EVALUATION OF GAMMAGRAPHY FOR DIFFERENT MATERIALS

by
Sinan Büyükyüksel
B.S. in Mechanical Engineering,
Yıldız University, 1980

Submitted to the Institute for Graduate Studies in Science and Engineering in partial fulfillment of the requirements for the degree of

Master of Science in

Nuclear Engineering

Boğaziçi University 1984

ACKNOWLEDGEMENT

I have been aided by many persons in the preparation of this thesis. I especially wish to thank Doç. Dr. A. N. Bilge for his suggestions, assistance, and support during the preparation and writing of the thesis. I am also indebted to Prof. Dr. T. B. ENGINOL and Doç. Dr. V. ALTIN who read and criticized portions of the manuscript and who advised on various aspects of the preparation of the thesis. I also wish to acknowledge the assistance of the personal of ÇNAEM-Industrial Application Laboratories during the experimental work of the study. Finally, special thanks to my sister who type-wrote the thesis with care and patience.

ABSTRACT

Gammagraphy which is a part of radiography, is one of the important and effective methods in nondestructive testing and determination of exposure time in gammagraphy has a special importance from the point of view of radiographic results. The aim of this study is to evaluate the methods of exposure time determination (ETD) then, after choosing the most reliable method, to construct ETD tables for workers in this field.

There are several methods used in determination of exposure time in gammagraphy. In this study "exposure chart" method which is an experimental method and a theoretical approach is used. The theoretical method is modified by using build up factors and improved as an "alternative" method. The reason for the choice of these methods is that they are very appropriate for computer analysis so that a realistic comparison of the methods could be done.

The study can be divided into two main parts. In the first step, all ETD methods were computerized for several gamma sources, films, film densities, and materials and the results were compared. Then, in the next step, which is the experimental part of the study, some radiographs were taken with all the methods by using a 30 Curies Cobalt-60 source and the method giving the best result was determined.

The results obtained from the computer analysis and experiments showed that the alternative method has given the best radiographs among the other ETD methods.

ÖZET

Bu çalışmada tahribatsız muayene usulleri içinde önemli bir yeri bulunan gamagrafide ekspoşur sürelerini belirleyen metodlar (ETD methods) incelenmiştir.

Bütün ETD metodları bilgisayara göre düzenlenerek çeşitli gama kaynakları, filmler, film yoğunlukları ve malzemeler için incelenmiş ve mukayese edilmişlerdir.

Çalışmanın ikinci kısmını teşkil eden laboratuvar çalışmaları ÇNAEM'in endüstriye uygulama laboratuvarlarında gerçekleştirilmiş ve 30 kürilik bir Kobalt-60 kaynağı kullanılarak en iyi ETD metodu tesbit edilmeye çalışılmıştır.

Deneysel sonuçlar bilgisayar verileri ile mukayese edilmiş ve geliştirilen "Alternative Method"un en iyi radyografik sonuçları verdiği tesbit edilmiştir.

"Alternative Method"a göre geliştirilen ekspoşur tabloları ve cetvelleri bu alanda çalışanların yararına sunulmuştur.

TABLE OF CONTENTS

A CHANCHIT TID CHARLES	page
ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ÖZET	v
LIST OF TABLES	viii
LIST OF FIGURES	x
LIST OF SYMBOLS	xi
I. GENERAL ASPECTS OF GAMMAGRAPHY	1
1.1 Introduction	1
1.2 Radioactivity and Gamma Radiation	2
1.2.1 Radioactivity	2
1.2.2 Electromagnetic Radiation	4
1.2.3 Gamma Ray Interaction with Matter	5
1.2.4 Gamma Ray Sources	6
1.2.5 Radioisotope Sources Used in Radiography	7
1.3 Basic Factors Affecting Exposure and Radiographic	
Quality	10
1.3.1 Geometric Exposure Principles	10
1.3.2 Films and Modifying Equipment	12
1.3.3 Exposure Variables	15
II. METHODS OF EXPOSURE TIME DETERMINATION IN	/
GAMMAGRAPHY	17
2.1 General Aspects of Exposure Time Determination	17
2.1.1 "Reference to Previous Data"	17
2.1.2 "Characteristic Curve"	17
2.1.3 "Exposure Chart"	
2.2 Determination of Exposure Time by Experimental	19
Method	0.3
	23
2.3 Determination of Exposure Time by Theoretical	
Method	25
2.4 Determination of Exposure Time by Alternative	
Method	31
III. EXPERIMENTAL WORK	36
IV. DISCUSSION AND CONCLUSIONS	42

Appendix	I	Computer Programme	44
Appendix	II	Exposure Charts Utilized in This Study	54
Appendix	III	The Least Squares Method	59
Appendix	IA	Constructed Exposure Tables by Using	
		Several ETD Methods	63
Appendix	V	Constructed Exposure Tables by Using	
		"Alternative Method"	71
Appendix	VI	Constructed Exposure Tables According to	
		Material Densities by Using "Alternative	
		Method"	76
Appendix	AII	Improved Exposure Charts With	
		"Alternative Method"	91
Reference	es		98

LIST OF TABLES

		1	oage
TABLE	1.1	Isotope Characteristics	9
TABLE	2.1	Specifications of the Exposure Charts	
		Used in This Study	22
TABLE	2.2	Film Density Factors (FDSFA)	24
TABLE	2.3	Film Speed Equivalences	25
TABLE	2.4	Film Factors for Commonly Used Film Types,	
		Film Densities, and Radiography Sources	30
TABLE	2.5	Effective Absorption Coefficients for	
		Radiography Sources	30
TABLE	2.6	Dose Build-up Factor for a Point Isotropic	
		Source	32
TABLE	2.7	Gamma Ray Energies of Some Radioisotopes	
		for Use in Eq. 2.19	33
TABLE	2.8	Gamma Ray Linear Absorption Coefficients	34
TABLE	2.9	Gamma Ray Mass Absorption Coefficients	35
TABLE	3.1	Experimental Results	38
TABLE	I-1	The Flow Chart of the Computer Programme	46
TABLE	II-l	Exposure Chart Constructed by Kodak	55
TABLE	II-2	Exposure Chart Constructed by Agfa-Geavert	56
TABLE	II-3	Exposure Chart Constructed by AERE	57
TABLE	II-4	Exposure Chart Constructed by CGR	58
TABLE	IV-1	Exposure Table for Cobalt-60 (Several ETD	
		Methods)	64
TABLE	IV-2	Exposure Table for Cesium 137 (Several ETD	
		Methods)	67
TABLE	IV-3	Exposure Table for Iridium 192 (Several ETD	
		Methods)	69
TABLE	V-l	Exposure Table for Cobalt-60 (Alternative	
		Method)	72
TABLE	V-2	Exposure Table for Cesium 137 (Alternative	
		Method)	74
TABLE	V-3	Exposure Table for Iridium 192 (Alternative	
		Method)	75

TABLE	VI-1	Exposure Table for Cobalt-60 According to	
		Material Densities from 3.0 gm / cm ³ to	
		7.0 gm / cm ³	77
TABLE	VI-2	Exposure Table for Cobalt-60 According to	
•		Material Densities from 8.0 gm / cm ³ to	
		12.0 gm / cm ³	80
TABLE	VI-3	Exposure Table for Cesium 137 According to	
		Material Densities from 1.0 gm / cm ³ to	
		5.0 gm / cm ³	83
TABLE	VI-4	Exposure Table for Cesium 137 According to	
		Material Densities from 6.0 gm / cm ³ to	
		10.0 gm / cm ³	85
TABLE	VI-5	Exposure Table for Iridium 192 According to	
		Material Densities from 1.0 gm / cm ³ to	
		5.0 gm / cm ³	87
TABLE	VI-6	Exposure Table for Iridium 192 According to	
		Material Densities from 6.0 gm / cm ² to	
		5.0 gm / cm ³	89
TABLE	VII-1	Constructed Exposure Chart for Cobalt-60	
· '		According to Material Thicknesses	
		(Alternative Method)	92
TABLE	VII-2	Constructed Exposure Chart for Cobalt-60	
		According to Material Densities	
		(Alternative Method)	93
TABLE	VII-3	Constructed Exposure Chart for Cesium 137	
		According to Material Thicknesses	
		(Alternative Method)	94
TABLE	VII-4	Constructed Exposure Chart for Cesium 137	
		According to Material Densities	
		(Alternative Method)	95
TABLE	VII-5	Constructed Exposure Chart for Iridium 192	
		According to Material Thicknesses	
		(Alternative Method)	96
TABLE	VII-6		
		According to Material Densities	
		(Alternative Method)	97

LIST OF FIGURE

	700.00
FIGURE 1.1 Dated Decay Curve of a Co-60 Source	page 3
FIGURE 1.2 The Electromagnetic Spectrum	4
FIGURE 1.3 Geometrical Unsharpness	11
FIGURE 1.4 Radiographic Contrast	13
FIGURE 1.5 Standard Penetrameter for 10mm Material	14
FIGURE 2.1 Characteristic Curve	19
FIGURE 2.2 Exposure Chart	20
FIGURE 2.3 Exposure Chart	21
FIGURE 3.1 Remote Control Gamma Projector	37
FIGURE 3.2 Radiography Set Used in the Experiments	37
FIGURE 3.3 A Sample Radiograph Taken by Using	<i>)</i>
Alternative Method	39
FIGURE 3.4 A Sample Radiograph Taken by Using	
Alternative Method	40
FIGURE III-1 Scatter Diagram	60

LIST OF SYMBOLS

В	Build-up Factor
II.	Source-to-film Distance (cm)
D	Film Density
F	Film Factors
h	Exposure Time (min.)
I :	Radiation Intensity (dis / sec)
J	Light Intensity
Q	Exposure (Curie)
S	Source Activity (dis / sec)
t	Time (min)
x	Specimen Density Thickness (gr / cm ²)
x	Specimen Thickness (cm)
β	Beta Particle
8	Gamma Photon
Y	Effective Absorption Coefficient (cm ² / gr)
h	Linear Absorption Coefficient (cm ⁻¹)
h	Mass Absorption Coefficient (cm2 / or)

I. GENERAL ASPECTS OF GAMMAGRAPHY

1.1. Introduction

Today, nondestructive methods for examining the raw, semi-finished or finished products are spread all over the industry and are well known inspection techniques. In general there are several nondestructive testing methods namely visual, acoustic (sonic and ultrasonic), pressure and leak, magnetic, penetrant, electrical and electrostatic, thermal, electromagnetic induction, radiography and miscellaneous. Gammagraphy is one of the radiographic methods used in nondestructive testing. By using this technique, inhomogenities or defects in the materials can be detected without destroying the material Radiography uses x-ray or nuclear radiations such as gamma rays, neutrons, alpha or beta particles to obtain pictures of the interior of opaque materials. Radiography, unless otherwise specified, refers to the usage of x-rays or gamma rays which are penetrating types of radiation.

Radioactivity which is the characteristic of certain nuclides to emit spontaneously alpha, beta and gamma rays has been known since the first decade of this century. During the 38 years which followed its discovery, radioactivity did not exist outside the rare materials found in nature. This meant that practical applications were not only exceedingly difficult but were also very costly.

In 1934, Joliot and Curie (8) succeeded in producing on artificial radioactive element. During the following years more and more new artificial radioactive elements were discovered, but the quantities produced were so small that they could not be considered for any immediate application. They were utilized only for laboratory experiments, in particular in biology and medicine.

In 1947, when radioactive isotopes were produced in very large quantities (8) in course of atomic fission operations in nuclear reactors or were prepared by means of these machines they became available for use in radioactive isotope applications industry at reasonable costs because they were after all byproducts of nuclear processes.

1.2. Radioactivity and Gamma Radiation

1.2.1. Radioactivity

Radioactivity means that the radioactive isotope continuously undergoes a spontaneous disintegration. The process usually involves the emission of one or more of a number of smaller particles from the "parent" nucleus, after which the latter is changed into another, or "daughter", nucleus. The parent nucleus is said to decay into the daughter nucleus which may not in itself be stable, and several stages of successive decay may then take place before a stable isotope is formed.

Naturally occurring radioisotopes emit one or more of the following three types of particles or radiations: alpha particles, beta particles and gamma radiation. The artificially produced isotopes in addition to above, emit or undergo the following particles or reactions respectively, positron or beta⁺ particles, orbital electron absorption, called K capture, and neutrons.

Gamma ray intensity: Measurement of the gamma ray intensity is in roentgens per hour at one meter which is a measure of radiation emission over a given period of time at a fixed distance. The activity (amount of radioactive material) of a gamma ray source determines the intensity of its radiation. The activity of artificial radioisotope sources is determined by the effectiveness of the neutron bombardment that created the isotopes. The measure of activity is the curie (3.7 10¹⁰)

disintegrations per second).

Specific activity: Specific activity is defined as the degree of concentration of radioactive material within a source. It is usually expressed in terms of curies per gram or curies per cubic centimeter. Two isotope sources of the same material with the same activity (curies) having different specific activities will have different dimensions. The source with the greater specific activity will be the smaller of the two. For radiographic purposes, specific activity is an important measure of radioisotopes, since the smaller the radioactive source the greater the sharpness of the resultant film image.

Half-life: The length of time required for the activity of a radioisotope to decay (disintegrate) to one-half of its initial amount is termed "half-life". The half-life of a radioisotope is a basic characteristic, and is dependent upon the particular isotope of a given element. In radiography, the half-life of a gamma ray source is used as a measure of activity in relation to time, and dated decay curves similar to that shown in Fig. 1.1, are supplied with radioisotopes upon procurement.

FIG. 1.1 Dated decay curve of a Co-60 source.

1.2.2. Electromagnetic Radiation

Gamma rays are electromagnetic radiation like x-rays and comprise the high energy, short wavelength portion of the electromagnetic wave spectrum, as shown in Fig. 1.2. Throughout the spectrum, x- and gamma rays have the same characteristics, and x- and gamma rays of the same wavelength have identical properties.

Radiographic nondestructive testing is based on the following characteristics of the electromagnetic nature of the gamma rays.

- 1- Their energy is inversely proportional to their wavelength.
- 2- They have no electrical charge and no mass.
- 3- They travel in straight lines at the velocity of light.
- 4- They can penetrate matter, the depth of penetration being dependent upon the energy of the rays.

FIG. 1.2 The electromagnetic spectrum.

- 5- They are absorbed by matter, the percentage of absorption being directly proportional to matter density and thickness, and indirectly proportional to energy.
- 6- They are scattered by matter, the amount of scatter being directly proportional to material density, and indirectly proportional to energy.
- 7- They can ionize matter.
- 8- They can expose film by ionization.
- 9- They can produce fluorescence in certain materials.
- 10- They are invisible and incapable of detection by any of the senses.

1.2.3. Gamma Ray Interaction with Matter

Gamma ray interaction with matter is the main principle of gammagraphy. When a beam of gamma radiation falls on an object, some of it is transmitted through, some absorbed and some scattered in other directions. There are three processes which take place as gamma rays pass through matter, namely, the photoelectric effect, pair production, and Compton scattering

In the photoelectric effect, the photon is absorbed by an atom and one of the bound electrons in the atom is ejected. Electrons in the K and L shells account for most of the absorption by this prosses. The probability of this process occurring increases with increasing atomic number and decreases as the photon energy increases.

In pair production a photon with an energy greater than 1.02 MeV is absorbed in the atoms and produces a pair of electrons. One electron is positively charged and the other negatively charged. The probability of this absorption process increases with the photon energy and with atomic number.

In Compton scattering the photon is deflected by an atomic electron. Only part of the energy of the photon is lost, and the photon continues with lower energy in a direction different from its initial direction of travel. The atomic

electron recoils out of the atom. The probability of this scattering process decreases with increasing photon energy and is proportional to the number of atomic electrons.

1.2.4. Gamma Ray Sources

Gamma rays are produced by the nuclei of isotopes which are undergoing disintegration because of their basic instability. Isotopes are varieties of the same chemical element having different atomic weights. A parent element and its isotopes all have an identical number of protons in their nuclei but a different number of neutrons. Among the known elements, there are more than 800 isotopes of which more than 500 are radioactive. The wavelength and intensity of gamma waves are determined by the source isotope characteristics, and can not be controlled or changed.

Natural isotope sources: Every element whose atomic number is greater than 82 has a nucleus that will probably disintegrate because of its inherent instability. Radium, the best known, and most used, natural radioactive source is typical of all radioactive substances. Radium and its daughter products release energy in the form of:

- 1- Gamma rays: Short wavelength electromagnetic radiation of nuclear origin.
- 2- Alpha particles: Helium nuclei, consisting of two protons and two neutrons, with a double positive charge.
- 3- Beta particles: Negatively charged particles having mass and charge equal in magnitude to those of the electron.

The penetrating power of alpha and beta particles is relatively negligible, it is the gamma rays that are of use to the radiographer.

Artificial sources: There are two sources of man-made radioactive isotopes (radioisotopes). One of them is atomic reactor operation, involving the fission of Uranium-235 which results in the production of many different isotopes usable as radiation sources. Cesium-137, one of the radioisotopes used in radiography, is obtained as a by-product of nuclear fission.

$$\frac{1}{0}n + \frac{235}{92}U \longrightarrow \frac{137}{56}Ba + \frac{97}{36}Kr + 2\frac{1}{0}n + 200 \text{ Mev} \qquad (Eq. 1.1)$$

$$^{137}_{56}$$
Ba $\longrightarrow ^{137}_{55}$ Cs $+^{+}\beta$ (Eq. 1.2)

The second, and most common, means of creating radioisotopes is by bombarding certain elements with neutrons. The
nuclei of the bombarded element are changed, usually neutron
capture and thereby may become unstable or radioactive.
Commonly used radioisotopes obtained by neutron bombardment
are, Cobalt-60, Iridium-192 and Thulium-170. The creation
of Cobalt-60 by neutron bombardment is shown below as an
example:

$$\frac{1}{0}n + \frac{59}{27}co \longrightarrow \frac{60}{27}co + \gamma$$
 (Eq. 1.3)

The numerical designator of each of these isotopes denotes its mass number and distinguishes it from the parent isotope, and other isotopes of the same element. Artificially produced isotopes emit gamma rays, alpha particles, and beta particles in exactly the same manner that natural isotopes do⁽¹⁾.

1.2.5. Radioisotope Sources Used in Radiography

The principle of gammagraphy is that, the gamma radiation is produced by the spontaneous disintegration of atomic nuclei in the radioactive source and gamma rays possess the capability of penetrating materials, even those that are opaque to light. In passing through matter, some of these rays are absorbed. The amount of absorption at any point is dependent upon the thickness and density of the matter at that point: Therefore, the intensity of the rays emerging from the matter varies. When this variation is

detected and recorded, usually on a film, a means of inspecting the insides material becomes available.

Despite the existence of many natural and artificial radioisotopes emitting gamma radiations, only a few of them are useful for gammagraphy because they should have appropriate half-life, energy, and price. For the sake of safety it is also preferable to use solid state radioisotopes in gammagraphy. Consequently the most commonly used radioisotopes, are Cobalt-60, Cesium-137, Iridium-192, and Thulium-170.

- 1- Cobalt-60: Cobalt 60 is an artificial isotope created by neutron bombardment of cobalt, having a half-life of 5.3 years. Cobalt-60 primary gamma ray emission consists of 1.33 and 1.17 Mev rays similar in energy content to the output of a 2 Mev x-ray machine. The radioisotope is supplied in the form of a capsuled pellet and may be obtained in different sizes. It is used for radiography of steel, copper, brass and other medium weight metals of thicknesses ranging from 40mm to 200mm. Because of its penetrating radioation, its use requires thick shielding, with resultant weight and handling difficulty.
- 2- Iridium-192: Iridium-192, another artificial isotope produced by neutron bombardment, has a half-life of approximately 75 days. It has high specific activity and emits gamma rays in the range of 0.296 to 0.612 Mev, comparable in penetrating power to those of a 600-kvp x-ray machine. Industrially, it is used for radiography of steel and similar metals of thicknesses between 12 and 100mm. Its relatively low energy radiation and its high specific activity combine to make it an easily shielded, strong radiation source of small physical size (focal spot). The radioisotope is obtainable in the form of a capsuled pelled.
- 3- Thulium-170: Thulium-170 obtained by neutron bombardment of thulium has a half-life of approximately 130 days. The disintegration of the isotope produces 84-kev and 52-kev gamma rays, soft rays similar to the radiation

of x-ray equipment operating in the 50- to 100 kvp range. It is the best isotope known for radiography of thin metals since it is capable of producing good radiographs of steel specimens less than 40mm thick. One of the major advantages of the use of Thulium-170 is its soft wave radiation, which permits its containment in small equipment units of extreme portability, since only a small amount of shielding is required. Because the pure metal is difficult to obtain, the isotope is usually supplied in capsules containing the oxide $\mathrm{Tm}_2\mathrm{O}_3$ in powder form.

4- Cesium-137: Cesium-137, a by-product of the fission process, has a half-life of 30 years. It emits gamma rays of 0.66 Mev, equivalent in energy to the radiation of a one Mev x-ray machine. It is used in radiography of steel of thicknesses between 20 and 100mm. It is superior to other isotopes of similar capability only in its slow rate of decay. Cesium-137 is usually handled in the form of the chloride CsCl, a soluble powder requiring special safety precautions. The USAEC recommends double encapsulation in containers constructed of silver-brazed stainless steel (1).

Isotope	Cobalt-60	Cesium-137	Iridium-192	Thulium-170
Half life	5.3 yr.	30 yr.	75 days	130 days
Chemical form	Co	CsCl	Ir	Tm ₂ c ₃
Gammas Mev	1.33,1.17	0.66	0.296-0.612	0.084,0.052
Steel thickness range*	40-200mm	20-100mm	12-100mm	> 40mm

Table 1.1 Isotope characteristics.

Permissible thickness range for isotope inspection (two percent sensitivity)

Advantages and disadvantages of gamma sources: Radioisotope sources that emit gamma-rays have some advantages and disadvantages over x-ray machines in radiography. These are: as advantages:

- 1- Radioisotope sources are relatively cheep.
- 2- They can be made quite small.
- 3- They give a very constant output independent of changes in ambient conditions.
- 4- They are portable.
- 5- The maintenance cost is negligible.

as disadvantages:

- 1- They can not be "turned off".
- 2- The energy of the radioisotope can not be varied after the original selection is made.
- 3- There are few inexpensive low-energy sources available with long half-lives.

1.3. Basic Factors Affecting Exposure and Radiographic Quality

1.3.1. Geometric Exposure Principles

Since a radiograph is a shadow picture, the image produced is affected by the relative positions of the specimen and film and by the size of the focal spot of the gamma source. The ideal condition would be a point source of radiation. Since the focal spot has definite size there will be a small amount of blurring or unsharpness around the edges of the specimen, as shown in Fig. 1.3. From the similar triangles in Fig. 1.3,

$$\frac{\mathbf{FF'}}{\mathbf{d}} = \frac{\mathbf{U}}{\mathbf{t}} \tag{Eq. 1.4}$$

$$U = \frac{(FF')t}{d}$$
 (Eq. 1.5)

where FF' = size of focal spot

d = source-to-specimen distance

U = unsharpness

t = specimen-to-film distance

FIG. 1.3 Geometrical unsharpness

As can be seen from this equation, the smaller the focal spot, the less the unsharpness. Equation 1.5 also shows that the unsharpness is inversely proportional to the source-to-specimen distance. It is advisable to use the longest source-to-film distance possible consistent with a reasonable exposure time, the exposure time being directly proportional to the square of the distance. The unsharpness varies in direct proportion to specimen-to-film distance. The film should be as close as possible to the specimen. The greater the d/t ratio, the better the definition on the radiograph. Definition or detail is the characteristic of

a radiograph which describes the sharpness of the image.

Deviation from the true shape of the specimen in the shadow picture is called "distortion".

1.3.2. Films and Modifying Equipment

Films: Radiographic film consists of a thin, transparent plastic sheet coated on one or both sides with an emulsion of gelatin, approximately 0.025mm thick, containing very fine grains of silver bromide. When exposed to x-or gamma rays, silver bromide crystals undergo a reaction that makes them more susceptible to the chemical process (developing) that converts them to black metallic silver. In short, exposure to radiation creates a latent image on the film, and chemical processing makes the image visible. The usefulness of any radiograph is measured by its impact on the human eye. When the radiographer interprets a radiograph he is seeing the details of the specimen image in terms of the amount of light passing through the processed film. Areas of high density (areas exposed to relatively large amounts of radiation) will appear dark gray, areas of light density (areas exposed to less radiation) will appear light gray, Fig. 1.4. The density difference between any two film areas is known as contrast. The sharpness of the film image is known as definition. Successful interpretation of any radiograph relies upon contrast and definition detectable by the eye.

Subject contrast is the ratio of radiation intensities passing through any two selected portions of a specimen. Homogeneous specimens of little thickness variation have low subject contrast. Those of large thickness variation usually have high subject contrast. Subject contrast is determined by specimen density and thickness, and the radiation energy applied. Normally, as the energy of the applied radiation is lowered, the subject contrast is increased. High subject contrast is desirable except when detail is lost in the extremely dark and light areas of the radiograph.

FIG. 1.4 Radiographic contrast.

The ability of a film to detect and record different radiation exposures as differences in density is called film contrast. Radiographic film is fabricated with a variety of emulsions which give different film contracts and other properties such as speed and graininess. The film contrast values of any particular film are usually expressed as a relationship between film exposure and the resulting film density. The relationship is expressed in the form of film characteristic curves. Film emulsions are classified according to their sensitivity, namely, slow, medium and fast. In general, the higher the speed of the film, the coarser the grain of the emulsion.

<u>Screens</u>: When a gamma ray beam comes in contact with film, less than one percent of the radiation energy available is absorbed by the film in producing an image through photographic effect. To convert the unused energy into a form that can be absorbed by film, lead screens are used. They

are usually constructed of an antimony and lead alloy that is stiffer, harder, and more wear resistant than pure lead. The screens are used in pairs, on each side of, and in close contact with, the film. Depending upon the specimen and the energy of radiation, the screens may be of varying thicknesses. The front screen in most applications is thinner than the back screen. Front screens 0.1mm thick and back screens 0.15mm thick are commonly used. Lead screens are particularly efficient because of their ability to absorb scattered radiation (soft radiation) in addition to increasing the photographic effect on the film. The increased photographic effect is a result of the release of electrons from the lead atoms when acted upon by high energy radiation. Energy from the released electrons is readily absorbed by the film emulsion, and intensifies the film response.

Penetrameters (1,4): The penetrameter is a device whose image on a radiograph is used to determine rodiographic quality level (sensitivity). It is not intended for use in judging the size, or in establishing acceptance limits, of discontinuities. The standard penetrameter is a rectangle of metal with three drilled holes of set diameter. It is composed of material identical, or radiographically similar, to the material being radiographed. Each penetrameter is identified by a lead number (ID No.) which gives the maximum thickness of material for which the penetrameter is normally used. (Fig. 1.5).

FIG. 1.5 Standard penetrameter for 10mm material.

The thickness (T) of the standard penetrameter is two percent of the thickness denoted by the ID No. (1,4), and the hole diameters are 1T, 2T, and 4T. The penetrameter is normally placed source side on top of the specimen being radiographed. Thus, it is a built-in defect of known thickness (usually two percent of Tm) and known hole diameters. The penetrameter measures the ability of the technique used to show contrast (the thickness of the penetrameter) and definition (the hole images). Standard two percent sensitivity requires the technique to image the penetrameter whose thickness is two percent of Tm, and the 2T hole of the penetrameter (penny).

1.3.3. Exposure Variables

Movement: Movement of source, specimen, or film during exposure is not usually a problem. The source switch assembly (source holder) is firmly positioned with clamps, tape, wire, etc. The specimen is positioned according to its weight, shape, and the desired angle of exposure, and the film is taped to the specimen when it is not held in position by the weight of the specimen. Any means of holding source, specimen, and film firmly in place is acceptable as long as it does not create scatter radiation problems. Movement of either source, specimen, or film during exposure blurs and distorts film image.

Source size: Source size is a factor in every radiograph and is a primary consideration in purchasing gamma ray sources. In general, the smaller the source size, the better the radiographical quality. Gamma ray source diameters vary from lomm down to a few mm.s. Generally the radiographer has available gamma ray equipment capable of most radiographic applications, and the problem is how to make an acceptable radiograph with the equipment available. Selection of correct source-to-film distance permits good radiography with available equipment, since source size is usually within acceptable dimensions.

Source-to-film distance (SFD): In selecting an SFD, three factors must be considered: Source size, specimen thickness, and specimen-to-film distance. Optimum geometrical sharpness of the image is obtained when the radiation source is small, the distance from the source to the specimen is relatively great, and the distance from the specimen to the film is small. In the commonly used rule of thumb, SFD should not be less than ten times the specimen thickness and SFD should be greater than the widest dimension of the specimen. Also it is reasonable to place the film immediately adjacent to the specimen in terms of minimizing the specimen-to-film distance.

Film contrast, speed, and graininess: Film characteristics were detailed previously. With most industrially used films the same degree of contrast is obtainable regardless of the speed of the film selected, since the characteristic curves of the different speed films are similar in shape. Thus, the degree of resolution (sharpness) required in the radiograph fixes the speed of film that is acceptable. The time-saved, economic, consideration of fast film is secondary to the desired resolution. Fast film is seldom used.

Source energy, source strength, and time: Source energy, source strength, and time are exposure factors in gammagraphy. Source energy (wavelength of the emitted waves) is a function of the radioisotope source and remains constant. Source strength is a time-decay function of the radioisotope and must be known at the time of exposure. Since source strength and time are reciprocal functions, the length of exposure time required is determined by the source strength.

II. METHODS OF EXPOSURE TIME DETERMINATION IN GAMMAGRAPHY

2.1. General Aspects of Exposure Time Determination

There are several methods used in determination of exposure time in gammagraphy. In this study "exposure chart"(4) method (an experimental method) and the theoretical method (2) was used to determine exposure time. The theoretical method was modified using built-up factors (the alternative method) and all the methods used were compared and the results were discussed. "Exposure chart" method was studied in three sub-groups. The sub-groups differ from each other in conditions of preparation of the exposure charts and films used in the experiments. The reason of the choice of these two methods ("exposure chart" method and the theoretical method) were that they were very appropriate for computer analysis so that a realistic comparison of the methods could be done. Other methods used in gammagraphy to determine exposure time such as "reference to previous data" (4) or "characteristic curve" (4) were not appropriate for computational analysis and they are not included into this study.

2.1.1. Reference to Previous Data

Record of previous exposures can be very helpful in determining the exposure time for a specimen. Exposure of similar specimen radiographed in the past can be used as a reference for new radiographies. So, it is useful to maintain a log-book by the radiographer.

2.1.2. Characteristic Curve

Characteristic curve of a film shows the relation between the film density and relative exposure for the film. Naturally, each type of film has a different characteristic curve because of the structural specialities of films.

Characteristic curve of a film is prepared by exposing a strip of the film to gamma rays so that different parts of the film receive different exposures. The strip is normally exposed in steps so that each step receives twice the exposure of the previous step. It should also be indicated that, due to the great penetrating power of gamma rays, separate strips must be used for each exposure. The exposed strips is then developed according to the standard procedure and dried. A density step-wedge is thus obtained. After the measurement of the each step the values are plotted against corresponding exposures and the required characteristic curve is obtained.

Generally, characteristic curve of a film is used for determining correct exposure of samples made from mixed materials for which the exposure chart is normally not available. This method is based on a trial exposure which is estimated from the density and thickness of the material. A trial exposure of the material is taken and the density obtained is measured. This test exposure is then corrected with the help of characteristic curve of the film used to give the standart density of 2.0. While constructing a characteristic curve by using this method first, a trial exposure is taken (E_t) and gives a density (D_t) whereas the required standard density is (D_t). The relative exposures corresponding the densities (D_t) and (D_t) are read from the characteristic curve of the film used as (E_t) and (E_t) respectively (Fig. 2.1). Then, the correct exposure (E_t) to obtain the required density can be found as:

$$\frac{E}{E_{+}} = \frac{E_{+}^{"}}{E_{+}}$$
 (Eq. 2.1)

$$E = \frac{E_{t}^{i} \cdot E_{t}^{i}}{E_{+}}$$
 (Eq. 2.2)

FIG. 2.1 Characteristic curve.

2.1.3. Exposure Chart

Exposure charts show the relation between specimen thickness and exposure. They are prepared experimentally and it is one of the basic methods to determine exposure time using exposure charts. Following parameters are kept fixed in preparing exposure charts in gammagraphy:

- 1- Gamma source.
- 2- Film type.
- 3- Film density.
- 4- Development (type of developer, development time and temperature of the developer).
- 5- Specimen material.
- 6- Intensifying screens.
- 7- Source-to-film distance (SFD).

These parameters should also be given on the exposure chart. Exposure charts can be made in two different ways:

In the first method, the exposure chart requires the characteristic curve of the film to be used and a step

wedge of the material for which a chart is to be made. The wedge should have the range of thicknesses suitable for the type of gamma ray source. For example wedge of steel with 2.0mm steps and thickness between 5-15cm would be suitable for Cobalt-60 source. First, radiograph of the metal stepwedge is taken for the radiation source chosen. The exposure should be reasonably chosen to give full spectrum of densities on the radiograph. Next, the film is processed under the standard procedure. Densities of various steps are then measured on a densitometer and tabulated against the thickness of the corresponding steps. After that, the correct exposures for the required density (2.0) are calculated for every thickness using the characteristic curve in the manner already explained. Finally, the corrected exposures are plotted against the specimen thicknesses on a semilog graph paper to obtain the required exposure chart. Fig. 2.2 shows such an exposure chart. Exposure charts can also be prepared for different film densities such as 1.5, 2.0, 2.5 densities on an exposure chart (15).

FIG. 2.2 Exposure chart.

In the second method, the exposure chart requires a number of strips (radiography film) and a step-wedge of the material for which chart is to be made. Due to the great penetrating power of gamma rays again, separate strips of the film should be used for every exposure. Otherwise, the strong exposure may spoil other parts of the film splits. Step-wedge should be chosen so as to have suitable minimum and maximum thicknesses depending on the source and the exposure should be appropriate to give full spectrum of densities on the film.

First, a radiograph of the step-wedge is taken on a strip of the film giving an exposure. Next, the radiography is repeated on a new strip of film giving an exposure almost double the previous exposure. In this way five to ten exposures are taken, every time doubling the previous exposure, so that the whole thickness range of the stepwedge is covered. The film strips are then developed under the standard procedure. After that, densities are measured and results are tabulated for each exposure. By plotting these results on a graph paper, curves similar to those of Fig. 2.3 are obtained (4).

FIG. 2.3 Exposure chart.

Thickness values for various exposures that will produce the required density (2.0) are directly read from these curves. These values are then plotted against exposures on a semilog graph paper and an exposure line for the source required is obtained as shown in Fig. 2.2. Repeating this procedure, several exposure charts can be obtained for different sources and materials. Also, it is common practice to make exposure charts for gamma rays for more than one density.

Types of the exposure charts used in this study (10-12, 15): In this study three types of exposure charts were used. Each chart differs from the others in terms of film type, film density, source-to-film distance, intensifying screens, radio-active source type and material. Specifications of the exposure charts are given in Table 2.1 and the exposure charts are shown in appendix II.

Table 2.1 Specifications of the exposure charts used in this study.

Foundation which the exp. chart was made by.	Construction specifications of the exp. chart.
KODAK	Sources : Co ⁶⁰ , Cs ¹³⁷ , Ir ¹⁹² Material : Steel Film Type : Industrex A Film Density: 2.5 SFD : 100cm Intensifying Screens : Front and back lead screens. Development of the Film: Standard processing.
GEVAERT	Sources : Co ⁶⁰ , Cs ¹³⁷ , Ir ¹⁹² Material : Steel Film Type : Structurix D7 Film Density: 2.0 SFD : 50cm

Table 2.1 (continued)

	Intensifying Screens : $100 \ \mu$ front, $150 \ \mu$ back lead screens. Development of the Film: Standard processing.
AERE	Sources : Co ⁶⁰ , Cs ¹³⁷ , Ir ¹⁹² Material : Steel Film Type : Structurix D7 Film Density: 2.0 SFD : 30cm Intensifying Screens : 100 p front, 150 p back lead screens. Development of the Film: Standard processing.
CGR	Source: Ir ¹⁹² Material: Steel Film Type: Structurix DlO Film Density: 2.0-3.0 SFD: 100cm Intensifying Screens: 100 µ front, 150 µ back lead screens. Development of the Film: Standard processing.

2.2. Determination of Exposure Time by Experimental Method (15)

This method is based on exposure chart the cnique and called as the "Experimental Method" because exposure charts are prepared with experimental methods.

The experimental method can be explained as:

$$Q_1 D_2^2 h_1 = Q_2 D_1^2 h_2$$
 (Eq. 2.3)

where:

- Q₁ = Exposure in curies read from the exposure chart for a required specimen thickness.
- Q2 = Source activity in curies available for the radiography.
- $D_{\gamma} = SFD$ used in preparing of the exposure chart (cm).
- $D_2 = SFD$ to be used in the radiography (cm).
- h₁ = Exposure time used in preparing the exposure chart (min).
- h₂ = Calculated exposure time from Eq. 2.3 for the required specimen thickness.
- Eq. 2.3 shown above, is based an inverse square law so that exposure time is inversly proportional to the spuare of SFD. There are some other factors that affect the calculations and require a few modifications on Eq. 2.3. These factors are:
 - 1- Density of the film: Radiographic films have to have a density between 1.5 to 3 for a good definition, and if the required density is different from the density indicated on the exposure chart, a film density factor (FDSFA) should be added to Eq. 2.3 to correct this difference in the film densities (Table 2.2).

Table 2.2 Film density factors (FDSFA)(1).

Density	1.0	1.5	2.0	2.5	3.0
FDSFA	0.43	0.71	1.0	1.30	1.62

2- Film speed factor: Exposure charts are prepared for a specific film and each film has a different nature and so a different film speed. If the film to be used in radiography has a different speed than the film used in preparing the exposure chart, a film speed factor (F) should be added to Eq. 2.3. Film speed factors of some radiographic films are given in Table 2.3. Adding these factors to Eq. 2.3, it becomes:

$$h_2 = \frac{Q_1 \times D_2^2 \times h_1 \times FDSFA \times F}{Q_2 \times D_1^2}$$
 (Eq. 2.4)

Table 2.3 Film speed equivalences (4-6).

Kodak Films	Relative Speeds of the Films	Film Speed Factors	Geavert Films
	0.5	128	Structurix D2 (single coat)
R	1	60 ÷ 64	Structurix D2
Industrex M	4	15 ÷ 16	Structurix D4
M	4	16 ÷ 18	
	8	8	Structurix D5
Industrex A	16	4	Structurix D7
Industrex C	16	3.5 ÷ 4	
AA	16	4	
Industrex D	32	1.8 ÷ 2	
Kodirex	64	0.8 ÷ 1.2	
KK	64	1	Structurix D10

Eq. 2.4 is the main formula of ETD with the exposure chart method and using this equation all exposure chart data were computerized for the later steps in the study.

2.3. Determination of Exposure Time by Theoretical Method⁽²⁾

The theoretical method (2) involves the relation between the amount of radiation exposure and the film density. Film density is a quantity which is the ratio of logarithmic rate of the visible light intensity with no radiograph between the light source and photomultiplier tube to the visible

But the second of the second

light intensity that passes through the radiograph at the point of interest. Specifically, film density is defined as,

$$D = \log (J_{\bullet}/J) \qquad (Eq. 2.5)$$

A film density of two is usually required in radiography when the human eye is used to inspect the final radiograph. Higher film densities are preferable if instrumental methods or intense illuminators are used for inspection of the film.

On the other hand, the amount of visible light transmitted by an exposed film is a function of the amount of silver ion that has been reduced in the film during the exposure. The rate of silver reduction in a film is given by a first-order differential equation:

$$\frac{da}{dt} = K_1 I \quad (A-a) \tag{Eq. 2.6}$$

where:

a = Amount of reduced silver (gr).

t = Elapsed exposure time.

 $K_{\parallel} =$ Efficiency of the film for the radiation being used, a constant for a given film and radiation energy.

I = Radiation intensity (dis/sec).

A = Total amount of silver initially present in the film that can be reduced (gr).

Eq. 2.6 can be solved introducing a new variable b, defined by b=A-a, for a initially zero.

b = A-a taking the derivative of the equation,

$$db = -da$$
 substituting these terms into Eq. 2.6,
 $-\frac{db}{b} = K_1 I dt$ and integrating both sides,

$$-\int \frac{db}{b} = K_{1}I \int dt : - lnb + C = K_{1}I t$$

$$- ln (A-a) + C = K_{1}I t$$
 (Eq.2.7)

for a = 0 at t = 0

C = lnA substituting C into Eq. 2.7

- $\ln (A-a) + \ln A = K_1 I t$ solving the equation for a,

$$a = A (1-e^{-K_1I} t)$$
 (Eq. 2.8)

The amount of transmitted light is also an exponential function of the amount of reduced silver present in the exposed film:

$$\frac{J_0}{J} = e^{-K_2 a}$$
 (Eq. 2.9)

where K2 is a constant.

The film density for a given film can be explained as a function of the amount of exposure by substituting Eq. 2.8 into Eq. 2.9 and substituting the subsequent equation into Eq. 2.5,

$$\frac{J_o}{J} = \exp(-K_2 \wedge (1-e^{-K}1^{I}))$$

$$D = \log \left\{ \exp \left(-K_2 A \left(1 - e^{-K_1 I t} \right) \right) \right\}$$
 (Eq. 2.10)

Since lnx = 2.303 logx, the equation can be written as,

$$D = \frac{1}{2.303} \ln \left\{ \exp \left(-K_2 A \left(1 - e^{-K_1 I} t\right)\right) \right\}$$

$$D = \frac{-K_2A (1-e^{-K_1I} t)}{2.303}$$
 (Eq. 2.11)

Defining a new constant K_3 as $-K_2A$ / 2.303, the Eq. becomes,

$$D = K_3 (1-e^{-K}1^{I} t)$$
 (Eq. 2.12)

This equation with $K_3 = 3.44$ and $K_1 = 0.01$ is used to calculate values of D that are compared with the experimental values of D for type F film and the agreement is quite good (2). Solving (Eq. 2.12) for the amount of exposure,

$$It = \frac{-\ln (1-D / K_3)}{K_1}$$
 (Eq. 2.13)

An expression for the source intensity, I, on the film should include the effect of specimen attenuation and the solid angle intercepted by the film,

$$I = \frac{\text{S e}^{-\mu x}}{4x \text{SFD}^2} \text{ dis / sec / cm}^2$$
 (Eq. 2.14)

where:

S = Source activity (dis / sec).

 $\mu = \text{Absorption coefficient for the source and specimen}$ $(\text{cm}^2 / \text{gr}).$

x = Specimen density thickness (gr / cm²).

SFD = Source-to-film distance (cm).

Substituting Eq. 2.14 for I in Eq. 2.13 and solving for t gives,

$$t = \frac{-4 \times \ln (1-D / K_3) SFD^2 e^{\mu x}}{K_1 S}$$
 (Eq. 2.15)

when $f(D) = -(4x/K_1) \ln (1-D/K_3)$ is substituted into Eq. 2.15, this equation simplifies to,

$$t = \frac{f(D) SFD^2 e^{\mu x}}{S}$$
 (Eq. 2.16)

Where f(D) is a function that depends on the film density, the type of film being used, and the radioactive source. These factors for various films, film densities, and radioactive sources are listed in Table 2.4⁽²⁾.

Another important point in use of Eq. 2.16 is the effect of scattered radiation that causes an exposure on films. A built-up factor or an "effective absorption coefficient", (EAC), should be used to compansate for this phenomenon. In the theoratical method, "effective absorbtion

coefficient" is used for the effect of scattered radiation (2).
The EAC's of commonly used radioisotopes are given in Table 2.5.

Table 2.4 Film factors for commonly used film types, film densities, and radiography sources (2).

		Film factor, 109cm ⁻²				
Radiography	Film type	Film density				
source		1.5	2.0	3.0		
Co-60	Eastman KK-Structurix DlO	2.8	4.5	11.0		
Co-60	Eastman AA-Structurix D7	8.6	16.0	48.0		
Co-60	Eastman M -Structurix D4	52.0	70.0	116.0		
Cs-137	Eastman KK-Structurix DlO	8.1	13.0	31.0		
Cs-137	Eastman AA-Structurix D7	24.0	44.0	138.0		
Cs-137	Eastman M -Structurix D4	148.0	200.0	330.0		
Ir-192	Eastman KK-Structurix D10	7.6	12.0	30.0		
Ir-192	Eastman AA-Structurix D7	23.0	42.0	130.0		
Ir-192	Eastman M -Structurix D4	140.0	190.0	315.0		

Table 2.5 Effective absorption coefficients for radiography sources (2).

Source	Effective absorption coefficient, cm ² / gr
Co=60	0.035
Cs-137	0.042
Ir-192	0.046

2.4. Determination of Exposure Time by Alternative Method

At this stage of the study, the theoretical method was improved by adding the built up factor into the system. The reason for the use of the build up factor is to increase the sensitivity of the theoretical method and to minimize the effect of scattering on exposure. The new - build up factor added - theoretical method was submitted under the name "the alternative method" and was included in the computer programme for the analysis and comparison of the methods.

The alternative method differs from the theoretical method in such a way that, the EAC used in the theoretical method has a compensative function instead of build up factor. It can be considered as an average build up factor since the EAC(2) is a constant for all material thicknesses for a definite source. The build up factor is variable for all materials, thicknesses and source energies. So the EAC could not compensate for the scattering radiation because of its constant structure since the phenomena of "scattering" is directly proportional to the thickness and density of the specimen and to the source energy. The alternative method uses the "linear absorption coefficient", LAC, instead of the EAC and compensates the "scattering" phenomena best since its LAC and its build up factor is variable according to changing source energy, material and material thickness. Build up factor can be explained with the attenuation of radiation.

The attenuation of radiation by an absorber is defined by the equation,

$$I = I_o e^{-\mu x}$$
 (Eq. 2.17)

where:

 $I_o = Intensity of incident radiation.$

I = Intensity of transmitted radiation.

x = Thickness of absorber (specimen)

 $\mu = \text{Linear}$ absorption coefficient for material (Table 2.8).

Eq. 2.17 is appropriate for narrow beam absorption. But in radiography the conditions usually fail to meet the ideal conditions of narrow beam attenuation. The sources of radiation may not approximate points, and broad beam, wide, thick absorbers are usually involved. In such cases gamma rays may be scattered to the film as well as away from it and cause an extra exposure on the film. A correction must be made to allow for the effect of the scattered radiation. Eq. 2.17 now becomes,

$$I = I_o B e^{-\mu X}$$
 (Eq. 2.18)

where B is the build-up factor. The value of the build-up factor depends upon the absorber material, energy of the radiation, and the source arrangement, absorber, and film. Table 2.6 shows the build-up factors of steel for various energies.

Table 2.6 Dose build-up factor for a point isotropic source (14), Material: Steel.

	hx *								
MeV	1	2	4	7	10	15	20		
0.5	1.98	3.09	5.98	11.7	19.2	35.4	55.6		
1.0	1.87	2.89	5.39	10.2	16.2	28.3	42.7		
2.0	1.76	2.43	4.13	7.25	10.9	17.6	25.1		
3.0	1.55	2.15	3.51	5.85	8.51	13.5	19.1		
4.0	1.45	1.94	3.03	4.91	7.11	11.2	16.0		
6.0	1.34	1.72	2.58	4.14	6.02	9.89	14.7		
8.0	1.27	1.56	2.23	3.49	5.07	8.50	13.0		
10.0	1.20	1.42	1.95	2.99	4.35	7.54	12.4		

^{*} $\mu x = \text{mass absorption coefficient } (\frac{\nu}{2}) x \text{ material thick-ness } (\text{cm}) x \text{ material density } (\text{gr/cm}^3).$

Applying the build-up factor to Eq. 2.16.

$$t = \frac{f(D) SFD^2 \sum_{E=1}^{N} (e^{\mu x} / B)}{S}$$
 (Eq. 2.19)

where:

f (D) = is a function depending on the film density, the type of film being used, and the radioactive source.

SFD = is source-to-film distance (cm).

E = is the energy (MeV) components of the radioactive source.

p = is linear absorption coefficient (cm⁻¹).

x = is material thickness (cm).

B = is build -up factor.

S = is source activity (dis / sec).

Gamma ray energies of commonly used radioisotopes are given in Table 2.7⁽¹³⁾. Using this table linear absorption coefficients (Table 2.8) and mass absorption coefficients (Table 2.9) can be found and then using this data build-up factors for each gamma-ray energy of the radioisotope being used can be determined. If the radioisotope used has gamma ray energies more than one, all the build-up factors and linear absorption coefficients corresponding to each energy value should be used additively in Eq. 2.19.

Table 2.7 Gamma ray energies of some radioisotopes for use in Eq. 2.19⁽¹³⁾.

Radioisotope	Energies (MeV)						
Co-60 Ir-192	1.173 (100), 1.332 (100) 0.310 (170), 0.468 (65)						
Cs-137	0.588 (8) , 0.610 (25) 0.662 (95)						

Table 2.8 Gamma ray linear absorption coefficients (cm⁻¹)⁽¹⁴⁾.

MeV	Mg	Al	Fe	Cu	Sn	Pb	Concrete
0.1	.279	. 435	2.704	3.814	11.53	59.99	.397
0.15	.235	.362	1.438	1.840	4.109	20.87	.327
0.2	.212	.324	1.085	1.313	2.211	10.16	.291
0.3	.185	.278	.833	.965	1.117	4.037	.251
0.4	.1643	.2489	.7223	.8183	•795	2.359	.2242
0.5	.1497	.2268	.6508	.7325	.6466	1.644	.2045
0.6	.1384	.2098	•5989	.6709	.5663	3 1.293	.1889
0.8	.1217	.1844	.5219	.5842	.4722	.9480	.1659
1.0	.1092	.1658	.4677	.5226	.414	•7757	.1492
1.25	.1975	.1480	.4174	.4654	.3656	.6452	.1332
1.5	.0891	.1350	.3812	.4252	.3350	•5806	.1215
2	.0770	.1166	.3333	•3734	. 2978	.5182	.1046
3	.0627	.0953	.2837	.3189	.2678	3 .4774	.0853
4	.0548	.0837	.2594	.2948	.259.	.4763	.0745
5	.0498	.0761	.2460	.2823	.259	l .4831	.0674
6	.0463	.0713	.2389	.2760	.261	3 • 4944	•0630
8	.0421	.0651	.2319	.2707	.268	.5205	.0571
10	.0397	.0618	.2311	.2725	.279	5 .5545	.0538

Table 2.9 Gamma ray mass absorption coefficients (cm² / gr)⁽¹⁴⁾.

MeV	Mg	Al	Fe	Cu	Sn	Pb	Concrete
0.1	.160	.161	.344	.427	1.58	5.29	.169
0.15	.135	.134	.183	.206	.563	1.84	.139
0.2	.122	.120	.138	.147	.303	.896	.124
0.3	.106	.103	.106	.108	.153	.356	.107
0.4	.0944	.0922	.0919	.0916	.109	.208	•0954
0.5	.0860	.0840	.0828	.0820	.0886	.145	.0870
0.6	.0795	.0777	.0762	.0751	.0776	.114	.0804
0.8	.0699	.0683	.0664	.0654	.0647	.0836	.0706
1.0	.0627	.0614	.0595	.0585	.0568	.0684	.0635
1.25	.0560	.0548	.0531	.0521	.0501	.0569	.0567
1.5	.0512	•0500	.0485	.0476	.0459	.0512	.0517
2	.0442	.0432	.0424	.0418	.0408	.0457	.0445
3	.0360	.0353	.0361	.0357	.0367	.0421	.0363
4	.0315	.0310	.0330	.0330	•0355	.0420	.0317
5	.0286	.0282	.0313	.0316	.0355	.0426	.0287
6	.0266	.0264	.0304	.0309	•0358	.0436	.0268
8	.0242	.0241	.0295	.0303	.0368	•0459	.0243
10	.0228	.0229	.0294	.0205	.0383	.0489	.0229

III. EXPERIMENTAL WORK

One of the most important steps of the study was the experiments. The aim of this step was to determine the most sensitive and reliable ETD method for a definite source, material and film taking a series of radiographs using these methods. The chosen method could easily be adapted to other sources, materials and films by using the appropriate equivalence factors (1-6). The experiments were performed at the industrial application laboratories of Çekmece Nuclear Research and Training Center. A Cobdlt-60 source (initial activity 29 Ci) with its camera system (Fig 3.1 and 3.2), structurix D7 type (medium speed) films and several thicknesses of steel as specimen material were used in the experiments. There were some focal points in taking the radiographs that had been directly affecting the results during the experiments. These are:

- 1- Measurement of the thickness of the specimen to be radiographed in millimetrical sensitivity (\mp 0.5mm).
- 2- Adjustment of SFD in centimetrical sensitivity (70.5cm).
- 3- Proper use of the Co-60 camera system in terms of geometric construction of the system and timing.
- 4- Development conditions during processing of the films.

The experimental part of the study was performed mainly in two steps. At first, several radiographs were taken by using each method (exposure chart, theoretical and alternative methods). Then the films taken, were processed and their densities were measured with a densitometer. It was shown that the best result had been obtained from the alternative method (Table 3.1, Fig. 3.3 and 3.4) and the worst was from the exposure chart method. After that, the results were compared with the computer outputs and the exposure chart method was eliminated from the experiments as a result of comparison of the results. Since the computer outputs were indicating a continuous great difference between the exposure chart method and the alternative method.

FIG. 3.1 Remote control gamma projector.

FIG. 3.2 Radiography set used in the experiments.

Table 3.1 Experimental results.

Radioactive source : Cobalt-60

Activity: 24.3 Curie Film: Structurix D7

			1 1				
Specimen	Material	SFD	Exposure	ETD Method	Required	Measured	Deviati
Material	Thickness (mm)	(cm)	Time (min.)	,	Density	Density	ン
Steel	74	56	14	Exposure chart "Geavert"	2	2.5	25+
Steel	74	56	6.2	Theoretical M.	2	1.6	20
Steel	74	56	9.0	Alternative M.	2	2.1	5 +
Steel	120	100	104	Alternative M.	2	2.0	0
Steel	74	75	16	Alternative M.	2	2.0	0
Steel	55	75	6.7	Alternative M.	1.5	1.5	0
Steel	37	75	6.7	Alternative M.	2.4	2.3	4
Steel	82	82	14.9	Alternative M.	1.5	1.55	3.
Steel	100	100	45.5	Theoretical M.	2.5	2.0	20
Steel	100	100	71.6	Alternative M.	2.5	2.55	2 '
Steel	60	75	7.6	Theoretical M.	2	1.65	17.
Steel	60	75	10.7	Alternative M.	2	2.0	0
Steel	50	75	7.0	Theoretical M.	2.3	1.80	22
Steel	50	75	9.8	Alternative M.	2.3	2.35	2 1
Steel	75	75	11.5	Theoretical M.	2	1.55	22
Steel	75	75	16.6	Alternative M.	2	2.0	0

Radiation source

R. source astivity

Material

Material thickness

SFD

ETD method

Exposure time

Film type

: Cobalt-60

: 24.3 Curie

: Steel

: 74mm

: 75cm

: Alternative method

: 16 min.

: Structurix D7

Required film density: 2.0

Measured film density: 2.0

Deviation (percent) : 0

FIG. 3.3 A sample radiograph taken by using alternative method.

Radiation source : Cobalt-60

R. source activity : 24.3 Curie

Material : Steel

Material thickness : Point 1 and 2 : 55mm

: Point 3, 4 and 5 : 37mm

SED : 75cm

ETD method : Alternative method

Exposure time : 6.7 min.

Film type : Structurix D7

Required film density: Point 1 and 2: 1.5

: Point 3, 4 and 5 : 2.3

Measured film density: Point 1 and 2: 1.5

: Point 3, 4 and 5 : 2.3

Deviation (percent) : 0

FIG. 3.4 A sample radiograph taken by using alternative method.

It had meant that the exposure chart method would consistently give inaccurate results.

In the second step of the experiments the alternative method and the theoretical method were examined with a wide range of specimen thicknesses (37-120mm) since the methods had been giving acceptable results in only a definite thickness range of the material. Several radiographs were taken for several specimen thicknesses to avoid this source of error and to observe the sensitivities of the two methods with changing specimen thickness. The results obtained from the experiments (Table 3.1) showed that the most sensitive and reliable method was the alternative method with ∓ 0.5 percent deviation in required film density. This is a considerably better result since the deviation of the exposure chart method was $< 25^+$ percent and the deviation of the theoretical method was $< 20^-$ percent.

IV. DISCUSSION AND CONCLUSION

At the beginning of the study the aim was to evaluate the ETD methods and computerizing them to construct ETD tables for the workers in the field of radiography. While examining the theoretical method (2), the non usage of build-up factor in the method focused the study on this factor. This was very important because the radiation passing and scattering through the specimen was causing an extra exposure on the film. The factor "effective absorption coefficient", EAC, used in the theoretical method could not compensate for the scattering radiation. The phenomena "scattering" is directly proportional to the thickness and density of the specimen and to source energy. However the EAC had been kept constant according to the thickness. As a matter of fact the results observed from the experiments (Table 3.1) had shown the insufficiency of the theoretical method.

The study on build-up factor caused the development of the alternative method. The two methods are the same in general. But the alternative method covers the build-up factor and uses the "linear absorption coefficient", LAC, instead of the EAC. The usefulness of the build-up factor had been shown clearly during the experiments (Table 3.1). The results obtained from the experiments showed that the most sensitive and reliable method was the alternative method with \mp 0.5 percent deviation in required film density where the deviation of the theoretical method was $\langle 20^-$ percent.

On the other hand the exposure chart methods used in the study did not give the reliable results (deviation was <25 percent). Since they are constructed experimentally they should be used to have only a general idea in exposure time, not for a precise calculation. Another reason which obstructs sensitive results from exposure charts, is the semi-logarithmic structure of them.

Computerization of the ETD methods made possible to analyze the methods in a wide scale. Some ETD methods could had been giving acceptable results in a definite thickness range of the material, but they could be insufficient in general. To avoid this kind of error, the ETD methods were examined taking radiographs in a wide thickness range of the material to determine the sensitivity of the methods.

The experiments were performed by using a Co-60 source. A little arrangement in film factor (FF) which covers the effect of source type, film type, and film density, was necessary to make the alternative method more sensitive due to the use of build-up factor. The arrangement in the film factor was made according to the usage of Co-60 source and the necessary changes were made in the constructed exposure tables. Ir=192 and Cs=137 are not included in the study as radiation sources but ETD tables according to the alternative method are also constructed for these sources. It is a suggestion that, all the experiments made for Co-60 should be repeated for Ir=192 and Cs=137 to determine the necessary changes in the film factor to obtain the best and most reliable results.

The last step of the study was to construct exposure tables. The tables were prepared for the commonly used radiographical conditions and could easily be applied to other radiographic conditions by using the necessary conversion factors*. The tables were constructed according to 1- exposure variables (for steel), 2- densities of specimen materials, so as exposure time for different kind of materials could easily be found referring to "2". Finally the submitted tables were given also in the form of "exposure charts" by using the least squares method ** and semi-log form, for common studies in this field.

^{*}The conversion factors are given in appendix I.
**The least squares method is explained in appendix III.

APPENDIX I

Computer programme

APPENDIX I

Computer Programme

Function of the programme: A computer programme was improved to analyze the differences between the ETD methods. The flow-chart of the programme is shown in Table I-1. The functions of the programme are, 1- to calculate exposure time using several ETD methods and to compare them, 2- to calculate exposure time of the specimen materials with the densities of between from 1 to 12 gm / cm³.

In the first part of the computer programme, six different ETD methods were used, namely four exposure chart methods, theoretical method and alternative method. Exposure charts were of Kodak, Agfa-Gevaert, CGR and AERE (Appendix II).

These exposure curves are in-corporated into the programme in the linear equation* of the form y = mx + b.

Formulation of the other two theoretical methods were mentioned in chapter two. The first part of the computer programme was constructed to calculate exposure times of the specimen having thicknesses from 10mm to 200mm. The programme can be used for the radioactive sources Co-60, Cs-137, Ir-192 with various activities changing from 10 Ci to 50 Ci, and several type of films, the required film densities and source-to-film distances can easily be adopted to the programme

In the second part of the computer programme, using the alternative method, exposure times were calculated for several materials of densities ranging from 1 to 12 gr / cm³. This part of the programme has the same function as part one. The "zeros" in the out-put tables indicates, that specimen thicknesses are not appropriate for radiography with that source.

^{*}The details are given in appendix III.

Table I-1 The flow chart of the computer programme.

Meaning of the phrases used in the programme:

RADSO: radiation source (Co-60 \rightarrow 1, Cs-137 \rightarrow 2, Ir-192 \rightarrow 3).

DENMA: density of the specimen material (gr / cm³).

SOACT: activity of the radioactive source (Ci).

minimum specimen thickness which can be radiographed.
in standard two percent sensitivity (mm).

n : maximum specimen thickness which can be radiographed in standard two percent sensitivity (mm).

D : film density (required).

F : film speed factor used by exposure chart method.

FF : film factor used by the theoretical method.

FDSFA: film density factor. This factor was changed into a linear equation by using the least-squares method.

VUCO : effective absorption coefficient for Co-60 (cm² / gr).

VUCSS: effective absorption coefficient for Cs-137 (cm2 / gr).

VUIR : effective absorption coefficient for Ir-192 (cm2 / gr).

VUCOl: linear attenuation coefficient for Co-60 (cm-1).

VUCO2: linear attenuation coefficient for Co-60 (cm⁻¹).

VUCS : linear attenuation coefficient for Cs-137 (cm⁻¹).

VUIRR: linear attenuation coefficient for Ir-192 (cm-1).

MUM: mass attenuation coefficients of the relevant sources (cm^2 / gr) .

TKMA : specimen thickness (mm).

TKMA2: steel equivalent specimen thickness (mm).

SFD : source-to-film distance (cm).

EQU : steel equivalence factor. This factor was changed into a linear equation form by using the least-squares method

EXCOl, EXIR1, EXCSl: required exposure calculated from the exposure chart of KODAK.

EXCO2, EXIR2, EXCS2: required exposure calculated from the exposure chart of AGFA-GEAVERT.

EXCO3, EXIR3, EXCS3: required exposure calculated from the exposure chart of AERE.

EXIR6 : required exposure calculated from the exposure chart of CGR.

ETCO1, ETCO2, ETCO3, ETIR1, ETIR2, ETIR3, ETIR6, ETCS1, ETCS2,

ETCS3 : exposure time, calculated by using relevant exposures.

ETCO4, ETIR4, ETCS4: exposure time, calculated by using the alternative method.

ETCO5, ETIR5, ETCS5: exposure time, calculated by using the theoretical method.

SUBROUTINE BUILT: this subroutine calculates the necessary build-up factors for the alternative method by making extrapolations from the build-up table.

Use of the exposure time tables: There are four variables used in the tables. These are source astivity, film type, film density and source-to-film distance. The tables are constructed for the most common radiography working conditions and changes needed can easily be implemented through the use of the computer programme in the variables for the further analysis. But in case of a practical study the following procedure is suggested for manual changes in the variables.

- 1- Change in source activity: divide the source activity of the table by the new activity and multiply by the relevant exposure time.
- 2- Change in source-to-film distance: divide the square of the new SFD by the square of the SFD read from the table and multiply by the relevant exposure time.
- 3- Change in film type: divide the speed factor of the new film by the speed factor of the film of the table and multiply by the relevant exposure time.

 Note that all the tables were prepared for the films with lead screens. In case a film without lead screens is used, the exposure time should be increased by a factor of 1.5 2.
- 4- Change in film density: divide the new film density by the film density read from the table and multiply by the relevant exposure time.

```
THIS COMPUTER PROGRAMME IS PREPARED
100 C
             FOR EXPOSURE TIME CALCULATIONS
110 C
120 C
          REAL BU(5,8), BLDUP(4), MUM(4), MEV(4), A(4), EXPSR(30)
130
          READ(5,100) ((BU(I,J),J=1.8),I=1.5)
140
          FORMAT(8F8.2)
150 100
160
          RADSO=3.
          DENMA=7.86
170
          SOACT=30.0
180
190
          M=12
2.00
          N=100
          D=2
210
          F=l
220
230
          FF=42
          FDSFA=0.594*D-0.176
240
250
          K1=2
260
          L1=3
          VUCO=0.035
270
280
          VUCO1=0.4329
290
          VUCO2=0.4055
300
          VUCS=0.5750
          VUCSS=0.042
310
          VUIR=0.046
320
330
          VUIRR=0.7389
          WRITE(6,200)
340
          FORMAT(1H1, 4X, 'RADIOACTIVE SOURCE: IRIDIUM 192',//,
350 200
         X5X, 'R. SOURCE ACTIVITY : 30.0 CURIE'.//.
360
                                   : STRUCTURIX D7'.//.
         Y5X. FILM TYPE
370
                                   : 21,/////
          X5X, 'FILM DENSITY
380
         85%, CALCULATED EXPOSURE TIMES FOR THE MATERIALS WITH', 1X,
390
          Y'DENSITIES FROM 1.0 GR/CM3 TO 10.0 GR/CM3',////,
400
          85X, MATERIAL', 6X, SFD (CM)', 38X, EXPOSURE TIME (MIN)',//,
410
          82X. 'THICKNESS (MM)', 17X, '1', 8X, '2', 8X, '3', 8X, '4', 8X, '5',
420
          X7X.'6'.8X.'7'.8X,'8',8X,'9',8X,'10',//)
430
           IF(RADSO-2.) 21,22,23
440
450 C
           EXPOSURE TIME CALCULATIONS FOR COBALT-60
460 C
```

470 C

```
MEV(1)=1.1731-1
480 21
          MEV(2)=1.3324-1
490
          MUM(1)=0.0551
500
          MUM(2)=0.0516
510
          A(1)=1
520
          A(2)=1
530
          DO 30 I=M,N
540
          D0 24 J=3.12
550
560
          TKMA=I
          EQU=EXP(0.2111*J-1.6413)
570
          TKMA2=TKMA*EOU
580
          IF(TKMA2.LT.30.OR.TKMA2GT.200.) GO TO 25
590
600
          GO TO 26
          EXPSR(J)=0.
610 25
620
          GO TO 24
          SFD=TKMA
630 26
640
          FF=14.
          IF(TKMA2.GT.80.) FF=13.
650
          IF(TKMA2.GT.100.) FF=12.
660
          IF(TKMA.LT.75.) SFD=75.
670
          EXCO1=EXP((TKMA2+28.24)/33.5)
680
          ETCO1=(EXCO1*60*SFD**2*F*FDSFA*0.77)/(SOACT*100**2)
690
          EXCO2=EXP(0.03*TKMA2-0.72)
700
          ETCO2=(EXCO2*60*SFD**2*F*FDSFA)/(SOACT*50**2)
710
          EXC03=EXP(0.031*TKMA2-1.82)
720
          ETCO3=(EXCO3*60*SFD**2*F*FDSFA)/(SOACT*30**2)
730
                           ,BLDUP,MUM,MEV,2,TKMA2,DENMA,K1,L1,A)
           CALL BUILD(BU.
740
          ETCO4=10**9*FF*F*FDSFA*SFD**2*((EXP(VUCO1*TKMA2/10)/BLDU
750
          8(1))+(EXP(VUCO2*TKMA2/10)/BLDUP(2)))/(SOACT*3.7*10**10*6
760
          ETCO5=10** 9*FF*F*FDSFA*SFD**2*(EXP(VUCO*DENMA*TKMA2/10.)
770
780
          X(SOACT*3.7*10**10*60)
           EXPSR(J)=ETCO4
790
           CONTINUE
800 24
           WRITE(6,210) TKMA,SFD,(EXPSR(J),J=3,12)
810
           FORMAT(F11.1,F14.0,10F9.1)
820 210
           CONTINUE
830 30
           GO TO 61
840
```

850 C

```
EXPOSURE TIME CALCULATIONS FOR CESIUM 137
860 C
870 C
880 22
          MUM(1)=0.0732
          MEV(1)=0.662-0.5
890
900
          A(1)=0.5
          DO 40 I=M,N
910
          DO 41 J=1,10
920
          TKMA=I
930
          EOU=EXP(EXP(0.1173*J-0.0910))/10.
940
          TKMA2=TKMA*EQU
950
          IF(TKMA2.LT.15.OR.TKMA2.GT.100.) GO TO 42
960
          GO TO 43
970
          EXPSR(J)=0.
980 42
          GO TO 41
990
           SFD=TKMA
1000 43
           IF(TKMA.LT.50.) SFD=50.
1010
           EXCS1=EXP((TKMA2+48.92)/26.12)
1020
           ETCS1=(EXCS1*60*SFD**2*F*FDSFA*0.77)/(SOACT*100**2)
1030
           EXCS2=EXP(0.04*TKMA2-0.38)
1040
            ETCS2=(EXCS2*60*SFD**2*F*FDSFA)/(SOACT*50**2)
1050
            EXCS3=EXP(0.0285*TKMA2-1.489)/0.73
1060
            ETCS3=(EXCS3*60*SDF**2*F*FDSFA)/(SOACT*30**2)
1070
            CALL BUILD (BU, BLDUP, MUM, MEV, 1, TKMA2, DENMA, K1, L1, A)
1080
            ETCS4=10**9*FF*F*FDSFA*SFD**2*(EXP(VUCS*TKMA2/10.)/BLDUI
1090
           8(1))/(SOACT*3.7*10**10*60)
1100
            ETCS5=10**9*FF*F*FDSFA*SFD**2*(EXP(VUCSS*DENMA*TKMA2/10.
1110
           X(SOACT*3.7*10**10*60)
1120
            EXPSR(J)=ETCS4
1130
            CONTINUE
 1140 41
            WRITE(6,220) TKMA,SFD (EXPSR(J),J=1.10)
 1150
            FORMAT(F11.1,F14.0,10F9.1)
 1160 220
            CONTINUE
 1170 40
            GO TO 61
 1180
            EXPOSURE TIME CALCULATIONS FOR IRIDIUM 192
 1190 C
 1200 C
            A(1)=0.2
 1210 23
            MUM(1)=0.0940
 1220
             MEV(1)=0.385-0.3
 1230
```

```
TKMA=I
1260
           EQU=EXP(EXP(0.1213*J-0.1109))/10.
1270
           TKMA2=TKMA*EOU
1280
           IF(TKMA2.LT.10.OR.TKMA2.GT.100.) GO TO 63
1290
           GO TO 64
1300
           EXPSR(J)=0.
1310 63
           GO TO 62
1320
           SFD=TKMA
1330 64
           IF(TKMA.LT.50.) SFD=50.
1340
           EXIR1=EXP((TKMA2+26.35)/19.21)
1350
           ETIR1=(EXIR1*60*SFD**2*F*FDSFA*0.77)/(SOACT*100**2)
1360
           EXIR2=EXP(0.047*TKMA2-0.236)
1370
           ETIR2=(EXIR2*60*SFD**2*F*FDSFA)/(SOACT*50**2)
1380
            EXIR3=EXP(0.044*TKMA2-0.964)
1390
            ETIR3=(EXIR3*60*SFD**2*F*FDSFA)/(SOACT*30**2)
1400
            CALL BUILD(BU, BLDUP, MUM, MEV, 1, TKMA2, DENMA, K1, L1, A)
1410
            ETIR4=10**9*FF*F*FDSFA*SFD**2*(EXP(VUIRR*TKMA2/10.)/BLDU
1420
           δ(1))/(SOACT*3.7*10**10*60)
1430
            ETIR5=10**9*FF*F*FDSFA*SFD**2*(EXP(VUIR*DENMA*TKMA2/10.)
1440
           &(SOACT*3.7*10**10*60)
1450
            EXPSR(J)=ETIR4
1460
            CONTINUE
1470 62
            WRITE(6,230) TKMA, SFD, (EXPSR(J), J=1,10)
1480
            FORMAT (F11.1,F14.0,10F9.1)
1490 230
            CONTINUE
1500 60
            STOP
1510 61
            END
1520
1530 C
            SUBROUTINE PROGRAMME FOR CALCULATIONS OF THE
1540 C
            BUILD-UP FACTOR BY THE METHOD OF EXTRAPOLATION
1550 C
1560 C
            SUBROUTINE BUILD (BU, BLDUP, MUM, MEV, KENGY, TKMA2, DENMA, K,
 1570
            REAL BLDUP(KENGY), MUM(KENGY), BU(5,8), DBU2(5), MEV(KENGY)
 1580
           XA(KENGY)
 1590
             DO 50 ICO=1,KENGY
```

VUX=MUM(ICO) * TKMA2 * DENMA/10

DO 60 I=M.N

DO 62 J=1.10

1240

1250

1600

1610

```
DO 51 J=2,8
1620
           IF(BU(1,J).GT.VUX) GO TO 53
1630
           CONTINUE
1640 51
1650 53
           J1=J-1
1660
           J2=J
           DMUX=BU(1.J2)-BU(1-J1)
1670
           DMUX1=VUX-BU(1,J1)
1680
           IF(ICO.LT.3) GO TO 54
1690
           K=3
1700
           L=4
1710
           DO 52 I=K.L
1720 54
           DBU=BU(I,J2)-BU(I,J1)
1730
           DBU1=DBU*DMUX1/DMUX
1740
           DBU2(I)=BU(I,J1)+DBU1
1750
1760 52
           CONTINUE
           DBU3=DBU2(K)-DBU2(L)
1770
           DBU4=DBU3*MEV(ICO)/A(ICO)
1780
           BLDUP(ICO)=DBU2(K)-DBU4
1790
           CONTINUE
1800 50
           RETURN
1810
1820
           END
aftn.c TPF$.NAME$
FIN 8R1 *04/25/84 12:40(0,)
```

ENTERING USER PROGRAM

END FIN 798 IBANK 578 DBANK

APPENDIX II

Exposure charts utilized in this study

Film type: Industrex A (with lead screens)

Film density: 2.50

Source-to-film distance: 100 cm

Table II-1 Exposure chart constructed by Kodak

Film type: structurix D7 (with lead screens)

Film density: 2.0

Source-to-film distance: 50 cm

Table II-2 Exposure chart constructed by Agfa-Geavert

Film type: structurix D7 (with lead screens)

Film density: 2.0

?

Exposure

Source-to-film distance: 30 cm

Table II-3 Exposure chart constructed by AERE

APPENDIX III

The least squares method

APPENDIX III

The Least Squares Method (16)

In many disciplines it is desirable to express one variable in terms of another even though the variables are independent and are not necessarily analytical functions of each other. An accepted practice is to perform a least-squares linear regression which is designed to minimize the sum of the squares of the deviations of the actual data points from the straight line of best fit. In practice, a plot of the variables (called a scatter diagram) is essentially constructe and the best straight line which uniformly divides the data points, is drawn as shown below (Fig. III-1). Because the data may not be best represented by a straight-line curve, it is desirable to measure how well the linear curve actually does fit the data. This measure is called the correlation coefficient and may be calculated from the independent variables and the linear equation parameters.

The linear curve is in the form of y = mx + b where, m is the slope of the curve and denoted as,

FIG. III-1 Scatter diagram.

$$\mathbf{x}_{i} \leq \mathbf{x}_{i} \leq \mathbf{y}_{i}$$

$$\mathbf{x}_{i} = \frac{\sum_{i} \mathbf{x}_{i} \mathbf{y}_{i}}{(\sum_{i} \mathbf{x}_{i})^{2}} - \sum_{i} \mathbf{x}_{i}^{2}$$

b is the y intercept of the curve and denoted as

$$b = \bar{y} - m\bar{x}$$

$$\bar{x} = \text{average x value} = \frac{\sum_{i=1}^{N} x_i}{N}$$

$$\bar{y}$$
 = average y value = $\frac{\sum_{i=1}^{N} y_i}{N}$

After the linear regression curve is determined, the degree of association between the random variables $(x_i, y_i)_{----}(x_n, y_n)$ can be measured. This correlation coefficient is usually denoted by r and is calculated using the following expression,

$$r = \frac{m \, \forall x}{\forall y}$$

where:

$$\mathcal{L}_{\mathbb{X}}^2 = \text{variance of the x values} = \frac{\sum_{i=1}^{N} x_i^2}{N} - \bar{x}^2$$

$$\mathcal{J}_{y}^{2} = \text{variance of the y values} = \frac{\sum_{i=1}^{N} y_{i}^{2}}{N} - \bar{y}^{2}$$

The correlation coefficient value must be between ∓ 1 with ∓ 1 being a perfect correlation. The correlation coefficient value of the constructed exposure curves are between 0.980 - 1 and meet the required restrictions mentioned above.

APPENDIX IV

Constructed exposure tables by using several ETD methods

Table IV-1 Exposure Table for Cobalt 60

RADIOACTIVE SOURCE: COBALT 60 R. SOURCE ACTIVITY : 30.0 CURIE

MATERIAT

e const.

DILM TYPE

: STRUCTURIX D7

MATERIAL THICKNESS (MM)	SED (CM)	KODAK	EXPOST GEVAERT	RE TIME	(MIN) ALTERN	THEORE
40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 49.0 49.0 49.0 49.0 49.0 49.0 49.0 49	75. 75. 75. 75. 75. 75. 75. 75. 75. 75.	6.7 6.9 7.4 6.9 7.4 6.9 7.4 6.9 7.4 6.9 7.4 6.9 7.6 8.0 3.5 8.0 9.0 9.0 10.5 11.5 12.6 13.4 14.0 15.0 16.5 17.0 18.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	7.4 7.6 7.8 8.1 8.6 8.1 8.6 8.9 9.4 9.6 9.2 10.5 10.5 11.9 12.3 12.6 13.4 13.8 14.7 15.6 16.5 17.6 18.7 19.8 21.9 22.9 23.5 24.3	7.1 7.3 7.5 8.0 8.5 8.3 9.4 9.7 10.3 10.3 10.3 11.6 12.4 13.6 14.9 15.9 16.4 15.9 16.4 17.4 18.5 19.7 20.2 22.3 24.3 22.3 24.3	5.2 5.5 5.6 6.8 9.1 7.7 7.7 7.8 8.8 9.9 9.0 10 11.1 12.2 13.4 14.2 11.2 12.3 13.4 14.2 14.2 15.2 16.3 17.3 17.3 17.3 17.3 17.3 17.3 17.3 17	6789012456790134679124680246802479249517 333344444445555555566666777778888889999111

Table Iv. I (o	·					
MATERIAL	SED (CM)	o interpretation of the selection of the		URE TIME (r <u>etten n</u> emera i finn a Antonio (1779) – if parattings og etten f
THICKNESS (MM)		KODAK	GEVAERT	$Q_{\cdot \circ} T$,	ALTERN,	THEORE 。
80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 100.0 102.0 103.0 104.0 105.0 106.0 107.0 118.0 118.0 118.0 119.0 119.0 120.0 121.0 121.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 120.0 121.0	80. 81. 82. 83. 84. 85. 86. 87. 88. 90. 91. 92. 93. 94. 95. 100. 102. 103. 104. 105. 106. 107. 108. 112. 113. 114. 115. 116. 117. 118. 119. 120. 121. 121. 121. 121. 121. 121. 121	2727333368.91483976668277887.3731149669434522222222222222222222222222222222222	27.8 29.4 31.0 34.6 55.6 42.7 55.6 42.1 55.0 55.0 55.0 55.0 55.0 55.0 55.0 55	85.1 89.5 94.2 99.0 104.1	17.7 18.7 19.8 20.9 22.3 24.6 27.0 27.0 32.3 35.9 37.9 39.9 44.2 46.6 47.6 47.6 47.6 52.6	17.2 18.1 19.0 21.0 22.1 23.3 24.5 24.5 29.9 21.0 21.0 22.1 23.3 24.5 29.9 34.5 36.8 37.8

Table IV-1 (Continued)

MATERIAL	SED (CM)		EXPOSU	IRE TIME	(MIN)	
HICKNESS (MM)		KODAK	GEVAERT	$Q \circ T$.	ALTERN 。	THEORE.
132.0 133.0 134.0 135.0 136.0 137.0 138.0 139.0 140.0 141.0 142.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0 150.0	132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 144. 145. 144. 145. 146. 147. 148. 149. 150.	324.5 339.4 355.0 371.2 388.1 405.8 424.2 443.4 463.5 484.4 506.1 528.8 552.5 577.2 602.9 629.7 657.7 686.8 717.1	360.2 376.8 394.1 412.2 431.1 450.8 471.3 492.7 515.1 538.4 562.7 588.0 614.4 641.9 670.6 700.6 731.8 764.3 798.2	380.0 398.0 416.7 436.3 456.7 478.0 500.3 523.5 547.8 573.2 599.6 627.3 656.1 686.2 717.6 750.4 784.5 820.2 857.4	221.6 232.7 244.3 256.5 269.3 282.7 296.8 311.6 327.1 343.4 360.4 378.3 397.1 416.8 437.4 459.0 481.7 505.5	120.0 125.2 130.6 136.3 142.2 148.3 154.7 161.3 168.2 175.4 182.8 190.6 198.6 207.0 215.7 224.8 234.2 244.0 254.2
<i>x</i> / U o U	in 1 40 6) who is the ways	; ,, - ,			

Table IV-2 Exposure Table for Cesium 137

RADIOACTIVE SOURCE : CESIUM 137 R. SOURCE ACTIVITY: 30.0 CURIE

MATERIAL

: STEEL

FILM TYPE

: STRUCTURIX D7

MATERIA THICKNESS	SFD (CM)	KODAK	EXPOS GEVAERT	URE TIME	(MIN) ALTERN.	THEORE.
21.0 21.0 22.0 22.0 22.0 22.0 22.0 22.0	50. 500. 5	5.7.9.1.4.6.9.1.4.7.0.3.6.0.3.7.1.5.9.3.7.2.7.2.8.3.9.5.2.6.1.7.4.2.2.2.2.2.3.3.4.8.3.9.5.2.6.1.2.2.2.2.2.2.3.3.3.3.3.3.3.3.3.3.3.3.3	3.1 3.2 3.6 3.6 3.6 3.6 3.6 3.6 3.6 4.6 4.6 4.6 4.6 4.6 4.6 4.6 5.6 6.6 6.7 7.7 8.6 9.1 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1	3.3.3.4.5.6.8.9.0.1.2.3.5.6.7.8.0.1.3.4.6.8.9.1.3.4.9.9.1.3.4.9.9.1.3.4.9.9.1.3.9.1.	2.56778901234678012457802468025706285313333333333444455555666677888901123400	2356789124578013579135791460247418643333 33334444455555566666777788889001123456

E. C. A. Tarakanan angusan Salawah dan sa Mayarandar Manasanan	BETTA TO SE SERVICE ATTENDED TO SECURITION OF THE SECURITION OF TH	No. State Control of the Control of	atheliate 2016, page than three own recovers	of the balance of the second second second	AND THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERSON AND ADDRESS OF THE PERSON ADDRESS OF THE PERS	and more introducing the property of the contract of the contr
MATERIAL	SFD (CM)		EXPOSI	JRE TIME ((MIN)	and the second s
THICKNESS (MM)	r y Stitus Materius Stitus of Sympoly (apparel 1472 pr. 1821 (h. 1821). 1 ° 1884 (h. 1821	KODAK	GEVAERT	$Q\circ T\circ$	ALTERN o	THEORE .
PHICKNESS (MM) 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 88.0 89.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0	60. 61. 62. 63. 64. 65. 66. 67. 72. 77. 77. 78. 79. 81. 82. 83. 84. 85. 88. 89. 91. 92. 93. 94. 95.	36.3 37.0 41.9 48.1 55.2 55.2 67.2 67.2 67.2 67.2 67.3 88.4 107.5 114.2 130.8 147.9 167.6 178.8 147.9 167.6 178.8 167.6 178.8 167.6 178.8 167.6 178.8 167.6 178.8 167.6 178.8 167.6 178.8	GEVAERT 22.0 23.6 25.4 27.3 31.5 36.2 38.6 44.6 47.1 54.7 582.6 66.9 71.4 86.9 98.9 105.5 119.9 127.7 136.0 137.7 137.7 137.7	13.8 14.7 15.6 17.6 17.6 18.7 19.1 21.3 22.3 25.0 22.3 23.4 23.6 22.3 23.7 23.7 23.7 23.7 23.7 23.7 24.0 25.6 29.4 45.7 45.7 55.6 66.8 69.2 69.2 69.2 69.2 69.2 69.2 69.2 69.2	15.1 16.2 17.5 18.8 20.3 21.8 23.5 27.2 29.3 31.4 33.6 36.0 341.2 50.5 54.1 47.2 50.8 75.7 86.6 92.6 99.8 113.9	17.4 18.6 19.9 21.2 22.7 24.1 25.4 29.1 25.4 29.1 27.4 29.1 33.7 35.7 44.7 50.4 50.6 67.4 50.6 67.3 75.5 94.6 94.6 94.6
98.0 99.0 100.0	98. 99. 100.	414.9 440.0 466.4	284.7 302.3	114.4		172.1 181.5

Table IV-3 Exposure Table for Iridium 192

RADIOACTIVE SOURCE: IRIDIUM 192 R. SOURCE ACTIVITY : 30.0 CURIE

MATERIAL

: STEEL

FILM TYPE

: STRUCTURIX D7

autopolius piedušelija sistema, 20. jos tom vikanos tikines (kulinia, 1. stora (s. 1. stora)							
MATERIAL HICKNESS (MM)	SED (CM)	KODAK	EX GEVAERT	POSURE Q.T.	TIME (MII	N) THEORE.	CGR
12.0 13.0 15.0 15.0 16.0 17.0 18.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	55555555555555555555555555555555555555	23333334444555566667788990011.333420877777 9024579146814693693716050517307420877777	2233333344445556666777888990.5163963083 1123334445556666777888990.5163963083	3.6801357924692470482605949506295207788889.60594950629520718.60594950629520718.950620718.950629520718.950620718.950629520718.950629520718.950620718.950620718.950620718.950620718.950620718.950620718.950620718.950620718.950620718.950620718.950600000000000000000000000000000000000	2.01 2.22 2.34 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67	2222333333334444555556666677788888990 222233333334444555556666677788888990	2.35.67.801346.891358025803603604827222333333444555556667778888991011223344455555666777888899101122334

APPENDIX V

Constructed exposure tables by using 'Alternative Method'

Table V- 1 Exposure Table for Cobalt 60

RADIOACTIVE SOURCE: COBALT 60 R. SOURCE ACTIVITY: 30.0 CURIE

MATERIAL

: STEEL

FILM TYPE

: STRUCTURIX D7

MATERIAL S CKNESS (MM)	FD (CM)	EXPOSURE TIME (MIN)	THICKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)
40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 50.0 51.0 52.0 53.0 55.0 57.0 58.0 61.0 62.0 63.0 64.0 67.0 68.0 67.0 68.0 71.0 72.0 73.0 74.0 77.0 78.0	77777777777777777777777777777777777777	5.2 5.3 5.6 5.6 5.6 5.6 6.2 6.6 6.6 6.3 7.3 7.7 7.9 8.6 8.0 7.3 7.7 7.9 8.6 8.0 9.6 8.0 9.6 8.0 10.4 11.7 11.4 12.4 12.4 12.4 12.6 14.6 15.6 16.6 16.6 16.6 16.6 16.6 16.6 16	96.0 97.0 98.0 99.0 100.0 101.0 102.0 103.0 105.0 106.0 107.0 108.0 110.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 120.0 121.0 122.0 123.0 124.0 125.0 126.0 127.0 128.0 129.0 131.0 132.0 131.0 132.0 131.0 132.0 133.0 134.0 135.0	96. 97. 98. 99. 100. 101. 102. 103. 104. 105. 106. 107. 118. 112. 113. 114. 115. 116. 117. 118. 120. 121. 122. 123. 124. 125. 126. 127. 128. 129. 130. 131. 132. 133. 134. 135.	39.9 42.0 44.2 46.6 49.6 50.6 55.2 64.6 71.1 74.8 86.8 91.9 105.9 116.9 116.9 112.9 129.1 142.5 149.7 157.1 142.2 191.3 201.6 232.7 244.3 256.5

MATERIAL CKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)	THICKNESS (MM)	SED (CM)	EXPOSURE TIME (MIN)
80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 89.0 91.0 92.0 93.0 94.0	80. 81. 82. 83. 84. 85. 86. 87. 88. 90. 91. 92. 93.	18.0 17.7 18.7 19.8 20.9 22.1 23.3 24.6 26.0 27.5 29.0 30.6 32.3 34.1 35.9 37.9	136.0 137.0 138.0 139.0 140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 146.0	136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	269.3 282.7 296.8 311.6 327.1 343.4 360.4 378.3 397.1 416.8 437.4 459.0 481.7 505.5 530.5

Table V-2 Exposure Table for Cesium 137

RADIOACTIVE SOURCE: CESIUM 137 R. SOURCE ACTIVITY: 30.0 CURIE

MATERIAL.

: STEEL

FILM TYPE

: STRUCTURIX D7

FILM DENSITY

geography werd register was also be districted for the contribution of the contribution of the contribution of	orana 1878, r. i da al estado entretaginas el como en trata en trasponingo en como	inn anning (1875-1874) a an interplate considerate. En reacha and minimal energy page.	and a state of the company of the co	see ellistus groote tulige een a kanse et la troopeetse tuli	e andre Salaran, recomercia e recine Carlostone de estado
MATERIAL ICKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)	THICKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 31.0 33.0 33.0 33.0 33.0 34.0 41.0 43.0 44.0 45.0 46.0 47.0 48.0 51.0 51.0 51.0 51.0 51.0 51.0 51.0 51	50. 50. 50. 50. 50. 50. 50. 50.	2.5 5.6 7.7 8.9 9.1 2.3 3.3 3.3 3.4 4.5 4.5 7.8 9.3 1.2 1.3 1.3 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 70.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 89.0 90.0 91.0 91.0 92.0 93.0 91.0	61. 62. 63. 64. 65. 66. 67. 68. 69. 71. 73. 74. 75. 78. 81. 82. 83. 84. 85. 87. 88. 89. 90. 91. 92. 93. 94. 95. 96. 97. 98.	16.2 17.8 18.3 18.3 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5

Exposure Table for Iridium 192

RADIOACTIVE SOURCE: IRIDIUM 192 R. SOURCE ACTIVITY: 30.0 CURIE MATERIAL

: STEEL

FILM TYPE : STRUCTURIX D7
FILM DENSITY : 2

anger programme established for every section of Tarters and and assessment to the	trottes te essentiationes con		distantina proportional superioristic superioristic contract contract superioristic superioristic superioristic	genetical process of the teacher stop size it.	en. Alban oldere i velo velo villo delle e disertita val randala.
MATERIAL ICKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)	THICKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)
12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 21.0 22.0 23.0 22.0 23.0 24.0 25.0 27.0 28.0 31.0 32.0 33.0 34.0 35.0 37.0 37.0 41.0 44.0 45.0 45.0 45.0 45.0 46.0 55.0 55.0 55.0 55.0	50. 50. 50. 50. 50. 50. 50. 50. 50. 50.	2.0 2.1 2.2 2.3 4.2 2.3 2.4 2.6 2.7 2.8 3.1 2.8 3.1 2.8 3.1 2.8 3.1 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.6 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7 3.7	57.0 58.0 59.0 60.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 68.0 69.0 71.0 72.0 73.0 74.0 75.0 76.0 77.0 78.0 79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 90.0 91.0	57. 58. 59. 60. 61. 62. 63. 64. 65. 66. 71. 73. 75. 77. 78. 79. 81. 82. 83. 84. 85. 88. 89. 91. 92. 94. 95. 96. 99. 100.	21.2 23.1 25.4 29.6 35.5 42.9 35.5 45.0 54.3 50.5 45.0 54.3 67.3 127.3 138.4 168.2 193.8 210.7 127.3 138.4 168.2 219.1 229.1 249.1 249.3 210.7 249.3 210.7 249.3 210.7 249.3 210.7 249.3 210.7 249.3 256.3 266.3 277.3 2

APPENDIX VI

Constructed exposure tables according to material densities by using 'Alternative Method'

Exposure Table for Cobalt 60
According to Material Densities
from 3.0 gm/cm³ to 7.0 gm/cm³

RADIOACTIVE SOURCE : COBALT 60 R. SOURCE ACTIVITY : 30.0 CURIE

FILM TYPE

: STRUCTURIX D7

FILM DENSITY

ERIAL DENSITY	(gm/em ³)	eueronaeur warne von revueren er	4	5	6	una sa dan atawarin tuwudan 2004 7
MATERIAL CKNESS (MM)	SFD (CM)	anakana - 5 km kalaina dan malaka kalainan daka daka daka daka daka daka daka d	EXPOSUI	RE TIME	(MIN)	
40.0 41.0 42.0 43.0 45.0 45.0 46.0 47.0 48.0 50.0 51.0 51.0 55.0 55.0 55.0 60.0 61.0 62.0 63.0 63.0 63.0 64.0 67.0 68.0 67.0 67.0 67.0 77.0	75		.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	00000000000000000000000000000000000000	.000011233456678901233457890123457890370 4444444444555555555566666667778	4.56789123457891235689124679135791358384 4.56789123457891235689124679135791358384 10.11

PERJAL DENSIT	Y (gm/cm ³)	**************************************				
MATERIAL	CONSTRUCTION CONTROL OF THE CONTROL	A saudan marin sinak dan	TVV TO CO	tera katolina di katolina katolina katolina katolina (katolina katolina katolina katolina katolina katolina ka	ಸ್ಥಾಪ್ಯ ಸ್ಥಾಪ್ತಿಯ ಕ್ಷಮಿಸಿ ಕ್ಷಮಿಸಿ ಕ್ಷಮಿಸಿಕೆ	grander of the control of the contro
, ,	SFD (CM)		EXPOS	JRE TIME ((MIN)	
ICKNESS (MM)	rgs voltassi vagger spakee pallikosik shopaa e spassivaktikostassa saassa	la toto kanneskop, tilanheina erlan sessor erlandelse	Designate transactions and the state of the same than th	್ಲುವಾಗಿ ಮೋಪಾಲಭಕಗಳನ್ನು ಮನೇ ಸೆಗ್ನ ರಾಣ-ಹ	partie dinestro come o acte moto. Associ	in the fact that the Alberta School & S
79.0	79。	.0	5.1	6.4	8.4	11.9
0.08	. 08	о О е	5.3	6,6	8.7	12.5
81.0	81.,	۰.0	5.5	6.9	9.1	13.2
82 . 0.	82 ,	- * Ô	5 . 7	7.2	9.5	13.9
83.0	83 .	5.0	5.9	7.5	9.9	14.6
84.0	84 °	5.1 5.3	6.1	7.8 8.1	10.4 10.8	15.3 16.0
85 ₀ 0	85。 86。	2.5 5.5	6.4 6.6	8.4	11.3	16.9
86.0 87.0	87.	5.7	6.8	8.7	11.8	17.7
88.0	88.	5.8	7.1	9.1	12.3	18.6
89.0	89°	6.0	7.3	9.4	12.8	19.5
90.0	90.	6.2	7.6	9.7	13.4	20.4
91.0	91.	6.4	7.8	10.1	13.9	21.5
92.0	92.	6.6	8.1	10.5	14.5	22.5
93.0	93。	6.8	8.4	10.9	15.1	23.6
94.0	94.	7.0	8.7	11.3	15.7	24.7 24.1
95.0	95 .	7.3	8.9 9.3	11.7 12.1	16.4 17.1	25.3
96.0	96。 97。	7.5 7.7	9.6 9.6	12.5	17.8	25.6
97.0 98.0	98°	7.9	9.9	13.0	18.5	27.8
99.0	99.	8.2	10.2	13.4	19.3	29.1
100.0	lóo.	8.4	10.5	13.9	20.1	30.5
101.0	101。	8.7	10.9	14.4	20.9	31.9
102.0	102.	8.9	11.2	14.9	21.7	33.5 35.0
103.0	103。	9.2	11.6 12.0	15.4 16.0	22.6 23.5	36.7
104.0	104.	9.4 9.7	12.3	16.5	24.5	38.4
105.0 106.0	105. 106.	10.0	12.7	17.1	25.5	40.3
100.0	107.	10.3	13.i	17.7	26.5	42.2
108.0	108.	. 10.6	13.5	18.3	27.6	44.1
109.0	109,	10.9	13.9	18.9	28.7	46.2
110.0	110.	11.2	14.4	19.6	29.8 31.0	48.3 50.5
111.0	111.	11.5	14.8 15.2	20.3 21.0	32.2	52.8
112.0	112. 113.	11.8 12.1	15.7	21.7	33.5	55.2
113.0 114.0	114.	12.5	16.2	22.4	34.8	57.6
115.0	115.	12.8	3.6.6	23.2	36.2	60.2
116.0	116.	13.2	17.1	23.9	37.6	63.0
117.0	117.	13.5	17.6	24.7	36 · 3	65.7
118.0	118.	13.9	18.1	25.6 26.4	37.7 39.2	63.3 66.1
119.0	119.	14.3	18.7 19.2	26.4 27.3	40.7	69.0
120.0	120.	14.7 15.1	19.8	28,2	42.3	72.0
121.0	121。 122。	15.5	20.3	29.2	43.9	75.2
122.0 123.0	123.	15.9	20.9	30.1	45.6	78.5
124.0	124.	16°3	21.5	31.1	47.4	81.9
125.0	125.	16.7	22.1	32.1	49.2	85.5
126.0	126.	17.2	22.8	33.2	51.1	89.2
127.0	127.	17.6	23.4	34.3	53.0 55.1	93.1 97.1
128.0	128.	18.0	24.1	35.4 36.6	55.1 57.2	101.3
129.0	129.	18.5	24.7	36.6	1105	Sec. 20 50

The second secon	Provide and the control of the Contr					_
FERIAL DENSI	TY (gm/cm ³)	3	4	Secretaria de la composición del la composición del composición de la composición del composición del composición de la composición del la composición del composición d	6	7
MATERIAL	SFD (CM)	man die verscheit weretigd die zusch ist in den der volle, die die der ger * 1,50 E i	Expos	URE TIME	(MIN)	 април саприл рамен правит техно форматического от нем.
ICKNESS (MM)	and a specific company agreement and one of the column array, or resigner, and an	errer - Allenanglad – jake erlengan benade felde - Bake	Priidition of the wife of the change of the work of the change of the c	raans een van Samerikus meerkkenskers in bes	o Mariano (de proceso de la Arriga de Mariano	nes i salaren erre alan sellanen epostelikken i tiller kopus e
130.0 131.0 132.0 133.0 134.0 135.0 136.0 137.0 138.0	130. 131. 132. 133. 134. 135. 136. 137. 138. 139.	19.0 19.5 19.9 20.4 21.0 21.5 22.0 22.5 23.1 23.6	25.4 26.2 26.9 27.6 28.4 29.2 30.0 30.8 31.7	37.8 39.0 40.2 41.5 42.9 44.3 45.7 47.2 48.7 50.2	59.4 61.6 63.9 66.4 68.9 71.4 74.0 76.8 79.6 82.5	105.7 110.3 115.0 120.0 125.2 130.6 136.2 142.1 148.2 154.6
140.0 141.0 142.0 143.0 144.0 145.0 146.0 147.0 148.0 149.0	140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	24.2 24.8 25.4 26.6 27.2 27.8 29.8 29.8 30.5	33.4 34.4 35.3 36.3 37.2 38.3 40.4 41.4 42.6 43.7	51.8 53.9 556.9 56.9 58.8 59.8 65.6 65.6	85.5 88.6 91.8 95.1 98.5 102.0 97.5 101.0 104.5 108.2 112.0	161.2 168.1 175.3 182.8 190.6 198.8 207.3 216.1 225.3 234.9 244.9

Exposure Table for Cobalt 60
According to Material Densities
from 8.0 gm/cm³ to 12.0 gm/cm³

RADIOACTIVE SOURCE : COBALT 60 R. SOURCE ACTIVITY : 30.0 CURIE

FILM TYPE

: STRUCTURIX D7

FILM DENSITY

PERIAL DENSITY	((gm/cm ³)	8	9	1.0	11	12
MATERIAL ICKNESS (MM)	SFD (CM)		EXPOS	URE TIME	(MIN)	name dum tipos salvos nos submitaronames.
40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 48.0 47.0 48.0 47.0 48.0 47.0 48.0 50.0 50.0 50.0 50.0 50.0 50.0 60.0 60	75. 75. 75. 75. 77. 77. 77. 77. 77. 77.	5.5.5.5.6.6.6.6.7.7.7.8.8.8.8.9.9.9.10.0.11.4.8.2.6.0.4.8.3.7.2.1.9.8.1.1.2.2.3.3.3.4.5.6.5.6.1.4.8.2.6.0.4.8.3.7.2.1.9.8.1.4.8.2.6.0.4.8.2.2.0.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	7.3 7.6 8.4 7.0 7.0 7.0 8.4 9.0 10.4 11.1 12.3 13.6 14.8 15.6 18.9 19.6 15.3 14.2 14.8 15.1 16.1 17.2 12.2 12.2 12.2 12.2 12.2 12.2 12	9.8 10.8 11.8 12.4 13.7 14.1 15.4 11.8 12.2 13.6 13.7 14.1 15.4 16.9 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	15.4 15.1 16.1 17.3 19.5 19.5 19.5 19.5 19.5 19.5 19.5 19.5	25.6 25.4 25.6 27.4 27.3 37.4 47.3 25.6 50.7 89.8 107.3 138.4 195.6 207.8 107.3 107.

eliminativa i ministra manurun erren eta		Properties of a catamata properties and a	PACKETONIA OF THE OF THE PACKET	N. The sales of th		
TERIAL DENSITY	(gm/cm ³)	8	9	10	11	12
MATERIAL ICKNESS (MM)	SFD (CM)	an James Barra (Barra (Barra (Barra))	EXPOS	SURE TIME	(MIN)	
79.0 80.0 81.0 82.0 83.0 84.0 85.0 86.0 87.0 88.0 90.0 91.0 92.0 93.0 94.0 95.0 96.0 97.0 98.0 99.0 101.0 105.0 107.0 108.0 111.0 112.0 113.0 114.0 115.0 116.0 117.0 118.0 119.0 121.0 122.0 123.0 124.0 125.0 124.0 125.0 126.0 127.0 128.0	79. 80. 81. 82. 83. 84. 85. 86. 87. 89. 90. 91. 92. 93. 94. 95. 102. 103. 104. 105. 107. 108. 110. 112. 113. 114. 115. 116. 117. 118. 119. 121. 121. 121. 121. 122. 123. 124. 125. 127. 128.	17.8.9.0.2.5.8.2.7.2.9.5.3.2.3.4.4.4.4.5.5.5.8.4.5.9.4.0.9.0.2.8.5.5.2.2.3.3.3.3.3.3.4.4.4.4.5.5.5.8.4.5.9.4.0.9.0.2.8.5.5.7.3.1.2.6.4.5.0.9.1.8.0.6.8.4.4.5.5.8.8.8.8.8.8.8.8.9.8.8.5.5.7.3.1.2.6.4.5.0.9.1.8.0.6.8.4.4.9.8.9.8.8.8.8.8.8.8.8.8.8.8.8.8.8	3246.8 32	65.7 71.9 89.2 105.6 113.6 122.6 105.6 113.6 122.7 105.6 122.7 105.6 105	181.9 200.0 219.8 241.5 264.9 290.6 318.6 349.4 460.0 552.0 460.1 5504.5 662.1 790.4 952.1 1141.6 1249.9 1368.5 00.0 00.0 00.0 00.0 00.0 00.0 00.0 0	657.2 735.1 822.3 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0

DENSITY	(gm/cm/)	8	9,	10	11	12
CAL :	SFD (CM)		EXPOSUR	E TIME (1	MIN)	meter and province and the complete and province and the complete and the
	129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 146. 147. 148. 149.	236.4 248.8 261.8 275.5 289.9 305.0 337.7 355.8 393.2 413.6 457.7 481.4 506.3 532.5 560.1 589.4 651.4	712.9 757.4 804.7 854.9 908.2 964.2 1023.5 1086.5 1153.3 1224.1 1299.4 1379.2 1463.9 1553.8 1649.2 1750.4 1857.8 1971.8 2092.7 2221.0 2350.7			
Ų.	⊙ الارر مذء	~ ~ J & W		-		-
	IAL (MM) O (MM)	IAL SFD (CM) S (MM) 129. 130. 131. 132. 133. 134. 135. 136. 137. 138. 139. 140. 141. 142. 143. 144. 145. 144. 145. 146. 147. 148. 149.	IAL SFD (CM) (MM) (129. 236.4 (130. 248.8 (131. 261.8 (132. 275.5 (133. 289.9 (134. 305.0 (135. 321.0 (135. 321.0 (136. 337.7 (137. 355.3 (139. 393.2 (140. 413.6 (141. 435.1 (142. 457.7 (143. 481.4 (144. 506.3 (144. 506.3 (145. 532.5 (146. 560.1 (147. 589.0 (149. 651.4	ALL SFD (CM) EXPOSURES (MM) 129. 236.4 712.9 130. 248.8 757.4 131. 261.8 804.7 132. 275.5 854.9 133. 289.9 908.2 134. 305.0 964.2 135. 321.0 1023.5 136. 337.7 1086.5 137. 355.3 1153.3 138. 373.8 1224.1 139. 393.2 1299.4 140. 413.6 1379.2 141. 435.1 1463.9 142. 457.7 1553.8 143. 481.4 1649.2 144. 506.3 1750.4 145. 532.5 1857.8 146. 560.1 1971.8 147. 589.0 2092.7 148. 619.4 2221.0 149. 651.4 2357.2	ALL SFD (CM) EXPOSURE TIME (RS (MM)) 129. 236.4 712.9 .0 .0 .130. 248.8 757.4 .0 .131. 261.8 804.7 .0 .132. 275.5 854.9 .0 .133. 289.9 908.2 .0 .134. 305.0 964.2 .0 .135. 321.0 1023.5 .0 .136. 337.7 1086.5 .0 .137. 355.3 1153.3 .0 .138. 373.8 1224.1 .0 .139. 393.2 1299.4 .0 .139. 393.2 1299.4 .0 .140. 413.6 1379.2 .0 .141. 435.1 1463.9 .0 .142. 457.7 1553.8 .0 .143. 481.4 1649.2 .0 .144. 506.3 1750.4 .0 .145. 532.5 1857.8 .0 .146. 560.1 1971.8 .0 .147. 589.0 2092.7 .0 .148. 619.4 2221.0 .0 .149. 651.4 2357.2 .0 .0 .149. 651.4 2357.2 .0 .0 .149. 651.4 2357.2	TAL SFD (CM) EXPOSURE TIME (MIN) (MM) (M

Exposure Table for Cesium 137
According to Material Densities
from 1.0 gm/cm³ to 5.0 gm/cm³

RADIOACTIVE SOURCE : CESIUM 137

R. SOURCE ACTIVITY: 30.0 CURIE

FILM TYPE

: STRUCTURIX D7

EILM DENSITY

MATERIAL DENSITY	(gm/cm ³)	anno 48 indires in an discussion American 1	2			5
MATERIAL THICKNESS (MM)	SED (CM)	elden dien der Program in der Steine der Steine der Steine der Steine Steine Steine Steine Steine Steine Steine	EXPOSU		MIN)	er digital valid from typing fatter op net in diversional fatter of the second fatter of the
20.00000000000000000000000000000000000	55555555555555555555555555555555555555	000000000000000000000000000000000000000	.0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000

ATERIAL DEMSIT	'Y (gm/cm ³)	J.	2	3	4	5
MATERIAL HICKNESS (MM)	SFD (CM)	der til er formatt til er en kanne til en en framste en en formatte en en formatte en en formatte en en format I en	EXPOST	JRE TIME (MIN)	in ga a ann ann airgean an ann airgean air an airgean air an airgean air an airgean air ann airgean airgean ai Th' airgean ai
59.0 60.0 61.0 62.0 63.0 65.0 65.0 667.0 67.0 67.0 77.0 77.0 77.0 77.0 7	59. 60. 61. 62. 63. 64. 65. 667. 71. 77. 78. 81. 88. 88. 88. 88. 88. 88. 88. 88. 8	33333333333333333333333333333333333333	3333444444455555666667777788889999900.371593726 10.457802469135803581470369360371593726	33.024.5791.4681.3681.4703.693.603.7159483.7272.83 10.0.11.9483.7272.83 11.2.233.4.55.6.6.77.788888.990.00.711.12.233.4.55.6.6.77	4.357924792581470471593726050506284074186 1.357924792581470471593726050506284074186	4.9 5.47 6.36 6.37 6.37 1.50 1

Exposure Table for Cesium 137 According to Material Densities from 6.0 gm/cm 3 to 10.0 gm/cm 3

RADIOACTIVE SOURCE : CESIUM 137 R. SOURCE ACTIVITY: 30.0 CURIE

FILM TYPE

: STRUCTURIX D7

TERIAL DENSIT	Y (gm/cm ³)	ram puma amanamana E	o are condition of the training and equivalent	eriannister teamatimetania i tota enia etto	g	Lower personal approximation of the Control of the
MATERIAL LICKNESS (MM)	SFD (CM)	പ്രവാഗത്തിലെ വിവാധത്ത് വേദ്യ വരുന്നു. വിവാധത്തിലെ വിവാധത്തിലെ വിവാധത്തിലെ വിവാധത്തിലെ വിവാധത്തിലെ വിവാധത്തിലെ	EXPOSU	JRE TIME (MIN)	andresse and security and a decrease and a security
20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 26.0 27.0 29.0 31.0 31.0 33.0 33.0 33.0 33.0 33.0 33	50. 50. 500. 500. 500. 500. 5500. 5500. 5500. 5500. 5500. 5500. 5500. 55555555	00002233444556667788 9 90112333333344445555	2222222223333333333444444455566778 33344566778900123456789012344444455566778	222233333333444445555566667788901224 222233333333444445555566667788901224 11224	33333444445556666778899000.2345680.46065 235780246813692593716162841864396446065	4.6 4.9 5.6 6.4 5.6 6.4 7.0 9.4 11.0 9.1 12.9 11.9 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0

and a second		Pertan dia ne de de desente de de	harrolla si lilimo amo amo amo may amo mga saga saga	ಪರೀಪಾ- ನೀರು ನೇಲು ಸರ್ವಾ ಪ್ರಾಕ್ಷಣ ಪ್ರಸ್ತಿ ಪ್ರಸ್ತಿ ಪ್ರಸ್ತಿ ಪ್ರಕ್ಷಣ ಪ್ರಸ್ತಿ ಪ್ರಸ್ತಿ ಪ್ರಸ್ತಿ ಪ್ರಸ್ತಿ ಪ್ರಸ್ತಿ ಪ್ರಶ್ನ	non no en la lace de lace de la lace de	nille ville ville og greve style kanne style vilte
TERIAL DENSIT	Y (gm/cm ²)	6	7	8	9	10
MATERIAL IICKNESS (MM)	SFD (CM)	ಟೀ [ಂ] ಸಹಿತಿ ನಿಭರ ಸಭಿ ನೀಡಿ ಎನರಣ ಮದುಕಾರಣ	EXPOS	URE TIME	(MIN)	n die hat werd ook ook toekook d
59.0 61.0 62.0 63.0 64.0 65.0 66.0 67.0 71.0 77.0 77.0 77.0 77.0 77.0 77.0 7	59. 61. 62. 63. 64. 65. 66. 67. 77. 77. 77. 77. 77. 77. 77. 78. 82. 88. 88. 88. 99. 99. 99. 99. 99. 99. 99	666677889900.11.739630865433345792594063098891 11.234.556.5433345792594063098891 11.234.556.5433345792594063098891	899.532235793739643344495556667788995 11.21111111222222333379.0667940891643	15.1 16.3 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0	35.7 39.1 42.1 51.6 62.1 56.6 62.1 56.6 674.7 6000000000000000000000000000000000000	

Table VI-5

Exposure Table for Iridium 192 According to Material Densities from 1.0 gm/cm³ to 5.0 gm/cm³

RADIOACTIVE SOURCE : IRIDIUM 192 R. SOURCE ACTIVITY : 30.0 CURIE

FILM TYPE

: STRUCTURIX D7

FILM DENSITY

AND THE RESERVE OF THE PROPERTY OF THE PROPERT	and the second of the second o	reduced the distribution of the control of the	Participation and the second of the second o	THE PERSON OF TH	sam agamente tan occurrana historia. I han e	Jane 1086 e den e ben stare 1930 e 1930 e
TERIAL DENSIT	Y (gm/cm ³)	Company Compan	2	3	4	5
MATERIAL HICKNESS (MM)	SFD (CM)	e e e e e e e e e e e e e e e e e e e	EXPOSU	RE TIME (MIN)	TOWNS OF THE SECTION
12.0 13.0 15.0 16.0 16.0 19.0 19.0 21.0 22.0 23.0 20.0 21.0 22.0 23.0 24.0 22.0 23.0 31.0 31.0 31.0 31.0 31.0 31.0 31.0 3	50000000000000000000000000000000000000	000000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	00000000000000000000000000000000000000	0000000001122233444556778899012234558 2222222222222222222222333333333333

4 5 IME (MIN)	0 3.5 4.3 2 3.7 4.5 3.7 4.8 5.1 5.1 5.4 5.7 4.8 5.1 5.7 5.3 5.3 6.9 7.5 7.5 9.8 8.4 8.8 9.8 10.9 10.9 11.5 10.9 11.4 12.8 10.9 11.4 15.7 10.9 11.9 15.6 10.9 11.4 12.8 10.9 11.4 12.8 10.9 11.4 15.7 10.4 13.5 14.2 10.9 11.4 12.8 10.9 12.5 13.1 18.4 13.7 20.3 14.9 12.5 23.7 15.6 23.7 24.9 26.2 24.9 27.7 26.2
JRE TIME	4.7924792581581990.483727272 113.7272
2. EXPOSU	4.5 4.9 5.4 5.6 5.6 6.3 6.9 7.5
	2.4568902356891346802469136814692582582 2.00000000000000000000000000000000000
Y (gm/cm ³) SFD (CM)	52. 53. 55. 55. 55. 55. 56. 57. 58. 62. 64. 65. 64. 65. 67. 77. 77. 77. 77. 77. 77. 77. 77. 77
TERIAL DENSIT MATERIAL HICKNESS (MM)	52.0 53.0 54.0 55.0 56.0 57.0 58.0 61.0 62.0 64.0 63.0 64.0 68.0 67.0 71.0 72.0 74.0 75.0 77.0 77.0 77.0 78.0 77.0 78.0 80.0 81.0 81.0 83.0

Exposure Table for Iridium 192 According to Material Densities from 6.0 gm/cm^3 to 5.0 gm/cm^3

RADIOACTIVE SOURCE: IRIDIUM 192

R. SOURCE ACTIVITY: 30.0 CURIE

FILM TYPE

: STRUCTURIX D7

ATERIAL DENSITY	(gm/cm ³)	6	Company and the company of the compa	enstrumente este este este este este este este	9	10
MATERIAL HICKNESS (MM)	SFD (CM)		EXPOS	URE TIME	(MIN)	ing in the second se
12.0 13.0 15.0 15.0 16.0 16.0 17.0 19.0 19.0 19.0 19.0 19.0 19.0 19.0 19	50. 500. 500. 5500. 5555555555555555555	000000112223445567789001234567890123569	0001122344567890123467801245791247914695 22222222222233333334444455555566667	22222223333334444455556667788990011234	2.689136803582594839529765667037309027331 2.13680358259483952911.236.67037309027331 2.2223333680358259483952911.236.67037309027331	3.6 4.0 3.6 4.0 3.6 4.0 3.6 4.0 3.6 7.0 5.6 8.0 9.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1

The Control State was a State of State						
ATERIAL DENSITY	(gm/cm ³)	6	7	S	- 1804-1803 (1904) reducedo proces (1806 e 1894-1904-1905) 9	10
MATERIAL EICKNESS (MM)	SFD (CM)	EXPOSURE TIME (MIN)				
52.000000000000000000000000000000000000	52° 534° 5556° 556° 560° 560° 560° 560° 560° 56	5.5666.77889.09877891471629766704728656940892755 10112334.7801.22222333333444455556667788894	8.8 9.3 10.1 11.0 10.1 11.0 11	16.2 17.2 19.5 19.5 21.4 21.4 21.4 21.4 21.4 21.4 21.4 21.4	47.6 53.7 68.5 88.1 125.3 1125.3 125	

APPENDIX VII

Improved exposure charts with 'Alternative Method'

Table VII-1 Exposure chart according to material thicknesses

Table VII-2 Exposure chart according to material densities

Table VII-3 Exposure chart according to material thichnesses

95

Table VII-4 Exposure chart according to material densities

Table VII-5 Exposure chart according to material thicknesses

97

Table VII-6 Exposure chart according to material densities

REFERENCES

- 1- General Dynamics, Nondestructive Testing, San Diego, 1967.
- 2- Gardner, R. P., and Ely, Jr. R. L., <u>Radioisotope</u>

 <u>Measurement Applications in Engineering</u>, Reinhold Pub.

 Co., New York, 1967.
- 3- Mc Gonnagle, W. J., <u>Nondestructive Testing</u>, Gordon and Breach, New York, 1971.
- 4- Mustafa, N., Ghauri, G. A., Ahmad, M., and Khan, A. A., Notes on Industrial Radigraphy, Pakistan Institute of Nuclear Science and Technology, Islamabad, April 1975.
- 5- Özden, N., <u>Endüstriyel Radyografi</u>, Sınai Eğitim ve Geliştirme Merkezi Genel Müdürlüğü, Yayın No 45, Haziran 1979. Ankara.
- 6- Eastman Kodak Company, Radiography in Modern Industry, New York, 1957.
- 7- Beynelmilel Kaynak Enstitüsü, <u>Endüstriel Radvografi El</u> <u>Kitabı</u>, İTÜ Türk Teknik Haberleşme Merkezi, 1969.
- 8- Geavert, Industrial Radiography, Antwerp.
- 9- The British Steel Castings Research Association,
 Recommended Procedure for the Radiographic Flaw
 Detection of Steel Castings, Sheffield, 1967.
- 10- Kodak "Industrex" Films, Information Sheet No. 3, 1975, England.
- 11- Sharpe, R. S., Langton, H. J., and Dowden, W. A., (Compilers), Quality Technology 73, The Nondestructive Testing Centre AERE Harwell Didcot Berkshire, Hopkins and Bailey Ltd., Birmingham, England, 1973.
- 12- Agfa-Geavert, Radiofilms Industriels, Anvers, 1970.
- 13- Crouthamel, C. E., <u>Applied Gamma Ray Spectrometry</u>, Pergamon Press, New York, 1970.
- 14- Engineering Compendium on Radiation Shielding, International Atomic Energy Agency-Vienna, New York, 1968.
- 15- Compagnie Generale De Radiologie, Information Sheet JC / JP 7-02.

- 16- Texas Instruments SR-51-II Handbook, Texas Instruments, 1976.
- 17- Lamarsh, J. R., <u>Introduction to Nuclear Reactor Theory</u>, Addison-Wesley, Reading, 1972.
- 18- El-Wakil, M. M., <u>Nuclear Heat Transport</u>, International Textbook Company, London, 1971.