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ABSTRACT

The subject of this study is the construction of some
sufficient conditions for Xenon stability in thermal reactors during
operation, and the approximate time behaviour of the point kinetics
system with feedback.

The same topic had been investigated by J. Chernick, G.
Lellouche and W. WOllmann(?] in I96I. It had been shown that Xenon
ingtability remains a2 serious concern in the presence of temperature
damping. Later A, Z., Akgasu and P. Akhtar studied the problem in 1966[2]e
They approached the problem as one of asymptotic stability in the large
for point reaciors with non-linear feedback; and gave a new criterion
for boundedness of Xenon oscillations in the presence of temperature
feedback,

In the first three chaplers basic kinetic equations are
derived for the point reactor model, mainly to emphasize the extent of
careful work required to obtain the mean neutron generation time.

‘Then global stability analysis of Xencn is examined and the region of
asymptotic stability in the large in the plane of equilibrium flux vs.
temperature coefficient is determined,

In chapter four linear stability analysis is considered and
conditions for linear stability are determined with and without delayed
neutrons; and the results are compared. In constructing the stability
conditions, various approximations and combinations of parameters were
utilized, Further, point kinetics equations are solved for certain

reactor operating conditions and the time behaviour of the flux is

1z



observed in order to assess some properties such as period and amplitude
of oscillations in the region of stability and instability. The results

are compared with ithat of other workers in the field[Z]°

Results, plots and the discussions are given in the last
chapter., Computer programs used in this work are also provided in the

appendices.
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LIST OF SYMBOLS

Definition

Neutron generation time (sec.)

decay constant of 4 (sec.-l)

decay constant of Xe12? (secf1 )

average decay constant of delayed neutron precursors
equilibrium value of flux (n/(cm>sec.))

temperature reactivity coefficient

iodine yield ( 7 )

xenon yield ( /[ )

delayed neutron fraction

initial reactivity of the clean reactor

absorption cross sections (microscopic and mecroscopic)
lethargy

unit vector denoting the direction of motion of neutron
absorption cross section of Xenon (cmz.)

fission cross section (cmz.)

delayed neutron precursor concentration

reactor power (watts)

neutron population

mean number of neutrons per fission
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CHAPTER 1

INTRODUCTIOR

I. BACKGROUR

The first controlled nuclear chain reaction was achieved in
Chicago in 1942 in a reactor using natural uranium and graphite.
The first nuclear reactor was designed and built without detailed kuniowledge
of the products of fission of U?w, The power level of this first reactor
and of the second reactor built in Osk Ridge in the follwing year was S0
low that the total quantity of fission products presentl in the rezctor was
not sufficient to noticably affect the reactivity of the system. It was noi
until the first Pulutonium production reactoé*%as built at Hanford in 1966
and operated at high power levels that the existence of fission products
with high thermal neutron cross section was discowered. Serious loss of
reactivity in this reactor at high power levels led to the postulate that
a fission product with a high yield and high asbsorption cross section was
providing the mechanism for reactivity changes, This fission product was

L. 435
found to be Xe .

(x) It was a LGR ( Light water cooled, Graphite moderated Reactor ).



The characteristics of this isotppe are compared with those of

Uzﬁsand Smﬁgin table~I. Samarium-I49 is the only other fission product

whose thermal cross section even approaches that of ZXenon.

i - 3 .
Isotope Thermal absorptiocn Yield %
cross section, barns
6
xe '%° 3x10 6.4
sm *47 5.3xI0% Io4
y 2% 6.7x10"
. . . L 135
Table-1 Comparison of yields and cross sections of Xe ,

143 235
Sm T and U .

Xenon-I35 absorption cross section can be considered constant
because its variation with neutron energy is negligible about the theoretical

6
value of 3xI0 barns. Figure-I shows this veriation with neutron energy[IG].

Xenon~I35 is created in two wayss: directly as a fission product
p 5 ,
(0.3 %) and as the grandoughter of fission product Te (6.0 %).
The important characteristics of this decay chain are given below. Since
5

13
the 2 min. half-life of I , we may assume that the Iodine is formed directly

as a fission product.

135 2 min. 135 (7 he 135 g0 135 5 10" 0 135
e I Xe J2ht g 22X, By (ofcé[e)

G; <« (Tb.) (7b.) (3x10b.) (300, ) (Ib.)



(1) SMITH ( Fast Chopper )

(2) BERNSTEIN ( Crystal Spectometer )
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Figure - 1  Absorption Cross Section (n, &) of Xenon as a

function of neutron temperature.



The presence of Xenon in a thermal reactor gives rise to three
gerious control problems owing té its high absorption cross section for
thermal neutrons. One control problem is caused by the build up of Xenon
concentration due to Iodine decay after reactor shutdown. The peak in the
Xenon concentration occurs about I0 hrs., after shutdown. If one wanted to
start~-up the reactor at that time, enough excess reactivity would have to
be incorparated into the control rods to compensate for this peak amount of
neutron absorbing Xenon poison. This becomes a more seriocus problem for
flux levels above Ioﬁ%/(cﬁ.sec,).

Another problem arises from the fact that during equilibrium
operation the Xenon absorbs neutrons from the chain reaction. For this
chain reaction to be sustained, enough excess neutrons have to be produced
to compensate for the amount absorbed by egquilibrium Xenon. The amount of
thermal neutrons captured by equilibrium Xenon poison ranges from 0.7 %
at a flux level of 10 %o 4.8 % at a flux level of IO

The third préblem is that of thermal flux instability due to a
change in Xenon concentration from its equilibrium value. This problem of
Xenon reactivity feedback during reactor operation is the topic of this study.

Delayed reactivity feedback can be defined as reactiviiy, created
or destroyed at time t=t., whose effect on the system is not felt until a
later time t=%t;. For the case of Xenon reactivity feedback, Iodine atoms
are crezted at time t=t, and decay to Xenon atoms at time t=t,;; the iime
being determined by an exponential decay law. The Xenon atoms then absorb
neutrons at some time t)t, Since the amount of Xenon produced by fission

is much less than the amount of Jodine produced by fission,; most of the

o

Yenon present at a given time is due to the decay of Iodine.



To understand how flux instability due to Xenon reactivity
feedback can occur, consider a steady-state reactor contzining equilibrium
amounts of Xenon and Iodine. A disturbance that slightly increases the flux
will initially desiroy Xenon through flux absorption and create Iodine and
a szmall amount of Xenon through fission. If the initial amounit of Xenon
destroyed is greater than that created directly, the total amount is reduced
below the equilibrium level, and the flux will tend to increase. If enough
Yenon is produced through Iodine decay to replenish the equilibrium level,
more neutrons will be absorbed, and the flux will decrease. Depending on
the relative strength of the competing process, the flux will increazse with
time (umstable), return to the equilibrium level (stable), or oscillate

continuously (neutrally stable).

The major part of this thesis will be devoted to deriving the
relations between equilibrium flux and reactor parameters that must hold

t0 ensure linear stabiliiy.

There are other feedback mechanisms in a reactor besides Xenon
feedback. These are usually the result of temperature effects caused by
changes in the power level, since all commercial reactors are designed
t0 have negative reactivity feedback. This feedback tends to stebilize
the system sgainst power changes large enough Lo adversely affect the

operation,



A negative reactivity coefficient in a thermal reactor may be caused by:

I ) A decrease in the density of the moderator as the temperature
increases.

2 ) A change in absorption cross section of fuel or moderator.

3 ) A change in leakage due to a change in internal geometry and
reflector density or flux spectrum.

4 ) The JDoppler effect in fuel, i.e., as the temperature increases,

238
the resonances of U for absorption of neutrons brozdens.

2. SCOPE

In the first part of the thesis theory of Huclear Reactor
Dynemics is given and equations describing the time behaviour of the reactor
are derived, Application of these equations to Asymptotic Stability in
the Large is given in chapter 3. 1In chapter 4 Linear Stability Analysis
is presented for several cases and the stability conditions are derived.
In chapter 5 point kinetics equations are solved using different techniques.

Results, plots and discussions are subsequently given.



CHAPTER II

THEORY

I. KISBETICE EQUATICHS

Reactor Dynamics is concerned with the time behaviour of the
neutron population in a reactor whose nuclear and geometric properties
may vary in time. The first step in reactor dynamics is to introduce
the macroscopic physical quantities and the dynamical variables that
describe the medium and the neutron population in sufficient detail.

Angular density in terms of the lethargy u and the unit vector

a s namely ,n(;,u,g,t), where u is a measure of the kinetic energy of the
neutron in the lethargy scale (u=log(E/E), where E,is a reference energy
such that there are no neutrons with E)E), and = is the unit vector
denoting the direction of motion of the neutron (wa= v/v ).

How we may write the transporit equation in a multiplying

medivms



Qn(E,u,{Z_:f-) :
- :Q-';V'l"\u)n(z’u’ﬁ:t) _Z(Eﬂlyt) V(u)n(_r_yui;ﬂ_’t) +
21t

+f e faa {3 el a0 - et

+3(zyub-ou, 0 -0 ,t)} »(d)n(z,wya)t)

+ 5(zswr2,t) +2—6: 7\1.[(2- (u)/4r<)]ci (z,t) (2.1)

where, f,(u) is the lethargy distribution of delayed neutrons of the i
grouy; fj(u) the lethargy distiribution of the prompt fission neutrons

resulting from the j“’fissile nucleus and both are normalized +to unity as,

o>

fd.u =1, 8= 0,T,.00,6
5 :
Ci(ggt) is the concentration of the delayed neutron precursors per unit
volume at point r, at time i which always decay by emitting s delayed
neutron; )»’(u) is the mean number of neutrons per fission in nucleus of
type j induced by a neutron having lethargy-u;j{iﬁg,ﬁ%t) is the macroscopic
fission cross section of j +type nucleus for neutrons having lethargy ),
at point r, at time t; 2;!£,u9—»u,g}ajﬂ,t) is the macioscopic scatiering
cross section of jth type nucleus at point x, for neutrons entering the
collision with lethargy u, direction ' and exiting with u,2. A is the
i*king delayed neutron precursor decay constants &nd!% is the number of

precursors per fission of nucleus type j.



In this eguabtion we have allowed the possibility of having
more than one kind of fuel isotope, and distinguished them by the
superscript j. Equation states neutron balance in an infinitesimal
element of volume in the phase space (%,¥) = (F,u,3).

The term -2.Vo(u)n(r,u,2,t) in eq. (2.I) denotes the
removal of neutrons due to streaming, and is equal to the difference
between the number of neutrons entering and emerging per second from
the volume element drdudd at (r,u,2).

The second term is the number of neutrons in drdudd that
suffer a collision of any kind per second.,

The third term is the total number of fissionneutrons produced
in drdudd per second by fission events in dr at r in the configuration
space where the fissions are induced by neutrons of all energies.

The fourth term is equal to the number of neutrons that are
scattered into dudd at u per second in scattering events in configuration
space at all energies.

The fifth term, S(gju,g,t)d}dudn. denotes the number of neutrons
introduced into dr at z and dudd at u by external neutron sources.

Finally the last term is the number of delayed neutrons emitied
per seceond in &} at r by the delayed neutron precursors of all types

3
which are formed in fission events in dr in the past.

The second equation represents the balance relations for ihe

precursors in an element of volume in the configuration space.



aci (,r,.st)

2%

= -lici (E,t) +f~du|iz Fjvi(u) v(u) Z{(E;u,t)n(z,u,t)}

b

where we have defined,

n (z,u,t) = jdan (_r_,u,x_l,'ﬁ)

which we refer to as the 'scaler" neutron densitiy.

25

BEACTOR KINWETICS EQUATIONS WITH FEEDBACK

Kinetics equations in operator form are,

on s
= £,C; + S 2.3
. H{n] n'+;§;2n .C, + ( a)
2 (£C)
——=— = Mnjn -4f£,C;  , i=lyss.,6 (2.3 b)
ot
where, H=1L + M,
and
L = —a.Vor(u) - Z(zaut)o(d) + [ du'[ a3 [ 5() 3z sumou, o 2,4 )]
= s ldw) oy .3._&5,]
M, = aw' | a& {r(d) v (u)(I~-p )2 (z,v,t)
Sl foof s oo rtas]
M=) {%%l [ du’]aza [ (g Y (4) v (4) Z:(;’_,u',t)ﬂ

I0

(2.2)
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The physical meaning of these operators can be deduced from
their definitions : L describes the losses from the differential volume
drau in phase space due to leakage, absorption and scattering and also the
gains in drdu as 2 result of scatterings from all other u,n into-A ,u
at position x. M, determines the rate of production of prompt neutrons
when it operates on the angular density; it can be called the prompd
neutron production operator. Similarly, I, can be called the delayed
neutron precurscr-production operator.

Finally H describes neutrons in a multiplying medium in the absence
of delayed neutrons; it is called the Boltzmamoperator. Note that the
operators “H - -and M; depend on the composition of the medium, and describe
the medium completely, so are functionals of n. They are, in general,
time dependent because the cross sections are functions of time both due
to changes in weighted microscopic cross sections resulting from spectral
shifts in the assumed Maxwell-Boltzmanndistribution of the nuclear
velocities with temperature.

How consider a stationary reference reactor supporting a neutron
distribution characterized by No(g,u,ig. Since a reactor is never truly:
stationary when the burn-up and build-up of the various nuclear species
are included, we must either assume that the reference reactor is operated
at zero power level, and hence free from all feedback effects, or ignore
the long-term changes in the nuclear species due to burn-up and build-up
of fission product isotopes by irradiation. In the first case, the reference

reactor is eritical in the absence of feedback effects, and represents



Iz

a cold, clean reactor free from fission products.

In the second case, the reference reactor is critical in the
presence of all the feedback effects except for those arising from the
depletion of the fuel; the effects of the burnable poisons, such as Xéwf
are still included. It is more realistic to visualize the reference reactor
&8 in the second case, because then the reference distribution To{z,us2)
can be chosen as the steady~state distribution in the actual reactor at
the operating power level before the perturbations are introduced.

Since the analysis based on the latter interpretation of No(g,u,ﬁ) is

better justified than choosing it as the steady-state distribution in a

reactor critical in the absence of feedback effects.

The steady-state distibution N, (r,u,o) can be obtained in principle
by solving the time independent set of coupled nonlinear integrodifferential
equations derived. In operator form N,(r,u,a) satisfies the following

equation 3

A [w]n=o0 | (2.4)

which is obtained from (2.3) by setting the time derivatives equal to zero

and eliminating G, (r) . Here M_is defined by

6
H.=H+) M=L+MN (2.5)
ix1

where I is the modified multiplication operator :

o2 Y (5 @)/ [ fad |02 v ()] (2.5 )
d



I3

in which £9(u) is defined by
@ = () £ SEr, )
MDINJ = -0 Vo) - v (zmu, ) +]du’fd_3_"u(u') {Zs(z,d-»u,___@’. a;3[i))

L[ /e ] o) e | (2.6)

J

Note that the operator }C[N,] has the same structure as the
steady~state Boltzmann operator. The presence of feedback modifies only
the energy and space dependencies of the cross sections in the expression

of }[N,] but does not affect its form.

Z;I POiéfsT KINETICS APPROXIMATION [3 ]

In order to obtain appropriaste point kinetiecs equations with
feedback, we partition the angular neutron density n(g,u,g,t) into a shape

function @(zr,u,0,t) and a time function P(t) such that

n(.Ii’u’ﬂf’t) = P(t) ¢(_r_au9-‘_7;at> (2,10)

(s¢)
s + > £
Assuming N, (z,u,2) and §_(z,u,n) to be known functions of r,u

(%) Please see Appendix.2,Ifor the definition of and the method of solution

+
for the adjoint or the importance function N,(z,u,2),.



i4

and o 3 multiply (2.10) by N: and integra.te over r,u and Q. ;

9¢(£,u,£_).,’t) QP('t) ¢
P(t) + ¢<£’u’ﬁ’t) ot - P(t)H¢(£9u,£3t) +Z’;\-fi C,+ 8 (2.11)
21t i "
9 (f: Cz' )
—T = P(t) M B(z,u,0,t) - A,£,C, (2.12)

and, by using Dirac notation,

2P
(|8 —— + P jt i

> =2 (Wnlg) +§;\{<r§ e o, b+ (s (2.13)

2 +
(1 £, (2.14)

£ c£>= P(t) <i\f]rfg|¢> - AW

We now impose a "normslization’ condition on the shape function

t0 ensure uniqueness, which we choose as,

d +
— (W) =0 (2.15)

Since N, (r,u,o) is proportional to the importance of neutrons
(see Appendix.2), <N:l § > is the total importance of neutrons in the

refervence reactor with a distribution function @(z,u,a,t).



L5

So, the shape function must be so chosen that the total importance in

the reference reactor will remain constant in time even though ﬁ(g,u,ﬁ,t)
itself may slowly vary in time, This'assures us that when we start working
with adjoint weighted neutron population in the form of P the multiplicative
potential of total number of neutrons as measured by total importance is

the same as in the actual core although we have no idea about the spatial

distribution of neutron population,

Now we may interpret the physical meaning of time function.

Multiplying both sides of (2.I0) by N., we find that

P(t) = <Njin> / <1qj ¢5> (2.16)
which states that P(t) is the ratio of the total importance of neutrons
with a distribution n(r,u,a,t) to the importance of those neutrons that
have a distribution @(r,us,a,t). The denominator of (2.I6) is comstant
in time, and can be scaled to unity,

TheniP(t) becomes the instantaneous value of the total importance
of the neutron population in the actual reactor which is necessary to
sustain a chain reaction in the reference reactor. Note that P(t) is not
the total number of neutrons in the reactor volume at time t. Then the

equations become,

2P & + N
(18— =20 |u]8) +) AL 5 6y + (i ]s ) (2.17 a)
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gi <fo,— Ci>= P(t) <N:|Mi\¢> -Ai<1\1:|f£ cz-> (2.17 b)

Now we may introduce the concept of perturbation, i.e., the deviations
of the reactor parameters of the actual reactor from those of the reference
reactor, defining a perturbation operator gyin] as

6
SH [n] S H[] +) Kn] -~ H,= Ln] + M[n] - H,

<=1

={ [n] -7 [N.]

or explicitly,

SH[n] = =o{u)S L(x,u,[n]) + fdu'fdg’ { Es(ggu'—«#u,_.c__z_. a,[n])

#3642t 1) | o) (2.18)

where é’Zj(_r_,u,[n]) measures the variations of the cross sections about

their reference values, i.e.,
$3,(zsu, n]) 22 (zows [0]) - Z; (Zowsme)

where the subscript j denotes a,f or s.

Substituting H[n] from (2.I8) into (2.I7),

OF ) = uelentp e 2 (RIS - PZ@Z’“"{J@

+i1£\/1‘3:lfaci> + {8y (2.19)



I7

Recalling that <N:| M°4,¢> = <j{:1\ﬂ¢ » =0 for any function § with the

proper boundary conditions,

aa;z ) <N§§}? |8) ) Z'<1?:]If1;l¢> ;P(t) +i3- <N:~+f,4 ¢, . <N{|S> (2.20)
CH[P ) gy o (NN E ) (W18

Now the desired form of the kinetics equations become,

@ / at = [(¢(t) -p) /j]P(t) +§’/\€(~§i(t) + (1) (2.21 )

ac;/ at = (B/4) P(s) - AC(t) (2.21 b)
with the following definitions :
Reactivity :+ p /L= (Weuml|g)y / (7|8 (2.22 a)
Effective delayed neutron fraction

p/A= {mlg )y / (|8 (2.22 b)
B = Z 5

affective concentration of delayed neutron precursors :

G =MLy / (xlg) (2.22 ¢)
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Bffective source

s

1

X

HMean prompt neutron generation time :

Sy/{x|g > (2.22 a)

L =gy /(5 u) gy (2.22 e)

M(t) was defined in eq. (2.5 a)

Equation (2,18) represents the difference between the nuclear
properties of the reference»reactor at steady-state and those of the actual
reactor at time t, with feedback effects being included in both cases.
this difference may be due to the changes in the cross sections resulting
from feedback effects, or due to the changes introduced externally in the
atomic composition of the reactor, €.8.y by moving the control rods.

So we can separate the reactivity into three parts @

p /A= (S /L) + (Sp /L) + (Sp /L) (2.23)
where,

So /1= (WIZexlon /oY 18y / (W 1gY  (2.23 a)

Sp /L= (| ZeW, U/ 20, ) [8) / (W18 (2.23 b)

Sp /4= (| S (u/on, )| g/ {w|g) (2.23 ¢)

where ¥ (r) and T,(x) are the equilibrium concentration of the i th
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nucleus and the local temperature at r, respectively, énd §H, is defined
in equation (2.18). +the terms in (2.23) represent, respectively, the
external reactivity changes, reactivity feedback due to changes in atomic

concentrations, and reactivity feedback due to temperature variations.

Now the problem is to choose the shape function PH(z,u,0)
appropriately. We use the first-order perturbation approximation[}].
This the crudest, and the simplest, approximation which zssumes the shape
to be proportional to the steady-state distribution H,(z,u,2) in the
critical reference reactor. If we denote the proportionality constant by

( 1/7,), this approximation implies,

P(t)
n(}_‘.susﬂst) = N, (Esuz'{_)-) (2.24)
P,

where N,(z,u,n) is the angular neutron density at equilibrium, Thus the

normalization condition (d/dt) <ﬂ:¢>:= 0 is automatically satisfied.

It is to be noted that the reactivity p can be expressed as the
superposition of the external and feedback reactivities only in the

first—order perturbation theory.

The point kinetics equations in the presence of feedback can be
Py q &

writien as,

P() =[(nggt> +Sg}[p]-—(3') %ﬂ}?(t) +2:?\§,-(t) + 8(t) (2.25 a)

G (1) = (f/0) B() - AT, 11,006 (2.25 v)
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Defining C,= ([//3 ) 51.; and recalling a{.:@JP

il

(£/p) T (8) = (&/p) B(¥) -2 (L/B) T, (2.26 a)

'c'?z.(t) a,P(t) -2.C, i=lyees,6 (2.26 b)

3. FEBDBACK MODELS

3.1 DESCRIPTION OF FEEDBACK

& reactor with feedback can be represented, in the absence of

external sources, by a block diagram,

NEUTRON KINETICS

Sk, () i
ext
= sum vET plt) = o (k) | NCREMENTAL
EXTERNAL vREHCT’V’T‘/ .
REACTIVITY

FEEDBACK

: ko[ ]

ERCTIVITY

FEEDRRck

MECHANISM

FPigure-~2 Block diagram of a reactor with feedback.



Here p(t) is the incremental power, i.e., p(t) = P(t) - P, and S%[p]
is the feedback functional expressed in terms of the incremental power
so that 8k4(o) = O,

Reactivity feedback can be represented by,
k[P] = k[R+p] = kor ) (B.) + 8k [p] + 5k,,, (2.26)

where Skf[P] measures the feedback reactivity from its value at equilibrium,
and Skagt) measures the incremental reactivity from its constant positive
value k., at equilibrium. k, just compensates the equilibrium feedback

reactiviity.

k_+ k¥( P) = 0 (2.27)

fiow it is 1o be noted that the reactivity can be expressed as
the superposition of the external and feedback reactivities only in the
first-order perturbation theory. In general, an external change in atomic
concentration will affect not only the external reactivity but also the
feedback reactivity as a result of the changes in the shape function.

Hence the input reactivity is given by,

o/p =k (t)=38k(t) + §k[p] (2.28)

To find the output, i.e., incremental power p(t) = p[k] which is a

functional, one has to solve the point kinetics equations,



22

(f/p) 3

i

3
(k-1)P+) Xg (2.29 a)

e
1]

aP - AC; i=l,...46 (2.29 b)

Bguilibrium values can be found as,

6
P=0 3 (1-k)EB=) Ac, (2.30)
I=4
¢,=0 3 a., P = A,C,
s 4
Since Sla, = 1 ; P, =) AC,,
Z=1 ie1
Then equetion (2.30) becomes
(1-k)B=5 which implies k=0
Writing departures from equilibrium,
P=P+pP C,=C +c,
Point kinetics equations becomes
e’ [
(£/p) = (k1) (B+p) +J,AC,, + 3 20, (2.31)

it

k(Po+p) - Po’- P + Pv.)+ i 2':«(“'{

i1

(0/p) 8

K(t) (B.42) - D +5 A0

7

(/¢)®

i

On the other hand, the equation for the deviation of the delayed neutron

precursoy concentration becomes,
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¢;=a,p - AC; i=l,..,6 (2.32)
c,+ A;¢;= a,p
Fultiplying both sides with the integration factor exp ()%t ) we obtain

d
dt

(c)=&ap

integrating over 0 to t,

t '
2t c,= ¢ = -[ a, p(t*) & gy
3

Since the deviations from equilibrium c,= 0 for +=0

b s
o (1) =f ap(t) M) g (2.33)

e}

Going with this equation back to the differential equation describing power

s 4 9
(£/6) = k(1) (B.42) - p(x) +)aaf o M) pan) av
1 O
or %, '
(1/p) 3 = k@) @) +[S a0 o) avr () (2:34)
O =1
let t=t'=0 , 1'= t-u snd  di'= —=du

(¢

L o
(£/p) b =k(t) (B+p) + [ 5 Aae™ p(t-u) au - p(t)

14
<, —Au a
If we introduce D(u) =) Aa,; e e (2.35)
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2]

Since f D(u) du = 1
[¢]
t )
(L/f) b =k(t) @+) + [ Dlu) p(t-u) au - p(t) [ D(w) du
' (o] o]
(L/p) b = k() (®42) + [ D(w) [p(t-u) - p(+) ] cu (2.36)
(o}

because p(t-u) =0 for udt .

3.2 FEEDBACK FUNCTIONAL

3,2,1 MATHEMATICAL PROPERTIES OF FURCTIONALS

Recall that the input reactivity is

k(t) =8k, (t) + 8k [p] ' (2.37)

There are three important properties of feedback functionals [4] :
a ) Invariance @ Skg[p] is invariant under a time translation

when the feedback parameters are not explicit functions of time. Mathematically,
Sk (t=t,) = Sygg[p(t«to)] (2.38)

b ) Causality 3 The feedback reactivity 8k¥(t) at a time t is

uniquely determined if p(t) is known only in the interval (=00, t )a
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c ) Stability The feedback reactivity is bounded for any

bounded input.

Time invariant, causal functional may be represented by a power

series as follows [4 ]:

LI, t t
Si[p] =) [ faw, e [Tan, 6 (bt p(a) () (2039

Z=1 -0 - Py

Since -only the "analytic functions" can be represented by a power series,
we shall assume that the feedback functionals are analytic.,
When the power variations are sufficiently small, the functional

power—-series expansion can be terminated after the first term, i.e.,

-t ol
§k.[p] = L du G(t=u) plu) = 6[ du G(u) p(t-u) (2.40)

This kind of functional is called linear functional and the corresponding
feedback mechanism is called linear, so the function G(t) is referred to

as the " linear feedback kernel " .

Physically G(t) is the reactivity at >0 due to a unit energy
released at t=0, when the feedback is linear. When the stability and

causality conditions are applied

G(t) =0 for £ <0 and.

flc;(t)l it (2.40 a)

&)
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Then in the case of a linear feedback the point kinetics equations are

given by
(L/p) ¥ ={5keu+f“:1u G(u) [P(t-—u) - ?PO_J } P
O

+ jw[P(t-u) - P(t)jl D(w) + s (L/p) (2.41)

¢]

In order to understand the physical implication of G(u), guppose
that we operate the reactor at a constant power level P, until t=0, in
the absence of external sources. At time 1=0 we introduce a constant
reactivity 8k,.(t) = §k, and reactor power increases to another constant
power level Bf.

Then from equation (2.41) with p = 0 gives
Sk, + f du G{w) [P;(t—u) - P,] =0
o
or Sk, =-8( B -F,) (2.42)

where we have introduced
¥ = J G(u) du (2.43)
o
Thus the incremental change in the steady~-state power level is proporiional
to the incremental change in the external reactivity. The proporticnality

constant ¥ is called the " power " or 7 tempersture coefficient ¥ of

reactivity.



27

This point kinetics functional relates the reactor power p(t)
to the reactivity insertion k(t). If we specify the reactivity insertion
in & reactor, we can find the output, incremental power p(t). Reactivity
insertion as can be achieved externally by moving control rods, also can

be caused by poison or temperature feedback.

5e3 TEMPERATURE FEZDBACK

The behaviour of the reactor is governed by both the temperature
feedback and the build-up and burn-up of higher cross section fission
product poisons, e€.8£. Xems, in time intervals of the order of hours.
Since the thermal time constants . are much less than those of Xe and 1"°
( 9,2 and 6.7 hr., respectively ), the temperature feedback can be treated
in the prompt power coefficient of reactivity , ¥. Stability considerations

require ¥ to have negative sign.

oU

f du p(t=u) G(u) p(t) jwdu G(u)

0 o}

e

8k [p]

¥ p(t) (2.44)

1]
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364 LENON FEEDBACK

In order to establish the functional relationship between Xe

i 3 *» - [ > 435
and p(t), we need the equations desribing the time behaviour of I and

135

Xe 3
2T /2t = = AT + ¥, 6, (x)f(z,t) (2.45)
oXe /9t = AT + 7 & (2)(z,t) ~aXe(z) - Xe(z) & ()B(z,t) (2.46)

o . 135 N 135 .
where Xe and I are the Xe and I concentrations per fuel atom, Yy
and y, their yields, Qkand A their decay constants,
In order to use space-independent model we integrate ihese

equations over the reactor volume, and introduce

xe(t) = ( 1/V) i ar Xe(z,t) (2.47)
I(t) = (U7 ) | dr I(z) (2.48)

3

o [ [ & (2049)

o

J

v [ % g | { | e [[] e n >]} (2.50)

It proves convinient to choose P, in Q(g,t)ﬁvEP(t)/gJ #(xr) as the

2
]

Q
|
i

average fiux § defined by,

g =(yv) [ & g (2.51)



with this choise, P(t) has the dimensions of flux.

Using equations 47,48,49,50 and 51 we obtain the following lumped~

parameter description,

dr(t)/at = =AI(t) + yIG;P(t)

(2.52)

dXe(t)/at

]

AL(E) + 3 6, P(t) - A Xe(t) - Xe(t) g, B(t) (2.53)

In obtaining the last term in 53, we have assumed that Xe(r,t) as

well as f(z,t) is separable in time and space, that is
(1/v) L dr Xe(z,t) 6, (x) B(z,t) = g Xe(t) P(t) (2.54)
How we may express the Xenon feedback funciional as,
sk [p] = o<x€g)<:e(tv) (2.55)
where CX&eis the average Xenon reactivity coefficient defined by,
K= = % [ (pes) (2.56)

where ¢ is a number converting the local Xenon absorpiion per fission to

overall reactivity, [ the fractiorn of delayed neutrons.

As a result, the eguations desecribing the time behaviour of a

o o . - (%)
reactor in the presence of Xenon feedback are compiled below &

() Power coefficient of reactivity is defined as -~ 7.
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(2/p) P =[5km(t) - gXe /(cop) - xP]P - P +§‘:9\ic{+ s(£/p)  (2.57 a)

él_z a,p - Aici (2057 b)
fe:xGEP-(AX+6;P)Xe+AII (2.57 ¢)
i;ylc;P- A1 (2.57 4)

where the various parameters are as defined before.

Since the reactor power is proportional to flux $(t) in the
critical reactor and they are of the same dimensions in our equations,
it is more comvenient to consider the symbol @(t) instead of P(t)
just for simplicity. The kinetic equaitions with some manipulations

becomes,
. =
I6 = [4;-{3 - X/ (c o;) - x;zf]¢+($2_lzici+ st
Z=9
Introducing a new variable,

D. = @Cz.:./f:;.

?

the precursor concentration equation becomes, noting a.= f3 / i
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kow the kinetics equations for future reference, without

external sources are

(8 = [smp-gre /) -5 |5 + Lan, (259 =)
D, = {8~ A1, (2.59 b)
Xe =y gf- (a+qf)Xe+Al (2.59%)
I =y 6f- 21 (2.59 @)

Also note the integro-differential form of the point reactor kinetics

equation for future reference,

- (= 2]

L4 =g [0)] (L4404 j (8- - p(1) | D) | (2.60)




CHAPTER 1I1II

ASYMPTOTIC STABILITY ANALYSIS

1s DEFINITION OF ASYMPTOTIC STABILITY IN THE LARGE

In this section we will investigate ithe region of linear stability
in which the Xenon oscillations are always damped for any initial perturbation.
We are thus interested in criteria sufficient for asymptotic stability in

the large (£4.S.L.).

Assume that the reactor becomes autonomous at t=0. The behaviour
of the flux for t> 0 is described by the kinetic eguation of a stationary

point reactor with an arbitrary feedback. Recalling,

.

Lg =p[s®)] @+ +j[ (t=u) = #(¢) | D) e (3.)

where { iz the prompt neutron generation itime., D("c) the delayed
neutron distribution kernel, i.e. D{(1) =§:/’li (Si[exp(-«,\it)] s where (3,
and /'li are the delayed neutron fractions az;gi'the decay constants, 150 and
#(+) the equilibrium, and incremental flux, and finally P, [Qﬁ(t)] the
feedback functional representing the incremental feedback reactivity

satisfying Ef [O] = 0 .-
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Thus it is assumed that the reactor is critical at time t=0,
and then an arbitrary perturbation is applied i.e. some regctivity is inserted
into the reactor; and the conditions for decaying incremental flux @H(t)
are investigated for subsequent times. The behaviour of @(t) for t>0
and for t---<o in particular depends on the entire past history of the

reactor due to feedback functional ﬂ_[ﬂ(t)] .

25 GOVERNING HQUATIONS

The equations describing the time behaviour of a reactor in the
presence of Xenon feedback are compiled below, neglecting delayed neutrons

and defining the power coefficient of reactivity as =1V,

G XP

Lgt = (8 - ———=¥gr)p (3.2)
¢ o

X' = Lo P - AX - X+ AT (3.3)

].:' =V, G.;jﬂ' - A0 (3-4)

Equilibrium values can be found as follows :

. g, Xo

ﬁ? = O H QD"’ - X Q‘ = 0 (395)
o oo

Xt =0 v, 68 - (A+ G )X+ I =0  (3.6)

Pa0 s B -ATI=0 (5.7)



Bg. (3.7) gives I) = ——%— (3.8)

Inserting this into eq. (3.6) and solving for Xt

(v, +y, ) & 8; Y 6
X! = S = - Y (3_9)
AX+ 6;¢o' 6;

where Y is defined as,

Y=60"/(A+rGc8 ) and  y =y +7, (3.10)
Finally inserting X' into eq. (3.5)

S=yY/c+t g (3.11)

On the other hand the equality for Y gives ,

B = AT/ (o (1)) (5.12)
Now dividing equations 5,6,7 by Qf,Xi, I!, &zrespectively and defining

/it =1, @ X/X! =X

, P/g =9 gives,

I=y6f /I-ATI=2(F-1) (3.13 a)

I

where we inserted for I .

§;=wA}i+§:<(>:c';Z§“/K1»G“x}i¢ﬂo' +AT I/ K (3.13 D)

X

where we assuned y;g 0.



Here the third term, after inserting for Q' y becomes
o, frxp=ayxg/(1-Y)

and the fourth term, after inserting for I =y, s g /A, end

e

X =y Y / G ¥,6. Y / &; becomes,

AT I v, 6.8 v, 6. ¥ I G;
i g i T Sot I
X ' Ar S5 Y °
and using B! =AY/ (5 (1-Y)) gives,

AIIN/ X = A1/ (1-Y)

Hence,

A Y X+ AL _ Ay {I - X l>Y ($-1) +'1J (3.14)

x 1-Y 1Y 1-Y

Lo= (& -Gxx/(cq)-¥ga)o
simply inserting for X! gives,

Lg= (6-yYx/c-S68 )p

=(y¥/c) [»X-%élc/y‘l-fcf{éﬁj/(yl’) } g

r Y &ac c ¥
- [hxerepEa - ._»-;/J;zw};é

vy %
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Now if we denote ¢ ¥ @) / (y Y ) =R then from eq. (3.12)

&:y".f/c-s—)fjé:
5, ¢ 2 ¥
-1 = ' = R
vy vY °
Thus, .
I $=(yY¥/c)(1-X+R=-Rg)P

L $=(y¥/e)(1-X+R(1=-§))0

Restating the unit equilibrium equations,

I=A(f=-1) (3.15)
. Al . _ .
X=1__Y{1-A[Y(¢ 1)+1J} (3.16)

L= X [1—X+R(1-¢)]¢ (3.17)

with equilibrium X =1 =0 =1,

o

On the other hand the kinetics egquations with z temperaturs

reactivity coefficient X‘areg without delayed neutrons,

L9

i

(6. -qx/(eg)-¥d) § (3.18)

;Z;_—,;,rxe;;é—/’tx}é«-G;Xﬁ+Z_,I (3.19)



i=y o;;ﬁ - 2,1 (3.20)

The following transformation, given by Smets's [2] , casts these
equations in a more compact form which is often preferred in the stability

analysis of Xenon-controlled nuclear reactors.

s X A I
- ¢ 6 e 6 (A,~2,)

Differentiate % and eliminate § , X and I

. . X Ay I
4= = -
A -~ o ¢ 5 (2,-4,)
. & X 1 ) .
zz[s,,acejF —xﬁ]gf—(}s}[%s‘cﬁ-;\xx-gxg

Az
AL - 0 -2l
¥ * :] CG:F(Al"'Ax) [y;{ﬁ ! J

. G X Y, G, X Ar OF
Zz{g"-’ = - cl * ;o'- ng(r;\j;\) g
¢ G £ Y
AKX Az I Ar I

+
i
o4,
ey

P

4
¢ o ¢ o c GE(AI-A,()

put the value of X /(co;) =4f-2,1/ (¢ 6;()\:—-/\&)) - %

2

éz[&_ Vo Yz As +1A,Jﬁ~3’ﬁ

c c (A~ A
A A
_ A:l [1 + X - x J - A‘Z
¢ % A= Ay Ar -2k



Hence,

where

where

2= af -2,2 -2 §° (3.21)
az= 5:)+ /‘/"Ax" Ix _ Az S
c e (A~-A29
. o, As I
jg—(go'@zgﬁ+ CG}(A;?\X) +26-¥f) g
L= (5402401 -uxf)f (3.22)
K= ¥+ U i =26/ (e 6 (A7R))

Egquilibrium values are 3

Ag

=0 ; S’O-J—G"XZO+0<IID-=D<{_{Z€=O
Z =0 5 af-Ag-%f=0

Expand equations (21) and (22) about equilibrium as follows,

ﬁZ_é-{-g H Z=Z°+Z

L(F+8)

Rl
[
4
b=t
]
o
g

(84 6,2,+6,2z + I +Xy aoejcé—o({ﬁj (B+8)

BN
e
!

(o 240y -ci8) (F+8) (3.23)

b2 )= af+af-AL-Az- #(ﬁj‘* 208 +8)

28
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substitute the equilibrium values,

where

and

Hence 3

with

so that,

z=af-Az-3p" (3.24)

& = 3,1— 2‘6‘_¢;

2

¥ =y cf-Ay (3.25)

L f=p[B0)] @) g P ] =sa vy o
Z+Az= aff-¥g"

t

2(1) & - am [ [o80) - ¥ ol | &

z(t) = 0 for %<0  Tbecause Z(t) = Z,

o

%(t) =‘L [alﬁ(u) - Z‘;éz(u)} exp |:- Q\X(t-—u)] du (3.26)

y(t) = fo y, G #lu) exp - [Al(t—u)J du (3.27)

o

[,@u)}s { [ 2,0 [~ 2, (t=w) [+t y, & exp[- 2 (t-u)] - cxg’(t)szs(u:» au
t

- (o ¥ em[-AL0-0)] fla) @

g
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Kow we can state a sufficient condition for the isymptotic

Stability in the Large obtained by AKGASU and DALFES [17] .
%
1e 1= [ o [F)] 60 et <o
-0

is satisfied for all t and for §(t), then the equilibrium state @(t) =0
of the stationary reactor, which is assumed t0 be unique, is asympiotically

stable.

Swstituting f, [gs(t)] from above,

% u u o, t u 2
I= j du[.(gs(u)dv K(u=v)g(u )“D(.pj B(u) duj—g; \&j du p(u) J dv ;é(v)exp[—,lx(u—v)}
- L -0 - o (3.28)
where K(t) =Ga,exp(-At) +o( Y, 6 exp(~-2_t) (3.29)

Our task is now to determine sufficient conditions unaer which
(3.28) will be non-positive for all t30 and for all @(t). When ¥ <0
there are itwo equilibrium states although only one equilibrium state exists
when ¥ 70, as shown by Chernick [7 ], Since global asymp‘botic; stability
requires a unigue equilibrium state as a necessary condition, we shall

consider only the case of X' )0,

In eq. (3.28) the third term, recelling -f(t){ . at 2ll times

t U
-5y flu) @ j

- 00

- A, (a=v) o 10 b du v e—Ax(u-V)
¢ ;é()0\<6:ng J’ B(v) dw

- o0

let a-v= v
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change the order of integration and let u -v'= u'

o«

== & b"ﬁf do’ euaxv, f”vdu' ;62(11')
o oo
=Y + 2
é"(":Xﬁof dv'eﬂ"Ldu B(u)

ueing this to replace the third term in (%.28), we find

u t 2
I <‘f3 du J dv K{u-v) g(u) () - (0(4.“‘ “%’i'{'ﬁ) _L Hlu) du

or

* " Bo &
1< [ du J dvf(u) ¢('D){K(u-1r) - (D&_ %8

. ) g(u-v)} (3.31)

jntroduce here unit step function h(t),

i t - ¥
- [ [ s ;zs(v){ a2 [K(o) = - L2 5 (o) }
tet o(t) = 5() [ ) - (ot £52) 00 (5.32)
and g(t) = 211( 5 G(iw) eIt ay

e ad

where G(iw) is the Fourier transform of g(t) i.e.,
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=)

G(iw) = ( g(t) ¢V L
= f h(t) X' () ¢V at = f k(1) e Wt gt
. 2
= E'(iw)

K' is the one sided Laplace transform of K'(%t).

% % o .
1< f du f dv f(u) gv) —h—éll;—vl- J K (iw) elw(u-v) dw

- 211( ‘g’i’(iw) Uj ou B(a) eiqu[ ‘f av () e‘i‘”} ou
= j; lwﬁe [E’(iw)] ]-g du B(u) o=t [2 é 0 (3.33)

This condition will hold if Re {f{_’(iw)J { 0 for all w or, since

— 6, @, Ky ¥ G

K(s) = s + Y from eq. (%.29)
y’( A: Vz
& = - X = go - - -
where S a =2 _ﬁo +49; = e o) 2v 4

neglecting prompt neutron lifetime as JEN i Y =0,

A ¥ A, G
a:é’vem%mr"m\wi"@ﬁu 3 and x, = LroX
2~ %o c (A=A o %(A:m,\x)
- oy I A T A4 {
S0, X(s) = {5;-“3“—?——*23‘»@1+ z . (3.34)
A+ s c(A- ) §boe(a-a) agss
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inserting the value §, from eq. (3.11) and noting $f=yYR/ ¢

K(s)

vy *’\: - 1 1 %% Y2 1
G{-—-—-+Kj5—-———-—————y'/ 2% } +A Y

= : A - 239,
“Le c(A.~2) Ar s e (A-A) A+ s
v { Az 1
= G, = [Y(luR) S } ’ +
G2 laes  (A-4) A+
= y Y (1-R P 1
¢ A+ s Ar = A, Ajts A +s
y Y (1-R) A
= G { - - (5.35)
c A+ s (a+s)(A+s)
K'(s)= &(s) mo<¥+ 3 5%/ A,
multiplying both sides with ¢ A/ y ©F
_(_..'()cﬂx Y (1-R) Az ( g ;% )c/’\x
E' (s = - - -
¥y o x| A+ 8 (At s)(A+ 8) f Ax y Oy
e Ay
now x % ¥ and ————=R (1 -Y) from definitions of ff and R.
{ y %
g e
also, e = BY
y
. c A Y (1-R Az 1 .
S0, K'(s) = [Y (-R) - - J«- R (1-2Y)
NS "L A+ 8 (A,+ 8)( A+ s)
poy=3 si+ B S L A: Ax C
= (3.37)

s*+ (A+2) s +A_ A,
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where a=R(1=-2Y), b=Y(1=-R8)
B=Ab~-(A+2)a , C=1+a=->b=(1~Y)(1+R)
The condition for positivity Re [K'(iw)} o leads to
(aw=2AAC )( ~w'+A2,) +w'B (A+4) { © (3.38)
or, aw - [;\Iaxa +A4,A0 + (A +2)(Ab - (A+4) & )Jwﬂ ;\1,\10 >/ 0

replacing b by 1l+a-C in the coefficient of w ;

A Ae + AA0 + (A+A)A+ (A+A)02 - (A+ Ax)xxc - (a7 Aj a

et Aso)]

2 2 2
50, awu[;\za + A0 - ALA+ Ax)} W+ A4, ¢ >/ 0 for all w
This inequality is satisfied if a0 , C>O0 and
2
"2 2 2 2
1 Aa+ A0 -A (A4 Ax)] £ 4rlac (3.39)

1) €= (1-Y)(1+R) O for all allowed values of Y,R
since 0P (e hence, 0¥ <1 and RY -1
2) a=nR{1l-2¢) >0 if 0{Y(1/2

%) ,\ia + ;\i(} “Ax( A+ XN) £ 2 }\lz'\,‘\/aC
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. 2
A5 + A0 = 2A,ANC < A, (A+4,)

AE ATy VA (asa)
a.VR (1-21) +2 V(1Y) (148) y Va,(a+4) (3.40)

Then there are no real roots and there is a double root for the equality.

Here the physicsl quantities are given as follows :

¥ =6.4 1077

A.=2.87 107°

A= 2.09 10°°
- 18

6‘;1‘ 500 10

c = 1»5

So we can plot f_ versus ¥ ,( Figure 3 ).
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3.  APPLICATION OF THE CRITERION PROPOSED BY &NGinoL, T.B. [1]

The criterion proposed by Enginol, T.B. for the asymptotic

stability of nuclear reactors is as follows :[1]

Re[}{(iw)] Sy L 6;; ? i\x P £ o0

5.41
prage (3.41)
where the various parameters are as defined before,
Re | K(iw) R G;y[Y S - ]
‘.e lW - e » uad "
[ ] C Tar+ v (A+iw) (A +iw)
7 Y (-R) A A A - W) (3.42)
T oe )\i + w?

(a+ W J(X+ W)

where Yz%:é/(;\ﬁﬁﬁo) ’ R=c¥ g/ (yX)

Inserting this into eq. (3.41) and multiplying with cA/ ( yg) gives,

Y (1-R)A,

z
20 (A - W) c ¥, 2%c A8
e wt (A4 w (A W) ¥y 6%

(At w)y

X C A 6\ C ﬁo
Noting that ————— = R (1-Y) and — - RY
b3
We obtain,
2 2z 1 A 2 2;\2
(1 A A - '1': z W ‘R Y
‘1(1 R)Axm kS X - i - ‘l - R(1==Y) O
AL+ wt (a+ v Yo+ w)

(A:ﬁ- W)
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Y(1-R) A, (3 W ) = AL AL+ A A, W = RO-T) (4% w*) (At W )=(a+ w') 2ARY L 0O
R (1-Y) w"+{t;xi+ A~ Y (At- 2/’\1,():[ R - YAi—Alﬂxiwz
‘ 2 kA 2 2
+ { [2 Y+l];\:/’lxR + ( 1-Y )AzA,}ZQ (3.43)

The form of which is a w9+ b w?+ c 2,0 .

It is clear that the satisfaction of this inequality is assured by the

imposition of the following conditions :

1) a >0 is satisfied already
2) c 0 is satisfied already
53) 1«0 must be satisfied
4) b -4sc {0 must be satisfied.

The third condition is equivalent to,

2 2 2 2 CXﬁa 1
,[}\:+A*~L(AI—2}\X)J --—-——~—-—y¥ -YAK-A1AK\<\0

(Y24t ) 7Y

[ae Ab-Y (A-2a5) ] e f

or, K:

N

and the fourth condition gives,

2

[2}5_ Ati(AZ-z‘;\:)} R—fYAi-AI}\X}

.,,{[21’",\12} AZQi}R+(l—Y)/’llﬁ\i}A‘;R(l-—Y) » o

This stability criterion is also plotted in figure - 3.
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4. DISCUSSION

It is seen from the plot of asymptotic stability of Xenon and
temperature controlled point reactors that, a reactor is asymptotically
stable against any arbitrary perturbation below the flux level of 10"°

n./(cm.sec.), and for the temperature resctivity coefficient, ¥ greater

A
than about =7.5 107" .

Now one may ask whether or not a point reactor could not be
asymptotically siable outside this region. A positive answer to this
guesiion is pessible. Recall thal we exemined the problem with the
assumption that the delayed neutrons are produced " instantaneously
with respect to Xenon, siﬁce time decay constants of delayed neutrons
are much shorter than that of Iiﬁsand Xems. So we did not considered
them with a time delay. W. Baran and X. Meyer [121 studied the effect
of delayed neutrons on the stability of a nuclear power reactor.

They give an example showing that stability without delayed neutrons

does not necessarily imply stability with delayed neutrons.

A sufficient conditiom for asymptotic stebiliiy of nuclear reactors
with arbitrary feedback is proposed by T.B. Enginol [l:[e This criterion
leads to determination of three distinct regions 3 the {irst one is ()

a region of asympitotic stability in the large, another one in which the
(

system certainly is not asymptotically in the 1arge§)and no such conclusion

can be derived for the third region(3).
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The stability criterion given by Enginol is found to be more general

than some previously proposed criteria. If the criterion proposed by
Akgasu and Dalfes[}?] is compared with the criterion proposed by Enginol,
it is seen that the stability regions are different partly due to the fact
that delayed neutrons are considered by the latter. Omitting the delayed
neutrons, the two criteria become somewhat similar[l].

Akcasu and Dalfes' criterion to define the wegion of global
asymptotic stability for equations (3.2),(3.3) and (3.4) has shown that
there are large areas in parameter space (¥ - £, ) which are known to be
lineaxly stable. But outside this region of A.5.L. criterion given by
Enginel cen penetrate into this parameier region and suggest that the
perturbations may have to be guite large for the system to show linear
instability. This possibility was investigated by L.H. Shotkin{}4], who
gives a general method for determining the bounde on allowable disturbances
in linearly siable systems, for which the system remains asymptotically
stable. It is based on transforming a set of non~linear differential
equations to a single equation that is valid within a given region of
equilibrium. It is applicable to systems with a fairly general non~linear

feedback as well as to systems that exhibit finite escape time.

One may refer to the paper by H.3. Smets[9J for asymptotic
stability in the lavge with delayed neutrons in addition to analysis of
Enginol[lja iccording to Smets, if a linear reactor system is asymptotically

stable when the delayed neutrons are neglected, then it is not necessarily
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asymptotically stable if the delayed neutrons are included in the model.

It should always be remembered that there is no " a priori "
reason vwhatsoever to believe that the delayed neutrons have a stabilizing
effect on this particular system. A converse generalization doe_s not
necessarily hold either., A linear numerical example showing that delayed
neutrons may, in fact, destabilize a reactor has been given by Baran and

Meyer [12] °



CHAPTER IV

LINEAR STABILITY ANALYSIS

The stability of any equilibrium state may depend on the magnitude
of the disﬁurbance, An equilibrium state may be unstable for large
perturbations even though it may be stable for small disturbances. In
the latter case, the transients of the dynamical variables involve small
departures from the original steady-state values, and can be adequately
described by the linearized kinetic equations. The stability of a reactor
for small disturbances is therefore itreaied by " linear " atability

technigues,

1. CHARACTERISTIC FUNCTION AKND LINBAR STABILITY

The question of sitability of & physical system is associated

with an equilibrium of an autonomous system.

A physical system is defined autonomous when the equations
describing its temporal behaviour are invariant under a itranslation of the
origin of time, In an autonomous system, all the changes take place

automatically as & response to the changes in the past, and none of the
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parameters characterizing the system can depend on time explicitly.
Hence, in an autonomous point reactor, the external reactivity and the

external sources are constant in time.

Suppose that the reactor is operated at the egquilibrium state
F, prior to t=0, and assume that an initial perturbation p(0) is introduced
at t=0. The temporal behaviour of the reactor for t >0 is governed by
equation (2.60), i.e.,

oL

(£/p) % = 8k, [p()] @ovp) + [ au[o(t-w) - p(t) | D) (4.1)

0

neglecting 9 compared to P, , and taking the value for 8}:{:[@] from

equation (2.40),

(£/p) =2 [ p(t-u) 6(w) du+ [ p(t-uw) D(w) au - p(s)  (4.2)
) ‘ <3
Recalling that, D(t=u) = i a ) Ai(t=u)
£ 3
(//{3) p(t) = Pojt p(t-u) Glu) du +j duZ aixie’ﬂi(t—u),p(w_@(t)
(e} e}

Z=1

Taking the Laplace transform, we obtiain

4
— 2y

_ 'y j
(£/p) o 5(s) = (L/p) B(0) = BB(s) H(e) + 3 === B(s) - B(s)

z=1
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6

(£/p) = %te) = (/) p(0) = 2,3(s) K(s) = 5 ) —=— B(o)

where H(s) is the Laplace transform of G(t), i.e.,

i(s) = f ¢St a(t) at (4.3)
(o]
6 -
defining Zzs) =8 [}§~+ ;E: -E:§;;T J

() = 5(e) [ 1/ 2(e) - (o)

p(s) / »lo) = 2(s) / ( 1~ B,H(s) %(s) ) (4.4)

where Z(s) is called zero~power transfer function and E(s) is called
the feedback transfer function which completely determines the linear

feedback mechanism.

Since G(%) must be of a stable linear system, eq. (2.40 a), it
is absolutely integrable, and the integral in (4.3) converges for all
Re )0 . Thus H(s) does not have any poles with positive or zero

real paris. Note that H(o) = ¥', power coefficient of reactivity.

Equation (4.4) indicates that the behaviour of p(t), t >0, is
determined by the singularities of p(s) on the complex s plane. These

singularities occur at the zeros of

q(s) = 1 - P.H(s) 2(s) (4.5)
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which is called "characteristic " equation.

Thus the problem of linear stability of an equilibrium state
is reduced to the problem of determining the sign of the real parts of
the roots of the characteristic equation. If even one of these roots
has a positive real part, then the reactor responce p(t) to an initial
disturbance p(0), will increase exponentially with time, and hence the
equilibrium state P, will be unstable. We thus conclude : A reactor
is linearly stable if the roots of the characteristic equation all have

negative real parts.

In the following sections, we shall obiain the characieristic
equation and discuss the necessary and sufficient conditions for all the
roots of the characteristic equation to have negative real parts. These
conditions are referred to as " linear stability criteria ", and enable
one to investigaile the question of stability of linear systems without

explicitly =solving the system egquations.
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2. LINBAR STABILITY ANALYSIS WITHOUT DELAYED NEUTRONS

2.T CHARACTERISTIC KQUATION

Starting peint kinetics equations are, as can be recalled from

previous chapters, neglecting the delayed neutrons;

it

Li= (8- (g /) - 48] 8 (46 2)

Xe

i

(76~ 6% ) f-AXe +AI (4.6 b)

fet o
i

v, - Al (4.6 ¢)

The terms have the same interpretations as before.

Equilibrium values can be found as follows;

=0 3 8,- (c; %e,/(c6;)) =¥ g =0 (4.7 a)
Xe =0 3 ( Y, 0.- S Xe,) - A de,+ A I,=0 (4.7 b)
I=0 ; &8 - A 1,=0 (4.7 ¢)

From these eguations equilibrium values are,

L:y;sgﬁo/ﬁ\l , Xe,= (g, + 3;)6;@,/( A+ G B ) (4.8)

Initial reactivity may be determined ( by control rod movement say ) to

define different equilibrium states ;



S=GXe/ (ca) + TP (4.9)

Expand the equations (4.6) about equilibrium as follows ;

f=0+8 |, Xe = Xe_+ 8Xe T =1+8I
L+ 8) = |8 @/eq)( Repste) - 2+ H)] (F+8) (410 3)
Xe, +8Xe = v f+8) -8 Xe, +8Xe)(f + ) - A, ( XexsKe)+a (I, +5I) (4.1
1,+81 = v, G(f+9) -2 I+s1) (4.10 ¢)
¢ h =8 (G /eg)) - 2980 -[€0/(c 5;) Sxe (411 2)
§Xe = (7,6;-6Xe,) § - (A+6,8)8%e + A, 81 (4.11 b)
$T = V6 8 = AL (4.11 ¢)

Taking the Laplace transforms,

i saz[yo_ Gxe,/ (e o) =208 | B~ (6 0/ cc;) e (4.12 a)
s $Te = ( ¥, G- 6 Xe, ) 5- (Ax-e-e;}i) S$¥Xe + AL (4.12 b)
s 5T = 3,;%53«»9\7:5{ (4.13 ¢)

Substituting  eq.(4.12 b) and eq.(4.12 ¢) into eg.(4.12 a),
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j35={$°—QXeo/ (C%)’gfﬁ:}én C;xﬁo [(.VG’"GX@:,)[
cq(s+asgf) LV F
Yz G-:F AI 5:,
s + A
Substituting for from eq.(4.9)
= s 6;' - IGI'-. A:r_ e
foi-agi-—E ey 5o 22 5 [ g
0§(S+7\x+§'2) s+ Az

Introducing some wvariables for simplicity in operations

y=Y t Y,

U = 6 Xe,

R= y*(:‘s;- S, Xe,
PX =G, §,

X = A +6 8

T=c G A
% = A+ ZX
AF = A,PX (R +y,6)
We obtain finally,
s+=ifgm+ ,FX [R+MJ:O
T (s + 2K ) s+ A,
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T(s+1§j§/j)(s+zx)(s+AI)+PXR(s+AI)+P}:y:@3,AI=O

s3+(Z+7H?§,/1)sz+(Asz+zzsj{/1+mR/T)s+(7§g§Asz/,€+AF/T)=o

(4.15)

2:2 ROUTH -~ HURWITZ CRITHRION

Routh -~ Hurwiiz conditions are expressed in fterms of the Hurwitz
determinants, which are formed from the coefficients of the characteristic

polynomials of the n ih order as follows ; for polynomial

a,s + aiéh¥ sesessss tas+a, =0 (4.16)
a, a, as 87  seces
a, @, a8, 8, esees

1fxn = 0 &y as By esses (4.17)
0 a, a, a, s000a
se00ss0sesrassssssssasesoanso
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We now state the Routh - Hurwitz stability criterion :

The roots of the characteristic equation all have negative real parts if,

all the coefficients a are nonzero and positive, and if,

Aoz a,»0
A= a1)0
a, a,
A, = » 0
a, a,
D=2, A N0 (4.18)

are satisfied [2].

The conditions (4.18) are not independent of each other. In
the case of a third-order system, these conditions are equivalent to

a0 , a0 , ak>0 s and a4aﬁj>a%a o We observe thzt there is only

3
one additional condition in addition to the positiveness of all the coefficientis.
It is interesting to note that there is again only one condition in

addition to the positiveness of all the coefficients in a fourth order

system, i.e., a,( & a, abaé) > azaj. This observation is not true for
high-order systems. For example, in a fifth-order system, there are two
additional conditions[ﬁ}. In the general case of n) 3 , the positiveness

of the ccefficients ensures only the negaiiveness of the real roots, but

does not yiel& information about the sign of the real parts of the complex

roots.

It is clear that, as more equations are added into the system

description, the Routh-Hurwitz conditions are likely 1o be more restrictive.
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2.2.1 APPLICATION OF ROUTH - HURWITZ CRITERION WITHOUT

DSLAYED NHUTRONS

. . . . 3 2
Characteristic equation being 8 +a s +a,s+a, =0

where a,=1, a=2+Y¥g /[ , a,= A X +2%p/L+PXR/ T,
a,= 5P AL [L+AF /T

the stability conditions become,

1) a >0 is satisfied already
2) a,>0 is satisfied for all positive
3) a0 gives,

v > _ 6% (7,63 - 6y Xe, ) (4.19)

c o (A+60,)
4) asg ya a, gives,

[z+ 2&‘[&2/,[:1 [AIZ};+ZXQ/1+PXR/T} > [XQAIZX/I +AF/T]

2 - Z

2 X R @, % PX R AF
[”ﬂ;_]x.%lzj" +P ’ 1Zs‘ﬁ:u[z?\:zxw - al— })0(4.20)

TJJ T

If eqs.(4.19) and (4.20) are solved for various equilibrium values
of flux in the yange 108<,(5 <1O45we can find the stable values of prompt

temperature reactivity coefficient ¥ . Results are plotted in figurs - 4.
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2.3 OTHER POSSIBILITIES ¥OR STABILITY WITHOUT DELAYED WEUTRONS

We stated that it is necessary to have roots with negative real
parts of characteristic equation. This may be possible in two different

sets of roots. How we will consider these cases.

The roois of a third-order polynomial
3 2
a,8+tas+as+a,=0 (4.21)

may have the following form :

5,=0 , s,==~a+ib R s==-a=-1b (4.22)

Characteristic equation can be writien in terms of this sev of rcois.

(s=-8)(s~-8)(s=-8,)=0 (4.23)

In which case this  equation becomes

s(s+a+ib)(s+a=-1ib)=0

s‘r(s+a)z+b2]=0

Ss2as+(d+b)s=0 (4.24)
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This eguation should have the same form as our characteristic

equation (4.21). If we equate the coefficients, since a,= 1

2a=a; , a,= a’+ b and a,= 0 (4.25)

Since a and b are positive, then those should be satisfied

a,»0 (4.26)
a3= 4] (4'27)
= a,=~ a 50 or a,~ af/ 4'> 0 (4.28)

Let's write these 3 conditions more precisely recalling the terms of the

coefficients from previous seciions.

Condition 1) af> 0 is satisfied for all positive temperature

reactivity coefficient X .
Condition 2) S8 AZX /L + A /T =0
or = (gre-y5)/ [eo(a+sg)] (4.30)

Condition 3) AL+ LXB /L + PR/ T (Z+MSO/£)Z/4

or l;_gww‘{m Jm [szx_k PXR 7z 1 S o (a)

44" : 7 4

1f equations (4.30) and {4.31) are solved in the same range of

equilibrium fluxes as before, we can find the stable values of ¥'. This

can be seen in figure - 5.
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The roots of the third-order characteristic equation may also

have the following form right before they enter the right half plane,

3 2
a,s+as+as+as=0 (4.32)
8,==a s,=ib , 5 = - ib (4.33)

In order to force the roots of the characteristic equation to fit to this
type, we should equate the coefficients of the characterisiic equation

to the coefficients of the following form :

(s-8,)(s8~8,)(s=-8)=0
(s+2a)(s=-1ib)(s+ib)=0
s+ag+bs+abd = 0 (4.34)

Since & and b are positive, then those should be satisfied.

a,»0 (4.35)
a,y0 (4.36)
a,a,= a; (4.37)

It is obvious that first two conditions are the same as conditions (2)

and (3) of Routh-Hurwitz criterion i.e.,
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Condition 1) a0 is satisfied for all positive .

: Gy
Condition 2) X}[— a ( ny;- G Xe ) “AL A+ 6.8, ))4/ (AI+Ax+ G8) 8

¢ S

(4.38)

nditi =
Condition 3) a a,=a;

SR B e a0 e

which is a special case of condition (4) of Routh-Hurwitz criterion.

Again the region where these two conditions are satisfied is

showed in figure - 6,

Total region of instability will be the union of these two cases.
Rut considering the resulis obtained from the Routh-Hurwitz criterion, it
may be concluded that roots of the characteristic equation can not pass

to the right half plane in the form posited as case 1.

Thus the resuliing stability region is governed oaly by ihe
second form of the roots, which is the seme as Routh~Hurwitz criterion.
This ig shown in figure - 7. In this figure roots of the characteristic

equation which give rise to instability are also shovm.,
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2.4, DISCUSSION

In figure (7) one may notice that the principal feedback
mechanism is the prompt temperature reactivity coefficient due to low
flux values; so the reactor will be stable for any temperature reactivity
coefficient below the flux level of 10 n/(cmisec.). As the flux level
is increased further from the value of 10~ n/(cm.sec.) Xenon burnup begins
t0 contribute to flux growth. TFor Q;>2x169 n/(cmsec. ), the slope of
the curve becomes stegper, showing that the stabilizing effect of the
temperature reactivity feedback begins to be dominant and as ﬁaincreases,
temperature feedback competes effectively with Xenon burnup so as to
shrink the unstable region. However, when £ >5x10”£/(cnﬁseo.), the
destebilizing effect of Xenon burnup begins to be felt, and as Q increazses,
this mechanism dominates the temperature feedback so that the curve bends

again and the unsitable region is enlarged.

It is clear that Xenon burnup is the dominant feedback effect
in the flux range 2X161< g < 9de,2n/(cm.l.sec.,)o As @ reaches 10mn/(cmisec,},
the temperature reactivity feedback again becomes dominant, and finally
stabilizes the reactor for f >].O"5 for almost any ¥ as all other reactor

parameters are assumed fixed.

Tn order to check the validity of the unstable region, roots

of the characteristic equation are found and worked out on the graph.
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Although the characteristic equation gives roots having positive real
parts in each hump, it is interesting to note that points of instability

is much denser in the upper hump.

Since the parameters are very small, in order to be sure about
the ﬁalidity of the roots of the characteristic eguation, we applied a
sensitivity snalysis so as to determine the sensitivity of the roots of
our third degree polynomial to its own coefficients via, the program (
POLY) which computes the roots of an n order polynomial. It was observed
that small changes in the coefficients of the polynomial did not lead to
large changes in the roots, i.e., the rools of our characteristic
equation is noi very sensitive to the errors or approximations in the

computations of its coefficients,
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3. LINEAR STABILITY ANALYSIS WITH DELAYED NuUTRONS

50le CHARACTERISTIC EQUATION

We begin our analysis by restating the point kinetics
equations which can easily be recalled from previous chapters, considering

one group of delayed neutrons as defining an average decay constant A

and total ﬁ R

{_ﬁ':[&mpwC«;Xe/(cﬂ»)-l(ﬁ]ﬁ—%?\]) (4.40 a)
D= pf- AD (4.40 D)
Xe = (3 6- e ) f - AXe + AT (4,40 c)
I= y6f-2l (4.40 a)

Eguilibrium values can be found as follows :

g=0 5 [a-p-gxe/(eg)-tf]h =an.  (441e)

D=0 pf-AD=0 (4.41 b)
}i@ = G ; ( y GE" G;XGD) -g;ou AxXﬁ°+ AII°= O (4‘41 C)
i =0 ; v G}ﬁ - 9‘1‘ I°= 0] (4941 d)

From these equations,

b=p8/A o Teush/a o Sesvsf/(Ared) (4.42)



72

Initial reactivity to compansate the other feedback is the same as before,
S = sxde,/cep+ X f, (4.43)

2

Expanding the equations (4.40) as follows :

g=£+p , D=D+8D , e =Xe +S¥e , I=1I+81
. G, (Xe+sSxe)
L8y =[8-p -2 @) | @) + 200 (st
¥
:f)c-a»S"Dz(S(ﬁo-z-ﬁ)wA(Dﬁ $D ) (4.44 1)

Xe, + SXe

i

3;6;;( 8.+ 8 ) = 6, (XepsXe)(F+8) A (XepsXe) +2(I+3I) (4.44 c)

i

L+l = yo @+ -2(1+351) (4,44 Q)

Substituting the eguilibrium values and neglecting the second order

differentials, we obtain

. G, Xe G §.
j,@:[{-@- -2x¢]¢-mg><e+gm (445 a)
[ C G; e C 6_;:
§h = Fﬂ'w}\é’D ; (4.45 b)
SXe = (7,6 -6%e,) - (A+ f ) Ske + a_3I (4.45 ¢)
S1= 3,60 =481 (445 a)

Taking the Laplace transforms,



73

i G Xe, 6B,
s ¥ = [&m(&nm-z‘c‘ﬁjﬁ-————-me+aﬁ) (4.46 a)
c 6% c G}
s= pf-aD (4.46 1)
s e = (y6-g%.) B (Arc ) iTe s A4 (4.46 ©)
s6l= yef-ASI (4.46 Q)
Substituting the value for $I into eq.(4.46 ¢) §Xe becomes
— ‘ ,A. G P
Sd\@ = ( qums;xeo) 5 b ———— ( 3 +Ax+ G><—¢o)
8 + A,
Putting this and eq.(4.46 b) into eq.(4.46 a)
— &; Xe Ag
T N E £ ) LT
¢ Gp ° s+ A
S 08 Y22z S
- (3.6~ GXe,) + £ (4.47)
06;(s+Ax+F,‘pl) s+ A;

Introducing some new variables in addition to those introduced in the

previous section, for simplicity in cperations.

BL = ZX A A,
BG=pec oy A
CL = A+ A+ ZX
P=p-8+28f, =p=-U/(cq)+¥ g,

E=? o S+ U = cG;((s-ﬁﬁa)



74

F=A(A+2ZX )+ A, %X
so that,

U PX R PX y, A: 6§ A
js+?+06_+06_ + ! R = 0 (4.48)
£ Q(S+Z.X) c 6;(S+ZX)(S+P\1) s+ A

el

(/{/s-e-?)cG:c(s-z’ZX J(s+A)( s +2) +U (s +ZX)( s +a)( = +2)

+PXR (s +A)( s +A) + BX VA G( 8 +A) =BG (s +2x)( 8 +A7) = 0

Since (s+zx ) s+a)( s +2) =5+ (A+ A+ 5X) s°

+

[(A + ZX) + AIZX] S+ AapZX

3 —
S+ CLs+Ps+ 8L

]

4 3 2 . 3 2 . =y 2
T[s+CLs+Fs+BLs]+1L{S+CLS+FS+BL]+):XR[S+(?\+/’\I)s
+AAI}W;,-}{yTAlsi(s—ka)-BG[sq-(;\jZX)s+;{12}§]=0
o,

4 . 3 B, - - 2 [ "
TS+(TCL+E)S+(Tﬁ+LCL+£RR—EG)S+[1BL+L5£+Ar

+PXR A »BG(A;ZX)Jsﬂ[}e‘:mﬂu;\z&:?»malmJ=o

Defining, AL = T ¥ + P R - BG

T RL + AP + PAR A= 3BGZ

il

A AF - BG A ZX



the cheracteristic equation in a simpler form is obtained as H

4 3
Ts+(TC) s+ (BOL+AK) s+ (BEF+BL) s+ (BBL+BK) =0 |(4.49)

5620 APPLICATION OF ROUTH-HURWITZ CRITERION VWITH DELAYED HNEUTRONS

When the siability conditions of the characteristic equation
of the form g, s't a, S + a281+ a,8 + a, = 0 are applied we see that
there is only one additional condition to the positiveness of the

coefficients i.e., A,0 .

Condition 1) a, >0 THO0 is satisfied already
Condition 2) a,»0 T CL+ & )0
¢ 6 LCL +c G (p-%¥4,) > o

Yoy (pelor) /4, (4.50)

Condition 3) a,%0 EF +AK )0
- F+AKYO
¢ G (B-384)F+AKY

xoy[erm/ Cogu) ] /6 (4.51)

Condition 4) 2,20 EBL+BK » O
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cG(fp =84 )BL+IK H o0

Y,y e/ (egm) ] /g (4.52)
Condition 5) A0, a,(a2,~aa) > ajag
(B %+ EK) [(E+TCL)(ECL+AK)-T(EF+1@K)]> (TCL+E)2(EBL+ZBK)

or,

3 2
E[FCL‘”BL]*E[FM“'FT(CL2~E‘)+OL (EK-2TBL)-BK]

e

'
+

+[

Condition - 5 is satisfied for all positives values of temperature

[ 7 ( CL AK = 2 EK) + BK (AK + T CL): = T CL (T CL BL - 2 BX) }

2
@;KT(AKchTPK)mTCLBK];o (4.53)

reactivily coefficient, o

It is seen from the plot of the conditions that stability
region (shaded) is much different from the previous resulis. This may
be because of the ovder of the system under investigation increases
Routh-Hurwitz criteria tend to give over restricted results. According
to these considerations perhaps the delayed neutrons should be treated
in a differvent way. For example, if the order of this characteristic
equation can be reduced by one, reasonable resulls may be obtained.,

Tn the next section we try to accomplish this with an approximation.
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55 A DIVFERENT APPROACH TO FIND THE CHARACTERISTIC EQUATION

In this section we will make some appoximetions to the
problem since we have faced some numerical difficulties in solving the
fourth-order characteristic equation with delayed neutrons.

Hestating the kinetics equations,

Lg=]8-p - i; -xﬁ]¢+§;\{ni (4054 )
b= 8 - 2, D; i=1y0eee,b (4.54 )
I=yqf -21 (4.54 ©)
Xe + AXe = y,Gf+AI-GXef (4.54 &)

Louilibrium values are,

D= (R / A) g, » I= (v, G};/?\z) g,
- (4.55)
Xe,= ¥y & g/ (A+ 6. 8) vhere ¥ =y + 7,

In order 1o reduce the complexity of the system with its large number
of parameiers, ve pass to the form where the dynamical variables are

measured relstive to their equilibrium Talues,
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Define Y= 68/ (A+68,) as before in chapter ITI.

(4.56)

© G‘} ° =t 27: ’
. < Gy Xe,
recalling JB=p and 8 = + E f (4.57)
Zer c 6|
.F
On the other hand equality for Y gives,
A, ¥
g = —————— (4.58)
o (1=-Y)

Define new variables as :

T
i

(F-8)/4 ,  s=(3-D)/0,

(Xe - Xe,) / %e, , SI=(I-1)/1,

G
b
©
i

with these definitions equations (4.54) reduce to

- &
168 [a-p mz; (1+5% ) -%0 (1+8 )}mm ONERCED



inserting the value for &

G, X

c GO
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;- {“P 5 Xe Sxe-mgq(u;o')a,zp{(“mi) (4.59)

fy

L
recalling z (31. = (5 and replacing the value for Xe_, from eq.(4.56)

Yy &

jé:~[ﬁ+:’”g§:@iﬂ@+@@¢:{(l+ﬁ)+(5;(1+SD'_)

Noting i—' a; =1 and neglecting the higher order terms
<
/”‘5’; m[y’! g;{e-s-zflﬁoﬁﬁ:[-a-(ﬁz%(mi-gé) ~ (4.60)
c z=1
j}f (sipﬁ’ - A; Dg
D, $D. = e g Q+g)-2,0(1+sD,)
D, 8D,= 4 D (L + @) -4 DL +3D,)
SD,= A, [;é - 1, ] (4.61)
i = ¥ c;ﬁ - A, I
I, 5T = Y, G g1 +0 ) -2, I (1+35I)
I8l =A L{1+8) -A I,(1+sT)
St=a [#8 - <1 (4.62)
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e+ AXe= y G F+A I ~GXef

Xe, $Xe + AXe (1 +38Xe) =y G B, (1 +f ) +AL (1 +sI) - 6 ke, 8, (1 +sXe)(1+4)
(4.63)

replacing the value for Xe_, and I, and neglecting the second-order terms

¥ % fo 5 i
p Ske + A+ A dhe | =3, B (1 + )+ gy f (1 +81)
x * S
yY 6f
o G e X
» - ¢0(1+£5+8 el
Define L=%/¥ Y=/ 7 and recall Y, + Y,=1

§ie +4, s¥e = [Y"(l + )+ % (1481) - Y1) - ¥ SXG} (A S 4) - A

$ke +a 8% = (A+6 f) L{Yx-» Y)(146) + Y, (1+8I) = ¥ J’Xe__‘i - A, (4.64)

]

Taking the Laplace transforms,

s D, = A, {5 - 35;}

HH

$,= [a/(evn) | 8 (4.65)

s ST =4, p -4 81

e
i

ST [;\:/ (s +A:)] 6 (4.66)
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s 8Xe + A, sXe = (A#Gp,) (Y=Y )g+Y §T-% .-S‘—Xe]

L

e r - Y. A, -
(s+A) Ske=(AxrGB )| (Y,-Y) @+ g - S}ie]
: L S + A,
find the value for (Ax+ 6:56,,) = S s = 5 A k = Ax
Y Y o, 1-Y  1-Y
— Y,-Y - Y.A A, @ % —
(8 +2) SXe = A ( —*——) f + p__xA $ Xe
1=-Y (1-Y)(s+2) 1 -7

Sie;m&mgm[(Yan)+—§3~ﬂi] / }:5+A,+——u\j—— (4.67)
1-Y (s +2;) 1Y

putting this into the Laplace transformed form of the equation (4.60)

YJAI
yY Ax @ [(Y 1)+ s+A:] _ ' _ <
s A c 1-7 [S+Ax+ LA J.}\éﬁﬁ FZ&L( + A b #=0
1-Y i

i a; v Y Ax [(Yx- Y)(s +A2) + Y. ?\J(l-Y) )
8 /(+/52:' s + Ag N ¢ 1-X (s+A1)[gs+Ax)(1_Y)+YAX]+‘6L¢°—O

(4.68)

Since the decay constants A, and A, are much smaller than the

decay constant A of the delayed neutron emitters, one can ignore s as
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compared to A; in the discussion of Xenon oscillations [BJ.
lS] <L A

hence we can neglect it and define an average neutron generation time as

% ¢ ai
A= Lap Z = (4.69)
vy [(Yx-Y)s+A1( Y:+Y,<)-‘f.ﬂ\,]+ ¥ g, 0

c [( s+A (s +A~8Y =AY +;\;f] I

Définizzg o, = m@l;{;,_ and recalling Y +Y =1
c £

[s + Yf } [s% (AxrA)s + A4, - &Y - s YA:J+wDAKIis(YK— Y) +A=(1-Y)} =0

A
Define A = ;\I+ ;\*x
5d. 1 (. ) r ) 1
s + T s (1-Y) + (0 -AY)s +AIA‘ +0, 4, [s(yx- Y) +AI\1—Y)J = 0
i - o, Ac(¥ - Y
5 + ' b } SQ-'F'A AIYs+ A:Ax:]a& ( )s+wo§\r2x= 0
Jaamal 1-Y 1-Y 1-Y

- ¥ Az A % 4. A _ A,
s + sil:A A + - ]+s[ % (= )
1-7Y Y 1-Y

.{.
1-Y VA

w, Ay Cvy) |+ Az Ax Aﬁ&.;. W, Az Ay j{: 0
1-Y A
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§+SZ{ASAIY 8 g,
+ Ve -
11 7" +85 A A+ A(Y-Y)

5
+---=-f° (A-AIY)} / (1-Y)+22, [%+M }= 0 | (4.70)
A £7(1-Y)

323010 APPLICATION OF THE ROUTH -~ HURWITZ CRITERION

Taking into account the same considerations as in section 2,2.1

one may write the necessary conditions as follows :

Condition 1) a,y0 is satisfied automatically
Condition  2) a0 3 (A=Y )/ (1-Y)+ (¥ 6/4)> 0
T 5 (L7 8)(1-1)/(A=21) (4.71)
r g,
Condition 3) a, >0 3 A Ax[fuo + — ] > 0
A (1=-%Y)
¥ ;wol*(ial)/ﬁo (4.72)

Condition 4) B8, 8,
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I\A ”AIY X ¢o

%
1= V4

}l'/‘:;\x*‘ WA(Y-Y )+ Xfc' (A -A4.Y) J -1
L 34 1-Y

. 5 g, }
7 AIA‘[MH (1)

T 2 - z
L’?}Z (A-?\:Y)JY+ P. ‘.(A AIY)+%A,(YX-Y)}XA

1-7

{ (A =AY )AL
+

[A"'&%(Y;Y)] —mﬂxﬂlxwo(l'Y):l}/ 0 | (4.73)
1-7 *
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3.4 DISCUSSION

In figure ~ 9 we obtain the double~humped curve again but
this time the delayed neutron effects are considered in an average
generation time,.l*. It is realistic to consider the delayed neutrons
to be produced " instantaneously " with respect to Xenon since time
decay ccnstants of delayed neutrons are much shorter than of I'?’S and
Xe™’’s. Also for high flux levels, the quantity of Xenon produced is

much larger than the guantity [> of delayed neutron precursors.

As a matter of fact the validity of this approximation nay
be checked from the search of the roots of the characteristic equatio,
i.e.;, all of the roots are always less than the lowest decay constant

of delayed neutron precursors.

‘One can see from the comparison of this plot with figure - 7
that in some sections, region of instability is enlarged by the delayed
neutrons. It can be concluded that the effect of delayed neutrons on
the stability of the autonomous systems may be "destabilizing”.

Actually their effect on the stability of the autonomous
systems was not well understood until relatively recent times[B].
Smets[}}] has reviewed the effect of delayed neutrons on the linear and
non=linear siability of reactor systems under various conditions, and

showed +that the delaved neutrons do not always "improve' the stability
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of nuclear reactors at a given pover level and that a reactor may be
unstable although it was stable when delayed neutrons are neglected.
Later L.i. Shotkin, D.L. Hetrick and T.R. Schmidt[15] showed that
delayed neutrons permit the existence of unstable limit cycles. They
also concluded that for linearly stable systems the delayed neutrons
can cause the system 1o become unbtable for large enough disturbances.
L.M. Shotkin[14] investigated the instability bounds in
linearly stable systems and gave a general method for determining the

~bounds on allowable disturbances.

We also checked this in next chapter by solving the point
kinetics equations for various perturbations at some selected operating

points,



Chapter V

NUMERICAL SOLUTION METHODS

Lo NUMERICAL SOLUTION BY USING FINITE DIFFERENCE METHOD [16]

This method to solve the kinetics equations, is based essentially
on the definition of derivative. We begin to intrcduce the method by
casting the egquations in the general form

dw (%)

= £ (v, t) (5.1)
at

The elemantary definition of the derivative,

Y(trat) -¥(t)
¥  _ 1in (5.2)
at At—vo At

leads to o suitable numerical procedure. The limit is approximated

by the so-called first divided differince :

Y(t+rat) - ¥ (4)
At

= £ (y,1t) (5.3)



fﬂflz _(i)n + At ff"

(5.4)

This kind of solution can be satisfactory only when very
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small time intervals are considered due to definition of derivative;

so we will examine the time intervals as 0.1 seconds since the neutron

generation time is in this range.

form :

Beginning equations from equilibrium point with little perturbation

ntt

n+l

Xe

L2

n+i

are then

9,

L

=2y L

x 4D
¢ 6 A 4

n
o ———

(5-p -

f 8- A0,

(v~ Xe,) § - AXe + A I,

Y. 6}1.@;_ 2-,71,.,

T

5
9

£ 4

{&_(ﬁ_ o, Xe Y )J(@Sﬁ) L A

¢ o

e(8+88)-22
(y,6-6Xe )( g+ §0) -AXe +2, L

yTG‘;_(-{é;i- S¢}~ AIIO

AL+

. AT+

Casting these equations into matrix

(5.5)




Solution applied to computer and results are given in

appendix - 6.

Departing from the definition of derivative, we assumed that
the slope of the flux function remained constant at each time interval
although it changes in time actually. In order to reduce this approximation
error, the behaviour of the flux is observed at a time interval of
average neutron generation time, I*, of prompt and delayed neutrons, i.e.,
0.1 =sec, So, the delayed neutrons are considered to be produced

"instantaneously" due to the considerations stated before.

Flux behaviour was observed only for the first hour due to
limitations of computing time. The accuracy of this method and the
interpretation of the plots will be given after the second solution

method is aspplied.
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2. UUMERICAL SOLUTION OF THE POINT KINETICS EQUATIONS

HARSEN'S METHOD :

In this section we will try to solve the point kinetics
equations starting with a specific equilibrium., We will use a modified
form of the method proposed by Hansen[5].

The basic idea of Hansen's method is relatively simple.

Writing the point kinetics equations in matrix form;

dy(t) / at = Ay (t) +¢C (5.6)
where 4
8 2y ﬁ ) /l _}.J_ _E;}E_ 0 ._ﬂ'_.
(8- ° 7 m J;
R - ZX Ar 0
A = (5-7 a)
- Y, & 0 “A: 0
0 0 -A
L @ |
o~ U x B ]
(3, - - g ) L g(t)
c G ° g
R - AKe+ AT sxe(t)
C = Y = (5.7 )
- - SI(t)
¥ Gi ﬁo AL
B g - AD. SD(t)
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The mairix A can be decomposed into three matrices,

A =1 + D + U (5.8)

where L is strictly lower triengular, U strictly upper triangular,

and 1 diagonal. Ve assume D # 0. IHquation (5.6) may be rewritten
as,

ap(t) /at-De(t) = (L+y) w(t)+c (5.9)

The reason for splitting it up in this fashion is to develop an iteration
procedure. We assume that we begin this calculation from a time i, and
advance to a time 1,, and 1, and sc on.

Let hzt""toz tz" .t‘f: oooowooc=t - % . (5.10)

7 2% z

Since D is a diagonal matrix, an integrating factor for
equation (5.9) is exp( - Dt ), if the reactivity does not change much

during the time interval h. Therefore equation (5.9) becomes

TR - e nu(t) = e B (L4u) w(t) o T

or
- - , -t
[@yq%ﬂJ = e (Lryu) w(t)+e g (5.11)
d3 -
integrating between time intervals %, and t, ,
t’iu 4 t t:’H =Dt ti-“ -Dt
j T op(t) | at = f (I;+g)e=g(t)dt+fe=gat
tl‘ d't ‘ 'tz ‘
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assuming ¢(t) remains constant in the time interval h

t,,,~ t: which
has to be very shozrt,

R o]

e
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<
Pany
nst
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o
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it
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ned
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et
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Here j{(ti) is the amount of perturbation applied to the
system initially and y (t,) is the response of the reactor after a
reasonable time step. € is a vector whose components have the values
of the point about which linearization is made. This method of linearization

at each point is movre likely to approach the real behaviour of the reactor

with the greater accuracy.

The componenis of vector ¢ have the values characterizing
the points at which the system is linearized. Clearly it will be zerc
for the first time step since we there linearize the system at the

equilibrium point.



Yet it will not be zero for the second time step because, now the
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linearization point is not an equilibrium state but a perturbed value

of the eguilibrium flux. Similarly for the following points,

Mathematically it can be explained as follows 3

Kinetic equations having the form ,

x=f (x) (5.14)

right side can be expanded into Taylor series around any state x, of

linearization
of
2=f (x) +~— ( = - x,) + Higher order terms
X | x=x, L — —
neglected
now pose £=%x= &§x*
it becomes — { x,+8x*) = Sx*+ £ (x.)
dt 9% lx=x,
. of
or Sx*= SxF+ £ (x.)
DX X=X,

which is the form of equation (5.6)

(5.15)

(5.16)

The computed §x° will give the difference between the current

state and the previous point of linearization,

¥
X = SX-R'XL

(5.17)
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For linearization at each time interval, question might arise
about the amount of perturbation to be applied. The question of whether
the perturbation will be applied from the initial steady-state operating
condition or from the previous linearization point. will be clear when the

operations from the beginning is observed with the help of the following

sketch .

We assumed that the reactor is operated at the steady-state
flux level of g[ prior to t=0. So the equations describing the time
behaviour of the system are linearized about this value. Then a small

amount of perturbation Sf is applied at time t=0.

—
[
...... .
s s
R T
. . gq%

Steady- state 6‘1!,2

value > P €, £, t; f‘@ Ttime

Resulting perturbation Sﬁﬂis obtained by solving the periurbation
equations. Now the linearization point is the first perturbed flux,
i.e., {_+S5p, and the amount of perturbation will be applied is the
difference, SQ;E P - SP,. Uow the linearization point is f§ +5§,,
and the smount of perturbation is 1S¢:; <$¢4— S@,.

This procedure is employed successively. Applied computer

program is given in the appendix ~4,
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5. DISCUSSION

We have solved the point kinetics equations without delayed
neutrons using the proposed solution technique with a computer program.
We were unable to examine the problem taking into account the long~term
feedback effects of the delayed neutrons because the very short time
response [ of the prompt neutrons is of the order of 10-4 sec, Whereas
the delayed neutron time response is 1 /A or about 10 sec., a factor
of 105 greater., The implication of these facts is that in order to
obtain the prompt response, very small time steps, of the order of lo-qsec.
are required, But then before the delayed neutron term comes into play,
many time steps are required. For instance to examine the responce out

to even one second about 10,000 steps of calculations would be required.

A method for solving the point reactor kinetics equations given
5 . é . .
by da Lidbrega[8] requires about 1.5¢10 steps in order to examine a one
second span as can be seen from the table reproduced below from the work

mentioned above[21].

TABLE 1T
MOVER-I
Time
(sec) e= 1077 e=10"°
S
0 1.0 1.0
0.0 ‘
7, 0.0 0.0
) (2}
0005 | T 0.0373 0.0373
’ T, 0.5696 0.5700
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(1)  Took 44 time steps to get to t = 0.002934 sec.

(2)  Took 19 time steps to get to ¢

0.003098 sec.

In order to overcome this difficulty we considered the delayed
neutrons as being produced " instantaneously ". So we examined the
problem in 0.1 sec. time intervals, since the average prompt neutron

generation time now is in this range.

P: a, A a;/l;
0.2475 % 10”° 0.033 0.0124 2.66
1.6425 x 10™° 0.219 0.0305 7.18
1.47 x 10°° 0.196 0.111 1.76
2.9625 x 107° 0.395 0.301 1.31
0.8625 x 107° 0.115 1.130 0.101
0.315 x 10~ ° 0.042 3.00 0.014

135
Table - 2 Delayed neutron parameters for thermal fission in U [25].

0.0075
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Average neutron generation time can be calculated as follows ;

o ,€+(szé (a/A.)

where ,f is the prompt neutron generation time.

*

A = 107% + 0.0075 « 13.03544

0.09786

il

*

A

0.1 sec.

e

Thus we consider +the feedback effects of the deleayed neutrons, as being

prompt.

First we select four specific points in Q)- Y plane. These
points hove the same equilibrium flux value but have different prompt
temperature reactivity coefficients as, { 1,5,8,11 ) x 10—46. The aim of
doing so is to observe how fast the flux behaviour will return to its
equilibrivm value or how fast it will diverge for different ¥ values.

We also applied to each point three different levels of
perturbation { the one tenth of the equilibrium value of the flux, the
same as the equilibrium value of the flux and iten times that of the

equilibrium value ) so as to .examine the effect of the perturbation

magnitude on the stability of this linear system.
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Figures 14 to 16 show the behaviour of several equilibrium

points under various perturbations. It can be seen from these plots

that as the perturbation on the flux is increased the time required

for the system to return to its equilibrium for the first time is decreased.
This is expected because temperature reactivity feedback acts on the

system promptly. As the perturbation on the flux is increased, temperature
feedback behaves more efficiently, since it is proportional to this

perturbation and generates a considerably large negative feedback.

Also as the temperature reactivity coefficient is increased
for the same equilibrium point and perturbation, the slope of the flux
becomes steeper, i.e., it returns to equilibrium point more rapidly.
This is due to the fact that the temperature reactivity feedback is

proporticnal to the operating value of the flux.

The question might arise about the behaviour of the flux
returning 1o the equilibrium value at a point that was previously found
to be unstable. This behaviour is reasonable because we can observe
only the first hour of response due to the necessity of very short time
steps used. Thus the long-term effect of Xenon poisoning could not be
observed, but the effect of prompt temperature reactivity coefficient

is active within the period investigated,
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s observation of the flux behaviour at an operating
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In order to see the flux oscillations one should solve the

kinetics egquations for 150 hrs., since the period of these oscillations

is about 10 = 15 hrs.,

In an attempt to obtain mofe accurate results we linearized
the equations at each time step, i.e. 0.1 sec., and all the results are
plotted in figures 18 to 20. Again as the prompt temperature reactivity
coefficient is increased flux returns to its equilibrium point more

rapidly,
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On the other hand, in order to see oscillations due to Xenon
feedback one could solve the kinetics equations linearizing them only
once at the initial equilibrium since the system behaviour indicated

by the once linearization technique does not depend on the time step

length chosen.

We observe the Xenon oscillations again at these four specific
points during 120 hrs, It is interesting to note that, cscillations
first begin with decreasing values of the flux due to prompt temperature

reactivity feedback and then increases.

In the unstable region these oscillations increase more and
more as the time flows, even though passing from the conditions which
are called " shutdown " in nuclear reactor dynamics, i.e. solution is
an analytic one not physically sustainable after the first shutdown.

Figure = 21 shows this behaviour.

In linearly stable regions, the period and amplitude of these
oscillations are damped as the prompt temperature reactivity coefficient

is increased. This can be seen from figures 22 and 23.

In asymptotically stable region these oscillations die out in

50 hrs. and after ihat the flux remains constant at the initial

equilibrium level ( figure - 24 ) .
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Chapter VI

- CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK

In this study we tried to construct sufficient conditions
for Xenon and temperature controlled nuclear reactors to be stable
ageinst power excursions or inadvertent shutdowns. Later we solved
the point kinetics equations using different techniques, for various

operating conditions and under several perturbations.

For fixed values of flux and temperature reactivity coefficient,
i.e. ﬁ;k‘g it is observed, for the first one hour that, as the perturbation
on the flux is increased,‘return of the perturbed flux to its initial
condition is speeded also. This is due to the prompt itemperature
reactivity feedback coming into play in proportion to the perturbed
flux. This observation seems to be valid for all operating points in
short time observation, i.e., before the Xenon feedback starts influencing

the course of events.

According 1o linearized treatment, at an unstable point with

fixed ﬁoand ¥ 3 as the perturbation on the flux is increased, amplitude
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of the divergent oscillations also increase. However in linearly stable
region; system returns to its equilibrium condition more rapidly as the
perturbation is increased although it becomes unstable for large enough
disturbances. Yet, as the temperature reactivity coefficient is increased
for o fixed value of the flux and the perturbation, the system returns to
its equilibrium condition more rapidly. In other words, allowable limits
for perturbations, in order not to destabilize the system, is increased

in linearly stable region as the temperature reactivity coefficient is

incressed.,

Computer calculations have shown that the Xenon problem with
a prompt temperaiure reactivity coefficient posseses solutions that are
asympiotically stable for bmall disturbances and depart from equilibrium
when the disturbance is large enough. The parameter regions that exhibit
this type of behaviour are near the boundary separating linearly stable

and unstable regions.

It is interesting to note that, if one wants to represent the
system in more detail, adding some more equations, e.g., for delayed
neutrens, then Routh-Hurwitz conditions provide other degrees of freedom
for escape from equilibrium. Hence the conditions tend to narrow the
stability regions.

So it is realistic to consider the delayed neutrons to be
produced ¥ instantaneously " with respect to Xencn since time decay

, 135 5
constants of delayed neutrons are much shorter than those of Xe  and I
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If a linar reactor system is stable when the delayed neutrons
are neglected, it is not necessarily stable if the delayed neutrons are

included in the model. Stability regions can be enlarged in some parts

while being narrowed in others.

It is realistic to lump all temperature feedback effects in a
prompt reactivity coefficient, X‘, since before enough Xenon is produced
through decay from fission products to materially affect stability, the
power generated by fission has time to be completely transferred to the

coolant and the structural elements.

It has been shown that Xenon instability remains a serious concern
in the presence of temperature damping. At flux levels above ~ lxloﬁan/(
cmﬁsec¢)9 the destabilizing factor is that of Xenon burnup, It is clear
that Xenon instability is not a control problem for the large number of
low power density research reactors which is operated at maximum flux
levels below 1x10 n/(cm’isec.), since their temperature reactivity
coefficients are generally negative and sufficiently large for the
reactor to be inherently steble against Xenon. On the other hand,
economic considerations are deriving power reactor design in the direction
of high-power density and hence efficient cooling, even for water

modGerated reactors with relatively large and negative temperature or

veold cecefficients.
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There are several directions in which the reactor designer
can proceed : (1) by heavy fuel loading and poisoning of the reactor
core which produces lower flux and long fuel burnup times but also high
inventories and generally lower conversion ratios, (2) by increasing
the reactor temperature reactivity coefficient sufficiently for inherent
stebility, (3) by adequate instrumentation and independent mechanical
control of subdivisions of an inherently unstable reactor. However the

latter would not be licenced in the current practice.

Finally; it has been shown that the simple theoretical model
which neglects time lags in production of delsyed neutrons and the time
lag between flux and temperature is generally adequate and is recommended
as a starting point in the investigation of more complex problems. Some

of the limitations of the linearized equations have also been noted.

As extension of our study, long-term observation can be obtained
with the same program, solving the point kinetics equations by linearizing
them at each time step by ~repeated runs so as 1o synthesize solutions
for sufficiently long periods of time ( of the order of 100 hrs. ) to

allow the Xe oscillations effectively come into the picture.

Careiul attention must be given to the calculation of parameters
such a8 delsyed neutron fraction, > , average decay constant of delayed
nevtron precursors, A , and neutron generation time, A s etc. It may be
necessary or mors accurate for these parameters to be calculated at each

time siep when the point kinetics equations are solved successively.
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As a future work, the equations describing the system behaviour
may be solved by modal separation according to their different time
constants in different time intervals. For example, the equations for
prompt and delayed neutrons are solved in fraction of a second time
intervals for the first hour. At the end of the first hour we obtain
the new values of flux, Xenon and Iodine concentrations, The equations
representing the Xenon and Iodine feedback can be solved in time intervals

of hours assuming that flux behaves promptly relative to Iodine and

Xenon behaviour.

The effect of temperature with time delay may be introduced
into this stability analysis, rather than treating the temperature
feedback as being prompt. This can be accomplished by replacing -¥P
term with -«T and assuming the temperature to be related to the power
through a Newton's Law of Cooling or another model., Thus point kinetics
equation for prompi neutrons would have been replaced by the following

two eguations :

emem—
=

! _iﬁiﬁl = [130_ lfiffﬁfl - = T(t) J P(t) (6.1)

I at c 6f (>
1 ¥
at =%

where o is the temperature reactivity coefficient and A,the time delay

constant for the temperature al zero power.
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The time delay constant has to be chosen in this specific form so
that, in the limit A;+ & , we return to the prompt feedback model.
We expect to observe that the longer the time delay, the more unstable
the system is. The ¥ temperature " T may be identified with fuel,
moderator or coolant temperatures, steam void, volume, etc., depending

on the variable which governs the reactivity.

Since the linear feedback model is only an idealization, it
is also desirable to extend the theory of reactor stability to include
the non-linearities in the feedback, and to obtain general stability
criteria for temperature and Xenon controlled nuclear reaciors. Clearly
the time behaviour of a reactor can be described more realistically
with.a non-linear feedback model which contains the linear model as

a special case.

1t is clear that painless resolution of the Xenon stability
problem will not be found and that satisfactory control will vary with
the reactor type and purpose. That is unless the existing mathematical
tools are enriched to the extent of allowing analytical or semi-analytical

solutions to such non-linear systems of equations.
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AFPENDIX =~ I

ADJOINT OPERATOR

s LA
Adjoint operator }L 18 defined to be the adjoint " of U,

if,

LU w0y = CHE R (1)

holds for amy W, ( LU, 0 ) and N ( Lol L ),

Note that the boundary conditions to be satisfied by N:(E,u,ék)
may have to be different from those of Ky (zrsuy0) and the former are
referrved to as the v adjoint boundary conditions "

Using this definition we can derive the adjoint of the operator
H, as follows 3
Consider the functions ¢ (zs¥) that satisfy ihe proper boundary condition,
namely @ (z,v) = 0 for f.v {0 where r is on the outer surface of

the reactor

a ) Adjoint of the differentisl operator : 0 .V

ufqdé 87 0. v

R

g =ff#avs de e (Vo [aa
© o
we can change the order of integration

= ‘fogd1r.7}i(d5}..£} :r dr g* . A
0 o i
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using ¢+.V¢ =$.(¢+¢)-¢.V¢+

and by Green's theorem

Bfaﬁ’.(fs*w«:f 5. (agtp)

8

vhere s is the outer surface of the reactor

=fwdv ?J}jdg.gffdé?.(ﬁﬁ+¢)-f djrﬁ.V¢+]
o o ‘_s R

If we choose the boundary conditions as

g (z,v) =0 for f.v (0 and

<

ﬂ5+ (z,¥) =0 for .y >0 , res

The surfece integral vanishes because either § or g* winl always be

zere on the surface. Then

.-:-f%(iu-vzfdﬂ f ir 4 o.vp
A R

(o)

]

(-2o.V] 85

thus the adjoint of .V is - .V o,
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.

b ) Adjoint of the integral operator

(Flip) - [ & i[  f " ¢+(;.u,£>£[ i [ ;'[zfzs@,d—m,4.gj¢<z,u'.g:

If the order of integration over u and - 1is interchanged with u' and

7

2! the right-hand side becomes

oo ol
fdsr _/dﬂ" fdu B(zsu,0 ) [d'o‘l f du’ [vz(E’u'”u"&.é):l ¢+{£’ul!.{’:)
R ek (e} ._O_I [e] s

<L+¢+]£§>

it

Thus the adjoint of fdu'f da! v(u') S (z,u~u , 0. .q)
S

>}
is jdu" f da’ v(u) 3 (z, u—su) .0 ad)
)
o

KN

It is clear from this example that the adjoint of
fdu’fdn’ r(u') [f(u)/élﬂj tr(u')zf(;_,u')

is fdu’f da v(u ) [f(u’)/z,ln] v (u) Z{(;,u)



Hence the adjoint of the operator M, is

'J’(:':E 2. 2 (u) - 22(zyu)w (u) + fntiu’f da' { ZS(E,u-—-;u', a..a)

L2

+ Z {fj(u') / 4 Tc:’ Y (u) Z:(z,u)} > (u) (2)

3

Using }f:[ﬁo] s we define the adjoint angular density as

the solution of
tro +
W] vt <o (3)
with the adjoint boundary condition

o (Zus) =0 for

[ni3
[

>O, res .
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APPENDIX -~ II

NEUTRON IMPORTANCE

Suppose a neutron is injected into a critical reactor at 1=0
at ithe space point r' with a velocity ¥' , and assume that there are
no neutrons in the reactor prior to t=0. We want to determine the time
defendent angular density n(z,usa,t) as a function of r and v for
all subsequent times, and in particular as t—s»co. For the time being
we ignore the delayed neutrons for the sake of simplicity. Then n(g,u,g,t)

satisfies

on
—— = En (1)
2t

with the initial condition

n(};,u,ﬁ,()) = S(E’E')S(u‘u')g(ﬂ-‘ii) (2)

In order to solve eq.(l), suppose it is possible to find the eigenfunctions

of the operator H by solving the following equation.

HE = w B, (3)



with the regular boundary conditions.

Since the Boltzmann operator is not self-adjoint we have to

consider the adjoint eigenvalue problem also, i.e.,
+ o+ * o+
H g = v g (4)

so thet { ﬁn} and {ﬁf } will form a complete biorthonormal set.
Then we can expand the time-dependent angular density n(r,u,a,t) in

the functions @(r,u,a) as

n(_:;_,u,ﬁ,,t) = i an(E' su'yal,t) fén (P_’us;‘}:) (s)

n=o

where the expansion coefficients are of course given by

= (K1n)

Substituting eq.(5) into eq.(l) and using eq.(3) we obtain

on o
IR
2t
2, (2" 'halt) = a,(z'su',0) "t (6)

the initial values a (' su',.0,0) must be determined by the initial

condition on n(z,u,a,t)

Slz-z)fu=-u)S(a - a) = ian(?_"su'vﬁso) ﬂﬂ (Esu:;‘})

n=o
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multiplying both sides by fb:(_z;,u,g.) and forming scaler products,

we get a (x',u',.a,0) = ¢: (r',u',2). Thus
a (z,u,a,t) = Z ﬂj(E' uh2) fo(z,u,0) et (7)

This equality follows from the fact that the reactor is critical, and
hence H ﬁ)o = 0 has a unique nontrivial solution. It is also clear that
the eigenfunction ;Zio corresponds to w, = 0 is the steady-state angular
density X,(z,u,g). Thus the coefficients of all the higher modes in
eq,('i) decalf exponentially in time, and asymptotic angular density is

obtained as,

n(z'u'hasru,a) = N(z'u',a) 4 (z,u,0) (8)

where we have shown the dependence of n, onzr',u',a explicitly.

The " importance " of a neutron injected into a critical reactor
at ' with a lethargy u' in the direction of 2 ' is the total number
of fissions per second in the entire reactor at a long time following the
injection of the neutron at t=0.‘

The importance function is readily obtained from eq.(8) by

multiplying both sides by Zﬁc(g:;,u)v(u) and integrating over r and v :

NO>

It is concluded from this result that the adjoint angular density

I (_I'_' vu'?:ﬁ’:’.) = N‘:(E’.i su' 'i’-'.) <’L’Z{

. R . . . i ' :
Njg@ sut,.0) is proportional to the importance of neutrons at r' moving

. . : ;o
with a lethargy w' in the direction of 2’ in the reactor.
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APPENDIX III

THE INHOUR EQUATION

Recall that the inhour equation

ali 8 215 0 al5
a21 a2§ s a25 0
|a-e1] =
a§l 0 a35- s 0
a4l 0 0 844 s

4 5

= 8 - [all +a,, + B33 * @y, ] 8

2

o

{ (all + a22)(a35 + a44) = aq18pp * 8338, = 8,8, -al4a4l] s

+

[(353+a44)(a12a21-a11a22) +al4a4l(a22+a3§}_(a11+a22)a33a44

- 8525893 ] s + a22a35(a11a44—a14a41)+a12a44(a51a23-a21a35)

= 0
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NOMENCLATURE
BQUATION COMPUTER PROGRAWM MEANING
v L Neutron generation time
A, LI Decay constant of I1>7
A X Decay constant of Xel5 >
A LAMDA Average decay constant of Delayed
Neutron precursors
8 PHIO Equilibrium value of flux
3 GAMA Temperature Reactivity Coefficient
8P DPHIO Perturbation to flux
AL 5 h TI Time interval
V. II Jodine yield
v, YX Xenon yield
y Y Total yield (y. +y )

e B Delayed Neutron fraction
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1

Sy
A€

<X

$£Xe

&I

§c

SIGK

SIGF

XEQ

100

Co

DXEC

D100

LCO

Coo

137

Initial Reactivity of the clean

Reactor

Absorption cross section of Xe

Pission cross section

Equilibrium value of Xenon

Equilibrium value of Iodine

Delayed Neutron Precursor

Concentration

A factor converting the local
Xenon absorption per fission

to overall reactivity

Increase in Xe concentration

Increase in Iodine concentration

Increase in delayed XNeutron

Precursor concentration

Bquilibrium concentration of

Delayed Feutron Precursors



138

APPENDIX - vV

FLOW CHART OF THE PROGRAM

START
B %o
v READ

! ¢°; 875:»

¥, At

y

y
WREITE
DATA

DO 100

CALCULATE MATRIX ENTRIES

IF CALCULATE
o, +
IJ - } Xeoy Io 9 é\e

§Xe =
SI =
8D = 0
- I
CALCULATE MATRIX

(4]

A




CALCULATE RESPONSE OF THE REACTOR

¢, 8Xe , &1

few new new ? 8D

Suz[a] s, +[r] g

new

CALCULATE OLD AND NEW
CONCENTRATIONS

Yo = Yaa + S,

q)new = ("Joni - Sq)‘,u +8Q7

new

4

WRITE
PERTURBATIONS AND NEW
COXCENTRATIONS

i

CALCULATE PERTURBATIONS
9 = Sy

new S q)ﬂd

%
CONTINUE TO 1

GO TO 2
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APPENDIX - VI

LISTING OF THE PROGRAMS

AND

NUMBERICAL RESULTS
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[ERRRRRRRARES ARAAAAAA M MM EEEEEEEEEEE
TITVYIvTTeey AAAAALAAAA M iy Mt EEECEEEEEEE
7T AR AR Hrmm MMH N EE |
7T AA AA MMMMM  MMMEY EE
7T AA AR MM MMMBMM My EE
77 RAAAAAAAAARA MM MMM HM EEEEEFEE
TY ARAAAAAAAAAA MM Mb o MM EEEEEEEE
17 AA AA MM M# £E
TT AR A A M M EE
Ty AA AA M o EE
TY AA BA M i EEEEEEEEECE
7T AA AA MM M EEEEEEEEFEEE
YAC 1106 == BOGAZICI UNIVERSITES] KOMPUTER MERKPZ1 --1STANBYUL VER, 33R3/
TAMER USER D # PART NUMBER » 10 INPUT DEyICE @
AME & PREODOTAMER CREATED AT 12:96:39 WUl 15,1980
345578%&323%%&759@3234557599323§567$90523@55?893323q35?5?a323%5¢7g9912345b7%%
TAMER, 111=16=200, THESIS,5,580 s TAMER SENER,
POLY. "
RL72R1 07/16/80 12:06341
79
LYoMATN

£5/80-12106349 (,0)
RAM

SED: CODEL1) BOOROTS DATALD) 0013523 BLANK COMMON(z) 0pu0oy

REFERENCES (BLOCK, MAME}

OLRT
INTRS
ROUS
302%
§ous
i0ls
PRI
5Y0Fs

SSIGNMENT {BLOCK, TYPE, RELATIVE LOCATION, NAME?

no74% J0F OnGi 000403 100L ool o0oils §ikh pDont  poo27d
60110 1746 poon  nop7ie 200F 0000 OUlpzi 201F 0nBy  go0126
OR153 2346 ARG Q00750 30F ponn 0Qipg4n sof Onbi  qo0oo2
01044 64F aoGl 00ndzz 7oL pono  0dinsy ¥yF 6aDy 00334
0342 apy 0Doon poinrs 85f ooon oBipzy 9uF 0001 000347
goooo A R DOoG7e? 8 oong R GOu722 Lo nann ﬁ gg@?%%
00733 1 i pooyag 10 pood 1 000744 1gR 6000 R 000720
00732 1TAMER 1 000734 J 060 1 0Un73s k JobD R 000748
18716 L1 R pon7iv Lk ponn R 00045p Pyl oo b poU32é
0725 S16GF R opop72se Siex Dopo R 00074 7 0000 O aﬂu11§
no73s ¥ Y pon7as vi poneg ® 000728 YX anng R pn0737
2 DIHMENSION A(371,9137) ROOTRIIT) W RODTIIAT ) PHITIN,15):6115)

5 BEAL LoLlsLXa1D,LAMDA



POUBLE PRECISION A3#,ROOTR,ROOTI
BATa baCOo bl LX YT, YK SIGF SIGX B/ 1oUEDU,]1,6,2,876-05,2.098=05,
260 8E=02,2,0E=03,87700Em24,3,0E=18,7.5E=03/
5 READ(5:10) 1D, 10RDsITANER "
10 FORMATIIXGT443X,72,13)
IF{ID»10RDIING, 100,20
20 WRITE(4,30) 1D, 10RD
30 FORNATOIHE 10X, *REAL AND COMPLEX ROOTS OF A POLYNOMIAL US[NG SUBS
IUTINE POLRT? /77, 10K, *FOR POLYNOMIAL *o18,2%,20F QRDER 4 ,12,//
BRITE(6,200) ’ '
00 FORMATE//1H, 10X, (L 10Xy 2 €0? 10X, *L1%, 10X, eLX5, 10K, 1Y ¢, 10X, YX?,
%gﬁxnégiﬁFgeﬁxggsgsxag&QX,“B‘,//i '
WRITE(€,205 )L ,C0,LT+LXaYT,YX,516F 516K,
200 FORMATIIH ) 6X,90ERe3,4X))
BRITELG,95)
YO OFORMATI//Z71H 2X % 12 34X, %07 J3X, 4 (*REAL ROOT*,2K,? [MAGINARY ROQT* 427
sd
IFIITAHER) 94941
READIS40 1AL, 0
FORMATIYELB,9)
JEIgRD+]
WRITEAO 800 (AT, 0=,4)
50 FORMATIGE 6,7 '
&0 70 12
1 YsyjieyX
 LANDA=LIeLX
B0 2 K=1,15
Gikysrelalke1d
DO 2 8,15
bo 2 1%2,30,2
PHIt I ¥l enn,)
ZeLARDASSTOX*PUT [ 1,4)
ZReL X vSIGHPHI] )
TaG1GHePHIt]J)/{C0%S1GF 1)
108y 2S5 16FePHILL, 02 /L1

2
ey 8

AEEY RS IGFsPHILT, JI/ZK
FEGIEIePHI(T /L

A ) =Te LI+ 8 IGFeY=5SIGReXE)2FalIsZ X
(2)EZRe (LIVE ) #LI%E*T2{YX251GF=5]GXeAF)
AldyszrE
Afay=le
12 CALL POLRY{A:W,10RD,RO0TR,RNOTL, 1ER)
[FIIER=3I96,60,7D
b0 WRITE(6,65) ;
b5 FORMATI//1H,10X,°0RDER OF POLYNOMIAL LESS THAN ONE?)
G0 10 &
70 IF(1ER=3375,80,74
/5 WRITE16,77)
: T(/40H, 000, PORDER OF POLYNOMIAL GREATER THAN 347)
£y

210X, HIGH ORDER COEFFILIENT 15 ZFro%}

b, RO0TRIM) ,RO0TIIH)
97 FORMATIIHG1X,1253K0129BE1305)
2 CONTINUE

60 ¥n 5



4 100 sypp

e END
OF COMPELA?ZQﬁﬁ NO  DIaGNOSTICS,
LY POLRY

/45/80=12:07:04 ¢,0)
NE POLRY ENTRY POINT OGOs27

USED? CODE(L) DDaBsé: DATA(D) 0001363 BLANK COMMONI2) nonong

REFERENCES (BLOCK, HAME)

NERR3S

ASSTGNMENT  (BLOCK, TYPE, RELATIVE LOCATION, NAME)

160325 100k ooet poo3sel 1lol poul 000347 1201 Gootr  p0D4y3
100433 Je0L pEol oho4sy 315sL 0001 000503 Jesl Goos o0Bte’
o0043 2ol anotg DOO3s3 2406 0ond 000044 2ol oopy 000051
100054 3zL GO0l o0oiin 45L ool 000115 &L Dooi  poD13é
n0145 601, GOOO b 000044 ALPHA. goel D 00003s Dy 0apt p o004
60060 1 onoo 1 oanops? 1ot pooe b oP0pqe 1FIT 0p00 1 gDOpsé
1n00é62 [TENP onno i otonss KJipo pong 1 olopss L onoa 1 pobgss
190050 NX gooo I popos1 NKX noot I olopsz Nz 0000 L Q0ODp34
00026 U BOGO D O00UDLY UK 00po B alopie vy 0poo 0 ghOQ20
1n00Lo KPR 0080 & noopze KT popo O oloplg xve2 cono 0 poogoo
190012 YFPR 000D poonop2z YV gopc © OU0n2 Y2 0noo 0 poloo?2
N SUBROUTINE FOLRT(XCOF ,COF ,M,RO0TR,RO0T], [ER)

TS DIMENSION XCOF%&?;CQF@&}aROUTRé 3.ROUT1ié)

% f“é' E PRECISION XCOF,COF,RO0TR,RO0TI

Lé PRECISION xa,va;x Y XPR, YRR, UK Uy V vT, x7,U s KT2,¥T2,5uMs8Q,

{ & Bt
> & JDEs DY, TEMP ALPHA
 # IFiT=0
7 & pwH
ry 1R el
iw TF ECoE (N3 10,205,130
)% 10 IFInN)i6,35.32
be ¢
¢ SET EREOR CObE TO0 |
¢
is : §
20
¢
¢ SET EEROR CORE TO B
¢
78 TERsH
GO 28
¢
¢ SET ERROR €ODE TO 2
¢




) % ag 70 20
TFin=3613%,35,30
NAsn

" NXKzMe ]

ry MNZsy

& Kudlapel

# DO o4n Lel,Ki

. MisgJdlel+)

LEy i@?gﬁf@a%ﬁﬂ?iL%

®
R
EEAIEAN ]

el el

SET IMITIAL VALUES

45 X0=0.0050010)
YOsp.0i000101

3

ZERD 3NXT5AL VALUE COUNTER

Y

{Hay
50 X=iD

(]

THCREMENT INITIAL VALUES AND COUNTER

£

Kle=1UaD2y0
Vle=lnelieX

aka)

BE7 A AND Y To CURRENT vALUE

LA

BeED
Y&l
CEIT TS
&0 70 B9
IF1vs]
APRel
YPRxY

$ P B W FFOE RS BT OB E WP R D ERER B

"o R @
W
W

Y C

% b0 UK#D 0

® CoUYEneu

® Yieldal

& AVm)all

& HeCoFida1}

® IFiUYes,130,65
% 65 DO 70 1aieM

® Letois]

# TEMp=COF L)

# KTZakeXi=yeyy
. v ; 7

TRYEXT

o

#
i

w
\



* 78 IFiDABSIDY)+0ABS (DX)=}s0D=05,100,80,80

k] C

1 ¢ STEP ITERATION COUNTER
& ¢

. 80 1CT=icT+]

® §F§§€T958036m385985

# 85 JF{iFiT3100,%0,100

* 0 IF(iN=5)50,95,95

& C

& ¢ SET ERAQR CODE TO 3

¢

# 5 1ER=3

& GO 70 £0

" 100 DD 505 L=l HXX

& TerkiemL e}

» TEHP=XCOF (M)

¥ RCOF(HTI=COF (L)

& OS5 CDF(LI=TEMP

" ITEMP=N

) # Maspy

& NislTENP

' FFQaFIT13120,558,120

& P10 TFQIFITIILS,50,118

P 116 X=¥pr

YeYpR

% 120 (Fiysn

& 122 E?ihﬂg%(ysmié&7"%$QERS(X§)1?553259§?5
) 125 ALPHA=RX

" ' HN%ﬁw%%£¢Y$Y

& NeNed

& G0 70 140

& 130 X=20,0

" T MNEsNel

) & NARaN L=l

e 195 ?ﬁaaﬂ

% syMgq=

» ALPHA=Y

& HESL N

& 140 COF(21=COF {2V +ALPHARCOF (]}
" 195 DO 150 Ls2N

" 160 g@gaijgwgﬂﬁﬁLég}#ALPH&&CDFQL,wSUMgﬁ?QOF(L”i)
™ RS ROOQTI{NZI=Y

" QoovRikzy=i

& NEmpNL+i

o zﬁa%bnaﬁéimaaiﬁﬁ 160

 # el Ys=y

? t’*n”f;(?) O.0

: 5 ()20, 8045

;;OSTIC% e si%aigagﬁ EVER REACH THE NEXY STATEMENY
o VBT U

g

W COMPILAT IO 1T DIAGNGSTICS,
¥y

RL72RY DFs16s8yg 32807821

YeMAIN
lUb 07715760 12507;¢5
IN POLYsMATH



REAL AND COMPLEX RQOTS OF A POLYNOMIAL USING SUBROUTINE POLRT
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FOR POLYNGMIAL 360  OF ORDER 3
b o L1 LX Y1 Y X
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