METHODS
 0 F
 XENON STABILITY ANALYSIS
 I N
 NUCLEAR REACTORS

by
Tamer Şener
B.S. in M.D., E.U., I977

Bogazici University Library

Submitted to the Faculty of Graduate School of Boğaziçi University in Partial Fulfillment of the requirement for the Degree of Master of Science
in
Nuclear Engineering

Boğaziçi University
I98I

Dedicated to
Nevin,
my fiancè

ACKIOWLEDGEAENIS

I wish to express my sincere gratitude to my advisor Dr. Vural Altin for his continued interest and encouragement throughout this work.

My deep thanks goes to Prof. Dr. Turan B. Enginol for his valuable discussions and comments. I am also greatful to Dre Ahmet Kuzucu for his sincere interest and valuable suggestions.

My great appreciation goes to the Computer Center staff for my frequent runs.

The subject of this study is the construction of some sufficient conditions for Xenon stability in thermal reactors during operation, and the approximate time behaviour of the point kinetics system with feedback.

The same topic had been investigated by J. Chernick, G. Lellouche and W. Wollmann[7] in I96I. It had been shown that Xenon instability remains a serious concern in the presence of temperature damping. Later A. Z. Akçasu and P. Akhtar studied the problem in I966[2]. They approached the problem as one of asymptotic stability in the large for point reactors with non-linear feedback; and gave a new criterion for boundedness of Xenon oscillations in the presence of temperature feedback.

In the first three chapters basic kinetic equations are derived for the point reactor model, mainly to emphasize the extent of careful work required to obtain the mean neutron generation time. Then global stability analysis of Xenon is examined and the region of asymptotic stability in the large in the plane of equilibrium flux vs. temperature coefficient is determined.

In chapter four linear stability analysis is considered and conditions for linear stability are determined with and without delayed neutrons: and the results are compared. In constructing the gtability conditions, various approximations and combinations of parameters were utilized. Further, point kinetics equations are solved for certain reactor operating conditions and the time behaviour of the flux is
observed in order to assess some properties such as period and amplitude of oscillations in the region of stability and instability. The results are compared with that of other workers in the field [2].

Results, piots and the discussions are given in the last
chapter. Computer programs used in this work are also provided in the appendices.

LIST OF SYMBOLS

Symbol	Definition
ℓ	Meutron generation time (sec.)
$\lambda_{\text {I }}$	decay constant of I^{135} (sec. ${ }^{-1}$)
λ_{x}	decay constant of $\mathrm{Xe}^{135}\left(\mathrm{sec}^{-1}\right)$
λ	average decay constant of delayed neutron precursors
ϕ	equilibrium value of flux ($\mathrm{n} /\left(\mathrm{cm}^{2} . \sec .\right)$)
γ	temperature reactivity coefficient
$\mathrm{y}_{\text {I }}$	iodine yield (\%)
y_{x}	xenon yield (\%)
β	delayed neutron fraction
δ_{0}	initial reactivity of the clean reactor
σ, Σ	absorption cross sections (microscopic and macroscopic)
u	lethargy
Ω	unit vector denoting the direction of motion of neutron
σ_{x}	absorption cross section of Xenon (cm^{2}.)
σ_{f}	fission cross section (cm^{2}.)
D	delayed neutron precursor concentration
P	reactor power (watts)
n	neutron population
ν	mean number of neutrons per fission

ACKMOWLEDGEMENTS i
ABSTRACT ii
LIST OF SYMBOLS iii
CHAPTER
I. INIRODUCIION 1

1. Background 1
2. Scope 6
II. THEORY 7
3. Kinetics Equations 7
4. Kinetics Equations with Feedback 10
2.1 Point Kinetics Approximations 13
5. Freedback Models 20
3.1 Description of Feedback 20
3.2 Feedback Functional 24
3.2.1. Mathematical Properties of Functionals 24
3.3 Temperature Feedback 27
3.4 Xenon Feedback 28

Table of Contents (Continued)

Page
III. ASYMPPOTIC STABILITY ANALYSIS 32

1. Definition of Asymptotic Stability in the Large 32
2. Governing Equations 33
3. Application of Criterion Proposed by Enginol, T.B. 47
4. Discussion 49
IV. LINEAR STABILITY ANALYSIS 52
5. Characteristic Function and Linear Stability 52
6. Linear Stability Analysis without Delayed Neutrons 56
2.1. Characteristic Equation 56
2.2. Routh-Hurwitz Criterion 59
2.2.1. Application of Routh-Hurwitz Criterion without Delayed Neutrons 61
2.3. Other Possibilities for Stability without Delayed Neutrons 63
2.3.1. Case I 63
2.3.2. Case II 66
2.4. Discussion 69
7. Linear Stability Analysis with Delayed Neutrons 71
3.1. Characteristic Equation 71
3.2. Application of Routh-Hurwitz Criterion with Delayed Neutrons 75
3.3. A Different Approach to Find the Characteristic Equation 78
3.3.1. Application of Routh-Hurwitz Criterion 84
3.4. Discussion 88

Table of Contents (Continued)

Page
V. NUMERICAL SOLUTION METHODS 90

1. Wumerical Solution by Using Finite Difference Method 90
2. Numerical Solution of the Point Kinetics Equations, Hansen's Fhethod 96
3. Discussion 101
VI. CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK 118
REFERENCES 124
APPENDICES 127
4. Adjoint Operator
5. Jeutron Importance
6. The Inhour Equation
7. Nomenclature
8. Flow Chart of the Program
9. Program Listings

CHAPTER I

INPRODUCTION

I. BACKGROUND

The first controlled nuclear chain reaction was achieved in Chicago in 1942 in a reactor using natural uranium and graphite. The first nuclear reactor was designed and built without detailed knowledge of the products of fission of U^{235}. The power level of this first reactor and of the second reactor built in Oak Ridge in the follwing year was so low that the total quantity of fission proaucts present in the reactor was not sufficient to noticably affect the reactivity of the systern. It was not until the first Pulutonium production reactor ${ }^{(*)}$ was built at Hanford in 1966 and operated at high power levels that the existence of fission products with high thermal neutron cross section was discowered. Serious loss of reactivity in this reactor at high power levels led to the postulate that a fission product with a high yield and high absorption cross section was providing the mechanism for reactivity changes. This fission product was found to be Xe ${ }^{435}$.
(*) It was a LGR (Light water cooled, Graphite moderated Reactor).

The characteristics of this isotope are compared with those of U^{235} and Sm 149 in table-I. Samarium-I49 is the only other fission product whose thermal cross section even approaches that of Xenon.

Isotope	Thermal absorption cross section, barns	Yield $\%$
Xe^{135}	$3 \times I 0^{6}$	6.4
Sm^{149}	5.3×10^{4}	I.4
U^{235}	6.7×10^{2}	

Table-I Comparison of yields and cross sections of Xe^{135} Sm^{149} and 0^{235}

Xenon-I35 absorption cross section can be considered constant because its variation with neutron energy is negligible about the theoretical value of $3 \times I 0^{6}$ barns. Figure-I shows this veriation with neutron energy[IO].

Xenon-I35 is created in two ways: directly as a fission product (0.3%) and as the grandoughter of fission product $T e^{135}(6.0 \%)$. The important characteristics of this decay chain are given below. Since the 2 min . half-life of I^{135}, we may assume that the Iodine is formed directly as a fission product.

$$
\begin{aligned}
& \mathrm{me} \xrightarrow{135 \mathrm{min.}} \mathrm{I}^{135} \xrightarrow{6.7 \mathrm{hr}} \mathrm{Xe} \xrightarrow{135} \xrightarrow{9.2 \mathrm{hr}} \mathrm{Cs}^{135} \xrightarrow{2 \times 10^{4} \mathrm{yr}} \mathrm{Ba}^{135} \quad \text { (stable) } \\
& \sigma_{a}=\left(7 b_{0}\right) \text { (7b.) (3xIOb.) (30b.) (Ib.) }
\end{aligned}
$$

(1) SHITH (Fast Chopper)
(2) BERUSTEIN (Crystal Spectometer)

Figure - 1 Absorption Cross Section $(n, 8)$ of Xenon as a function of neutron temperature.

The presence of Xenon in a thermal reactor gives rise to three serious control problems owing to its high absorption cross section for thermal neutrons. One control problem is caused by the build up of Xenon concentration due to Iodine decay after reactor shutdown. The peak in the Xenon concentration occurs about IO hrs. after shutdown. If one wanted to start-up the reactor at that time, enough excess reactivity would have to be incorparated into the control rods to compensate for this peak amount of neutron absorbing Xenon poison. This becomes a more serious problem for flux levels above $10^{13} \mathrm{n} /\left(\mathrm{cm}^{2}\right.$. sec.).

Another problem arises from the fact that during equilibrium operation the Zenon absorbs neutrons from the chain reaction. For this chain reaction to be sustained, enough excess neutrons have to be produced to compensate for the amount absorbed by equilibrium Kenon. The anount of thermal neutrons captured by equilibrium Xenon poison ranges from 0.7% at a flux level of 10^{12} to 4.8% at a flux level of 10^{15}.

The third problem is that of thermal flux instability due to a change in Xenon concentration from its equilibrium value. This problem of Kenon reactivity feedback during reactor operation is the topic of this study

Delayed reactivity feedback can be defined as reactivity, created or destroyed at time $t=t_{0}$, whose effect on the system is not felt until a later time $t=t_{1}$. For the case of Xenon reactivity feedback, Iodine atons are created at time $t=t_{0}$ and decay to Xenon atoms at time $t=t_{1}$; the time t_{1} being determined by an exponential decay law. the Xenon atoms then absorb neutrons at some time $t \geqslant t_{p}$ Since the amount of Xenon produced by fission is much less than the amount of Iodine produced by fission, nost of the Xenon present at a given time is due to the decay of Iodine.

To understand how flux instability due to Xenon reactivity feedback can occur, consider a steady-state reactor containing equilibrium amounts of Xenon and Iodine. A disturbance that slightly increases the flux will initially destroy Xenon through flux absorption and create Iodine and a small amount of Xenon through fission. If the initial emount of Xenon destroyed is greater than that created directly, the total anount is reduced. below the equilibrium level, and the flux will tend to increase. If enough Xenon is produced through Iodine decay to replenish the equilibrium levels moxe neutrons will be absorbed, and the flux will decrease. Depending on the relative strength of the competing process, the flux will increase with time (unstable), return to the equilibrium level (stable), or oscillate continuously (neutrally steble).

The major part of this thesis will be devoted to deriving the relations between equilibrium flux and reactor parameters that must hold to ensure linear stability.

There are other feedback mechanisms in a reactor besides Xenon feedback. These are usually the result of temperature effects caused by changes in the power level, since all commercial reactors are designed to have negative reactivity feedback. This feedback tends to stebilize the system egainst power changes large enough to advexsely affect the operation.

A negative reactivity coefficient in a thermal reactor may be caused by:
I) A decrease in the density of the moderator as the temperature increases.
2) A change in absorption cross section of fuel or moderator.
3) A change in leakage due to a change in internal geometry and reflector density or flux spectrun.
4) The Doppler effect in fuel, i.e., as the temperature increases, the resonances of U^{238} for absorption of neutrons broadens.

2. SCOPE

In the first part of the thesis theory of Nuclear Reactor Dynamics is given and equations describing the time behaviour of the reactor are derived. Application of these equations to Asymptotic Stability in the Large is given in chapter 3. In chapter 4 Linear Stability Analysis is presented for several cases and the stability conditions are derived. In chapter 5 point kinetics equations are solved using different techniques. Results, plots and discussions are subsequently given.

THEORY

I. KINEPICS EqUATIONS

Reactor Dynamics is concerned with the time behaviour of the neutron population in a reactor whose nuclear and geometric properties may vary in time. The first step in reactor dynamics is to introduce the macroscopic physical quantities and the dynamical variables that describe the medium and the neutron population in sufficient detail.

Angular density in terms of the lethargy u and the unit vector Ω, namely $n(\underline{r}, u, \Omega, t)$, where u is a measure of the kinetic energy of the neutron in the lethargy scale $\left(u=10 g(E / E)\right.$, where E_{0} is a reference energy such that there are no neutrons with $\left.E>E_{0}\right)$, and Ω is the unit vector denoting the direction of motion of the neutron $(\Omega=\mathbb{v} / v)$.

Now we may write the transport equation in a multiplying medium;

$$
\begin{align*}
& \frac{\partial n(\underline{\underline{x}}, u, \underline{\Omega}, t)}{\partial t}=-\Omega \cdot \nabla v(u) n(\underline{r}, u, \underline{\Omega} t)-\Sigma(\underline{r}, u, t) v(u) n(\underline{r}, u ; \underline{n}, t)+ \\
& +\int d u^{\prime} \int d \Omega^{\prime}\left\{\sum_{j}\left[\left(f_{0}^{j}(u) / 4 \pi\right)\right] \nu^{j}\left(u^{\prime}\right)\left(I-\beta^{j}\right) \sum_{f}^{j}\left(\underline{x}, u^{\prime}, t\right)\right. \\
& \left.+\sum_{s}\left(\underline{x}, u^{\prime} \rightarrow \rightarrow u, \Omega^{\prime} \rightarrow \underline{\Omega}, t\right)\right\} v\left(u^{\prime}\right) n\left(\underline{\underline{x}}, u^{\prime}, \underline{n^{\prime}}, t\right) \\
& +\mathrm{S}(\underline{\underline{r}}, \mathrm{u}, \underline{\Omega}, \mathrm{t})+\sum_{i=1}^{6} \lambda_{i}\left[\left(f_{i}(\mathrm{u}) / 4 \pi\right)\right] \mathrm{c}_{i}(\underline{\mathrm{r}}, \mathrm{t}) \tag{2.I}
\end{align*}
$$

where, $f_{i}(u)$ is the lethargy distribution of delayed neutrons of the i th group; $f_{0}^{j}(u)$ the lethargy distribution of the prompt fission neutrons resulting from the $j^{\text {th }}$ fissile nucleus and both are normalized to unity as,

$$
\int_{0}^{\infty} d u f_{s}^{\dot{j}}(u)=I, \quad s=0, I, \ldots, 6
$$

$C_{i}(\underline{r}, t)$ is the concentration of the delayed neutron precursors per unit volume at point \underline{r}, at time t which always decay by emitting a delayed neutron; $\nu^{j}(u)$ is the mean number of neutrons per fission in nucleus of type j induced by a neutron having lethargy $u ; \sum_{f}^{j}\left(\underline{r}, u^{i}, t\right)$ is the macroscopic fission cross section of j type nucleus for neutrons having lethargy u^{\prime},
 cross section of j th type nucleus at point \underline{x}, for neutrons entering the collision with lethargy u^{\prime}, direction Ω^{\prime} and exiting with $u, \Omega_{-} \lambda_{i}$ is the $i^{\text {th }}$ kind delayed neutron precursor decay constant; and β^{j} is the number of precursors per fission of nucleus type j.

In this equation we have allowed the possibility of having moxe than one kind of fuel isotope, and distinguished them by the superscript j. Equation states neutron balance in an infinitesimal element of volume in the phase space $(\vec{r}, \vec{v}) \equiv(\vec{r}, u, \vec{\Omega})$.

The term $-\Omega \cdot \nabla v(u) n(\underline{\underline{r}}, \mathrm{u}, \underline{\Omega}, \mathrm{t})$ in eq. (2.I) denotes the removal of neutrons due to streaming, and is equal to the difference between the number of neutrons entering and emerging per second from

The second term is the number of neutrons in $d^{3} d u d \vec{\Omega}$ that, suffer a collision of any kind per second.

The third term is the total number of fissionneutrons produced in $d^{3} d u d \vec{R}$ per second by fission events in d^{3} at r in the configuration space where the fissions are induced by neutrons of all energies.

The fourth term is equal to the number of neutrons that are scattered into dud $\vec{\Omega}$ at u per second in scattering events in configuration space at all energies.

The fifth term, $S(x, u, \Omega, t) d^{3} r d u d \Omega$ denotes the number of neutrons introduced into $d^{3} r$ at I and dud $\vec{\Omega}$ at u by external neutron sources.

Finally the last term is the number of delayed neutrons emitted per second in $d^{3} r$ at x by the delayed neutron precursors of all types which are formed in fission events in dr in the past.

The second equation represents the balance relations for the precursors in an element of volume in the configuration space.
$\frac{\partial C_{i}(\underline{\underline{r}}, t)}{\partial t}=-\lambda_{i} C_{i}(\underline{r}, t)+\int d u\left[\sum_{j} \beta_{i}^{j} \nu^{j}(u) v(u) \sum_{f}(\underline{r}, u, t) n(\underline{r}, u, t)\right]$
where we have defined,

$$
n(\underline{r}, u, t) \equiv \int d \vec{\Omega} n(\underline{r}, u, \underline{\Omega}, t)
$$

which we refer to as the "scaler" neutron density.

2. REACTOR KINETICS EQUATIONS WITH FEEDBACK

Kinetics equations in operator form are,

$$
\begin{align*}
& \frac{\partial \mathrm{n}}{\partial \mathrm{t}}=\mathrm{H}[\mathrm{n}] \mathrm{n}+\sum_{i=1}^{6} \lambda_{i} \mathrm{f}_{i} \mathrm{C}_{i}+\mathrm{S} \tag{2.3a}\\
& \frac{\partial\left(\mathrm{f}_{i} \mathrm{C}_{i}\right)}{\partial \mathrm{t}}=\mathrm{M}_{i}[\mathrm{n}] \mathrm{n}-\lambda_{i} \mathrm{f}_{i} \mathrm{C}_{i} \quad, \quad i=1, \ldots, 6 \tag{2.3~b}
\end{align*}
$$

where,

$$
\mathrm{H}=\mathrm{L}+\mathrm{M}_{0}
$$

and

$$
\begin{aligned}
& I=-\underline{\Omega}_{0} \nabla v(u)-\sum(\underline{\underline{r}}, u, t) v(u)+\int d u^{\prime} \int d \vec{\Omega}^{\prime}\left[v\left(u^{\dot{i}}\right) \Sigma_{s}\left(\underline{\underline{r}}, u^{\prime} \rightarrow-\cdots, \underline{\Omega}, \underline{\Omega}^{\prime}, t\right)\right] \\
& M_{0}=\sum_{\dot{j}}\left[\frac{f_{i}^{\dot{j}}(u)}{4 \pi} \int d u^{\prime} \int d \vec{\Omega}^{\prime}\left[v\left(u^{\prime}\right) \nu^{j}\left(u^{\prime}\right)\left(I-\beta^{\dot{j}}\right) \Sigma_{f}^{\dot{j}}\left(\underline{x}, u^{\prime}, t\right)\right]\right] \\
& M_{i}=\sum_{j}\left[\frac{f_{i}^{j}(u)}{4 \pi} \int d u^{\prime} \int d \vec{a}^{\prime}\left[\beta_{i}^{j} v^{j}\left(u^{\prime}\right) v\left(u^{\prime}\right) \sum_{f}^{j}\left(\underline{r}, u^{\prime}, t\right)\right]\right]
\end{aligned}
$$

The physical meaning of these operators can be deduced from their definitions : L describes the losses from the differential volume $d^{3} r d u$ in phase space due to leakage, absorption and scattering and also the gains in $\overrightarrow{d r d u}^{3}$ as a result of scatterings from all other $u^{\prime}, \vec{\Omega}^{\prime}$ into $\vec{\Omega}, u$ at position \underline{x}. Mo determines the rate of production of prompt neutrons when it operates on the angular density; it can be called the prompt neutron production operator. Similarly, K_{i} can be called the delayed neutron precursor-production operator.

Finally H describes neutrons in a multiplying medium in the absence of delayed neutrons; it is called the Boltzmannoperator. Note that the operators H and M_{i} depend on the composition of the medium, and describe the medium completely, so are functionals of n, They are, in general, time dependent because the cross sections are functions of time both due to changes in weighted microscopic cross sections resulting from spectral shifts in the assumed Maxwell-Boltzmandistribution of the nuclear velocities with temperature.

Now consider a stationary reference reactor supporting a neutron distribution characterized by $N_{0}(\underline{r}, u, \Omega)$. Since a reactor is never trulys stationary when the burn-up and build-up of the various nuclear species are included, we must either assume that the reference reactor is operated at zero power level, and hence free from all feedback effects, or ignore the long-term changes in the nuclear species due to burnmp and build-up of fission product isotopes by irradiation. In the first case, the reference reactor is critical in the absence of feedback effects, and represents
a cold, clean reactor free from fission products.
In the second case, the reference reactor is critical in the presence of all the feedback effects except for those arising from the depletion of the fuel; the effects of the burnable poisons, such as Xe ${ }^{635}$, are still included. It is more realistic to visualize the reference reactor as in the second case, because then the reference distribution $H_{0}(x, u, \Omega)$ can be chosen as the steady-state distribution in the actual reactor at the operating power level before the perturbations are introduced. Since the analysis based on the latter interpretation of $N_{0}(\underline{x}, u, \Omega)$ is better justified than choosing it as the steady-state distribution in a reactor critical in the absence of feedback effects.

The steady-state distibution $N_{0}(\underline{x}, u, \Omega)$ can be obtained in principle by solving the time independent set of coupled nonlinear integrodifferential equations derived. In operator form $N_{0}(\underline{r}, u, \Omega)$ satisfies the following equation:

$$
\begin{equation*}
\mathcal{H}_{0}\left[\mathrm{~N}_{0}\right] \mathrm{N}_{0}=0 \tag{2.4}
\end{equation*}
$$

which is obtained from (2.3) by setting the time derivatives equal to zero and eliminating $C_{i s}(\underline{r})$. Here \mathcal{H}_{0} is defined by

$$
\begin{equation*}
\mathcal{H}_{0} \equiv \mathrm{H}+\sum_{i=1}^{6} \mathrm{M}_{i} \equiv \mathrm{~L}+\mathrm{M} \tag{2.5}
\end{equation*}
$$

where is the modified multiplication operator :

$$
M=\sum_{\dot{j}}\left(f^{\dot{j}}(u) / 4 \pi\right) \int d u^{\prime} \int d \underline{\Omega^{\prime}}\left[\nu^{\dot{j}}\left(u^{\prime}\right) \sum_{f}^{j}\left(\underline{r}, u^{\prime}\right) v\left(u^{\prime}\right)\right]
$$

in which $f^{j}(u)$ is defined by

$$
\begin{gather*}
f^{\dot{j}}(u) \equiv\left(I-\beta^{\dot{j}}\right) f_{0}^{\dot{j}}(u)+\sum_{i=1}^{6} \beta_{i}^{j} f_{i}(u) \\
\left.\mathcal{H}_{0}\left[N_{0}\right] \equiv-\Omega \cdot \nabla v(u)-v(u) \sum_{\left(\underline{x}, u,\left[N_{0}\right]\right)+\int d u^{\prime} \int d \vec{\Omega}^{\prime} v\left(u^{\prime}\right)\left\{\sum_{s}\left(\underline{x}, u^{\prime} \rightarrow u, \Omega^{\prime} \cdot \Omega ;\left[N_{0}\right]\right)\right.}+\sum_{\dot{j}}\left[f^{j}\left(u^{\dot{j}}\right) / 4 \pi\right] \nu^{\dot{s}}\left(u^{\prime}\right) \sum_{f}^{j}\left(\underline{r}, u^{\prime} ;\left[N_{0}\right]\right)\right\}
\end{gather*}
$$

Note that the operator $\mathcal{H}\left[N_{0}\right]$ has the same structure as the steady-state Boltzmann operator. The presence of feedback modifies only the energy and space dependencies of the cross sections in the expression of $H\left[N_{0}\right]$ but does not affect its form.
2.I POITY KTNETTCS AFPROXIMATION [3]

In order to obtain appropriate point kinetics equations with feedback, we partition the angular neutron density $n(\underline{x}, u, \Omega, t)$ into a shape function $\phi(\underline{x}, u, \underline{\Omega}, t)$ and a time function $P(t)$ such that

$$
\begin{equation*}
n(\underline{r}, u, \underline{\Omega}, t)=P(t) \phi(\underline{r}, u, \underline{\Omega}, t) \tag{2.10}
\end{equation*}
$$

Assuming $N_{0}(\underline{r}, u, \Omega)$ and $\mathbb{N}_{0}^{+}(\underline{x}, u, \Omega)$ to be known functions of $\underline{\underline{x}}, u$
(*) Please see Appendix-2,I for the definition of and the method of solution for the adjoint or the importance function $N_{0}^{+}(\underline{r}, u, \Omega)$.
and Ω; multiply (2.I0) by N_{0}^{+}and integrate over \underline{r}, u and Ω;

$$
\begin{align*}
& P(t) \frac{\partial \phi(\underline{x}, u, \underline{\Omega}, t)}{\partial t}+\phi(\underline{r}, u, \underline{\Omega}, t) \frac{\partial P(t)}{\partial t}=P(t) H \phi(\underline{r}, u, \Omega, t)+\sum_{i=1}^{6} \lambda_{i} f_{i} C_{i}+s \tag{2.II}\\
& \frac{\partial\left(f_{i} C_{i}\right)}{\partial t}=P(t) M_{i} \phi(\underline{r}, u, \Omega, t)-\lambda_{i} f_{i} C_{i} \tag{2.I2}
\end{align*}
$$

and, by using Dirac notation,

$$
\begin{align*}
& \left\langle\mathrm{N}_{0}^{+} \mid \phi\right\rangle \frac{\partial \mathrm{P}}{\partial t}+\mathrm{P} \frac{\partial}{\partial t}\left\langle\mathrm{~N}_{0}^{+} \mid \emptyset\right\rangle=\mathrm{P}\left\langle\mathrm{~N}_{0}^{+}\right| \mathrm{H}|\phi\rangle+\sum_{i=1}^{6} \lambda_{i}\left\langle\mathrm{~N}_{0}^{+} \mid f_{i} \mathrm{C}_{i}\right\rangle+\left\langle\mathrm{N}_{0}^{+} \mid \mathrm{S}\right\rangle \tag{2.I3}\\
& \frac{\partial}{\partial t}\left\langle N_{0}^{+} \mid f_{i} C_{i}\right\rangle=P(t)\left\langle N_{0}^{+}\right| M_{i}|\emptyset\rangle-\lambda_{i}\left\langle N_{0}^{+} \mid f_{i} C_{i}\right\rangle \tag{2.I4}
\end{align*}
$$

We now impose a "normalization" condition on the shape function to ensure uniqueness, which we choose as,

$$
\begin{equation*}
\frac{d}{d t}\left\langle\mathrm{~N}_{0}^{+} \mid \varnothing\right\rangle=0 \tag{2.I5}
\end{equation*}
$$

Since $\mathbb{N}_{0}^{+}(\underline{\underline{r}}, u, \underline{\Omega})$ is proportional to the importance of neutrons (see Appendix-2), $\left\langle N_{0}^{+} \mid \phi\right\rangle$ is the total importance of neutrons in the reference reactor with a distribution function $\phi(\underline{r}, u, \underline{\Omega}, t)$.

So, the shape function must be so chosen that the total importance in the reference reactor will remain constant in time even though $\emptyset(\underline{r}, u, \Omega, t)$ itself may slowly vary in time. This assures us that when we start working with adjoint weighted neutron population in the form of P the multiplicative potential of total number of neutrons as measured by total importance is the same as in the actual core although we have no idea about the spatial distribution of neutron population.

Now we may interpret the physical meaning of time function. Multiplying both sides of (2.10) by N_{0}^{+}, we find that

$$
\begin{equation*}
P(t)=\left\langle N_{0}^{+} \mid n\right\rangle /\left\langle N_{0}^{+} \mid \emptyset\right\rangle \tag{2.16}
\end{equation*}
$$

which states that $P(t)$ is the ratio of the total ireportance of neutrons With a distribution $n(\underline{r}, u, \underline{\Omega}, t)$ to the importance of those neutrons that have a distribution $\phi(\underline{x}, u, \underline{\Omega}, t)$. The denominator of (2.I6) is constant in time, and can be scaled to unity.

Then $P(t)$ becomes the instantaneous value of the total importance of the neutron population in the actual reactor which is necessary to sustain a chain reaction in the reference reactor. Note that $P(t)$ is not the total number of neutrons in the reactor volume at time t. Then the equations become,

$$
\begin{equation*}
\left\langle N_{0}^{+} \mid \emptyset\right\rangle \frac{\partial P}{\partial t}=P\left\langle N_{0}^{+}\right| H|\emptyset\rangle+\sum_{i=1}^{6} \lambda_{i}\left\langle N_{0}^{+} \mid f_{i} C_{i}\right\rangle+\left\langle N_{0}^{+} \mid S\right\rangle \tag{2.17a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\langle N_{0}^{+} \mid f_{i} C_{i}\right\rangle=P(t)\left\langle N_{0}^{+}\right| M_{i}|\emptyset\rangle-\lambda_{i}\left\langle N_{0}^{+} \mid f_{i} C_{i}\right\rangle \tag{2.17~b}
\end{equation*}
$$

Now we may introduce the concept of perturbation, i.e., the deviations of the reactor parameters of the actual reactor from those of the reference reactor, defining a perturbation operator $\delta \mathcal{L H}[n]$ as

$$
\begin{aligned}
\delta \mathcal{H}[n] \equiv H[n]+\sum_{i=1}^{6} M_{i}[n]-\mathcal{H}_{0} & \equiv L[n]+M[n]-\mathcal{H}_{0} \\
& =\mathcal{H}[n]-\mathcal{H}_{0}\left[N_{0}\right]
\end{aligned}
$$

or explicitly,

$$
\begin{align*}
\delta H[n] & \equiv-v(u) \delta \sum(\underline{r}, u,[n])+\int d u^{\prime} \int d \Omega^{\prime}\left\{\sum_{s}\left(\underline{r}, u^{\prime} \rightarrow-\rightarrow, \underline{\Omega} \cdot \underline{\Omega^{\prime}},[n]\right)\right. \\
& \left.+\sum_{\dot{j}}\left[\underline{\Gamma}^{\dot{j}}(u) / 4 \pi\right] \nu^{\dot{j}}\left(u^{\prime}\right) \sum_{f}^{\dot{j}}\left(\underline{r}, u^{\prime},[n]\right)\right\} v\left(u^{\prime}\right) \tag{2.18}
\end{align*}
$$

where $\delta \Sigma_{j}(\underline{r}, u,[n])$ measures the variations of the cross sections about their reference values, i.e.,

$$
\delta \Sigma_{j}(\underline{r}, u,[n]) \equiv \sum_{j}(\underline{r}, u,[n])-\sum_{j a}\left(\underline{r}, u, n_{0}\right)
$$

where the subscript j denotes a, f or s 。 Substituting $H[n]$ from (2.18) into (2.17),

$$
\begin{align*}
\frac{\partial P}{\partial t}\left\langle N_{0}^{+} \mid \phi\right\rangle & =P\left\langle N_{0}^{+} \mid \delta \nmid \phi\right\rangle+P\left\langle N_{0}^{+}\right| H_{0}|\phi\rangle-P \sum_{i=1}^{6}\left\langle N_{0}^{+}\right| M_{i}|\phi\rangle \\
& +\sum_{i=1}^{6} \lambda_{i}\left\langle N_{0}^{+} \mid f_{i} C_{i}\right\rangle+\left\langle N_{0}^{+} \mid S\right\rangle \tag{2.I9}
\end{align*}
$$

Recalling that $\left\langle N_{0}^{+} \mid \mathcal{U}_{0} \phi \emptyset\right\rangle=\left\langle\mathcal{H}_{0}^{+} N_{0}^{+} \mid \emptyset\right\rangle=0$ for any function \emptyset with the proper boundary conditions,
$\frac{\partial P}{\partial t}=\left\{\frac{\left\langle N_{0}^{+}\right| \delta \mathcal{I}|\phi\rangle}{\left\langle\mathrm{N}_{0}^{+} \mid \varnothing\right\rangle}-\frac{\sum_{i=1}^{6}\left\langle\mathrm{~N}_{0}^{+}\right| M_{i}|\phi\rangle}{\left\langle\mathrm{N}_{0}^{+} \mid \phi\right\rangle}\right\} P(t)+\sum_{i=1}^{6} \lambda_{i} \frac{\left\langle\mathrm{~N}_{0}^{+} \mid f_{i} \mathrm{C}_{i}\right\rangle}{\left\langle\mathrm{N}_{0}^{+} \mid \phi\right\rangle}+\frac{\left\langle\mathrm{N}_{0}^{+} \mid s\right\rangle}{\left\langle\mathrm{N}_{0}^{+} \mid \varnothing\right\rangle}$

Now the desired form of the kinetics equations become,

$$
\begin{align*}
& d P / d t=[(\rho(t)-\beta) / \ell] P(t)+\sum_{i=1}^{6} \lambda_{i} \bar{C}_{i}(t)+\bar{S}(t) \tag{2.21a}\\
& d \bar{C}_{i} / d t=\left(\bar{\beta}_{i} / l\right) P(t)-\lambda_{i} \bar{C}_{i}(t) \tag{2.21~b}
\end{align*}
$$

with the following definitions :

Reactivity : $\rho / \ell \equiv\left\langle N_{0}^{+} \delta H[n] \mid \phi\right\rangle /\left\langle N_{0}^{+} \mid \phi\right\rangle$

Effective delayed neutron fraction $\vec{~}$

$$
\begin{align*}
\bar{\beta}_{i} / l & \equiv\left\langle N_{0}^{+}\right| M_{i}[n]|\emptyset\rangle /\left\langle N_{0}^{+} \mid \emptyset\right\rangle \tag{2.22~b}\\
\bar{\beta} & =\sum_{i=1}^{6} \bar{\beta}_{i}
\end{align*}
$$

Effective concentration of delayed neutron precursors :

$$
\begin{equation*}
\vec{C}_{i} \equiv\left\langle\mathrm{~N}_{0}^{+} \mid f_{i} C_{i}\right\rangle /\left\langle N_{0}^{+} \mid \emptyset\right\rangle \tag{2.22c}
\end{equation*}
$$

Effective source:

$$
\begin{equation*}
\bar{S} \equiv\left\langle N_{0}^{+} \mid S\right\rangle /\left\langle N_{0}^{+} \mid \varnothing\right\rangle \tag{2.22d}
\end{equation*}
$$

Mean prompt neutron generation time :

$$
\begin{equation*}
\ell=\left\langle\mathbb{N}_{0}^{+} \mid \phi\right\rangle /\left\langle\mathbb{N}_{0}^{+}\right| \mathbb{M}|\phi\rangle \tag{2.22e}
\end{equation*}
$$

$M(t)$ was defined in eq. (2.5 a)
Equation (2.18) represents the difference between the nuclear properties of the reference reactor at steady-state and those of the actual reactor at time t_{i} with feedback effects being included in both cases. this difference may be due to the changes in the cross sections resulting from feedback effects, or due to the changes introduced externally in the atomic composition of the reactor, e.g., by moving the control rods. So we can separate the reactivity into three parts :

$$
\begin{equation*}
\rho / l=\left(\delta \rho_{e x t} / l\right)+\left(\delta \rho_{c} / l\right)+\left(\delta \rho_{T} / l\right) \tag{2.23}
\end{equation*}
$$

where,

$$
\begin{align*}
& \delta \rho_{e x t} / l \equiv\left\langle N_{0}^{+}\right| \sum_{i} \delta N_{i}^{e x t}\left(\partial H_{0} / \partial N_{i_{0}}^{e x t}\right)|\emptyset\rangle /\left\langle N_{0}^{+} \mid \emptyset\right\rangle \tag{2.23a}\\
& \delta \rho_{c} / l \equiv\left\langle N_{0}^{+}\right| \sum_{i} \delta N_{i}^{c}\left(\partial H_{0} / \partial N_{i_{0}}^{c}\right)|\emptyset\rangle /\left\langle N_{0}^{+} \mid \emptyset\right\rangle \tag{2.23~b}\\
& \delta \rho_{T} / l \equiv\left\langle N_{0}^{+}\right| \delta T\left(\partial H_{0} / \partial T_{0}\right)|\emptyset\rangle /\left\langle N_{0}^{+} \mid \emptyset\right\rangle \tag{2.23c}
\end{align*}
$$

where $N_{i o}(\underline{x})$ and $T_{0}(\underline{I})$ are the equilibrium concentration of the i th
nucleus and the local temperature at \underline{r}, respectively, and δH_{0} is defined in equation (2.18). the terms in (2.23) represent, respectively, the external reactivity changes, reactivity feedback due to changes in atomic concentrations, and reactivity feedback due to temperature variations.

Now the problem is to choose the shape function $\phi(\underline{x}, u, \Omega)$ appropriately. We use the first-order perturbation approximation[3]. This the crudest, and the simplest, approximation which assumes the shape to be proportional to the steady-state distribution $\mathrm{N}_{\mathrm{o}}(\underline{\underline{x}, \mathrm{u}, \Omega)}$ in the critical reference reactor. If we denote the proportionality constant by $\left(1 / P_{0}\right)$, this approximetion implies,

$$
\begin{equation*}
n(\underline{r}, u, \Omega, t) \approx \frac{P(t)}{P_{o}} \mathbb{N}_{0}(\underline{x}, u, \underline{\Omega}) \tag{2.24}
\end{equation*}
$$

where $N_{0}(x, u, \Omega)$ is the angular neutron density at equilibrium, Thus the nomalization condition $(d / d t)\left\langle N_{a}^{+} \phi\right\rangle=0$ is automatically satisfied.

It is to be noted that the reactivity ρ can be expressed as the superposition of the external and feedback reactivities only in the first-order perturbation theory.

The point kinetics equations in the presence of feedback can be written ass

$$
\begin{align*}
& \dot{P}(t)=\left[\left(\delta \rho_{e x i}(t)+\delta \rho_{f}[P]-\bar{\beta}\right) / l\right] P(t)+\sum_{i=1}^{6} \lambda_{i} \bar{c}_{i}(t)+S(t) \tag{2.25a}\\
& \stackrel{\rightharpoonup}{\mathrm{C}_{i}}(t)=\left(\bar{\beta}_{i} / \ell\right) P(t)-\lambda_{i} \overline{\mathrm{C}}_{i} \quad \quad i=\bar{i}, \ldots, 6 \tag{2.25~b}
\end{align*}
$$

Defining $G_{i}=(l / \beta) \bar{c}_{i} ;$ and recalling $a_{i}=\beta_{i} / \beta$

$$
\begin{align*}
(l / \beta) \dot{\bar{C}}_{i}(t) & =\left(\beta_{i} / \beta\right) P(t)-\lambda_{i}(\ell / \beta) \overline{\mathrm{C}}_{i} \tag{2.26a}\\
\dot{\bar{C}}_{i}(t) & =a_{i} P(t)-\lambda_{i} C_{i} \quad i=1, \ldots, 6 \tag{2.26~b}
\end{align*}
$$

3. FEEDBACK MODELS

3.1 DESCRIPTION OR FBEDBACK

A reactor with feedback can be represented, in the absence of external sources, by a block diagrom,

Figure-2 Block diagram of a reactor with feedback.

Here $p(t)$ is the incremental power, i.e., $p(t)=P(t)-P_{0}$ and $\delta k_{f}[p]$ is the feedback functional expressed in terms of the incremental power so that $\delta k_{f}(0)=0$. Reactivity feedback can be represented by,

$$
\begin{equation*}
k[p]=k\left[P_{0}+p\right]=k_{0}+k_{f}\left(P_{0}\right)+\delta k_{f}[p]+\delta k_{\text {ext }} \tag{2.26}
\end{equation*}
$$

where $\delta k_{f}[p]$ measures the feedback reactivity from its value at equilibrium, and $\delta k_{\text {ext }}(t)$ measures the incremental reactivity from its constant positive value k 。 at equilibrium. k o just compensates the equilibrium feedback reactivity.

$$
\begin{equation*}
k_{0}+k_{f}\left(P_{0}\right)=0 \tag{2.27}
\end{equation*}
$$

Now it is to be noted that the reactivity can be expressed as the superposition of the external and feedback reactivities only in the first-order perturbation theory. In general, an external change in atomic concentration will affect not only the external reactivity but also the feedback reactivity as a result of the changes in the shape function. Hence the input reactivity is given by,

$$
\begin{equation*}
\rho / \beta=k(t)=\delta k_{e x t}(t)+\delta k_{f}[p] \tag{2,28}
\end{equation*}
$$

To find the output, i.e., incremental power $p(t)=p[k]$ which is a functional, one has to solve the point kinetics equations.

$$
\begin{align*}
(l / \beta) \dot{\mathrm{P}} & =(\mathrm{k}-1) \mathrm{P}+\sum_{i=1}^{6} \lambda_{i} \mathrm{c}_{i} \tag{2.29a}\\
\dot{\mathrm{C}}_{i} & =a_{i} \mathrm{P}-\lambda_{i} \mathrm{c}_{i} \quad \mathrm{i}=1, \ldots, 6 \tag{2.29~b}
\end{align*}
$$

Equilibrium values can be found as,

$$
\begin{array}{lll}
\dot{P}=0 & ; & (1-k) P_{0}=\sum_{i=1}^{6} \lambda_{i} C_{i 0} \tag{2.30}\\
\dot{\mathrm{C}}_{i}=0 & ; & a_{i} P_{0}=\lambda_{i} C_{i 0}
\end{array}
$$

Since

$$
\sum_{i=1}^{6} a_{i}=1 \quad ; \quad P_{0}=\sum_{i=1}^{6} \lambda_{i} C_{i_{0}}
$$

Then equation (2.30) becomes

$$
(1-k) P_{0}=P_{0_{0}} \quad \text { which implies } k=0
$$

Writing departures from equilibrium,

$$
P=P_{0}+p \quad, \quad C_{i}=C_{i 0}+c_{i}
$$

Point kinetics equations becomes

$$
\begin{align*}
& (l / \beta) \dot{p}=(k-1)\left(P_{0}+p\right)+\sum_{i=1}^{6} \lambda c_{i} c_{0}+\sum_{i=1}^{6} \lambda_{i} c_{i} \tag{2.31}\\
& (l / \beta) \dot{p}=k\left(P_{0}+p\right)-P_{0}-p+P_{0}+\sum_{i=1}^{6} \lambda_{i} c_{i} \\
& (l / \beta) \dot{p}=k(t)\left(P_{0}+p\right)-p+\sum_{i=1}^{6} \lambda_{i} c_{i}
\end{align*}
$$

On the other hand, the equation for the deviation of the delayed neutron precursor concentration becomes,

$$
\begin{align*}
& \dot{c}_{i}=a_{i} p-\lambda_{i} c_{i} \tag{2.32}\\
& \dot{c}_{i}+\lambda_{i} c_{i}=a_{i} p
\end{align*}
$$

Multiplying both sides with the integration factor $\exp \left(\lambda_{i} t\right)$ we obtain

$$
\frac{d}{d t}\left(e^{\lambda_{i} t} c_{i}\right)=e^{\lambda t} a_{i} p
$$

integrating over 0 to t,

$$
e^{\lambda t} c_{i}-c_{i o}=\int_{0}^{t} a_{i} p\left(t^{\prime}\right) e^{\lambda t^{\prime}} d t^{\prime}
$$

Since the deviations from equilibrium $c_{i 0}=0$ for $t=0$

$$
\begin{equation*}
c_{i}(t)=\int_{0}^{t} a_{i} p(t) e^{-\lambda_{i}\left(t-t^{2}\right)} d t^{\prime} \tag{2.33}
\end{equation*}
$$

Going with this equation back to the differential equation describing power

$$
(l / \beta) \dot{p}=k(t)\left(P_{0}+p\right)-p(t)+\sum_{i=1}^{6} \lambda_{i} a_{0}^{t} e^{-\lambda_{i}\left(t-t^{\prime}\right)} p\left(t^{\prime}\right) d t^{\prime}
$$

or

$$
\begin{equation*}
(l / \beta) \dot{p}=k(t)\left(P_{0}+p\right)+\int_{0}^{t_{i}} \sum_{i=1} \lambda_{i} a_{i} e^{-\lambda_{i}\left(t-t^{\prime}\right)} p\left(t^{\prime}\right) d t^{\prime}-p(t) \tag{2,34}
\end{equation*}
$$

let

$$
t-t^{\prime}=u \quad, \quad t^{\prime}=t-u \quad \text { and } \quad d t^{\prime}=-d u
$$

$$
\begin{equation*}
(\ell / \beta) \dot{p}=k(t)(P+p)+\int_{0}^{t} \sum_{i=1}^{6} \lambda_{i} a_{i} e^{-\lambda_{i} u} p(t-u) d u-p(t) \tag{2.35}
\end{equation*}
$$

If we introduce $D(u)=\sum_{i=1}^{6} \lambda_{i} a_{i} e^{-\lambda_{i} u}$

Since

$$
\int_{0}^{\infty} D(u) d u=1
$$

$$
(l / \beta) \dot{p}=k(t)\left(P_{0}+p\right)+\int_{0}^{t} D(u) p(t-u) d u-p(t) \int_{0}^{\infty} D(u) d u
$$

$$
\begin{equation*}
(\ell / \beta) \dot{p}=k(t)\left(P_{0}+p\right)+\int_{0}^{\infty} D(u)[p(t-u)-p(t)] d u \tag{2.36}
\end{equation*}
$$

because $p(t-u)=0$ for $u>t$.
3.2 FGEDBACK FUMCTIONAL

3.2 .1 MATHMMATICAL PROPERTIES OF FUNCTIONALS

Recall that the input reactivity is

$$
\begin{equation*}
k(t)=\delta k_{e x t}(t)+\delta k_{f}[p] \tag{2.37}
\end{equation*}
$$

There are three important properties of feedback functionals [4]:
a) Invariance : $\delta k_{f}[p]$ is invariant under a time translation when the feedback parameters are not explicit functions of time. Mathematically,

$$
\begin{equation*}
\delta k\left(t-t_{0}\right)=\delta k_{f}\left[p\left(t-t_{0}\right)\right] \tag{2.38}
\end{equation*}
$$

b) Causality: The feedback reactivity $\delta k_{f}(t)$ at a time t is uniquely determined if $p(t)$ is known only in the interval $(-\infty, t)$.
c) Stability : The feedback reactivity is bounded for any bounded input.

Time invariant, causal functional may be represented by a power series as follows [4]:

$$
\begin{equation*}
\delta k_{f}[p]=\sum_{i=1}^{n} \int_{-\infty}^{t} a u_{1} \int_{-\infty}^{t} d u_{2} \ldots . \int_{-\infty}^{t} d u_{n} \quad G_{n}\left(t-u_{1}, \ldots, t-u_{n}\right) p\left(u_{1}\right) \ldots p\left(u_{n}\right) \tag{2.39}
\end{equation*}
$$

Since only the "analytic functions" can be represented by a power series, we shall assume that the feedback functionals are analytic.

When the power variations are sufficiently small, the functional powermseries expansion can be terminated after the first term, i.e.,

$$
\begin{equation*}
\delta k_{f}[p]=\int_{-\infty}^{t} d u G(t-u) p(u)=\int_{0}^{\infty} d u G(u) p(t-u) \tag{2.40}
\end{equation*}
$$

This kind of functional is called linear functional and the corresponding feedback mechanism is called linear, so the function $G(t)$ is referred to as the " linear feedback kernel ".

Physically $G(t)$ is the reactivity at $t>0$ due to a unit enexgy released at $t=0$, when the feedback is linear. When the stability and causality conditions are applied

$$
\begin{align*}
& G(t)=0 \quad \text { for } \quad t<0 \quad \text { and } \\
& \int_{0}^{\infty}|G(t)| d t<\infty \tag{2.40a}
\end{align*}
$$

Then in the case of a linear feedback the point kinetics equations are given by

$$
\begin{align*}
(l / \beta) \dot{P} & =\left\{\delta k_{e x t}+\int_{0}^{\infty} d u G(u)\left[P(t-u)-P_{0}\right]\right\} P \\
& +\int_{0}^{\infty}[P(t-u)-P(t)] D(u)+S(l / \beta) \tag{2.41}
\end{align*}
$$

In order to understand the physical implication of $G(u)$, suppose that we operate the reactor at a constant power level P_{0} until $t=0$, in the absence of external sources. At time $t=0$ we introduce a constant reactivity $\delta k_{\text {ext }}(t)=\delta k$, and reactor power increases to another constant power level P_{0}^{\prime} 。

Then from equation (2.41) with $\dot{p}=0$ gives
or

$$
\begin{align*}
& \delta k_{e x t}+\int_{0}^{\infty} d u G(u)\left[P_{0}^{\prime}(t-u)-P_{0}\right]=0 \\
& \delta k_{0}=-\gamma\left(P_{0}^{\prime}-P_{0}\right) \tag{2.42}
\end{align*}
$$

where we have introduced

$$
\begin{equation*}
\gamma \equiv \int_{0}^{\infty} G(u) d u \tag{2.43}
\end{equation*}
$$

Thus the incremental change in the steady-state power level is proportional to the incremental change in the extemal reactivity. The proportionality constant γ is called the "power " or " temperature coefficient " of reactivity。

This point kinetics functional relates the reactor power $p(t)$ to the reactivity insertion $k(t)$. If we specify the reactivity insertion in a reactor, we can find the output, incremental power $p(t)$. Reactivity insertion as can be achieved externally by moving control rods, also can be caused by poison or temperature feedback.

3.3 TEIPERATURE TEBDBACK

The behaviour of the reactor is governed by both the temperature feedback and the build-up and burn-up of higher cross section fission product poisons, e.g. $\mathrm{Xe}^{\mathbf{3 3 5}}$, in time intervals of the order of hours. Since the themal time constante are much less than those of $X e^{135}$ and I^{135} (9.2 and 6.7 hr ., respectively), the temperature feedback can be treated in the prompt power coefficient of reactivity, γ. Stability considerations require γ to have negative sign.

$$
\begin{align*}
\delta k_{r}[p] & =\int_{0}^{\infty} d u p(t-u) G(u) \cong p(t) \int_{0}^{\infty} d u G(u) \\
& =\tilde{o} p(t) \tag{2.44}
\end{align*}
$$

3.4 XEHON FTEEDBACK

In order to establish the functional relationship between Xe and $p(t)$, we need the equations desribing the time behaviour of I^{135} and $X e^{135}$

$$
\begin{equation*}
\partial I / \partial t=-\lambda_{I} I+y_{I} \sigma_{f}(\underline{r}) \phi_{0}(\underline{r}, t) \tag{2.45}
\end{equation*}
$$

$$
\begin{equation*}
\partial \mathrm{Xe} / \partial t=\lambda_{I} I+\mathrm{y}_{x} \sigma_{f}(\underline{\underline{r}}) \emptyset_{0}(\underline{r}, t)-\lambda_{x} \operatorname{Xe}(\underline{x})-\operatorname{Xe}(\underline{\underline{r}}) \sigma_{x_{e}}(\underline{\underline{r}}) \phi_{0}(\underline{r}, t) \tag{2.46}
\end{equation*}
$$

where $X e$ and I are the $X e^{135}$ and I^{135} concentrations per fuel atom, y_{x} and y_{I} their yields, λ_{x} and λ_{I} their decay constants.

In order to use space-independent model we integrate these equations over the reactor volume, and introduce

$$
\begin{gather*}
X e(t)=(I / V) \int_{R} d^{3} X e(\underline{r}, t) \tag{2.47}\\
I(t)=(I / V) \int_{R} d^{3} I(\underline{r}, t) \tag{2.48}\\
\sigma_{f}=\int_{R} d r \sigma_{f}^{3}(\underline{r}) \emptyset_{0}(\underline{r}) / \int_{R} d^{3} r \emptyset_{0}(\underline{r}) \tag{2.49}\\
\sigma_{X e}=V \int_{R} d^{3} r \sigma_{x e}(\underline{r}) X e_{0}(\underline{r}) \not \emptyset_{0}(\underline{r}) /\left\{\left[\int_{R}^{3} d^{3} X e_{0}(\underline{r})\right]\left[\int_{R}^{3} d^{3} \not \emptyset_{0}(\underline{r})\right]\right\} \tag{2.50}
\end{gather*}
$$

It proves convinient to choose p_{0} in $\phi(\underline{x}, t) \approx\left[P(t) / p_{0}\right] \phi(\underline{x})$ as the average flux ϕ_{0} defined by,

$$
\begin{equation*}
\phi_{0} \equiv(1 / v) \int_{R} d^{3} r \emptyset_{0}(\underline{r}) \tag{2.51}
\end{equation*}
$$

with this choise, $P(t)$ has the dimensions of flux. Using equations $47,48,49,50$ and 51 we obtain the following lumpedparameter description,

$$
\begin{align*}
& d I(t) / d t=-\lambda_{I} I(t)+y_{I} \sigma_{f} P(t) \tag{2.52}\\
& \operatorname{dXe}(t) / d t=\lambda_{I} I(t)+y_{x} \sigma_{f} P(t)-\lambda_{x} X e(t)-\operatorname{Xe}(t) \sigma_{x e} P(t) \tag{2.53}
\end{align*}
$$

In obtaining the last term in 53 , we have assumed that $X e(r, t)$ as well as $\emptyset_{0}(r, t)$ is separable in time and space, that is

$$
\begin{equation*}
(1 / V) \int_{R} d^{3} r \operatorname{Xe}(\underline{r}, t) \sigma_{x e}(\underline{r}) \emptyset_{0}(\underline{r}, t) \cong \sigma_{x_{e}} X e(t) P(t) \tag{2.54}
\end{equation*}
$$

Now we may express the Xenon feedback functional as,

$$
\begin{equation*}
\delta k_{x e}[p]=\alpha_{x_{e}} \delta X e(t) \tag{2.55}
\end{equation*}
$$

where $\alpha_{x e}$ is the overage Xenon reactivity coefficient defined by,

$$
\begin{equation*}
\alpha_{x e}=-\sigma_{x e} /\left(\beta c \sigma_{f}\right) \tag{2.56}
\end{equation*}
$$

where c is a number converting the local Kenon absorption per fission to overall reactivity, β the fraction of delayed neutrons.

As a result, the equations describing the time behaviour of a reactor in the presence of Xenon feedback are compiled below ${ }^{(*)}$.
(*) Power coefficient of reactivity is defined as - γ.

$$
\begin{align*}
(\ell / \beta) \dot{P} & =\left[\delta k_{e x t}(t)-\sigma_{x e} X e /\left(c \sigma_{f} \beta\right)-\gamma P\right] P-P+\sum_{i=1}^{c} \lambda_{i} C_{i}+S(\ell / \beta) \\
\dot{C}_{i} & =z_{i} P-\lambda_{i} C_{i} \tag{2.57~b}\\
\dot{X e} & =y_{x} \sigma_{f} P-\left(\lambda_{x}+\sigma_{x} P\right) X e+\lambda_{I} I \tag{2.57c}\\
\dot{I} & =y_{I} \sigma_{f} P-\lambda_{I} I \tag{2.57~d}
\end{align*}
$$

where the various paraneters are as defined before.
Since the reactor power is proportional to flux $\bar{\phi}(t)$ in the critical reactor and they are of the same dimensions in our equations, it is more convenient to consider the symbol $\phi(t)$ instead of $P(t)$ just for simplicity. The kinetic equations with some manipulations becomes.

$$
\ell \dot{\phi}=\left[\delta_{0}-\beta-\sigma_{x} X e /\left(c \sigma_{f}\right)-\gamma \phi\right] \Phi+\beta \sum_{i=1}^{6} \lambda_{i} C_{i}+S l
$$

Introducing a new variable,

$$
D_{i}=\beta C_{i}=l \bar{C}_{i}
$$

the precursor concentration equation becomes, noting $a_{i}=\beta_{i} / \beta$;

$$
\begin{equation*}
\dot{D}_{i}=\beta_{i} \Phi-\lambda_{i} D_{i} \tag{2.58}
\end{equation*}
$$

Now the kinetics equations for future reference, without external sources are

$$
\begin{align*}
\ell \dot{\emptyset} & =\left[\delta_{0}-\beta-\sigma_{x} \mathrm{Xe} /\left(c \sigma_{f}\right)-\gamma \emptyset\right] \bar{\emptyset}+\sum_{i=1}^{6} \lambda_{i} D_{i} \tag{2.59a}\\
\dot{D}_{i} & =\beta_{i} \emptyset-\lambda_{i} D_{i} \tag{2.59~b}\\
\dot{X e} & =y_{x} \sigma_{f} \emptyset-\left(\lambda_{x}+\sigma_{x} \emptyset\right) X e+\lambda_{I} I \tag{2.59c}\\
\dot{I} & =y_{I} \sigma_{f} \emptyset-\lambda_{I} I \tag{2.59~d}
\end{align*}
$$

Also note the integro-differential form of the point reactor kinetics equation for future reference,

$$
\begin{equation*}
\ell \dot{\phi}=\rho_{f}[\phi(\mathrm{t})](\bar{\phi}+\phi)+\int_{0}^{\infty}[\phi(\mathrm{t}-\mathrm{u})-\phi(\mathrm{t})] \mathrm{D}(\mathrm{u}) \mathrm{du} \tag{2.60}
\end{equation*}
$$

CHAPTER III

ASYMPROTIC STABILITY ANALYSIS

1. DEPINIIION OF ASYMPIOTIC SPABILITY TH THE LARGE

In this section we will investigate the region of Inear stability in which the Xenon oscillations are always damped for any initial perturbation. We are thus interested in criteria sufficient for asymptotic stability in the large (A.S.L.).

Assume that the reactor becomes autonomous at $t=0$. The behaviour of the flux for $t>0$ is described by the kinetic equation of a stationary point reactor with an arbitrary feedback. Recalling,

$$
\begin{equation*}
l \dot{\phi}=p_{f}[\phi(t)]\left(\phi_{0}+\phi\right)+\int_{0}^{\infty}[\phi(t-u)-\phi(t)] D(u) d u \tag{3.1}
\end{equation*}
$$

where l is the prompt neutron generation time., $D(t)$ the delayed neutron distribution kernel, i.e. $D(t)=\sum_{i=1}^{6} \lambda_{i} \beta_{i}\left[\exp \left(-\lambda_{i} t\right)\right]$, where β_{i} and λ_{i} are the delayed neutron fractions and the decay constants, Φ_{0} and $\phi(t)$ the equilibrium, and incremental flux, and finally $p_{f}[\phi(t)]$ the feedback functional representing the incremental feedback reactivity satisfying $P_{f}[0]=0$.

Thus it is assumed that the reactor is critical at time $t=0$, and then an arbitrary perturbation is applied i.e. some reactivity is inserted into the reactor; and the conditions for decaying incremental flux $\phi(t)$ are investigated for subsequent times. The behaviour of $\phi(t)$ for $t>0$ and for $t \rightarrow \infty$ in particular depends on the entire past history of the reactor due to feedback functional $P_{f}[\phi(t)]$.

2. GOVMRNING POUATIONS

The equations describing the time behaviour of a reactor in the presence of Xenon feedback are compiled below, neglecting delayed neutrons and defining the power coefficient of reactivity as $\gamma \gamma$.

$$
\begin{align*}
& l \dot{\phi}^{3}=\left(\delta_{0}-\frac{\sigma_{x} x^{\prime}}{c \sigma_{f}}-\gamma^{\prime} \phi^{\prime}\right) \phi^{\prime} \tag{3.2}\\
& \dot{X}^{\prime}=y_{x} \sigma_{f} \phi^{\prime}-\lambda_{x} x^{\prime}-\sigma_{x} x^{\prime} \phi^{\prime}+\lambda_{I} I^{\prime} \tag{3.3}\\
& \dot{I}^{\prime}=y_{x} \sigma_{f} \phi^{\prime}-\lambda_{I} I^{\prime} \tag{3.4}
\end{align*}
$$

Equilibrium values can be found as follows:

$$
\begin{array}{ll}
\dot{\phi}^{\prime}=0 ; & \delta_{0}-\frac{\sigma_{x} X_{0}^{\prime}}{c \sigma_{f}}-\gamma \phi_{0}^{\prime}=0 \\
\dot{X}^{3}=0 ; & y_{x} \sigma_{f} \phi_{0}^{\prime}-\left(\lambda_{x}+\sigma_{x} \phi_{0}^{\prime}\right) X_{0}^{\prime}+\lambda_{I} I_{0}^{\prime}=0 \\
\dot{I}^{3}=0 ; & y_{i} \sigma_{f} \phi_{0}^{0}-\lambda_{I} I_{0}^{\prime}=0 \tag{3.7}
\end{array}
$$

Eq. (3.7) gives $\quad I_{0}^{\prime}=\frac{y_{x} \sigma_{f} \phi_{0}^{\prime}}{\lambda_{I}}$
Inserting this into eq. (3.6) and solving for x :

$$
\begin{equation*}
x_{0}^{\prime}=\frac{\left(y_{z}+y_{x}\right) \sigma_{f} \phi_{0}^{\prime}}{\lambda_{x}+\sigma_{x} \phi_{0}^{\prime}}=\frac{y \sigma_{f}}{\sigma_{x}} Y \tag{3.9}
\end{equation*}
$$

where Y is defined as,

$$
\begin{equation*}
Y=\sigma_{x} \phi_{0}^{\prime} /\left(\lambda_{x}+\sigma_{x} \phi_{0}^{\prime}\right) \quad \text { and } \quad y=y_{x}+y_{x} \tag{3.10}
\end{equation*}
$$

Finally inserting X : into eq. (3.5)

$$
\begin{equation*}
\delta_{0}=\mathrm{Y} Y / c+\gamma \not \phi_{0}^{0} \tag{3.1.1}
\end{equation*}
$$

On the other hand the equality for Y gives,

$$
\begin{equation*}
\phi_{0}^{\prime}=\lambda_{x} Y /\left(\sigma_{x}(I-Y)\right) \tag{3.12}
\end{equation*}
$$

Now dividing equations $5,6,7$ by $\phi_{0}^{\prime}, X_{0}^{\prime}, I_{0}^{\prime}$, respectively and defining

$$
\begin{align*}
& I^{\prime} / I_{0}^{\prime}=I, \quad X^{\prime} / X_{0}^{\prime}=X, \quad \not \phi^{\prime} / \phi_{0}^{\prime}=\phi \quad \text { gives, } \\
& I=y_{I} \sigma_{f} \phi^{\prime} / I_{0}-\lambda_{I} I=\lambda_{I}(\phi-I) \tag{3.13a}
\end{align*}
$$

where we inserted for I_{0} 。

$$
\begin{equation*}
\dot{X}=-\lambda_{x} X+y_{x} \sigma_{f} \not \phi^{\prime} / X_{0}-\sigma_{x} X \phi \phi_{0}^{\prime}+\lambda_{z} I I_{0}^{\prime} / X_{0}^{\prime} \tag{3.13~b}
\end{equation*}
$$

where we assuned $y_{x} \cong 0$.

Here the third term, after inserting for ϕ_{0}^{\prime}, becomes

$$
\sigma_{x} \emptyset_{0}^{\prime} X \phi=\lambda_{x} Y X \phi /(1-Y)
$$

and the fourth term, after inserting for $\quad I_{0}^{:}=y_{x} \sigma_{f} \phi_{0}^{\prime} / \lambda_{I}$ and $X_{0}^{\prime}=y \sigma_{f} Y / \sigma_{x} \cong y_{\tau} \sigma_{f} Y / \sigma_{x}$ becomes,

$$
\frac{\lambda_{I} I I_{0}^{:}}{X_{0}^{!}}=\lambda_{I} I\left[\frac{X_{x} \sigma_{f} \phi_{0}^{\prime}}{\lambda_{I}}\right] /\left[\frac{X_{I} \sigma_{f} Y}{\sigma_{x}}\right]=\frac{I \sigma_{x}}{Y} \phi_{0}
$$

and using $\phi_{0}^{\prime}=\lambda_{x} Y /\left(\sigma_{x}(1-Y)\right)$ gives,

$$
\lambda_{I} I I_{0} / X_{0}^{0}=\lambda_{x} I /(I-Y)
$$

Hence,

$$
\begin{align*}
\dot{X} & =-\lambda_{x} X-\frac{\lambda_{x} Y}{1-Y} X \emptyset+\frac{\lambda_{x} I}{1-Y}=\frac{\lambda_{x}}{1-Y}\{I-X[Y(\phi-1)+1]\} \tag{3.14}\\
l \dot{\phi} & =\left(\delta_{0}-\sigma_{x} X X_{0}^{\prime} /\left(c \sigma_{f}\right)-\gamma \emptyset \phi_{0}^{\prime}\right) \phi
\end{align*}
$$

simply inserting for X : gives,

$$
\begin{aligned}
\ell \dot{\phi} & =\left(\delta_{0}-y Y X / c-\gamma \phi \phi_{0}^{\prime}\right) \emptyset \\
& =(y Y / c)\left[-X+\delta_{0} c / y Y-c \gamma \phi_{0}^{\prime} /(y Y)\right] \emptyset \\
& =\frac{Y Y}{c}\left[-X+1+\left(\frac{\delta_{0} c}{Y Y}-1\right)-\frac{c \gamma^{\prime}}{Y Y} \phi \phi_{0}^{\prime}\right] \emptyset
\end{aligned}
$$

Now if we denote $0 \gamma \phi_{0}^{\prime} /(\mathrm{y} Y)=\mathrm{R}$ then from eq. (3.12)

$$
\begin{aligned}
\delta_{0} & =y \Psi / c+\gamma \phi_{0}^{0} \\
\frac{\delta_{0} c}{y Y}-1 & =\frac{\mathrm{c} \mathrm{\gamma}}{y Y} \phi_{0}=R
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& \ell \dot{\phi}=(\mathrm{y} Y / \mathrm{c})(1-X+R-R \emptyset) \emptyset \\
& \ell \dot{\phi}=(Y Y / c)(1-X+R(I-\emptyset)) \emptyset
\end{aligned}
$$

Restating the unit equilibrium equations,

$$
\begin{align*}
\dot{I} & =\lambda_{I}(\phi-I) \tag{3.15}\\
\dot{X} & =\frac{\lambda_{X}}{1-Y}\{I-X[Y(\phi-1)+I]\} \tag{3.16}\\
l \dot{\phi} & =\frac{Y Y}{c}[1-X+R(1-\phi)] \emptyset \tag{3.17}
\end{align*}
$$

with equilibrium $X_{0}=I_{0}=\emptyset_{0}=1$.

On the other hand the kinetics equations with a temperature reactivity coefficient γ are without delayed neutrons,

$$
\begin{align*}
l \dot{\emptyset} & =\left(\delta_{0}-\sigma_{x} X /\left(c \sigma_{f}\right)-\gamma \emptyset\right) \varnothing \tag{3.18}\\
\dot{X} & =y_{x} \sigma_{f} \varnothing-\lambda_{x} X-\sigma_{x} X \varnothing+\lambda_{I} I \tag{3.19}
\end{align*}
$$

$$
\begin{equation*}
\dot{I}=y_{I} \sigma_{f} \phi-\lambda_{I} I \tag{3.20}
\end{equation*}
$$

The following transformation, given by Smets's [2], casts these equations in a more compact form which is often preferred in the stability analysis of Xenon-controlled nuclear reactors.

$$
z \equiv \ell \emptyset-\frac{X}{c \sigma_{f}}-\frac{\lambda_{I} I}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)}
$$

Differentiate Z and eliminate $\dot{\phi}, \dot{X}$ and \dot{I}

$$
\begin{aligned}
\dot{Z} & =\ell \dot{\emptyset}-\frac{\dot{X}}{c \sigma_{f}}-\frac{\lambda_{I}}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)} \\
\dot{Z} & =\left[\delta_{0}-\frac{\sigma_{x} X}{c \sigma_{f}}-\gamma \emptyset\right] \emptyset-\frac{I}{c \sigma_{f}}\left[y_{x} \sigma_{f} \emptyset-\lambda_{x} X-\sigma_{x} X \emptyset\right. \\
& \left.+\lambda_{I} I\right]-\frac{\lambda_{I}}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)}\left[y_{I} \sigma_{f} \emptyset-\lambda_{I} I\right] \\
\dot{Z} & =\left[\delta_{0}-\frac{\sigma_{x} X}{c \sigma_{f}}-\frac{y_{x}}{c}+\frac{\sigma_{x} X}{c \sigma_{f}}-\frac{y_{I} \lambda_{I} \sigma_{f}}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)}\right] \emptyset \\
& +\frac{\lambda_{x} X}{c \sigma_{f}}-\frac{\lambda_{I} I}{c \sigma_{f}}+\frac{\lambda_{I}^{2} I}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)}-\gamma \Phi^{2}
\end{aligned}
$$

put the value of $X /\left(c \sigma_{f}\right)=\ell \not \equiv-\lambda_{I} I /\left(c \sigma_{f}\left(\lambda_{I}-\lambda_{X}\right)\right)-Z$

$$
\begin{aligned}
\dot{Z} & =\left[\delta_{0}-\frac{y_{x}}{c}-\frac{y_{I} \lambda_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}+\ell \lambda_{x}\right] \phi-\gamma \Phi^{2} \\
& =\frac{\lambda_{I} I}{c \sigma_{f}}\left[1+\frac{\lambda_{x}}{\lambda_{I}-\lambda_{x}}-\frac{\lambda_{I}}{\lambda_{I}-\lambda_{x}}\right]-\lambda_{x} Z
\end{aligned}
$$

Hence,

$$
\begin{equation*}
\dot{z}=a_{1} \emptyset-\lambda_{x} z-\gamma \varnothing^{2} \tag{3.21}
\end{equation*}
$$

where

$$
a_{1}=\delta_{0}+l \lambda_{x}-\frac{\mathrm{y}_{x}}{c}-\frac{\lambda_{I} y_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}
$$

and $\quad \ell \dot{\varnothing}=\left(\delta_{0}-\sigma_{x} \ell \emptyset+\frac{\sigma_{x} \lambda_{I} I}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)}+Z \sigma_{x}-\gamma \emptyset\right) \emptyset$

$$
\begin{equation*}
\ell \dot{\varnothing}=\left(\delta_{0}+\sigma_{x} Z+\alpha_{I} I-\alpha_{f} \bar{\phi}\right) \emptyset \tag{3.22}
\end{equation*}
$$

where

$$
\alpha_{f}=\gamma+\sigma_{x} \ell \quad \alpha_{I}=\lambda_{I} \sigma_{x} /\left(c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)\right)
$$

Equilibrium values are ;

$$
\begin{array}{lll}
\ell \dot{\phi}=0 & \delta_{0}+\sigma_{x} Z_{0}+\alpha_{I} I_{0}=\alpha_{f} \emptyset_{0}=0 \\
\dot{Z}=0 & a_{1} \phi_{0}-\lambda_{x} Z_{0}-\gamma \bar{\phi}_{0}^{2}=0
\end{array}
$$

Expand equations (21) and (22) about equilibrium as follows,

$$
\begin{align*}
& \varnothing=\Phi_{0}+\varnothing \quad ; \quad Z=Z_{0}+z \quad ; \quad I=I_{0}+y \\
& \ell(\dot{\phi}+\dot{\phi})=\left(\delta_{0}+\sigma_{x} Z_{0}+\sigma_{x} z+\alpha_{I} I_{0}+\alpha_{I} y-\alpha_{f} \phi_{0}-\alpha_{f} \phi\right)\left(\emptyset_{0}+\emptyset\right) \\
& \ell \dot{\phi}=\left(\sigma_{x} z+\alpha_{I} y-\alpha_{f} \emptyset\right)\left(\emptyset_{0}+\phi\right) \tag{3.23}\\
& \left(\dot{Z}_{0}+\dot{Z}\right)=a_{1} \phi_{0}+a_{1} \phi-\lambda_{x} Z_{0}-\lambda_{x} z-\gamma^{2}\left(\phi_{0}^{2}+2 \Phi_{0} \phi+\phi^{2}\right)
\end{align*}
$$

substitute the equilibrium values,

$$
\begin{equation*}
\dot{z}=a_{2} \phi-\lambda_{x} z-\gamma \phi^{2} \tag{3.24}
\end{equation*}
$$

where

$$
a_{2}=a_{1}-2 \gamma \emptyset_{0}
$$

and

$$
\begin{align*}
\left(\dot{I}_{0}+\dot{y}\right) & =y_{I} \sigma_{f} \emptyset_{0}+y_{I} \sigma_{f} \emptyset-\lambda_{I} I_{0}-\lambda_{I} y \\
\dot{y} & =y_{I} \sigma_{f} \phi-\lambda_{I} y \tag{3.25}
\end{align*}
$$

Fence: $\quad l \dot{\phi}=\rho_{f}[\phi(t)] \quad(\phi+\phi) \quad ; \quad \beta_{f}[\phi(t)]=\sigma_{x} z+\alpha_{y} y-\alpha_{f} \phi$
with

$$
\dot{z}+\lambda_{x} z=a_{2} \phi-\gamma \phi^{2}
$$

$$
\begin{aligned}
& z(t) e^{\lambda_{k} t}-z_{0}=\int_{-\infty}^{t}\left[a_{2} \phi(u)-\gamma \phi^{2}(u)\right] e^{\lambda_{x} u} d u \\
& z(t)=0 \quad \text { for } \quad t<0 \text { because } \quad Z(t)=Z_{0}
\end{aligned}
$$

$$
\begin{equation*}
z(t)=\int_{-\infty}^{0}\left[a_{2} \phi(u)-\gamma \phi^{2}(u)\right] \exp \left[-\lambda_{x}(t-u)\right] d u \tag{3.26}
\end{equation*}
$$

$$
\begin{equation*}
y(t)=\int_{-\infty}^{0} y_{I} \underset{f}{\sigma_{f}} \phi(u) \exp -\left[\lambda_{I}(t-u)\right] d u \tag{3.27}
\end{equation*}
$$

so that,

$$
\begin{aligned}
\rho_{f}[\phi(t)] & =\int_{-\infty}^{t}\left[\sigma_{x} a_{2} \exp \left[-\lambda_{x}(t-u)\right]+\alpha_{I} y_{I} \sigma_{f} \exp \left[-\lambda_{I}(t-u)\right]-\alpha_{f} \delta(t)\right] \phi(u) d u \\
& -\int_{-\infty}^{t} \sigma_{x} \gamma^{\prime} \exp \left[-\lambda_{x}(t-u)\right] \phi^{2}(u) d u
\end{aligned}
$$

Now we can state a sufficient condition for the Asymptotic Stability in the Large obtained by AKĢASU and DALFES [17].

If

$$
I \equiv \int_{-\infty}^{t} \rho_{f}\left[\phi\left(t^{\prime}\right)\right] \emptyset\left(t^{\prime}\right) d t^{a} \leqslant 0
$$

is satisfied for all t and for $\phi(t)$, then the equilibrium state $\phi(t)=0$ of the stationary reactor, which is assumed to be unique, is asymptotically stable.

Substituting $P_{f}[\phi(t)]$ from above,

$$
\begin{equation*}
I \equiv \int_{-\infty}^{t} d u\left[\int_{-\infty}^{u} \phi(v) d v K(u-v) \phi(u)-\alpha \int_{-\infty}^{u} \phi^{2}(u) d u\right]-\sigma_{x} \gamma^{u} \int_{-\infty}^{t} d u \phi(u) \int_{-\infty}^{u} d v \phi^{2}(v) \exp [-\lambda(u-v)] \tag{3.28}
\end{equation*}
$$

where $K(t)=\sigma_{x} a_{2} \exp \left(-\lambda_{x} t\right)+\alpha_{2} y_{I} \sigma_{f} \exp \left(-\lambda_{I} t\right)$

Our task is now to determine sufficient conditions under which (3.28) will be non-positive for all $t \geqslant 0$ and for all $\phi(t)$. When $\gamma<0$ there are two equilibrium states although only one equilibrium state exists when $\gamma>0$, as shown by Chernick [7]. Since global asymptotic stability requires a unique equilibrium state as a necessary condition, we shall consider only the case of $\gamma>0$.

In eq. (3.28) the thind tem, recelling $-0(t) \leqslant \Phi_{0}$ at all times

$$
-\sigma_{x} \gamma \int_{-\infty}^{t} \phi(u) d u \int_{-\infty}^{u} e^{-\lambda_{x}(u-v)} \phi^{2}(v) d v \leqslant \sigma_{x} \gamma \varnothing_{0} \int_{-\infty}^{t} d u \int_{-\infty}^{u} e^{-\lambda_{x}(u-v)} \phi(v) d v
$$

1et

$$
u-v=v^{\prime}
$$

$$
=\sigma_{x} \gamma \Phi_{0} \int_{-\infty}^{t} d u \int_{0}^{\infty} e^{-\lambda_{x} v_{-\infty}^{\prime}} \phi^{2}\left(u-v^{\prime}\right) d v^{\prime}
$$

change the order of integration and let $u-v^{\prime}=u^{\prime}$

$$
\begin{aligned}
& =-\sigma_{x} \gamma \emptyset_{0} \int_{0}^{\infty} d v^{\prime} e^{-\lambda_{x} v^{\prime}} \int_{-\infty}^{t-v^{\prime}} d u^{\prime} \phi^{2}\left(u^{\prime}\right) \\
& \leqslant-\sigma_{x} \gamma \varnothing_{0} \int_{0}^{\infty} d v^{\prime} e^{-\lambda_{x} v} \int_{-\infty}^{t} d u \phi^{2}(u) \\
& =\frac{\sigma_{x} \gamma \phi_{0}}{\lambda_{x}} \int_{-\infty}^{t} d u \phi^{2}(u)
\end{aligned}
$$

using this to replace the third terin in (3.28), we find

$$
I<\int_{-\infty}^{t} d u \int_{-\infty}^{u} d v \mathbb{K}(u-v) \not \phi(u) \phi(v)-\left(\alpha_{f}-\frac{\Phi_{0} \sigma_{x} \gamma}{\lambda_{x}}\right) \int_{-\infty}^{t} \phi^{2}(u) d u
$$

or

$$
\begin{equation*}
I<\int_{-\infty}^{t} d u \int_{-\infty}^{u} d v \phi(u) \phi(v)\left\{K(u-v)-\left(\alpha_{f}-\frac{\phi_{0} \sigma_{x} \gamma}{\lambda_{x}}\right) \delta(u-v)\right\} \tag{3.31}
\end{equation*}
$$

introduce here unit step function $h(t)$,

$$
=\int_{-\infty}^{t} d u \int_{-\infty}^{t} d v \phi(u) \phi(v)\left\{h(u-v)\left[\mathbb{K}(u-v)-\left(\alpha_{f}-\frac{\ddot{\phi}_{a} \sigma_{x} \gamma}{\lambda_{x}}\right) \delta(u-v)\right]\right\}
$$

Let

$$
\begin{equation*}
g(t)=h(t)\left[K(t)-\left(\alpha_{f}-\frac{\Phi_{0} \sigma_{x} \delta}{\lambda_{x}}\right) \delta(t)\right] \tag{3.32}
\end{equation*}
$$

and

$$
g(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} G(i w) e^{i w t} d w
$$

where $G(i w)$ is the fourier transform of $g(t)$ i.e.,

$$
\begin{aligned}
G(i w) & =\int_{-\infty}^{\infty} g(t) e^{-i w t} d t \\
& =\int_{-\infty}^{\infty} h(t) K^{\prime}(t) e^{-i w t} d t=\int_{0}^{\infty} K^{\prime}(t) e^{-i w t} d t \\
& =\bar{K}^{\prime}(i w)
\end{aligned}
$$

\bar{K}^{\prime} is the one sided Laplace transform of $K^{\prime}(t)$.

$$
\begin{align*}
I & <\int_{-\infty}^{t} d u \int_{-\infty}^{t} d v \phi(u) \phi(v) \frac{h(u-v)}{2 \pi} \int_{-\infty}^{\infty} \bar{K}^{0}(i w) e^{i w(u-v)} d w \\
& =\frac{1}{2 \pi} \int_{-\infty}^{\infty} \bar{K}^{\prime}(i w)\left[\int_{-\infty}^{t} d u \emptyset(u) e^{i w u}\right]\left[\int_{-\infty}^{t} d v \phi(v) e^{-i w}\right] d w \\
& =\frac{1}{\pi} \int_{0}^{\infty} \operatorname{Re}\left[\bar{K}^{\prime}(i w)\right]\left|\int_{-\infty}^{t} d u \quad \phi(u) e^{-i w u}\right|^{2} \leqslant 0 \tag{3.33}
\end{align*}
$$

This condition will hold if $\operatorname{Re}\left[\bar{K}^{\prime}(i w)\right] \leqslant 0$ for all w or, since

$$
\begin{gathered}
\bar{K}(s)=\frac{\sigma_{x} a_{2}}{\lambda_{x}+s}+\frac{\alpha_{I} y_{x} \sigma_{f}}{\lambda_{I}+s} \quad \text { from eq. (3.2 } \\
a_{2}=a_{1}-2 \gamma \underline{\emptyset}_{0}=\delta_{0}+l \lambda_{x}-\frac{y_{x}}{c}-\frac{\lambda_{I} y_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}-2 \gamma \bar{\varphi}_{0}
\end{gathered}
$$

where
neglecting prompt neutron lifetime as $l \cong 0 ; y_{x}=0$ 。

$$
\begin{gather*}
a_{2}=\delta_{0}-\frac{\lambda_{I} y_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}-2 \gamma \bar{\phi}_{0} ; \text { and } \quad \alpha_{I}=\frac{\lambda_{I} \sigma_{x}}{c \sigma_{f}\left(\lambda_{I}-\lambda_{x}\right)} \\
\text { so, } \quad \bar{K}(s)=\frac{\sigma_{x}}{\lambda_{x}+s}\left[\delta_{0}-\frac{y_{I} \lambda_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}-2 \gamma \Phi_{0}\right]+\frac{\lambda_{I} y_{I} \sigma_{x}}{c\left(\lambda_{I}-\lambda_{x}\right)} \cdot \frac{1}{\lambda_{I}+s} \tag{3.34}
\end{gather*}
$$

inserting the value δ_{0} from eq. (3.11) and noting $\gamma \Phi_{0}=y Y R / c$

$$
\begin{align*}
\bar{K}(s) & =\sigma_{x}\left[\frac{Y Y}{c}+\gamma \bar{\phi}_{o}-\frac{y_{x} \lambda_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}-2 \gamma \Phi_{0}\right] \frac{1}{\lambda_{x}+s}+\frac{\lambda_{I} \sigma_{x} y_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)} \frac{1}{\lambda_{I}+s} \\
& =\sigma_{x} \frac{Y}{c}\left\{\left[Y(1-R)-\frac{\lambda_{I}}{c\left(\lambda_{I}-\lambda_{x}\right)}\right] \frac{1}{\lambda_{x}+s}+\frac{\lambda_{I}}{\left(\lambda_{I}-\lambda_{x}\right)} \frac{1}{\lambda_{I}+s}\right. \\
& =\sigma_{x} \frac{y}{c}\left\{\frac{Y(1-R)}{\lambda_{x}+s}-\frac{\lambda_{I}}{\lambda_{I}-\lambda_{x}}\left(\frac{1}{\lambda_{I}+s}-\frac{1}{\lambda_{x}+s}\right)\right\} \\
& =\sigma_{x} \frac{y}{c}\left[\frac{Y(1-R)}{\lambda_{x}+s}-\frac{\lambda_{I}}{\left(\lambda_{I}+s\right)\left(\lambda_{x}+s\right)}\right] \tag{3.35}\\
\bar{K}^{\prime}(s) & =\overline{\mathbb{Z}}(s)-\alpha_{f}+\Phi_{o} \sigma_{x} \gamma / \lambda_{x}
\end{align*}
$$

multiplying both sides with $c \lambda_{x} / y \sigma_{x}$

$$
\begin{equation*}
\bar{K}^{\prime}(s) \frac{c \lambda_{x}}{y \sigma_{x}}=\lambda_{x}\left[\frac{Y(1-R)}{\lambda_{x}+s}-\frac{\lambda_{I}}{\left(\lambda_{s}+s\right)\left(\lambda_{x}+s\right)}\right]-\left(\alpha_{f}-\frac{\Phi_{o} \sigma_{x} \gamma}{\lambda_{x}}\right) \frac{c \lambda_{x}}{y \sigma_{x}} \tag{3.36}
\end{equation*}
$$

now $\alpha_{f} \cong \gamma$ and $\frac{\gamma^{\prime} c \lambda_{x}}{y \sigma_{x}}=R(1-Y)$ from definitions of Φ_{0} and R_{0}
also, $\quad \frac{\Phi \circ \gamma}{y}=R Y$
so, $\quad \mathbb{K}^{\prime}(s) \frac{c \lambda_{x}}{y \sigma_{x}}=\lambda_{x}\left[\frac{Y(1-R)}{\lambda_{x}+s}-\frac{\lambda_{I}}{\left(\lambda_{x}+s\right)\left(\lambda_{x}+s\right)}\right]-R(1-2 Y)$

$$
\begin{equation*}
=\frac{-a s^{2}+B s-\lambda_{x} \lambda_{x} c}{s^{2}+\left(\lambda_{x}+\lambda_{x}\right) s+\lambda_{x} \lambda_{x}} \tag{3.37}
\end{equation*}
$$

where

$$
\begin{array}{ll}
a=R(1-2 Y), & b=Y(I-R) \\
B=\lambda_{x} b-\left(\lambda_{I}+\lambda_{x}\right) a, & C=1+a-b=(1-Y)(1+R)
\end{array}
$$

The condition for positivity $\quad \operatorname{Re}\left[K^{\prime}(i w)\right] \leqslant 0 \quad$ leads to

$$
\begin{align*}
& \left(a w^{2}-\lambda_{I} \lambda_{x} c\right)\left(-w^{2}+\lambda_{I} \lambda_{x}\right)+w^{2} B\left(\lambda_{I}+\lambda_{x}\right) \leqslant 0 \tag{3.38}\\
& a w^{4}-\left[\lambda_{I} \lambda_{x} a+\lambda_{I} \lambda_{x} c+\left(\lambda_{I}+\lambda_{x}\right)\left(\lambda_{x} b-\left(\lambda_{I}+\lambda_{x}\right) a\right)\right] w^{2}+\lambda_{I}^{2} \lambda_{x}^{2} c \geqslant 0
\end{align*}
$$

or,
replacing b by $1+a-0$ in the coefficient of w^{2};

$$
\begin{aligned}
& =\lambda_{I} \lambda_{x} a+\lambda_{I} \lambda_{x} C+\left(\lambda_{I}+\lambda_{x}\right) \lambda_{x}+\left(\lambda_{I}+\lambda_{x}\right) \lambda_{x} a-\left(\lambda_{I}+\lambda_{x}\right) \lambda_{x} C-\left(\lambda_{I}+\lambda_{x}\right)^{2} a \\
& =-\left[\lambda_{I}^{2} a+\lambda_{x}^{2} C-\lambda_{x}\left(\lambda_{I}+\lambda_{x}\right)\right]
\end{aligned}
$$

so, $\quad a w^{4}+\left[\lambda_{I}^{2} a+\lambda_{x}^{2} c-\lambda_{x}\left(\lambda_{x}+\lambda_{x}\right)\right] w^{2}+\lambda_{x}^{2} \lambda_{x}^{2} c \geqslant 0 \quad$ for all w

This inequality is satisfied if $a>0, \quad C>0 \quad$ and

$$
\begin{equation*}
\left[\lambda_{x}^{2} a+\lambda_{x}^{2} c-\lambda_{x}\left(\lambda_{I}+\lambda_{x}\right)\right]^{2} \leqslant 4 \lambda_{x}^{2} \lambda_{x}^{2} a c \tag{3.39}
\end{equation*}
$$

1) $\mathrm{C}=(1-\mathrm{Y})(1+\mathrm{R}) \quad 0$ for all allowed values of Y, R
since $0 \leqslant \bar{D}_{0} \leqslant \infty$ hence, $0 \leqslant Y \leqslant 1$ and $R \geqslant-1$

$$
\begin{aligned}
& \text { 2) } a=\mathbb{R}(I-2 Y) \geqslant 0 \quad \text { if } \quad 0 \leqslant Y \leqslant I / 2 \\
& \text { 3) } \lambda_{I}^{2} a+\lambda_{x}^{2} 0-\lambda_{x}\left(\lambda_{I}+\lambda_{x}\right) \leqslant 2 \lambda_{I} \lambda_{x} \sqrt{a C}
\end{aligned}
$$

$$
\begin{gather*}
\lambda_{I}^{2} \bar{a}+\lambda_{x}^{2} c-2 \lambda_{I} \lambda_{x} \sqrt{a C} \leqslant \lambda_{x}\left(\lambda_{I}+\lambda_{x}\right) \\
\lambda_{I} \sqrt{a}+\lambda_{x} \sqrt{C} \geqslant \sqrt{\lambda_{x}\left(\lambda_{I}+\lambda_{x}\right)} \\
\lambda_{I} \sqrt{R(1-2 Y)}+\lambda_{x} \sqrt{(1-Y)(1+R)} \geqslant \sqrt{\lambda_{x}\left(\lambda_{I}+\lambda_{x}\right)} \tag{3.40}
\end{gather*}
$$

Then there are no real roots and there is a double root for the equality. Here the physical quantities are given as follows:

$$
\begin{aligned}
& \mathrm{y}=6.4 \quad 10^{-2} \\
& \lambda_{\mathrm{T}}=2.87 \quad 10^{-5} \\
& \lambda_{\mathrm{x}}=2.09 \quad 10^{-5} \\
& \sigma_{\mathrm{x}}=3.0 \quad 10^{-18} \\
& c=1.5
\end{aligned}
$$

So we can plot Φ_{0} versus $\gamma,($ Figure 3$)$.

VIID

----- A.S.L. Region according to Enginol, T.B.

Figure - 3 Asymptotic Stability Regions according to two different criteria.
3. APPLICATIOIS OF TPE CRTTERION PROPOSED BY ENGINOL, T.B. [I]

The criterion proposed by Enginol, T.B. for the asymptotic stability of nuclear reactors is as follows: [I]

$$
\begin{equation*}
\operatorname{Re}[K(i w)]-\gamma-\frac{2 \sigma_{x} \gamma \lambda_{x} \phi_{0}}{\lambda_{x}^{2}+w^{2}} \leqslant 0 \tag{3.41}
\end{equation*}
$$

where the various parameters are as defined before.

$$
\begin{align*}
\operatorname{Re}[\mathbb{K}(i w)] & =\operatorname{Re}\left\{\frac{\sigma_{x} y}{c}\left[\frac{Y(1-R)}{\lambda_{x}^{2}+i w}-\frac{\lambda_{I}}{\left(\lambda_{I}+i w\right)\left(\lambda_{x}+i w\right)}\right]\right\} \\
& =\frac{\sigma_{x} y}{c}\left[\frac{X(1-R) \lambda_{x}}{\lambda_{x}^{2}+w^{2}}-\frac{\lambda_{x}\left(\lambda_{x} \lambda_{x}-w^{2}\right)}{\left(\lambda_{x}^{2}+w^{2}\right)\left(\lambda_{I}^{2}+w^{2}\right)}\right. \tag{3.42}
\end{align*}
$$

where $Y=\sigma_{x} \phi_{0} /\left(\lambda_{x}+\sigma_{x} \emptyset_{0}\right) \quad, \quad \mathrm{R}=\mathrm{c} \gamma \phi_{0} /(\mathrm{yY})$

Inserting this into eq. (3.41) and multiplying with $c \lambda_{x} /\left(y \sigma_{x}\right)$ gives,

$$
\frac{Y(1-R) \lambda_{x}^{2}}{\lambda_{x}^{2}+w^{2}}-\frac{\lambda_{I} \lambda_{x}\left(\lambda_{x} \lambda_{x}-w^{2}\right)}{\left(\lambda_{x}^{2}+w^{2}\right)\left(\lambda_{x}^{2}+w^{2}\right)}-\frac{c \gamma \lambda_{x}}{y \sigma_{x}}-\frac{2 \gamma c \lambda_{x}^{2} \phi}{\left(\lambda_{x}^{2}+w^{2}\right) y} \leqslant 0
$$

Noting that $\frac{\gamma c \lambda_{x}}{y \sigma_{x}}=R(1-X) \quad$ and $\quad \frac{\gamma c \phi_{0}}{y}=R X$

We obtain,

$$
\frac{Y(1-R) \lambda_{x}^{2}}{\lambda_{x}^{2}+w^{2}}-\frac{\lambda_{I}^{2} \lambda_{x}^{2}-\lambda_{x} \lambda_{x} w^{2}}{\left(\lambda_{I}^{2}+w^{2}\right)\left(\lambda_{x}^{2}+w^{2}\right)}-R(1-Y)-\frac{2 \lambda_{x}^{2} R Y}{\left(\lambda_{x}^{2}+w^{2}\right)} \leqslant 0
$$

$$
\begin{align*}
& Y(I-R) \lambda_{x}^{2}\left(\lambda_{I}^{2}+W^{2}\right)-\lambda_{I}^{2} \lambda_{x}^{2}+\lambda_{I} \lambda_{x} W^{2}-R(1-Y)\left(\lambda_{I}^{2}+w^{2}\right)\left(\lambda_{x}^{2}+w^{2}\right)-\left(\lambda_{I}^{2}+W^{2}\right) 2 \lambda_{x}^{2} R Y \leqslant 0 \\
& \quad R(1-Y) W^{4}+\left\{\left[\lambda_{I}^{2}+\lambda_{x}^{2}-Y\left(\lambda_{I}^{2}-2 \lambda_{x}^{2}\right)\right] R-Y \lambda_{x}^{2}-\lambda_{I} \lambda_{x}\right\} W^{2} \\
& +\left\{[2 Y+1] \lambda_{I}^{2} \lambda_{x}^{2} R+(1-Y) \lambda_{I}^{2} \lambda_{x}^{2}\right\} \geqslant 0 \tag{3.43}
\end{align*}
$$

The form of which is $\quad a w^{4}+b w^{2}+c \geqslant 0$.
It is clear that the satisfaction of this inequality is assured by the imposition of the following conditions :

1) $a \geqslant 0$ is satisfied already
2) $c \geqslant 0$ is satisfied already
3) $b \leqslant 0$ must be satisfied
4) $b^{2}-4 a c \leqslant 0 \quad$ must be satisfied.

The third condition is equivalent to,

$$
\begin{aligned}
& {\left[\lambda_{I}^{2}+\lambda_{x}^{2}-Y\left(\lambda_{I}^{2}-2 \lambda_{x}^{2}\right)\right] \frac{c \gamma \phi_{0}}{y Y}-Y \lambda_{x}^{2}-\lambda_{I} \lambda_{x} \leqslant 0} \\
& \text { or, } \quad \gamma_{1} \leqslant \frac{\left(Y \lambda_{x}^{2}+\lambda_{I} \lambda_{x}\right) Y Y}{\left[\lambda_{x}^{2}+\lambda_{I}^{2}-Y\left(\lambda_{I}^{2}-2 \lambda_{x}^{2}\right)\right] c \phi_{0}}
\end{aligned}
$$

and the fourth condition gives,

$$
\begin{aligned}
& \left\{\left[\lambda_{I}^{2}+\lambda_{x}^{2}-Y\left(\lambda_{I}^{2}-2 \lambda_{x}^{2}\right)\right] \mathbb{R}-X \lambda_{x}^{2}-\lambda_{I} \lambda_{x}\right\}^{2} \\
- & \left\{\left[2 Y \lambda_{I}^{2} \lambda_{X}^{2}+\lambda_{I}^{2} \lambda_{X}^{2}\right] R+(I-Y) \lambda_{I} \lambda_{X}^{2}\right\} 4 R(I-Y) \geqslant 0
\end{aligned}
$$

It is seen from the plot of asymptotic stability of Xenon and temperature controlled point reactors that, a reactor is asymptotically stable against any arbitrary perturbation below the flux level of 10^{13} n. $/\left(\mathrm{cm}_{0}^{2} \mathrm{sec}.\right)$, and for the temperature reactivity coefficient, γ greater than about -7.510^{-16}.

Now one may ask whether or not a point reactor could not be asymptotically stable outside this region. A positive answer to this question is possible. Recall that we examined the problem with the assumption that the delayed neutrons are produced "instantaneously " with respect to Xenon, since time decay constants of delayed neutrons are much shorter than that of I^{135} and $X e^{135}$. So we did not considered them with a time delay. W. Baran and K. Meyer [12] studied the effect of delayed neutrons on the stability of a nuclear power reactor. They give an example showing that stability without delayed neutrons does not necessarily imply stability with delayed neutrons.

A sufficient condition for asymptotic stability of nuclear reactors with arbitrary feedback is proposed by T.B. Enginol [1]. This criterion leads to determination of three distinct regions: the first one is (1) a region of asymptotic stability in the large, another one in which the system certainly is not asymptotically in the large ${ }_{9}^{(2)}$ and no such conclusion can be derived for the third region(3).

The stability criterion given by Enginol is found to be more general than some previously proposed criteria. If the criterion proposed by Akçesu and Dalfes[17] is compared with the criterion proposed by Enginol, it is seen that the stability regions are different partly due to the fact that delayed neutrons are considered by the latter. Omitting the delayed neutrons, the two criteria become somewhat similsr[1].

Akçasu and Dalfes' criterion to define the region of global asymptotic stability for equations (3.2), (3.3) and (3.4) has shown that there are large areas in paraneter space $\left(\gamma-\phi_{0}\right)$ which are known to be linearly stable. But outside this region of A.B.L. criterion given by Whginol can penetrate into this parameter region and suggest that the perturbations may have to be quite large for the system to show linear instability. This possibility was investigated by L.M. Shotkin [14], who gives a general method for determining the bounds on allowable disturbances in linearly stable systems, for which the system remains asymptotically stable. It is based on transforming a set of non-linear differential equations to a single equation that is valid withir a given region of equilibrium. It is applicable to systems with a fairly general non-linear feedback as well as to systems that exhibit finite escape time.

One may refer to the paper by E.B. Smets[9] for asymptotic stability in the large with delayed neutrons in addition to analysis of Enginol [1]. According to Snets, if a linear reactor system is asymptotically stable when the delayed neutrons are neglected, then it is not necessarily
asymptotically stable if the delayed neutrons are included in the model.

It should always be remembered that there is no " a priori " reason whatsoever to believe that the delayed neutrons have a stabilizing effect on this particular system. A converse generalization does not necessarily hold either. A linear numerical example showing that delayed neutrons may, in fact, destabilize a reactor has been given by Baran and Meyer [12].

LINEAR STABILITY ANALYSIS

The stability of any equilibrium state may depend on the magnitude of the disturbance. An equilibrium state may be unstable for large perturbetions even though it may be stable for small disturbances. In the latter case, the transients of the dynamical variables involve small departures from the original steady-state valves, and can be adequately described by the linearized kinetic equations. The stability of a reactor for small disturbances is therefore treated by " linear " stability techniques.

1. CHARACTERISTIC HUNCTION AMD LINEAR STABTLTPY

The question of stability of a physical system is associated with an equilibrium of an autonomous system.

A physical system is defined autonomous when the equations describing its temporal behavioux are invariant under a translation of the origin of time. In an autonomous system, all the changes take place automatically as a response to the changes in the past, and none of the
parameters characterizing the system can depend on time explicitly. Hence, in an autonomous point reactor, the external reactivity and the external sources are constant in time.

Suppose that the reactor is operated at the equilibriun state Po prior to $t=0$, and assume that an initial perturbation $p(0)$ is introduced at $t=0$. The temporal behaviour of the reactor for $t>0$ is governed by equation (2.60), i.e.,

$$
\begin{equation*}
(\ell / \beta) \dot{p}=\delta k_{f}[p(t)]\left(P_{0}+p\right)+\int_{0}^{\infty} d u[p(t-u)-p(t)] D(u) \tag{4.1}
\end{equation*}
$$

neglecting p compared to F_{0}, and taking the value for $\delta \xi_{f}[p]$ from equation (2,40),

$$
\begin{equation*}
(\ell / \beta) \dot{p}=P_{0} \int_{0}^{\infty} p(t-u) G(u) d u+\int_{0}^{\infty} p(t-u) D(u) d u-p(t) \tag{4.2}
\end{equation*}
$$

Recalling that,

$$
D(t-u)=\sum_{i=1}^{6} a_{i} \lambda_{i} e^{-\lambda_{i}(t-u)}
$$

$$
(l / \beta) \dot{p}(t)=P_{0} \int_{0}^{t} p(t-u) Q(u) d u+\int_{0}^{t} d u \sum_{i=1}^{6} a_{i} \lambda_{i} e^{-\lambda_{i}(t-u)} p(t) \operatorname{mp}(t)
$$

Taking the Leplace transform, we obtain

$$
(l / \beta) s \bar{p}(s)-(l / \beta) p(0)=p_{0} \bar{p}(s) H(s)+\sum_{i=1}^{6} \frac{a_{i} \lambda_{i}}{s+\lambda_{i}} \bar{p}(s)-\bar{p}(s)
$$

$$
(\ell / \beta) \mathrm{s} \bar{p}(\mathrm{~s})-(\ell / \beta) \mathrm{p}(0)=\bar{P}_{0} \bar{p}(\mathrm{~s}) \mathrm{E}(\mathrm{~s})-\mathrm{s} \sum_{i=1}^{6} \frac{a_{i}}{s+\lambda_{i}} \overline{\mathrm{p}}(\mathrm{~s})
$$

where $H(s)$ is the Laplace transform of $G(t)$, i.e.,

$$
\begin{equation*}
E(s)=\int_{0}^{\infty} e^{-s t} G(t) d t \tag{4.3}
\end{equation*}
$$

defining

$$
\begin{array}{r}
\frac{1}{Z(s)} \equiv s\left[\frac{l}{\beta}+\sum_{i=1}^{6} \frac{a_{i}}{s+\lambda_{i}}\right] \\
p(0)=\bar{p}(s)\left[1 / Z(s)-P_{0} H(s)\right] \\
\bar{p}(s) / p(0)=Z(s) /\left(1-P_{0} H(s) Z(s)\right) \tag{4.4}
\end{array}
$$

where $Z(s)$ is called zero-power transfer function and $E(s)$ is called the feedback transfer function which completely determines the linear feedback mechanism.

Since $G(t)$ must be of a stable linear system, eq. (2.40 a), it is absolutely integrable, and the integral in (4.3) converges for all Re $s \geqslant 0$. Thus $I(s)$ does not have any poles with positive or zero real parts. Note that $H(0)=\gamma$, power coefficient of reactivity.

Equation (4.4) indicates that the behaviour of $p(t), t>0$, is detemnined by the singularities of $p(s)$ on the complex s plane. These singularities occur at the zeros of

$$
\begin{equation*}
Q(s)=1-P_{0} F(s) Z(s) \tag{4.5}
\end{equation*}
$$

which is called "characteristic " equation.
Thus the problem of linear stability of an equilibrium state is reduced to the problem of determining the sign of the real parts of the roots of the characteristic equation. If even one of these roots has a positive real part, then the reactor responce $p(t)$ to an initial disturbance $p(0)$, will increase exponentially with time, and hence the equilibrium state P_{0} will be unstable. We thus concluce : A reactor is Inearly stable if the roots of the characteristic equation all have negative real parts.

In the following sections, we shall obtain the characteristic equation and discuss the necessary and sufficient conditions for all the roots of the characteristic equation to have negative real parts. These conditions are referred to as " linear stability criteria ", and enable one to investigate the question of stability of linear systems without explicitly solving the system equations.

2. LIMEAR STABILITY AMALYSIS WITHOUM DHLAYED NEUTRONS

2.1 CHARACTERISTIC EQUATION

Starting point kinetics equations are, as can be recalled from previous chapters, neglecting the delayed neutrons;

$$
\begin{align*}
l \dot{\phi} & =\left[\delta_{0}-\left(\sigma_{x} X e / c \sigma_{f}\right)-\gamma \Phi\right] \Phi \tag{4.6a}\\
\dot{X e} & =\left(y_{x} \sigma_{f}-\sigma_{x} X e\right) \varnothing-\lambda_{x} X e+\lambda_{I} I \tag{4.6~b}\\
\dot{I} & =y_{I} \sigma_{f} \bar{\phi}-\lambda_{I} I \tag{4.6c}
\end{align*}
$$

The terms have the same interpretations as before. Equilibrium values can be found as follows;

$$
\begin{array}{ccc}
\dot{\emptyset}=0 & \delta_{0}-\left(\sigma_{x} X e_{a} /\left(c \sigma_{f}\right)\right)-\gamma \Phi_{0}=0 \\
\dot{X}=0 & ; & \left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right) \Phi_{0}-\lambda_{x} X e_{0}+\lambda_{I} I_{0}=0 \\
\dot{I}=0 & ; & y_{I} \sigma_{f} \emptyset_{0}-\lambda_{I} I_{0}=0 \tag{4.7c}
\end{array}
$$

From these equations equilibrium values are,

$$
\begin{equation*}
I_{0}=y_{I} \sigma_{f} \phi_{0} / \lambda_{I} \quad, \quad X_{0}=\left(y_{I}+y_{x}\right) \sigma_{f} \phi_{0} /\left(\lambda_{x}+\sigma_{x} \phi_{0}\right) \tag{4,8}
\end{equation*}
$$

Initial reactivity may be determined (by control rod movement say) to define different equilibrium states;

$$
\begin{equation*}
\delta_{0}=\sigma_{x} X_{e_{0}} /\left(c \sigma_{f}\right)+\gamma \phi_{0} \tag{4.9}
\end{equation*}
$$

Expand the equations (4.6) about equilibrium as follows ;

$$
\begin{align*}
& \Phi=\varnothing_{0}+\phi \quad, \quad X e=X e+\delta X e \quad, \quad I=I_{0}+\delta I \\
& \ell\left(\dot{\phi}_{0}+\dot{\phi}\right)=\left[\delta_{0}-\left(\sigma_{x} /\left(c \sigma_{f}\right)\right)\left(X e_{0}+\delta X e\right)-\gamma\left(\bar{\phi}_{0}+\phi\right)\right]\left(\bar{\phi}_{0}+\phi\right) \tag{4.10a}\\
& \dot{X} \dot{e}_{0}+\delta \dot{X X e}=y_{x} \sigma_{f}\left(\bar{\phi}_{0}+\phi\right)-\sigma_{x}\left(X_{e_{0}}+\delta X e\right)\left(\bar{\phi}_{o}+\phi\right)-\lambda_{x}\left(X_{e}+\delta X e\right)+\lambda_{1}\left(I_{0}+\delta I\right) \quad(4.1 \\
& \dot{I}_{0}+\dot{\delta} I=y_{I} \sigma_{f}\left(\bar{\phi}_{0}+\emptyset\right)-\lambda_{I}\left(I_{0}+\delta I\right) \tag{4.10c}\\
& \ell \dot{\phi}=\left[\delta_{0}-\left(\sigma_{x} X e_{0} /\left(c \sigma_{f}\right)\right)-2 \gamma \bar{D}_{0}\right] \emptyset-\left[\sigma_{x} \phi_{0} /\left(\mathrm{c} \sigma_{f}\right) \delta X e\right. \tag{array}\\
& \delta \dot{x} e=\left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right) \phi-\left(\lambda_{x}+\sigma_{x} \phi_{0}\right) \delta X e+\lambda_{I} \delta I \tag{4.11~b}\\
& \delta^{\prime} I=y_{I} \sigma_{f} \phi-\lambda_{I} \delta I \tag{4.11c}
\end{align*}
$$

Taking the Laplace transforms

$$
\begin{align*}
& l s \bar{\phi}=\left[\delta_{0}-\sigma_{x} X_{0} /\left(c \sigma_{f}\right)-2 \gamma \bar{\phi}_{0}\right] \bar{\phi}-\left(\sigma_{x} \phi_{0} / c \sigma_{f}\right) \overline{\delta X e} \tag{4.12a}\\
& \mathrm{~s} \overline{\delta X e}=\left(y_{x} \sigma_{f}-\sigma_{x} X_{e_{0}}\right) \bar{\phi}-\left(\lambda_{x}+\sigma_{x} \phi_{0}\right) \overline{\delta X e}+\lambda_{x} \bar{s} \bar{I} \tag{4.12~b}\\
& \mathrm{~s} \overline{\delta I}=y_{I} \sigma_{f} \bar{\phi}-\lambda_{I} \overline{\delta I} \tag{4.13c}
\end{align*}
$$

Substituting eq. (4.12 b) and eq. (4.12 c) into eq. (4.12 a),

$$
\begin{aligned}
\ell s \bar{\phi} & =\left[\delta_{0}-\sigma_{x} X e_{0} /\left(c \sigma_{f}\right)-2 \gamma \bar{\phi}_{0}\right] \bar{\phi}-\frac{\sigma_{x} \phi_{0}}{c \sigma_{f}\left(s+\lambda_{x}+\sigma_{x} \phi_{0}\right)}\left[\left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right) \bar{\phi}\right. \\
& \left.+\frac{y_{ \pm} \sigma_{f} \lambda_{I}}{s+\lambda_{I}} \bar{\phi}\right]
\end{aligned}
$$

Substituting for from eq. (4.9)
$\ell s \bar{\phi}=-\gamma \emptyset_{0} \bar{\phi}-\frac{\sigma_{x} \emptyset_{0}}{c \sigma_{f}\left(s+\lambda_{x}+\sigma_{x} \phi\right)}\left[\left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right) \bar{\varphi}+\frac{y_{I} \sigma_{f} \lambda_{I}}{s+\lambda_{I}} \bar{\phi}\right]$

Introducing some variables for simplicity in operations

$$
\begin{aligned}
& Y=y_{x}+y_{x} \\
& U=\sigma_{x} X e_{o} \\
& R=y_{x} \sigma_{f}-\sigma_{x} X e_{0} \\
& P X=\sigma_{x} \Phi_{o} \\
& Z X=\lambda_{x}+\sigma_{x} \emptyset_{0} \\
& T=c \sigma_{f} l \\
& Z=\lambda_{I}+Z X \\
& A F=\lambda_{I} P X\left(R+y_{I} \sigma_{f}\right)
\end{aligned}
$$

We obtain finally,

$$
s+\frac{\partial \Phi_{0}}{l}+\frac{P X}{\mathbb{T}(s+Z X)}\left[R+\frac{y_{I} \sigma_{f} \lambda_{I}}{s+\lambda_{I}}\right]=0
$$

$$
T\left(s+\gamma \Phi_{0} / \ell\right)(s+Z X)\left(s+\lambda_{I}\right)+\operatorname{PXR}\left(s+\lambda_{I}\right)+P X y_{I} \sigma_{f} \lambda_{I}=0
$$

$$
s^{3}+\left(Z+\gamma \bar{D}_{0} / l\right) s^{2}+\left(\lambda_{I} Z X+Z \gamma \bar{\phi}_{0} / l+P X R / T\right) s+\left(\gamma \Phi_{0} \lambda_{I} Z X / l+A F / T\right)=0
$$

2.2 ROUTT - HURUIPZ CRITERLON

Routh - Huwwitz conditions are expressed in terms of the Furwitz determinants, which are formed from the coefficients of the characteristic polynomials of the nth order as follows ; for polynomial

$$
\begin{align*}
& a_{0} s^{n}+a_{1} s^{n-1}+\ldots \ldots \ldots+a_{n-1} s+a_{n}=0 \tag{4.16}\\
& \Delta_{n}=\left|\begin{array}{ccccc}
a_{1} & a_{3} & a_{5} & a_{7} & \ldots \ldots \\
a_{0} & a_{2} & a_{4} & a_{6} & \ldots \ldots \\
0 & a_{1} & a_{3} & a_{5} & \ldots \ldots \\
0 & a_{0} & a_{2} & a_{4} & \ldots \ldots \\
\ldots \ldots
\end{array}\right| \tag{4.17}
\end{align*}
$$

We now state the Routh - Hurwitz stability criterion :
The roots of the characteristic equation all have negative real parts if, all the coefficients a are nonzero and positive, and if,

$$
\begin{align*}
\Delta_{0} & =a_{0}>0 \\
\Delta_{1} & =a_{1}>0 \\
\Delta_{2} & =\left|\begin{array}{ll}
a_{1} & a_{3} \\
a_{0} & a_{2}
\end{array}\right|>0 \\
& \vdots \\
& \tag{4.18}\\
\Delta_{n} & =a_{n} \quad \Delta_{n-4}>0
\end{align*}
$$

are satisfied [2].

The conditions (4.18) are not independent of each other. In the case of a third-order system, these conditions are equivalent to $a_{1}>0, \quad a_{2}>0, \quad a_{3}>0$, and $a_{1} a_{2}>a_{0} a_{3}$, We observe thet there is only one additional condition in addition to the positiveness of all the coefficients. It is interesting to note that there is again only one condition in addition to the positiveness of all the coefficients in a fourth order system, i.e. $a_{3}\left(a_{1} a_{2}-a_{0} a_{3}\right)>a_{4} a_{1}^{2}$. This observation is not true for high-order systems. For example, in a fifth-order system, there are two additional conditions[3]. In the general case of $n \geqslant 3$, the positiveness of the coefficients ensures only the negativeness of the real roots, but does not yield infomation about the sign of the real parts of the complex roots.

It is clear that, as more equations are added into the system description, the Routh-Hurwitz conditions are likely to be more restrictive.

2.2.1 APPLICATION OF ROUTH - HURWITZ CRITERION WITHOUT

DELAYED NEUTRONS :

Characteristic equation being $a_{0} s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0$ where $\quad a_{0}=1, \quad a_{1}=Z+\gamma \emptyset_{0} / \ell, \quad a_{2}=\lambda_{I} Z X+Z \gamma \emptyset_{0} / \ell+P X R / T$, $a_{3}=\gamma \phi_{0} \lambda_{I} Z X / \ell+A F / T ;$
the stability conditions become,

1) $a_{0}>0 \quad$ is satisfied already
2) $a_{1}>0$ is satisfied for all positive
3) $a_{3}>0$ gives,

$$
\begin{equation*}
\gamma^{\prime} \geqslant-\frac{\sigma_{x}\left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right)}{c \sigma_{f}\left(\lambda_{x}+\sigma_{x} \phi_{0}\right)} \tag{4.19}
\end{equation*}
$$

4) $\quad a_{1} a_{2}>a_{0} a_{3}$ gives,
$\left[Z+\gamma \phi_{0} / \ell\right]\left[\lambda_{I} Z X+Z \gamma \phi_{0} / \ell+P X R / T\right]>\left[\gamma^{\prime} \phi_{0} \lambda_{I} 2 X / \ell+A F / T\right]$
or

$$
\left[\frac{Z \phi_{0}^{2}}{l^{2}}\right] \gamma^{2}+\left[\frac{Z^{2} \phi_{0}}{\ell}+\frac{P X R \phi_{0}}{T l}\right] \gamma+\left[Z \lambda_{I} Z X+\frac{Z P X R}{T}-\frac{A F}{T}\right] \geqslant 0(4.20)
$$

If eqs. (4.19) and (4.20) are solved for various equilibrium values of flux in the range $10^{8}<\phi_{0}<10^{15}$ we can find the stable values of prompt temperature reactivity coefficient γ. Results are plotted in figure - 4.

(Reactivity coeff./unit flux) $\gamma \times 10^{16}$

Figure - 4 Regions of Stability (shaded) and instability according to Routh-Eurwitz criterion without delayed Neutrons.

We steted that it is necessary to have roots with negative real parts of characteristic equation. This may be possible in two different sets of roots. How we will consider these cases.
2.3.1 CASP I:

The roots of a third-order polynomial

$$
\begin{equation*}
a_{0} s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0 \tag{4.21}
\end{equation*}
$$

may have the following form:

$$
\begin{equation*}
s_{1}=0, \quad s_{2}=-a+i b \quad, \quad s_{3}=-a-i b \tag{4.22}
\end{equation*}
$$

Characteristic equation can be written in terms of this set of roots.

$$
\begin{equation*}
\left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right)=0 \tag{4.23}
\end{equation*}
$$

In which case this equation becomes

$$
\begin{align*}
& s(s+a+i b)(s+a-i b)=0 \\
& s\left[(s+a)^{2}+b^{2}\right]=0 \\
& s^{3}+2 a s^{2}+\left(a^{2}+b^{2}\right) s=0
\end{align*}
$$

This equation should have the same form as our characteristic equation (4.21). If we equate the coefficients, since $a_{0}=1$

$$
\begin{equation*}
2 a=a_{1}, \quad a_{2}=a^{2}+b^{2} \quad \text { and } \quad a_{3}=0 \tag{4.25}
\end{equation*}
$$

Since a and b are positive, then those should be satisfied

$$
\begin{gather*}
a_{1}>0 \tag{4.26}\\
a_{3}=0 \tag{4.27}\\
b^{2}=a_{2}-a^{2}>0 \quad \text { or } \quad a_{2}-a_{1}^{2} / 4>0 \tag{4.28}
\end{gather*}
$$

Let's write these 3 conditions more precisely recalling the terms of the coefficients from previous sections.

Condition 1) $\quad a_{1}>0$ is satisfied for all positive temperature reactivity coefficient γ.

Condition 2) $\quad \gamma \phi_{0} \lambda_{I} Z X / l+A F / T=0$
or

$$
\gamma^{\gamma}=\sigma_{x}\left(\sigma_{x} X e-y \sigma_{f}\right) /\left[c \sigma_{f}\left(\lambda_{x}+\sigma_{x} \phi_{0}\right)\right]
$$

Condition 3) $\quad \lambda_{ \pm} Z X+2 \gamma \phi_{0} / l+P X R / I \geqslant\left(Z+\gamma \phi_{0} / l\right)^{2} / 4$
or $\left[-\frac{\phi_{0}^{2}}{4 \ell^{2}}\right] \gamma^{2}+\left[\frac{Z \phi_{0}}{2 \ell}\right] \gamma+\left[\lambda_{2} Z X+\frac{P X R}{Q}-\frac{Z^{2}}{4}\right] \geqslant 0$

If equations (4.30) and (4.31) are solved in the same range of equilibriun fluxes as before, we can find the stable values of γ. This can be seen in figure -5 .

Figure - 5 Regions according to Case - I.
2.3.2. CASE II:

The roots of the third-order characteristic equation may also have the following form right before they enter the right half plane,

$$
\begin{gather*}
a_{0} s^{3}+a_{1} s^{2}+a_{2} s+a_{3}=0 \\
s_{1}=-a, \quad s_{2}=i b \quad, \quad s_{3}=-i b \tag{4.33}
\end{gather*}
$$

In order to force the roots of the characteristic equation to fit to this type, we should equate the coefficients of the characteristic equation to the coefficients of the following form :

$$
\begin{align*}
& \left(s-s_{1}\right)\left(s-s_{2}\right)\left(s-s_{3}\right)=0 \\
& (s+a)(s-i b)(s+i b)=0 \\
& s^{3}+a s^{2}+b^{2} s+a b^{2}=0 \tag{4.34}
\end{align*}
$$

Since a and b are positive, then those should be satisfied.

$$
\begin{gather*}
a_{1}>0 \tag{4.35}\\
a_{2}>0 \tag{4.36}\\
a_{1} a_{2}=a_{3} \tag{4.37}
\end{gather*}
$$

It is obvious that insst two conditions are the same as conditions (2) and (3) of Routh-iurwity criterion i.e.,

Condition 1) $a_{1}>0 \quad$ is satisfied for all positive . Condition 2) $\gamma^{e} \geqslant\left[-\frac{\sigma_{x} \phi}{c \sigma_{f}}\left(y_{x} \sigma_{f}-\sigma_{x} \mathrm{Xe}\right)-\lambda_{I}\left(\lambda_{x}+\sigma_{x} \phi_{0}\right) l\right] /\left(\lambda_{x}+\lambda_{x}+\sigma_{x} \phi_{0}\right) \phi_{0}$ Condition 3) $\quad a_{f} a_{2}=a_{3}$

$$
\begin{equation*}
\left[\frac{Z \phi_{0}^{2}}{\ell^{2}}\right] \gamma^{2}+\left[\frac{Z^{2} \phi_{0}}{\ell}+\frac{P X R \phi_{0}}{T \ell}\right] \gamma+\left[z \lambda_{I} Z X+\frac{Z P X R}{T}-\frac{A F}{T}\right]=0 \tag{4.39}
\end{equation*}
$$

which is a special case of condition (4) of Routh-Hurwitz criterion.

Again the region where these two conditions are satisfied is showed in figure - 6 .

Total region of instability will be the union of these two cases. But considering the results obtained from the Routh-Hurwitz criterion, it may be concluded that roots of the characteristic equation can not pass to the right half plane in the form posited as case I.

Thus the resulting stability region is governed only by the second form of the roots, which is the same as Routh-ifurwitz criterion. This is shown in figure - 7. In this figure roots of the characteristic equation which give rise to instability are also shown.

2.4. DISCUSSION

In figure (7) one may notice that the principal feedback mechanism is the prompt temperature reactivity coefficient due to low flux values; so the reactor will be stable for any temperature reactivity coefficient below the flux level of $10^{9} \mathrm{n} /\left(\mathrm{cm}^{2} . \mathrm{sec}.\right)$. As the flux level is increased further from the value of $10^{9} \mathrm{n} /\left(\mathrm{cm}^{2}\right.$.sec.) Xenon burnup begins to contribute to flux growth. For $\emptyset_{0}>2 \times 10^{9} \mathrm{n} /\left(\mathrm{cm}^{2} . \sec .\right)$, the slope of the curve becomes steeper, showing that the stabilizing effect of the temperature reactivity feedback begins to be dominant and as ϕ_{0} increases, temperature feedback competes effectively with Xenon burnup so as to shrink the unstable region. However, when $\emptyset_{0}>5 \times 10^{11} \mathrm{n} /\left(\mathrm{cm}^{2} . \sec .\right)$, the destabilizing effect of Xenon burnup begins to be felt, and as φ_{0} increases, this mechanism dominates the temperature feedback so that the curve bends again and the unstable region is enlarged.

It is clear that Xenon burnup is the dominant feedback effect in the flux range $2 \times 10^{11}<\phi_{0}<9 \times 10^{12} \mathrm{n} /\left(\mathrm{cm}^{2}\right.$.sec. $)$. As ϕ_{0} reaches $10^{13} \mathrm{n} /\left(\mathrm{cm}_{0}^{2}\right.$ sec. $)$, the temperature reactivity feedback again becomes dominant, and finally stabilizes the reactor for $\emptyset_{0}>10^{15}$ for almost any γ as all other reactor parameters are assuned fixed.

In order to check the validity of the unstable resion, roots of the charactexistic equation are found and worked out on the graph.

Pigure - 7 Unstable region and roots with positive real parts of the characteristic equation.

Although the characteristic equation gives roots having positive real parts in each hurp, it is interesting to note that points of instability is much denser in the upper hump.

Since the parameters are very small, in order to be sure about the validity of the roots of the characteristic equation, we applied a sensitivity analysis so as to determine the sensitivity of the roots of our third degree polynomial to its own coefficients via, the program (POLY) which computes the roots of an order polynomial. It was observed that small changes in the coefficients of the polynomial did not lead to large changes in the roots, i.e., the roots of our characteristic equation is not very sensitive to the errors or approximations in the computations of its coefficients.

3. LINEAR STABILTYY ANALYSIS WIMi deLayed ndutrons

3.1. GHARACTERTSTIC RQUATION:

We begin our analysis by restating the point kinetics equations which can easily be recalled from previous chapters, considering one group of delayed neutrons as defining an average decay constant λ and total β.

$$
\begin{align*}
\ell \dot{\Phi} & =\left[\delta_{0}-\beta-\sigma_{x} X e /\left(c \sigma_{f}\right)-\gamma \Phi\right] \Phi+\lambda D \tag{4.40a}\\
\dot{D} & =\beta \Phi \bar{D}-\lambda D \tag{4.40~b}\\
\dot{X} e & =\left(y_{x} \sigma_{f}-\sigma_{x} X e\right) \Phi-\lambda_{x} X e+\lambda_{I} I \tag{4.40c}\\
\dot{I} & =Y_{I} \sigma_{f} \bar{D}-\lambda_{I} I \tag{4.40~d}
\end{align*}
$$

Equilibrimm values can be found as follows :

$$
\begin{array}{lll}
\dot{\Phi}=0 & ; & {\left[\delta_{0}-\beta-\sigma_{x} X e_{0} /\left(c \sigma_{f}\right)-\gamma \Phi_{0}\right] \Phi_{0}=\lambda D_{0}} \\
\dot{D}=0 & ; & \left(\begin{array}{ll}
4.41 \mathrm{a}) \\
\dot{X e}=0 & ;
\end{array}\right. \\
& \left(y_{0}-\lambda D_{0}=0\right. \\
\dot{I}=0 & ; & (4.41 \mathrm{~b}) \tag{4.41~d}\\
\left.\dot{I} X e_{0}\right) \Phi_{0}-\lambda_{x} X e_{0}+\lambda_{I} I_{0}=0 & (4.41 \mathrm{c}) \\
& y_{I} \sigma_{f} \overline{D_{0}-\lambda_{I} I_{0}=0}
\end{array}
$$

From these equations,

$$
D_{0}=\beta \bar{\Phi}_{0} / \lambda \quad, \quad I_{0}=\mathrm{y}_{\mathrm{I}} \sigma_{f} \Phi_{0} / \lambda_{\mathrm{I}}, \quad \mathrm{x} e_{0}=\mathrm{y} \sigma_{f} \Phi_{0} /\left(\lambda_{x}+\sigma_{x} \Phi_{0}\right) \quad \text { (4.42) }
$$

Initial reactivity to compansate the other feedback is the same as before,

$$
\begin{equation*}
\delta_{0}=\sigma_{x} X e_{0} / c \sigma_{f}+\gamma \Phi_{0} \tag{4.43}
\end{equation*}
$$

Expanding the equations (4.40) as follows:

$$
\begin{align*}
& D=\neq D_{0}+\emptyset, \quad D=D_{0}+\delta D \quad, \quad X e=X e_{0}+\delta X e, \quad I=I_{0}+\delta I \\
& \ell\left(\dot{\Phi}_{0}+\dot{\phi}\right)=\left[\delta_{0}-\beta-\frac{\sigma_{x}\left(\mathrm{Xe}_{0}+\delta X e\right)}{c \sigma_{f}}-\gamma\left(\bar{\phi}_{0}+\emptyset\right)\right]\left(\Phi_{0}+\varnothing\right)+\lambda(\mathrm{D}+\delta \Phi) \tag{4.44a}\\
& \dot{D}_{0}+\delta \dot{D}=\beta\left(\emptyset_{0}+\emptyset\right)-\lambda\left(D_{0}+\delta D\right) \tag{4.44~b}\\
& \dot{X e_{0}}+\delta \dot{X e}=Y_{x} \sigma_{f}\left(\bar{D}_{0}+\emptyset\right)-\sigma_{x}(X e+\delta \mathrm{Xe})\left(\bar{\phi}_{0}+\emptyset\right)-\lambda_{x}\left(\mathrm{Xe}_{0}+\delta \mathrm{Xe}\right)+\lambda_{I}\left(I_{0}+\delta I\right)(4.44 \mathrm{c}) \\
& \dot{I}_{0}+\delta \dot{I}=\bar{X}_{I} \sigma_{f}\left(\varnothing_{0}+\not \varnothing\right)-\lambda_{I}\left(I_{0}+\delta I\right) \tag{4.44~d}
\end{align*}
$$

Substituting the equilibrium values and neglecting the second order differentials, we obtain

$$
\begin{align*}
\ell \dot{D} & =\left[\delta_{0}-\beta-\frac{\sigma_{x} X e}{c \sigma_{f}}-2 \delta \Phi_{0}\right] \emptyset-\frac{\sigma_{x} \emptyset_{0}}{c \sigma_{f}} \delta X e+\lambda \delta D \tag{4.45a}\\
\delta \dot{D} & =\beta \emptyset-\lambda \delta D \tag{4.45~b}\\
\delta \dot{X} e & =\left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right) \emptyset-\left(\lambda_{x}+\sigma_{x} \emptyset_{0}\right) \delta X e+\lambda_{I} \delta I \tag{4.45c}\\
\delta \dot{I} & =Y_{I} \sigma_{f} \emptyset-\lambda_{I} \delta I \tag{4.45~d}
\end{align*}
$$

Taking the Laplace transforms,

$$
\begin{equation*}
l s \bar{\phi}=\left[\delta_{0}-\beta-\frac{\sigma_{x} X e_{0}}{c \sigma_{f}}-2 \gamma \bar{\phi}_{0}\right] \bar{\phi}-\frac{\sigma_{x} \phi_{0}}{c \sigma_{f}} \overline{\delta X e}+\lambda \overline{\delta D} \tag{array}
\end{equation*}
$$

$s \overline{\delta D}=\beta \bar{\phi}-\lambda \overline{\delta D}$
$s \overline{\delta X e}=\left(y_{x} \sigma_{f}-\sigma_{x} X e_{0}\right) \bar{\phi}-\left(\lambda_{x}+\sigma_{x} \bar{\Phi}_{o}\right) \overline{\delta \bar{X} e}+\lambda_{I} \overline{\delta I}$
$s \overline{\delta \bar{I}}=y_{I} \sigma_{f} \bar{\phi}-\lambda_{I} \overline{\delta I}$

Substituting the value for $\overline{\delta I}$ into eq. $(4.46 \mathrm{c}) \overline{\delta \bar{X}}$ e becomes

$$
\overline{\delta \overline{\delta x \theta}}=\left[\left(y_{x} \sigma_{f}-\dot{\sigma}_{x} X e_{0}\right) \bar{\phi}+\frac{y_{z} \lambda_{I} \sigma_{f} \phi}{s+\lambda_{I}}\right] /\left(s+\lambda_{x}+\sigma_{x} \phi_{0}\right)
$$

Putting this end eq.(4.46 b) into eq.(4.45 a)

$$
\begin{align*}
\ell s \bar{\phi} & =\left[\delta_{0}-\beta-\frac{\sigma_{x} \mathrm{Xe}}{c \sigma_{f}}-2 \gamma \bar{\phi}_{0}\right] \bar{\phi}+\frac{\beta \lambda \bar{\phi}}{s+\lambda} \\
& -\frac{\sigma_{x} \bar{\phi}_{0} \bar{\phi}}{c \sigma_{f}\left(s+\lambda_{x}+\sigma_{x} \bar{\phi}_{o}\right)}\left[\left(y \sigma_{f}-\sigma_{x} \mathrm{Xe}_{o}\right)+\frac{\mathrm{y}_{土} \lambda_{I} \sigma_{f}}{s+\lambda_{I}}\right] \tag{4.47}
\end{align*}
$$

Introducing some new variables in addition to those introduced in the previous section, for simplicity in operations.

$$
\begin{aligned}
B L & =Z X \lambda \lambda_{I} \\
B G & =\beta c \sigma_{f} \lambda \\
C L & =\lambda+\lambda_{I}+Z X \\
P & =\beta-\delta_{0}+2 \gamma \Phi_{0}=\beta-U /\left(c \sigma_{f}\right)+\gamma \Phi_{0} \\
\mathbb{E} & =\mathrm{P} \quad c \sigma_{f}+U=c \sigma_{f}\left(\beta-\gamma \Phi_{0}\right)
\end{aligned}
$$

$$
E=\lambda\left(\lambda_{I}+\mathbb{Z X}\right)+\lambda_{I} Z X
$$

so thet.
$l s+P+\frac{U}{c \sigma_{f}}+\frac{P X R}{c \sigma_{f}(s+Z X)}+\frac{P X y_{I} \lambda_{I} \sigma_{f}}{c \sigma_{f}(s+Z X)\left(s+\lambda_{I}\right)}-\frac{\beta \lambda}{s+\lambda}=0$

$$
\begin{aligned}
& (l s+P) c \sigma_{f}(s+Z X)\left(s+\lambda_{I}\right)(s+\lambda)+U(s+Z X)\left(s+\lambda_{\mathrm{J}}\right)(s+\lambda) \\
& +\operatorname{PXR}\left(s+\lambda_{\mathrm{I}}\right)(s+\lambda)+\operatorname{PX} \mathrm{y}_{\mathrm{s}} \lambda_{\mathrm{I}} \sigma_{f}(s+\lambda)-\operatorname{BG}(s+Z X)\left(s+\lambda_{I}\right)=0
\end{aligned}
$$

Since

$$
\begin{aligned}
(s+Z X)\left(s+\lambda_{I}\right)(s+\lambda) & =s^{3}+\left(\lambda+\lambda_{I}+Z X\right) s^{2} \\
& +\left[(\lambda+Z X)+\lambda_{I} Z X\right] s+\lambda \lambda_{I} Z X \\
& =s^{3}+O L s^{2}+E s+B L
\end{aligned}
$$

$$
T\left[s^{4}+C L s^{3}+P s^{2}+B L s\right]+\mathbb{E}\left[s^{3}+C L s^{2}+F s+B L\right]+P X R\left[s^{2}+\left(\lambda+\lambda_{I}\right) s\right.
$$

$$
\left.+\lambda \lambda_{I}\right]+B X y_{I} \lambda_{I} \sigma_{f}(s+\lambda)-B G\left[s+\left(\lambda_{I}+Z X\right) s+\lambda_{I} Z X\right]=0
$$

or,
$T s^{4}+(T C L+\mathbb{Z}) s^{3}+(T \mathbb{F}+\mathbb{E} C L+P X R-B G) s^{2}+[T B L+E F+A F$
$\left.+P X R \lambda-B G\left(\lambda_{I}+G X\right)\right] s+\left[E B L+\lambda A F-B G \lambda_{I} E X\right]=0$

Detining

$$
\begin{aligned}
& A K=T M+P X R-B G \\
& B X=T B L+A F+P X R \lambda=B G Z \\
& B K=\lambda A F-B G \lambda_{I} Z X
\end{aligned}
$$

the characteristic equation in a simpler form is obtained as ;

$$
T s^{4}+(T \mathrm{OL}+E) s^{3}+(\mathrm{BCL}+\mathrm{AK}) s^{2}+(\mathrm{B} \mathrm{~B}+\mathrm{EK}) s+(\mathrm{BL}+\mathrm{BK})=0
$$

When the stability conditions of the characteristic equation of the form $a_{0} s^{4}+a_{4} s^{3}+a_{2} s^{2}+a_{3} s+a_{4}=0$ are applied we see that there is only one additional condition to the positiveness of the coefficients inge., $\Delta_{3}>0$.

Condition 1) $\quad a_{0}>0 \quad, \quad T>0 \quad$ is satisfied already

Condition
2) $\quad a_{1}>0 \quad, \quad T C L+E>0$
$c \sigma_{f} \ell \mathrm{CL}+c \sigma_{f}\left(\beta-\gamma \bar{\rho}_{o}\right)>0$

$$
\begin{equation*}
\gamma_{1}^{\ell} \geqslant(\beta+\ell C L) / \varnothing_{0} \tag{4.50}
\end{equation*}
$$

Condition 3) $\quad a_{3}>0 \quad, \quad E P+A K>0$

$$
\begin{align*}
& \mathrm{c} \sigma_{f}\left(\beta-\gamma \emptyset_{0}\right) w+A K>0 \\
& \gamma_{2} \geqslant\left[\beta+M K /\left(c \sigma_{f} \mathrm{~B}\right)\right] / \emptyset_{0} \tag{4.51}
\end{align*}
$$

Condition 4) $\quad a_{4}>0 \quad, \quad B L+B K>0$

$$
\begin{align*}
& \circ \sigma_{f}\left(\beta-\gamma \varnothing_{0}\right) B L+B K>0 \\
& \gamma_{3} \geqslant\left[\beta+B K /\left(c \sigma_{f} B L\right)\right] / \varnothing_{0} \tag{4.52}
\end{align*}
$$

Condition 5) $\quad \Delta_{3}>0 \quad, \quad a_{3}\left(a_{1} a_{2}-a_{0} a_{3}\right)>a_{1}^{2} a_{4}$

$$
\begin{align*}
& (E X+E K)[(E+T C L)(E C L+A K)-T(E P+E K)]>(T C L+E)^{2}(E B L+B K) \\
& \text { or, } \\
& \mathbb{E}^{3}[\mathrm{FCL}-\mathrm{BL}]+\mathrm{E}^{2}\left[\mathrm{FAK}+\mathrm{PT}\left(\mathrm{CL}^{2}-\mathrm{F}\right)+\mathrm{CL}(\mathrm{BK}-2 \mathrm{TBL})-\mathrm{BK}\right] \\
& +\mathbb{E}[T T(C L A K-2 B K)+E K(A K+T C L)-T C L(T C L B L-2 B K)] \\
& +\left[B K T(A K C L-E N)-T^{2} C L B K\right] \geqslant 0 \tag{4.53}
\end{align*}
$$

Condition - 5 is satisfied for all positives values of temperature reactivity coefficient, 。

It is seen from the plot of the conditions that stability region (shaded) is much different from the previous results. This may be because of the oxder of the system under investigation increases Routh-Hurwitz criteria tend to give over restricted results. According to these considerations perhaps the delayed neutrons should be treated in a different way. For example, if the order of this characteristic equation can be reduced by one, reasonable results may be obtained. In the next section we try to accomplish this with an approximation.

Figure - 8 Stability region (shaded) according to R - H criterion with delayed Heutrons.

In this section we will make some appoximations to the problen since we have faced some numerical difficulties in solving the fourth-order characteristic equation with delayed neutrons. Restating the kinetics equations,

$$
\begin{align*}
& \ell \dot{\Phi}=\left[\delta_{0}-\beta-\frac{\sigma_{x} X e}{c \sigma_{f}}-\gamma \Phi \bar{\Phi}+\sum_{i=1}^{6} \lambda_{i} D_{i} \quad\right. \text { (4.54 a) } \\
& \dot{\dot{D}}_{i}=\beta_{i} \not \bar{D}^{-\lambda_{i}} D_{i} \quad i=1, \ldots, 6 \tag{4.54~b}\\
& \dot{I}=Y_{I} \sigma_{f} \overline{\underline{D}}-\lambda_{I} I \tag{4.54c}\\
& \dot{X e}+\lambda_{x} X e=J_{x} \sigma_{f} \emptyset+\lambda_{I} I-\sigma_{x} X e \emptyset \tag{4.54~d}
\end{align*}
$$

Bquilibrium values are,

$$
\begin{align*}
& D_{i 0}=\left(\beta_{i} / \lambda_{i}\right) \emptyset_{0}, \quad I_{0}=\left(y_{I} \sigma_{f} / \lambda_{ \pm}\right) \emptyset_{0} \tag{4.55}\\
& X e_{0}=y \sigma_{f} \phi_{0} /\left(\lambda_{x}+\sigma_{x} \emptyset_{0}\right) \quad \text { where } \quad y=y_{I}+y_{x}
\end{align*}
$$

In order to reduce the complexity of the system with its large number of parameters, we pass to the fom where the dynamical variables are measured relative to their equilibriun values.

Define

$$
Y=\sigma_{x} \phi_{0} /\left(\lambda_{x}+\sigma_{x} \phi_{0}\right) \text { as before in chapter III. }
$$

$$
\begin{equation*}
\mathrm{Xe}_{\mathrm{o}}=\mathrm{y} \mathrm{Y} \frac{\sigma_{f}}{\sigma_{x}} \tag{4.56}
\end{equation*}
$$

$$
\dot{\Phi}=0 \quad ; \quad\left[\delta_{0}-\beta-\frac{\sigma_{\alpha} X e}{c \sigma_{f}}-\gamma \bar{\phi}_{0}\right] \Phi_{0}+\sum_{i=1}^{6} \lambda \frac{\beta_{i}}{\lambda_{i}} \phi_{0}=0
$$

recalling

$$
\begin{equation*}
\sum_{i=1}^{c} \beta_{i}=\beta \quad \text { and } \quad \delta_{0}=\frac{\sigma_{x} X e_{0}}{c \sigma_{f}}+\gamma \Phi_{0} \tag{4.57}
\end{equation*}
$$

On the other hand equality for Y gives,

$$
\begin{equation*}
\bar{D}_{0}=\frac{\lambda_{x} Y}{\sigma_{x}(I-Y)} \tag{4.58}
\end{equation*}
$$

Define new variables as :

$$
\begin{aligned}
\phi & =\left(\Phi-\phi_{0}\right) / \phi_{0} \quad, \quad \delta D_{i}=\left(D_{i}-D_{i 0}\right) / J_{i 0} \\
\delta X_{e} & =\left(X e-X e_{0}\right) / X e_{0} \quad, \quad \delta I=\left(I-I_{0}\right) / I_{0}
\end{aligned}
$$

with these definitions equations (4.54) reduce to
$\left.\ell \dot{\phi} \phi_{0}=\left[\delta_{0}-\beta-\frac{\sigma_{x} X e}{c \sigma_{f}}\left(1+\delta K_{e}\right)-\phi \phi_{0}(1+\phi)\right](1+\phi) \phi_{0}+\sum_{i=1}^{6} \lambda_{i} D_{i 0}(1+\delta I)\right)$
inserting the value for δ_{0}

$$
\begin{equation*}
\dot{\phi}=\left[-\beta-\frac{\sigma_{x} \mathrm{Xe}}{c \sigma_{f}} \delta X e-\gamma \phi_{0} \phi\right](1+\emptyset)+\sum_{i=1}^{6} \beta_{i}\left(1+\delta \dot{D}_{i}\right) \tag{4.59}
\end{equation*}
$$

recalling $\sum_{i=1}^{6} \beta_{i}=\beta$ and replacing the value for $X e$ 。 from eq. (4.56)
$\ell \dot{\phi}=-\left[\beta+\frac{y Y \sigma_{x}}{c \sigma_{f} \sigma_{x}} \sigma_{f} \delta X e+\gamma \phi_{0} \phi\right](1+\emptyset)+\beta \sum_{i=1}\left(1+\delta D_{i}\right)$

Noting $\sum_{i=1}^{6} a_{i}=1$ and neglecting the higher order terms

$$
\begin{equation*}
\ell \dot{\phi}=-\left[\frac{\mathrm{Y} Y}{c} \delta X e+\gamma^{2} \phi_{0} \phi\right]+\beta \sum_{i=1}^{6} a_{i}\left(\delta D_{i}-\phi\right) \tag{4.60}
\end{equation*}
$$

$$
\dot{D}_{i}=\beta_{i} \bar{D}-\lambda_{i} D_{i}
$$

$$
D_{i_{0}} S D_{i}=\beta_{i} \mathscr{D}_{0}(1+\not D)-\lambda_{i} D_{i 0}\left(1+\delta D_{i}\right)
$$

$$
D_{i o} \delta D_{i}=\lambda_{i} D_{i 0}(1+\not \subset)-\lambda_{i} D_{i o}\left(1+\delta D_{i}\right)
$$

$$
\begin{equation*}
\dot{S D}_{i}=\lambda_{i}\left[D D-\delta D_{i}\right] \tag{4.61}
\end{equation*}
$$

$$
\dot{I}=y_{I} \sigma_{f} \varnothing-\lambda_{I} I
$$

$$
I_{0} \dot{\delta I}=\Psi_{I} \sigma_{f} \emptyset_{0}(1+\emptyset)-\lambda_{I} I_{0}(I+\delta I)
$$

$$
I_{0} \delta I=\lambda_{I} I_{0}(I+\emptyset)-\lambda_{I} I_{0}(I+\delta I)
$$

$$
\begin{equation*}
\dot{\delta I}=\lambda_{I}[\emptyset-\delta I] \tag{4.62}
\end{equation*}
$$

$$
X e+\lambda_{x} X e=y_{x} \sigma_{f} \Phi+\lambda_{x} I-\sigma_{x} X e \Phi
$$

$X e_{0} \delta \dot{X e}+\lambda_{x} X e(1+\delta X e)=Y_{x} \sigma_{f} \emptyset_{0}(1+\emptyset)+\lambda_{I} I_{0}(1+\delta I)-\sigma_{x} X e_{0} \phi_{0}(1+\delta X e)(1+\emptyset)$
replacing the value for $X e_{0}$ and I_{0} and neglecting the second-order terms

$$
\begin{aligned}
\frac{y \sigma_{f} \oint_{0}}{\lambda_{x}+\sigma_{x} \phi_{0}}\left[\delta \dot{X} e+\lambda_{x}+\lambda_{x} \delta X e\right] & =y_{x} \sigma_{f} \phi_{0}(1+\emptyset)+y_{I} \sigma_{f} \phi(1+\delta I) \\
& -\sigma_{x} \frac{y Y \sigma_{f}}{\sigma_{x}} \phi_{0}[1+\phi+\delta X e]
\end{aligned}
$$

Define $\quad Y_{I}=y_{I} / y \quad, \quad Y_{x}=Y_{x} / X$ and recall $Y_{I}+Y_{x}=1$

$$
\begin{align*}
& \delta \dot{\alpha} e+\lambda_{x} \delta X e=\left[Y_{x}(I+\emptyset)+Y_{I}(1+\delta I)-Y(I+\emptyset)-Y \delta X e\right]\left(\lambda_{x}+\sigma_{x} \emptyset_{0}\right)-\lambda_{x} \\
& \delta \dot{X e}+\lambda_{x} \delta X e=\left(\lambda_{x}+\sigma_{x} \not \phi_{0}\right)\left[\left(Y_{x}-Y\right)(I+\emptyset)+Y_{I}(1+\delta I)-Y \delta X e\right]-\lambda_{x} \tag{4.64}
\end{align*}
$$

Taking the Laplace transforms,

$$
\begin{align*}
s \overline{\delta D}_{i} & =\lambda_{i}\left[\bar{\emptyset}-\overline{\delta D}_{i}\right] \\
\overline{\delta D}_{i} & =\left[\lambda_{i} /\left(s+\lambda_{i}\right)\right] \bar{\phi} \tag{4.65}\\
s \overline{\delta I} & =\lambda_{I} \bar{\phi}-\lambda_{I} \overline{\delta I} \\
\overline{\delta I} & =\left[\lambda_{I} /\left(s+\lambda_{I}\right)\right] \bar{\phi} \tag{4.66}
\end{align*}
$$

$$
\begin{aligned}
& s \overline{\delta X}_{e}+\lambda_{x} \overline{\delta X} e=\left(\lambda_{x}+\sigma_{x} \emptyset_{0}\right)\left[\left(Y_{x}-Y\right) \bar{\phi}+Y_{I} \overline{\delta I}-Y \quad \overline{\delta X e}\right] \\
& \left(s+\lambda_{x}\right) \overline{\delta X e}=\left(\lambda_{x}+\sigma_{x} \phi_{0}\right)\left[\left(Y_{x}-Y\right) \bar{\phi}+\frac{Y_{I} \lambda_{I}}{s+\lambda_{3}} \bar{\phi}-Y \overline{\delta X} e\right]
\end{aligned}
$$

find the value for $\left(\lambda_{x}+\sigma_{x} \phi_{0}\right)=\frac{\sigma_{x} \phi_{0}^{\prime}}{Y}=\frac{\sigma_{x}}{Y} \frac{\lambda_{x}}{\sigma_{x}} \frac{Y}{I-Y}=\frac{\lambda_{x}}{I-Y}$

$$
\begin{align*}
& \left(s+\lambda_{A}\right) \overline{\delta X e}=\lambda_{x}\left(\frac{Y_{x}-Y}{I-Y}\right) \bar{\phi}+\frac{Y_{I} \lambda_{I} \lambda_{x} \bar{\phi}}{(1-Y)\left(s+\lambda_{I}\right)}-\frac{Y \lambda_{x}}{1-Y} \overline{\delta X e} \\
& \overline{\delta X} e=\frac{\lambda_{x} \bar{\phi}}{1-Y}\left[\left(Y_{x}-Y\right)+\frac{Y_{I} \lambda_{I}}{\left(s+\lambda_{I}\right)}\right] /\left[s+\lambda_{x}+\frac{Y \lambda_{X}}{1-Y}\right] \tag{4.67}
\end{align*}
$$

putting this into the Laplace transformed form of the equation (4.60)

$$
\begin{align*}
& s \ell \bar{\phi}+\frac{y Y}{c} \frac{\lambda_{x} \bar{\phi}}{1-Y} \frac{\left[\left(Y_{x}-Y\right)+\frac{Y_{I} \lambda_{I}}{s+\lambda_{I}}\right]}{\left[s+\lambda_{x}+\frac{Y \lambda_{x}}{1-Y}\right]}+\gamma \phi_{0} \bar{\phi}-\beta \sum_{i=1}^{6} a_{i}\left(\frac{\lambda_{i}}{s+\lambda_{i}}-1\right) \bar{\phi}=0 \\
& s\left[l+\beta \sum_{i=1}^{6} \frac{a_{i}}{s+\lambda_{i}}\right]+\frac{Y Y}{c} \frac{\lambda_{x}}{1-Y} \frac{\left[\left(Y_{x}-Y\right)\left(s+\lambda_{I}\right)+Y_{I} \lambda_{I}\right](1-Y)}{\left(s+\lambda_{1}\right)\left[\left(s+\lambda_{x}\right)(1-Y)+Y \lambda_{x}\right]}+\gamma \phi_{0}=0 \tag{4.68}
\end{align*}
$$

Since the decay constants λ_{x} and λ_{x} are much smaller than the decay constant λ of the delayed neutron emitters, one can ignore s as
compared to λ_{i} in the discussion of Xenon oscillations [3].

$$
|\mathrm{s}| \ll \lambda_{i}
$$

hence we can neglect it and define an average neutron generation time as

$$
\begin{equation*}
l^{*}=l+\beta \sum_{i=1}^{6} \frac{a_{i}}{\lambda_{i}} \tag{4.69}
\end{equation*}
$$

$$
s+\frac{Y Y}{c l^{*}} \frac{\left[\left(Y_{x}-Y\right) s+\lambda_{I}\left(Y_{x}+Y_{x}\right)-Y_{n} \lambda_{x}\right]}{\left[\left(s+\lambda_{I}\right)\left(s+\lambda_{x}-s Y-\lambda_{x} Y+\lambda_{x} Y\right]\right.}+\frac{\theta^{*} \phi_{0}}{l^{*}}=0
$$

$$
\text { Defining } \quad \omega_{0}=\frac{y y}{c l^{*}} \text { and recalling } y_{x}+Y_{x}=1
$$

$$
\left[s+\frac{\gamma \phi}{l^{*}}\right]\left[s^{2}+\left(\lambda_{I}+\lambda_{x}\right) s+\lambda_{I} \lambda_{x}-s^{2} Y-s Y \lambda_{X}\right]+\omega_{0} \lambda_{x}\left[s\left(Y_{x}-Y\right)+\lambda_{I}(1-Y)\right]=0
$$

$$
\text { Define } \quad \lambda=\lambda_{I}+\lambda_{x}
$$

$$
\begin{aligned}
& {\left[s+\frac{\gamma \oint_{0}}{\ell^{*}}\right]\left[s^{2}(1-\mathrm{Y})+\left(\lambda-\lambda_{\mathrm{I}} \mathrm{Y}\right) \mathrm{s}+\lambda_{1} \lambda_{\mathrm{X}}\right]+\omega_{0} \lambda_{\mathrm{x}}\left[\mathrm{~s}\left(\mathrm{Y}_{\mathrm{X}}-\mathrm{Y}\right)+\lambda_{\mathrm{I}}(1-\mathrm{Y})\right]=0} \\
& {\left[\mathrm{~s}+\frac{\gamma \phi_{0}}{\ell^{*}}\right]\left[\mathrm{s}^{2}+\frac{\lambda-\lambda_{\mathrm{I}} \mathrm{Y}}{1-\mathrm{Y}} \mathrm{~s}+\frac{\lambda_{I} \lambda_{\mathrm{x}}}{1-\mathrm{Y}}\right]+\frac{\omega_{0} \lambda_{x}\left(\mathrm{Y}_{\mathrm{X}}-\mathrm{Y}\right)}{1-\mathrm{Y}} \mathrm{~s}+\omega_{0} \lambda_{\mathrm{I}} \lambda_{\mathrm{x}}=0}
\end{aligned}
$$

$$
s^{3}+s^{2}\left[\frac{\lambda-\lambda_{1} Y}{1-Y}+\frac{\gamma^{*} \phi_{0}}{l^{*}}\right]+s\left[\frac{\lambda_{ \pm} \lambda_{x}}{I-Y}+\frac{\gamma \phi_{0}}{l^{*}}\left(\frac{\lambda_{1}-\lambda_{I} Y}{1-Y}\right)\right.
$$

$$
\left.+\frac{\omega_{0} \lambda_{x}}{I-Y}\left(Y_{x}-Y\right)\right]+\left[\frac{\lambda_{I} \lambda_{x}}{I-Y} \frac{\gamma^{\prime} \phi_{0}}{l^{*}}+\omega_{0} \lambda_{I} \lambda_{x}\right]=0
$$

$$
\begin{align*}
& s^{3}+s^{2}\left[\frac{\lambda-\lambda_{I} Y}{1-Y}+\frac{\gamma \phi_{0}}{\ell^{*}}\right]+s\left[\lambda_{I} \lambda_{x}+\omega_{0} \lambda_{x}\left(Y_{x}-Y\right)\right. \\
& \left.+\frac{\gamma \phi_{0}}{\ell^{*}}\left(\lambda-\lambda_{I} Y\right)\right] /(1-Y)+\lambda_{I} \lambda_{x}\left[\omega_{0}+\frac{\gamma^{\ell} \phi_{0}}{\ell^{*}(1-Y)}\right]=0 \tag{4.70}
\end{align*}
$$

3.3.1. APPLICATION OF THE ROUTH - HURWITZ CRITERION :

Taking into account the same considerations as in section 2.2.1 one may write the necessary conditions as follows:

Condition 1) $a_{0}>0$ is satisfied automatically

Condition
2)

$$
\begin{align*}
& a_{1}>0 \quad ; \quad\left(\lambda-\lambda_{I} Y\right) /(1-Y \tag{4.71}\\
& \geqslant\left(l^{*} / \phi_{0}\right)(Y-1) /\left(\lambda-\lambda_{I} Y\right)
\end{align*}
$$

Condition
3)

$$
a_{3}>0 ; \quad \lambda_{ \pm} \lambda_{x}\left[\omega_{0}+\frac{\gamma^{*} \phi_{0}}{l^{*}(1-Y)}\right]>0
$$

$$
\begin{equation*}
\gamma \geqslant \omega_{0} l^{*}(Y-1) / \phi_{0} \tag{4.72}
\end{equation*}
$$

Condition
4) $\quad a_{1} a_{2}>a_{3}$

$$
\begin{gathered}
{\left[\frac{\lambda-\lambda_{I} Y}{1-Y}+\frac{\gamma^{1} \phi_{0}}{l^{*}}\right]\left[\lambda_{I} \lambda_{x}+\omega_{0} \lambda_{x}\left(Y_{x}-Y\right)+\frac{\gamma \phi_{0}}{l^{*}}\left(\lambda-\lambda_{I} Y\right)\right] \frac{1}{1-Y}} \\
\geqslant \lambda_{I} \lambda_{x}\left[\omega_{0}+\frac{\gamma \phi_{0}}{l^{*}(1-Y)}\right]
\end{gathered}
$$

$$
\left[\frac{\phi_{0}^{2}}{l^{* 2}}\left(\lambda-\lambda_{I} Y\right)\right] \gamma^{2}+\frac{\emptyset_{0}}{l^{*}}\left[\frac{\left(\lambda-\lambda_{I} Y\right)^{2}}{I-Y}+\omega_{0} \lambda_{x}\left(Y_{x}-Y\right)\right] \gamma^{\kappa}
$$

$$
\begin{equation*}
+\left[\frac{\left(\lambda-\lambda_{I} Y\right) \lambda_{x}}{1-Y}\left[\lambda_{I}+\lambda_{x} \omega_{0}\left(Y Y_{x} Y\right)\right]-\lambda_{I} \lambda_{x} \omega_{0}(1-Y)\right] \geqslant 0 \tag{4.73}
\end{equation*}
$$

Figure - 9 Stability regions according to k-ficriterion with delayed neutrons.

Figure - 10 Comparison of Regions with and without delayed Neutrons, and Roots with positive real parts of the characteristic equation.

3.4 DISCUSSIOH

In figure - 9 we obtain the double-humped curve again but this time the delayed neutron effects are considered in an average generation time, l^{*}. It is realistic to consider the delayed neutrons to be produced " instantaneously " with respect to Xenon since time decay constants of delayed neutrons are much shorter than of I^{135} and $X e^{135}$'s. Also for high flux levels, the quantity of Xenon produced is much larger than the quantity β of delayed neutron precursors.

As a matter of fact the validity of this approximation may be checked from the search of the roots of the characteristic equatio, i.e., all of the roots are always less than the lowest decay constant of delayed neutron precursors.

One can see from the comparison of this plot with figure - 7 that in some sections, region of instability is enlarged by the delayed neutrons. It can be concluded that the effect of delayed neutrons on the stability of the autonomous systems may be "destabilizing".

Actually their effect on the stability of the autonomous systems was not well understood until relatively recent times [3]. Smets [13] has reviewed the effect of delayed neutrons on the linear and non-lineax stability of reactor systems under various conditions, and showed that the delayed neutrons do not always "improve" the stability
of nuclear reactors at a given pover level and that a reactor may be unstable although it was stable when delayed neutrons are neglected. Later L.M. Shotkin, D.I. Hetrick and T.R. Schmidt [15] showed that delayed neutrons permit the existence of unstable limit cycles. They also concluded that for linearly stable systems the delayed neutrons can cause the system to become unbtable for large enough disturbances. I.M. Shotkin [14] investigated the instability bounds in linearly stable systems and gave a general method for determining the bounds on allowable disturbances.

We also checked this in next chapter by solving the point kinetics equations for various perturbations at some selected operating points.

Chapter V

NUMERICAL SOLUTION MEIHODS

1. MUMERICAL SOLUTION BY USING FINITE DIFFERENCE METHOD [16]

This method to solve the kinetics equations, is based essentially on the definition of derivative. We begin to introduce the method by casting the equations in the general form

$$
\begin{equation*}
\frac{d \underline{\psi}(t)}{d t}=f(\underline{\psi}, t) \tag{5.1}
\end{equation*}
$$

The elemantary definition of the derivative,

$$
\begin{equation*}
\frac{d \Psi}{d t}=\lim _{\Delta t \rightarrow 0} \frac{\Psi(t+\Delta t)-\Psi(t)}{\Delta t} \tag{5.2}
\end{equation*}
$$

leads to a suitable numerical procedure. The limit is approximated by the socealled first divided differince :

$$
\begin{equation*}
\frac{\underline{\psi}(t+\Delta t)-\underline{\psi}(t)}{\Delta t} \approx f(\underline{\psi}, t) \tag{5.3}
\end{equation*}
$$

$$
\begin{equation*}
\underline{\Psi}_{n+1}=\underline{\Psi}_{n}+\Delta t \underline{I}_{n} \tag{5.4}
\end{equation*}
$$

This kind of solution can be satisfactory only when very small time intervals are considered due to definition of derivative; so we will examine the time intervals as 0.1 seconds since the neutron generation time is in this range. Casting these equations into matrix form :

$$
\left[\begin{array}{l}
\Phi_{n+1} \tag{5.5}\\
I_{n+1} \\
X e_{n+1} \\
I_{n+1}
\end{array}\right]=\left[\begin{array}{l}
\left(\delta_{0}-\beta-\frac{\sigma_{X} \mathrm{Xe}}{c \sigma_{f}}-\gamma \Phi_{n}\right) \frac{\Phi_{n}}{l}+\frac{\lambda D}{\ell} \\
\beta \Phi_{n}-\lambda D_{n} \\
\left(y_{x} \sigma_{f}-\sigma_{x} X e_{n}\right) \Phi_{n}-\lambda_{x} X e_{n}+\lambda_{I} I_{n} \\
y_{x} \sigma_{f} \Phi_{n}-\lambda_{n} I_{n}
\end{array}\right] \cdot \Delta t+\left[\begin{array}{l}
\Phi_{n} \\
D_{n} \\
X e_{n} \\
I_{n}
\end{array}\right]
$$

Beginning equations from equilibrium point with little perturbation are then:

$$
\left[\begin{array}{l}
\Phi_{1} \\
D_{1} \\
X e_{1} \\
I_{1}
\end{array}\right]=\left[\begin{array}{l}
{\left[\delta_{0}-\beta-\frac{\sigma_{x} X e}{c \sigma_{f}}-\gamma\left(\Phi_{0}+\delta \phi\right)\right] \frac{\left(\Phi_{0}+\delta \phi\right)}{l}+\frac{\lambda D_{0}}{l}} \\
\beta\left(\Phi_{0}+\delta \emptyset\right)-\lambda D_{0} \\
\left(\bar{y}_{x} \sigma_{f}-\sigma_{x} X e_{0}\right)\left(\phi_{0}+\delta \phi\right)-\lambda_{x} X e+\lambda_{I} I_{0} \\
y_{I} \sigma_{f}\left(\Phi_{0}+\delta \emptyset\right)-\lambda_{I} I_{0}
\end{array}\right] \cdot \Delta t+\left[\begin{array}{l}
\Phi_{0}+\delta \phi \\
D_{0} \\
X e_{0} \\
I_{0}
\end{array}\right]
$$

Solution applied to computer and results are given in appendix -6.

Departing from the definition of derivative, we assumed that the slope of the flux function remained constant at each time interval although it changes in time actually. In order to reduce this approximation error, the behaviour of the flux is observed at a time interval of average neutron generation time, ℓ^{*}, of prompt and delayed neutrons, i.e., 0.1 sec. So, the delayed neutrons are considered to be produced "instantaneously" due to the considerations stated before.

Flux behaviour was observed only for the first hour due to linitations of computing time. The accuracy of this method and the intexpretation of the plots will be given after the second solution method is applied.

2. WUAERTCAL SOLUTION OF THE POINT KINETICS EQUATIONS

HATSEN'S METHOD :

In this section we will try to solve the point kinetics equations starting with a specific equilibrium. We will use a modified form of the method proposed by Hansen[5].

The basic idea of Hansen's method is relatively simple. Writing the point kinetics equations in matrix form;

$$
\begin{equation*}
\mathrm{d} \underline{\psi}(\mathrm{t}) / \mathrm{d} t=\underline{\underline{A}} \underline{\underline{\varphi}}(\mathrm{t})+\underline{\mathrm{C}} \tag{5.6}
\end{equation*}
$$

where

$$
\stackrel{A}{=}=\left[\begin{array}{cccc}
\left(\delta_{0}-2 \gamma \emptyset_{0}\right) / l-\frac{U}{T} & -\frac{P X}{T} & 0 & \frac{\lambda}{l} \\
\mathrm{R} & -\mathrm{ZX} & \lambda_{I} & 0 \\
\mathrm{y}_{\mathrm{I}} \sigma_{\mathrm{f}} & 0 & -\lambda_{I} & 0 \\
\beta & 0 & 0 & -\lambda
\end{array}\right]
$$

$$
0=\left[\begin{array}{l}
\left(\delta_{0}-\frac{U}{c \sigma_{f}}-\gamma^{\prime} \phi_{0}\right) \frac{\phi_{0}}{l} \\
R \phi_{0}-\lambda_{K} X e_{0}+\lambda_{I} I_{0} \\
y_{I} \sigma_{f} \phi_{0}-\lambda_{I} I_{0} \\
\beta \phi_{0}-\lambda D_{0}
\end{array}\right] \quad \underline{\psi}=\left[\begin{array}{r}
\phi(t) \\
\delta X e(t) \\
\delta I(t) \\
\delta D(t)
\end{array}\right]
$$

The matrix A can be decomposed into three matrices,

$$
\begin{equation*}
\underline{A}=\underline{\underline{L}}+\underline{\underline{D}}+\underline{\underline{U}} \tag{5.8}
\end{equation*}
$$

where $\underline{\underline{L}}$ is strictly lower triangular, $\underline{\underline{U}}$ strictly upper triangular, and D diagonal. We assume $D \neq 0$. Equation (5.6) may be rewritten as,

$$
\begin{equation*}
d \underline{\psi}(t) / d t-\underline{\underline{D}} \underline{\underline{\psi}}(t)=(\underline{\underline{I}}+\underline{\underline{U}}) \underline{\psi}(t)+\underline{C} \tag{5.9}
\end{equation*}
$$

The reason for splitting it up in this fashion is to develop an iteration procedure. We assume that we begin this calculation from a time t_{0} and advance to a time t_{1}, and t_{2} and so on.

Let

$$
\begin{equation*}
h_{n}=t_{1}-t_{0}=t_{2}-t_{1}=\cdots \cdots \cdots=t_{i+1}-t_{i} \tag{5.10}
\end{equation*}
$$

Since D is a diagonal matrix, an integrating factor for equation (5.9) is $\exp (-D t)$, if the reactivity does not change much during the time interval h. Therefore equation (5.9) becomes

$$
e^{-\underline{D} t} \dot{\underline{\Psi}}(t)-e^{-\underline{\underline{D}} t} \underline{\underline{D}} \underline{\Psi}(t)=e^{-\underline{D} t}(\underline{\underline{I}}+\underline{\underline{U}}) \underline{\underline{U}}(t)+\underline{C} e^{-\underline{\underline{D}} t}
$$

or

$$
\begin{equation*}
\frac{d}{d t}\left[e^{-D t} \underline{=} \underline{(t)}\right]=e^{-D t}(\underline{\underline{L}}+\underline{\underline{U}}) \underline{(t)}+e^{-\underline{D} t} \underline{C} \tag{5.11}
\end{equation*}
$$

integrating between time intervals t_{i} and t_{i+1}

$$
\begin{equation*}
\int_{t_{i}}^{t_{i+1}} \frac{d}{d t}\left[e^{-D t} \underline{\underline{D}}(t)\right] d t=\int_{t_{i}}^{t_{i+1}}(\underline{I}+\underline{\underline{U}}) e^{-D t} \underline{\underline{D}}(t) d t+\int_{t_{i}}^{t_{i+1}} e^{-D t} \underline{\underline{D}} d t \tag{5.12}
\end{equation*}
$$

assuming $\Psi(t)$ remains constant in the time interval $h=t_{i+1}-t_{i}$ which has to be very short,

$$
\begin{aligned}
& e^{-\underline{\underline{D}} t_{i+1}} \underline{\psi}\left(t_{i+1}\right)-e^{-D t} \underline{\underline{D}}\left(t_{i}\right)=-\underline{D}^{-1}\left[e^{-D t_{i+1}}-e^{-D t_{i}}\right](\underline{\underline{L}}+\underline{\underline{U}}) \underline{\Psi}\left(t_{i}\right) \\
& -\underline{D}^{-1}\left[e^{-D t_{i+1}}-e^{-D t_{i}}\right] \underline{C}
\end{aligned}
$$

$$
\begin{align*}
& -D^{-1}\left[\underline{I}-e^{D\left(t_{i+1}-t_{i}\right)}\right] \underline{C} \\
& \underline{\psi}\left(t_{i v i}\right)=\left\{e^{D h}-\underline{D}^{-1}\left[\underline{\underline{I}}-e^{\underline{D h}}\right](\underline{\underline{I}}+\underset{\underline{U}}{\underline{D}}\}\right\} \underline{\psi}\left(t_{i}\right)-I^{-i}\left[\underline{=}-e^{\underline{D} h}\right] \underline{C} \tag{5.13}
\end{align*}
$$

Here $\psi\left(t_{i}\right)$ is the amount of perturbation applied to the system initially and $\underline{\psi}\left(t_{i+1}\right)$ is the response of the reactor after a reasonable time step. \underline{G} is a vector whose components have the values of the point about which linearization is made. This method of linearization at each point is more likely to approach the real behaviour of the reactor with the greater accuracy.

The components of vector \underline{C} have the values characterizing the points at which the system is linearized. Clearly it will be zero for the first time step since we there linearize the system at the equilibrium point.

Yet it will not be zero for the second time step because, now the linearization point is not an equilibrium state but a perturbed value of the equilibrium flux. Similarly for the following points.

Mathematically it can be explained as follows ;
Kinetic equations having the form ;

$$
\begin{equation*}
\dot{x}=f(x) \tag{5.14}
\end{equation*}
$$

right side can be expanded into Taylor series around any state x_{2} of linearization

$$
\begin{equation*}
\dot{g}=f\left(x_{L}\right)+\left.\frac{\partial f}{\partial x}\right|_{x=x_{L}}\left(x-x_{L}\right)+\underbrace{\text { Higher order terms }}_{\text {neglected }} \tag{5.15}
\end{equation*}
$$

now pose

$$
x-x_{L}=\delta x^{*}
$$

it becomes

$$
\frac{d}{d t}\left(x_{L}+\delta x^{*}\right)=\left.\frac{\partial f}{\partial x}\right|_{x=x_{L}} \delta x^{*}+f\left(x_{L}\right)
$$

or

$$
\begin{equation*}
\dot{\delta} x^{*}=\left.\frac{\partial f}{\partial x}\right|_{x=x_{L}} \delta x^{*}+f\left(x_{L}\right) \tag{5.16}
\end{equation*}
$$

which is the form of equation (5.6)

The computed δx^{*} will give the difference between the current state and the previous point of linearization,

$$
\begin{equation*}
x=\delta x^{*}+x_{L} \tag{5.17}
\end{equation*}
$$

For linearization at each time interval, question might arise about the amount of perturbation to be applied. The question of whether the perturbation will be applied from the initial steady-state operating condition or from the previous linearization point will be clear when the operations from the beginning is observed with the help of the following sketch.

We assumed that the reactor is operated at the steady-state flux level of \varnothing_{o} prior to $t=0$. So the equations describing the time behaviour of the system are linearized about this value. Then a small amount of perturbation $\delta \ell_{0}$ is applied at time $t=0$.

Resulting perturbation $\delta \phi_{1}$ is obtained by solving the perturbation equations. How the linearization point is the first perturbed flux, i.e., $\emptyset_{0}+\delta \emptyset_{0}$ and the amount of perturbation will be applied is the difference, $\delta \phi_{1}^{*}=\delta \emptyset_{0}-\delta \emptyset_{1}$. Now the linearization point is $\emptyset_{0}+\delta \phi_{1}$, and the amount of perturbation is $\delta \phi_{2}^{*}=\delta \phi_{1}-\delta \phi_{2}$.

This procedure is employed successively. Applied computer progrem is given in the appendix -4 .

3. DISCUSSION :

We have solved the point kinetics equations without delayed neutrons using the proposed solution technique with a computer program. We were unable to examine the problem taking into account the long-term feedback effects of the delayed neutrons because the very short time response \mathcal{L} of the prompt neutrons is of the order of $10^{-4} \mathrm{sec}$. Whereas the delayed neutron tine response is $1 / \lambda$ or about $10 \mathrm{sec} .$, a factor of 10^{5} greater. The implication of these facts is that in order to obtain the prompt xesponse, very small time steps, of the oxder of $10^{-4} \mathrm{sec}$. are required. But then before the delayed neutron term comes into play, many time steps are required. For instance to examine the responce out to even one second about 10,000 steps of calculations would be required.

A method for solving the point reactor kinetics equations given by da Mòbrega[8] requires about 1.5×10^{6} steps in order to examine a one second span as can be seen from the table reproduced below from the work mentioned above[21].

TABLE II

Time (sec)		$\mathrm{MOVER}-\mathrm{I}$	
		$\epsilon=10^{-4}$	$\epsilon=10^{-3}$
0.0	T_{1}	1.0	1.0
	T_{2}	0.0	0.0
0.003	T_{1}	$0.0373^{(1)}$	$0.0373^{(2)}$
	T_{2}	0.5696	0.5700

(1) Ilook 44 time steps to get to $t=0.002934 \mathrm{sec}$.
(2) Took 19 time steps to get to $t=0.003098 \mathrm{sec}$.

In order to overcome this difficulty we considered the delayed neutrons as being produced " instantaneously ". So we examined the problem in 0.1 sec . time intervals, since the average prompt neutron generation time now is in this range.

β_{i}	a_{i}	λ_{i}	a_{i} / λ_{i}
0.2475×10^{-3}	0.033	0.0124	2.66
1.6425×10^{-3}	0.219	0.0305	7.18
1.47×10^{-3}	0.196	0.111	1.76
2.9625×10^{-3}	0.395	0.301	1.31
0.8625×10^{-3}	0.115	1.130	0.101
0.315×10^{-3}	0.042	3.00	0.014

Table - 2 Delayed neutron parameters for thermal fission in 0^{235} [25].

$$
\begin{aligned}
& \beta=\sum_{i=1}^{6} \beta_{i}=0.0075 \\
& \sum_{i=1}^{6}\left(a_{i} / \lambda_{i}\right)=13.03544
\end{aligned}
$$

Average neutron generation time can be calculated as follows;

$$
\ell^{*}=\ell+\beta \sum_{i=1}^{6}\left(a_{i} / \lambda_{i}\right)
$$

where l is the prompt neutron generation time.

$$
\begin{aligned}
l^{*} & =10^{-4}+0.0075 * 13.03544 \\
& =0.09786 \\
l^{*} & \cong 0.1 \mathrm{sec} .
\end{aligned}
$$

Thus we consider the feedback effects of the delayed neutrons, as being prompt.

First we select four specific points in $\phi_{0}-\gamma$ plane. These points heve the same equilibrium flux value but have different prompt temperature reaotivity coefficients as, $(1,5,8,11) \times 10^{-16}$. The aim of doing so is to observe how fast the flux behaviour will return to its equilibrium value or how fast it will diverge for different γ values.

We also applied to each point three different levels of perturbation (the one tenth of the equilibrium value of the flux, the same as the equilibrium value of the flux and ten times that of the equilibrium value) so as to examine the effect of the perturbation magnitude on the stability of this linear system.
$\phi_{0} \times 10^{-12} \mathrm{Cl}_{1.10}$

Figures 14 to 16 show the behaviour of several equilibrium points under various perturbations. It can be seen from these plots that as the perturbation on the flux is increased the time required for the system to return to its equilibrium for the first time is decreased. This is expected because temperature reactivity feedback acts on the system promptly. As the perturbation on the flux is increased, temperature feedback behaves more efficiently, since it is proportional to this perturbation and generates a considerably large negative feedback.

Also as the temperature reactivity coefficient is increased for the same equilibrium point and perturbation, the slope of the flux becomes steeper, i.e., it returns to equilibrium point more rapidly. This is due to the fact that the temperature reactivity feedback is proportional to the operating value of the flux.

The question might arise about the behaviour of the flux returning to the equilibrium value at a point that was previously found to be unstable. This behaviour is reasonable because we can observe only the first hour of response due to the necessity of very short time steps used. Thus the long-term effect of Xenon poisoning could not be observed, but the effect of prompt temperature reactivity coefficient is active within the period investigated.

Chernick's observation of the flux behaviour at an operating condition near the line separating unstable and stable regions, is reproduced here for comparison of our results[7].

Figure - 17 Chernick's observation at the operating flux is

$$
\phi_{0}=1.610^{11} \mathrm{n} /(\mathrm{cm} . \mathrm{sec} .) \text { and } \gamma=-310^{-16}
$$

- Initial perturbation is $10^{4} \times \phi$
- - Tnitial perturbation is $10^{5} \times \emptyset_{0}$

In order to see the flux oscillations one should solve the kinetics equations for 150 hrs ., since the period of these oscillations is about $10-15 \mathrm{hrs}$.

In an attempt to obtain more accurate results we linearized the equations at each time step, i.e. 0.1 sec ., and all the results are plotted in figures 18 to 20. Again as the prompt temperature reactivity coefficient is increased flux returns to its equilibrium point more rapidly.

Figure - 20

On the other hand, in order to see oscillations due to Xenon feedback one could solve the kinetics equations linearizing them only once at the initial equilibrium since the systen behaviour indicated by the once linearization technique does not depend on the time step length chosen.

We observe the Xenon oscillations again at these four specific points during 120 hrs . It is interesting to note that, oscillations first begin with decreasing values of the flux due to prompt temperature reactivity feedback and then increases.

In the unstable region these oscillations increase more and more as the time flows, even though passing from the conditions which are called " shutdown " in nuclear reactor dynamics, i.e. solution is an analytic one not physically sustainable after the first shutdown. Figure - 21 shows this behaviour.

In linearly stable regions, the period and amplitude of these oscillations are damped as the prompt temperature reactivity coefficient is increased. This can be seen from figures 22 and 23.

In asymptotically stable region these oscillations die out in 50 hrs. and after that the flux remains constant at the initial equilibrium level (figure - 24) .

Figure-21

Figure- 23

Figore - 24

Chapter VI

COMGLUSIONS AND SUGGESTIONS FOR FURTEER WORK

In this study we tried to construct sufficient conditions for Xenon and temperature controlled nuclear reactors to be stable against power excursions or inadvertent shutdowns. Later we solved the point kinetics equations using different techniques, for various operating conditions and under several perturbations.

For fixed values of flux and temperature reactivity coefficient, i.e. ϕ, θ^{μ} it is observed, for the first one hour that, as the perturbation on the flux is increased, return of the perturbed flux to its initial condition is speeded also. This is due to the prompt temperature reactivity feedback coming into play in proportion to the perturbed flux, This observation seems to be valid for all operating points in short time observation, i.e. before the Xenon feedback starts influencing the course of events.

According to linearized treatment, at an unstable point with
fixed ϕ_{0} and γ, as the perturbation on the flux is increased, amplitude
of the divergent oscillations also increase. However in linearly stable region, systern returns to its equilibrium condition more rapidly as the perturbation is increased although it becomes unstable for large enough disturbances. Yet, as the temperature reactivity coefficient is increased for a fixed value of the flux and the perturbation, the system returns to its equilibrium condition more rapidly. In other words, allowable limits for perturbations, in order not to destabilize the system, is increased in lineariby stable region as the temperature reactivity coefficient is increased.

Computer calculations have shown that the Xenon problem with a prompt temperature reactivity coefficient posseses solutions that are asymptotically stable for bmall disturbances and depart from equilibrium when the disturbance is large enough. The parameter regions that exhibit this type of behaviour are near the boundary separating linearly stable and unstable regions.

It is interesting to note that, if one wants to represent the systern in more detail, adding some more equations, e.g., for delayed neutrons, then Routh-Hurwitz conditions provide other degrees of freedom for escape from equilibrium. Hence the conditions tend to narrow the stability regions.

So it is realistic to consider the delayed neutrons to be produced " instantaneously " with respect to Xenon since time decay constants of delayed neutrons are much shorter than those of $X e^{135}$ and I^{135}.

If a linar reactor system is stable when the delayed neutrons are neglected, it is not necessarily stable if the delayed neutrons are included in the model. Stability regions can be enlarged in some parts while being narrowed in others.

It is realistic to lump all temperature feedback effects in a prompt reactivity coefficient, γ, since before enough Xenon is produced through decay from fission products to materially affect stability, the power generated by fission has time to be completely transferred to the coolant and the structural elements.

It has been shown that Xenon instability remains a serious concern in the presence of temperature damping. At flux levels above $\approx 1 \times 10^{i 3} \mathrm{n} /($ cm^{2} sec.), the destabilizing factor is that of Xenon burnup. It is clear that Xenon instability is not a control problem for the large number of low power density research reactors which is operated at maximum flux levels below $1 \times 10^{13} \mathrm{n} /\left(\mathrm{cm}^{2}\right.$.sec.), since their temperature reactivity coefficients are generally negative and sufficiently large for the reactor to be inherently stable against Xenon. On the other hand, economic considerations are deriving power reactor design in the direction of highmower density and hence efficient cooling, even for water mounerated reactors with relatively large and negative temperature or void coefficients.

There are several directions in which the reactor designer can proceed: (1) by heavy fuel loading and poisoning of the reactor core which produces lower flux and long fuel burnup times but also high inventories and generally lower conversion ratios, (2) by increasing the reactor temperature reactivity coefficient sufficiently for inherent stability, (3) by adequate instrumentation and independent mechanical control of subdivisions of an inherently unstable reactor. However the latter would not be licenced in the current practice.

Finally, it has been shown that the simple theoretical model which neglects time lags in production of delayed neutrons and the time las between flux and temperature is generally adequate and is recommended as a starting point in the investigation of more complex problems. Some of the limitations of the linearized equations have also been noted.
ds extension of our study, long-term observation can be obtained with the same program, solving the point kinetics equations by linearizing them at each time step by repeated runs so as to synthesize solutions for sufficiently long periods of time (of the order of 100 hrs .) to allow the Xe oscillations effectively come into the picture.

Careful attention must be given to the calculation of parameters such as delayed neutron fraction, β, average decay constant of delayed neutron precursors, λ, and neutron generation time, l, etc. It may be necessaxy or more accurate for these parameters to be calculated at each time step when the point kinetios equations are solved successively.

As a future work, the equations describing the system behaviour may be solyed by modal separation according to their different time constants in different time intervals. For example, the equations for prompt and delayed neutrons are solved in fraction of a second time interyals for the first hour. At the end of the first hour we obtain the new values of flux, Xenon and Iodine concentrations. The equations representing the Xenon and Iodine feedback can be solved in time intervals of hours assuming that flux behaves promptly relative to Iodine and Xenon behaviour.

The effect of temperature with time delay may be introduced into this stability analysis, rather than treating the temperature feedback as being prompt. This can be accomplished by replacing - $\gamma \mathrm{p}$ term with $-\alpha T$ and assuming the temperature to be related to the power through a Newton's Law of Cooling or another model. Thus point kinetics equation for prompt neutrons would have been replaced by the following two equations :

$$
\begin{align*}
\frac{l}{\beta} \frac{d P(t)}{d t} & =\left[\delta_{0}-\frac{\sigma_{x} X e(t)}{c \sigma_{f} \beta}-\alpha T(t)\right] P(t) \tag{6.1}\\
\frac{d T(t)}{d t} & =\lambda_{T}\left[\frac{\stackrel{\Delta}{\alpha}}{\alpha} P(t)-T(t)\right] \tag{6.2}
\end{align*}
$$

where α is the temperature reactivity coefficient and λ_{T} the time delay constant for the temperature at zero power.

The time delay constant has to be chosen in this specific form so that, in the limit $\lambda_{T} \rightarrow \alpha$, we retum to the prompt feedback model. We expect to observe that the longer the time delay, the more unstable the system is. The "temperature " T may be identified with fuel, moderator or coolant temperatures, steam void, volume, etc., depending on the variable which governs the reactivity.

Since the linear feedback model is only an idealization, it is also desirable to extend the theory of reactor stability to include the non-linearities in the feedback, and to obtain general stability critexia for temperature and Xenon controlled nuclear reactors. Clearly the time behaviour of a reactor can be described more realistically Withe non-linear feedback model which contains the linear model as a special case.

It is clear that painless resolution of the Xenon stability problem will not be found and that satisfactory control will vary with the reactor type and purpose. That is unless the existing nathematical tools are enriched to the extent of allowing analytical or semi-analytical solutions to such non-linear systems of equations.

1. Enginol, T.B., " Asymptotic Stability of Reactors with Arbitrary Feedback ", Boğaziçi University Press, 1975.
2. Akçasu, A.Z., Akhtar, P., " Asymptotic Stability of Xenon and Temperature Controlled Point Reactors ", Journal of Nuclear Energy, 21.4 (1967).
3. Akçasu, A.Z., Lellouche, G.S., Shotkin, L.M., " Mathematical Methods in Nuclear Reactor Dynamics ", Academic Press, 1971.
4. Voltera, V.," Theory of Functionals ", Dover, New York, 1959.
5. Hensen, K.F., Koen, B.V., Little, W.W.Jr., Ilucl. Sci. Eng. 22 , 51 (1965).
6. Sancaktar, S., Editor, " Nuclear Engineering Computer Modules ", Vol. 1, Boğaziçi University Huclear Eng. Dept., 1977.
7. Chernick, J., Lellouche, G.S., Wollman, W., Nucl. Sci. Eng. 10, 120 (1961).
8. da Nobrega, J.A.H., Nuc1. Sci. Eng. 46 , 366 (1971).
9. Smets, H. B., Nucl. Sci. Eng. 39 , 289 (1970).
10. Shotkin, H.B., Nucl. Sci. Eng. 15 , 197 (1963).
11. Akçasu, A.Z., Noble, L.D., Nucl. Sci. Eng. 25 , 427 (1966).
12. Baran, W., Meyer, K., Nucl. Sci. Eng. 24 , 356 (1966).
13. Smets, H.B., Nucl. Sci. Eng. 25 , 236 (1966).
14. Shotkin, L.M., Nucl. Sci. Eng. 25 , 211 (1969).
15. Shotkin, L.M., Hetrick, D.L., Schmidt, T.R., Hucl. Sci. Eng. 42 , 10 (1970).
16. Clark, H., Jr., Hansen, K.F., " Nunerical Methods of Reactor Analysis " Nucl. Sci. Tech., Vol. 3, Academic Press, New York(1964).
17. Akçasu, A.Z., Dalfes, A., "A Study of Nonlinear Reactor Dynamics ", Whel. Sci. Eng. 8 , 2 (1960).
18. Gyftopoulos, D.F., Devooght, J., Nucl. Sci. Eng. 8 , 244 (1960).
19. Ogata, K_{*} " Modern Control Engineering ", Prentice-Hall, Inc., Englewood Cliffs, M.J. (1970).
20. Lamarsh, J.R., " huclear Reactor Theory ", Adaison-Wesley Publishing Comp., Reading, Massachusetts (1966).
21. Turnage, J.C., 解解. Sci. Eng, 51, 67 (1973).
22. Christie, A. H_{0}, Poncelet, C.Go, " On the Control of Spatial Kenon Oscillations ", Nucl. Sci. Eng. 51 , 10 (1973).
23. Schmidt, T.R., Hetrick, D.L., Nucl. Sci. Eng. 42 , 1 (1970).
24. Akçasu, A.Z., Hoble, L.D., Hucl. Sci. Eng. 25, 47 (1966).
25. Keepin, G., Wimelt, T., Zeigler, R., "Delayed Reutrons from Fissionable Isotopes of Uranium, Plutonium and Thorium " Phys. Rev. 107 , 1044 (1957).
26. Bell, G.I., Glasstone, S., " Muclear Reactor Theory ", Van Hostrand Reinhold Compary, New York (1970).
27. Lellouche, G., Journal of Nucl. Energy, 21 , 519 (1967).

APPENDICES

APPENDIX - I

ADJOINT OPERATOR

i.f,

Adjoint operator \mathcal{H}_{0}^{+}is defined to be the " adjoint " of H_{0}

$$
\begin{equation*}
\left\langle H_{0}^{+} N_{0}^{+} \mid N_{0}\right\rangle=\left\langle N_{0}^{+} \mid H_{0} N_{0}\right\rangle \tag{1}
\end{equation*}
$$

holds for any $H_{0}(\underline{x}, u, \Omega)$ and $N_{0}^{+}(\underline{x}, u, \Omega)$.
Note that the boundary conditions to be satisfied by $n_{0}^{+}(\underline{x}, u, \Omega)$ may have to be different from those of $\mu_{0}\left(\underline{x}, u_{,}, \Omega\right)$ and the former are referred to as the q adjoint boundary conditions ".

Using this definition we can derive the adjoint of the operator \mathcal{H}_{0} as follows:

Consider the functions $\varnothing(\underline{r}, \underline{v})$ that satisfy the proper boundary condition, namely $\phi(\underline{r}, \underline{v})=0$ for $\hat{n} \cdot \underline{v}<0$ where \underline{r} is on the outer surface of the reactor
a) Adjoint of the differential operator : $\Omega \cdot \nabla$

$$
\phi^{+} \mid \bar{L} \phi=\iint \phi^{+} \Omega \cdot \nabla \phi d^{3} v d^{3} r=\int_{0}^{\infty} v^{2} d v \int_{\Omega} d \Omega \int_{R} d^{3} x \phi^{+} \Omega \cdot \nabla \phi
$$

we cen change the order of integration

$$
=\int_{0}^{\infty} d v \cdot v^{2} \int_{\Omega} d \Omega \cdot \Omega \int_{R} \frac{3}{d r} \phi^{+} \cdot \nabla \emptyset
$$

using

$$
\phi^{+} \cdot \nabla \emptyset=\vec{\nabla} \cdot\left(\phi^{+} \emptyset\right)-\phi \cdot \nabla \phi^{+}
$$

and by Green's theorem

$$
\int_{\mathrm{R}} \mathrm{~d}^{3} \vec{\nabla} \cdot\left(\phi^{+} \phi\right)=\int_{\mathrm{s}} \mathrm{~d} \vec{s} \cdot\left(\hat{\mathrm{n}} \phi^{+} \phi\right)
$$

where s is the outer surface of the reactor

$$
=\int_{0}^{\infty} d v v^{2} \int_{\Omega} d \Omega \cdot \Omega\left[\int_{s} d \vec{s} \cdot\left(\hat{n} \phi^{+} \phi\right)-\int_{R} \vec{d}^{3} \underline{\Omega} \cdot \nabla \phi^{+}\right]
$$

If we choose the boundary conditions as

$$
\begin{array}{llll}
\not \emptyset(\underline{x}, \underline{v})=0 & \text { for } & \text { ति. } \underline{v}<0 & \text { and } \\
\phi^{+}(\underline{\underline{x}}, \underline{v})=0 & \text { for } & \text { ति. } \underline{y}>0 \quad, \quad \underline{\underline{x}} \in \mathrm{~s}
\end{array}
$$

The surface integral vanishes because either ϕ or ϕ^{+}will always be zero on the surface. Then

$$
\begin{aligned}
& =-\int_{0}^{\infty} a^{2} v v^{2} \int_{\Omega} d \Omega \int_{K} d^{3} r \phi \Omega \cdot \nabla \phi^{+} \\
& =\left\langle-\Omega \cdot \nabla \phi^{+} \mid \emptyset\right\rangle
\end{aligned}
$$

thus the adjoint of $\Omega \cdot \nabla$ is $-\Omega \cdot \nabla$
b) Adjoint of the integral operator :

$$
\left\langle\phi^{+} \mid L \emptyset\right\rangle=\int_{R} d^{3} r \int_{\Omega} d \underline{\Omega} \int_{0}^{\infty} d u \phi^{+}(\underline{\underline{r}}, u, \underline{\Omega}) \int_{\Omega^{\prime}} d_{\Omega^{\prime}} \int_{0}^{\infty} d u\left[v^{\prime} \sum_{s}\left(\underline{r}, u^{\prime} \rightarrow u, \Omega^{\prime} \cdot \underline{\Omega}\right] \phi\left(\underline{r}, u^{\prime}, \Omega^{\prime}\right)\right.
$$

If the order of integration over u and Ω is interchanged with u^{\prime} and Ω the right-hand side becomes

$$
\begin{aligned}
& =\int_{R} d^{3} r \int_{\Omega} d \Omega \int_{0}^{\infty} d u \phi(\underline{r}, u, \Omega) \int_{\Omega^{\prime}} d \Omega^{\prime} \int_{0}^{\infty} d u^{\prime}\left[v \sum_{s}\left(\underline{r}, u \rightarrow u^{\prime}, \underline{\Omega}, \Omega^{\prime}\right)\right] \phi^{+}\left(\underline{\underline{r}}, u^{\prime}, \underline{\Omega}\right) \\
& =\left\langle I^{+} \phi^{+} \mid \emptyset\right\rangle
\end{aligned}
$$

Thus the adjoint of

$$
\int d u^{\prime} \int d \Omega^{\prime} v\left(u^{\prime}\right) \sum_{s}\left(\underline{x}, u^{\prime} \rightarrow u, \Omega^{\prime} \cdot \Omega\right)
$$

$$
\text { is } \quad \int_{0}^{\infty} d u^{3} \int_{\Omega} d \Omega^{\prime} v(u) \sum_{s}\left(\underline{\underline{n}}, u \rightarrow u^{\prime}, \Omega=\Omega^{\prime}\right)
$$

It is clear from this example that the adjoint of

$$
\int d u^{\prime} \int d \Omega^{\prime} v\left(u^{\prime}\right)[f(u) / 4 \pi] v\left(u^{\prime}\right) \sum_{f}\left(\underline{r}, u^{\prime}\right)
$$

is $\quad \int d u^{\prime} \int d \Omega^{\prime} v(u)\left[f\left(u^{\prime}\right) / 4 \pi\right] v(u) \sum_{f}(\underline{x}, u)$

Hence the adjoint of the operator H_{0} is

$$
\begin{align*}
H_{0}^{+} \equiv & \Omega \cdot \nabla v(u)-\sum(\underline{r}, u) v(u)+\int_{0}^{\infty} d u^{\prime} \int_{\Omega} d \Omega^{\prime}\left\{\sum_{s}\left(\underline{\underline{r}}, u \rightarrow u^{\prime}, \Omega \cdot \Omega^{\prime}\right)\right. \\
& \left.+\sum_{j}\left[f^{j}\left(u^{\prime}\right) / 4 \pi\right] v^{\dot{j}}(u) \sum_{f}^{j}(\underline{r}, u)\right\} v(u) \tag{2}
\end{align*}
$$

Using $H_{0}^{+}\left[\mathrm{H}_{0}\right]$, we define the adjoint angular density as the solution of

$$
\begin{equation*}
\mathrm{H}_{0}^{+}\left[\mathrm{N}_{0}^{+}\right] \mathrm{N}_{0}^{+}=0 \tag{3}
\end{equation*}
$$

with the adjoint boundary condition

$$
M_{0}^{+}(\underline{r}, u, \Omega)=0 \quad \text { for } \quad \hat{n} . \Omega>0, \quad r \in \mathrm{~s}
$$

APPEMDIX - II

NEUTRON IMPORTAMCE

Suppose a neutron is injected into a critical reactor at $t=0$ at the space point \underline{I}^{\prime} with a velocity v^{\prime}, and assume that there are no neutrons in the reactor prior to $t=0$. We want to determine the time defendent angular density $n(\underline{r}, u, \underline{\Omega}, \mathrm{t})$ as a function of \underline{r} and \underline{v} for all subsequent times, and in particular as $t \rightarrow \infty$. For the time being we ignore the delayed neutrons for the sake of simplicity. Then $n(\underline{r}, u, \underline{n}, t)$ satisfies

$$
\begin{equation*}
\frac{\partial n}{\partial t}=H n \tag{1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
n(\underline{x}, u, \underline{\Omega}, 0)=\delta\left(\underline{x}-\underline{x}^{\prime}\right) \delta\left(u-u^{\prime}\right) \delta\left(\underline{\Omega}-\underline{\Omega}^{\prime}\right) \tag{2}
\end{equation*}
$$

In oxder to solve eq.(1), suppose it is possible to find the eigenfunctions of the opexator H by solving the following equation.

$$
\begin{equation*}
I \phi_{n}=W_{n} \phi_{n} \tag{3}
\end{equation*}
$$

with the regular boundary conditions.
Since the Boltzmann operator is not self-adjoint we have to consider the adjoint eigenvalue problem also, i.e.,

$$
\begin{equation*}
H^{+} \phi_{n}^{+}=w_{n}^{*} \phi_{n}^{+} \tag{4}
\end{equation*}
$$

so thet $\left\{\phi_{n}\right\}$ and $\left\{\phi_{n}^{+}\right\}$will form a complete biorthonormal set. Then we can expand the time-dependent angular density $n(\underline{r}, u, \underline{n}, t)$ in the functions $\phi(\underline{x}, u, \Omega)$ as

$$
\begin{equation*}
n(\underline{x}, u, \underline{\Omega}, t)=\sum_{n=0}^{\infty} a_{n}\left(\underline{r}^{\prime}, u^{\prime}, \Omega^{\prime}, t\right) \emptyset_{n}(\underline{\underline{r}}, u, \underline{\Omega}) \tag{5}
\end{equation*}
$$

where the expansion coefficients are of course given by

$$
a_{n}=\left\langle\phi_{n}^{+} \mid n\right\rangle
$$

Substituting eq.(5) into eq.(1) and using eq.(3) we obtain

$$
\begin{gather*}
\frac{\partial n}{\partial t}=\sum_{n=0}^{\infty} a_{n} w_{n} \phi_{n} \\
a_{n}\left(\underline{r}^{\prime}, u^{\prime}, \underline{\Omega^{\prime}}, t\right)=a_{n}\left(\underline{r}^{\prime}, u^{\prime}, \underline{\Omega}^{\prime}, 0\right) e^{w_{n} t} \tag{6}
\end{gather*}
$$

the initial values a ($\left.\underline{\underline{\prime}}^{\prime}, u^{\prime}, \Omega, 0\right)$ must be determined by the initial condition on $n(\underset{m}{n}, u, 2, t)$

$$
\delta\left(\underline{\underline{n}}-\underline{I}^{9}\right) \delta\left(u-u^{p}\right) \delta\left(\Omega-\Omega^{\prime}\right)=\sum_{n=0}^{\infty} a_{n}\left(\underline{I}^{\prime}, u^{\prime}, \underline{\Omega}^{\prime}, 0\right) \emptyset_{n}(\underline{r}, u, \Omega)
$$

multiplying both sides by $\phi_{n}^{+}(\underline{r}, u, \underline{\Omega})$ and forming scaler products, we get

$$
\begin{gather*}
a_{n}\left(\underline{r}^{\prime}, u^{\prime}, \Omega^{\prime}, 0\right)=\phi_{n}^{+}\left(\underline{r}^{\prime}, u^{\prime}, \Omega^{\prime}\right) \text {. Thus } \\
n(\underline{x}, u, \Omega, t)=\sum_{n=0}^{\infty} \phi_{n}^{+}\left(\underline{x}^{\prime}, u^{\prime}, \Omega\right) \phi_{n}(\underline{\underline{r}}, u, \Omega) e^{W_{n} t} \tag{7}
\end{gather*}
$$

This equality follows from the fact that the reactor is critical, and hence $\# \emptyset_{0}=0$ has a unique nontrivial solution. It is also clear that the eigenfunction ϕ_{0} corresponds to $w_{0}=0$ is the steady-state angular density $N_{0}(\underline{r}, u, \underline{\Omega})$. Thus the coefficients of all the higher modes in eq. (7) decay exponentially in time, and asymptotio angular density is obtained as,

$$
\begin{equation*}
n_{\infty}\left(\underline{\underline{r}}^{\prime}, u^{\prime}, \underline{\Omega}^{\prime} ; \underline{\underline{x}}, u, \underline{\Omega}\right)=\mathbb{N}_{0}^{+}\left(\underline{\underline{\prime}}^{\prime}, u^{\prime}, \underline{\Omega}^{\prime}\right) M_{0}(\underline{\underline{r}}, u, \underline{\Omega}) \tag{8}
\end{equation*}
$$

where we have shown the dependence of n_{∞} on $\underline{\underline{r}}^{\prime}, u^{\prime}$, Ω^{\prime} explicitly.
The " importance " of a neutron injected into a critical reactor at \underline{x}^{\prime} with a lethargy u^{\prime} in the direction of Ω^{\prime} is the total number of fissions per second in the entire reactor at a long time following the injection of the neutron at $t=0$.

The importance function is readily obtained from eq. (8) by multiplying both sides by $\sum_{f}(\underline{r}, u) v(u)$ and integrating over \underline{x} and \underline{v} :

$$
I\left(\underline{x}^{\prime}, u^{\prime}, \Omega^{\prime}\right)=N_{0}^{+}\left(\underline{x}^{\prime}, u^{\prime}, \underline{\Lambda}^{\prime}\right)\left\langle v \sum_{f} \mid N_{0}\right\rangle
$$

It is concluded from this result that the adjoint angular density $\mathrm{N}_{0}^{+}\left(\underline{\underline{x}}^{0}, u^{0}, \Omega^{\prime}\right)$ is proportional to the importance of neutrons at \underline{r}^{\prime} moving with a lethargy $u^{\prime \prime}$ in the direction of Ω^{\prime} in the reactor.

APPENDIX III

THE INHOUR EQUATION

Recall that the inhour equation

$$
|\stackrel{A}{=}-s|=0
$$

where matrix A was defined before.

$$
\begin{aligned}
& |A-s I|=\left|\begin{array}{cccc}
a_{11} s & a_{12} & 0 & a_{13} \\
a_{21} & a_{2 \overline{2}} s & a_{23} & 0 \\
a_{31} & 0 & a_{33}-s & 0 \\
a_{41} & 0 & 0 & a_{44}-s
\end{array}\right| \\
& =s^{4}-\left[a_{11}+a_{22}+a_{33}+a_{44}\right] s^{3} \\
& +\left[\left(a_{11}+a_{22}\right)\left(a_{33}+a_{44}\right)-a_{11} a_{22}+a_{33} a_{44}-a_{12} a_{21}-a_{14} a_{41}\right] s^{2} \\
& +\left[\left(a_{33}+a_{44}\right)\left(a_{12} a_{21}-a_{11} a_{22}\right)+a_{14} a_{41}\left(a_{22}+a_{33}\right)-\left(a_{11}+a_{22}\right) a_{33} a_{44}\right. \\
& \left.-a_{12} a_{31} a_{23}\right] s+a_{22^{2}} a_{33}\left(a_{11} a_{44}-a_{14}{ }_{41}\right)+a_{12^{a}}{ }_{\left.44^{(} a_{31} a_{23}-a_{21} a_{33}\right)} \\
& =0
\end{aligned}
$$

```
APPENDIX - IV
```

NOMENCLATURE

gquation	COHPUTER PROGRAM	NEANING
ℓ	L	Neutron generation time
$\lambda_{\text {I }}$	LI	Decay constant of I^{135}
λ_{x}	LX	Decay constant of Xe^{135}
λ	LAMDA	Average decay constant of Delayed Neutron precursors
$\not \varnothing_{0}$	PHIO	Equilibrium value of flux
γ	GAMA	Temperature Reactivity Coefficient
$\delta \phi$	DPHIO	Perturbation to flux
$\Delta t, h$	TI	Time interval
$Y_{\text {I }}$	YI	Iodine yield
y_{x}	YX	Xenon yield
צ	Y	Total yield ($\mathrm{y}_{\mathrm{z}}+\mathrm{y}_{\mathrm{x}}$)
β	B	Delayed Neutron fraction

δ_{0}	DO	Initial Reactivity of the clean Reactor
σ_{x}	SICX	Absorption cross section of Xe
σ_{f}	SIGF	Fission cross section
\%e ${ }_{0}$	XEO	Equilibrium value of Xenon
Io	100	Equilibrium value of Iodine
0	C	Delayed Neutron Precursor Concentration
c	Co	A factor converting the local Xenon absorption per fission to overall reactivity
$\delta \mathrm{Xe}$	DXEO	Increase in Xe concentration
δI	DIOO	Increase in Iodine concentration
$\delta \mathrm{C}$	ICO	Increase in delayed Neutron Precursor concentration
c。	COO	Equilibrium concentration of Delayed Meutron Precursors

```
APPBNDIX - V
```

FLOW CHART OF THE PROGRAM

CALCULATE RESPONSE OF THE REACTOR
$\delta \phi_{\text {new }}, \delta X e_{\text {new }}, \delta I_{\text {new }}, \delta D_{\text {new }}$ $\delta \psi_{\text {new }}=[\mathrm{A}] \quad \delta \psi_{\text {old }}+[\mathrm{T} 2] \underline{\mathrm{C}}$

CALCULATE PERTURBATIONS

$$
\delta \psi=\delta \psi_{\text {nevv }}-\delta \psi_{\text {old }}
$$

CONIImUE TO 1
GO TO 2

```
APPBNDIX - VI
```

LISTING OF THE PROGRAMS
A in D

NJMERICAL RESUITS

B
 \qquad
\qquad
\qquad
\qquad
\qquad

$\therefore \%$

\qquad
\qquad $\cdots \infty$
 \qquad $\because \because \quad \because \quad \because \quad \vdots$ $\because:$

\therefore
\qquad
\qquad
\qquad
?
"
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\therefore \quad \therefore \quad: \quad \because$
B,
\qquad
\qquad
\qquad
$\%$ \qquad
$\therefore \cdots \cdots$

$$
\cdots:
$$

$\therefore \quad \therefore \quad \therefore \quad \because \quad \because$

```
        ##, , \because", Y \
        <%:
        ~,%%"\cdots
        O.-\cdots-!
```



```
        !!! ! < 
```



```
        - ! !- !-!
```



```
        1% &,:%
        \&-%
        &-1,
        &%%
    } ध荈 %
```



```
    < 4.% 
```


i
?
\therefore :
; ;
\cdots

1-1
1-1:
1 $\quad \therefore=$


```
10% % 4,45
```

$n+1$

$$
\begin{aligned}
& 8
\end{aligned}
$$

$$
\begin{aligned}
& \text { 人4 \% \& }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \text { 多, }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 10: } \\
& \text { ッ\&"y }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * \% \% : , } \\
& \text { 1: } 18 \\
& \text { औッ }
\end{aligned}
$$

$$
\begin{aligned}
& \because \because \because=1 \\
& \text { i5 5 bly }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore \quad \vdots \therefore \quad \because \quad \cdots \\
& \text { H) } \\
& \because \text { A. A. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { 31: } 13 \%=3 \\
& \because ; 1,+\infty
\end{aligned}
$$

$$
\begin{aligned}
& \text { ○ } \\
& \text { "3 ! : 1-1 } \\
& \text { : * \% \% } \\
& \therefore+18=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { 的, } \\
& \text { e }
\end{aligned}
$$

$$
\begin{aligned}
& \therefore 1+: \quad \because \quad: \quad 3
\end{aligned}
$$

```
&{
&:% \therefore : <\cdots: !
    ## % < < %
```



```
        ध% % & % 
        G क = = %
```



```
        O& :% , %
    .| & ! !
    \because% % % %
    & &, %, %
```



```
    <ty,0
```



```
    O&,*口,
```



```
    <0% % % %
```



```
    |!⿱㇒⿻二丿⿴囗⿱一一⿱⿴囗十丌
```



```
        "Byman A.:B
    | |&:%%%
    @ <-%: : :
    B(1):
```



```
    4%%!
    &! : : ":-5
    : %
```

 2
 .
 B
ध \because
1
1 !
1
$=2 \mathrm{~B}$
\% \% ! !

H: *
$\therefore=$
$L H$

1!

\cdots	8 ¢ - \%	728
50		9184
112	- 4 ¢ 4	¢ $\mathrm{m}_{1} 16$
$\cdots 3$		$0 \% \%$
4 1^{1}	, C .	: 8
315		\% \%
216		, ¢ \%
$\because 7$	\% 5 ¢	\vdots
$\therefore 16$	4 y	
$\therefore 19$		\% 'b,
- 10	$\because \ldots$ \& ?	$43^{3}+1$
+		
$\because 4$	\% $2 \times+8$	- 9 \%
$\therefore \pm 3$		a $\quad 3 \quad \mathrm{y}+\mathrm{a}$
54	\% \because 号	\%
$\therefore 45$	\% \times \%	\% ¢ ¢ \%
E 5	- \%- \%	
13	\% \quad O \% $\%$ \% $\%$	¢ \% ¢ -
$\square 5$		\% \% \%
119	$\because \because \mathrm{Y}$	\% $\%$ \%
120		\% \% \%-\%

	AAAAAAAA		Mm M MM		
	AAAAAAAAAA		部的M		Mhn
71	$A A$	$A A$	MMMM		MMMM
T 7	$A A$	AA	MAMMM \quad M		
77	AA	AA	MM		MM
TT	AAAAAAAAAAAA		M M		
$T \mathrm{~T}$	AAAMAAAAAAA		M ${ }^{\text {M }}$	Mb	M
47	AA	AA	M		MM
T11	A A	AA	M ${ }^{\text {M }}$		M
17	AA	AA	$m \mathrm{M}$		wion
T	$A A$	A ${ }^{\text {A }}$	Mn		ht
$7{ }^{7}$	AA	AA	MM		Mm

 TAMER USER 10

AME PRGODOTAMER
CREATED AT: 12:06:39 JUL 15:1980
34567890123456799012345678901234567890123456789012345679901234567990123456709
TAMER A A

POLY.

RL72R1 07/5580 12:06:41
Y,
LYOMADN
$85 / 80-128063491001$

RAM

REFERENCES GGGGK, NMMES
OLRT
NTRS
RDUS
3025
mDUs
1015
PRI
STOFS

SSIGNMENT BGOGG, TYPE, RELATIVE GORATION, NAME
$00745 \quad 10$
001101746
$00153 \quad 2146$
$0104465 F$
00342804
100000 A
100733 1
Q0732 -
00716 L
007255164
007358

00t	000403	100\%	0008		000115	31.
0000	060776	2005	0000		90102\%	2015
0000	000750	$30 F$	0000		001040	40^{8}
0008	100322	70%	0000		001654	778
0000	008075	85	0000		041024	954
000\% 2	000727	8	0000	R	001722	80
0090	000730	10	0000	1	000744	18R
000\%	901734	S	0000	\%	000738	K
00¢t	0007	1. \times	0000	R	090450	5143
0090	000726	516x	0000	8	09074	F
60¢0	000723	Y	0000	?	700724	Px

DOUGE PRECISION A, W,ROOTR,ROOT:

5 READIS.SO 10, TORD. TGAER

1F (100 1020) 100, 100,20

 DRTETE,200!

gt
 CRYTAMER19,9,11
9 BEAD15,401 हA(1) $=3,01$

607012

$00 \mathrm{~B}_{2}=1,15$
$61 K 1=K+194-14$

D0 $\%$ 2, 10, 2
PH:

部 3)

 60705

28 9R8等 16979
 64706

 11

2. CONTMUE

60105

```
OF COMPILATION:
OLY,POLBT
115/80-12%07:04 %001
```

NE POLRT ENTRY POINT OUOS27

USED: CODEIS DOGS5G: DATAGO1 000136: GLANK COMMOM:21 OOCOOO

REFERENGES EGOCK, NAME

NER苜35

ASSIGNMENT FGUGK, TYPE REGATIVE LOCATION, NAMEI
000325 100t

9001		000361	110 L	0001		000367	1204	0001		000413
0001		000457	155L	0001		000503	165 L	0001		000167
0001		00033	2406	0001		000046	25 L	0001		000051
0004		000110	45t	0001		000115	50 L	0001		000136
6060	D	000044	ALPHA	00\%0	D	000036	0%	0000	0	000040
0000	1	000057	16T	0000	1	000046	IEIT	0000	1	000056
0 000	f	00005s	kS	0000	I	000054	L	0000	1	000055
0000	$\stackrel{1}{1}$	00005	NAX	0000	1	000052	Na	0000	0	000034
Q05	-	00001t	$U x$	0000	0	000016	UY	0000	0	000020
9050	1	000024	x	0000	0	0cons 0	¢T2	0000	0	000000
9000	0	000622	YT	0000	0	000032	YY2	0000	,	000002

```
            SUEMGUTHNE FOLGTGXCOF,GOF,M,ROOTR,ROOTA,IER,
```



```
                OOUSLE PRECISION XCOF,COF,ROOTK,ROOTH
```



```
                    BNsOYs, EMP&ALPHA
                    |FTT=0
                        H:M
                        4E&%
```



```
C. SET ERROR GOQE TO I
```



```
            E% METH%G
C SET ERROR GORE TG 4
2g 55 5%%4
        6070 20
            SET ERROR GOOR TO 2
```

C
C
c
6
6
c
c
30 IER2 2

```
    60 T0 20
    32 ff(N-36135,35,30
    35 NAEM
    NXXNM,
    N2=1
    kJ!=N*!
    B0.40 b=1,k+1
```



```
4O (OFBMC1=XCOF(L)
            GET INITMA! VALUES
45 80:0.00500101
    4=0,0400010%
        GEO INITIAL VALUE GOUNTER
        H20
50 A=$0
            BGGEMENT INPTIAB VALUES AND COUNTER
    40e-10,0悉Y0
    Y0% 10,0采采
        ST A AND Y TO CURRENT VALUE
    N40
    Y隠YO
    ###N+!
    4070 59
```



```
    xpergy
    YOK##
59 ICT#0
60 UNक0&0
    |妾00!
    vanem
```



```
    M158,0
```



```
    #FU165,130,65
6500 70 I=& N
    4s#||%1
    TEMPECOFTL
```



```
    ywytTEMp贯y2
    F
```



```
79 %7-5%7%
```



```
    # (51/55G175, 110,75
```



```
    x-N,0%
```


BO 1CT： $5 \mathrm{CT}+1$
AF／CT－500160， 35,85
85 FEFFATH00，90， 100


```
SET ERROR GOOE TO 3
```

95 IEE＝3
$60 \quad 10 \quad 20$
100 D0 105 $6-1$ onx

TBPP＝XCOFMTI
KCOFAMTHECOFLL
$105 \mathrm{COF}(\mathrm{L}) \mathrm{EH}$ EMP
TEMP＝N

N\＆ N_{m} ITEMP
PR MFIT1 20．55．120
\＆ 10 PETETTH\＆5，50，115
15 人明民
Fsypla
120 8FPY20

12S AEPWA＝A＋A

AmNO
607044
$30 x=00$

195 100．9
GUMSQ＝0 0
ALBHA＝

$140 \operatorname{COF} 2 \mathrm{O}=\mathrm{COF}(21+A L P H A \& C O F(1)$
14500150 k2g

156 800TM（12）Y Y

15614501160．165．160
160 Yaxy
SUMS $0=0$ ロ
$60 \quad 10 \quad 153$
66 FFHN120．20．45
GORTROL GAN WEVER REACM THE NEXY STATEAENT
RETURN
FNG

```
COMPHATIOR：\(\quad\) DIAGNOSTACS
```


REAL ANO COMPLEX ROOTS OF A POLYNOMIAL USING SUBROUTINE POLRT FOR POLYNOMIAL 360 OF ORDER 3
1
0
4.
LX
YI
$Y x$

REAL ROOT MMAGINARY ROOT REAL ROOT IMAGINAPY ROOT

REAL ROOT

237912003

- $44344-03$
\%-62027803
\& 80604005
097687×03
29 8782002
$-19694=02$
$=5964602$
*) $7955700{ }^{2}$
$=99652-0^{2}$
$-18965=0$ b
-39966004
- 59597405
$-79976 \cos ^{3}$
-99974008
$-2751=0^{4}$

.5076696

4. 4944 m 04
-37047=57
-95944604
037376004
047724604
-34258е04
-27230001

- 15054004
-10916-04
$911069 \mathrm{ma}^{4}$
-12455004

93970004
$=95^{2} 7545^{4}$
$9.52369-13$

- $87693-12$
- 47774-42
$\rightarrow 1079006$

$-22780-0$
0826954005
$0.42473 \cot 3$
-9030890
$-11852-02$
-157300^{2}
.00000
.00000
.00000
.00000
.00000
. 000000
. 000000
.00000
- 00000
-00000
.00000
.00000
. 00000
000000
. 00000
- 15866 -03
- $18778-13$
$=-10559-03$
$-18226=03$
$=.17790-03$
$=14246=03$
. 000000
- 00000
.00000
$\because 00000$
- 00000
- 00000
, 000000
- 00090
- 00000

000000
-18820903

- 00000
- 00000
- 09090
.00000
- 00000

0,00000
300000
a00000
-00000
0.00000
-00000
. 00000
-14759-04
$-.30829-05$
$-.14657-04$
$-21781-04$

- 26368-04
. $35725-04$
- 40121-04
$-41411-04$
$=41554-04$
$-42204-04$
$-942154=04$
$0.40782-04$
$-.39140=04$
$=.97439-04$
-. $35720-04$
- 27151-04
- $10605=04$
. 50766-05
$.19941-04$
- 34047-04
$.94946-04$
$.27786=03$
-43692-03
. $53626=03$
. $60755-03$
$.78463-03$
$.86960=03$
$.86625-03$
$.83536-03$
$.79238-03$
- 509 94-03
0.15756004
m, 10060m03
$0.65144-14$
-49146004
$0.36174-04$
$-32010-04$
$-30824-04$
- $0.30264-04$
$+29938-04$
$-12443-04$
$-23259=04$
-27178004
-2.29151004

$$
\begin{aligned}
& -.16299-03 \\
& -18349-03 \\
& -18946=03 \\
& -19125-03 \\
& -19171003 \\
& =.19095003 \\
& -18972=03 \\
& -18920=03 \\
& \text { - }-18893-0^{3} \\
& \text { - }-18877-03 \\
& -13647-03 \\
& -18640-03 \\
& -18645-03 \\
& \cdots .6851-03 \\
& - \text { - } 18856-03 \\
& \approx 15866-03 \\
& \text { +18778-03 } \\
& \text { - } 18559-0^{3} \\
& -18226-03 \\
& .17790-03 \\
& .14246-03 \\
& \text {. } 00000 \\
& .00000 \\
& .00000 \\
& \text {. } 00000 \\
& .00000 \\
& .00000 \\
& .00000 \\
& .00000 \\
& .00006 \\
& \text { - } 00000 \\
& \text {. } 18820-0^{3} \\
& .00000 \\
& .00000 \\
& .00000 \\
& .00000 \\
& 0.00000 \\
& .00090 \\
& \text {. } 00000 \\
& \text {. } 0.0000 \\
& -13307-0^{3} \\
& -15547-03 \\
& -.13529-63 \\
& -13498-03 \\
& 0147590004 \\
& -30829.05 \\
& -14657-04 \\
& -41781-04 \\
& -26368-04 \\
& \text { - } 35725-04 \\
& \text { - } 40121=04 \\
& -41^{4} 1-04 \\
& -41854-04 \\
& -42204-04 \\
& \text { - } 42154=04 \\
& \text { - } 40782-04 \\
& -39140-04 \\
& -37439-04 \\
& -35720=04 \\
& -20000-00 \\
& \text { - } 40003+00 \\
& .60006+00 \\
& -80009+00 \\
& -10001+01 \\
& -20002+01 \\
& -40004+0 \text { 2 } \\
& -60006401 \\
& -60006+01 \\
& =0.0001+02 \\
& =20001+0^{2} \\
& =40001+02 \\
& =60001+02 \\
& =60001+02 \\
& =10000+03 \\
& \cdots 20500+0^{3} \\
& -40000+0^{3} \\
& =60100040^{3} \\
& \text { - } 60000+03 \\
& -10000+04 \\
& =20000+04 \\
& =40000+015 \\
& -60000+04 \\
& \text { - } 20000+0^{4} \\
& \text { - . } 1000+05 \\
& -02^{443} 3 \times 0^{4} \\
& \text { m-23255004 }
\end{aligned}
$$

$$
\begin{aligned}
& -2915104
\end{aligned}
$$

- \(-19690-02\)
 $-39845-02$
 - $99825-12$
-11992001
-15982001
$-19982 m b 1$
 - 39982008
-97904008
 - $11998+00$
$-31233=04$
 + 90370 m 04
-26148.54
$-18013 \mathrm{~m} 04$
 - 10316×04
-10334005
$-38713-55$
$-33576 \mathrm{~m} 04$
$.75916-04$
$-10517=03$
-47422004
037494004
31866004
$-20187-04$
-25755004
$+37002.04$
.6266904
-2 25571 e04
$-57955 \mathrm{~m} 0{ }^{3}$
$001930=02$
901794402
023978.02
$-95398-62$
\rightarrow - 1400001
-17408608
-23401 - 01
-29401901
-60735063
41196802
$0-1753 \mathrm{~m} 02$
-23816002
-929906002
 - 59897 a - 2
 - 1 !
eq:9888e0
$-23998 \mathrm{mO}^{4}$
$-0.29906=08$
-9998608
 - +1989600
$029703 \mathrm{~m} \frac{4}{5}$
729140 20 年
-26578×04
-250300^{4}
580476 m

9010690 eq 4
 - 06864905
013117 en 4
40345 Ent
 - 53248004
 * 70565404
. $79260=04$
-00000
- 00000
. 000000
- 00000
- 000000
. 00000
- 00000
.00000
- 00000
$-1339-03$
-13340.03
- 1333700^{3}
$-13297=03$
- 13212 e03
$-13090-03$
- $12936=03$
-11796-03
$=82759004$
- $11669=04$
. 00000
- 00000
- 00000
- 00000
. 000000
- 00000
: 00000
- $13336-03$
-00000
-00000
- 00000
- 000000
. 00000
- 00000
- 00000

000000

- 00000
-00000
, 00000
.00000
0.00000
, 00000
.00060
000000
0.00000
- 00000
-00000
00000
000000
901069^{2003}
-1009203

0804860^{3}
910651003
- 1081 -0. 3

9010742 -03

- 10656003
-10057003
0.87234404

06559504
$0-44825-04$
$0.14311=04$
$-.30305-04$
-. 32532 -04
-. $33546=04$
$-.33819-04$
$-33910-04$

- $33928-04$
- $33700-04$
$-.32926-04$
-.32086-04
- 31233-04
-. 30378-04
-26148.04
- 10013-04
.10316904
- $30334=05$
- $38713-05$
- 33576-04
$.75916-104$
- 10517-03
-19907-03
. 24011-03
. $32319-03$
-33528-03
-29806003
. 24213-03
-16605.03
$-25571=04$
$-.61003-04$
- $43963-04$
-. 38766904
$=.36211-04$
$=.32013-04$
- $30265-104$
-29724.04
$-29461-04$
$-20306-04$
- 21127-04
-26409-04
$026139-04$
-29964.04
$-28482-04$
$=.30443-04$
- $30871-04$
$-30973-04$
- $30995-04$
$=30985=04$
$0.30770-04$
- $30261-04$
m029703-04
029140004
$-28578=04$
* $25803-04$
$=.20478004$
$0.15447=64$
$\% 10670 \times 04$

0. 61864505

- $13117=04$
$040345-04$
$-58248=04$
0.70565004
.79260 m 04
$-.13473 .03$
- $30305-24$
$-13478-03$
$-32532+04$
-. $33546-04$
$-33819-04$
$-33910-04$
- $33925-04$
-. $33700-04$
$-32926-04$
$-32086-04$
$=.15999+00$
- $19999+00$
$=.40000+00$
$-9000 \%+00$
$-12000+01$
$-.16000+01$
$-20001+01$
$-40001+01$
-. $80002+01$
- $12000+02$
$-16000+02$
$-24000+02$
$-40000+02$
- $60001+02$
$-12000+03$
$-16000+03$
- $20000+03$
- $40000+03$
$-80000+03$
$-12000+04$
- $16000+04$
$-20000+04$
$-40000+04$
$-.80000+04$
$-12000+05$
-. 16000405
$-.20000+05$
$-.21127-04$
$-.26409-04$
.26139004
- $28984-04$
-. 29482 -104
$-30443-04$
$-30871=04$
$=30773-04$
$-.30995-04$
-. $30985-04$
$-30780-64$
$-30261-04$
$-17998+00$
$-23999+00$
$=29999+00$
$-60000+00$
-.12000 010
- $86000+01$
$-24000+01$
- 3 $3000+01$
$-60001+01$
$-.12000+02$
$\because-18000+02$
$-.24000+02$
- $30000+02$
- $10692-0$
$w-10892-0^{3}$
$.10892=0^{3}$
$.10898=0^{3}$
- $40861+0$
- 10611 m 5
-10742-0 0^{3}
- 1065500^{3}
- $10057 \mathrm{~m} 0^{3}$
- 84234004
$-65595-04$
.44625004
-43140^{4}
$.13337-0$
$13297=0$
- $3212-\mathrm{a}$
- $13090=0$

1 $1796=0$

- $62759-0$
.1166904
00000
0.0000
.00000
00000
- 00000
$-15336-0$.
- 00000
- 00000
-00000
. 000000
.00000
- $11065-0^{3}$
- $11037-03$
$=11000-03$
$\because 10977-0^{3}$
$-10961=03$
$\because=10927+0$?
$\because 10908-03$
$=1090200^{3}$
- 10888-03
$\because 10897=0$ \%
* *

\oplus
-00000
. 00000
-.46748-04
$-8.80398-04$

- $98409=04$
-. $50283+04$
00000
00000
- 00000

000000
. 00000
, 00000
.00000
. 00000

- 00000

000000
.00000

- 000000

00000
.00000
.00000
00000
, 000000
. 000000
.00000
, 00000
$=94335 \cdot 04$
-9 9431 $=04$

- $9432=04$
$=-94276004$
909065×04
$-33713=04$
$=983253=04$
$=92690004$
$-968677=04$
$9.79180-04$
- 69348×104
- $60430-04$
$-.52738=04$
$-35069=04$
-56922904
$0.78527-04$
\% $90646-04$
7.94312004
\$00000
900000
000001
000000
:00000
n00000
. 00000
-00000
a 00000
-00000
Q00000
900000
. 000000
.00000
000000
. 00000
. 15901-03
. 13797-03
$.69673-04$ -44777-04
-17972-04
$-12531-03$
-. $44090-04$
$-.37327-04$
. $34702-04$
- 33303-04
-. 30827-04
$-29725=04$
$-29375=04$
$-29203-04$
$=29101-04$
$=24021=04$
$0.26987=04$
$.27942-04$
-20408-04
$-28684=04$
9.29215-04
$-29444-04$
$-29491-04$
- $2.29493=04$
$-29478=04$
$-29318-04$
5.28920-04
$-28506-94$
\% 28090-04
. $27675-04$
$-2.25629-04$
9,21709-04
$0.16011-04$
$-14518=04$
$-11215-04$ -28862-05 - 22559-04 .35236004 , $43723-04$. 49502004 - $58868-04$ -46467004 -23555-04
- $26172=05$
$-.30220-04$
$-63110=54$
- 983390404
-347.2504
$0.32976-04$
9, $32016=04$
$=30266=94$
-29462×04
- 22920304
.29076064
?2 $29000-04$
$7.25137-04$
-2701204
-27615004
-27910004
$-28064 \mathrm{~m} 0 \mathrm{~m}$
-284190.04

000000
.00000
$.46748=04$
. $80398-04$
$.98409-04$
. 50283-04
.00000
.00000
.00000
. 000000
.00000
.00000
000000
.00000
.00000
-85852004
-95299004
-.95017-04
$-94858-04$
$-94758-04$
$-94545-104$
-99434×04
$-.94396=04$
$-94327-04$
$-94366-04$
$-74345-0^{4}$
$.94335-04$
$-9433-04$
-94327-04
. $94322-04$

- $94276-04$
. $94065-04$
$.93717-04$
-93253-04
. $92690-04$
- 8887700^{4}
$.79180=04$
- $69348=04$
- $60430-04$
$-52738-04$
- 35069×13
$.56982-14$
98527 mat

.94312004
.00000
.00000
. 00000
- 00000

00009
.00000
0.0000

000000

- 00000
- 00000
$-85559 \sim 04$
-8505700
-8.84844064
- $84733-04$
- $34663=04$
$-94517 \mathrm{~m} 0^{24}$
-60000402
$-12000+03$
$-16000+03$
$-.24000+03$
$-30000+03$
-. $60000+03$
$-12000+04$
$-18000+04$
$-24000+04$
$-30000+04$
$=60000+04$
$-12000+05$
-. $30000+05$
$-24000+05$
- $30000+05$
$-24021=04$
$-26987-104$
-27942.04
$-20406-04$
$-26644-04$
$-29215=04$
$-29444-04$
$-24491-04$
$-29493-0^{24}$
- $29478-0^{4}$
$-29318-0^{4}$
$=15997+00$
$-23997+00$
$=31999+00$
- $34999+00$
$-80000+00$
$-16000+01$
$-24000+01$
$-32000+01$
- $40000+01$
- $80001-01$
$-16000+02$
$-24000+02$
$=32000+02$
$=40000+02$
$-90000+02$
- $6000+0^{3}$
$-24000+03$
$=32000+03$
$=40000+03$
$-6 \mathrm{LODO}+03$
$-16000+0^{24}$
$=24000504$
-32000.04
830000404
$-60000+0^{2}$
$=16000+05$
-24000405
$=32000+15$
$-40000+05$
$-25137-04$
- 27012004
$0.27615-04$
$-27910-64$
$-28084-0^{\frac{2}{7}}$
$=-244500^{4}$

[^0]*

$=.28560-04$ 0.28584 .04 -28579.04
-28562004
$-28429-04$
$-28112-04$
-. 27785-04
$-.27458-04$

- $27132-04$
$-25524-04$
-22448 .04
- $19547-04$
$-16815-04$
- 14232-04
- $32495-05$
-11887-04
-21429-04
-27619-04
-31642-04
$.36132-04$
$.20213-04$
-.41161-05
-. $31054-04$
-. $59137-04$
-. $90182-04$
$-.36264-04$
- $93314-04$
- $-32021-04$
$.31294-04$
-29739004
$-29306-04$
$.29101-04$
$-29000-04$
- 28939.04
$.25610=04$
-. $26897-04$
$-27312-04$
$-.27515-04$
$\because 27635904$
. 27665004
-27958.04
-27970 -04
W. 27963 -04
$-.27947004$
- 279344.04
$-27572 \mathrm{mb}$
$-27304-04$
$-27036 \cdot 04$
-26769004
. 25454004
0.22940 .04
$0.20574=04$
$-18346=04$
$+16244-04$
$-13413=05$
- 4772505
-1222404
-16882-04
-19735004
020977004
.27112005
-84442.04
$-84417=04$
$-.84404-04$
$-.84396-04$
$-84381=0^{4}$
$-84371-04$
$.84366-04$ -84360-04 . $84354-04$ $.84307-04$ $.84134-04$ - $03858-0^{4}$ $.83525 .00^{4}$ - $23116-04$ - 80435904 .73961404 . $67858=04$ -62816.04 -58961-04 - $53985=04$
$.68739=04$
$.80705=04$
-84333-04
- 78684.04
- 00000
. 00000
. 00000
- 00000
.00000
- 00000
- 00000
- 000000
.00000
. 000000
-77946004
9.77527-04
$-.77366-04$
$-77281-04$
-77229.0^{4}
$0.77123-04$
$0.77068-04$
$-.77049 .04$
$-.77040-04$
-77034.04
$-97021-0^{4}$
$-97012 \mathrm{mag}$
.77006004
$.77000-04$
$.76093-04$
- $76948=04$
$.76800-54$
$.76585 \times 04$
.76316004
076001004
, 73994004
$.69361-04$
- 6524200^{4}
.62077 m 04
-59878-04
. $51852-0^{4}$
$.703180^{4}$
$=28560-04$
-26554004
$-28579-04$
$-28562-04$
$-286429-04$
$-19998+00$
$-29999+00$
- 39999.00
$=.50000 \% 00$
$-10000+01$
$-.20000+01$
$-.30000 * 01$
$-.40000+04$
$-50000+01$
$-.10000+02$
$-20000+02$
$-.30000402$
-. $40000+02$
- 500000402
$-10000+03$
$-20000+03$
$-.30000+0^{3}$
$-40000+03$
$-50000+03$
$-.10000+04$
$-20000+04$
-. $30000 * 04$
$=.40000+04$
$-.50000+04$
- $10000+05$
- $20000+05$
- - $34000+05$
* $40000+05$
-. 50000 005
$-25610-04$
$-.26897-04$
$-.2731204$
-. $27515-0^{4}$
$.27635-0^{4}$
$-.27865-04$
$-27858-04$
$-.27970-04$
$-.27963 .04$
-8.27947604
$=.27834-04$
$-.23999+00$
$-36000+00$
$-48000+00$
$-.60000+00$
$=-12000+08$
$=924000+02$
$-36000+01$
$=0.8000+01$
- $60000+01$
$-12000+02$
$-2.24000+02$
$-.36000+02$
$-48000+02$
$=.60000+02$
$=-12000+03$
$-24000+03$
4022563.04

950011604

- 78414×0^{4}
- 940565003
- 10119.02
$-16129-02$
- 22134.02
$-28136=02$
- $58139-02$
-11814000
- $17614-01$
$-23314=01$
-29814.0.01
083980.02
- 27961002
- $41955-02$
-55952002
- $269950-02$

9,13995601

- 27495901
-4 4995001
- 55959001
-96975001
-27408004
- $27186-04$
-26961004
0.2673500^{4}
- 28510.04
$025404-04$
0.2329204
-2130700°
9.19439 ed
\%-176E0504
-10264904
- $30928=06$
$95492-65$
- 92135-05
-11230004
210151004
-97904005
- 34740004
$-66553=04$
-2 $21833^{3} 00^{3}$

-10919002
-96427002
$-22430+02$
$-28432 \cot$
- 45435 men

$-173444 \mathrm{mb}$
56233 44ten
9829 多年4001
515978002
- 3 31964902
- 8.475904
6.63957002

409856002

- 15995001
- $31975=01$
- 477950001
- $76770-04$
0.74008004
-. $58821-04$ - 00000
-00000
- 00000
-00000
- 00000
- 00000
. 00000
.00000
- 00000
- 00000
- 00000
- 00000
$\because 00000$
. 00000
- 00000
.00000
. 000006
. 000000
.00000
000000
971299004
-71290-04
$=71264 \cos 4$
$=971271004$
071270 004
- $71827=04$
$=71097=04$
$=70918 \mathrm{ga4}$
9706950004
$-7044^{36} 904$
- $89378=04$
$8.65406=04$
$9.62433 \mathrm{ma4}$
-6038704
$* 59073004$
09.59788004

966749904
$=70954-04$

- $52204=04$
- $32463=04$ 100000
000000
00090
- 00000
- 00000

000000
000000
00000
00000
300000
. 00000
.00000
800000
. 000000
000009
000000
000000
0.00000
$-22563=04$

- $50011-04$
$-98414-04$
$\because 44434.04$
$-.34733-04$
-. $32444-04$
- $31415-04$
-. $30830-04$
-. 29725-04
$-29203-04$
$-29033-04$
$=.28949-04$
-28899-04
- $25815-04$
- $26754-04$
-27054-04
- 27202004
$=.27290-04$
$=27457-04$
-. $27522=04$
- $27529-04$
- $27520-04$
-27506-04
$-27408-04$
-. $27186=04$
$.26961=04$
-. $26735-04$
$.26510-04$
$.25404=04$
$=23292-04$
$-21307-104$
$.19439-04$
- $17680-04$
- $10264-04$
-. $30928=06$. $56492-05$ $.92134-05$ $-11230=04$ -10151-04
$-97904-05$
$-.35740-04$
- $6.3553-104$
$-92183=04$
$-41137=04$
:. $33718-04$
$.31850 \cdot 04$
$-30996-04$
- $30505-04$
-29574904
\%29130-04
$-28985-94$
-28913004
$=2887104$
-25896904
$-26608=04$
$=26836-04$
$=25951=04$
$-27018=04$
$-27144 m 04$
-27192004
$-27195-04$
. $76770-04$
$.74008-0$.
$.58821-0^{4}$
.00000
.00000
.00000
.00000
.00000
.00000
.00000
. 0,0000
, 00000
.00000
-72040=04
4.71694 .034
$-71567 \mathrm{ma}$
$-71501=0^{4}$
$-.71460-0^{4}$
$-71374-64$
$-71336-0^{4}$
$-.71322004$
$-.71314=04$
0.713100^{4}
$0.71299-0^{4}$
$.7129000^{4}$
? 7284904
$.71277-04$
$.71270-04$
$-71227-0^{4}$
$-71097-0^{4}$
$-70918-04$
$870698-0^{4}$
$.70446=04$
-63878-04
$.65406-04$
$.62483-04$
-60397*04
$.59073-04$
- $59786=04$
. $68749-0^{4}$
$.30954-0^{9}$
0.6204×04
, 32463 -04
.00000
, 00000
. 000000
.00000
, 00000
- 000001
, 000000
. 000000
.00000
.00000
$-67292-0^{34}$
-6700^{4-104}
$-66900-0^{4}$
${ }^{\infty} 966847904$
-6601404
$-6.6715-04$
?.66703-04
-66749704
$-36000+03$
$-48000+03$
$-60000+03$
$-12000+0^{4}$
$-.24000 \times 0^{4}$
$-36000+04$
$-.48000704$
$-.60000+04$
$-12000+05$
-24000405
$-.36000+05$
- $48000+05$
$=.60000+05$
$-25815-04$
-. 26751-04
$-27054-04$
$-.27202-04$
-. 27290.0^{4}
- 27457.04
-27522.04
- 27529.04
- $27520-04$
$-.27506-04$
$-.13999+04$
- 28000 *00
$-42000+00$
$-56000+00$
$-.70000+00$
$-.14000+01$
$-23000+01$
$-.42000+01$
$-.56000 \% 01$
$-70000+01$
$-14000+02$
$-28000+02$
$-42000+02$
$-.56000+02$
$-70000+028$
$=.34000403$
- $26000+03$
$-.42000+03$
$-56000+0^{3}$
$=.80000+03$
$-.14000+04$
$-28000+04$
$-.42000+04$
$-.56000+0^{4}$
$-70000+04$
$-14000+05$
$=-28000+05$
$=7.42000+05$
$-36000+05$
$=.70000+05$
$-25896-0^{4}$
$-20605-04$
$0=26838-04$
$=26951-04$
$-.21016004$
-27144804
$8827192-0^{4}$
$-27195-04$

9	-69395-01	-00000	4
9	- $79995-01$	-00000	-.27173-04
10	-27087-04	-66685-04	-. 27087-04
10	- $268897-04$	- $-66676-04$	-26897-04
10	- 26702004	-.66669-04	-. 26702 -04
10	- 265080.04	- .66663 -04	- 26508-04
10	- 26335004	-966656-04	-.26315-04
11	- 25366004	- 66614.04	- 2 25366-04
11	- 23555004	-966489-04	-.23555004
11	-21856064	-. 6634504	-. 21856.04
11	$\cdots 20259-04$	- $666161-04$	-.20259-04
11	- $18750-04$	-.65952-04	- 18758-14
12	- 12456004	-.64669-04	-12456-04
12	- 91206005	-62003-04	-.41206-05
12	- $71802 \mathrm{mb6}$	- $059859-04$. 71802906
12	9 34617 3005	-. $56431-04$	-34617-05
12	- 18513005	- 57644004	. $48513-05$
13	-20325-05	- 059195004	. $20325-05$
13	- 819167004	- $66012-04$	-.19167-04
13	- $45623=04$	-64515-04	-.45623-04
13	-873709-04	- 049221604	-.73709-04
13	- 13412 e03	. 00000	-.70896-04
14	- 946100903	- 00000	-. 38990.04
14	0.10643002	- 00000	-. 32995004
14	- 16650×02	- 00000	-31419-04
14	- 22653002	. 000000	-.30609-04
14	- 28654902	. 00000	- $302688-04$
15	-950657m02	0.00000	-. 29468.04
15	P-11866m0	9.00000	-. 29076004
15	9.1786600	900000	-0.29949-04
15	-23966m0d	. 000000	- $28887=04$
15	\% 29866001	Q 00000	- 22048.04
8	-017978082	-00600	-.25917.04
8	- $35966-92$	- 00000	- 26476004
8	- 53373 -02	-00000	- 26657004
8	- 071965	- 00000	9.26746-04
8.	-989960e02	.00090	- $26799-04$
9	-0,1799680	. 00000	- 26898904
9	-635996-3	. 000000	- $26934-04$
9	085399684	-60000	\% 26934.04
9	- 971796001	. 00000	- $26926-04$
9	- 39996041	- 00000	- $26914-64$
10	- 26838084	- 62861904	- 26838.04
10	-26674004	-.62553004	-. 26671 -04
10	- 26501 m 04	\% 068846004	- $26501-04$
10	-26332004	- 62839094	- $26332-04$
10		- 62833 mat	- 26.684 .04
11	\% 25337804	0062793004	- 25337804
11	-023760004	\%r.62689904	- 224760004
11	\% 22283 mak	0862554004	- $22283-04$
11	9820893-04	- 02.897×04	- $29897-64$
11	-19596004	- 46220004	- 19576064
12		$=0.61179004$	- $14181-04$
12	- 270850 mb	- 95958800^{4}	- 70650 -05
12	- 31173005	-0, $57493=04$	- $0.31173+05$
12	- 80118 mag	- 056459004	- 10118.05
12	-10962006	-56007e04	- 10992 -06
13	- 42022×05	057948004	\%.42822-05
13	- $226459=14$	- $0.62943+04$	- 26459004
13	- 933090049	- 57667×04	- 0.533080804
13	91600004	-33990-04	- 81600004

$.66697-0^{4}$
$.66694-04$
$.66685-04$
$.66676-04$
$.66668-04$
$66663-04$
$66656-04$
$.66614-04$
$.66499-04$
$.66345-04$
$.66161-04$
$.65952-04$
$64689-04$
$62003=04$
$59859-04$
$.58431-04$

- 57644 -04
.59195004
$.66012-04$
. $64515-04$
$.49221-0^{4}$?
.00000
.00000
.00000
.00000
.00000
.00005
-00000
.00000
.00000
00000
.00000
$=63369-0^{4}$
$=63125-04$
$-63037-0^{4}$
$-62995-04$
$-62968-0^{4}$
$-.62914-04$
-. $62887-04$
$-.62877-04$
$-62872-04$
- $62869-04$
$.62561-19$
$.62853-04$
.62846004
- 62839.04
$-62633-04$
.62793 .04
.62689004
-62594-04
$.62397-0^{24}$
- $62220-0^{4}$
$-61189=04$
.59051004
$.57443-04$
$.5645900^{4}$
$.5600700^{4}$
$.57948-0$ 章
$.62843-0^{4}$
$.57867=04$
.33990 -84
$-27186-64$
$-27173-04$
$-16004+00$
- $32000+00$
$-48000+00$
$-64000+00$
$-60000+00$
$=-16000+01$
$-32000+01$
$=48000+01$
$-64000+01$
- $80000+01$
- $16000+02$
$-32000+02$
$=46000+02$
$-.64000+02$
- $60000+02$
- $16000+03$
$-32000+03$
$-48000+0^{3}$
$.64000+03$
$-80000+03$
$-16000+0^{4}$
$-32000+04$
- 46000404
$=.64000+04$
$=-80000+04$
$-.16000+05$
- $32000+05$
$-48000+05$
$-64000+05$
$-80000+05$
$-25917=64$
- $26476-04$
$-26657-04$
-20746.04
$-26789-04$
-26896.04
$\cdots .26$ - $34-64$
$=-266^{2} 4-04$
-0.6726004
$=26914-04$
- $28000+00$
- $36000+00$
$=54000+00$
$-72000+00$
$-90000+00$
$\cdots .16000+01$
$\rightarrow 36000+01$
- $6000 \% 01$
$=72000401$
- 910000401
- 13000402
-36000102
$-54000+02$
$-72000+02$
$-90000+02$
- $18000+03$
$-36000+03$
$=.54000+03$
$=.72000403$

13	－16293－03
14	
14	－ 010 － 8002
14	\％${ }^{-16824=02}$
14	－ 22824002
14	－ 26827 － 0^{2}
15	
15	－12883m01
15	
15	－23683－01
15	－ 29883 －01
8	－9 997800^{2}
8	－39969－02
2	－599966002
8	－ 379755002
8	
9	408999600
9	－93459605
9	9659996008
9	－9799600
9	－99996001
10	－ 26.33 con
10	－2649 $=044$
10	
10	9026198009
10	926013－64
11	2 25313004
11	
11	902265404
11	－3 2107000^{3}
11	92024060爯
12	－ $15525{ }^{505}$
12	－9 94555006
12	界 $68555=0 \mathrm{c}$
12	－ $45906-05$
12	－ 40790 ¢ ${ }^{4}$
13	－93339005
13	－ 32293904
13	2059458404
13	－ 8695200^{4}
13	
14	89＋935 903
14	－19558－02
14	－ $166^{4} 2 \operatorname{con}^{2}$
14	－22944002
14	－ $2405500{ }^{2}$
15	
15	9011997－0
15	－178970\％
15	203397400
15	0.29877001
8	292 $974080{ }^{2}$
8	$9+4.3715$
8	2965969 90.8
8	－ 87967007
8	－0．1199\％ 90
$\frac{9}{7}$	＝92199740
9	－ $4^{4} 3997001$
9	＊065997－0
9	908997790
9	－3 $3000+00$

.90000
－ 00000
． 00000
－00000
00000
－ 00000
－ 00000
－ 00000
－00000
－00000
－ 00000
． 00000
－00000
－ 00000
.00000
－ 00000
.00000
.00000
－ 00000
－ 00000
59625×04
－59618004
-596 － $1-04$
$=-59044^{24}$
中 059597×04
－ $59560=04$

$595946=04$
－ 97206044
-59057×9^{64}
－5 5 5 8304

－ $555^{4} 4=04$
05656704
－ 5436804
＂ 95425044
－57547－04
－ $51115-04$
－ $54629-05$.00000
－ 00000
－ 00000
.00000
， 000000
.00000
.00000
． 00000
000000
00000
－ 00000
－ 80040
.00000
－poyod
－ 00000
.00000
－ 00000
300000
.00000
－ 09000
.00000
$-37479-04$
$-32455-04$
$-31091-04$
－ $30454-04$
－30085－04
－ $29375-04$
－ $29034-04$
$-28921-04$
－28866－04
－28832－04
－ $25908-04$
$-26358=04$
$=26504-04$
－ $26576-104$
－ $24618-04$
$-26698-04$
－26726－04
－26725－04
－26717－04
－ $26706-04$
－26637－04
－ $26491=04$
－ $26341=04$
$-26191-04$
$-26043-04$
$-25313-04$
$-23924-04$
$-22625-04$
$=21407-04$
－21066－04
－15525－04
$.94565-05$
－ $61855-05$
－ $45906-05$
－ 40790 － 05
－ 93339005
－ $32293-04$
\％ 59458004
－ $36752-04$
$-51911-14$
－ $36356-04$
－ $32035-14$
－ $30834=04$
$-30269=04$
－ 27941×0.0
-27306004
$-29000=08$
528595904
$9-28648004$
$8-28819 \times 44$
4,259825114
$=26253=04$
$=28373904$
$-26433-04$
$-226467=04$
$-26533-04$
＊ $26555-0$ 蛙
－2655．3004
\％ $26546=64$
$=26535=04$
.00000
.00000
.00000
.00000
.00000
． 00000
00000
.00000
.00000
.00000
－00000
$-60057=04$
0.598490^{4}
－59776－0 0^{5}
$-59739-04$
-59716004
$-59671 \operatorname{sen} 4$
$-.59647=04$
$-59639-10^{4}$
－ $.59635-0^{8}$
－ $59632=04$
－ $54625=0^{3}$
－ $59618=04$
$.59611=0^{4}$
.59604004
－55597－0 0^{4}
.59560004
－ $58544-14$
$-59346-0^{4}$
$.5920800^{4}$
$-95057-04$
$058183-04$
$05647-0^{4}$
952^{44-14}
－54567－04
，54330－04
－5642500 ${ }^{4}$
259547－04
－ $5115-0^{4}$
$.5462700^{5}$
． 00000
.00000
－ 00000
－00000
.00000
－ 00000
.00000
－ 0000 D
－ 00000
.00000
.00000
-57213004
－570320404
$\rightarrow 56970-0^{4}$
-5693600^{4}
－ 569800^{4}
$-56330-0^{4}$
－ $56860-04$
$-56553-0^{4}$
$-56849-0^{4}$
－ $56847=04$
$-90000+03$
$-18000+07$
$=36000+04$
－ $54000+04$
$-.72000 .04$
$-70000+0^{4}$
$-18000+05$
$-36000+05$
$-54000+05$
$-72000+05$
$=90000+05$
$-25908-04$
$-26358-04$
$-26504-04$
$-26576-04$
－26615－04
$-26698-04$
-2672604
$-20725-04$
$-26717-04$
$-26706-04$
-20000400
－ $40000+00$
－ $60000+00$
－ $80000+00$
$-10000+01$
$-20000+01$
－ 40000401
$-60000+01$
－ $80000+01$
$-10000+02$
$-20000+02$
$-40000+02$
$-60000+02$
$-80000+02$
$-10000+03$
-20000.03
$=.40000403$
． 60000.03
－ $60000+03$
$-10000+0^{4}$
$=220000 \cdot 04$
$-40000+0^{4}$
$-60000+0^{4}$
$-30000+0^{4}$
$=10000+05$
$\because 20000+05$
$-40000+05$
$-60000+05$
$-60000+05$
$=+10000+06$
$-25382-14$
-66253004
$-26343-04$
$-26433-04$
$-26467-0^{2}$
$-26533-04$
-2655504
$-26553+04$

$-26535-24$

0
－ O
－ 0

10	-260474004
10	-26342004
10	$\cdots 26209004$
10	-26076004
10	- $25943-04$
11	- 25294004
11	- 24059 on 4
11	-22904604
11	- 21825004
11	-20815-04
12	-16644=04
12	-11397-04
12	-4 86960 mb
12	497198005
12	7 732640005
13	- $\mathrm{m}^{46} 48 \mathrm{~mm}$
13	- 03706704
13	$9064488-04$
13	-6 42329003
13	- 919647003
14	0.50530803
14	- $11022-02$
14	e 170760^{2}
14	023078002
14	- 290790^{62}
15	-959080002
15	- 890808
15	- 17908008
15	4.23908e0
15	-29900m01
8	-023979002
8	- 47973 -62
a	m9719740 ${ }^{2}$
8	099970602
8	- 497746
9	9023977004
9	-969497601
9	9074997m01
9	9695997004
9	- 22000400
10	4e26335-04
10	
10	-026079004
10	- $25980-74$
10	\% 2506504
11	-25279004
11	024870 mon
11	¢ $23337 \mathrm{ma} \mathrm{m}^{4}$
11	- 22173904
11	9.21272044
12	- 17571004
12	
12	- 0078 8964
12	-99590x96
12	- 10033854
13	
13	
13	
13	mo 0930003
13	-020797003
14	- $05506=0{ }^{3}$

$$
5022173003
$$

$-.56840-04$. 56832.04 $.56826-04$ $.56820-04$ $.56813-04$
$.56778-0^{4}$
. $56690-04$
. $56584-04$
. $56463-04$
. $56330-0^{4}$
-55586-04
-54194-04
$.53246-04$
$-52786 \cdot 04$
.52711004
$.54802-04$
. 56261-04
. $44208=04$
.00000
.00000
. 000000
.00000
.00000
.00000
.00000
.00000
.00000
.00000
. 00000
.00000
$-54737-0^{4}$
$-64578-0^{4}$

- $54523-0^{4}$
$-54496-04$
$-54479-0^{4}$
- $54445-04$
-54426-04
$-54422-04$
-54418004
$=54416-0^{4}$
-54410004
.54404004
- $54397-0^{4}$
$.54391-0^{4}$
$.54385-04$
- $54351-04$
- 5426900^{4}
- $54173=04$
$.5406500^{4}$
$.53949-0^{4}$
$=5330900^{4}$
$.52150-0^{4}$
- $54220-0^{4}$
- $5132=00^{4}$
$51158-0^{4}$
, $53167-04$
$51156-04$
.5316704
$.53040-0^{4}$
$53040-04$
$.35979 \times 04$
.00000
.00000
.00000
路
-22000.00
- 44000400
$-66000+00$
- $88000+00$
- $11000+01$
$-22000+01$
$=-44000+01$
$=66000+01$
$=66000+01$
$-13000+02$
$-22000+02$
. $44000-02$
$-66000+02$
$-88000+02$
$.11000+03$
-22000403
$-44000+03$
$-66000+03$
-88000403
-11000404
$-22000+0^{4}$
$-44000+04$
$-.66000+09$
$-8.800 \mathrm{c}+04$
- $11000+05$
$-22000+05$
$-44000+05$
$-66000+05$
$-88000+05$
$=.11000+06$
$-.25850-04$
$-26160=04$
$-.26261=04$
$-.26311-04$
- $26340-04$
$-26394-04$
$=26412.04$
$-26410-04$
$-26402-04$
$-26393-04$
$=.24000+00$
$=948000+00$
$-72000+00$
$-96000+00$
-12000401
$=.24000+01$
$=48000+01$
$-72000+05$
$=96000+01$
$=12000+02$
$=-24000+02$
$-95000+02$
$-72000+02$
$-96000+02$
$-12000+0^{3}$
$=24000+03$
$0.48000+03$
.72000103
$-96000+03$
$-12000+04$
$-96000+03$
$-12000 * 0^{4}$
$-24000+04$
*

4

$-240010+14$

14	- $11467-02$
14	- $01770-02$
14	-23172 924
14	- $29173-02$
15	- 59.74002
15	-1198800
15	- 17910001
15	$-23946-01$
15	-29948001
8	- 23980002
8	- 51974002
8	-77973002
8	9.1039700
8	- 12977 m01
9	- 25877 90
9	- 51987001
9	- \% \% \%97en
9	- 10400400
9	- $0.2627-04$
10	- 26222 m04
10	- 26 ± 1400^{4}
10	-26007-04
10	-25998e04
10	$=2579004$
11	-25264004
11	- $24265-14$
11	- 23335004
11	\% 22467 - 04
11	- 2165900^{6}
12	90. 13580014
12	- 3 14392004
12	- $\mathrm{B}^{3558504}$
12	-12024=04
12	- 12323 mot
13	908 17826064
13	- 4 44 40004
13	-9, 2229804
13	- 1810208
13	-021742003
14	-,52329003
14	- 1134750
14	- 17254072
14	- $23252+12$
14	- 29253 m 2
15	- 59254502
15	- 2925801
15	9.17925-01
15	- 23282561
15	-29725-h
8	-127980 089
8	-95976-17
0	
8	- $\square^{11} 197 \mathrm{~m}^{4}$
8	-9 ${ }^{-1} 397 \% 4{ }^{4}$
9	-02797760
8	\%-5977 ${ }^{\text {\% }}$
9	\% 8.899700
9	- 12200×60
9	
10	$=2612300^{6}$
10	-920020504

- 00000
- 00000
- 000000
- 00000
- 000000
.00000
. 00000
000000
.00000
- 000000
.00000
$\$ 00600$
000000
- 00000
.00000
- 00000
- 00000
-00000
-52271×04
-. 52266 .0 ${ }^{4}$
0.52259004
- .52253 ?04
$=.52247-04$
-52241004
0.52269004
$-52133+54$
$=.52046904$

-251545084
-51288954
-50324 0.54
0.49769 .04
9.49543904
-9.47682004
$=5853100^{4}$
- 49907004
0.29030 "04

900000

- 00000
. 00000
- 00000
. 00000
- 00000
- 000000
- 00000
. 000000
.00000
.00000
- 00000
- 00400

000060
090000
000000
00000
.00000
000000

- 000000

000000
$-50360-64$

- 0.5035004
9.50348904
$-31426-04$
- $30457-04$
- 29996-04
$-29727-04$
$=.29204=04$
- 28949-04
-. 28866-04
- $28824-04$
$=.28799-04$
$-25814-04$
$-26077-04$
-26163 -04
- $26205=04$
$-26230-04$
$-26276=04$
$-26291=04$
- 26298.04
$-26201=04$
$-26274-04$
$-26222-04$
$-26114-04$
$\because 26007=04$
$\%$ 25898-04
*. 25791-04
$-25264=04$
$-24265-04$
$-23335-04$
$-22467=04$
-216590004
$=18358.04$
$=-14382-04$
$\because 12558.04$
$=.12024=14$
$=12322=04$
$=.19826+04$
$.44410 \% 04$
-72229-04
$9.51080-14$
$=83206=04$
$=34235-04$
-. $31398-04$
- $30314=04$
-7.298720044
$-29645=04$
$=929164 \mathrm{ma4}$
$-26930 \mathrm{~m}=4$
* 288530 m 4
- $20.2615-64$

0287920044
0.2577704
$\because 26003=04$
07 26077404
$=26184=04$
$0.26135-04$
$-26174-04$
-26156004
$-261844=04$
$-26177-04$
$=-26169=04$
$-26123 \mathrm{mb} 4$
$50.26026=04$
.00000
.00000
.00000
, 00000
.00000
.00000
.00000
, 00000
.00000
$\because 52554-04$
$-52414-04$
$-52366-0^{2}$
$-52341-04$
-52327-04
$\because .52297=0.04$
$-.52232-04$
$-.52276-0^{4}$
-.52273 -04
. $52271=04$
$.52266-14$
$.52259-04$
$.52253=0{ }^{4}$

- $52247 \cdot 0^{4}$
$.5224100^{4}$
$.5220900^{4}$
, $52133-04$
- $52546-0^{4}$
$.51949-04$
$.5134500^{4}$
-51289-04
-50324-04
-49769-04
-49593-14
- 49698-04
$.51563-04$
-49907-14
$.29030 \mathrm{~m} 0^{4}$
.00000
.00000
, 00000
. 00000
. 00000
.00000
.00000
.00000
.00000
. 000000
.00000
.00800
$-50412-04$
$\therefore .50407=0$ 3
-85044420^{4}
$=5.5423-64$
$-50410+00^{4}$
-50383×0^{4}
- $50370-04$
$-50365-04$
$-50362-0^{4}$
- $50360-04$
$50356-04$
, $50348=04$
$50356-04$
$.5034800^{4}$
$-46000+04$
$=72000+0^{4}$
$-.96000+04$
$-.12000+05$
$-24000+05$
- $46000+05$
$-.72000+05$
-9.96000+05
$=-2000+06$
$-2.25814-0^{4}$
$-26077-04$
$-2663-04$
$-.26205-04$
$-26230-04$
$-.26276-04$
. $26291-04$
- $26286-04$
$-26281-04$
$=.13000 \div 00$
$-26000+00$
$-62000+00$
$\because .78000+00$
$-10400+01$
-. $13000+05$
$=.26000+01$
$-.52000+01$
$-78000+01$
$-.10^{4} 00+02$
$-13000+02$
$=26000402$
m. $52000+02$
$-78000+02$
$-10400+03$
$-13000+103$
- $26000+0^{3}$
$-.52000+03$
$\cdots .78000+03$
$-.10^{4} 00+04$
$-13000+04$
$=.26000+0^{4}$
$=922000 * 0^{4}$
$=8800040^{4}$
$-11400+05$
$-.13000+05$
$-26000+05$
$-.52000+05$
$-.78000+05$
$-10^{4} 00+06$
$-.13000+06$
-2577704
$5,26003=04$
$-26077-04$
$-25184-04$
$=.86135-0^{4}$
- - 26174-04
$-26186-04$
$=26184-04$
$=26177-04$
$=26184-04$
$=26177-04$
-14000400
$=29000.000$
-.56000400
$=26000400$
-56000400

000
000
.00
, 00

$$
0
$$

$$
\begin{aligned}
& 00 \\
& 00
\end{aligned}
$$

.00

$$
\begin{aligned}
& 00 \\
& 00
\end{aligned}
$$

.00

$$
00
$$

- 00
.00
.00

$$
50
$$

.52
.52

$$
\begin{aligned}
& 52 \\
& 52
\end{aligned}
$$

.52
.52
.52
.52
.52
.52
.52
. 00
.00
. 00

32

02
00
00

10	－2 292700^{4}
10	－ 025828.04
10	－ $25731=04$
11	$=25252-14$
11	$0.24346=04$
11	－ 23504404
11	－2272004
11	－21990004
12	0.19032004
12	－15555－04
12	0.14075004
12	513793004
12	914285－04
13	－22324－04
13	－ 47295004
13	－75272－04
13	－9 6034003
13	$-22536-03$
14	－ 053034003
14	－ 11316002
14	\％ 1731900
14	－ $23.20=02$
14	m－29321 020
15	－ $99522=02$
15	\％早㙜32001
15	－ 1793 永 0 0
15	－ 23332004
15	－ 29932005
e	9．29961 020
8	－0．59977002
8	－99976002
8	501197Em0
8	－14997404
9	－2999701
9	－ 59997801
9	－ 8989790
9	－ $12000+00$
9	－26079－24
10	等 260304004
10	（49） 25988004
10	－25 2597004
10	－2576806
10	－ 256749004
11	－ 252430064
11	
11	－ 23650 mot
11	\％ 22639604
11	5022276044
12	
12	
12	－0．5390604
12	－ $1532700{ }^{\text {ct }}$
12	9015986009
13	
43	［939795 mot
13	－ 64775004
13	－ 5904003
13	－ 2 23 2360 b
14	\％9534 43003
14	0．18376－02
14	\％${ }^{-1378912}$

－ $50343-04$
$.50337-04$
$050331-04$
＊．50300－04
$=50230=04$
－50150－04
250062＊04
－ 4897004
$-49483=04$
0.43675004

4． $48251-04$
\％ $98165=04$
－ $48314-04$
－ 50014404
$-46864-04$
0.17319004
－ 000000
－ 00000
－ 00000
－ 00000
－ 00000
－ 00000
－ 000 0 0
－ 00006
B DOCQn
－ 00000
－ 0 Py 19
o 00 cog
－ $96 \% 10$
－ $00 \% 00$
000000
－0000
－ 0 getor
900000
－ 60000
－00006
－ 00000
$349643=04$
48638004
－ $48633-04$
$0.48626=04$
\％ $48621=04$

548586004
$-49520-04$
$844446=04$
$-48367+04$
＊ 48264004
804655＝04
005975044
04665590^{6}
09463700^{4}
－ 04020504
-4552704
$=043003=04$
（4） $34253=06$
－ 40800
－ 00040
－00000
－DOEOO
－00000
$-25927-04$
$-25828-04$
－ $25731=04$
$-25252-04$
－ $24346-04$
$-23504-04$
$-22720-64$
$-21990=04$
$-19032-04$
$-15555-04$
． $14075-04$
$-13793-04$
$-14285=04$
$0.22324-04$
－ $47295=04$
$-75272=04$
－ $48010-04$
－ $91626-04$
$-33767-04$
－ $31005-04$
＂ 30192×04
$=.29804-04$
＊）29576－04
－ $29131-04$
$-20914-04$
－ 289420004
－28806－0年
$-26755-04$
$0.25740-04$
$\because 25927004$
－ $020002=04$
－ $26033=04$
$=26052-04$
－260 260604
－ 260760 G 4
-26083004
$0-26057-04$
$=26079004$
e $26037=04$
－ $25946-04$
$=25657-04$
$025768=04$
$=25679-04$
$=.25243-04$
－ $24417=04$
$0.23650-04$
$4722938=04$
$-22278=04$
$9+9617=04$
－ $2.8571=09$
$0-15290=04$
$=15327=04$
－ 0 － $59866=04$
－2 $34449-14$
$\Rightarrow 49795-104$
$\Rightarrow 84779-04$
94572704
-40363×04
$-33373=04$
$-30840=044$
$=30085 \mathrm{mo4}$
－ $50343-04$
－ $50337-04$
－ $50331-0^{4}$
－ $50300-04$
$.50230-04$
$.50150-04$
$.50062-04$
－49970－04
$.49483-04$
$.48675=04$
$.48251=04$
$.48165-14$
－46314－04
＊ $50014+0$ ？
－46864－04
－ 7319009
.00000
.00000
－ 00000
.00000
.00000
.00000
.00000
.00000
.00000
－ 00000
－ 05000
－00cot
\％ $546869-04$
40 4． $5757-04$
－ $46719-04$
$-848697-04$
\％48688－04
$-46664-04$
$0.45652-04$
$\pi 48649004$
$=48445004$
-48643004
$.48638-04$
48633 men
－ $46626 \mathrm{~m} \mathrm{~m}^{4}$
－ $48621=04$
.46615004
$48580-04$
$48520-04$
$48520 * 04$
$-48446-04$
－49367－44
－48234 40 年
－47855－0 0
－ $47175-0^{4}$
$.46055 \mathrm{co} 0^{4}$
04633706
$.47020 \mathrm{~m} \mathrm{a}^{4}$
－ $4852^{70010^{4}}$
$-4903-0^{4}$
$=34283006$
． 00000 D
.00000
000000
－ 00000
.00000
$-84000+00$
$-11200+01$
$-14000+01$
$-28000+01$
$-.56000+01$
$-84000+01$
$-11200+02$
$-14000+02$
$-28000+02$
$=-6000402$
$=.64000+02$
$-11200+03$
$-14000+03$
$-28000+03$
$-56000+03$
－ $84000-03$
－ $11200+04$
$-14000+04$
$-28004+04$
$-56000+04$
$-\quad .84000+0{ }^{4}$
$-11200+05$
$-14000+05$
$-28000+05$
$-.56000+05$
$-84000+05$
$-11200+06$
$=-14000+06$
＊25740－04
$-25937-04$
$.26002-04$
$-26033=04$
－ $26052-04$
$.26086-04$
$-26096-04$
$-26093-04$
－ $26087-04$
$=15000+00$
$=30004+00$
$=60000+00$
$-80000+00$
$-2000+01$
－ $15000+01$
－ $30000+01$
－ $60000+01$
$-90000+01$
$=12000+02$
$\cdots+15000+02$
$\because .30000+02$
-0.0000402
$\because-10000+02$
$m=12000+0^{3}$
$-15000+0^{3}$
$-20000+0^{3}$
$=.6000 \mathrm{c}+0^{3}$
$=9 \mathrm{y} 00 \mathrm{C}+0^{3}$
$-12000+04$
$-15000+0^{4}$
$=30000+0^{4}$
$=60000+0^{6}$
$=.90000+0^{4}$
-8

0
0
10
－

14	-23379-02	- 00000	-29727-04	. 00000	-. $2000+05$	000
14	- $29300-02$. 000000	-29515-04	. 00000	- 5 - 5000405	. 00
15	- 59381602	- 00000	-29101004	.00000	- $30000+05$	-00
15	-11932001	- 00000	- 24898 -04	- 00000	- 60000005	. 00
15	- 17838001	-00000	- $28832=04$.00000	-90000405	. 00
15	- 23938001	- 00000	- 28799-04	$\bigcirc 00000$	$-12000+06$	
15	-29938=0	- 00009	- 28779004	. 00000	-. $15000+06$	

UNID: TAMER ACCT: $111=16-201$ PROJECT: TMESIS

IHE: TOTAL: 00:01:00.558 CESUPS: 00000238E
CPU: 00:00:29.762 1/0: 00:00:13.748

CC/ER: 00:00:17.447 WAIT: 00:00:00.150
UAS USED: BI-69TL SUAS REMAINING: O,OOTL bove charge calculated at rolgoning rates -

CBSUP

$=0.02 \mathrm{~L}$
CARD READ
$=0.057 \mathrm{~L}$
CASD PUNCHED
$=0.407 \mathrm{~L}$
PAGE PRINTED =1.SGYL
TAFE $1 / 0$ MINUTE $=1$ SOTL
MAGES KEAD: 215 PAGES: 10
TART: 12:06:39 JUL 15,1980 FIN: 12:09:22 JUL 159:980

[^0]: - -

