motion, whereas

the Newtonian mechanics uses the force. Hamiltonian dynamics introduces a new ge-

ometric perspective on the mechanics of a system by describing the problem in an

extensive space rather that the configuration space of the system, in which a single

point represents a state of the whole system at a specific time. In this thesis, the

terms configuration space, state space and model space will be used as synonymous in

different mathematical contents. The extensive space is called phase space (cotangent

bundle) where the coordinates are generalized position and generalized momentum. In

order to use the Hamiltonian dynamics for a system, it is necessary to find a scalar

function which is constant during the evolution of the system. This function may vary

according to the physical phenomena. For example, Hamilton function is total energy

for classical mechanics, eikonal equation for ray tracing, and canonical distribution for

Hamiltonian Monte Carlo method, as summarized in the next table.

Table 2.1. Hamiltonian for Different Phenomena.

Classical Mechanics
Simple Harmonic

Oscillation
Ray Tracing HMC for Tomography

q(t)
position of the particle at

time t

position of the particle at

time t
position of the ray at time t m: velocity model

p

Dual of q̇
p = ∂K

∂q̇
p = mẋ wavefront normal

p = ∇ψ(q)
p =Mṁ

Constant Fnc. Total Energy Total Energy Eikonal Canonical Dist.

H(q,p) U(q) +K(p)

p2

2m
+ kx2

2
p2 − 1

v2(q,p)
1
2p

TM−1p− logρm(m|d)

Separability

into q and p
YES YES NO YES

Dimension 1D, 2D, or 3D 1D 2D or 3D Number of grids



5

Hamiltonian function is defined on the cotangent bundle of the configuration

space (which is also called phase space). The cotangent bundle can be defined as the

set of all cotangent spaces at all point q in the configuration space (Rn for simplicity).

The definition of the cotangent space can be given as follows:

Definition 2.0.1. For every q ∈ Rn, the set of all dual of the tangent vectors q̇ at

point q, denoted by T ∗
qRn, is called the cotangent space of Rn at q,

T ∗
qRn = {p : TqRn → R| p is a linear transformation}.

In other words, p corresponds to projections of the tangent space. That is all

linear transformations from tangent space to R are projection functions. The elements

of T ∗
qRn can be called dual vector, one-form, or covector. In Hamiltonian dynamics, it

is commonly called generalized momentum.

Definition 2.0.2. Let q ∈ Rn. A tangent vector at q is an ordered n-tuple of real

numbers q̇ = ⟨q̇1, ..., q̇n⟩q such that there exists a smooth parameterized curve

c : R → Rn

c(t) = (q1 + q̇1t, ..., qn + q̇nt),

having the properties that c(0) = q and that

c′(0) = q̇ = ⟨q̇1, ..., q̇n⟩q.

Definition 2.0.3. For every q ∈ Rn, the set of all tangent vectors at q constitutes

a vector space. This vector space is called tangent space to Rn at q and denoted by

TqRn.
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Definition 2.0.4. The cotangent bundle of Rn, denoted by T ∗Rn, is the set of all

ordered pairs of the form (q,p), where q ∈ Rn and p ∈ T ∗
qRn.

T ∗Rn =
⋃

q∈Rn

T ∗
qRn.

It is commonly called phase space.

Definition 2.0.5. The tangent bundle of Rn, denoted by TRn, is the set of all

ordered pairs of the form (q, q̇), where q ∈ Rn and q̇ ∈ TqRn.

TRn =
⋃

q∈Rn

TqRn.

A single point (q,p) in the phase space contains the generalized position q from

the configuration space and the generalized momentum p. The generalized position

q corresponds to the variable of interest in a system, e.g. it represents the position

of the ray path at a specific time in ray tracing problem, while it corresponds to the

model parameters in Hamiltonian Monte Carlo Algorithm. Furthermore, generalized

momentum p can be defined as any covector in the cotangent space of the configuration

space. It does not have to be defined as the multiplication of mass and velocity, that

will be be explained later.

2.1. Hamiltonian Equations via Symplectic Form

Hamiltonian dynamics is the main motivation for symplectic geometry. The

common point of both approaches is the concept of phase space. As it is men-

tioned in the previous section, Hamiltonian function is defined on the phase space,

i.e., H : T ∗Rn → R. Furthermore, phase space is the natural setting of symplectic

geometry, because we can define a differential two-form on the phase space.
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Figure 2.1. The proof of the properties of the HMC method is based on symplectic

geometry.

The importance of the Hamiltonian dynamics (accordingly HMC algorithm) is

based on its relation with the symplectic geometry as illustrated in Figure 2.1. For that

reason, some important definitions about symplectic geometry is going to be given in

this section, and their relation with the Hamiltonian dynamics is going to be explained.

Definition 2.1.1. A symplectic form on a domain D ⊂ T ∗Rn is a smooth differential

two-form ω satisfying the following properties:

• ω is nondegenerate: If v(q,p) ∈ T(q,p)D has the property that ω(v(q,p),w(q,p)) = 0

for all w(q,p) ∈ T(q,p)D, then v(q,p) = 0(q,p).

• ω is closed: dω = 0.
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Since the elements of the phase space T ∗Rn are taken as a form of (q,p), the

standard symplectic form ω is considered as

ω = dpi ∧ dqi = dpi ⊗ dqi − dqi ⊗ dpi, (2.1)

for i ∈ {1, ..., n}. (Note that the Einstein summation convention is implied for i).

Furthermore, the pair (D,ω) is called a symplectic space.

Certainly, these requirements for being a symplectic form have mathematical

and physical meanings. As a consequence of nondegeneracy condition, we have an

isomorphism between tangent bundle TD and the cotangent bundle T ∗D. In other

words, one can always find a vector field XH for any smooth Hamiltonian function H.

This isomorphism is explained in following proposition [15],

Proposition 2.1. Let X (D) be the vector spaces of smooth vector fields on a symplec-

tic space (D,ω), whereD ⊂ T ∗Rn is a domain, and let Λ1(D) be the vector space of one-

forms on D. Then the map Φ : X (D) → Λ1(D) given by Φ(XH) = i(XH)ω = ω(XH , ·)

is a vector space isomorphism.

On the other hand, any vector field is not sufficient to obtain the Hamiltonian

equations of motion geometrically. We need a specific vector field along which the

symplectic structure ω is conserved, namely symplectic vector field XH . Mathemat-

ically, the Lie derivative of ω with respect to XH should be zero, i.e., LXH
ω = 0.

Physically, this means that the laws of physics should be independent of time, so that

the dynamics is constant along the integral curve of XH . This can be achieved by the

closeness property of the symplectic structure ω and by the next proposition which is

used to define the symplectic vector field XH .
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Proposition 2.2. Let XH be a vector field on the symplectic space (T ∗Rn,ω). Then

XH is a symplectic vector field if and only if for each point (q,p) ∈ T ∗Rn, there exists

a domain D ⊂ T ∗Rn containing (q,p) and a smooth function H : D → R such that

i(XH)ω = ω(XH , ·) = −dH on D.

Theorem 2.3. (Liouville Theorem) Symplectic structure ω is preserved along the

symplectic vector field XH ,

LXH
ω = 0. (2.2)

Hence, volume-form ωn in phase space is preserved along the symplectic vector field

XH , i.e.,

LXH
ωn = 0. (2.3)

Lie Derivative (Cartan’s Formula)

The Lie derivative can be expressed by the Cartan’s formula as following,

LXH
ω = i(XH)dω + d(i(XH)ω).

Proof. By Proposition 2.1 and Proposition 2.2,

LXH
ω = i(XH)dω + d(−dH). (2.4)



10

The second term is vanished, since d2 = 0

LXH
ω = i(XH)dω. (2.5)

Evidently, the fact that the Lie derivative is zero depends on the fact that the symplectic

structure is closed, i.e, dω = 0 and on the way to define the symplectic vector field XH .

By using this fact, the Lie derivative of the volume form can be rewritten by product

rule,

LXH
ωn = LXH

ωn−1 ∧ ω + ωn−1 ∧ LXH
ω. (2.6)

The second term is vanished by Equation (2.2). By applying product rule again,

LXH
ωn = LXH

ωn−1 ∧ ω

= LXH
ωn−2 ∧ ω

= LXH
ωn−3 ∧ ω

...

= LXH
ω ∧ ω

= 0.

(2.7)

Liouville Theorem 2.3 is used for computational part; discretized probability

function is approximated as volume times probability function. It provides a great

convenience, since it states that the symplectic form is invariant along the vector field,

i.e., a sufficiently small volume on the vector field is preserved along the integral curves

of the vector field. In other words, it is not necessary to consider the volume during

discretizing the probability function, since the volume is equal for each state.
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By using the definitions and propositions which is stated, we can obtain Hamilto-

nian equations of motion from any smooth Hamiltonian function. Suppose the Hamil-

tonian function H : T ∗Rn → R is given by (q,p) 7→ R, then its differential is

dH =
∂H

∂qi
dqi +

∂H

∂pi
dpi. (2.8)

Firstly, define the symplectic vector field XH by using Proposition 2.2

−dH = ω(XH , ·) = dpi ∧ dqi(XH , ·). (2.9)

By using Equation (2.1),

−dH = dpi(XH)⊗ dqi − dqi(XH)⊗ dpi. (2.10)

Since XH is a vector field on T (T ∗Rn), a vector on XH is taken form of (q̇, ṗ)

−dH = dpi((q̇, ṗ))⊗ dqi − dqi((q̇, ṗ))⊗ dpi

= ṗidq
i − q̇idpi = −∂H

∂qi
dqi − ∂H

∂pi
dpi,

(2.11)

where ω is standard symplectic form. Hence, we obtain the Hamiltonian equation of

motion as follows,

∂H

∂q
= −ṗ

∂H

∂p
= q̇ (2.12)

Obviously, there is a symmetry between q and p. Noether’s theorem states that exis-

tence of a symmetry implies existence of a corresponding invariant of the system [16],

so there is an invariant quantity in the Hamiltonian dynamics. Each invariant reduces

one number of degree of freedom of the system. Hamiltonian H(q,p) is the correspond-

ing invariant of the Hamiltonian dynamics and it makes possible to solve the problem

along the trajectories by fixing momentum, where the Hamiltonian is constant in the
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phase space.

Definition 2.1.2. Let (V1,ω1) and (V2,ω2) be two symplectic spaces, for domains

V1,V2 ⊂ T ∗Rn, and let Φ : V1 → V2 be a diffeomorphism. Then Φ is called a

symplectic diffeomorphism if

Φ∗ω2 = ω1.

We write Φ : (V1,ω1) → (V2,ω2).

Those diffeomorphisms have a great importance as they preserve the symplectic

structure, hence the volume. Darboux’s theorem guarantees that such an isomorphism

Φ in Definition 2.1.2 always exists.

Darboux’s Theorem for the symplectic geometry

Theorem 2.4. Let (T ∗Rn,ω) be a symplectic space. For each (q,p) ∈ T ∗Rn, there

exists a domain D containing (q,p) and a diffeomorphism Φ : D → Φ(D) ⊂ T ∗Rn

such that Φ((q,p)) = (q,p) and onD, Φ∗ω = ω, where ω = dpi∧dqi is the standard

symplectic form on T ∗Rn with coordinate pairs (qi, pi).

More intuitively, the Darboux’s theorem guarantees the existence of the diffeo-

morphism between any two symplectic structures in the phase space, which is a great

convenience for using the standard symplectic form for the phase space.

In order to be more intuitive and less abstract, it is convenient to acquire the

Hamiltonian equations for classical mechanics by using Lagrangian dynamics, since

it is the physical phenomena that everyone is most accustomed. The next section is

written for this reason.
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2.2. Hamiltonian Equations via Lagrangian

The aim of this chapter is to show the equality of Newtonian dynamics and the

Hamiltonian dynamics in such a less abstract way, by changing variables of Newtonian

dynamics to find the Hamiltonian equations.

In Newtonian dynamics, the motion of a particle can be described by a second-

order differential equation,

F (q, q̇, t) = mq̈, (2.13)

where m is mass and q, q̇, and q̈ are the position, velocity, and acceleration of the

particle, respectively. In order to achieve equation of motion for a physical phenomena,

one has to consider a great number of vectors (forces) acting on the particle, i.e.

determining their directions and norms.

Alternatively, it is possible to transform from Newtonian dynamics to Hamil-

tonian dynamics by changing variables. There is an intermediate stage, namely La-

grangian dynamics, during this transition. The configuration space Rn consists of the

points that represent the whole situation of the particles or rigid bodies in Newtonian

dynamics. As time evolves, the position of the rigid bodies or particles changes and the

point q ∈ Rn in the configuration space moves along a curve. The Lagrangian function

L(q, q̇) is defined on TRn, the tangent bundle of the configuration space. Though q

and its time derivative q̇ are functionally dependent, q and q̇ treat as independent of

each other, since q̇ can be any vector in the tangent space of q, TqRn [15].

Theorem 2.5. For position q ∈ Rn, any vector q̇ =
[
q̇1 q̇2 · · · q̇n

]T
can be regarded

as a tangent vector at q.
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Proof. For q = (q1, q2, ..., qn), define a curve c : R → Rn such that

c(t) = (q1 + q̇1t, ..., qn + q̇nt).

Then, it is obvious that c(0) = q and c′(0) = q̇. Hence, q̇ ∈ TqRn.

In classical mechanics, the Lagrangian function is defined as the difference of the

kinetic and the potential energies to get the equation of the motion, because of the fact

that it satisfies the least action principle.

L : TRn → R

L(q, q̇) = K(q̇)− U(q),
(2.14)

where K is the kinetic energy of the system and U is the potential energy of the system.

This simple scalar equation can summarize the dynamics of the entire system.

K =
1

2
mq̇2

U = U(q)

L = K − U =
m

2
q̇2 − U(q)

The goal is to find the position q, which is the solution of the equations of motion,

hence it should satisfy the least action principle, i.e. q should yield a stationary value

of the integral of the Lagrangian over time, namely action, S.

S[q] =

∫ t2

t1

L(q, q̇)dt (2.15)
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How does the least action principle imply the Euler-Lagrange equations?

Suppose that q is a stationary point of S, and that it is parameterized on [t1, t2] ⊂ R

as

q(t; ε) = q(t) + εf(t)

where ε is just a number and f(t) is any arbitrary function which satisfies

f(t1) = f(t2) = 0 (so that it does not change the boundary values). One can easily

recognize that ε = 0 corresponds to stationary path q(t), i.e.

∂S

∂ε

∣∣∣∣
ε=0

= 0

Let’s take derivative of the action S with respect to ε in Equation (2.15),

∂S

∂ε
=

∫ t2

t1

∂L

∂q

dq

dε
+
∂L

∂q̇

dq̇

dε
dt

=

∫ t2

t1

∂L

∂q
f(t) +

∂L

∂q̇
ḟ(t)dt

=

∫ t2

t1

∂L

∂q
f(t)dt+

∂L

∂q̇
f(t)

∣∣∣∣t2
t1

−
∫ t2

t1

f(t)
d

dt

∂L

∂q̇
dt

=
∂L

∂q̇
f(t)

∣∣∣∣t2
t1

+

∫ t2

t1

(
∂L

∂q
− d

dt

∂L

∂q̇

)
f(t)dt

= 0

The first term vanishes because f(t) vanishes at the endpoints. Since f(t) is an

arbitrary function, the only way for the second term to vanish is to satisfy the

Euler-Lagrange equations, i.e.

d

dt

∂L

∂q̇
=
∂L

∂q
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Theorem 2.6. A smooth function q : I → Rn described as q(t) = (q1(t), ..., q2(t)) is a

solution to the equations of motion described by the system q̈ = −∇U with potential

energy U , kinetic energy T , and the Lagrangian function L(q, q̇) = T (q̇)−U(q), if and

only if

d

dt

(
∂L

∂q̇i

)
− ∂L

∂qi
= 0, i = 1, ...n, (2.16)

where the n equations are known as the Euler-Lagrange equations [15].

Lagrangian equation of motion is more abstract and practical than Newtonian

dynamics, since one has to concern with one scalar function instead of considering

several force vectors.

However, one still has to solve a second order differential equations system, in

Equation (2.16). There exists a more useful and naive way to describe the equation of

motion, namely Hamiltonian dynamics. Unlike Lagrangian, Hamiltonian is invariant,

and it reduces the degree of freedom. It allows us to solve the problem along the

Hamiltonian trajectories.

Hamiltonian equations can be inferred from Lagrangian dynamics. While the

variable of Lagrangian is position q and velocity q̇, Hamiltonian is a function of position

q and momentum p.

Legendre transformation is used to convert Lagrangian function L(q, q̇), which

is defined on the tangent space TqRn, into the Hamiltonian function H(q,p), which

is defined on the cotangent space T ∗
qRn (the dual of the tangent space). The inter-

changing variables (q̇,p) are conjugate pair of variables, where p is the momentum

of the system. Since the transformation preserves the unit of the function, both of

the Hamiltonian and Lagrangian have the unit of energy. Legendre transform from
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Lagrangian to Hamiltonian is simply formulated as

H(q,p) = pq̇ − L(q, q̇). (2.17)

Here, the necessary condition is that the Hamiltonian function should be independent

of q̇. In other words, when its differential is considered, the coefficient of dq̇ should be

vanished,

dH = pdq̇ + q̇dp− ∂L

∂q
dq − ∂L

∂q̇
dq̇

= q̇dp+

(
p− ∂L

∂q̇

)
dq̇ − ∂L

∂q
dq

(2.18)

In order to make the coefficient of dq̇ zero, the generalized momentum should be defined

as

p =
∂L

∂q̇
(2.19)

Also, from Equation (2.16), we obtain

ṗ =
dp

dt
=

d

dt

∂L

∂q̇
=
∂L

∂q
(2.20)

Then, substituting ṗ into the Equation (2.18)

dH = q̇dp− ṗdq

∂H

∂q
dq +

∂H

∂p
dp = q̇dp− ṗdq

(2.21)

Thus, Hamiltonian equations of motion can be written as a system of first order dif-

ferential equations as in Equation (2.12),

∂H

∂q
= −ṗ

∂H

∂p
= q̇ (2.22)
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In summary, we need to solve six first-order differential equations using Hamil-

tonian, instead of three second-order differential equations for a three dimensional

system, which gives us more simple equations. Furthermore, Hamiltonian equations

have a symmetry, unlike the Euler-Lagrange equations. Since this reduces the degree

of freedom, the problem can be solved along the constant Hamiltonian trajectories.

We can show that the Hamiltonian function corresponds to the total energy of a

particular physical system. It can be derived as follows,

H(q,p) = pq̇ −
(m
2
q̇2 − U(q)

)
(2.23)

since p = ∂L
∂q̇

= mq̇, substitute q̇ into the above equation,

H(q,p) =
p2

m
−
(

��m

2

p2

m�2
− U(q)

)
=

p2

2m
+ U(q)

= K(p) + U(q)

(2.24)

Surely, the Hamiltonian does not have to be total energy of the system. In

Table 2.1, there are some examples for the Hamiltonian for three different phenomena.

For HMC method to solve an inverse problem, we will define the Hamiltonian as the

total energy of an artificial Hamiltonian dynamics.
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3. HAMILTONIAN MONTE CARLO FOR INVERSION

The process for estimating model parameters from observed data is called inver-

sion. Finding an exact solution of an inverse problem is not always possible since there

might be some noises in the measured data. On the other hand, to test all possible

solutions to find the best solution is not practical. However, we can select sufficient

amount of acceptable models, from which we can estimate the probability characteris-

tic of the model parameters. In such a case, the histogram of the all acceptable models

corresponds to the density defined over the model space.

In order to solve an inverse problem, firstly one should know how the model pa-

rameters are related with the data. For travel-time tomography, the relation between

model parameters and data is given by Hamiltonian equations of motion. In other

words, Hamiltonian equations of motion relates the velocity structure (model param-

eters) and the travel-time of seismic waves (data). There are various ways to solve

inverse problems, namely in particular the gradient based methods and Monte Carlo

methods. In both cases, the best model is chosen by analyzing the error between ob-

served data and the predicted data. Monte Carlo methods is based on sampling model

parameters and then evaluating the predicted data of the model via forward relation.

The second step of solving an inverse problem is to find an efficient sampling

method to walk in model space. This step requires to tune some parameters such

as step-size and number of steps in order to achieve effective sampling. Once the

parameters are tuned properly, the inversion process finishes in a reasonable amount

of time.

There are several Monte Carlo methods for sampling the model space, such as

Markov Chain Monte Carlo (MCMC) and Hamiltonian Monte Carlo (HMC). The main

difference of these two methods is that MCMC makes a random walk, whereas HMC

walks along a specific vector field, which is so-called Hamiltonian vector field. The
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advantage of this geometrical approach is that HMC makes more efficient sampling,

i.e. it has a higher acceptance rate than MCMC methods. This higher acceptance of

HMC results in less iteration, less computational time.

These two steps, namely determining the forward relation and sampling, are

combined with the misfit function, which returns the error between predicted and

observed data. Finally, the global minimum of the misfit function is the solution of

the inverse problem. However, HMC does not find the global minimum of the misfit

function directly, instead it reveals the target probability distribution of the model

parameters by using the misfit function. HMC samples according to this distribution

so that one can evaluate the expectation of the distribution by using these samples. As

an example, if the target distribution is defined as Gaussian, then the best solution can

be find by taking the average of samples (expected value of the distribution). These

results, namely sampling from a distribution and the average of the samples converges

to the expectation, are guaranteed by Ergodic Theorem which will be explained in

Section 3.2 in detail.

In order to state Ergodic theorem, we introduce basic definitions and results of

probability theory and then define a joint distribution in the phase space in the next

section.

3.1. Probability Theory

A random variable can be defined intuitively as a variable which is used to repre-

sent the outcome of a random experiment (measurement), which can either be a scalar

or a vector-valued depending on the model. Therefore, it is possible to think of models

and data as random variables. Random variables cannot give useful information about

the relevant process individually. However, with a large number of measurements, one

can get a distribution to characterize the model parameters completely. It means that

one can use probability theory as a tool in order to assign a numerical value to each

state during an inversion process, namely the numerical value corresponds to the prob-
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ability of that state where the states are the elements of the model space. Hence, in

this section we give basic definitions of probability theory.

Firstly, we need to define a measure on the data to analyze how likely of an event

is to occur after large number of measurements.

Definition 3.1.1. A probability measure (S,A, P ) on a set S with σ − algebra A is a

function P : A → [0, 1] that satisfies Kolmogorov axioms:

• P (∅) = 0.

• P (
⋃
i∈∞

Ei) =
∞∑
i=1

P (Ei) for any Ei ∈ A of pairwise disjoint sets.

• P (S) = 1.

where σ-algebra A on S is a nonempty subset of the power set of S which is closed

under complements, and closed under countable unions. In HMC algorithm, the set S

corresponds to the state space (model space).

Definition 3.1.2. LetX be a random variable. X is said to have a normal distribution,

if its probability density function (pdf) is given as

ρ(X) =
1

σ
√
2π
exp

(
−(X − µ)2

2σ2

)
, (3.1)

where µ = E[X] ∈ R and σ2 = E[(X−µ)2] ∈ R are themean and variance, respectively.

It is denoted by X ∼ N (µ, σ). Also

∫ ∞

−∞
ρ(X)dX = 1. (3.2)

The mean of a continuous random variable X is defined as

E[X] =

∫ ∞

−∞
Xρ(X)dX. (3.3)
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By Equations (3.2) and (3.3), the mean (expected value) of a random variable can

be defined as the weighted average of all possible outcomes. It is possible to generalize

this normal distribution to higher dimensions, namely multivariate normal distribution

Definition 3.1.3. Let X = [X1, X2, ..., Xn]
T be a n-dimensional random variable. X

is said to be have a normal distribution, X ∼ N (µ,Σ), if its pdf is given as

ρ(X) =
1√
2π|Σ|

exp

(
−(X − µ)TΣ−1(X − µ)

2

)

where µ is the n-dimensional mean vector, Σ is the n× n covariance matrix, and the

|Σ| is the determinant of the covariance matrix,

µ = E[X] = [E[X1], E[X2], ..., E[Xn]]
T

Σ =
n∑

i=1

n∑
j=1

Σij =
n∑

i=1

n∑
j=1

E[(Xi − µi)(Xj − µj)]

Remark 3.1.1. If random variables are discrete, then the integration corresponds to

the summation, and it is called probability mass function (pmf), rather than pdf.

Probability of a state s, P (X = s) represents the marginal probability of being

the state s in a set. Furthermore, the conditional probability P (X = s | Y = d)

is defined as the probability of being state s when the state d is already occurred in

another set, where X and Y are random variables of two different sets.

Theorem 3.1 (Bayes’ theorem). It states that there is a relation between conditional

probabilities P (X | Y ) and P (Y | X) such that

P (X | Y ) =
P (Y | X)P (X)

P (Y )
.
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Bayes’ theorem is used commonly for inversion methods, where X and Y are

corresponds to the random variables of model space and data space, respectively.

Lastly, the joint probability distribution P (X, Y ) corresponds the probability the

all possible pairs of outcomes of the two sets. In the case that X and Y are independent

random variables, then the joint probability of them is multiplication of the marginal

probabilities P (X) and P (Y ).

3.2. Markov Chain Monte Carlo

The aim of a Markov Chain Monte Carlo (MCMC) is to sample from a given

distribution. Hamiltonian Monte Carlo is an MCMC algorithm that does random walk

according to the distribution which is based on Hamiltonian dynamics. A Markov

chain must have a stationary distribution to ensure that one can sample from that

distribution by using Hamiltonian dynamics. The existence of a stationary (invariant)

distribution is guaranteed by the detailed balance property. In order to understand

what HMC and its advantages are, we start with the definition of Markov chain and

necessary properties of Markov Chain Monte Carlo and the hypothesis of Ergodic

theorem.

Definition 3.2.1. A sequence S1, S2, · · · of random elements in state space C is a

Markov Chain if the conditional (transition) probability satisfies

T (Si+1 | Si, Si−1, · · · , S1) = T (Si+1 | Si). (3.4)

More intuitively, Markov Chain can be defined as a process of random sampling in

which the choice of the current state depends only on the the previous state. Although

this property has a great importance for requiring less memory, it is not sufficient for

the existence of a stationary distribution. We need a Markov chain that satisfies the

Ergodic theorem.
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Theorem 3.2 (Ergodic theorem). If a Markov Chain Si in a state space is

• time homogeneous,

• irreducible,

• has a stationary (invariant) distribution ρ,

then

E(f(X)) −−−→
n→∞

1

n

n∑
i=1

f(Si), X ∼ ρ (3.5)

where f is a real-valued function on the state space. Furthermore, if it is aperiodic,

then the transition probability of one state to another state in a sufficiently number of

steps converges to the stationary distribution, i.e.

T (Sn = s | S0 = s0) −−−→
n→∞

ρ(s),

where s and s0 are in the state space. Moreover, a Markov Chain that satisfies these

properties is called ergodic.

Now, we are going to define the properties of a Markov chain that is stated in

the hypothesis of Ergodic Theorem 3.2.

Definition 3.2.2. A Markov Chain {Si | i ∈ N} is called time-homogeneous, if the

conditional (transition) probability satisfies

T (Si+1 = b | Si = a) = Tab, ∀i ∈ N, ∀a, b ∈ C,

for some transition matrix T , where T can be represented by a square matrix and its

each entry corresponds to transition probability from one state to another in Figure

3.1. In order to guarantee that a walker goes to a state in the state space, the sum of
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transition probabilities from a state to all states in state space must be unity, that is

∑
b

Tab = 1. (3.6)

Intuitively, if a transition matrix is time-homogeneous, then the transition prob-

ability is not a function of time, i.e. no matter which step of Markov Chain we are in,

the probability of transition from state a to state b remains constant as shown in the

next figure.

Figure 3.1. The transition probabilities are invariant with respect to time, therefore

the transition matrix is time-homogeneous.

Definition 3.2.3. A Markov Chain is called irreducible if

P (St = b | S0 = a) > 0, ∃t ≥ 0,

for all a and b in the state space.
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Definition 3.2.4. An irreducible Markov chain Si is called aperiodic, if

gcd{t : T (St = a | S0 = a) > 0} = 1,

for any state a in the state space.

Figure 3.2. Illustration of the irreducibility property.

The properties of irreducibility and aperiodicity imply that we can go to any

state from the current state. They prevent us from getting stuck in one state during a

random walk in the state space. For example, in Figure 3.2, the Markov chain (MC)

on the left side is not irreducible because one cannot go to the state H or C once M

is visited. However, the MC on the right side is irreducible: each state can be reached

from any other state.
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Definition 3.2.5. A probability mass function ρ on the state space C satisfies detailed

balance (reversibility) with respect to T , if

ρaTab = ρbTba (3.7)

for all a and b in C.

Definition 3.2.6. A probability mass function ρ is a stationary distribution on the

state space C with respect to the transition matrix T if

ρ = ρT

In other words, ρ is a stationary distribution, if

ρb =
∑
a

ρaTab

Intuitively, ρ is a stationary distribution with respect to T, if it is invariant by the

transition matrix T .

Recall that one of the hypothesis of Ergodic Theorem 3.2 is that a Markov chain

must have a stationary distribution. It is easier to check detailed balance property

which implies the existence of stationary distribution as proved by the following theo-

rem.

Theorem 3.3. Detailed balance ensures the existence of a stationary distribution ρ.
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Proof. Suppose that ρ satisfies detailed balance, then by Definition 3.2.5,

∑
a

ρaTab =
∑
a

ρbTba

Since ρb is independent of a,

∑
a

ρaTab =
∑
a

ρbTba = ρb
∑
a

Tba

By Equation (3.6),

∑
a

ρaTab =
∑
a

ρbTba = ρb
∑
a

Tba = ρb

3.3. Markov Chain and Sampling

The simplest way to produce a Markov chain for sampling is drawing a new

random state from the neighbour of the current state, and making an accept-reject

test on the new state depending on the target distribution. For example, the target

distribution may be defined as the exponential of misfit function. More generally,

once a probability distribution is defined on the model space, then one can use Monte

Carlo method to draw random samples from the target distribution. By Theorem 3.2,

one can converge to the stationary distribution by using the transition matrix of the

Markov chain. It has a crucial importance for analyzing (evaluating the expectation)

the distribution of the model parameters in high-dimensional spaces via drawing the

large number of samples. However, it converges slowly to the target distribution, as it

does not guarantee drawing independent samples, i.e. it needs to collect more samples,

to take more steps to walk all over space, to make more accept-reject test, and to

increase the rate of accept-reject, etc. These challenges increase the computational

time and costs, and may even make solving high dimensional problems impossible.
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Hamiltonian Monte Carlo method puts a restriction on sampling, i.e. sampling

only on the same Hamiltonian trajectory with small numeric error, with an Hamiltonian

function which should be remain constant during walking in the phase space. It makes

more effective sampling thanks to this simple but impressive restriction, so that it

proposes more distinct samples, explores the space faster, increases the rate of accept-

reject to converge to target distribution rapidly.

3.4. Ergodic Markov Chain and HMC Sampling

Hamiltonian Equations (2.12) can be used for sampling as an MCMC thanks

to its three crucial properties, namely reversibility, preserving volume, and invariant

Hamiltonian. The MCMC which is based on Hamiltonian dynamics is called Hamilto-

nian Monte Carlo. Accepted samples during HMC sampling form an ergodic Markov

chain thanks to these three properties of Hamiltonian dynamics.

Table 3.1. Relations of the properties of three concepts

Phase Space Hamiltonian Dynamics HMC

Diffeomorophism generated by XH Reversibility Detailed balance

LXH
ω = 0 Preserving volume invariant discrete joint pdf

dH
dt

= 0 Invariant Hamiltonian invariant continuous joint pdf

Firstly, Hamiltonian dynamics is reversible, it means that trajectory mapping

which is obtained by HMC has an inverse (Figure 3.3). It is guaranteed by the dif-

feomorphism generated by Hamiltonian vector field, XH , and it satisfies the detailed

balance property of being ergodic.
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Figure 3.3. Illustration of the reversibility property in phase space.

Secondly, Hamiltonian dynamics preserves volume along the Hamiltonian trajec-

tories by Liouville theorem 2.3, because the symplectic form ω is preserved along the

Hamiltonian vector field XH , i.e., LXH
ω = 0. This property keeps the discrete desired

distribution ρ(q,p) invariant in the phase space [16]. It gives us great convenience in

the computational part, so that we can divide the phase space into equal volumes for

numeric solution, hence we do not need to compute Jacobian factor for each sample.

Recall that the Hamiltonian dynamics guarantees preserving volume along the

Hamiltonian vector field, i.e. sufficiently small volumes. In a normal distribution,

even large volumes are preserved regardless of their size, as shown in Figures 3.4 and

3.6. On the other hand, the volume which is sufficiently small along the trajectories

are preserved in any distribution. In non-symmetric distributions like non-Gaussian,

volume is preserved even if its shape is not preserved as shown in Figure 3.5.
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Figure 3.4. Illustration of the volume preservation property in phase space for a

Gaussian distribution.
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Figure 3.5. Illustration of the volume preservation property in phase space for a

non-Gaussian distribution.
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Figure 3.6. Even if the shape of the region changes, the area and the states inside of

area are preserved.

Finally, the Hamiltonian function remains constant during the trajectory, since

the derivative of the Hamiltonian with respect to time is zero. In application of HMC,

it has some small numeric errors as in shown in Figure 3.7. This property is used during

accept-reject test which is explained comprehensively in Section 4.2. Since Hamiltonian

is invariant, acceptance probability is 1 without numerical error. We can get a new

state which is distant from the current state with a high probability of acceptance

thanks to the last property. In other words, HMC is able to establish the independence

of the samples via tuning parameters properly.
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Figure 3.7. Illustration of the value of Hamiltonian function along the trajectory with

small numeric error.

To summarize, HMC method is based on Hamiltonian dynamics. The properties

of Hamiltonian dynamics take their power from phase space, accordingly symplectic

geometry. This allows us to construct an ergodic Markov chain in state space at the

end of the sampling.
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4. HAMILTONIAN MONTE CARLO ALGORITHM

Basically, HMC is a sampling algorithm in which random samples are chosen ac-

cording to a target probability distribution. The target distribution equals to the joint

distribution, the product of posterior distribution and the distribution of momentum

variable,

ρ(q,p) = ρ(q | d)ρ(p) = kρ(d | q)ρ(q)ρ(p), (4.1)

where k is the normalizer and Bayes’ theorem (Theorem 3.1) is used in the second

equality, namely ρ(q | d) = kρ(d | q)ρ(q).

The joint distribution ρ(q,p) is actually a Gibbs canonical distribution, since it

will be obtained from Hamiltonian function, i.e. ρ(q,p) = exp(−H(q,p)). In other

words, it is a function of energy of the system at a constant temperature.

In order to use Hamiltonian function for sampling, we need to combine Equa-

tion (2.24) and Equation (4.1) in a proper way. The potential energy of a sample is

defined as the minus log of the posterior,

U(q) = − log(ρ(q | d)), (4.2)

where the posterior pdf is given by Bayes’ theorem (Theorem 3.1),

ρ(q | d) ∝ ρ(d | q)ρ(q), (4.3)

where the likelihood, ρ(d | q), contains the forward relation between model and data

spaces, and model prior, ρ(q), contains all constraints on model space. As an example,
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assuming Gaussian measurement error, one can obtain the likelihood function as

ρ(d | q) ∝ exp

(
−1

2
(dobs − g(q))TCD

−1(dobs − g(q))

)
, (4.4)

where g(q) is the forward relation that gives the predicted data, and CD is the data

covariance matrix. Hence the potential energy corresponds to the L2-norm of the

error between the observed data and the predicted data. Intuitively, the potential of

a sample is high if it is far from the observed data, just like the potential energy of a

ball increases as it rises from the ground.

On the other hand, we produce momentum artificially, because we need kinetic

energy to move in the phase space. The momentum is defined as follows,

p =M q̇, (4.5)

whereM is mass matrix in the Hamiltonian dynamics. Geometrically,M is a Riemann

metric and momentum is a covector (one-form, dual of q̇) which is obtained by the

multiplication of Riemann metric and velocity vector. If the momentum is considered

as a one-form, it is a real valued function which eats a vector, by definition. Then,

kinetic energy can be defined as

K(q̇) =
1

2
p(q̇),

where 1/2 is a normalization constant. On the other hand, we describe the momentum

as a vector in calculation, so that kinetic energy is defined as

K(p) =
1

2

n∑
i,j=1

piM
−1
ij pj. (4.6)
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Hence the marginal pdf of momentum can be defined as

ρ(p) ∝ exp(−K(p)) = exp

(
−1

2

n∑
i,j=1

piM
−1
ij pj

)
, (4.7)

which means that momentum p can be drawn from a Gaussian distribution.

Finally, the joint distribution in Equation (4.1) can rewritten with respect to the

energy as follows

ρ(q,p) = exp(−U(q) exp(−K(p)) = exp(−U(q)−K(p)) = exp(−H(q,p)). (4.8)

Observe that the canonical distribution is a Gibbs distribution in the phase space,

since it is a function of energy of the Hamiltonian system with constant (ignored) tem-

perature parameter. Choosing random samples according to the canonical distribution

means moving in the phase space. Moreover, this movement is not exactly a random

walk, because the movement is along a trajectory on which the Hamiltonian is con-

served. That is so crucial for independence of samples and effective sampling with a

high acceptance rate.

In this section, we are going to describe how to set up an Hamiltonian system on

an inversion problem and how to write the corresponding algorithm.

4.1. Main Stages of Hamiltonian Monte Carlo

HMC algorithm requires three main stages; the first is to choose an initial state

(q0,p0) whose components are, position (model) q0 and momentum p0. The position

q0 might be any initial model, while the parameters of p0 are drawn from a Gaussian

distribution N (0, 1). The second main stage is to move in the phase space from the

current state (q0,p0) to a proposed state according to the Hamiltonian equations, i.e.

along the Hamiltonian trajectory which is numerically solved. The last stage is to
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make an accept-reject test at the end of the trajectory. The HMC algorithm works by

repeating these three main stages iteratively.

Since the momentum is drawn from Gaussian distribution, the kinetic energy of

the state is defined as in Equation (4.6),

K(p) =
1

2

n∑
i,j=1

piM
−1
ij pj, (4.9)

where M is mass matrix (Riemann metric, geometrically). Furthermore, the potential

energy is determined by the minus log of posterior distribution (Equation (4.2)).

Although the aim is to sample from the posterior, we need to define a new dis-

tribution which is invariant in phase space, namely canonical distribution ρ(q,p), and

then to achieve posterior by ignoring the momentum parameters or by integrating the

canonical distribution over the momentum parameters.

Figure 4.1. Illustration of sampling according to the posterior distribution

(Equation (4.2)), red points are rejected and black points are accepted of 300 samples.
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To summarize, the canonical distribution which is the stationary distribution of

our Markov chain is defined as

ρ(q,p) = exp(−H(q,p))

= exp(−U(q)−K(p))

= exp(−U(q)) exp(−K(p))

= ρ(q | d)ρ(p),

(4.10)

where ρ(q | d) is the posterior probability of q and ρ(p) is the marginal probability

of p. This is the equation where Hamiltonian dynamics and Bayes’ theorem meet for

sampling.

4.2. Acceptance Probability

HMC algorithm collects samples according to the properties of Hamiltonian dy-

namics which is explained in Section 3.4. During application, these properties are not

satisfied exactly because of some numeric errors, e.g. Hamiltonian is not exactly invari-

ant as shown in Figure 3.7. Therefore, the proposed models during sampling should be

tested to obtain a stationary distribution at the end of the sampling. By Theorem 3.3,

detailed balance implies the existence of the stationary distribution. Considering the

detailed balance property, the acceptance probability A[(q1,p1)] of the proposed model

at the end of the trajectory is determined as

A[(q1,p1)] = min

(
1,
ρ(q1,p1)

ρ(q0,p0)

)
= min (1, exp(−H(q1,p1) +H(q0,p0)) (4.11)

The proposed state (q1,p1) is accepted or rejected according to the acceptance

probability. If it is accepted then the new Hamiltonian trajectory starts from (q1,p1)

(to go to new proposed state (q2,p2)). If the state (q1,p1) is rejected, then the current

step stays the same (q0,p0). This process is repeated until sufficient number of samples

are collected. Hence the accepted models form an ergodic Markov chain.
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Observe from Equation (4.11) that if Hamiltonian equations can be solved ana-

lytically then the acceptance probability is always equal to unity, since Hamiltonian

function is invariant. However, for an inversion process this is commonly not possible;

problems are solved by numerically with some numerical errors, i.e. with changing

acceptance probabilities.

How to obtain the Acceptance Probability, as a proof of Equation (4.11)

Numerically solving Hamiltonian equations requires to divide the phase space into

some discrete equal volumes. In HMC, these volumes are determined as sufficiently

small partitions, tangent space Xi at the state (qi,pi). Therefore, the discrete

probability can be written in terms of the density of the canonical distribution as

P (Xi) = Xiρ(qi,pi). By Equation (3.7), the detailed balance between the current

state (qi,pi) ∈ Xi and the proposed state (qi+1,pi+1) ∈ Xi+1 on the same Hamilto-

nian trajectory is written as

T (Xi+1 | Xi)P (Xi) = T (Xi | Xi+1)P (Xi+1)

T (Xi+1 | Xi) Xi ρ(qi,pi) = T (Xi | Xi+1) Xi+1 ρ(qi+1,pi+1)

By the volume preservation property along the trajectory,

T (Xi+1 | Xi) ρ(qi,pi) = T (Xi | Xi+1) ρ(qi+1,pi+1)

T (Xi+1 | Xi)

T (Xi | Xi+1)
=
ρ(qi+1,pi+1)

ρ(qi,pi)

Hence, to satisfy the detailed balance property, the acceptance rate should be defined

as

A[(qi+1,pi+1)] = min

(
1,
T (Xi+1 | Xi)

T (Xi | Xi+1)

)
= min

(
1,
ρ(qi+1,pi+1)

ρ(qi,pi)

)
= min (1, exp(−H(qi+1,pi+1) +H(qi,pi))
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Intuitively, if the canonical probability of proposed model is greater than the

current model, then the proposed model will be accepted. In other words, if the

Hamiltonian value (total energy) of the proposed model is less than the one of the

current model, then the proposed model is definitely accepted. Otherwise, it will be

rejected, depending on defined error margin.

4.3. Leapfrog Integrator

In order to solve the Hamiltonian equations numerically (to take steps along the

Hamiltonian trajectories) it is necessary to maintain the detailed balance, which is

satisfied by time reversibility and the volume preservation properties. The integrators

which satisfy these properties are called symplectic integrator, and their characteristic

feature is to preserve the symplectic form dω = dq ∧ dp. One of the most common

used symplectic integrators for HMC algorithms is the leapfrog method. It provides to

walk from the current state to the proposed state along the trajectory, numerically.

For an artificial time t and tuned parameter step size ε, the leapfrog method can be

schematized as a first order Taylor expansion,

pi

(
t+

ε

2

)
= pi +

ε

2

dpi

dt
(t)

qi(t+ ε) = qi(t) + ε
qi

dt
(t)

pi (t+ ε) = pi

(
t+

ε

2

)
+
ε

2

dpi

dt

(
t+

ε

2

)
.

(4.12)
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By substituting the Hamiltonian equations (Equation (2.12)) into this scheme, the

leapfrog is written as follows

pi

(
t+

ε

2

)
= pi −

ε

2

∂H

∂qi

(q(t))

qi(t+ ε) = qi(t) + ε
∂H

∂pi

(
pi

(
t+

ε

2

))

pi(t+ ε) = pi

(
t+

ε

2

)
− ε

2

∂H

∂qi

(qi(t+ ε))

(4.13)

Finally, since the Hamiltonian function is defined as H(q,p) = U(q) + K(p) where

K(p) =
pTM−1p

2
in our case, the form of the leapfrog is as follows,

pi

(
t+

ε

2

)
= pi −

ε

2

∂U

∂qi

(q(t))

qi(t+ ε) = qi(t) + εM−1pi

(
t+

ε

2

)

pi(t+ ε) = pi

(
t+

ε

2

)
− ε

2

∂U

∂qi

(qi(t+ ε)).

(4.14)

In summary, the HMC algorithm for number of N iteration, written in MatLab

can be shown as
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Figure 4.2. HMC Algorithm for number of N iterations
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5. HAMILTONIAN MONTE CARLO METHOD FOR

TRAVELTIME TOMOGRAPHY

Traveltime tomography is a process of inverting the velocity structure of a sub-

surface from the traveltime data of seismic waves. It is based on solving the eikonal

equation, which describes the traveltime τ as a function for 2D velocity model v,

|∇τ |2 = 1

v2(x, z)
. (5.1)

In this chapter, it is created an artificial Hamiltonian system to estimate the

velocity structure of a subsurface from the travel time data. Firstly, the corresponding

forward relation is the Equation (5.1), where τ and v correspond the data parameter

and the model, respectively. Regardless of inverting the velocity model from travel

time problem, the forward relation can also be solved with Hamiltonian equations;

where contours of Hamiltonian equations correspond to rays from source to receiver,

as summarized in Table 2.1.

For a subsurface with 10 km depth and 30 km length, the subsurface can be

gridded by 1 km such that
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Figure 5.1. Subsurface profile with 10km× 30km, model parameters, symbolic rays

between source and receiver

There exist 10× 30 grid and each grid can have a different velocity in Figure 5.1,

therefore the velocity model v in Equation (5.1) is 300 dimensional. Since the model

corresponds to the position in Hamiltonian dynamics, position variable q is 300 di-

mensional, too. In order to invert the velocity structure by the Equation (5.1), sources

and receivers are needed. The ray going from the source to the receiver will be the

ray that goes in the fastest way in accordance with Snell and Fermat’s law within

the velocity structure. Hence the dimension of the travel time data τ is equal to the

multiplication of number of located earthquakes and the number of receivers in the

subsurface, since we have a scalar traveltime value for each source and receiver pair, in

Figure 5.2. Assume that there are 1 source and 30 receivers, hence our observed data

is a 30-dimensional column vector.



46

Figure 5.2. Symbolic rays between the source (red star) and receivers (blue triangles)

Traditionally, a traveltime tomography problem can be solved by gradient based

methods; it is possible to establish a linear relationship between velocity and travel

time increments and to solve it iteratively until achieving an acceptable misfit,

E(v) =
1

2
(τobs − τ (v))TCD

−1(τobs − τ (v)), (5.2)

where CD is data covariance matrix. The gradient based methods might be reason-

able for weakly nonlinear cases, since a few iteration is sufficient for convergence. On

the other hand, the velocity structure of a subsurface in the nature is quite complex

for gradient based methods. In addition to the necessity of calculating the Jacobian

matrix for each iteration, it requires to start with an initial model which is close to

the solution. Otherwise, the iteration can get stuck in a local minimum region, which

means bad solution. In addition to the possibility of not giving the best solution, it also

brings high computation costs and long computational time. Therefore gradient-based

methods are not preferred for a complex velocity structure. Hamiltonian Monte Carlo

method, which is a probabilistic approach, provides remarkable solutions to most of
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these problems, except calculating the gradient.

In HMC algorithm the misfit function corresponds to the potential energy of the

current state;

U(q) =
1

2
(dobs − τ (q))TCD

−1(dobs − τ (q)), (5.3)

where τ (q) is the predicted data. As you can see in Figure 4.2, HMC requires to take

gradient of potential, U(q) during Leapfrog algorithm. By Chain rule, it is necessity

to take gradient of the ray tracing function τ (q). Therefore, it is crucial to have a

well-defined ray-tracing code (forward relation) and an efficient gradient algorithm.

The power of HMC is based on the properties of phase space and symplectic form.

The elements of phase space are the form of ordered pair of position and momentum

(q,p). While position q corresponds to the model, momentum p is produced artificially

to explore the state space. Therefore we need to define an artificial momentum p in

order to move the problem into the phase space. In HMC methods, one can define

kinetic energy in various ways [17]. In general, the kinetic energy is defined in its

usual form as used in mechanics, Equation (4.6). Then, substituting this expression of

kinetic energy to the Gibbs distribution, one obtains the Gaussian distribution.

Following an initial state, we can start a movement along the trajectory via

leapfrog algorithm with suitable tuned stepsize ε and trajectory length L.
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Figure 5.3. Symbolic first trajectory in phase space.

In Figure 5.3, the trajectory lies on the Hamiltonian contours. When the move-

ment is projected onto the model space, s.t. when the momentum parameter p is

ignored, we can see the movement in model space, As you can see in Figure 5.4 poten-

tial energy does not depend on momentum p, where U is the misfit function which is

form as Equation (5.3).
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Figure 5.4. Symbolic first trajectory in model space in three different perspectives.

The state at the end of the trajectory is our proposed state and the accept-reject

test is applied only on that point. As it is explained detailedly in Section 4.2, the accept-

reject test is based on the stationary distribution which is obtained by Hamiltonian

values of the state by Equation (4.11),

A[(qi+1,pi+1)] = min

(
1,
ρ(qi+1,pi+1)

ρ(qi,pi)

)

= min (1, exp(−H(qi+1,pi+1) +H(qi,pi)) , i ∈ {0, . . . , N}.

(5.4)

If the proposed model is accepted, it is assumed as the current state and a new

trajectory is started from that state. In Figure 5.5 and Figure 5.6, you can see the first

three trajectories with accepted samples q1 and q2 in the model space. Furthermore,

the accept-reject test will applied on the state q3.
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Figure 5.5. Symbolic 3 trajectories and their relations with canonical distributions.

Figure 5.6. Symbolic 3 trajectories and their relation with likelihood distribution.

Surely, the best values for the tuned parameters ε and L depend on the problem

and the model parameters. They must be determined neither too big nor too small.

If ε is too big, then the trajectory does not lie along the Hamiltonian contours and

accept-reject rate decrease, as shown in Figure 5.7.
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Figure 5.7. Illustration of tuning ε

Furthermore, if ε is too small, then it is required more sampling to explore model

space. Moreover, if trajectory length L is too small or too big, it may not satisfy the

independence of sampling. For example, in Figure 5.8, the distance between current

model and the proposed model starts to decrease after ninth step, which means that

L = 9 is the best for ε = 0.3.

Figure 5.8. Illustration of tuning L
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It is not possible to make visualize more then 3D space, therefore we cannot see

the phase space of even 2D model space. However, it is convenient to show walking

in the model space to see the continuity in model space where q1 and q2 are model

parameters as shown in Figure 5.9.

Figure 5.9. Walking in 2D model space, q = (q1, q2), and qi’s are samples.

Hence, we obtain an ergodic Markov Chain q1, q2, ..., qN which satisfies detailed

balance property. By Theorem 3.3, it has a stationary distribution. Thus, according

to the Ergodic theorem (Theorem 3.2),

E[q] =
1

N

N∑
i=1

qi ρ(qi | d), (5.5)

where N is the number of collected samples.

The expected value of the obtained Markov chain is an average solution of the

tomography problem. It is also possible to check mode of the Markov chain if there is

a repeated model. If the mean and mode are close to each other, our solution is most

likely correct.
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6. CONCLUSION

• In Chapter 2, we describe the relation between Hamiltonian Monte Carlo method

and symplectic geometry. Hamiltonian dynamics, where symplectic geometry is

originated from, is traditionally used to solve mechanics problems. Once the ge-

ometric relations of the phase space is revealed, Hamiltonian dynamics is started

to be used in optimization problems, such as HMC.

• In Chapter 4, we explained the main stages of HMC algorithm. We emphasized

that the acceptance probability is actually defined to provide detailed balance.

Lastly, we introduced Leapfrog integrator which is used to walk along the trajec-

tories. Finally, we wrote the HMC algorithm code for inversion.

• The use of HMC in travel-time tomography problems requires to work in several

different mathematical spaces, which makes the problem looked complicated. In

Chapter 5, we introduced all these spaces rigorously and describe the relation

between them. More precisely, there are three spaces:

– The domain of the forward function (eikonal equation) whose dimension is

two for a 2D tomography problem, which means velocity structure varies

with the horizontal (x) and vertical (z) components in the subsurface.

– The position space (model space) whose dimension is the number of grid in

subsurface (e.g. 300-dimensional in Figure 5.2). The coordinates of model

parameters q corresponds to the seismic velocities in each grid.

– The phase space whose dimension is twice the dimension of position space.

The elements of the phase space are formed as (q,p).

• HMC method requires to tune parameters, namely step size ε and trajectory

length L. They have a crucial importance for effectiveness of the algorithm.

– For a fixed L, too big ε causes low acceptance rate due to the large error in

Hamiltonian, while too small ε causes time-consuming.

– For a fixed ε, too big L causes unnecessary calculations, while too small L

does not guarantee the independence of samples and converges slowly.
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• Hamiltonian Monte Carlo method have less computational cost due to the fol-

lowing reasons:

– It does not walk randomly in the phase space; it walks along the Hamiltonian

trajectories for sampling. Since Hamiltonian is invariant along these trajec-

tories, the acceptance probability of proposed samples is high. It provides a

faster convergence to solution with less sampling.

– Requiring less samples implies taking fewer gradient.

– There is no need to calculate the determinant of the Jacobian matrix for the

volumes obtained for discretized pdf. We can ignore volume grids, because

volume is preserved along the Hamiltonian trajectory by Liouville theorem.

• Hamiltonian Monte Carlo method has a few restriction in applicability to an

inverse problem, mainly

– It requires to calculate the predicted data for each proposed samples since the

target distribution depends on the misfit between the observed and predicted

data. Therefore, we should have a well-defined forward function which is

preferred to be calculated fast.

– It requires an efficient function for taking gradient fast, because it needs to

take gradient at every step. Even for best optimized tuned parameters, the

number of taking gradient is quite high, which increase the computational

cost and time to compute.
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