ANALYSIS OF THE INTEGRAL TRANSPORT

THEORY CODE GELS AND ITS APPLICATION TO PWR CELL HOMOGENIZATION WITH THE PURPOSE OF THORIUM CONVERSION

by

Sirri ALBAYRAK

B.S. in Physics, I.U., 1976

Submitted to the Nuclear Engineering Department

in Partial Fulfillment of

the Requirements for the Degree of

MASTER OF SCIENCE

in

Nuclear Engineering

Boğaziçi University

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to my adviser Dr. Vural ALTIN for his continual interest and help throughout this work.

My deep thanks goes also to Prof. Dr. Turan B. ENGINOL for his valuable advise and encouragement.

ÖZET

Bu çalışmada GELS kodu, alt programları ile birlikte detaylı olarak incelenmiştir. Bu kodu kullanarak yanma (burn up)lı veya yanma olmaksızın basınçlı su soğutmalı bir reaktörde (PWR) yakıt hücre hesabı ve kontrol çubuğu bölgesi hücre hesapları yapılarak böyle bir reaktörün çeşitli hücrelerinde Toryumdan Uranyum-233 üretim olanakları araştırılmıştır. Bu amaçla Uranyum bileşeni farklı zenginlikte değişik $UO_2 - ThO_2$ karışımlarını ihtiva eden yakıt hücrelerinin reaktivite değerleri Ve , aynı zamanda bu hücrelerdeki özellikle Xenon-135 ve U-233 olmak üzere izotopların konsantrasyonları hem başlangıç değerleri hem de yanmanın bir fonksiyonu olarak ayrıntıları ile incelen_miştir.

ABSTRACT

In the present work the computer code GELS has been examined in detail together with its subroutines. Using the GELS code fuel cell calculation, super cell calculation with and without burn-up were performed in a PWR.

The possibility of U-233 production from Thorium in a PWR is investigated. For this purpose fuel cells consisting of varying mixtures of UO_2 - ThO₂ with the Uranium compOnent enriched to different levels are examined for their k_{∞} values. Also, for these cells, both initially and as a function of burnup isotopic compOsitions, especially Xenon-135 and U-233 concentrations, are traced depending on exposure time.

TABLE OF CONTENTS

		PAGE
ACKNOWLE	DGEMENTS	1
LIST OF	THE TABLES	iv
liśt of	THE FIGURES	v
CHAPTER	I- INTRODUCTION	l
CHAPTER	II-ANALYSIS OF GELS	10
	II-1.MAIN PROGRAM	10
	II-2.TERMINOLOGY AND DEFINITIONS	12
	II-3.FUEL AND SUPER CELL MODEL	14
	II-4.SUBROUTINE INPUT A	16
	II-5.SUBROUTINE INPUT B	19
	II-6.SUBROUTINE MACRO	21
	II-7 SUBROUTINE CP	24
	II-8 SUBROUTINE TRANS	26
	II-9.SUBROUTINE MATINV	31
	II-10.SUBROUTINE DEPRIN	3 2
	II-11.SUBROUTINE BURNUP	38
	II-12.SUBROUTINE SYNOPS	44
	II-13.SUBROUTINE GRUPVE	47
	II-14.SUBROUTINE GRUPVB	57
	II-15.SUBROUTINE ORDO AND COBES	62
CHAPTER	III-NUMERICAL APPLICATION	66
	III-1.INPUT DATA PREPARATION	66
	III-2.DISCUSSION OF THE NUMERICAL RESULTS	69

APPENDICES

APPENDIXA-INPUT DESCRIPTION	110
APPENDIXB-SERIES OF ISOTOPES IN THE LIBRARY	118
APPENDIXC-SAMPLE INPUT	J55
APPENDIX D-SAMPLE RUN REFERENCES	126 130

LIST OF TABLES

	PAGE
I-1.The General Approximate Flow diagram for GELS	6
I-2.Simplified Flow diagram	9
III-2-1,2,3:The results for fuel cell calculation without	burnup
for different U02-TH02 fuel mixtures	72-75
III-2-4. U-233 Production for one year burnup period in gr	.for
different UO ₂ -THO ₂ fuel mixtures in the cell	75
III-2-5,6,7.The atomic density of Xenon-135 depending on time steps for different UO ₂ -THO ₂ fuel mixt	75-78 ures
III-2-8 . The weights of fuel isotopes for 30%U02-70%TH02 fuel mixture and 10%U-235 enrichment level	78-80
III-2-9. The weights of fuel isotopes for 30%U02-70%THO ₂ fuel mixture and 12%U-235 enrichment level	80-82
III-2-10. The weights of fuel isotopes for 30%U0 ₂ -70%TH0 ₂ fuel mixture and 16%U-235 enrichment level	82-84
III-2-11. The weights of fuel isotopes for 30%U02-70%TH02 fuel mixture and 20%U-235 enrichment level	84-86
III-2-12. The weights of fuel isotopes for 50%U02-50%TH02 fuel mixture and 10%U-235 enrichment level	86-88
III-2-13. The weights of fuel isotopesfor 50%U0 ₂ -50%TH0 ₂ fuel mixture and 12%U-235 enrichment level	88-90
III-2-14. The weights of fuel isotopes for 50%U02-50%TH02 fuel mixture and 16%U-235 enrichment level	90-92
III-2-15. The weights of fuel isotopes for 50%U02-50%TH02 fuel mixture and 20%U-235 enrichment level	92 - 94
<pre>III-2-16. 17. The weights of fuel isotopes for 70%U0₂-30%TH0₂ 18. 19. fuel mixture and different U-235 enrichment level</pre>	els 94-101
C-1 2 . Number densities for different UO ₂ -THO ₂ mixtures 4 and different enrichment levels 6	

II-1. Fuel pin cell II-2. Super cell II-3. Cell volume II-4. Circular cylinder II-5. Heavy metal chains II-6. Homogenized area III-1. The reactivity versus enrichment levels of U-235

FIGURES

LIST OF

for different mixtures of UO2-THO2

III-2. The reactivity versus time steps for the mixture of 30%U0₂-70%THO₂ 102

III-3. The reactivity versus time steps for the mixture of 50%U02-50%TH02 103

- III-4. The reactivity versus time steps for the mixture of 70%U0₂-30%THO₂ 104
- III-5. THe Xenon-135 concentration versus time steps for the mixture of 30%U02-70%TH02 and different enrichment levels of U-235
- III-6. The Xenon-135 concentration versus time steps for the mixture of 50%U02-50%TH02 and different enrichment levels of U-235
- III-7. The Xenon-135 concentration versus time steps for the mixture of 70%U0₂-30% THO₂ and different enrichment levels of U-235
- III-8. The U-233 production in gr. for one year burnup
 period versus different enrichment levels of U-235
 for different UO₂-THO₂mixtures

108

PAGES

14

15

19

25

39

44

CHAPTER I

INTRODUCTION

The main object of this work is to investigate the possibility of Th conversion in a PWR of the type considered for the AKKUYU plant whose specifications are given in reference (1).

In the denatured Thorium fuel cycle, fuel is comprised of a mixture of Thorium and moderately enriched Uranium. During irradiation, Plutonium and U-233 will be produced from the fertile U-233 and Th-232 isotopes present in the fuel;

$$92^{\mathbb{U}^{238}} \bullet \text{ on}^{\mathbb{I}} \longrightarrow 92^{\mathbb{U}^{239}} \xrightarrow{23.54 \text{ min}} 93^{\mathbb{N}p^{239}} \xrightarrow{\mathbb{2}.33 \text{ days}} 94^{\mathbb{P}u^{239}} \xrightarrow{\mathbb{P}^{239}} 90^{\mathbb{T}h^{232}} \bullet \text{on}^{\mathbb{I}} \longrightarrow 90^{\mathbb{T}h^{233}} \xrightarrow{23.3 \text{ min}} 91^{\mathbb{P}a^{233}} \xrightarrow{\mathbb{2}7.4 \text{ days}} 92^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 32^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 92^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 32^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 32^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 32^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 32^{\mathbb{U}^{233}} \xrightarrow{\mathbb{P}^{233}} 32^{\mathbb$$

U-233 is used in subsequent cycles to supplement the need for U-235 enrichment, thus reducing the enrichment cost. Presently the Plutonium produced from the fertile U-238 is not used in later cycles but stored for later use in fast breeder reactors. The reactors which use the mixture of Thorium and Uranium as fuel would be converters, producing energy and significant amounts of fissile isotope U-233 at the same time.

Thorium fuel cycle provides an alternate path toward a solution of the present energy requirements. The most significant advantage of Th - U^{233} cycle over the U^{238} - Pu^{239} cycle in thermal reactors is the potential of a higher conversion ratio (CR). In a converter or breder reactor CR units of fuel is produced for each unit of fuel consumed. The higher conversion ratio leads directly to a lower depletion charge in the fuel cycle cost.

So far, Thorium has not been used extensively in nuclear reactors but Th conversion may be feasible as a secondary aim in nuclear power production.

Advantages of the Thorium - Uranium-233 cycle are;

1- U-233 has the excellent neutronic characteristics and deposits of Th in nature are known to be about two to three times as abundant as those of U.

2. It can be used for breeding fuel in thermal reactors

3- The melting point of **Th**orium (1842 °C) is higher than Uranium (1130 °C). UO_2 - ThO₂ rods in reactors can therefore be operated at temperatures of 1130 °C or greater, whereas Uranium rods are limited to 660 °C.

4- Uranium-233 is much less to xic than Plutonium.

5- The denatured **p**horium fuel cycle has been suggested as an alternative which would allow the use **ofbred** fissile material while mitigating the potential for nuclear weapons proliferation present with Plutonium utilization. No nuclear fuel cycle can be made completely free of proliferation risk. The objective of proliferation resistant fuel cycles is to increase the diffuculty, cost, detectability and the time required to obtain a nuclear weapon so that nuclear power becomes an unatractive path to nuclear weapons.

In the denatured Thorium fuel cycle, the Uranium component of the fuel mixture would be enriched to ≤ 20 W/O U-235. The 20 W/O U-235 enrichment level is sufficiently low as to effectively preclude the construction of a nuclear weapon. The enrichment limitation of U-233 enriched Uranium is 12 W/O; the 12 W/O U-233 limit results in a similar unsuitability for weapons use as does 20 W/O U-235.²

6- The most advantageous mode of utilization of the Thorium fuel cycle is to recycle the generated U^{233} .

But the Th fuel cycle has a longer doubling time, which is one of the drawbacks of this cycle.

There are similarities and differences in the two fuel cycles; a major difference being the intermediate formation of Pa^{233} which is a strong neutron absorber, and decays slowly. Since the decay of Pa^{233} yields fissile U^{233} , reactivity control during shutdown is complicated. In the thermal-neutron spectrum, U^{233} has a much lower alpha (∇_c/C_g) and therefore a higher eta [$\nu/(1+\alpha)$] than Pu^{239} . This difference in eta, however, is not as large as the difference in alpha might suggest, because Pu^{239} has a large ν or a larger number of neutrons produced per fission. In the thermal and epithermal energy regions, U^{233} has the potential for a higher conversion ratio than obtainable through the U-Pu fuel mixture when averaged over a burnup period. Therefore reactivity lifetimes can be larger and a greater return of fissile material at the end of the fuel cycle may be possible.

In Thorium systems the radioactivity of the daughter products of U^{232} in recovered Thorium and in U^{233} after the removal of fission products is a challenging problem. In less than a week after high-level decontamination, the gamma activity becomes sufficiently great so that fabrication by direct methods can be permitted only on a scheduled-radiation dosage basis.

The magnitude of this problem is directly related to the U^{232} concentration buildup that occurs throughout the exposure lifetime of the fuel. This, in turn, is a function of the integrated fuel exposure, including the neutron energy level incident upon the fuel materials since the principal reaction that produces U^{232} , the Th^{232} (n,2n) Th^{231} reaction, does not Occur with neutrons with an energy below 6 MeV. The recovered fuel can be dealt with in several ways. The Thorium product can be stored for a long time to allow for the decay of Th^{228} (1.91 year half-life) or Uranium could be chemically purified just before the fabrication step.

This work constitutes the first part of a study investigating the possibility of U-233 production from Th^{232} as one of the aims in a dual purpose commercial PWR. It is assumed that the fuel in some regions of the core is a mixture of Uranium and Thorium dioxide. Initially the Uranium component of the fuel mixture would be enriched to ± 20 W/O U^{235} . The enrichment limitation of U-233 enriched Uranium is 12 W/O. The ratio of moderately enriched Uranium to Thorium in different fuel regions can be varied according to the nuclear and engineering specifications and adjusted to achieve the desired fuel burnup.

For this purpose, the integral transport code, GELS is used to prepare the inputs for different cells for the reactor analysis as a whole.GELS, is a one-dimensional, multigroup, integral transport theory code which produces few-group libraries for use in diffusion theory codes for pressurized light water reactor analysis. The whole range of possible temperatures is covered and the treatment of strong lumped absorbers as control or burnable poison pins is included.

Further, provision for burn-up is provided. The code has good accuracy and a fairly high computational speed. The code is furnished with a cross-section library of 15 fast and 30 thermal groups, suitable for general PWR applications. Those cross-sections being dependent directly upon fuel or moderator temperature are obtained for the actual case by square Lagrange interpolation from data resources prepared for several temparatures. Using the computer code GELS; normal fuel cell calculation, control supercell calculation, burn-up fuel and supercell calculations can be made.

The PWR spectral code GELS consists of a MAIN program and several subroutines. First two subroutines reads only data from cards or tape. In six subroutines, transport calculation are performed.

MAIN program and all of the subroutines will be examined in great detail during the later chapters.

Analysis of the GELS code will be presented in chapter II. In chapter III, an application of this computer code will be presented and using the GELS cell calculations will be made for different UO_2 -THO₂ fuel mixture in a PWR.

TABLE 1: - General Approximate Flow Diagram for GELS

SIMPLIFIED FLOWCHART

CHAPTER II

ANALYSIS OF THE GELS CODE

II- 1. MAIN PROGRAM

The integral transport code GELS prepares the microscopic broad group cross sections and homogenized number densities for different cells within a reactor for use in diffusion theory codes making criticality searches. For this purpose each cell is divided into a number of regions. The densities of all isotopes, cell geometry and microscopic cross section library are given as input to this code via the subroutines INPUT A and INPUT B. Integral transport calculations are performed by using the collision probability method. The discretized form of the multigroup integral transport equation is given by

$$\sum_{T,j}^{\mathfrak{g}} \phi_{j}^{\mathfrak{g}} v_{j} = \sum_{i=1}^{\infty} P_{\mathbf{i},j}^{\mathfrak{g}} S_{i} V_{i} \qquad \mathbf{j} = 1, \dots N \text{ (number of regions)}$$

$$(2.1)$$

where the right hand side of this equation gives the total number of natrons born in region \mathbf{j} and that make their first collisions in region \mathbf{j} . The left hand side gives the total interaction rate in region \mathbf{j} . The total macroscopic cross sections appearing in this equation for all energy groups and regions are computed by the subroutine MACRO while the collision probabilities $P_{1,j}^{\mathfrak{g}}$ are calculated by the subroutine CP. The source term is calculated by making use of an initial flux guess. Then, the quantities obtained are inserted into the above equation which is then converted into matrix form. Finally the equation is solved for the fluxes by matrix inversion in subroutine TRANS.

As a result, the fluxes for each energy group and region are obtained. These fluxes are then normalized to specified power level in subroutine DEPRIN. Using the normalized fluxes, self shielding factors are calculated and all of the cross sections and number densities are homogenized in the subroutine SYNOPS so as to preserve the actual reaction rates. These homogenized number densities and normalized fluxes are then used in burn-up equations to obtain the time dependent changes in the concentrations of fuel isotopes and fission products in subroutine BURN UP. The MAIN program achieves this large task by making references to the subroutines mentioned above in the order of this presentation.

The theorical details of this qualitative outline will be presented in the analysis of related subroutines in the following chapters.

II-2. TERMINOLOGY AND DEFINITIONS

ELEMENTARY CELL-ENLARGED CELL-SUPER CELL

In PWR's the non-cell water in the interassembly gaps can be added to the lattice due to the following reasons; the gaps are small in comparison with the thermal transport lenght of neutrons, these dissappear almost completely under operating conditions due to thermal expansion of the fuel assemblies. So, one can get a pure lattice at the reactor with a unique lattice constant (= enlarged pitch). A cell of this enlarged pitch is called an elementary cell.

Not every elementary cell has the same content. In order to achive a straight forward one-dimensional treatment of the whole micro structure, one can add one species of elementary cells to the cylindrized elementary cell of another species forming out of it one or more additional cylindrical regions.

If the species added does not have a peculiar structure of the neutronic flux density we call it an enlarged elementary cell.An example would be unrodded RCC-Cells added to fuel pin cells taking into account the numerical relation of both species.

If the species of elementary cells have a space dependent structure of neutronic flux density we call the whole a super-cell. For example rodded RCC-Cell or burnable poison pin cell surrounded by a number of fuel pin cells would constitute a supercell.

ZONE-MODERATOR ZONE-REGIONS

In the cylindrized (Super-) cell the term zone refers to every part which has a homogeneous material composition and which is bounded by parts of other material compositions. Due to cylindrization, the shape of every zone is either cylindrical or a cylindrical annulus. Every zone can be divided into a number of cylindrical annuli (of the same thickness within each zone). The elements of a such a subdivision we call regions.

All zones which contain the same moderator, ie. the same moderating isotopes of the same atomic densities are gathered to a "moderator zone". The non-moderating materials of zones belonging to the same moderator zone may be different. Zones without a moderator are neglected in the account of moderator zones.

In this version of GELS there is only one moderating isotope; the isotopic mixture H = 1/2 O. The only distinction between different moderator zones is the atomic density of this mixture.

II- 3. FUEL CELL AND SUPERCELL MODEL USED IN GELS CODE

Following calculations are performed by using the integral transport code, GELS:

Fuel cell calculation with and without burn-up,

Control supercell calculation,

Super cell calculation with burn-up

In the fuel cell calculation, it is assumed that the fuel is divided into four zones:

1 st zone: Fuel 🛊 gas gap

2 nd zone: Cladding

3 rd zone: Cell water interelement water spacers (inconel)

4 th zone: Cell water • interelement water • spacer • guide tubes (stainless steel)

Fuel pin
 Zircalloy can
 Moderator

Fig II- 1. Fuel pin cell

Poison "super" cell calculation:

lst zone: Ag-In-C'd absorber (usually divided into (4 regions)

2nd zone: Stainless steel cladding + gas gap between rod and cladding

3rd zone: Water gap between cladding and guide tube.

4th zone: Stainless steel guide tubes.

5th zone: Cell water + interelement water + spacer (inconel) present

(The radius of this zone is equal to the radius of the

3rd zone at the normal cell.)

6tn zone: Water + spacer + cladding + fuel

2 zircalloy can
3 fuel pin
4 stainless steel guide tube and
control rod can
5 Ag - IN - Cd absorber

Figure (II-2): Super cell

Due to the one dimensional cheracter of the code, the fuel assambly with RCC inserted has to be represented by a supercell.

1

moderator

In the case of supercell the GELS code provides for two different schemes of generating broad-group constants which differ in the homogenization procedure. In the first scheme, called burn-up supercell the set is produced for the supercell as a whole. And in the second case two sets are formed; one for the cylindrized poison cell another one for the fuel/moderator mixture namely control supercell calculation. The group cross section library representing the fuel/moderator mixture will be formed by a run of the code homogenizing the fuel cell before the supercell calculation which follows as a second run.

During the fuel cell burn-up calculation the code produces a set of polynomial coefficients which correlate the self shielding or the disadvantage factors in each energy group with the U-235 concentration. These coefficients are then used in subsequent calculations of burn-up in poison cells namely in the burn-up supercell calculation.

II- 4. SUBROUTINE INPUT A

Input A is referenced from MAIN to read the data from cards or tape file so as to return to back to MAIN

In this subroutine microscopic cross sections are read from the file NUX or NUY for fuel isotopes, fission products, lumped absorbers, non burnable isotopes (structural materials) and moderator isotopes for 45 energy groups respectively.

Fission products are presumed to have absorption cross sections only. In control supercell case, the lumped absorber isotopes are not burnable, so that the cross sections of lumped absorber isotopes are homogenized by the self shielding factors in the preceding case (i.e fuel cell calculation with ISTO = 4 option) and written into the NUY file.

Thus in the case of control supercell (ISTO= 5). the microscopic library belonging to lumped absorber isotopes are read together with non burnable isotopes from file NUY.

Transfer cross-sections are presumed to exist only for moderator isotopes.

Thorium-232, Uranium-238 and Plutonium-240 isotopes have resonance absorption cross sections. These cross sections are calculated by extrapolation depending on the fuel temperature.

This subroutine calculates the in-scatter cross sections for fuel isotopes, non burnable isotopes and lumped absorbers and the scattering cross section for the moderator isotope.

It also determines the fission yield of each fission product from the 6 fuel isotopes and prints the microscopic cross sections for fuel and moderator isotopes respectively and returns to the MAIN program.

This subroutine reads the following set of data from tape file NUX for all isotopes and 45 energy groups In the case of ISTO = 5 NUX = NUY CL] (IL), CL 2 (IL): Isotope name : The microscopic transport cross section for TOSIG (IE, IL) isotope IL, for group IE : The microscopic absorption cross section for ABSIG (IE, IL) isotope IL, and group IE : The microscopic out-scatter cross section for OUSIG (IE, 2, IL) isotope IL and group IE : The microscopic nu fission cross section for FISIG (IE, IL) IL th fuel isotope in IE th energy group : The number of neutrons produced per fission XNU (IE, IL) for ILth fuel isotope for group IE SIGFI (IE, L) = FISIG (IE,L) / XNU (IE,L) : The microscopic fission cross section for ILth fuel isotope for group IE CHI (IE) : Spectrum for group IE : The fission yield of Kth fission product YIE (K,L) isotope from Lth fuel isotope OUSIG (IE, 1, IL) : Microscopic in-scatter cross section for isotope IL and group IE. This is found by subtractig the absorption and outscatter cross section from total cross section. OUSIG (IE, 1, IL) = TUSIG (IE, IL) - ABSIG (IE, IL) - OUSIG (IE, IL) OUSIGM (IE, IJ, ILM) : The microscopic transfer cross section for moderator isotope from group IE to group IJ

List of symbols used in this subroutine

IPOIS	:	Number of burnable isotopes
NBURB	:	Lumped absorber specification
N26	:	Number of energy groups, N26 = 45
N23	:	Number of fast energy groups, N23 = 15
NĽB	:	Number of nuclides
NLM	:	Number of moderators
NLT	:	Number of fission products
NSO	:	Number of regions
NZM	:	Number of moderator zones
ISTO	•:	Number of case type declaration, specified in MAIN
NUX	:	File name : NUX = 17
NUY	:	File name : NUY = 22
NFI	:	Number of fuel isotopes + number of fission products = 46
NOBB	:	Number of nonburnable isotopes
IE	:	Energy index IE = 1,N26
IJ	:	Energy index $IJ = 1, \dots N26$
L	:	İsotope index L = 1,NLB
IR	:	Region index IR = $1, \dots N20$

•

II- 5. SUBROUTINE INPUT B

This subroutine is called from the MAIN program to read a set of data from cards and a set of polynomial coefficients from tape file 2 for burn-up supercell calculations. Recall that these polynomial coefficients are computed and written to file 2 during the fuel cell calculation (i.e ISTO = 1), and for burn-up supercell calculation (i.e iSTO = 2) these coefficients are read from file 2.

The macroscopic transfer cross section of moderator isotopes in each zone is computed as follows;

SIG (IE, IJ, IZ) = $Q \times OUSIGM$ (IE, IJ, ILM)

Where,

Q = DENM (ILM, 17) ; Density of moderator in IZ th zone

The atomic density of **Be**ron attachment to moderator in each region's calculated;

DEN (NBOR, IR) = PPMS *-DEN (NWA,IR) PPMS = 1.01845 . 1.631978.10⁻⁷ * PPM is a convergence factor

The volume of each region and the total valume for the cell considered are computed as follows;

VOL (IR) =
$$\chi$$
 (RDR - RDRM) (RDR + RDRM)
VGE = $\sum_{IR=1}^{N20}$ VOL(IR)

Figure (II-3): VOL(IR) = $x \left[(RDR)^2 - (RUKM)^2 \right]$

Where, RDR = RD(IR) : the radius of IR th region RDRM = RD(IR-1): the radius of (IR-1)th region

In the output, region, region radius, volume for region IR and total volume values are printed.

Finally the data depending on burn-up supercell calculation is written into the file NUS (12) at the end of the routine.

List of symbols used in this program:

: Region index IR : Fuel isotopes + Fission products + 1 NBOR NWA = NLB Number of nuclides DEN (L, IR) : Density of isotope L for region IR DENM (IL, IZ) : Density of 1Lth moderator isotope for zone 1Z SIGS (IE, IJ, IZ): The macroscopic transfer cross section of moderator isotope from group IE to group IJ for zone IZ Q = DENM (IL, IZ) DEN (NBOR, IR): Density of Boron isotope for region IR : Moderator region index IΖ NLRM = NLB - NLM : Number of nuclides except moderator isotopes VOL (IR) : The volume of IR th region VCE : Total volume of the cell CO (K, IE): Polynomial coefficients K = 6 Number of coefficients IΕ : Number of energy groups IL : Isotope index

II- 6. SUBROUTINE MACRO

It is called from the MAIN program to calculate the macroscopic cross sections are returns to the MAIN.

At first, the program calculates the self shielding factors for burn-up supercell calculation, as will be explained in detail in the subroutine GRUPVE. If the case under consideration is not of burn-up supercell, the value of self shielding factors will be taken as unity. Using the self shielding factors, the program calculates the macroscopic cross sections such as;

The macroscopic absorption cross section of all isotopes for group IE and region IR,

$$\sum a(IE, IR) = \sum_{L=1}^{NLB} N(L, IR) * \sqrt{a(IE, L)} * SSP \qquad (2.2)$$

Where SSP is the self shielding factor.

For fuel isotopes macroscopic $\mathcal{V} \sum f$, macroscopic in scatter cross sections and macroscopic out scatter cross sections are computed respectively as:

$$\mathcal{V} \sum_{s} f(IE, IR) = \sum_{\substack{l=1 \\ r \neq l \in L}}^{N \neq leL} N(L, IR) * \mathcal{V} \sqrt{f(IE, L)} * SSP$$

$$\sum_{s} in(IE, IR) = \sum_{\substack{l=1 \\ l=1}}^{N \neq leL} N(L, IR) * \sqrt{s_{in}(IE, L)} * SSP \quad (2.3)$$

$$\sum_{s} out(IE, IR) = \sum_{\substack{l=1 \\ l=1}}^{M \neq leL} N(L_{T}IR) * \sqrt{s_{out}} (IE, L) * SSP$$

Macroscopic in scatter and out scatter cross sections for lumped absorber and non burnable isotopes are found as:

$$\sum \sin (IE, IR) = \sum_{L:MI}^{NLBM} N(L, IR) * \sqrt{\sin (IE, L)} * SSP$$

$$\sum \sin (IE, IR) = \sum_{L:MI}^{NLBM} N(L, IR) * \sqrt{\sin (IE, L)} * SSP$$

The total macroscopic cross section for group IE and region IR is; $\frac{N26}{\sum} \sum_{+(IE,IJ,IR) + \sum a(IE, IR)} (2.4)$

$$\operatorname{SIGD}(\mathrm{IJ},\mathrm{IR}) = \sum \operatorname{sin}(\mathrm{IE},\mathrm{IR}) + \sum_{\mathbf{I} \in : \mathbf{U}} \sum_{\mathbf{S},\mathbf{t}} (\mathrm{IE},\mathrm{IJ},\mathrm{IR}) \qquad (2.5)$$

Then, a return is made to the MAIN program.

List of symbols used in this program:

- NFU= 6
- MI=46 : Fuel + fission products

JFI=31 : Number of fission products

DIPCO (I,IE): Polynomial coefficient, I = 1,...,6, IE = 1,..., N26(45)DI = DEN(ICON,IR) : Atomic density of 5th isotope for region IR DENN(IE,IR) = $\sqrt{3}$: The ratio of the average fuel to moderator

flux. It is found in burn-up fuel cell calculation
(ISTO = 1)

NLB : Number of nuclides

Q = DEN (L,IR) : The atomic density of Lth isotope for region IR

SSP Self shielding factor

MOGI = NFWEL + NLT + Number of fuel and fission products

MOGIP = NFUEL + NLT + Lumped absorber

FISIG (IE,IL) : Microscopic num fission cross section of fuel isotope for IE th micro group.

- TRIC (IE,IR) : Macroscopic hu # fission cross section of fuel isotopes for IE th micro group
- SIGA (IE,IR) : Macroscopic obsorption cross section for group IE and region IR
- OUSIG(IE, 1, L): Microscopic in-scatter cross section of Lth isotope for IE th micro group.

- OUSIG (IE,2,L) : Microscopic out-scatter cross section of isotope L for IE th micro group
- TOUS (IE,2,IR) : Macroscopic out-scatter cross section for IE th micro group and IR th region
- IZ = IVC (IR) : Moderator region index

= 0 no moderator

IR = Region index $1 \leq IR \leq N20$

- ASG = SIGS (IE,IJ,IZ) : The transfer cross section of moderator isotope from IE th group to IJ th group.
- TOTL (IE,IR) : Total macroscopic cross section for IE th group and IB th region.

ALPHA : The fraction of the fuel volume to total volume of the cell

ALPHA = \sim : $V_{f} / V_{f} + V_{m}$

II- 7. SUBROUTINE CP

This subroutine is called from the MAIN to calculate the first collision probability matrices P_{ij}^g , the quantity P_{ij}^g is the probability that a neutron born in region i will have its first collision within the region j for energy group g.

Diffusion theory (or other PN approximation of low order) fails whenever the angular dependence of the flux is complicated. Instead of utilizing approximations of higher order in such situations, some special methods based on the use of collision probabilities in purely absorbing media are frequently useful.

Consider a common situation in which reactor fuel, localized in the form of lumps, e.g. rods, is surrounded by moderator. It is then sometimes useful to formulate the problem in terms of the probability that a neutron which appears in **2** region **ma**kes its next collision in that region. In a lattice structure, for example, fission neutrons **may be** born more-or-less uniformly in a fuel rod, then for the computation of the fast multiplication, it is required to determine the probability that these neutrons will unde**rgo** collisions in the rod before escaping. The neutrons which escape will be slowed down in the moderator and for resonance absorption calculation, the probability that the moderated neutrons will make their next collision in the fuel may be determined.

collision probabilities have also been incorporated into widely used diffision theory calculations involving thermal neutrons.

In the typical one-speed collision probability calculation, the space is considered to be divided into a finite number of regions and it is assumed that neutrons are produced uniformly and isotropically in one of these regions. The problem is then to determine the probability that neutrons make their next collision in the source region or one of the other regions. The first collision probability matrices P_{ij}^g which bear the whole geometry of the problem are those of Carlvik.* Infinite circular cylinder has been taken for this calculation to represent the fuel cell.

Figure (II-4)

 \mathcal{Z}_i : is the optical path in zone i

 \mathcal{T}_{r} : the optical path in zone j

T: the optical path between zone i and zone j

 $-\Theta$: the optical path through the interior.

$$P_{ji} = \frac{1}{Z_{t,j}} \frac{2}{\chi(r_{j}^{2} - r_{j-1}^{2})} \int_{0}^{r_{j-1}} dh \left[K_{ij}(\tau) - K_{ij}(\tau_{i} + \tau) - K_{ij}(\tau_{j} + \tau) + K_{ij}(\tau_{j} + \tau_{i} + \tau) + K_{ij}(\tau_{j} + \tau_{i} + \tau) - K_{ij}(\tau_{j} + \tau_{i} + \tau) + K_{ij}(\tau_{j} + \tau_{i} + \tau) - K_{ij}(\tau_{j} + \tau_{i} + \tau) - K_{ij}(\tau_{j} + \tau_{i} + \tau) - K_{ij}(\tau_{j} + \tau_{i} + \tau) + K_{ij}(\tau_{j} + \tau_{i} + \tau) \right]$$

here,
$$\int_{0}^{\tau_{j/2}} - \frac{\chi}{c_{oj}\tau_{j}} \left[(2.6) \right]$$

W

$$K_{i,3} = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} e^{-\frac{\pi}{\cos\theta}} \cos^2\theta \, d\theta$$

$$= \frac{\pi}{2}$$
(()

¥) I. Carlvik, " A Method for Calculating Collision Probabilities in General Cylindrical Geometry etc." A/CONF. 28 P/681 (1964)

NIN SANGARS AN

Collision probabilities P_{ij}^g for each energy group are computed through the use of the above equations.

II- 8. SUBROUTINE TRANS

This is called from the MAIN program to solve the multigroup transport equation and returns to MAIN.

The set of equations used to describe the transport problem is to the well known multi-group integral form, the two basic assumptions made are

- flat flux and source as computed by equation (2.8) - isotropy of scattering as indicated in equation (2.9) Reaction rates in the Jth region (j=1,...N) are then described by;

$$\sum_{Tj}^{g} \mathscr{D}_{j}^{g} \mathbf{v}_{j} = \sum_{i=l}^{n} P_{ij}^{g} \mathbf{s}_{i} \mathbf{v}_{i} \quad j=1,\dots, \qquad (2.7)$$
$$\mathscr{D}_{k}^{g} = \int_{Vk} \mathscr{D}_{k}^{g}(\vec{r}) d^{3}r \qquad (2.8)$$

(2.8)

Where

$$S_{k}^{g} = \sum_{g=1}^{G} \left[\frac{x^{3}}{k^{\infty}} (\nu \Sigma_{f})_{k}^{g'} + \sum_{s} S_{k}^{g'-g} \right] \varphi_{k}^{g'}$$

$$\sum_{s}^{g'-g} = 2\pi \int_{s}^{+1} \sum_{s}^{g'-g} (\mu_{s}) d\mu_{0} \qquad (2.9)$$

Eq.(2.7) is solved as usual by replacement of the one eigenvalue problem (2.7) by G in homogeneous problems which continue to be coupled by an auter iteration made. This is done by splitting from the source (2.8) the scattering mate belonging group g.

$$\sum_{i=1}^{\vartheta} \mathcal{D}_{j}^{\vartheta} V_{j} = \sum_{i=1}^{N} P_{ij}^{\vartheta} S_{i} V_{i} = \sum_{i=1}^{N} P_{ij}^{\vartheta} \sum_{j=1}^{G} \left[\frac{\chi^{\vartheta}}{k^{\infty}} \left(\mathcal{D}Z_{f} \right)_{k}^{\vartheta} + \sum_{s_{i}}^{\mathfrak{g}' \to \mathfrak{g}} \right] \mathcal{D}_{i}^{\vartheta} V_{i}$$

$$j = 1, \dots N$$

$$\begin{bmatrix} \sum_{i=1}^{8} V_{j} - P_{ij}^{\delta} V_{j} \sum_{s} s_{j}^{\delta-2} \end{bmatrix} \varphi_{j}^{\delta} - \sum_{i=1}^{N} P_{ij}^{\delta} V_{i} \sum_{si} \varphi_{i}^{\delta} = \sum_{i=1}^{N} \sum_{g'=1}^{G} P_{ij}^{\delta} \frac{\chi^{\delta}}{k_{\infty}} (\mathcal{D}\Sigma_{f})_{i}^{\delta} \varphi_{i}^{\delta'} V_{i} + \sum_{i=1}^{N} \sum_{g'=1}^{G} P_{ij}^{\delta} \sum_{si} \varphi_{i}^{\delta'} V_{i} + \sum_{i=1}^{N} \sum_{g'=1}^{G} P_{ij}^{\delta} \sum_{si} \varphi_{i}^{\delta'} V_{i}$$

$$(2.10)$$

The in_homogenous linear systems are solved by matrix inversion rather than by inner iterations for the fluxes.

Approximation (2.9) however, is more serious and a consistant P₁ representation could be worthwhile. Instead of this however, only a simple transport correction of the diagonal elements of the scattering matrix and, consequently, of the total macroscopic group constant is made,

Where \sum_{a}^{a} is the absorption and $\overline{\sum}_{5}$ is the scattering cross section.

Further, preferable data for diffusion calculations are generated in which the whole an**isotropy** has to be represented by the diffusion constant. Diffusion constant is calculated using Benoist's[#] formula

$$\overline{D}_{i}^{g} = \frac{\sum_{i=1}^{N} D_{i}^{g} \beta_{i}^{g} V_{i}}{\sum_{i=1}^{N} \beta_{i}^{g} V_{i}}$$

$$D_{i}^{g} = \frac{1}{3} \sum_{\kappa=1}^{N} \frac{P_{i\kappa}^{g}}{\sum_{\tau\kappa}^{g}}$$
(2.12)

Which is monoenergetic but multiregional. By combination of (2.11) and (2.12) the reality is approximated at least on the level of diffusion theory.

 H) P. Benoist, "Theorie du Coefficient de Diffüsion des Neutrons dans un Reseau Comportant des Cavites". CEA R-2278, 1964 This program solves multigroup transport equation by the following procedure:

Assuming that the flux , RPHI (IE,IR) = 1 , the total losses and productions are calculated for the cell considered

$$XLOSS = \sum_{IR:4}^{N:26} \sum_{I\in i_1}^{N:26} \sum a(IE, IR) * VOL (IR) * 1$$

$$XPROD = \sum_{IR:4}^{N:26} \sum_{I\in i_1}^{N:26} \sum f(IE, IR) \cdot VOL(IR) \cdot 1 ,$$

$$SUMTRI (IR) = \sum_{I\in i_1}^{N:26} \sum f(I, IR) VOL(IR)$$

$$Nultiplies tion for toru is then i$$

Multiplication factory k_o is then; REACT = XPROD / XLOSS

Using the value of $k\infty$, $\chi^g/k\infty$ is computed in order to find the updated source term on the right hand side of equation.

If there is moderator in region IRS and no moderator in region IRS respectively.

SUMSIG (IRS) = V (IRS).
$$\sum_{I \in S = 1}^{N:26}$$
 $\forall s, trans(IES, IE, IRS) \cdot \emptyset(IES, IRS) \cdot VOL(IRS)$
+ $\sum_{I \in S = 1}^{N:26} \forall s, out(IES, IRS) \cdot \emptyset(IES, IRS) \cdot VOL(IRS)$ (2.13)
SUMSIG (IRS) = $\sum_{I \in S = 1}^{N:26} \forall s, out(IES, IRS) \notin (IES, IRS) \cdot VOL(IRS)$

The left hand side and right hand side of equation can be converted into matrix form

C (IRS, IR) =
$$\sum_{T}$$
 (IE, IR) - P(IRS, IE). SIGD(IE, IR).VOL(IR), IR= IRS
C (IRS, IR) = - PIERS. SIGD (IE, IR).VOL(IR) IR # IRS
B (IRS) = $\sum_{IZ=1}^{N20}$ [SUMSIG (IR).PIERS: $\frac{\sqrt{3}}{k_{\infty}}$.SUMTRI(JR)]
After this calculation the equation can be written as
[C] $\sqrt[3]{8} = \overline{B}$

The subroutine MATINV is called to solve the matrix equation.

Using th**ese** fluxes, the new losses and production rates are calculated,

Calculates the new reactivity using these values REACT = XPROD/XLOSS

Putting these values into eq(2.10) the same procedure is repeated for other groups. The multigroup transport equation (2.10) is solved for each energy group, therefore the above procedure is repeated for all energy groups in each outer iteration. Iterations are continued until the convergence criterion $\frac{k_{\infty}^{T+1}-k_{\infty}^{T}}{k_{\infty}^{T+1}} < 10^{-5}$ is satisfied in the MAIN program.

At the end of this subroutine, average diffusion coefficient is calculated for each energy group $E_q(2.12)$

VLIR =
$$\sum_{IR:1}^{N_{20}}$$
 RPHI (IE, IR) .VOL(IR)
ADIF(IE, IR) = $\sum_{IR:1}^{N_{20}}$ P(IR, IRS, IE) VLIR/TOTL (IE, IRS)
SVLIR = $\sum_{IR:1}^{N}$ VLIR DIF (IE) = $\sum_{IR:1}^{N_{20}}$ ADIF
DIF (IE) = 0.3333333333333333.DIF(IE) / SVLIR

Finally a return is made to the MAIN program.
JN : Time step

VLIR = VOL(IR) : The volume of the region IR

XPROD : Production rate for all energy groups and regions in the cell

XLOSS : Total losses or absorption rate for all groups and regions in the cell.

RPHI (IE, IR): Denotes the flux for group IE and region IR

TRIC (IE,IR): Macroscopic nux fission cross section for group IE and region IR $\left[\nu \sum f(IE,IR)\right]$

SIGA (IE,IR) : Macroscopic absorption cross section for group IE and region IR

TRIX = $\sum \sum f(IE, IR)$. VLIR SUMTRI (IR) = $\sum_{I \in I}^{N26} \sum D \sum f(IE, IR)$. VLIR REACT : Denotes the reactivity (k ∞)

IRS and IR: Region indices

IE and IES: Energy indices

ASG = SIGS (IES, IE, IZ) : The macroscopic transfer cross section of modarator isotope from group IES to group IE

B (IRS) : Denotes the matrix on the right hand side of eq (2.10)SIGD (IE.IR) : (Macroscopic transfer cross-section of moderator

> from group IE to IE + macroscopic in scatter cross section of other isotopes for group IE) in region IR

ITERI : Iteration index

$$CONEIG = \left| \frac{k_{\infty}^{T+1} - k_{\infty}^{T}}{k_{\infty}^{T+1}} \right|$$

Convergence Criterion.

DIF (IE) : Average diffusion coefficient for group IE.

II- 9. SUBROUTINE MATINV

MATINV is called from the subroutine TRANS to solve the matrix equation using the matrix inversion with accompanying solution of linear equations.

Multigroup transport equation for each region was transformed to the matrix form by the subroutine TRANS

That is $\begin{bmatrix} \mathbf{C} \end{bmatrix} \overrightarrow{\mathcal{D}}_{j}^{f} = \overrightarrow{B}_{j}$ $j = 1, \dots N20$

Recall that

$$C (i,j) = \left[\sum_{j=1}^{N} \nabla_{j} P_{ij} \nabla_{j} \sum_{sj}^{s \to g} \right] \quad \text{if } i = j \qquad \left[\begin{array}{c} i = 1, \dots N20 \\ j = 1, \dots N20 \end{array} \right]$$

$$C (i,j) = \left[P_{ij}^{g} \nabla_{i} \sum_{si}^{s \to g} \right] \quad \text{if } i \neq j \qquad (2.14)$$

$$B (j) = \sum_{i=1}^{N} \sum_{gi=1 \atop s' \neq g}^{G} P_{ij}^{g} \nabla_{i} \left[\left(\frac{\chi g}{k \infty} \left(\nu \sum_{s} f \right)_{i}^{g' \to g} \right) \right] \varphi_{i}^{g'}$$

The transport equation is solved for each energy group over all regions in the cell. So that the subroutine MATINV is referenced from TRANS for each energy group.

The subroutine MATINV invertees the matrix equation and finds the fluxes for each region in the cell, then returns to the TRANS to repeat the same procedure for the next energy group. This process is continued until the energy group is exceed N26 (45).

List of symbol used in this program:

$ASP = C_{i}$	the first	term of the matrix equation
BSP = B	the right	hand side of the matrix equation
NMAX = N2O	number of	regions
NSUB 🕿 N20	number of	regions

II- 10. SUBROUTINE DEPRIN

DEPRIN is referenced from the MAIN to print the outputs and calculate the weights of heavy metals, macro group fluxes, fractional absorptions and productions. Also, it normalizes the fluxes to agiven initial power level.

First items in the output to be printed are the time step; reactivity and atomic densities corresponding to the present time step for all isotopes. Then the weights of heavy metals (mgrams) (i.e fuel and lumped absorber isotopes) are computed as follows;

For fuel isotopes,

$$GM (1, IR) = N (L, IR). VOL(IR). AWT(L)/0.60247 \qquad L=1.15, IR=1.N20$$

$$GS (L) = \sum_{\substack{IR:1\\ M^{FUEL}}}^{N20} N(L, IR). VOL(IR). AWT(L)/0.60247 \qquad (2.15)$$

$$FUEL = \sum_{\substack{III:1\\ L:1}}^{M^{FUEL}} GS(L) \text{ which is the total weight of fuel isotopes}$$
in all regions.

Where, N(1,IR)th number density of isotope L for IRth region (in szilard), VOL (IR): Volume of the IRth region.

AWT (L) : The atomic weight of the isotope L 0.60247 : Avagadro number in szilards.

For lumped absorbers:

$$GFM (L,IR) = N(L,IR) \cdot VOL(IR) \cdot AWT(L)/0.60247$$
(2.16)

$$GFS (L) = \sum_{R=1}^{N20} N(L,IR) \cdot VOL(IR) \cdot AWT(L)/0.60247$$

$$L = 47, \dots, 49$$

All of the above quantities are printed in the output after these calculations.

On the other hand, to normalize the fluxes and to calculate the local form factor following calculations are made in the sequence shown,

First, DENOM is given by

DENOM =
$$\sum_{IR=1}^{N26} \sum_{L=1}^{N20} \sum_{L=1}^{AFUEL} N(L_FIR) \cdot \sqrt{f(IE,L)} \cdot \sqrt{\phi(IE,IR)} \cdot VOL(IR) \cdot SSP (2.17)$$

Where the summations are over all energy groups, overall regions and fuel isotopes and recall that SSP is equal to 1 except for the burn-up supercell calculations. For burn-up supercell calculation; SSP= DENN(IE,IR)/ (1.4 ALPHA.DENN(IE,IR) - 1)

Then the normalization factor is found by using the DENOM

FUNC = FIWATT. POWER. 10^{-24} /DENOM

Where FIWATT is given in MAIN as 1/8" 3.125. 10¹⁰

POWER is the integral power per cm in watts, i.e power generation per unit lenght of fuel element., it is most commonly used when the fuel elements are cylindrical rods, units are in watt/cm.

Recall that, normalization factor= $\frac{1}{\chi}$. <u>Power(Watt</u>) Fission rate

Then all of the fluxes are normalized with this normalization factor:

RPHI (IE, IR) = FUNC. RPHI (IE, IR)

IE= 1,...N26 IR= 1,...N20

However to calculate the local form factor F(IR); the fission rate of the fuel isotopes over all energy groups in region IR and the average fission rate for the cell are computed in the following way

$$F_{i}(IR) = \sum_{L=1}^{NFUEL} \sum_{IE=1}^{N26} N(L,IR) \cdot \nabla f(IE,L) \cdot \mathcal{O}(IE,IR) \cdot SSP$$

$$AAA = \sum_{L=1}^{NFUEL} \sum_{IE=1}^{N26} \sum_{IE=1}^{N26} N(L,IR) \cdot \nabla f(IE,L) \cdot \mathcal{O}(IE,IR) \cdot SSP \cdot VOL(IR)$$

$$AAA = \sum_{L=1}^{N20} \sum_{IE=1}^{N20} VOL(IR) \cdot (2.18)$$

And then local form factor is given by

F (IR) = $\frac{F(IR)}{AAA}$ (1.e, fission rate in region IR/avarage fission rate in the cell)

The program also calculates the macro group fluxes, those are fast and thermal group fluxes.

PHI (I, IR) =
$$\sum_{i \in I}^{12}$$
 RPHI(IE, IR) IR = 1,....N20 (2.19)
Which is the total fact group flux for each region and

Which is the total fast group flux for each region, and,

PHI(2,1R) =
$$\sum_{i \in :16}^{49}$$
 RPHI (IE,IR) IR= 1,...N20

Which is the total thermal group flux for each region. The results are printed in the output if the option NPRIN1 = 0 holds. However, recall that if NPRIN3 = 0,45 group fluxes are printed and if NPRIN3 \neq 0 2 group fluxes are printed. In the final section of the program, fractional absorptions and productions are computed as follows:

$$ABFRAC (IR) = \sum_{IE=1}^{N26} \sum_{\alpha} (IE, IR) \cdot \phi (IE, IR)$$

$$RFAC (IR) = \sum_{IE=1}^{N26} D\Sigma f(IE, IR) \cdot \phi (IE, IR)$$

$$(2.20)$$

Total absorptions and productions in the cell are calculated as $ABSUM = \sum_{IQ=1}^{N_{20}^{20}} \sum_{I\in I}^{N_{20}^{20}} \sum_{I\in I} \left(IE, IR \right), \ \emptyset(IE, IR) \cdot VOL(IR)$ $PRSUM = \sum_{IQ=1}^{N_{20}^{20}} \sum_{I\in I}^{N_{20}^{20}} \bigcup \sum_{I\in I} \left(IE, IL \right), \ \emptyset(IE, IR) \cdot VoL(IR)$ Total absorptions and productions for fast and thermal energy

groups in the cell are calculated as;

QBAL (IE) = N(L, IR). Ø (IE, IR). VOL(IR). SSP

$$AB1 = \sum_{IZ=1}^{N_{20}} \sum_{IE=1}^{IS} \nabla_{a} (IE,L) \cdot QBAL (IE) = \sum_{IZ=1}^{N_{20}} \sum_{IE=1}^{IS} \nabla_{a} (IE,L) \cdot N(L,R) \cdot \emptyset (IE,IZ) \cdot Vol(IR), SSP$$

$$AB2 = \sum_{IZ=1}^{N_{20}} \sum_{IE=1}^{N_{20}} \nabla_{a} (IE,L) \cdot QBAL (IE)$$

$$PR1 = \sum_{IZ=1}^{N_{20}} \sum_{IE=1}^{IS} D \nabla_{f} (IE,L) \cdot N(L,IR) \cdot \emptyset (IE,IR) \cdot Vol(IR) \cdot SSP$$

$$PR2 = \sum_{IZ=1}^{N_{20}} \sum_{IE=1}^{N_{20}} D \nabla_{f} (IE,L) \cdot N(L,IR) \cdot \emptyset (IE,IR) \cdot Vol(IR) \cdot SSP$$

PR2 = PR1 = PR1/PRSUM = AB2 : $QABI = \sum_{L=1}^{NUB}$ $QABI = \sum_{L=1}^{NUB}$ ABT = AB1/ABSUM ABT Then PR2 PRSUM = - AB2/ /AB2um = = AB1 + AB2 AB1 + PR2 120 15 120 15 1201 15-1 1201 15-1 1201 15-1 IR=1 QABT = NOB L=1 QPRI = 1 PRI, QPRI = 1 $\sum_{i \in I}^{2} \sqrt{Q} (i \in L) . N(L, IR) . \beta (i \in IR) , vol(IR) .$, Va (IE,L), N(4,,IR) & (IE,IR), VOL (IR). ~ Vf (IFIL).NI(L, TR). & (IE, IR). VOL (IR), SSP WTf (IEL) N(L,IR). Ø (IE, IR). VOL(IR). SSP V_{a} (IE,L) N (L,IR). β (IE,IR). VOL (IR). SSP $\nu \sum (IE,L) N(L,IR) \cdot O(IE,IR) \cdot vol(IR) \cdot SP$ 5 UV ([, EL) .N(L, IR). Q (IE, IR). NOL (IR). SSP ∇_{a} (IE,L) N (L,IR). ϕ (IE,IR). VOL (IR). SSP PR2 S S -0 -0

energy group. ABT represents the fractional absorption for each isotope and all

Where

AB2

APRT = NEVEL

RRT represents the fractional production for each isotope and all

groups

a11 isotopes QAB 1 represents the fractional absorption for the 12:61 group and

QAP2 represents the fractional absorption for the thermal group and

all isotopes. $\ensuremath{\mathbb{Q}PRT}$ represents the fractional production for all isotope and groups QABT represents the fractional absorption for a]] isotope and groups

Finally, printing these results 1 n the output, Q return ц. С made

to the MAIN program.

List of symbols used in this program: L : isotope index L= 1,...NLB VGE : total volume for the cell N24 = N23 + 1 = 15 + 1 = 16 NPRIN 1 : Print index (output control parameter) specified in INPUT A NLB : Number of isotopes NFUEL : number of fuel isotopes JN: number of time steps REACT : reactivity for the cell considered DEN (L,IR): atomic density of the Lth isotope for region IR $\texttt{MOGI}{L} (\texttt{MOGIP}: \texttt{represents} \texttt{ the lumped absorbers}$ ĒR : region index IR=1,...N20 ΙE : group index $IE= 1, \dots N26 (45)$ SSP : self shielding factor F (IR) . : local form factor for region IR RPHI (IE, IP): flux for group IE and region IR PHI(1.IR) : fast group flux for region IR PHI(2, IR) : thermal group flux for region IR AWT (L) : atomic weight of isotope L NPRIN 3 : print index : Total absorption rate over all regions and groups in ABSUM the cell : total production rate over all regions and groups PRSUM in the cell. :total absorption rate over all regions and over all AB 1 IE= 1,15 fast groups in the cell : total absorption rate over all regions and over all AB 2 thermal energy groups in the cell.

PR 1 : total production rate over all fast energy groupS

PR 2 : total production rate over all regions and thermal energy group**S**.

AB1 = AB1/ABSUM : fractional absorption rate of isotope L for fast energy groups in the cell

AB2 = AB2/ABSUM : Fractional absorption of isotope L for thermal energy groups in the cell

PR l = PR1/PRSUM : fractional production rate of isotope L for fast energy groupsin the cell.

PR 2 = PR2/PRSUM : fractional production rate of isotope L for thermal energy groups in the cell

ABT= AB1 + AF2 : Fractional absorption for fast group + fractional absorption for thermal group, for isotope L in the cell.

II- 11. SUBROUTINE BURNUP

Burnup is referenced for each time step from the MAIN in order to solve the system of burnup equations and to find the number densities depending on the time step for all isotopes involved in the cell.

Burnup equations describe changes in the isotopic concentrations with time at a point or a region in the reactor core. The point or region is a unit of volume which is either homogen ous in composition or has been properly homogenized by volume and flux weighting.

During the operation of a reactor, the fissile nuclides are consumed by fission and about two hundred different isotopes exist in the core after a sufficiently long period of time. Some nuclei are direct fission products and others are formed through radioactive decay. A number of those fission products have high or moderately high cross sections for neutron capture, consequently they have a significant influence on the neutron economy of the syskem. Furthermore, the conversion of fertile nuclei into fissile nuclei has of course, an important effect on reactor life time and control. In addition, radioactive capture of neutrons by both fissile and fertile species leads to the formation of such nuclei as Uranium-236, Plutonium-240, Uranium-239, and so on. These can also capture neutrons or suffer beta decay or both so that many new heavy isotopes, i.e., isotopes of Thorium, Protactinium, Uranium, Neptunium, Plutonium, etc. are present in the fuel after a period of reactor operation.

Cross section libraries pertinent to the isotopic chains involved are needed for burnup calculations. For the sake of convenience the avoidance of several pseudo fission products with different saturation behaviours was considered to be desirable. While the number of heavy metals is fixed in some measure by the appliciations planned, the number of fission products has to be optimized, so that it is as small as possible allowing at the same time for a good burnup calculation.

Morever, the structure of the chains should be simple. Fig (ILS) shows the heavy metal chains. The six important isotopes are equipped with a non-saturating pseudo fission product representing the low aross section absorbers,

J: Absorption + instantaneous B - Decay

NSFP : Non saturating fission product Figure (II-5) : Heavy metal chains

13:

The assumptions involved in abbreviating the chains are the following:

1. The yields of precursors with half lifes below the order of magnitude of hours are cumulated to that of the next longer living successor. In a way those precursors are presumed to decay instantly to the longer living successor isotope.

2. Low yield nuclides (yield, $\leq 1\%$) without strong fission product parents are omitted even if their absorption cross sections are high.

3. Unstable nuclides of a sufficient lifetime are taken into account, even if their absorption is small, with regard to burn-up effects caused by power cycling.

This special choice of fission products facilitates the solution of the system of burn-up equations;

$$\frac{d N_{i}(t)}{d t} = C N_{i}^{T}(t) \qquad (2.21)$$

$$N(t) = \begin{cases} N_{T}(t) \cdots N_{nf}(t), N_{nf+1}(t), \cdots N_{n}(t) \end{cases}$$

$$Where,$$

$$n \qquad : number of burnable nuclei$$

$$nf \qquad : number of fissionable nuclei$$

$$np \qquad : number of fission product$$

N: : density of nuclei

r :	transposition	symbol
-----	---------------	--------

: Depletion matrix

Ċ

C being of lower triangular form has been brought to a more diagonal shape, by eliminating the nf. np block of elements which couples the fission products with the fissionable nuclei. Flimination can be performed by assuming the fission products not to originate continuously from the fissionable nuclei but from an external source term of the form:

$$\begin{split} \mathcal{X}_{k} &= \sum_{i=1}^{n_{f}} y^{i \rightarrow k} \overline{N}_{i} P_{i} \\ \overline{N}_{i} &= \frac{1}{t-t_{o}} \int_{t_{o}}^{t} N_{i} (\mathcal{X}) . d\mathcal{X} \\ P_{i} &= \sum_{g=1}^{s} \overline{V}_{fri} \int_{t_{o}}^{g} \mathcal{Y}_{g} \qquad (2.22) \\ K &= n_{g+1}, \dots, n_{f} + n_{f} \end{split}$$

Where
Y^{i→k}: yield of fission product k from fissile isotop:i
G= 45 : number of energy groups
t-te : lenght of time step
P_i : specific neutron production rate per isotope i

This approximation is justified by the low share of fission products in the total neutron absorption balance. Moreover the time step lenght t-to, is limited by the basic assumption that the regional flux in eq.(2.22) is constant. Eq (2.21) holds for every spatial region seperately.

Approximation (2.22) turns the homogeneous system (2.21) into an inhomogeneous ane but the new depletion matrix has only three generally non-vanishing successive elements per row:

$$\mathbf{c} = \left\{ \mathbf{c}_{i,i-2} \quad \mathbf{c}_{i,i-1} \quad \mathbf{c}_{ii} \right\}$$

Under the above considerations depletion equations at a region have the form:

$$\frac{d N_i}{d t} = -N_i \left(\lambda_i - \sum_{g=1}^G \nabla_{\alpha_i}^g \overline{\beta}^g \right) + N_{i-1} \left(\lambda_{i-1} + \sum_{g=1}^G \nabla_{c_i-2}^g \overline{\beta}^g \right) + N_{i-2} \sum_{g=1}^G \nabla_{c_i-2}^g \overline{\beta}^g$$
(2.23)

Where:

·

 N_i : the number density (nuclei/cm³) of the isotope i λ_i, λ_{i-1} : decay constant for the isotope i and i-1 $\overline{\sigma}s$: average, power-normalized flux for energy group g $\overline{\nabla e_{i-1}^s}, \overline{\nabla e_{i-2}^s}$: capture cross sections for energy group g and isotopes (i-1), (i-2) $\overline{\nabla a_i^s}$: absorption cross section for group g and isotope i G = 45: number of energy groups.

Then the elements of the depletion matrix C becomes:

$$C_{ij} = \lambda_{i} + \alpha_{i}$$

$$C_{i,i+1} = \overline{\delta}_{i,i} (\alpha_{i+1} - P_{i+1}) + \lambda_{i+4} \quad (2.24)$$

$$C_{i,i+2} = \overline{\delta}_{1,2} (\alpha_{i+2} - P_{i+2}) \qquad i = (\dots, n)$$

$$\alpha_{i} = \sum_{\substack{g=1\\g=1}}^{e} \nabla \alpha_{i}^{g} \overline{\phi}^{g}$$

$$P_{i} = \sum_{\substack{g=1\\g=1}}^{e} \nabla f_{i}^{g} \overline{\phi}^{g} \qquad \overline{\delta}_{i,1}^{g} \overline{\delta}_{i,2}^{g} = \begin{cases} 0 \\ 1 \\ coupling indicators, actual value due to chain structure \end{cases}$$

In the case of a pseudo fission product the complete row vanishes

 $C_{i,i-2} = C_{i,i-1} = C_{i,i} = 0$

By equations (2.22) and (2.23) the solution of equation (2.21) has been simplified, that index calculations become unnecessary and the recurrence relations for the coefficients of the solving sum are quite short.

The change of nuclide i under burnup is decribed by:

$$N_{i}(t) = \sum_{j=i}^{i} \alpha_{ij} e^{-C_{ij}(t-t_{0})} + b_{i}$$

$$a_{i,j} = \frac{C_{i,i-1}\alpha_{i,i,j} + C_{i,i-2}\alpha_{i-2,j}}{C_{ii} - C_{jj}}$$

$$b_{i,} = \frac{C_{i,i-2}b_{i-2} + C_{i,i-1}b_{i-1} + \chi_{i}}{C_{ii}}$$

$$a_{ii} = N_{i}(t_{0}) - \sum_{j=i}^{i-1}\alpha_{ij} - b_{i}$$

$$a_{kl} = 0 \quad \text{if } l > k$$

$$b_{i=0} \quad \text{if } l > k$$

$$b_{i=0} \quad \text{if } l > k$$
Where iA: index of the first element in the chain,

In the case of pseudo fission products eq 4.25) degenerates into:

 $N_{FP}(t) = N_{FP}(t_{o}) + \gamma_{FP}(t_{-}t_{o})$ (2.26)

The subroutine burnup normalizes the fluxes and calculates absorption, fission and capture rates for each isotope in a region. Also decay rates are found for the most important nuclei. Then the lower triangular depletion matrix is established and split into a number of independent fuel and fission product chains. The coefficient matrix occuring in equation (2.25) is computed and using these values

set of equations of the form(2,25) are solved. Consequently, the number densities for fuel and fission products are obtained for the present time step. Then a return is made to the MAIN program.

II- 12. SUBROUTINE SYNOPS

SYNOPS is called 3 times independently from the MAIN according to the value of the option NSYN to perform the cell homogenization and to calculate the microscopic and macroscopic broad group constants. The option NSYN has three possible values specified in MAIN i.c, NSYN= -1,0,1 . If NSYN is equal to 1, SYNOPS is referenced from MAIN to print the results of burn-up calculations for each time step. When NSYN is equal to 0 or -1, SYNOPS calculates the broad group constants and writes them to file NUY and IEREB with the help of its sub-programs GRUPVE and GRUPVB. Then the program calls subroutine GRUBVE to perform the cell homogenization and calculates the self shielding factors. A variety of methods have been developed to account for the heterogenity in a reactor lattice cell. Such homogenization techniques are used for calculating the physical parameters for a unit cell that may be defined as a single fuel rod together with its associated cladding gap and moderator. Fuel, water and structural materials are assumed to be homogenized over the volume of the unit cell, and the characteristics of the cell are computed for the homogeneous mixture. An important problem associated with homogenization is the difference in flux levels in different materials within the cell.in a typical water-reactor lattice. The homogenized area is shown in figure (II-6).

When the cell is homogenized the effective cross sections are defined in such a way that the reaction rates are preserved when integrated over a cell. Suppose, for example, that $\nabla_{\mathbf{x}}(\mathbf{r})$ represents the cross section for a given reaction x, for neutrons of a given energy at position r within the cell. If $\mathscr{I}(r)$ is the computed flux in the cell calculation, then the effective cross section $\overline{
abla_{ imes}}$, may be defined as,

$$\overline{\nabla x} = \frac{\int_{cell} \nabla x(r) \phi(r) dV}{\int_{cell} \phi(r) dV}$$
(2.27)

Shielding (or disadvantage) factors can also be defined for any kind of neutron reaction as the ratio between the actual reaction rate and that which would be found for the same material exposed to the volume averaged flux, thus, the shielding factor, $S_{\chi}^{}$ for a reaction of type x can be represented by,

$$S_{X} = \frac{\int_{cell} \nabla x \not \phi \, d.V}{\frac{\int_{cell} \phi \, d.V}{V_{cell}} \int_{cell} \nabla x \cdot dV}$$

In terms of S_x , therefore, \overline{Vx} may be written as $\overline{Vx} = S_x \frac{\int_{cell} \overline{Vx} \, dV}{V_{cell}}$

By using the effective cross sections or shielding factors, all reaction rates in the homogenized cell will be equal to those in the actual heteregeneous well.

Using the subroutine GRUBVE, SYNOPS performes the homogenization and calculates the microscopic broad group constants for the cell under consideration. After this procedure is completed, SYNOPS also calls the subroutine GRUPVB to calculate the macroscopic broad constants and writes input to LEREB file for use in the EREBUS code.

If the burnup fuel cell calculation is to be considered (i.e ISIO=1) SYNOPS does not call the subroutine GRUPVB. Because in this case it only prepares the coefficients of the polynomial for use in the burn-up super cell calculation (i.e, ISTO = 2).

Finally, the program writes the weights of heavy metals and the reactivity to file NU(13) after which a return is made to the MAIN program. On the other hand, if SYNOPS is called from MAIN with the option NSYN = 1, the program prints as the output; time step (IN), time (days), weights of heavy metals (grams) and burn-up(MWD/TO.U).

List of symbols used in this program:

IN	•	Time step
NSYN	•	Control index NSYN= -1,0,1
NXXX	•	Punch index for region dependent densities for restart
		from a certain time step (NXXX=0,1)
IR	6 5	Region index
NLB	•	Isotope index
DEN(L,IR)	•	The atomic density of the isotopes for region IR
NDOW	•	Group condensation control number
INSTOP	•	Maximum time step
REACT	:	Reactivity
L	e a	İsotope index
IX	:	IN 🕹 l
NRSTRT	•	Time step number of density punch.

II- 13. SUBROUTINE GRUPVE

GRUPVE is called from the subroutine SYNOPS to perform the homogenization for the cell under consideration.

In this program, two different calculations are made for the option ISTO equal to and not equal to 1,.

If ISTO is equal to l,(i.e, burn-up fuel cell calculation), the ratio of the average fuel to moderator flux (\mathbf{f}^g) and homogenized density for the U-235 are computed as outlined below.

The ratio of the average fuel to moderator flux is given by,

$$\mathbf{r}^{g} = \frac{\overrightarrow{\mathcal{D}}_{F}^{g}}{\overrightarrow{\mathcal{D}}_{m}^{g}} = \frac{\sum_{k=1}^{N} \overrightarrow{\mathcal{D}}_{k}^{g} V_{k}}{\sum_{k=N_{f}^{g} u \in I+I}^{N} V_{k}} \frac{V_{m}}{V_{F}}$$
(2.29)

Where;

k , is the region index $\widetilde{\mathscr{P}}_{F}^{f}$; average fuel flux for group g $\widetilde{\mathscr{P}}_{m}^{f}$; average moderator flux for group g V_{m} ; moderator volume V_{F} ; fuel volume

This factor is calculated as follows;

First, the program calculates the total volume of the cell, total fuel volume, total flux times volume for the fuel regions and average flux for the fuel regions.

$$VGE = \sum_{IR=1}^{N20} VOL (IR)$$

$$VOLUM = \sum_{IR=1}^{IGC \, I} VOL (IR)$$

$$ANE = \sum_{IR=1}^{IGC \, I} \not(IR, IE) \cdot VOL (IR)$$

$$IE = 1, \dots, N26$$

$$GAM(IE) = ANE 2 / VOLUM = \frac{\frac{16Cf}{172=1}}{\frac{172=1}{16Cf}} VOL(IR)$$

$$VOLUM = \frac{VOL(IR)}{\frac{172=1}{16Cf}} VOL(IR)$$

48

Note that, the summations are over all fuel regions, for ISTO=1, the value of IGC1 was found as the number of regions in the fuel zone by the subroutine INPUTB (IGC1= MP(1))

Also, the program follows the same procedure for the moderator regions;

$$VOLUM = \sum_{JR = IGC2}^{N20} VOL(IR)$$

$$ANE2 = \sum_{JR = IGC2}^{N20} \emptyset (IE, IR) \cdot VOL(IR)$$

$$ANE2 = ANE2/VOLUM = \frac{\sum_{JR = IGC2}^{N20} \emptyset (IE, IR) \cdot VOL (IR)}{\sum_{JR = IGC2}^{N20} VOL (IR)}$$

Where IGC2= IGC1+1

31

Then the ratio of the average fuel to moderator flux is given by

$$ABGI(IE) = GAM(IE)/ANE2 = \frac{\int_{IGC}^{IGC} \phi(IE, IR) \cdot Vol(IR) / \sum_{IR \ge I}^{IGC} VOL(IR)}{\sum_{IR \ge IGC}^{N20} \phi(IE, IR) \cdot Vol(IR) / \sum_{R \ge IGC}^{N20} VOL(IR)}$$
(2.30)

In the final section of this routine, the homogenized density of 5th isotope (U-235) over all fuel regions is computed,

ANE1=
$$\sum_{IR=1}^{IGC \ 1} N(5, IR) \cdot VOL(IR)$$

DENLT= ANE1/VGE=
$$\frac{\sum_{IR=1}^{IGC \ 1} N(5, IR) \cdot VOL(IR)}{\sum_{IR=1}^{N^{20}} VOL(IR)}$$
(2.31)

Due to the low heterogenity it is a good approximation to use only two self-shielding factors for burnup supercell calculation,

$$F_{\rm F}^{\rm S} = \frac{\Gamma \vartheta}{1 - \alpha (1 - r^{\rm S})}$$

$$\overline{E_{\rm F}^{\rm S}} = \frac{1}{1 - \alpha (1 - r^{\rm S})}$$

$$\alpha = \frac{\sqrt{2}}{\sqrt{2} + \sqrt{2}}$$
(2.32)

for the nuclei mixed with the fuel and with the moderator, respectively. Within this coarse representation the canning material is added to the moderator. The symbol $\mathbf{r}^{\mathcal{B}}$ denotes average fuel to moderator flux ratio as explained at the beginning of the subroutine. $\mathbf{r}^{\mathcal{B}}$ is the carrier of the time dependence of the above equations. This will be described by the 5th degree polynomial of a time dependent density of U-235.

$$\mathbf{r}^{\rm B}(t) = P_5(N(t))$$
 (2.33)

The fuel cell burnup calculation (ISTO=1) prepares only the coefficients of the polynomial. Using these coefficients, the solf shielding factors are calculated in burnup supercell calculation from two different formulas; One for fuel (F), other for mod (M), after-wards, the solf shielding factors (SSP), for the burnup supercell calculation are used in homogenization as explained in the following section. These results are written into file NUV(15) at the end of the section. When this routine is completed a return is made to the subroutine SYNOPS.

Generation of a cross section library for a fuel pin type surrounding an absorber in a supercell is accomplished by the following procedure. After a fuel pin transport calculation every cross section has to be homogenized by the individual self-shielding factor.

 $\mathbf{T}_{i}^{g} = \frac{\sum_{k=1}^{N} N_{k} V_{k} \rho_{k}^{g}}{\sum_{k=1}^{N} N_{k} V_{k}} \frac{1}{\sum_{k=1}^{N} \rho_{k}^{g} V_{k} / \sum_{k=1}^{N} V_{k}}$ (2.34) $\nabla_{x,i}^{g} = \nabla_{i}^{g} \cdot \nabla_{x,i}^{g}$ i : isotope index : region k 89 Х : index denoting the species of cross sections,

50

differential ones included.

Using this factor homogenization will be made for the normal fuel cell calculation and control supercell calculation.

Maintaining the concept for the burn-up calculation of a supercell, however, would multipy the expenditure. Numerous tables of the fucl library depending on flux time had to be prepared before and to be read during the burnup calculation pushing the problem to unacceptable calculational times and storage demands.

In the second section of the GRUPVE, (ISTO $\neq 1$), to perform the cell homogenization for all cases (i.e, except the burnup fuel cell calculation ISTO= 1) the following procedure is followed j

The program calculates the valume of the homogenized cell, average flux for the cell, average density of all isotopes for the cell and self shielding factors for the cell,

$$VOLUM = \sum_{IR:IGCT}^{IGCL} VOL(IR)$$

11

where, IGC 1: first region participating in homogenization IGC 2: last region participating in homogenization

ANE 2 =
$$\sum_{IR:IGC/}^{IGC2} \emptyset (IE, IR) \cdot VOL(IR) \cdot SSP$$

$$IE^{=1, \dots N26(45)}$$
ABil (IE) = ANE2/VOLUM =
$$\sum_{IR:IGC/}^{IGC2} \emptyset (IE, IR) \cdot VOL (IR) \cdot SSP$$

$$(2.35)$$

SSr_ DENN(IE,IR) the self shielding factor for all fuel regions specified in INPUTB

ANE I=
$$\sum_{\text{IR} : \text{IGC2}}^{\text{IGC2}} N(L, 1R) \cdot \text{VOL (IR)}$$

DENH(L) = $\sum_{\text{IR} : \text{IGC2}}^{\text{IGC2}} N(L, IR) \cdot \text{VOL(IR)}$
 $\sum_{\text{IR} : \text{IGC2}}^{\text{IGC2}} \text{VOL(IR)}$
ZAE = $\sum_{\text{IR} : \text{IGC1}}^{\text{IGC2}} N(L, IR) \cdot \emptyset$ (IE, 1R) · VOL (IR) · DSP

$$GAM(IE, I_{i}) = ZAE/ANE I_{i} AEGI(IE) = \frac{\sum_{\substack{I \in IGC2 \\ IGC$$

Where,

SSP= DENN(IE,IR)/(1.4 ALPHA. DEN (IE,IR)-1) (2.37) for the nuclei mixed with the fuel

If no supercell burnup calculation is present ,SSP will be taken as 1 (SSP= 1 for all cases except the burnup supercell calculation) SSP, in the divisor of the above equation is equal to DENN(IE,IR) for burnup supercell calculations with, IE= 1,....N26. All of the microscopic contants are multiplied by the self shielding factors as follows;

For fuel isotopes: L= 1,....N FUEL, IE= 1,....N26 SIGFI (IE,L)= SIGFI (IE,L).GAM (IE,L) [∇_{F} (IE,L). ∇_{L} ^{IE}] FISIG (IE,L)= FISIG (IE,L). GAM(IE,L) [$\nu\nabla_{F}$ (IE,L). ∇_{L} ^{IE}] TOSIG (IE,L)= TOSIG (IE,L).GAM (IE,L) [∇_{tr} (IE,L). ∇_{L} ^{IE}] OUSIG (IE,1,L) = OUSIG (IE,1,L).GAM (IE,L) [∇_{sin} (IE,L). ∇_{L} ^{IE}] OUSIG (IE,2,L)= OUSIG (IE,2,L).GAM(IE,L) [$\nabla_{s...t}$ (IE,L). ∇_{L} ^{IE}]

For all isotopes: L= 1,....N FUEL, IE= 1,....N26 ABSIG (IE,L)= ABSIG(IE,L).GAM(IE,L) $\left[\sqrt{2} (JE,L) \cdot \sqrt{1} \right]$

For lumped absorber and nonburnable isotopes, moderator isotopes TOSIG (IE,L)= TOSIG (IE,L).GAM (IE,L) $\left[\overline{V_{t\ell}}(IE,L), \overline{V_{t}}^{IE} \right]$ $46 \leq L \leq NLB$

For lumped absorber and non burnable isotopes: $UUSIG(IE, 1, L) = OUSIG(IE, 1, L) \cdot GAM (IE, L) \left[\sqrt{5}_{in}(IE, L) \cdot \sqrt{1}^{ie} \right]$ $46 \leq L \leq NLEM \qquad NLEM = NLE-NLM$ OUSIG (IE, 2, L) = OUSIG (IE, 2, L) \cdot GAM(IE, L) \left[\sqrt{5}_{out}(IE, L) \cdot \sqrt{1}^{ie} \right]

All of the above microscopic cross sections homogenized by the self shielding factors are written to file NUX (22) if the case under consideration is pre-calculation of the control supercell calculation, (i.e, the option ISTO= 4).

For the option ISTO=4, only homogenized library will be generated on logical file NUX. This, homogenized library generated by ISTO=4 will be used in control supercell calculation (ISTO=5). However, the microscopic broad group cross sections for all isotopes in the cell under consideration are computed;

This is the average flux for each group in homogenized regions for the cell.

$$SNM = \sum_{IJ=MIN}^{MAX} ABGIJ = \sum_{IJ=MJN}^{MAX} \emptyset (IJ)$$
 Total average flux for IG th broad group.

$$VFS = \sum_{IJ=MIN}^{M4X} FISIG(IJ,L). AEGIJ \left[\sum_{iJ=MIN}^{M4X} VV_{f}(IJ,L) \cdot \overline{\emptyset}(IJ) \right]$$
for L \leq NFUEL
$$VTS = \sum_{IJ=MIN}^{M4X} TOSIG(IJ,L). AEGIJ \left[\sum_{IJ=MIN}^{M4X} V_{f}(IJ,L) \cdot \overline{\emptyset}(IJ) \right]$$
for L \leq NFUEL (fuel isotopes)
$$VTS = \sum_{IJ=MIN}^{M4X} TOSIG(IJ,L). AEGIJ \left[\sum_{IJ=MIN}^{M4X} V_{f}(IJ,L) \cdot \overline{\emptyset}(IJ) \right]$$

$$46 \leq L \leq NLB$$

Lumped absorbers, nonburnable isotopes, mod. isotopes.

$$VSIG1 = \sum_{JJ:ANN}^{MAX} SIGFI(IJ, L). ARGIJ \begin{bmatrix} \sum_{JJ:ANN}^{MAX} V_{f}(JJ.L) & \overline{\emptyset}(JJ) \end{bmatrix}$$
for L = NEUEL
$$VAS = \sum_{JJ:ANN}^{MAX} ABSIG (IJ, L). AEGIJ \begin{bmatrix} \sum_{JJ:ANN}^{MAX} V_{A}(JJ.L) & \overline{\emptyset}(JJ) \end{bmatrix}$$
for L= 1, ..., NLB

Using the above quantities, the program calculates the broad group constants for all isotopes in the cell.

$$VFISI (IG, L) = VFS / SNM = \frac{\sum_{\substack{M \neq X \\ M $

(Lumped absorbers, nonburnable isotopes, mod.isotoper)

$$VABJI(IG, L) = VAS/SNM = \frac{\sum_{IJ:MIN} (IJ, L) \tilde{\emptyset}(IJ)}{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)} \begin{bmatrix} \overline{F_a}(IG, L) \end{bmatrix}$$

$$VSIGFI(IG, L) = VSIG1/SNM = \frac{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)}{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)} \begin{bmatrix} \overline{F_a}(IG, L) \end{bmatrix} \begin{bmatrix} \overline{V_f}(IG, L) \end{bmatrix} \begin{bmatrix} \overline{V_f}(IG, L) \end{bmatrix}$$

$$VSIGFI(IG, L) = VSIG1/SNM = \frac{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)}{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)} \begin{bmatrix} \overline{V_f}(IG, L) \end{bmatrix} \begin{bmatrix} \overline{V_f}(IG, L) \end{bmatrix}$$

$$VSIGFI(IG, L) = VSIG1/SNM = \frac{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)}{\sum_{IJ:MIN} \tilde{\emptyset}(IJ)} \begin{bmatrix} \overline{V_f}(IG, L) \end{bmatrix} \begin{bmatrix} \overline{V_f}(IG, L) \end{bmatrix}$$

$$VXN(IG,L) = VFISI(IG,L)/VSIGFI(IG,L) = \frac{\nu V_f (IG,L)}{\nabla f (IG,L)} \left[\overline{\nu} (IG,L) \right]$$

$$L \leq NFUEL$$

VOUSI(IG,2,L) = OUSIG(MAX,2,L).
$$\tilde{\varnothing}(MAX) / \sum_{D:msn}^{mAX} \tilde{\varnothing}(IJ); \left[\sqrt{sout}(MAX,C) \right]$$

Also calculated are; The microscopic broad group in_scatter cross sections for fuel isotopes,

VOUSI(IG,1,L) = VTOSI(IG,L) - VABSI(IG,L) = VOUSI (IG,2,L)

The microscopic broad group in_scatter and out_scatter cross sections for lumped absorber and non-burnable isotopes.

VOUSI(IG,1,L) = OUSIG(MAX,2,L).
$$\widetilde{\wp}(MAX) / \sum_{IJ:MN} \mathscr{\wp}(IJ)$$

VOUSI (IG,1,L) = UTOSI (IG,L) - VABSI(IG,L) - VOUSI(IG,2,L)
 $\widetilde{\nabla}_{Sin}(IG,L) = \left[\widetilde{\nabla}_{tr}(IG,L) - \widetilde{\nabla}_{\alpha}(IG,L) - \widetilde{\nabla}_{Sout}(IG,L) \right]$
Where 46 $\langle L \langle NLBM$ indicating lumped absorber and non-burnable isotopes.

Finally, a return is made to the SYNOPS.

i n

List of symbols used in this subroutine:

 \mathbf{IR} : region index MI - 46 : JFI = 31VGE : total volume of the cell VOLUM(IR) : the volume of the IR th region IGC1 : first region participating in homogenization 1002 : last region participating in homogenization IΕ : group index LE = 1,....N26 RPHI(IE, IR): the flux for IE th group, IR th region APG1 (1E) : the homogenized flux over all regions for 1E th group DENN(IE,IR): the self shielding factor for IE th group and iR th region DENH (L) : the homogenized density of the Lth isotope in the cell DENLT : the homogenized density of U-235 GAM (IE,L): the self shielding factor for IE th group and L'th isotopes NFUEL : number of fuel isotopes L)46 : represents the lumped absorber, nonburnable isotopes and moderator isotopes MI <L <NLBM : represents the lumped absorber and non-burnable isotopes : number of broad groups. NGR MIN - ICPU (IG)/ represents the boundary of the broad group IG MAX = ICP (IG)SIGFI(IE,L): the microscopic fission cross section of the Lth fuel isotope for iEth group, times self shielding factor Vr. r. FISIG (IE, L)O the microscopic V. V_{f} for Lth fuel isotope and IE th group, times self shielding factor. [$\nu \nabla_{f}$. Γ_{i}]

ABSIG (IE,L) : the microscopic absorption cross section for IE th group and Lth isotope, times self shielding factor $\left[\begin{array}{c} v_{a} & v_{a} \end{array} \right]$

TOSIG (IE,L) : the microscopic transport cross section for IE th group and Lth isotope, times self shielding factor $\left[\sqrt{t_{tr}} \prod_{i=1}^{y} \right]$

OUSIG (IE,1,L): the microscopic in-scatter cross section for IE th group and Lith isotope, times self shielding factor

OUSIG (IE,2,L): the microscopic out-scatter cross section for IE th group and L th isotope, times self shielding lactor

II- 14. SUBROUTINE GRUPVB

GRUPVB is referenced from the subroutine SYNOPS to calculate the macroscopic broad group cross sections and to write the homogen ized microscopic broad group constants to IEREB file for use in the EREBUS code.

11

Firstly, the program reads data from a single card which is the control card for writing output that will be used for EREBUS input.

Then the microscopic and macroscopic broad group transfer cross sections of the moderator isotopes, broad group diffusion coefficients and the, macroscopic broad group constants for the call are computed respectively.

Microscopic transfer cross section for moderator isotope is multiplied by the self shielding factor.

OUSIGM (IE, IJ, L) = GAMI. OUSIGM (IE, IJ, L) $\begin{bmatrix} t_{L}^{2e}, \nabla_{s} & (Ie \rightarrow L) \end{bmatrix}$

Where, the factor GAMI $[\Gamma_{i}^{Ie}]$ is calculated in the subroutine GRUPVE. for IE= 1,.....N26 IJ = 1,....N26

If the option ISTO is equal to 4, these results are written into the file NUX (22) so as to use in the supercell calculation.

Microscopic broad group transfer cross section of the moderator isotope from broad group IGS to broad group IG is given by;

$$VOUSIM(IGS, IG, L) = \frac{\sum_{\substack{I \in AUV}} \sum_{\substack{I \neq I \in AUV}} (IJ, IE, L) \vec{p} (IJ)}{\sum_{\substack{I \in I \in V}} \vec{p} (IJ)}$$

Where, $\vec{p} (IJ) = \frac{\sum_{\substack{I \in I \in V}} \vec{p} (IJ, IR) \cdot VoL (IR) \cdot SSP}{\sum_{\substack{I \in I \in V}} VoL (IR)}$
IG = 1,...NGR IGS = 1,...NGR

average flux over the homogenized regions for group IJ, MII = ICPU (IG) lower limit of the broad group IG MA = ICP (IG) upper limit of the broad group IG MIN = ICPU(IGS) lower and upper limit; of the broad group IGS

Diffusion coefficients for broad groups are calculated in the same manner; MAX $DIF(IG) = \sum_{i=1}^{MAX} DIF(IE) = \sum_{i=1}$

DIF1(IG) =
$$\sum_{I \in I \land I \land I} DIF(IE)$$
. ANGI (IE) = $\sum_{I \in I \land I \land I} DIF(IE)$. \emptyset (IJ)
DIF1(IG) = DIF1(IG)/SNORMIG = $\sum_{I \in I \land I \land I} DIF(IE)$. $\widehat{\emptyset}(IJ)$
 $MAX = \widehat{\emptyset} \subseteq IJ$. (2.38)

Where, DIF(IE) is the diffusion coefficient for the microgroup IE and is computed in the subroutine DEPRIN.

Multiplying the microscopic broad group constants which were generated in the subroutine GRUPVE by the homogenized densities for the cell, macroscopic broad group constants are obtained as follows;

The homogenized density of every isotope in the cell is given by,

$$\overline{N}(L) = DENH(L) = \frac{\sum_{\substack{j \in \mathbb{Z} \\ i \in$$

The microscopic broad group cross sections created in GRUPVE for each isotope is given by,

$$\overline{G_{X}} (IG,L) = \frac{\sum_{D_{T}:MIN}}{M_{MX}} \overline{\tilde{G}} (IJ.L) \cdot \overline{\tilde{g}} (IJ) (2.39)$$

$$\overline{\tilde{G}_{X}} (IG,L) = \frac{M_{MX}}{M_{MX}} \overline{\tilde{g}} (IJ)$$

$$\overline{\tilde{g}} (IJ)$$

Where, IG : Broad group index : IG = 1, NGR

x : Index denoting the type of cross sections;
$$\overline{V_{f}}(IG,L), \overline{V_{t}}(IG,L), \overline{V_{a}}(IG,L), \overline{V_{sin}}(IG,L), \overline{V_{sout}}(IG,L)$$

Then, the macroscopic broad group cross sections are computed. MACROSCOPIC BROAD GROUP FISSION CROSS SECTION; $\sum f(IG)$;

VSIG (IG) =
$$\sum_{L=1}^{NEVEL} DENH(L) \cdot \overline{C_f}$$
 (IG, L)

MACROSCOPIC BROAD GROUP TRANSPORT CROSS SECTION : $\sum_{t} (IG)$: TOS(IG) = $\sum_{L=1}^{NFUEL}$ DENH(L). $\overline{C}_{t} (IG,L) * \sum_{L=47}^{NLB}$ DENH(L). $\overline{C}_{t} (IG,L)$

MACROSCOPIC BROAD GROUP ABSORPTION CROSS SECTION; $\geq a(IG)$; ABS (IG) = $\sum_{L=1}^{NLB} DENH(L) \cdot \int_{a}^{C} (IG, L)$

MACROSCOPIC BROAD GROUP IN SCATTERING CROSS SECTION: $\leq \sin(IG)$; OUMM(IG,L) = $\sum_{L=1}^{NFVEL} DENH(L)$. $\overline{\bigcirc}_{Sin}$ (IG,L) = $\sum_{L=4,7}^{NLSM} DENH(L)$. $\overline{\bigcirc}_{Sin}$ (IG,L)

Where, NLEM = NLB- NLM : number of isotopes except the moderator isotopes.

MACROSCOPIC BROAD GROUP OUT SCATTERING CROSS SECTION; \geq sout(IG); OUMM (IG,2) = $\sum_{L=1}^{NFVEL}$ DENH(L). $\overline{\int}_{CV}$ (IG,L) $\neq \sum_{L=4}^{NLBOW}$ DENH(L). \overline{G} sout(IG,L)

MACROSCOPIC BROAD GROUP TRANSFER CROSS SECTION, \leq s(IG,IGS); OUM (IG,IGS) = $\frac{\sqrt{L_{IM}}}{\frac{\sqrt{L_{IM}}}{L_{IM}}}$ DENH(ILM). $\sqrt{}$, (IG,IGS,L) NLM: number of moderator isotopes. MACROSCOPIC BROAD GROUP REMOVAL CROSS SECTION, Zr(IG);

SREM (IG) = OUM (IG + 1, IG)

On the other hand; the microscopic broad group cross sections for all isotopes are written into the file IEREB for use in EREBUS code. Recall that this cross-section, library is generated by the subroutine GRUPVE.

However, the program prints in the output, the microscopic and macroscopic broad group cross sections.

If the case under consideration is a supercell calculation the program calculates the effective cross sections and prints them in the output. The calculation is given by,

 $EFGQ1 = DENH(L) \cdot VABSI(IG,L) \left[\overline{N}(L) \cdot \overline{N}_{e}(IG,L)\right] \quad (2.40)$

Where $L = 41, \dots, 49$ lumped absorber isotopes. DENH(L) : the density of the lumped absorber isotopes

For the same case, the shielding factors of the burnable poisons and cell fluxes are printed.

When this program is completed, a return is made back to SYNOPS.

List of symbols used in this program:

NLM	:	number of moderator isotopes
IE		group index IE= 1,N26
IJ	•	group index IJ=1,N26
IG, I GS	:	broad group index. IG = 1, NGR, IGS = 1, NGR
υIFl(IG)	:	diffusion cross section for the broad groupe 1G
VSIG (IG)	•	macroscopic broad group fission cross section for the cell
ris (IG)	:	macroscopic broad group nu.fission cross section for the cell
TOS (IG)	:	macroscopic broad group transport cross section for the cell
ABS (IG)	:	macroscopic broad group absorption cross section for the cell
UUMM(IG,1)):	macroscopic broad group in-scatter cross section for the cell
OUMM(IG,2)):	macroscopic broad group out-scatter cross section for the cell
OUM (IG,IGS):macroscopic broad group transfer cross section from IG th		
		broad group to broad group IGS

SREM (IG) : macroscopic removal cross section for broad group IG
GAMI = GAM(IE,L) : the self shielding factor for IE th micro group

and Lth isotope.

.

· •

NGR	8	number of broad groups
NLB		number of isotopes
NFUEL	:	number of fuel isotopes
DENH (L)	•	represents the homogenized density of the isotope L.
VOLUM	*	total volume of the homogenized region.
NPUNC	•	control index for writing the input to EREBUS
NLBM = NLB	4340	NIM : number of isotopes except the moderator isotopes
MI = 46		
DFI = 31		

II- 15. SUBROUTINES ORDO AND COBES

If burnup fuel cell calculation (ISTO = 1) is to be considered, the subroutine COBES is called from the MAIN program only to calculate a set of polynomial coefficients which correlate the self shielding factors in each energy group with the U-235 concentration.

 $\mathbf{r}^{g}(t) = P_{g}(N(t))$

For this purpose the program COBES is called from the MAIN for U-235 isotope only.

If no burn-up fuel cell calculation (ISTO \neq 1) is to be considered, then both COBES and ORDO are referenced from the MAIN together. The subroutine ORDO reads the homogenized density and self shielding factors for all isotopes from file NUZ and writes them to file NUV for use in COBES.

The subroutine COBES is called from the MAIN for each isotope within the cell seperately to calculate the burn-up dependence of self shielding factors using the least squares orthogonel polynomial technique.

The appropriate function for the least squares fit is a sum of orthogonal polynomials^{\Re} which has the form,

 $y(x) = a + b (x - \beta) + c (x - \delta_1)(x - \delta_2) + d (x - \delta_1)(x - \delta_2)(x - \delta_3) + \dots$ (2.41) Where, y: the dependent variable

- a, b, c, d : coefficients
- x: the independent variable

x) Any polynomial can be written as a sum of orthogonal polynomials $y = a \Rightarrow \sum_{j=1}^{n} [b_j X_j(x_j)]$ with the orthogonal property that, $\sum_{j=1}^{n} [x_j(x_j) X_k(x_j)] = 0$ for $j \neq k$

 $\chi^{\mathbf{2}}$ is defined as,

$$\chi^{2} = \sum_{i} \left(\frac{\Delta \mathcal{Y}_{i}}{\sigma_{i}}\right)^{2} = \sum_{i} \left\{ \frac{1}{\nabla_{i}^{2}} \left[\mathcal{Y}_{i} - \mathcal{Y}(\chi_{i}) \right]^{2} \right\} \qquad (2.42)$$

Where,

$$\nabla_{i}: \text{ the standard deviation} \\ \nabla_{i} = \sqrt{\left(\frac{i}{N} \sum_{i}^{2} x_{i}^{2}\right) - \overline{x}^{2}}$$

N : number of observations

 \times^2 must be minimized to determine the coefficients a, b, c, d, etc. with the further criterion that the addition of higher-order terms to the polynomial will not effect the evaluation of lower-order terms. This criterion will be used to determine the parameters β , γ_i , γ_2 , etc.

Setting the derivatives of X^{t} with respect to each of the coefficients equal to 0 yields n-4 l simultaneous equations.

$$\sum_{i} y_{i} = \text{Na} + b \sum (x_{i} - \beta) + c \sum (x_{i} - \beta_{i}) (x_{i} - \delta_{2}) + d \sum (x_{i} - \delta_{i}) (x_{i} - \delta_{2}) (x_{i} - \delta_{3}) + \dots$$
(2.43)

$$\frac{2}{i} x_{i} y_{i} = a \sum x_{i} + b \sum x_{i} (x_{i} - \beta) + c \sum x_{i} (x_{i} - \delta_{i}) (x_{i} - \delta_{2})$$

$$= d \sum (x_{i} - \delta_{i}) (x_{i} - \delta_{i}) (x_{i} - \delta_{i}) + \dots$$
(2.44)

$$\sum_{i} x_{i}^{2} y_{i} = a \sum_{i} x_{i}^{2} + b \sum_{i} x_{i}^{2} (x_{i} - \beta) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) (x_{i} - \beta_{i}) + c \sum_{i} x_{i}^{2} (x_{i} - \beta_{i}) (x_{i}$$

$$\sum_{i=1}^{2} x_{i}^{3} y_{i} = a Z x_{i}^{3} + b Z x_{i}^{3} (x_{i} - \beta) + c Z x_{i}^{3} (x_{i} - \lambda_{i}) (x_{i} - \lambda_{i})$$

$$+ a Z x_{i}^{3} (x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) + \dots$$
(2.46)

We have omitted a factor of V_i^{λ} in the denominator of each term for clarity.

If one is restricted to a Oth degree polynomial, there is only one coefficient a; all of the other coefficients are set equal to O by definition. The coefficient a, therefore has the form

$$a = \frac{1}{N} \sum y_{i} = \overline{y}$$
 (2.47)

If on the other hand a first-degree polynomial is under consideration, the coefficient b is not 0. In order to have independence of coefficients, however, this term must still be 0. Hence the conclusion that the sum in this term is 0.

$$\sum (x_i - \beta) = 0$$

leads to a value for β

$$\beta = 1/N. Z_{x_1} = \overline{x}$$
 (2.48)

Similarly, if we consider a quadratic function, the third term of equation (2.43) must be 0 even when the coefficient C is not 0. This constraint leads to a quadratic equation in \mathcal{X}_{ρ} and \mathcal{X}_{z} . We have the additional constraint, however that the coefficient b must be specified by equation (2.43) and (2.44), that is equation (2.44) must be determined after a is determined (2.43). Thus, the third term in equation (.244) must also be 0 regardless of the value of the coefficient c.

$$\sum_{i}^{2} (x_{i} - \delta_{i})(x_{i} - \delta_{i}) = 0$$

$$\sum_{i}^{2} x_{i} (x_{i} - \delta_{i})(x_{i} - \delta_{i}) = 0$$
(.2.49)
Similarly
$$\sum_{i}^{2} x_{i} - (x_{i} - \delta_{i})(x_{i} - \delta_{i})(x_{i} - \delta_{i}) = 0$$

$$\geq x_{i}(x_{i} - \delta_{i})(x_{i} - \delta_{i})(x_{i} - \delta_{j}) = 0$$

$$\geq x_{i}^{2}(x_{i} - \delta_{i})(x_{i} - \delta_{i})(x_{i} - \delta_{j}) = 0$$

The extrapolation to higher-order parameters is straight forward.

Once the parameters β , γ , δ , etc. are determined by the constraints described above, the coefficients a, b, c, etc. can be determined from the resulting (n + 1) simultaneous equations. The value for the first coefficient a is specified completely by minimizing χ^2 with respect to a in equation (2.43). The value of the second coefficient b is determined by minimizing χ^2 with respect to both $^{\circ}$ and b in equations (2.43 and 2.44). Substituting the value of a into equation (2.44) yields a result for b directly. Similarly, the value for c can be determined from equation (2.45), after substituting the values of a and b determined from equations (2.43 and 2.44). Each succeeding equation yields the value for the next higher-order . . coefficient.

$$a = \frac{1}{N} \sum y_{i} = \bar{y}$$

$$b = \sum y_{i} (x_{i} - \beta) / \sum (x_{i} - \beta)^{2}$$

$$c = \frac{\sum \left[\frac{y_{i} (x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) \right]}{\sum \left[(x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) \right]} \qquad (.250)$$

$$d = \frac{\sum \left[\frac{y_{i} (x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) \right]}{\sum \left[(x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) (x_{i} - \lambda_{i}) \right]}$$

and so on,
CHAPTER III NUMERICAL APPLICATION

III- 1. INPUT DATA PREPARATION

For one-dimensionel burnup and spectrum calculation the following fuel cell model is used. The fuel cell is divided into four zones in order to achive a straight forward one dimensional treatment of the whole micro structure.

<u>ZONE 1</u>: Consists of fuel $(UO_2 - ThO_2)$ and gas gap, radius of the **zone** is equal to the radius of the cladding inner surface. Total fuel density :

]

$$\int \text{fuel} \quad \int \text{ThO}_2 \quad \int \text{ThO}_2 \quad (1 - \int \text{ThO}_2) \quad \int \text{UO}_2 \quad (3.1)$$

Where,

$$\int ThO_2 : \text{fraction of ThO}_2 \text{ in total fue}$$

$$\int ThO_2 : \text{density of ThO}_2 (gr/cm^3)$$

$$\int UO_2 : \text{density of UO}_2 (gr/cm^3)$$

This total density is reduced by the factor of $(1-0.015)\frac{r_p^2}{r_1^2}$ to include also the gas gap and dishing effect into the fuel region, rp being the radius of the fuel pin, r_{cl} being the cladding inner radius, both given in cm.

New densities of ThO_2 and UO_2 :

$$\int^{2} \text{Th}O_{2} = \int^{2} \text{fuel} \int^{2} \text{Th}O_{2}$$
$$\int^{2} \text{U}O_{2} = \int^{2} \text{fuel} (1 - \int^{2} \text{Th}O_{2})$$

The fraction of U and Th in UO2 and ThO2 respectively:

$$f_{x} = \frac{E \text{ MA} \cdot (1-E) \text{ MB}}{E \text{ MA} \cdot (1-E) \text{ MB} \cdot \text{MO}}$$
(3.2)

Whose,

E : fissile enrichment in the Uranium material (%) MA : atomic mass of the fissile element MB : atomic mass of the non-fissile element MO : atomic mass of the oxygen and, subscript x = either U or Th

The density of each element:

$$\int Th \stackrel{d}{=} \int Th \cdot \int ThO_2$$

$$\int O_2^{Th} = \int ThO_2 - \int Th$$

$$\int U = \int U \cdot \int UO_2$$

$$\int 235^{-} E \cdot \int U$$

$$\int 238^{-} (1-E) \cdot \int U$$

$$\int O_2^{-} \int UO_2 - \int U$$

$$\int O_2^{-} \int UO_2 - \int U$$

$$\int O_2^{-} \int O_2 + \int O_2^{-} O_2$$

After having found the densities the number densities are found by;

$$N = \frac{\beta^2 \cdot NAV}{M}$$
(3.3)

Where,

M : atomic mass of the element
NAV : Avagadro number
NAV : 0,602252. 10²⁴ Nuclei/mol = 0,602252 szilard

ZONE 2: Consists of cladding (Zr-4). The radius of this zone is equal to cladding outside radius.

radius of zone 2 = 0.475 cm. composition of zircaloy 4

The number densities of the elements can be calculated from the equation:

$$N = \frac{\int_{Zr-4}^{P} \cdot NAV}{M_{Zr-4}} + \frac{P}{fan} \qquad (3.4)$$

Where,

 $\mathcal{P}_{\mathrm{Zr}-l_{4}} = 6,55 \mathrm{gr/cm}^{3}$

 $M_{Zr-4} = 91,3375$ (atomic weight of zircaloy-4)

.

For the calculation of number densities of other zones, see (1)

III- 2. DISCUSSION OF THE NUMERICAL RESULTS

In this study, for cells with different mixtures of $UO_2 - ThO_2$ and different enrichment levels of the U-235 component normal cell calculation, burnup fuel cell and burnup super cell calculations have been made using the computer code GELS.

As a result, microscopic and macroscopic broad group constants, weights of fuel elements, reactivity, fast and thermal group fluxes, homogenized densities were obtained for the types of cells examined. The main objective was to determine the way in which the number densities of important isotopes and ke change with time steps for both fuel and super cells during one year burnup period.

Table (III- 2.1) shows the results as an example, for $\text{ThO}_2 - \text{UO}_2$ mixture rations of 30% - 70% and 40% - 60% by weight. In both mixtures k_{10} increases with increasing enrichment while the normalized cell fluxes decrease as expected. This is because richer fuel would sustain a lower flux level for the same power production. In case of 30% UO₂ - 70% ThO₂ mixture 18% W/U enrichment level for the UO₂ component results in $k_{10} = 1$. This type of a cell being relatively rich in Th, would have a high conversion ratio and a high rate of U-233 production but obviously would have insufficient excess reactivity for control purposes and from the point of view of core life time.

Table (III-2.2) shows the results for $70\% UO_2 - 30\% ThO_2$ mixture. This type of a cell, being relatively poor in Th, would have a low conversion ratio therefore the U-233 production is decreased, but would have significiant excess reactivity for **co**re life time.

Tables (III-2.5,6,7) show the change in the atomic density of xenon-135 nuclide depending on the time steps during one year burnup period for various mixtures of $UO_2 - ThO_2$ and the enrichment levels of the UO_2 component.

It is seen that, the atomic density of xenon-135 nuclide increases with increasing amounts of UO_2 and enrichment levels of the UO_2 component as expected.

Algo, as seen in tables (III- 2,5,6,7) and figures (5,6,7) the atomic density of xenon-135 decreases with increasing time steps. The concentration of xenon-135 is reaches its maximum value at the end of first month and then begins to decrease with time steps. Because xenon-135 has a very large absorption cross section for thermal neutrons, low xenon-135 concentration is desirable for control purposes especially for start up and shutdown.

Figure (8) shows the U-233 production in grams for one year burnup period versus the enrichment levels for different mixtures of UO_2 - ThO_2 . It is seen that the U-233 production decreases by increasing amounts of both UO_2 and the enrichment of the UO_2 component as expected.

In the extreme case of pure u_{2}^{0} cells we have k ∞ exceeding 1 by more than enough margins for control and sufficiently long core lire time purposes. However such cells wouldn't be of any use in Th conversion but would be the main source of energy production in the core.

Clearly a core that is to produce energy on a commercial scale while converting significant amounts of Th would have to be made up of a mixture of the different types of cells to be employed in the finite reactor geometry. Factors that would guide ones efforts would be; relatively flat power production, desirable levels of Th conversion, sufficiently long reactor core life time and case of control during start up and shut down. In a desingn process different **core** configurations would be investigated with the data generated in this study and the configurations that optimize the above factors would be chosen as the design basis.

llence further work to be suggested along the lines of this study would be to use a reactor analysis code such as EREBUS utilizing the data generated by GELS here to design a commercial PWR core converting significiant amounts Th without much sacrifice on other performance criteria.

FUEL CELL CALCULATION $f_{UO_2} = 0.30$, $f_{ThO_2} = 0.70$					
Enrichment keff cell flux					
Sand State of the same of the	and a second and a second and a second and a second and a second and a second and a second and a second and a s	Lat group	2nd group		
10	0,83193	3,66915.1014	5,95353.10 ¹³		
12	0,89006	3,41644.10 ¹⁴	5,07024.10 ¹³		
14	0,93721	3,23264.1014	4,26692.10 ¹³		
16	0,97629	3,09214.10 ^{1/1}	3,93519.10 ¹³		
18	1,0093	2,98068.10 ¹⁴	3,54571.10 ¹³		
20	1,0375	2,88963.10 ¹⁴	3,22854.10 ¹³		

FUEL CELL CALCULATION						
$f_{00_2} = 0.40$, $f_{100_2} = 0.60$						
Enrichment	Enrichment keffcell_flux					
% U-235		lst group	2nd group			
10	0,93808	3,23753.10 ^{1/1}	4,58225.10 ¹³			
12	0,99082	3,05038.10 ¹⁴	3,90421.10 ¹³			
14.	1,0328	2,91281.10 ¹⁴	3,40751.10 ¹³			
16	1,0671	2,80643.10 ¹⁴	3,02594.10 ¹³			
18	1,0957	2,72097.10 ¹⁴	2,7231.10 ¹³			
20	1,12014	2,65022.10 ¹⁴	2,47404.10 ¹³			

.

Table (III-2.2) The results for fuel cell calculation

FEL CELL CALCULATION f _{UO2} : 0.50, f _{ThO2} :0.50						
Enrichment % U-235	flux					
here a stand and provide the stand and the stand of the stand of the stand of the stand of the stand of the stand		group 1	group 2			
10	1,0102	2,98546.10 ¹⁴	3,74353.10 ¹³			
12	1,0579	2,83432.1014	3,18682.10 ¹³			
14	1,0955	2,72194.10 ¹⁴	2,77769.10 ¹³			
16	1,1260	2,63376.10 ¹⁴	2,46174.10 ¹³			
18	1,1515	2,56188.10 ¹⁴	2,20948.10 ¹³			
20	1,1733	2,50147.10 ¹⁴	2,00269.1013			

FUEL CELL CALCULATION						
f _{UO2} :0.70, f _{ThO2} :0.30						
Enrichment	keff	cell flux				
% U-235		group 1	group 2			
10	1,1085	2,68218.10 ¹⁴	2,73620.10 ¹³			
12	1,1481	2,56991.1014	2,32078.1013			
14	1,1794	2,48354.10 ¹⁴	2,01277.10 ¹³			
16	1,2051	2,41360.10 ¹⁴	1,77400.1013			
18	1,2268	2,35480,10 ¹⁴	1,58271.1013			
20	1,2456	2,30391.10 ¹⁴	1,42551.10 ¹³			

Table (III- 2.3) The result for fuel cell calculation

.

-

FUEL CELL CALCULATION						
$f_{UO_2}:1,00$, $f_{UhO_2}:0$						
Enrichment keff cell flux						
<u>% U-235</u>	THE MERCENTER CONFERENCE IN THE STREET AND AND AND AND AND AND AND AND AND AND	group 1	group 2			
10	1,1999	2,42953.10 ¹⁴	1,94048.10 ¹³			
12	1,2326	2,34155.10 ¹⁴	1,63224.10 ¹³			
14	1,2592	2,27030.10 ¹⁴	1,40242.10 ¹³			
16	1,2814	2,2145.10 ¹⁴	1,19274.10 ¹³			
18	1,3016	2,15756.10 ¹⁴	1,03176.10 ¹³			
20	1,3192	2,11014.10 ¹⁴	9,63362.1012			

.

Enrichment % U-235	30% UU2-70% ThU2	50% UO ₂ -50% ThO ₂	70% UO ₂ -30% Thu ₂
10	2,4823.10 ⁻²	1,3341.10 ⁻²	6,807.10 ⁻³
12	2,2839.10 ⁻²	1,2247.10 ⁻²	6,2673.10 ⁻³
16	1,9931.10 ⁻²	1,0719.10 ⁻²	5,5135.10 ⁻³
20	1,7917.10 ⁻²	9,6876.10 ⁻³	4,9982.10 ⁻³

Table (III-2.4) U-233 Production for one year in gr. for the cell

Table (III-2.5) Atomic density of xenon-135 depending on time steps

Time	30% UO2 - 70% ThO2					
Dreps	E = 10%	E= 12	E = 16	E=20		
1	7,16809.10 ⁻⁹	8,41093.10 ⁻⁹	1,07068.10 ⁻⁸	1,27514.10 ⁻⁸		
5	7,18322.10 ⁻⁹	8,43842.10 ⁻⁹	1,07610.10 ⁻⁸	1,28276.10 ⁻⁸		
3	7,14852.10 ⁻⁹	8,39134.10 ⁻⁹	1,0680.10	1,27773.10 ⁻⁸		
4 5	7,12802.10 ⁻⁹ 7,11862.10 ⁻⁹	8,34865.10 ⁻⁹ 8,3151.10 ⁻⁹	6,91974.10 ⁻⁹ 7,03428.10 ⁻⁹	1,27089.10 ⁻⁸ 1,26398.10 ⁻⁸		
6	7,11111.10 ⁻⁹	8,28343.10 ⁻⁹	7,12599.10 ⁻⁹	1,25712.10 ⁻⁸		
7	7,10173.10 ⁻⁹	8,25024.10 ⁻⁹	7,19994.10 ⁻⁹	1,25013.10 ⁻⁸		
8	7,08906.10 ⁻⁹	8,21438.10-9	7,25941.10 ⁻⁹	1,24295.10 ⁻⁸		
9	7,07291.10 ⁻⁹	8.17564.10-9	7,30706.10 ⁻⁹	1,23554.10 ⁻⁸		
10	7,05334.10-9	8,13397.10 ⁻⁹	7,34458.10-9	1,22792.10 ⁻⁸		
11	7,03079.10-9	8,08965.10-9	7,37370.10-9	1,22007.10 ⁻⁸		
12	7,00551.10 ⁻⁹	8,04307.10-9	7,39539.10-9	1,21202.10 ⁻⁸		

Time	70% UO ₂ - 30% ThO ₂					
steps	E = 10	E= 12	E = 16	E= 20		
1	1,43097.10 ⁻⁸	1,61796.10 ⁻⁸	1,91274.10 ⁻⁸	2,12465.10 ⁻⁸		
2	1,44518.10 ⁻⁸	1,63259.10 ⁻⁸	1,92633.10 ⁻⁸	2,13608.10 ⁻⁸		
3	1,44698:10 ⁻⁸	1,63409.10 ⁻⁸	1,92753.10 ⁻⁸	2,13709.10 ⁻⁸		
L.	1,44576.10 ⁻⁸	1,63281.10 ⁻⁸	1,92693.10 ⁻⁸	2,13718.10 ⁻⁸		
5	1,44344.10-8	1,63022.10 ⁻⁸	1,92489 . 10 ⁻⁸	2,13603.10 ⁻⁸		
6	1,44061.10 ⁻⁸	1,62708.10 ⁻⁸	1,92214.10 ⁻⁸	2,13419.10 ⁻⁸		
7	1,43738.10 ⁻⁸	1,62359.10 ⁻⁸	1,91903.10 ⁻⁸	2,13192.10 ⁻⁸		
8	1,43337.10 ⁻⁸	1,61978.10 ⁻⁸	1,91564.10-8	2,12938.10 ⁻⁸		
9	1,42980.10 ⁻⁸	1,61570.10 ⁻⁸	1,91205.10 ⁻⁸	2,12662.10 ⁻⁸		
10	1,42550.10 ⁻⁸	1,61133.10 ⁻⁸	1,90827.10 ⁻⁸	2,12371.10 ⁻⁸		
11	1,42084.10 ⁻⁸	1,60671.10 ⁻⁸	1,90433.10-8	2,12067.10 ⁻⁸		
12	1,41590.10 ⁻⁸	1,60185.10 ⁻⁸	1,90021.10 ⁻⁸	2,11751.10 ⁻⁸		

Table (III- 2.6) Atomic density of xenon-135 depending on time steps

Table (III, 2.7) Atomic density of xenon-135 depending

. البيا ال

on time steps

Time	50% UO ₂ - 50% ThO ₂					
Steps	E = 10	E = 12	E = 16	E = 20		
1	1,10592.10 ⁻⁸	1,27469.10 ⁻⁸	1,56289.10-8	1,79322.10 ⁻⁸		
2	1,11492.10 ⁻⁸	1,28524.10 ⁻⁸	1,58513.10 ⁻⁸	1,80557.10-8		
3	1,11370.10 ⁻⁸	1,28378.10 ⁻⁸	1,57398.10-8	1,80488.10 ⁻⁸		
4	1,11050.10 ⁻⁸	1,27989.10 ⁻⁸	1,57030.10-8	1,80219.10 ⁻⁸		
5	1,10708.10 ⁻⁸	1,27552.10 ⁻⁸	1,56559.10-8	1,79816.10 ⁻⁸		
6	1,10340.10 ⁻⁸	1,27090.10 ⁻⁸	1,56051.10 ⁻⁸	1,79360.10 ⁻⁸		
7	1,10140,10 ⁻⁸	1,26597.10 ⁻⁸	1,55518.10 ⁻⁸	1,78872.10 ⁻⁸		
8	1,09780.10 ⁻⁸	1,26071.10 ⁻⁸	1,54960.10 ⁻⁸	1,78363.10 ⁻⁸		
9	1,09460.10 ⁻⁸	1,25511.10 ⁻⁸	1,54378.10 ⁻⁸	1,77832.10 ⁻⁸		
10	1,0914.10 ⁻⁸	1,24921.10 ⁻⁸	1,53770.10 ⁻⁸	1,77284.10 ⁻⁸		
11	1,0824.10 ⁻⁸	1,24299.10-8	1,53140.10 ⁻⁸	1,76718.10 ⁻⁸		
12	1,0745.10 ⁻⁸	1,23649.10 ⁻⁸	1,52487.10 ⁻⁸	1,76134.10 ⁻⁸		
mer ült viele key Summer vagen ballerer	-					

Table(III-2-8): The weights of fuel isctopesfor 30%U02-70%THO2 fuel mixture and 10%U-235 enrichment level

NE.	U234	U235	U236	U237	NP237	BURNUP.
Ys	GRAMS	GPAMS	GRAMS	GRAMS	GRAMS	Mwd/to=U
•00 •00 •00 •00 •00 •00 •00 •00	0,0000 7,4049-07 3.4201-05 1.1989-04 2.4047-04 3.8703-04 5.5446-04 7.3958-04 7.3958-04 1.1547-03 1.3817-03 1.6200-03 1.8685-03	1.4045-01 1.3952-01 1.3386-01 1.2749-01 1.2138-01 1.1554-01 1.6998-01 1.6998-01 1.6998-01 1.6998-01 1.6998-01 1.699637-02 9.4829-02 9.0247-02 8.5860-02 8.1718-02	0.0000 $1.7022=04$ $1.3497=03$ $2.6457=03$ $3.8773=03$ $5.0422=03$ $6.1415=03$ $7.177=03$ $8.1538=03$ $9.0725=03$ $9.0725=03$ $9.9368=03$ $1.0749=02$ $1.1513=02$	D.0000 1.0119~07 2.7403~06 6.6476~06 1.0493~05 1.4182~05 1.7702~05 2.1056~05 2.4251~05 2.7296~05 3.0195~05 3.2956~05 3.5584~05	0.0000 $1.5711-08$ $3.3631-06$ $1.7560-05$ $4.3116-05$ $7.9285-05$ $1.2523-04$ $1.8012-04$ $2.4318-04$ $3.1366-04$ $3.9088-04$ $4.7415-04$ $5.6287-04$	$0 \cdot 0000$ $1 \cdot 5335 + 02$ $1 \cdot 1042 + 03$ $2 \cdot 2083 + 03$ $3 \cdot 3125 + 03$ $4 \cdot 4166 + 03$ $5 \cdot 5208 + 03$ $6 \cdot 6249 + 03$ $7 \cdot 7291 + 03$ $8 \cdot 8332 + 03$ $9 \cdot 9374 + 03$ $1 \cdot 1042 + 04$ $1 \cdot 2146 + 04$

b)

				•	2	
I ^M E AYS	K-EFFLKT.	CONVERS. RATIO	TH232 GRANS	. PA233 . GRANS	U233 GRAMS	BURNUP MwD/TO-U
•00	8.3193-01	0,0000	3.3774+00	0,0000	0.0000	0.0000
4 • 17	8.0859-01	1.6334-01	3,3770+00	4.3874-04	2.3477-05	1.5335+02
0.00	7.9468-01	4.3170-01	3.3740+00	2.3436-03	9,8155-04	1.1042+03
0.00	7.8680-01	5.5739-01	3,3705+00	3,4565-03	3.1172-03	2.2083+03
0.00	7.8110-01	6.1861-01	3,3669+00	3,9873-03	5.7016-03	3.3125+03
0.00	7.7638-01	6,5115-01	3,3633+00	4,2438-03	8,4082-03	4.4166+03
0.00	7.7209-01	6.7047-01	3,3597+00	4,3715-03	1.1089-02	5.5208+03
0.00	7.6800-01	6.6363-01	3,3561+00	4,4391-03	1,3679-02	6.6249+03
0.00	7.6401-01	6,9389-01	3,3525+00	4.4792-03	1.6152-02	7.7291+03
0.00	7.6007-01	7.0278-01	3,3489+00	4,5068-03	1,8502-02	8,8332+03
0.00	7.5617-01	7.1099-01	3.3452+00	4,5290-03	2.0727-02	9,9374+03
0.00	7.5229-01	7.1884-01	3,3415+00	4,5491-03	2,2833-02	1.1042+04
0.00	7,4845~01	7.2649-01	3,3379+00	4,5687-03	2,4823=02	1.2146+04
	- / /					

	c)						
		1	1 . v L.	042010601 042010601	4 * 6 X		ی در در در در در در در در در در در در در
I HL FEF	TINE DAYS	POIS1 GRANS	POIS2 GRANS	POIS3 GRAMS	U 2 3 8 GRAMS	NP 2 3 9 GRAMS	BUNUP MWD/To-U
n	• (6.0004	0.0000	0.000	1.2641400	0.0000	0.0000
l	4.17	C., U00. N	0.0000	0.0000	1 2439400		1.5336.02
2	30.00	0.000.0	0.0000	0.0000	1 2628+00	0,0270-05 1 0005-04	1.1042403
3	60.00	6,0066	0.1000	0.0000	1 2414+00	1.2420-04	1.1012-02
4	90.00	0.0000	0.0000	0.0000	1 2603000	1 27/4-04	2.3125+03
5	120.00	0.0000	0.0000	0.0000	1 2590400	1 28-4-04	4.4166403
6	150.00	0.0000	0.0000		102570100	1.2050-04	- C208403
7	180.00	0.0000	0.1000	0,0000	1.2564400	1 2005-04	5+2200+03
8	210.00	0.00000	C.DDDD	0.0000	1 2551+00		7.7291+03
9	240.00	6.0000	0.0000	0,0000	1,2538+00	1 31 8 - 04	0.8332+03
0	270.00	0.0000	0.0000	0.0000	1,2525+00	1.3179=04	0.9374+03
- 1	300.00	0.0000	0.0000	0,0000	1.2511+00	1.3239-04	1.1042+04
2	330.00	0.000	0.0600	0.0000	1.2498+00	1.3300-04	1.2146+04

d)

KVO FNRICHMENT 2.68 BURNUP PU242 AM243 MF TIME PU239 PU240 PU241 MWD/TO-U GRAMS GRAMS GRAMS DAYS GRANS EP * GRAMS 0.0000 0.000 0.0000 ⇒ - *** 🖁** Ω Ω 0.000 H , 0,000 n 0,00,0 0,0000 0.0000 1.5335+02 0.0000 6.3758-05-: 3.0485-07 1 24.4.17 1,8860=08 2.4617-05 1.9412-06 1.1042+03 9,1398-04 0,000,0 2 30,00 2 . 2083+03 3,1742=07 3.9265-09 1.8197-03 . 9.4338-05 1.5305~05 60.00 3 3.3125+03 1.5177-06 2.9097-08 1.9297-04 4.6946-05 2.6030-03 4 90.00 4.4166+03 9.8766-05 4.3931-06 1.1437-07 · 3.2792=03 . 3.0842-04 5 120.00 5.5208+03 9.6989-06 1.6969-04 3,8630~03 4.3259-04 3.2202-07 6 150.00 7,3597-07 6.6249+03 2.5719-04 1,8086-05 4.3676-08 5.6015-04 7 180.00 7.7291+03 3.5816-04 3.0071-05 1.4547-06 6.8760-04 4,8043-03 8 210.00 8,8332+03 4,6946-64 8 . 1268-04 4,6031-05 2.5893-06 9 5.1825-03 240.00 6.6211-05 9.9374+03 4.2576-06 - 9,3391-64. -- 5,8817-04 0 270.00 5,5103*03 1.1042+04 6.5803-06 7:1168-04 9.0743-05 5.7946-03 441:0503-03 11 300.00 1.2146+04 0.3773-04 9.6770-06 1.1966-04 12 330.00 CVCTPM

TABLE(III-2-9): The weights of fuel isotopeefor 30%U02-70%TH02

fuel mixture and 12%U-235 enrichment level

a)

IME Tep	TIME DAYS	K∞EFFEKT.	CONVERS. RATIO	TH2 32 GRAMS	PA233 GRAMS	U233 GRAMS	BURNUP Mwd/to-u
n	• () ()	8.9006-01	0.0000	3,3774+()()	0.0000	0.0000	0.0000
1 2	4.17 30.00	8,6540°01 8,5113*01	1.4267-01 3.7781-01	3,3770+00 3,3744+00	3,8601-04	2.0662-05	1.5335+02 1.1041+03
3 4	60•00 90•00	8,3568-01 8,3568-01	4.8911-01 5.4360-01	3,3713+00 3,3681+00	3,0458-03 3,5174-03	2.7626-03	2•2083+03 3•3124+03
5	120.00 150.00	8,2969~01 8,2409~01	5.7302-01 5.9077-01	3,3650+00 3,3618+00	3,7500-03 3,8708-03	7.5112-03	4.4166+03 5.5207+03
7	180.00	8.1869-01	6.0320-01	3,3586*00	3,9396-03	1.2324-02	6.6249+03
8 9	210.00 240.00	6。1342™∩1 8。∩823™∩;	6,1317-01 6,2201-01	3,3554+00 3,3521+00	3,9844-n3 4,0183-n3	1,4616-02 1,6814-02	7 • 7 2 9 0 + 0 3 8 • 8 3 3 2 + 0 3
10	270.00	8.0312-01	6,3031-01	3,3489+00	4.0475-03	1.8915-02	9.9373+03
11 12	300.00 330.00	7,7808-01 7,9311-01	6.3835-01 6.4626-01	3,3456+00 3,3423+00	4.0747-n3 4.1012-03	2.0923-02 2.2839-02	1 • 1 0 4 1 + 0 4 1 • 2 1 4 6 + 0 4

b)

TEP	DAYS	GRAMS	GRAMS	GRAMS	GRAMS	GRAES	MWD/TO-U
n 1 2 3 4 5 6 7 8 9 11 12	•00 4•17 30•00 60•00 120•00 120•00 150•00 180•00 210•00 240•00 270•00 300•00	0.0000 5.8868-07 2.7183-05 9.5223-05 1.9111-04 3.0806-04 4.4234-04 5.9171-04 7.5666-04 7.5666-04 1.170-03 1.3145-03 1.5221-03	$1 \cdot 6854 - 01$ $1 \cdot 6760 - 01$ $1 \cdot 6187 - 01$ $1 \cdot 5537 - 01$ $1 \cdot 4967 - 01$ $1 \cdot 4299 - 01$ $1 \cdot 3713 - 01$ $1 \cdot 3149 - 01$ $1 \cdot 2607 - 01$ $1 \cdot 2081 - 01$ $1 \cdot 1577 - 01$ $1 \cdot 1991 - 01$ $1 \cdot 091 - 01$ $1 \cdot 091 - 01$ $1 \cdot 0624 - 01$	C.0000 1.9642-04 1.3988-03 2.7533-03 4.0541-03 5.2988-63 6.4873-03 7.6211-03 8.7018-03 9.7312-03 1.0711-02 1.1643-62 1.2529-02	0.0000 9.5152-08 2.5841-06 6.2870-06 9.9692-06 1.3550-05 1.7019-05 2.0376-05 2.3621-05 2.6760-05 2.6770-05 3.2724-05 3.5554-05	0.0000 $1.3944-08$ $3.1695-06$ $1.6608-05$ $4.0937-05$ $7.5616-05$ $1.2002-04$ $1.7351-04$ $2.3548-04$ $3.0535-04$ $3.8254-04$ $4.6650-04$ $5.5670-04$	$0 \cdot 0 0 0 0$ $1 \cdot 5 3 3 5 + 0 2$ $1 \cdot 1 0 4 1 + 0 3$ $2 \cdot 2 0 8 3 + 0 3$ $3 \cdot 3 1 2 4 + 0 3$ $4 \cdot 4 1 6 6 + 0 3$ $5 \cdot 5 2 0 7 + 0 3$ $6 \cdot 6 2 4 9 + 0 3$ $7 \cdot 7 2 9 0 + 0 3$ $8 \cdot 8 3 3 2 + 0 3$ $9 \cdot 9 3 7 3 + 0 3$ $1 \cdot 1 0 4 1 + 0 4$ $1 \cdot 2 1 4 6 + 0 4$

	<u>۱</u>
C	1
- N	

IM TEI	TINL DAYS	POIST GRALS	POIS: GPATS	80183 61415	U236 GPAMS	NР239 GRANS	BUNUP M₩D/TG-U
n	۰ t) (00000	0.000	0,6008	1,2360+00	0.0000	0.000
1 2	4 = 17 30 = 66	Dell((f) Dell(t,f)	000() 0000	0,000F, 0,000C	1.2359+00 1.2349+00	7.6132-05 1.0948-04	1.5335+02 1.1041+03
3	60.00	0.0000	0.0000	0.0000	1.2338+00	1.1138-04	2.2083+03
4	90.00	0.0000	0.0000	C.∎0000	1.2327+00	1.1261-04	3.3124+03
5	120.00	Coff. (10	0.0060	6,6016	1,2315+00	1.1346-64	4,4166+03
ь 7	150.00 180.00	N.UPPC N.BCGD	C.CUN 0.UUU	6,0016 6,0006	1,2304+00 1,2292+00	1.1439-04 1.1517-04	5.5207+03 6.6249+03
ß	210.01	C.DhnP	0.0000	e, een	1,2281+00	1,1593-04	7.7290+03
9	240.00	0.0110	4.6666	0,0006	1.2269+00	1.1000-04	8,8332+03
10	270.00	0.000P	n.cort	(, eeco	1,2257+00	1.1742-04	9.9373+03
1] 12	300.00 330.00	0.00000 0.0000	() • (; () () (() • () (' () (0,0600 0,0000	1,2245+00 1,2233+00	1.1817-04 1.1891-04	1 • 1 0 4 1 * 0 4 1 • 2 1 4 6 + 0 4

d)

F 1 NL 3 T F. F	TINI DAYS	PU229 GRAMS	PU21C GRAES	PU241 GRANS	PU242 GRAM5	AE243 GEAES	BUPNUP MWD/TO+U
n	• U ()		(eft)	0.000	0.0600	6.0060	0. 0 000
1	4 • 17	5.6329-01	2.3347-07	G.CCC	n.ncoo	0.0000	1.5335+02
2	311=111	5.1536-64	1.8737-05	1,3283-06	1.0935-08	0.0000	1.1041+03
3	60.000	1.611103	7.2237-05	1.0644-05	1.8339-1.7	0,00,00	2.2083+03
4	°∩∘(⊧[:	2,3736-03	1.5132-04	3,3368-65	0,9155-07	1.3340-08	3.3124+03
5	120.00	3.0155*03	2.4551-64	7.1557-65	2,6298-06	5,9814-08	4.4166+03
6	150.00	3.5964-63	2.4521-04	1.2551-64	5.9196-06	1,7538-07	5.5207+03
7	180.00	4.0948*15	4 * 2 5 3 5 * 0 4	1,9462+64	1.1251-05	4.1067-67	6.6249+03
8	210.00	4.546300:	5.691/-04	2 # 7531 -64	1,9056-05	8,2633-07	7.7290+03
9	240-66	4.9339-03	6.0010-04	3.6731-04	2.9691-05	1.4968-(16	8.8332+03
10	276.000	5,2815-03	7.8971-04	4,675()=[4	4.3437-65	2.5625-66	9.9373+03
11	300000	5,5664-53	お。タムアに一合作	5.7506-04	6,0499-05	3.9297-116	1.1041404
12	330.00	5.8592-13	1.0000003	6,8691-(4	8.1016-05	5.8668-06	1.2146+04
er 1	V 🖸 🎌 👘 👘 👘 👘 🖓	N TO N SC					

		Table(III-2	2-10):The we	ights of fue		everuation au	10/m117/
		a)	fuel m	ixture and 1	6%U-235 enr:	ichment leve	1⊹1 2مىلىش
τm	DAYS	K-EPFERT.	CONVERS. RATIO	TH232 GRAMS	PA233 GRAMS	U233 GRAMS	
0	•00	9.7629-ul	0.0000	3 5774+00			
- 10 H	4•1/ 30•00	9.5053-01 9.3641-01	1.1548-01 3.0711-01	3.3771+00 3.3749+00	3.1897-04	0.0000 1.7082-05	0.0000 1.5336+02
+ 0	00•00	9•2740-01	10-0886.5	3.5723+00	2.5199-03	/•1938-04 2•3032-03	1.1042+03 2.2083+03
	120.00	9•1329-01	4.0793-01	3.3697*00 3.3671*nn	2.9115-03	4.2487-03	3.3125+03
~ .	180•00	9•000001 9•002001	4.3251-01	3.3645+00	3.2107-03	8.4158-03	+•+10/+03 5•5208+03
- L	$210 \cdot 00$	8.9429-01	10 <u>-010</u>	3.35924nn	3.2/22-03	1.0480-02	6.6250+03
\sim	270.00 270.00	8•9210-01	5.0849-01 5.1557-01	3.504+00	3.3475-03	1.4448-02	8.8333+03
107	300•00 330•00	8.7021-01 8.7021-01	5.2250-01 5.2939-01	3.3510+00 3.3482+00	3.4046-03 3.4046-03 3.4318-03	1.8167-02 1.9931-02	1.1042+04 1.2146+04
				-			
	~	5					
сm	DAYS	UP:54 GRAMS	UR JS OR AMA	U236	1237	NP237	BURNUP
	4•17 4•17	0.000 4.1730-07	2.2471-01 2.2376-01	0.0000 2.0770-04	u•0000 8•7395 - 08	0•0000 1•29n2-08	0.0000 1.5336+02
		50-0427 • 1 50-0427 • 0 50-7575•1	2.1/91-01 2.1122-01 2.0067-01	1.4859-03 2.9337-03	2.3797-00 5.8052-06	2.9187-06 1.5345-05	1.1042+03 2.2083+03
	120.00 150.00	2.1743-04	1.9827-01	5.7195-03 7.0444-03	1.2636-05	7 • 1 21 7 • 0 7 • 1 4 9 4 • 0 7 • 1 4 9 4 • 0	4.4167+03
		4.1893-04	1.8593-01	8.3258-03	1.9240-05	1.6349-04	5.5208+03 6.6250+03
	270•00 240•00	5.0202-04 7.0763-04	L. 7418-01	9.5644-03 1.07-1-02	2.2452-05 2.5606-05	2.2315-04	7.7292+03 8.8333+03
	300•00 330•00	9•4201-04 1•0948-03	1.0302-01 1.0302-01	1.3032-02	2°0701-05 3°1738-05 3°4710-05	3.6676-04 4.4993-04 5.4015-04	9.9375+03 1.1042+04
	ę	, C	on 0. − − − − − − − − − − − − − − − − − − −		C D T T T C C C	+0-010+0	1.2140+04

TIME TIME	Ры239	PU240	PU241	PU242	AM243	BURNUP
STEP DAYS G	Ждм5	GRAMS	GRAMS	GRAMS	GRAMS	MWD/TO-U
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.000\\ 0.273-05\\ 0.7795-64\\ 0.3841-03\\ 0.288-63\\ 0.088-63\\ 0.0465-03\\ 0.165-03\\ 0.1503-03\\ 0.1503-03\\ 0.1503-03\\ 0.1503-03\\ 0.1503-03\\ 0.1503-03\\ 0.1503-03\\ 0.1745-03\\ 0.1745-03\\ 0.4735-03\\ 0.4755-03\\ 0$	U.0000 1.5354-07 1.2087-05 4.7795-05 1.0129-04 1.0701-04 2.4291-04 3.2427-04 4.0951-04 4.9694-04 5.8531-04 5.8531-04 7.0121-04	0.0000 0.0000 7.2531-07 5.9152-06 1.8970-05 4.1835-05 7.5343-05 1.1954-04 1.7393-04 2.3772-04 3.0990-04 3.0938-04 4.7502-04	0.0000 0.0000 4.6148-09 7.5843-08 3.7540-07 1.1323-06 2.0092-06 5.0777-06 8.8015-06 1.4027-05 2.0975-05 2.9839-05 4.0783-05	0.0000 0.0000 0.0000 4.7320-09 2.1948-08 6.5945-08 1.5736-07 3.2399-07 5.9935-07 1.0220-06 1.5368-06 2.4908-06	0.0000 1.5336+02 1.1042+03 2.2083+03 3.3125+03 4.4167+03 5.5208+03 6.6250+03 7.7292+03 8.8333+03 9.9375+03 1.1042+04 1.2146+04

d)

TIME STEP	TIME DAYS	POIS1 GRAMS	PUIS2 GRAMS	POIS3 GRAMS	U238 GRAMS	NP239 GRAMS	BUNUP MWD/TO-U
0 1 2 3 4 5 6 7 8	$\begin{array}{c} .00\\ 4 \cdot 17\\ 30 \cdot 00\\ 60 \cdot 00\\ 90 \cdot 00\\ 120 \cdot 00\\ 150 \cdot 00\\ 180 \cdot 00\\ 210 \cdot 00\\ 20\\ \end{array}$	0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0 0 • 0 0 0 0	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	1,1798+00 $1,1796+00$ $1,1789+00$ $1,1779+00$ $1,1779+00$ $1,1761+00$ $1,1751+00$ $1,1742+00$ $1,1732+00$ $1,1722+00$	0.0000 6.2444-05 8.9754-05 9.1159-05 9.2120-05 9.2914-05 9.3648-05 9.4359-05 9.5062-05	0.0000 1.5336+02 1.1042+03 2.2083+03 3.3125+03 4.4167+03 5.5208+03 6.6250+03 7.7292+03 8.8333+03
10 11 12	270.00 300.00 330.00	0 • 0000 0 • 0000 0 • 0000 0 • 0000	0.0000 0.0000 0.0000 0.0000	0.0000 0.0000 0.0000 0.0000	1.1713+00 1.1713+00 1.1703+00 1.1693+00	9.6468-05 9.7176-05 9.7886-05	9.9375+03 1.1042+04 1.2146+04

Table(III-2-11) The weights of fuel isotopes for 30%U02-70%TH02

fuel mixture and 20%U-235 enrichment level

a)

TIME STEP	T LHE DAYS	K-CFFLKT.	CONVETS.	TH232 GRAH5	PA233 GRAMS	U233 GRAMS	BURNUP MWD/TO-U
n	⇒ () () (I = 1.7	1.0375+00 1.0119*00	0,000 t 9,7653400	3,3774+00 3,3773+00	0000 2.7776~04	∩.0000 1.4878-05	0•0000 1•5336+
2	30.00	9.9840*05	2.6195-61	3,3752+00	1.4878-03	6.2814-04	1.1042+
3	60.00	7 . 8946.00	3.4101-01	3,3730+00	2.1947-03	2.0160-03	2.2084+
4	90.00	9.8223-01	3.7971-01	3,3707+00	2.5354-03	3.7289-03	3.3126+
5	120.00	9.7553-01	4.1.021-01	3.3685+01	2.7052-03	5.5645-03	4 . 4167+
6	150.00	9.591 5.001	4,1239-11	3.3662+80	2.7956-03	7.4288-03	5.5209+
7	180.00	9.6270	4.2581-01	3.3438+66	2.8491-03	9.2789-03	6.6251+
R	210.00	9.5662-01	4.2700-51	3,3615+00	2.8858 -n3	1.1095-02	7.7293+
9	240.000	4.5021-01	4.334	3,3592+00	2.9148-03	1.2870-02	8,8335+
10	270.00	9.4401.001	4.392	3,3568+00	2.9404-03	1.4599-02	9 • 9377+
11	360.00	9.376400	4.449.001	3,3544+(10	2.7646-03	1.6231-02	1.1042+
12	330.00	9.5190-51	4,5052-3;	3,3520+00	2.9884-03	1.7917-02	1.2146+

b)

0)

BURNUP NP237 1237 1236 1235 TIM 0234 MWD/TO-U 1100 GRAMS GRANS GEANS 60,15 GRAMS. STEP DAYS 0.0000 0,0600 n,rnrn 0,000,0 2.8667.001 0.0000 e D () n 1.5336. R. 2447-08 0.0000 2.1784-04 2.7990-01 3.2371-07 1.1042+ 4-17 2.2462-06 2.7420-06 1 2.7307-11 1.5623-03 1.4861-01 30-00 2 1.4499-05 2+2084+ 3,0912-03 5,4851-06 200714-061 5.1912 mill. 3.3126* 611.00 3 8,7549-06 3.5983-05 4.6008-03 2. (102-01) 1.0358-04 20.00 4.4167+ 11 1,1994-05 6.6960-05 6.0677-03 2.5311-61 1.6755*14 5.5209+ 5 1211000 1.0712-04 7,4981-13 1.5198-05 2.473:-11 2.4002-14 1.5617-04 6.6251+ 150.00 6 1,8366-05 8.8921-03 2.4094-01 3.221.3-04 2.1379-04 7.7293+ 7 180.00 2.1498-05 1.0250=02 2:31:07-01 4.1291 -000 2.7968-04 8.8335+ 2.4594-05 2.7655-05 210.00 53 1.1572-05 20261 -1.1 Gelfit 7"Ct 9.9377+ Ģ 240.06 3.5354-04 1.2859-02 2-2246-01 6.161 9 mm [] / 1.1042+ 4,3508-04 1 n 270.00 3.0679-05 1.4111-02 2.1664-61 7.2866-00 1 . 2146 + 5.2399-04 300.00 11 1.5329-02 3.3667-05 2.1072-01 8.4604-000 330.000 12

TIHL STEP	TIHE DAYS	POIS1 GRAMS	POIS2 GRAPS	POIS3 GRANS	U238 GRAMS	NP239 GRAMS	BUNUP MWD/TO-U
n	• 0 ()	n.oncn	0.680p	n nnnn	1 1935-00	D D D D	n-0000
1	4 . 17	6.00000	0.6066		1,1234+00	0.0000 5.3244-05	1.5336+02
2	311-110	0.0000	n.AGer	6.0000	1 1227+00	7 6404-05	1.1042+03
З	60.00	0.0000	0.6000	0.0000	1 1219400	7 7563-05	2.2084+03
4	90.00	0.0000	6.00r.n	0.0000	1 1212+00	7 8365-05	3.3126+03
5	120+00	0.0060	D. 0000	0.0000	1,1204+00	7.8956=05	4.4167+03
E,	150.00	0.0060	D. G. G. F. C. C.	ກຸມກາດ	1.1195+00	7,9548-05	5,520%+03
7	180.00	0.00(:0	0.0000	0,0000	1.1187+00	8.0127-05	6.6251+03
£	210.00	0.0000	0.0000	0.0000	1,1179+00	8.0704-05	7.7293+03
9	240.00	0.0000	{)∎€€(,f)	0,0000	1,1171+00	8,1283-05	8.8335+03
1 0	270.00	G.CDLA	o.00ro	0,0000	1.1163+00	8,1865-05	9.9377+03
11	300.00	0.0000	1 0 0 0.0	0.5000	1.1154+00	8.2451-05	1.1042+04
12	330.00	0.0000	0.000 0	0,000	1.1146+00	8,3041-05	1+2146+04

. (U

d)

TIME	TINE	PU239	PU240	PU241	PU242	AH243	BUENUP
5TEP	DAYS	GRAHS	GRAMS	GRAUS	GRAHS	GRAMS	MND/TO-U
0	• 0 0	0.0000	0,0000	0.0000	0,0000	0.0000	0.0000
1 2	4.17 30.00	3,7508~05 5,8287~04	1.1045-07 8.4975-06	0,0000 4,4558=07	0,0000 0,0000	0,0000 0,0000	1.5336+D2 1.1042+03
3	60.00	1.2003-03	3.3920-05	3,6759-06	3,4711-08	0,0000	2+2084+03
т 5	120.00	2,3079-03	1 = 2194-04	2,6803-05	5,6691-07	7.8530-09	4+4167+03
67	150.00	2.8022-113	1 . 7889-04	. 4 ₆ 9069∞05 7.9138∞05	1,328n=n6 2,6235=n6	2.7768-08 6.9721-08	5.5209+03
.8	210.00	3.6842-03	3,0848-04	1.1703-04	4,6137-06	1.4800-07	7+7293+03
9	240.00	4.0766-63	3.7825-04	1.6249-04	7,4568-06	2.7838-07	8.8335+03
r u	2711.00	4,4395-03	4,4991)-(14	2,1510-04	1,1304-05	4,83,6-07	9.9377+03
$\frac{11}{12}$	300.00 330.00	4.7749-03	5 · 2262 · 04 5 · 7578 · 04	2,7431-09 3,3950-04	1.6298-05 2.2568-05	7,8420=07 1,2087=06	1•1042+04 1•2146+04
-	. وفاد موجد	nger 2 v. for val					

.,

Table(III-2-12): The weights of fuel isotopes for 50%U02-50TH02

fuel mixture and 10%U-235 enrichment level

a)

¹E .P	TIME DAYS	K_FFFFFT.	CA VERC.	11:282	DAP+3 CRANS	UD VE C HO K K	RURNUP MWDZTO-U
ı	.00	1.0102400	0.0000	2.3076+0c	 0.000 	0.0000	0.0000
	11.17	0.9350-01	1.0155-01	2. 1074100	0.1179-04	1.1343-04	1.5718+02
>	30.00	· .7050-01	2 26 XH-01	2.3269+00	1 13/11-03	1.7003-01	1.1317+03
	60.00	.619Am(1	3.4913-01	7.3013+90	1.6712-03	1 . 5 . 7 . 1 . 2	2.2634+03
ļ.	00.00	0.5410-01	4.2902-01	2.3025+00	1,9200-03	2.0247-0×	3.3950+03
	120.00	. 1060-01	4.3902-01	1. 3003400	0.0574-03	0.0051-03	4.5267+03
5	150,00	. 3431-(11	4-5192-01	9. 31-31+00	0.1209-03	c.6010-07	5.6584+03
,	180.00	1.3201:-01	4.0031-01	7.2173+00	2 16-0-03	6.0004-03	6.7901:03
n,	210.00	0. 0407-01	4-1360-01	0.3155+0-	· 1057-03	0.3200-03	7.9218+03
2	21:0 00	7,1701-01	1. 7508-01	0.3137+0.	5 21 17-03	0.6408-02	9.0534103
n	270 00	0.1007-01	0.0330-01	2.3110+00	0 0302-03	1.0014-00	1.0185+04
1	300.00	- 0005-01	0 00/0 01	2.3101400	0 25-8-03	1.0147-10	1,1317+04
2	330,00	. 973/01	4,9722-01	1.303APD0	2.2701-03	1.7341-00	1.2448+04

Ъ)

LME.	TIM	0234	(m. s)	1235	1037	DATC	BUPHUP
TEP	DAYS	72,485	Constant	4345	20AF C	DATC	MWD/TO-LI
0 1934 567 29012	00 4.17 70.00 60.00 100.00 150.00 150.00 210.00 240.00 240.00 300.00 300.00	C.0000 C.6420-07 1.2187-07 C.2595-05 5.5430-05 1.3785-04 1.9837-04 2.4070-04 2.4070-04 2.4070-04 2.4070-04 2.4070-04 2.4070-04 2.0097-04 2.0071-04	2. 370-01 2. 275-01 2. 2696-01 2. 2634-01 2. 1347-01 2. 6138-01 1. 9536-01 1. 3370-01 1. 3370-01 1. 7869-01 1. 7269-01 1. 6722-01	0.0000 9.0.13-90 1.4752-07 9.2156-07 9.3157-07 5.3765-07 5.3765-07 5.3765-07 0.5664-07 1.2705-00 1.1865-00 1.2027-00	 0000 0117-09 0369-06 0404-06 6705-06 1875-06 1875-06 1875-06 1875-06 1875-06 1975-06 1970-05 3146-05 	0.0000 1.0605-00 2.7430-06 1.0002-05 3.5600-05 5.60598-06 1.0598-06 1.0598-06 1.5413-06 2.7526-06 3.4748-06 5.1361-06	$\begin{array}{c} 0.0000\\ 1.5718+00\\ 1.1317+07\\ 2.2634+03\\ 3.3950+07\\ 4.5267+07\\ 5.6594+07\\ 5.6594+07\\ 5.6594+07\\ 5.9218+07\\ 1.9218+07\\ 1.0195+00\\ 1.1317+00\\ 1.2448+07\end{array}$

\sim
Ö

		()	· · · ·	-			
ЦĹ	TI 46 DAYS	POTS1 GRAMS	SM AS a ICS	5⊬ _∆ я6 Ро _Т 53	1123a GRA45	ыРраа GRAMS	RIINUP MWD/TO-U
E 101 X	30.44 20.10 20.10 20.00 20.00			, 00000 • • ບ ບ	2.1043+∩∩ 2.1041+∩∩ 2.1027+∩0	0.0000 1.0676-04 1.5347-04	0.0000 1.5718+02 1.1317+03
	150.00 150.00 150.00		0000 0000 000 00 00 00 00 00 00	00000 00000 00000 0000 0000 0000 0000 0000	2.1012+00 2.0946+00 2.0940+00 2.0944+00 2.0964+00	1.5563-04 1.5723-04 1.5867-04 1.6008-04	2.2634+03 3.3950+03 4.5267+03 5.6584+03
	210-01 210-00 210-00 210-00 310-00 310-00 310-00		00000000000000000000000000000000000000	00000 0000 0000 0000 0000 0000 0000 0000	2.0947+00 2.0941+00 2.0944+00 2.0848+00 2.0841+00 2.0841+00 2.0841+00	1.6147-00 1.6287-04 1.6427-04 1.6567-04 1.6567-04 1.6349-04	6.7901+03 7.9218+03 9.0534+03 1.0185+04 1.1317+04 1.2448+04
	ï	q)					
: 4	1		C nc()	r thời lư	с роfid	2 7 <i>64</i> 7	DINNID

<u>11</u>

		d.)					
	TTME TAYS	, ГНЕЗЛ cRAMS	SWAR RAMA	54249 54243	5M9479	N 1994 3 GD 1995	RURNUF MWD/TO-U
	4.17	7.9128-05 1.000	ი. ერე გ. ე3 3- ე7	∪ე00•∪ 0ე00•∪	0,0000 0,0000	0000 0000 0000	0.0000 1.5718+02
	30.00 00.00 00.00	1.1016-03 2.3765-03 4.4920-03	1.743-05 7.3033-05 1.6554-04	1.1265-06 1991-06 2.3451-06	5.4173-00 1.0075-07 5.4705-07	0-0000 0-0000 7-0476-00	1.1317+03 2.2634+03 3.3950+03
		6.5170+03 6.4591+03	2.7457-04 3.9932-04 5.3501-04	6.4901-05 1.1681-04 1.8526-04	1.6447-06 3.7041-06 3768-06	4.0607+00 0.2021+00 0.1060+02	4.5267+03 5.6584+03 6.7901+03
	210.00 210.00 210.00	C. 36 3 403 403 403 403 403 403 403 403 403 4	5.7960-04 3.2960-04 40-040-04 0.8843-04			4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000 4.1000	7.9218+03 9.0534+03 1.0185+04
,	300,000 330,000	A.197-03	1,2956-03	6.9423-04	1 3 3 9 1 8 1 6 1 8 9 1 8 1 0 5		1.1317+04 1.2448+04
	٠						

CHARTCAR CONSTR

-

Table(III-2-13): The weights of fuel isotopes for 50%U02-50%TH02

fuel mixture and 12%U-235 enrichment level

	<u>۱</u>	
0	•	
ca,		

						•	
I ME Te p	TINE DAYS	KwEFFEFT.	CONVERS, RATIO	17 H 2 3 2 G K A H S	PA233 GRAMS	U233 GRAMS	BURNUP MwD/To=U
0 1 2 3 4 5 6 7 8 9 10 11 12	+00 4.17 30.10 40.00 90.00 126.00 150.00 210.00 240.00 270.00 300.00	1.05/9400 1.0316400 1.0316400 1.016140 1.0026400 9.9524001 9.8065001 9.8085001 9.8085001 9.737701 9.6676001 9.5983001 9.5983001	$\begin{array}{c} 0 & 0 & 0 & 0 & 0 \\ 1 & 4 & 3 & 0 & 0 & 0 \\ 2 & 8 & 9 & 1 & 5 & 0 & 1 \\ 2 & 8 & 9 & 1 & 5 & 0 & 1 \\ 3 & 7 & 2 & 9 & 4 & 0 & 1 \\ 3 & 7 & 2 & 9 & 5 & 7 & 0 & 1 \\ 3 & 9 & 8 & 8 & 6 & 5 & 0 & 1 \\ 3 & 9 & 8 & 8 & 6 & 5 & 0 & 1 \\ 3 & 9 & 8 & 8 & 6 & 5 & 0 & 1 \\ 3 & 9 & 8 & 8 & 6 & 5 & 0 & 1 \\ 4 & 0 & 6 & 7 & 7 & 0 & 1 \\ 4 & 0 & 6 & 7 & 7 & 0 & 1 \\ 4 & 0 & 1 & 9 & 5 & 0 & 1 \\ 4 & 0 & 1 & 9 & 5 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 7 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 7 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 7 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 7 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 0 & 1 \\ 4 & 0 & 2 & 6 & 1 & 0 & 1 \\ 4 & 0 & 0 & 2 & 0 & 1 \\ 4 & 0 & 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 & 0 & 0 & 1 \\ 4 & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array}$	2,3276+00 2,3274+00 2,3261+00 2,3246+00 2,3231+00 2,3215+00 2,3215+00 2,3260+00 2,3184+00 2,3168+60 2,3168+60 2,3152+00 2,3126+00	0.0000 1.8955-04 1.0154-03 1.4965-03 1.7276-03 1.8426-03 1.9041-03 1.9041-03 1.9664-03 1.9868-03 2.0050-03 2.0224-03	0.0000 $1.0153-05$ $4.2869-04$ $1.3758-03$ $2.5444-03$ $3.7966-03$ $5.0690-03$ $6.3324-03$ $7.5738-03$ $8.7876-03$ $9.9714-03$ $1.1125-02$	0.0000 $1.5721*02$ $1.1319*03$ $2.2638+03$ $3.3958+03$ $4.5277*03$ $5.6596*03$ $6.7915*03$ $7.9234*03$ $7.9234*03$ $1.0187+04$ $1.1319*04$
* 4.			402-21 01	2.03103100	2.0394-03	1.224/-02	1.2451*04

	Ъ)			-		
I MF TEP	TINE DAYS	U234 GRAMS	U235 GPA ^N S	U236 GRAMS	U237 GRAMS	NP237 GRAMS	BURNUP Mwd/to-U
0 1 2 3 4 5 6 7 8 9 10 11 12	•00 4•17 30.00 60.00 90.00 120.00 150.00 150.00 240.00 240.00 270.00 300.00 330.00	0.0000 2.1587~07 7.9353~06 3.4646~05 6.9430~05 1.01196~06 1.06107~06 2.0614~06 2.0614~06 3.4277~04 4.01388~04 4.8995~04 5.7653~04	$2 \cdot 8047 - 01$ $2 \cdot 7951 - 01$ $2 \cdot 7364 - 01$ $2 \cdot 6691 - 01$ $2 \cdot 6029 - 01$ $2 \cdot 5379 - 01$ $2 \cdot 4740 - 01$ $2 \cdot 4740 - 01$ $2 \cdot 3498 - 01$ $2 \cdot 2894 - 01$ $2 \cdot 2300 - 01$ $2 \cdot 145 - 01$	C. (000) 2. 1459~04 1. 5389~03 3. 0491~03 4. 5250~03 5. 7655~03 7. 3705~03 1. 0075~02 1. 1376~02 1. 2643~02 1. 3876~02 1. 3876~02 1. 5076~02	n.0000 7.8648-08 2.1432-04 5.2275-06 8.3418-06 1.1434-05 1.4503-05 1.4503-05 2.0568-05 2.3565-05 2.6536-05 2.9481-05 3.2399-05	0.0000 0.000 2.6175-06 1.3829-05 3.4309-05 4.3657-05 1.0221-04 1.4910-04 2.0427-04 2.6746-04 3.3842-04 4.1686-04 5.025-04	0.0000 1.5721+02 1.1319+03 2.2638+03 3.3958+03 4.5277+03 5.6596+03 6.7915+03 7.9234+03 9.0554+03 1.0187+04 1.1319+04 1.2451+04

c)

TIME STEP	TITL DAYS	POISI GRANS	COIS2 GRAHS	PO153 GRANS	U 2 3 8 G F A M S	NP239 GRAMS	BUNUP MWD/TO-U
C	• () ()	0.0000	0.0000	0.0000	2,0565+00	0.0460	0.0000
1	4 • 17	0.0000	0.Unn	0.0000	2.0563+00	9.5612-05	1.5721+02
2	30 · UC	6.0060	ບະນຍົມຄ	0,000	2,0551+00	1.3734=04	1.1319+03
3	6() • () () ·	0.0000	0,0000	0,0000	2,0537+00	1.3914-04	2.2638+03
4	90•CC	0.0000	- () . () () () ()	ດູ້ຄຸດຄຸດ	2.0523+00	1.4051-04	3.3958+03
5	120.00	0.0000	0.0000	0,0000	2,0509+00	1.4172-04	4.5277+03
6	150.00	0.00.00	n. cone	0,000	2.0494+06	1.4290-04	5:6596+03
7	180.10	0.000	0.6006	0,0000	2,0480+00	1.4408-04	6,7915+03
8	210.00	0.0000	0,00n	0,0000	2.0465+00	1.4526-04	7.9234+03
9	240.00	0.0000	0.0000	0,0000	2.0450+00	1.4646-04	9.0554+03
10	270.00	.0.00000	0.0000	e, nneo	2.0435+00	1.4765-04	1.0187+04
11	300.00	0.000.0	9.06 <u>0</u> 0	0.0000	2.0420+00	1.4886-04	1.1319+04
12	330.00	0.0000	0.0000	n, onon	2,0405+00	1.5007-04	1.2451+04

d)

1 M E 1 E P	TINL DAYS	PU239 GRAMS	PU240 GRAHS	PU241 GRAMS	PU242 GRAM5	AM243 GRAMS	BURNUP MWD∕TO≂U
ր 1	• U D 4 • 1 7	().00∩0 7.0922∞()5	(),()(()) 1,9537-07	0,000 0,000	0,0000 0,0000	0.0000 0.0000	0•0000 1•5721+02
2 3	30.00 60.00	1.0468-03 2.1564-03	1.5103-05 6.0167-05	7°7727∞07 6°3776∞06	0,0000 5, 9591- 08	0,0000 0,0000	1.1319+03 2.2638+03
4 5	90.00 120.00	3,1909~03 4,1541~03	1 · 2891-04 2 · 1591-04	2.0680-05 4.6195-05	3,1300~07 9,6128~07	0.0600 1.2686-08	3.3958+03 4.5277*03
6	150.DQ	5,0509-03	3.1690-04	8,4276-05	2.2419-06	4.5910-08	5.6596+03
7 8	180.00 210.00	5。8857*03 6。6634**03	4,2855-04 5,4828-04	1,3546=04	7,7221-06	1.1558-07 2.4425-07	6 • 7915+03 7 • 9234+03
9	240.00	7,3073*03	6.7406-04	2.7638-04	1,2432-05	4,5930-07 7 9376-07	9.0554+03
. U . 1	2/U∘u0 300.u0	8,6882°03	9.3774-04	4,6416-04	2,6980-05	1,2857-06	1.1319+04
: 2	330.00	9.2714-03	1.1733-03.	5,7325-04	3,7238-05	1,9780-06	1.2451+04

1

Table(III-2-14): The weights of fuel isotopes for 50% U02-50% THO2

fuel mixture and 16%U-235 enrichment level

a)

ME EP	TIME DAYS	K-EFFEKT.	CONVERS. RATIO	TH232 GRAMS	PA233 GRAMS	U233 GRAMS	BURNUP MWD/TO-U
0 12 3 4 5 6 7 8 9 0 1	$\begin{array}{r} .00\\ 4 \cdot 17\\ 30 \cdot 00\\ 60 \cdot 00\\ 90 \cdot 00\\ 120 \cdot 00\\ 150 \cdot 00\\ 150 \cdot 00\\ 180 \cdot 00\\ 210 \cdot 00\\ 240 \cdot 00\\ 270 \cdot 00\\ 300 \cdot 00\\ \end{array}$	$1 \cdot 1260 + 00$ $1 \cdot 1015 + 00$ $1 \cdot 6898 + 00$ $1 \cdot 6811 + 00$ $1 \cdot 6740 + 00$ $1 \cdot 675 + 00$ $1 \cdot 6541 + 00$ $1 \cdot 6541 + 00$ $1 \cdot 6411 + 00$ $1 \cdot 6346 + 00$ $1 \cdot 6282 + 00$	0.0000 1.1774-01 2.3858-01 2.8489-01 3.0802-01 3.2065-01 3.2855-01 3.3436-01 3.3927-01 3.4382-01 3.4825-01 3.5266-01	2.3276+00 2.3275+00 2.3254+00 2.3251+00 2.3238+00 2.3224+00 2.3211+00 2.3198+00 2.3184+00 2.3171+00 2.3157+00 2.3143+00	0.0000 1.6086-04 8.6167-04 1.2696-03 1.4655-03 1.5626-03 1.6140-03 1.6442-03 1.6648-03 1.6810-03 1.6952-03 1.7086-03	0.0000 8.6189-06 3.6457-04 1.151-03 2.1755-03 3.2555-03 4.3592-03 5.4617-03 6.5517-03 7.6240-03 8.6765-03 9.7084-03	0.0000 1.5723+02 1.1320+03 2.2640+03 3.3961+03 4.5281+03 5.6601+03 6.7921+03 7.9242+03 9.0562+03 1.0188+04 1.1320+04
2	330.00	1.1219+00	3.5708-01	2.3130+00	1.7217-03	1.0719-02	1.2452+04

b)

4E	TIME	U234	U235	U236	U237	NP237	BURNUP
EP	DAYS	GRAMS	GRAMS	GRAMS	GRAMS	GRAMS	MWD/TO-U
123+35789712	$\begin{array}{r} \cdot 00\\ 4 \cdot 17\\ 30 \cdot 00\\ 60 \cdot 00\\ 90 \cdot 00\\ 120 \cdot 00\\ 120 \cdot 00\\ 150 \cdot 00\\ 150 \cdot 00\\ 210 \cdot 00\\ 240 \cdot 00\\ 270 \cdot 00\\ 300 \cdot 00\\ 330 \cdot 00\\ \end{array}$	0.600 1.5859-07 7.2531-05 2.5231-05 5.0469-05 8.1275-05 1.1681-04 1.5666-04 2.0056-04 2.4837-04 2.4837-04 3.5528-04 4.1420-04	3.7388-01 3.7291-01 3.6691-01 3.5317-01 3.4642-01 3.3975-01 3.3316-01 3.2021-01 3.1386-01 3.0758-01 3.0138-01	0.0000 2.2959-04 1.6503-03 3.2789-03 4.8811-03 6.4554-03 8.0014-03 9.5191-03 1.1009-02 1.2470-02 1.3904-02 1.5310-02 1.6689-02	0.0000 7.3731-08 2.0071-06 4.8993-06 7.8338-06 1.0759-05 1.3673-05 1.6577-05 1.9470-05 2.2354-05 2.8089-05 3.0940-05	0.0000 0.0000 2.4580-06 1.2982-05 3.2268-05 6.0187-05 9.6559-05 1.4120-04 1.9392-04 2.5455-04 3.2291-04 3.9880-04 4.8205-04	0.0000 1.5723+02 1.1320+03 2.2640+03 3.3961+03 4.5281+03 5.6601+03 6.7921+03 7.9242+03 9.0562+03 1.0188+04 1.1320+04 1.2452+04

	*						
IME	TIME DAYS	POIS1 GRAMS	POIS2 GRAMS	POIS3 GRAMS	U238 GRAMS	NP239 GRAMS	BUNUP MWD/TO-U
0	• 0 0	0•000	0.0000	0.0000	1.9627+00	0.0000	0.0000
1	4.17	0•000	0.000	0.0000	1.9625+00	7.9983-05	1.5723+02
2	30.00	0•000	0.0000	0.0000	1.9615+00	1.1464-04	1.1320+03
3	60.00	0•000	0.0000	0.0000	1.9603+00	1.1595-04	2.2640+03
4	90.00	0•000	0.0000	0.0000	1.9591+00	1.1699-04	3,3961+03
5	120.00	0•0000	0.000.0	0.0000	1.9579+00	1.1788-04	4.5281+03
Ð	150.00	0•000	0.0000	0.0000	1.9567+00	1.1874-04	5,6601+03
7	180.00	0.0000	0.0000	0.0000	1.9555+00	1.1959-04	6,7921+03
8	210.00	0.0000	0.0000	0.0000	1.9543+00	1.2045-04	7,9242+03
9	240.00	0•000	0.0000	0.0000	1.9530+00	1.2132-04	9.0562+03
10	270.00	0.0000	0.0000	0.0000	1.9518+00	1.2219-04	1.0188+04
11	300.00	0.0000	0.0000	0.0000	1.9505+00	1.2307-04	1.1320+04
12	330.00	0•0000	0.0000	0.0000	1.9492+00	1.2396-04	1.2452+04

d)

c)

TIME PU239 Æ PU240 + PU241 PU242 AM243 BURNUP ΞP DAYS GR.MS GRAMS GRAMS MWD/TO-U GRAMS GRAMS 0.0000 1 •00 0.1000 0.0000 0.0000 0.0000 0.0000 5.9387-05 1.5723+02 4.17 1.3144-07 0.0000 0.0000 0.0000 , 2 30.00 8.1200-04 9.7463-06 4.2360-07 0.0000 0.0000 1.1320+03 5 60.00 1.8328-03 3.9167-05 3.4819-06 2.4478-08 0.0000 2.2640+03 2.7359-03 1.1458-05 į, 90.00 8.5002-05 1.2781-07 0.0000 3.3961+03 1.4427-04 Ĵ 3-5926-03 2.6023-05 3.9466-07 4.5281+03 120.00 0.0000 4.4047-03 2.1448-04 4.8322-05 9.3339-07 5.6601+03 Э 150.00 1.2283-08 9 5-1745-03 7.9065-05 1.8632-06 3.7654-08 6.7921+03 180.00 2.9358-04 5 210.00 5.9041-03 3.7988-04 1.1862-04 3.3120-06 8.5981-08 7,9242+03 6.5953-03 4.7201-04 240.00 1.6706-04 5.4123-06 1.6733-07 9.0562+03 2.2428-04 270.00 5.6882-04 8.2940-06 2.9540-07 7.2502-03 1.0188+04 1.2087-05 4.8628-07 7.8704-03 6.6940-04 2.9002-04 1.1320+04 300.00 3.6388-04 1.6916-05 7.5913-07 8.4576-03 7.7295-04 1.2452+04 330.00

SYSTEM-MATRIX A

Table(III-2-15)%The weights of fuel isotopes for 50%U02-50%TH02

~

fuel mixture and 20%U-235 enrichment level

~

a

	τ1 dE NAYS	FFFFKT.	Convers, Parto	SMASS SPAMS	HAZZ GRANS	11225 ARAMS	BURNUP MWD/T0-U
		1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 H N N N N N N N N N N N N N N N N N N	00000000000000000 000000000000000 000000	1 · · · · · · · · · · · · · · · · · · ·	$\begin{array}{c} 2 \\ 2 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 5 \\ 5 \\ 5 \\ 5 \\ 5$	$\begin{array}{c} 1 & 0 \\ 1 & 5722 \\ 1 & 572240 \\ 2 & 522240 \\ 3 & 522040 \\ 3 & 522040 \\ 3 & 522040 \\ 3 & 522040 \\ 1 & 30240 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 0 \\ 1 & 2 \\ 1 $
	ト 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	d (d (d		123(. 50 Ar S	1.237 GRAMC	2222 28082 28082	BURNUP MWDZTO-U
c		0000,0	4 6735-01	ບັບບິນ	r0110	0000.0	0,000
- 0	* 0 . 1	1 2484-07	4.66.34-01 4.66.34-01	0.4051-00 - 7040-03	7.0020-08 1.0022-08	0.0000 0.3378-06	1.1220+03
ĸ		1°4784-01		3.4723-03	-64-36-06		2.2640+03
ت ا		3,9513-05 6,3560-05	4 4621-01	с.1781-03 с. <u>о/07-</u> 03	7.4210-06 * 0717-06	1.0607-US	3.3960+03 4.5980+03
. ت [.]	1 r. U . U U	0,1275-05	4.3041-01	0°21300-03	40-800% +	0-1960-05	5.6600+03
r c		1.223-00	4 2364-01	1,0100-0-0	1.85754-05	*****/=104 ************************************	6.792U+03 7.9240+03
c		1.0~085.0		1 × 753-00	Contrate o	0-242-04	9.0560+03
с.	540°00	5, 34 ML-01	ال من من من من من من من من من من من من من	1.4016.00	らっちょう。	+0-026U *	1.0188+04
e r: (300°00	· 7710-01	5,030 ⁵ -01 6,0304-01	1.6456-00	0.6432-05 0.0507-05	10-00-00-10 10-00-01-10	1.1320+04
^ .				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 	5 5 5	+D-J-+2•+

BURNUP MWD/TO-U	0.0000 1.55280+03 3.3260+03 3.3260+03 5.5280+03 5.5280+03 7.920+03 1.128100 1.28100 1.28100 1.28100 1.28100 1.28100 1.28100 1.28100 1.28100 1.28000 1.28000 1.28000 1.28000 1.28000 1.28000 1.28000 1.28000 1.28000 1.28000000000000000000000000000000000000	BUNUP MONT TO-U		1.5722+02	1.1320+03	2.2540+03	4.5280+03	5.6600+03	6.7920+03	7.4240+03 9.0560+03	1.0188+04	1.1320+04 1.2452+04	
SM242 SM242	n.nnnn n.nnnn n.nnnn n.nnnn n.nnnn n.nnnn n.sss3-u9 r.sns2-u9 r.sns2-u9 r.sns2-u9 r.sns2-u3 r.sns2-u3	, posa Grans		40-639PA	0.9609-05 2500 05		+.0111-04	1.0177-04	1.0241-04		1.0436-04	1。N5N2-U4 1。N5A9-U4	
PU242 GRAMS	0.0000 0.0000 0.0000 0.0000 1.8555610 1.8555610 1.8555610 1.9555610 1.9555610 1.9555610 1.5055105 1.5055555555555555555555555555555555555	11220 6RA45	1.8604400	1.8692+00	1.8693400	1.8663+00 1.8663+00	1.8652+00	1.864240U	1.86.51.400 1.01.101	1.00011400 1.0610400	1.8509+00	1。8578+AU 1。8578+PU	
00 AMS	0.000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.000000	20753 58 <u>8</u> 85	0.000	00 ⁰ 0 ¹ 0	3.0000			3°0000			0.0~0.0	0°0°0 0°0°0	
0 HC	5 5 5 5 5 5 5 5 5 5 5 5 5 5		0,00000			0,000	ບໍ ດວັດ0				ູ່ງລູບບ	<mark>ຄົນວິດ</mark> " :	
SMA un of SUC	с. 1222 г. 1222 г. 1222 г. 534210 г. 534210 г. 534210 г. 534410 г. 534410 г. 534410 г. 73540 г. 73560 г. 735600 г. 7356000 г. 7356000 г. 7356000 г. 7356000 г. 7356000 г. 7356000 г. 7356000 г. 7356000000 г. 7356000000000000000000000000000000000000	Swyso 1810a	ປີບັນນໍ່ມ	r . 0000		0000°u	0,000 0		0.000°u		0000000	ປມປນີ້ປ ປັນບູນ	
T LUE NAYS	<pre>% % % % % % % % % % % % % % % % % % %</pre>	+ L PAYS	0°°	ہ ۲ میں خ		ີ 00 ຄຸດ ເ	120,00	1 ៩ 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0 ° 0	100°00		270,00	3a0,00 330,00	
			c	- (n - 1	-	۲.	c ا	c	c	C F	ቀ~: () ም ቀ:	

Table(III-2-16): The weights of fuel isotopes for 70%U02-30%TH02 fuel mixture and 10%U-235 enrichment level

Q.)

TIME TIME K-FFFFT* CONVERS* TH232 PA233 U233 STEP DAYS K-FFFFT* CONVERS* GPANS GPANS GRAMS U233 1 4017 1,1065400 0.6000 1.4004+00 0.0000 0.0000 1 4017 1,002400 1.7169-01 1.4002+00 1.0335-04 5.5368	BURNUP
	MWD/TC-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} 0.0000\\ 1.5677\\ 04\\ 1.1287\\ 04\\ 2.2575\\ 03\\ 4.5149\\ 03\\ 5.6436\\ 03\\ 6.7724\\ 03\\ 7.9011\\ 03\\ 7.9011\\ 03\\ 7.9011\\ 03\\ 7.90298\\ 03\\ 1.0159\\ 03\\ 1.1287\\ 03\\ 1.2416\\ \end{array}$

b)

TIME	TIL	U - 34	11235	0226	U237	NP237	BURNUP
STEP	DAYS	GRAES.	GRAMS	GPAD5	GRAMS	GRANS	MWD/TO-1
n	• () ()	C.Crif	3.2774-01	u.000n	0.000	0,0000	0.0000
1	4.17	1.0650-67	3.2679-01	2.1952-04	7.2840-08	0.0000	1.5677+
2 3	30.00 60.00	4,8901-07 1,7000-01	3.2091-01 3.1417-01	1.5764-03 3.1263-03	1.9844≖∩ö 4.8389≖∩ö	2.4274-06	1.1287+2.2575+
4 5	90+00 120+00	3,4109@(t 5,5071@0;	3.0753-01	4.6457m03 6.1339-03	7•7293≖∩ó 1∗0610≖∩5	3.1832-05 5.9330-05	3.3862+
6 7	150.00 180.00	7,9271+15	2.9455-01 2.8821-01	7,5912×03 9,0178-03	1•3481-05 1•6344-05	9.5119-05 1.3901-04	5.5436.
8 9	210.00	1,3/3/064	2.3196-01	1 • 0 4 1 4 ∞ 0 2 1 • 1 7 8 1 ∞ 0 2	1.9199-05 2.2044-05	1.903-04 2.5037-04	7.9011* 9.0298*
1n 11	270.00 306.00	2.4207004	2.6377-01	1.3118=02 1.4426-02	2.4879-n5 2.7703-05	3,1745-04 3,9189-04	1:0159+ 1:1287+
12	330.010	2,8216+14	2.5789-01	1.5704-02	3.0514-05	4.7348-04	1.2416+

TIN STER		pU23 GRANA	PU240 GRANS	PU241 GRANS	P U 2 4 2 G R A M S	AH243 GRAM5	BURNUP MWD/TO-U
0 1 2 3 4 5 6 7 8 9 1 1 1	<pre>>00 4 = 17 30 = 00 60 = 00 90 = 00 120 = 00 130 = 00 130 = 00 240 = 00 270 = 00 300 = 00</pre>	0,0007 9,31)3-005 1,33()-1,3 2,4601-13 4,2503-03 5,57.1-03 5,57.1-03 7,9376-03 7,9376-03 1,01-15-02 1,1134-02 1,208-03	D.0000 2.2487-07 1.7076-05 6.8264-05 1.4712-04 2.4809-04 3.6672-04 4.9953-04 6.4377-04 7.9727-04 9.5831-04 1.1255-03	$0 \circ 0 0 0 0$ $7 \circ 8 1 6 6 - 0 7$ $6 \circ 4 5 6 3 - 0 6$ $2 \circ 1 0 7 7 - 0 5$ $4 \circ 7 3 9 5 - 0 5$ $8 \circ 7 0 9 4 - 0 5$ $1 \circ 4 1 0 0 - 0 4$ $2 \circ 0 9 3 1 - 0 4$ $2 \circ 9 7 3 8 - 0 4$ $3 \circ 8 7 8 6 - 0 4$ $4 \circ 9 \circ 8 1 - 0 4$	0.0000 0.0000 0.0000 5.0161-08 2.6545-07 8.1902-07 1.9171-06 3.7861-06 4.6601-06 1.0772-05 1.6345-05 2.3593-05	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 2.5774-08 8.1752-08 1.8324-07 3.5198-07 4.1938-07 1.0128-06	$0 \cdot 0 \cdot 0 \cdot 0 \\1 \cdot 5 \cdot 6 \cdot 7 \cdot 1 \cdot 0 \\2 \cdot 2 \cdot 5 \cdot 7 \cdot 1 \cdot 0 \\3 \cdot 3 \cdot 8 \cdot 6 \cdot 2 \cdot 1 \\3 \cdot 3 \cdot 8 \cdot 6 \cdot 2 \cdot 1 \\4 \cdot 5 \cdot 1 \cdot 4 \cdot 9 \cdot 1 \\3 \cdot 5 \cdot 6 \cdot 4 \cdot 3 \cdot 6 \cdot 1 \\4 \cdot 5 \cdot 1 \cdot 4 \cdot 9 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 2 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 2 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 2 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 2 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 2 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 2 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 4 \cdot 1 \\3 \cdot 6 \cdot 7 \cdot 4 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 8 \cdot 7 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 1 \\4 \cdot 1 \cdot 1 \\4 \cdot 1 \cdot 2 \cdot 1 \\4 \cdot 1 \cdot 1 \\4 \cdot 1 \cdot 1 \\4 \cdot 1 \cdot 1 \\4 \cdot 1 \cdot 1 \cdot 1 \\4 \cdot 1$
12	330.00 YSTEH-HA	1,2950m02 TRIX A	1,2976-03	6.1773-04	3.2715-05	1.5714-06	1.2416+04

d)

TIMF STEF	TIÌI DPYS	р0191 GF2-5	₽0 152 GRANS	PO153 GRAHS	U238 GRAMS	NP237 GRAHS	BUMUP MWD/TO-L
1 2 3 4 5 6 7	• 60 4 • 17 30 • 60 • 60 • 60 90 • 60 120 • 66 150 • 60	0,0000 0,0000 0,0000 0,000 0,0000 0,0000 0,0000	0,0000 0.0000 0.0000 0.0000 0.0000 0.0000	0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000 0,0000	2.9497+00 2.9495+00 2.9479+00 2.9460+00 2.9442+00 2.9423+00 2.9404+00	0,0000 1,2555-64 1,8617-04 1,8228-04 1,8398-04 1,8554-04 1,8708-04	0.1000 1.5677+02 1.1287+03 2.2575+03 3.3862+03 4.5149+03 5.6436+03
8 9 1 f) 1 1 1 2	210.00 240.00 270.00 300.00 330.00	0,00);-;;; 0,00);; 0,00);; 0,00); 0,00); 0,00);	0°0000 0°0000 0°0000 0°0000 0°0000	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	2•9385+00 2•9365+00 2•9346+00 2•9326+00 2•9306+00 2•9286+00	1.3354-04 1.9021-04 1.9150-04 1.9340-04 1.9501-04 1.9501-04	6 • 7724+03 7 • 9n11+03 9 • 0298+03 1 • 0159+04 1 • 1287+04 1 • 2416+04

Table(III-2-17): The weights of fuel disotopes for 70%U2 _30%THO2

fuel mixture and 12%U-235 enrichment level

a)

ME FP	TIGE	K	CO VERS. R TTO	TH232 GRAMS	PA233 GRAMS	H233 GRAMS	BURNUP MWD/TO-U
01234567990122	$ \begin{array}{c} 0 \\ 4 \\ 17 \\ 20 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 01 \\ 0$	1 1481+00 $1 1238+00$ $1 127+00$ $1 0970+00$ $1 0970+00$ $1 0831+00$ $1 0761+00$ $1 0623+00$ $1 0555+00$ $1 0488+00$ $1 0421+00$	0.0000 1.5297-01 2.6006-01 2.8841-01 3.0329-01 3.1212-01 3.1232-01 3.2342-01 3.2809-01 3.3262-01 3.3262-01 3.4163-01 3.463-01 3.4618-01	$\begin{array}{c} 1.4004+00\\ 1.4002+00\\ 1.3096+00\\ 1.3089+00\\ 1.3081+00\\ 1.3066+00\\ 1.3066+00\\ 1.3058+00\\ 1.3058+00\\ 1.3050+00\\ 1.3050+00\\ 1.3026+00\\ 1.3026+00\\ 1.3018+00\\ 1.3018+00\\ \end{array}$	0.0000 0.3507-05 5.0096-04 7.3756-04 0.5103-04 0.3690-04 0.3690-04 0.5838-04 0.6630-04 0.7569-04 0.8397-04 0.9179-04 0.9944-04	n.0000 c.0103-06 c.1200-04 c.8240-04 t.2660-05 t.8953-05 c.5391-05 c.1830-05 c.8205-05 t.4486-05 c.0661-05 c.6723-05 6.2673-05	0.0000 1.5677+02 1.1288+03 2.2575+03 3.3863+03 4.5150+03 5.6438+03 6.7725+03 7.9013+03 9.0300+03 1.0159+04 1.1288+04 1.2416+04

b)

.....

ME EP	TLIAE	CDAMS	U2 5 GR MS	U236 GRAMS	H237 GRAMS	GRAMS	MWD/T0-U
n 1 2 x 4 5 6 7 9 9 1 1 0	$\begin{array}{c} 0 \\ 4 \\ 17 \\ 30 \\ 00 \\ 00 \\ 00 \\ 120 \\ 00 \\ 120 \\ 00 \\ 120 \\ 00 \\ 120 \\ 00 \\ 210 \\ 00 \\ 270 \\ 00 \\ 270 \\ 00 \\ 300 \\ 00 \\ 300 \\ 00 \\ 00 \\ 300 \\ 00 \\ 00 \\ 300 \\ $	0000 0300-0A 14017-05 28040-05 45169-05 45169-05 4947-05 7143-05 1163-00 13833-00 16718-00 19814-06 25117-00	5. 328-01 5. 328-01 5. 3235-01 5. 7949-01 5. 7271-01 5. 6601-01 5. 5285-01 5. 5285-01 5. 3909-01 5. 3767-01 5. 2745-01 5. 2745-01 5. 2745-01	0.0000 0.2253-04 1.6503-03 3.2785-03 4.8008-03 6.4564-03 0.0052-03 0.5273-03 1.1023-02 1.2492-02 1.3036-02 1.5553-02 1.6745-02	0.0000 7.0134-08 1.9005-06 0.6559-06 7.4458-06 1.0232-05 1.3013-05 1.5701-05 1.8566-05 0.1338-05 0.4106-05 0.6869-05 0.9628-05	0.0000 0.3299-06 1.2336-05 7.0679-05 0.1926-05 1.3452-04 1.8491-04 7.08491-04 7.0849-04 7.0849-04 7.0840-04 4.6130-04	n.0000 1.5677+02 1.1288+03 2.2575+03 3.3863+03 4.5150+03 5.6438+03 6.7725+03 7.9013+03 9.0300+03 1.0159+04 1.1288+04 1.2416+04

TT4E STEP	±λ∜Ε DAYS	PU2 Ka GRANS	Sint d O hain	P1:241 60A45	SMA GRAMS	A M24 S GRAMS	BURNUP MWD/T0-U
	× 3,200,000 × 3,200,000 × 3,200,000 × 3,200,000 × 3,200,000 × 3,200,000 × 3,200,000 × 3,200,000 × 3,200,000	C. 0000 C. 0000 C. 4092-00 C. 2543-03 C. 2543-03 C. 4081-03 C. 4724-03 C. 457103 C. 457103		0.0000 0.0000 0.0000 1.4551-00 1.4551-00 1.55751-00 1.55721-05 1.05421-05 1.05421-05 1.05421-05 1.02421-02	<pre>> > /pre>	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.348540 1.32854108 1.32854108 0.5457108 0.5457108	$\begin{array}{c} 1.0000\\ 1.5670\\ 1.5670\\ 1.5677\\ 1.5677\\ 2.557570\\ 3.385370\\ 3.385370\\ 3.385370\\ 5.575670\\ 5.575670\\ 3.0300\\ 5.57560\\ 3.0300\\ 1.025870\\ 3.0300\\ 1.025870\\ 3.0300\\ 1.025870\\ 3.0300\\ 1.025870\\ 3.0300\\ 1.025870\\ 3.0300\\ 1.025870\\ 3.0300\\ 1.025870\\ 3.0300\\ 3.000\\ $
		q)		-			
	±145 NAYS	DIST01 CRAMS		SMAG SMAG	U23a 6RAMS	eposa Gpams	RUNUP MWD710-U
¢	() •	0000 u	() 0 () ()	0.000	10 +1 1/08-0		
•- C	4,17	n nnnn a' aano	ີ່ງ ເ		00+6288.0	• 1524-04	1.56/7+02
N	60°0°	0.00		0,0×00 0,0×00	っ。ጸጸ24∔00 っ。ጸጸ∩8≁∩0	1.6224-04 4.6308-04	1.1288403
= 1				0.040	nu+1~28°c	1.5543-04	3.3863+03
r c	150,00 150,00		0,0000 0,0000 0,0000	1.0×00 A.0×00	0.4774+0U	1.6672-04	4.5150+03
r (1 aU 00	ບັບບໍ່	0,00 °.	0.000	UN+9578.4	1.6925-04	6.7725+03
< 0	210°0	້ມດາກ		້ມູດດູ	0°8722+00	1.7053-04	7.9013+03
ТС т	240°01			າ.0^00 ລັດລິດດ		+ . 7 . 8 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1 . 1	9.0300+03
د. ۲۰۰	30,00	ບູ້ ມີບົບ	ູ່ມີບາ		0.8668+0U	+ - 2443-1)4	1.1288+04
() •	30°02×	ບພບພື້	ຄບ20 ໍ	ີ່ມີຈີນ	°.8650+∩U	1.7575-04	1.2416+04

.

57

ିତ

Table(III-2-18): The weights of fuel isotopes for 70% U02-30% TH02

fuel mixture and 16%U-235 enrichment level

	١.
а)

5	TATS	K-FEEKT.	CO YERS. R TTO	THo32 GRAMS	PAD33 GRAMS	GRAMS	BURNUP MWD/TU-U
	$\begin{array}{c} 0 \\ 4 \\ 2 \\ 7 \\ 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \\ 0$	$\begin{array}{c} 1 & 2051 \pm 00 \\ 1 & 1844 \pm 00 \\ 1 & 1748 \pm 00 \\ 1 & 1666 \pm 00 \\ 1 & 1598 \pm 00 \\ 1 & 1555 \pm 00 \\ 1 & 1414 \pm 00 \\ 1 & 1355 \pm 00 \\ 1 & 1295 \pm 00 \\ 1 & 1255 \pm 00 \\ 1 & 1255 \pm 00 \\ 1 & 1176 \pm 00 \\ 1 & 1117 \pm 00 \end{array}$	0.0000 1.2629-01 2.1406-01 2.3355-01 2.5372-01 2.5767-01 2.6591-01 2.6911-01 2.7218-01 2.7228-01 2.7329-01 2.7329-01 2.7329-01	1.4004+00 $1.4003+00$ $1.3097+00$ $1.3091+00$ $1.3078+00$ $1.3078+00$ $1.3078+00$ $1.3058+00$ $1.3058+00$ $1.3051+00$ $1.3044+00$ $1.3044+00$ $1.3044+00$ $1.3044+00$ $1.3044+00$ $1.3044+00$ $1.3044+00$ $1.3044+00$	 a.0000 a.0521-05 u.3037-04 b.3426-04 c.3158-04 c.0178-04 c.0178-04 c.2372-04 c.3600-04 c.4228-04 c.4312-04 c.5379-04 	0 • 0 0 0 0 1 • 3152-06 1 • 0270-04 1 • 0951-03 1 • 6429-03 0 • 2057-03 0 • 2057-03 0 • 7709-03 1 • 0 891-03 1 • 0 797-03 5 • 5135-03	$\begin{array}{c} 0.0000\\ 1.5678+02\\ 1.1288+03\\ 2.2576+03\\ 3.3864+03\\ 4.5152+03\\ 5.6440+03\\ 6.7728+03\\ 7.9016+03\\ 7.9016+03\\ 1.0159+04\\ 1.1288+04\\ 1.2417+04 \end{array}$

b)

rep	TITE DAYS	E 34 E AMS	the S Up Me	11234 68845	H237 GRAMS	ND237 CRAMS	BURNUP MWD/TU-U	
0107056790010	$\begin{array}{c} 0 \\ 4 \\ 17 \\ 4 \\ 17 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 17 \\ 0 \\ 0 \\ 17 \\ 0 \\ 0 \\ 17 \\ 0 \\ 0 \\ 17 \\ 0 \\ 0 \\ 17 \\ 0 \\ 0 \\ 0 \\ 27 \\ 0 \\ 0 \\ 0 \\ 27 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	n nnn0 6 5086-09 2 9644-06 1 0280-05 2 0524-05 3 3013-05 n 7414-05 6 3560-05 9 1364-05 1 0077-04 1 2176-04 1 4428-04 1 6834-00	5, 134-01 5, 1725-01 5, 1725-01 5, 1021-01 5, 0325-01 4, 0634-01 4, 3241-01 4, 3259-01 4, 7521-01 4, 6209-01 4, 6209-01 4, 5500-01 4, 4023-01	0.0000 2.4669-04 1.7756-07 7.5243-03 5.2734-03 5.2734-03 6.9016-07 1.0764-07 1.0764-07 1.2018-07 1.2018-07 1.5062-07 1.5062-07 1.6053-07 1.6053-07	0.0000 4.5723-08 1.7030-05 1.3102-06 6.9632-06 1.2198-05 1.2	<u>n.0000</u> <u>1.779-06</u> <u>1.1042-05</u> <u>1.2210-05</u> <u>5.2210-05</u> <u>1.2613-04</u> <u>1.7384-04</u> <u>1.7384-04</u> <u>2.2890-04</u> <u>2.6072-04</u> <u>4.3726-04</u>	$\begin{array}{c} 0.0000\\ 1.5678+02\\ 1.1288+03\\ 2.2576+03\\ 3.3864+03\\ 4.5152+03\\ 5.6440+03\\ 6.7728+03\\ 7.9016+03\\ 9.0304+03\\ 1.0159+04\\ 1.1288+04\\ 1.2417+04\end{array}$	

		c)					
	TIT	1410 RAMS	Svi dg	POTS3 GRAMS	U239 GRAMS	65 AMS	BUNUP MWD/T0-U
c	ς Ο	0000 0					
-		0.000		0-0-0	°,7528+00	υ υ υυ ^ω	0.0000
n.	70 . 00	0,000		ບໍ່ມີບັບບ	₽,7527+∩U	0.5271-05	1.5678+02
۲.	6 0. 00	0,00,00				1.7508-04	1.12H8+03
11	00,00	ມ້າດແມ		0.000	^ +7500+00	1.3730-04	2.2576+03
S	150,00			ູ້ມີກາດເປັ	00+901/2°℃	1.38.59-04	3.3964+03
V.	15,0,00	0000		9.0ADP	00+1202°c	+0-11502.1	4.5152+03
: r	00.001	0,000		0°0°0°C	いい+とっかん。	1.44025-04	5.6440+03
C.	210.00	0.000	້ງຈາຍ	0°0°0	ງ°7##2≁∩ບ	1.4114-04	6.7728403
С	210.00			ೆ.೧ _೧ ೧೧	°.7428+∩U	1.4203-04	7.0016403
C			000°n	9.0^00	0.7413+0U	+0-2020.1	9.0×04+03
مہ 4	300 00			ບໍ່ມີ ເ	J.7308+0U	1.1381-04	1.0159404
- (00VV°	0.00.0	0.7393400	1.475-04	1.1288+04
• -	10 ° 2°	and a second sec	0°00°n	U U U	7368+rU	1.0568-04	1.2417+04
		d)					
					•		
	+1-1 n 4 < S		SMU Z	55V45	SMAS GRAMS	STARS CTARS	MWD/T0-U
c	C 0 .	0000	د 200	ປ້ມຈິດເ	0.00°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°°		1.5/78+02
e.	t 14	7 118113-015					
C	30.00	0562-03					2.2576403
r :	60.00 6.00	2011/112 2 ·				0000.0	50++032.5
- L			, 35 × -0.2	, 7-85-0E	1.2002.1	0.000	4.5152+03
۶.			- 2010-01-	2.03-DE	· • 2055-0 /	0.000	5.6440+03
c r		6 4564-03		5,55 ,5- 05	0 • 6 5 5 th - 0 1	0.000	6.7728+n3
- c		7,4275-03	5 41 35-04	J.4269-05	1 • 5441-06	0.0000 ° 0	7.9016+03
C	2° n 00	0.3649-03	4 3088-04	1,0102-04		o.1163-UH	9.0304+n3
Ċ	240 OU	0.2649-03	0-0946°C	1.61,9501	ՎՆ–Ց ննն - ՆԻ	C. SAPE-DE	1.0159404
	300.00	1 0143-05	0,277.5-04	o.1621-00	C. Bout-ob		1.1208+04
ç	330,00	1 0086-05	/ 33554-04	2 7500-01	a.3207-06	1.1-11-11-11	1.241/10
ۍ	VSTENT-WV	TRIV A					

99

Table(III-2-19): The weights of fuel isotopes for 70%U02-30%TH02

fuel mixture and 20%U-235 enrichment level

a)

TIME	TIME	K-EFFEKT.	C ⁰ VERS.	TH232	PA233	U233	HURNUP
STEP	DAYS		RATIO	GRAMS	GRAMS	GRAMS	MWD/TO-U
0 1 2 3 4 5 6 7 8 9 10 11 12	.00 4.17 30.00 60.00 90.00 120.00 120.00 150.00 150.00 210.00 210.00 240.00 270.00 300.00 330.00	$1 \cdot 2456 + 00$ $1 \cdot 2283 + 00$ $1 \cdot 2200 + 00$ $1 \cdot 2124 + 00$ $1 \cdot 2060 + 00$ $1 \cdot 2001 + 00$ $1 \cdot 1946 + 00$ $1 \cdot 1893 + 00$ $1 \cdot 1893 + 00$ $1 \cdot 187 + 00$ $1 \cdot 178 + 00$ $1 \cdot 1682 + 00$ $1 \cdot 1650 + 00$	0.0000 1.0738-01 1.8340-01 2.0389-01 2.1433-01 2.2013-01 2.2382-01 2.2657-01 2.2892-01 2.3113-01 2.3330-01 2.3548-01 2.3770-01	1.4004+00 1.4003+00 1.3998+00 1.3992+00 1.3986+00 1.3980+00 1.3974+00 1.3968+00 1.3956+00 1.3956+00 1.3956+00 1.3956+00 1.3944+00 1.3938+00	0.0000 7.2075-05 3.8523-04 5.6684-04 6.5368-04 6.9634-04 7.1840-04 7.3088-04 7.3088-04 7.3890-04 7.4486-04 7.4988-04 7.5448-04 7.5892-04	0.0000 3.8628-06 1.6354-04 5.2790-04 9.8244-04 1.4757-03 1.9838-03 2.4955-03 3.0057-03 3.5119-03 4.0130-03 4.5085-03 4.9982-03	0,0000 1,5678+02 1,1288+03 2,2576+03 3,3864+03 4,5152+03 5,6440+03 6,7728+03 7,9016+03 9,0304+03 1,0159+04 1,1288+04 1,2417+04

b)

TIME STEP	TIME DAYS	U234 GKAMS	UZ 5 GM MS	U236 GRAMS	U237 GRAMS	NP237 GRAMS	HIRNUP MWD/TO=U
		• • • • •					· · · · · · · · · · · · · · · · · · ·
0	•00	0.0000	6-5542-01	0.0000	0.0000	0.0000	0.0000
1	4.17	5.1409-08	6.5442-01	2.6077-04	6.1875-08	0.0000	1,5678+02
2	30,00	2.3236-06	6.4821-01	1.8773-03	1.6734-06	2.0613-06	1,1288+03
3	60.00	8.0397-06	6.4104-01	3.7409-03	4.0799-06	1.0728-05	2,2576+03
4	90.00	1.6029-05	6.3390-01	5.5885-03	6.5342-06	2.6979-05	3,3864+03
5	120.00	2.5755-05	6.2680-01	7.4190-03	8,9960-06	5.0514-05	4,5152+03
6	150.00	3.6459=05	6.1974-01	9.2320-03	1.1461-05	8.1308-05	5.6440+03
7	180.00	4.9513=05	6-1271-01	1.1027-02	1,3929-05	1.1943-04	6.7728+03
Ŕ	210.00	6.3350-05	6.0573-01	1.2804-02	1.6400-05	1.6456-04	7,9016+03
ğ	240.00	7.8434-05	5.9878-01	1.4563-02	1.8874-05	2.1661-04	9.0304+03
10	270.00	0.4130-05	5.9187-01	1.6304-02	2.1352-05	2.7578-04	1.0159+04
11	300.00	1.1225-04	5.8500-01	1.8028-02	2.3833-05	3.4183-04	1,1288+04
12	330.00	1.3095-04	5.7817-01	1.9733-02	2.6318-05	4.1468-04	1,2417+04

TIME	TIME	HUIS1	₩ 152	POIS3	U238	NP239	BUNUP
STEP	DAYS	GRAMS	GK MS	GRAMS	GRAMS	GRAMS	MWD/TO-U
0	.00	0.0000	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0.0000	2.6218+00	0.0000	0.0000
1	4.17	0.0000		0.0000	2.6216+00	8.2137-05	1.5678+02
2	30.00	0.0000		0.0000	2.6205+00	1.1700-04	1.1288+03
3	60.00	0.0000		0.0000	2.6193+00	1.1789-04	2.2576+03
4	90.00	0.0000		0.0000	2.6181+00	1.1873-04	3.3864+03
5	120.00	0.0000		0.0000	2.6168+00	1.1947-04	4.5152+03
6	150.00	0.0000		0.0000	2.6156+00	1.2017-04	5.6440+03
7	150.00	0.0000		0.0000	2.6143+00	1.2084-04	6.7728+03
8	210.00	0.0000		0.0000	2.6130+00	1.2151-04	7.9016+03
9	240.00	0.0000		0.0000	2.6118+00	1.2217-04	9.0304+03
10	270.00	0.0000		0.0000	2.6105+00	1.2284-04	1.0159+04
11	300.00	0.0000	0.0000	0.0000	2,6092+00	1.2351-04	1.1288+04
12	330.00	0.0000	0.0000		2,6079+00	1.2419-04	1.2417+04

d)

TIME STEP	TIME	PU239 GKAMS	U240 RAMS	PU241 GRAMS	PU242 GRAMS	AM243 GRAMS	RURNUP
		, 					
0 1 2 3 4 5 6	.00 4.17 30.00 60.00 90.00 120.00	0.0000 6.1069=05 9.1229=04 1.9174=03 2.8973=03 3.8519=03 4.7813=03	0: 000 8: 860=08 5:6816=06 2:2932=05 5:0588=05 8:7512=05 1:3268=04	0.0000 0.0000 3.8364=08 1.2149=06 4.3607=06 1.0262=05 1.9617=05	0.0000 0.0000 0.0000 0.0000 1.1236-08 1.2119-07	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	0.0000 1.5678+02 1.1288+03 2.2576+03 3.3864+03 4.5152+03 5.6440+03
7 8 9 10 11 12	180.00 210.00 240.00 270.00 300.00 330.00 (STEM-MAT	5.6859-03 6.5653-03 7.4229-03 8.2563-03 9.06/0-03 9.8557-03	1.8517-04 2.4418-04 3.0899-04 3.7899-04 4.5360-04 5.3236-04	3,2977∞05 5,0789∞05 7,3351∞05 1,0093∞04 1,3367∞04 1,7171~04	3.2504-07 6.3563-07 1.1108-06 1.7737-06 2.6774-06 3.8580-06	0.0000 0.0000 0.0000 0.0000 0.0000 0.0000	6.7728+03 7.9016+03 9.0304+03 1.0159+04 1.1288+04 1.2417+04

SYSTEM-MATRIX 1

101

¢

\$

Ĵ,

Figure(III-2-4):Multiplication factor versus time

APPENDIX A

INPUT DESCRIPTION

water and a second state of the second state of the second state of the second state of the second state of the

i setor - Altor petersen en el el

A. Card Description

Card No.

	(20A4)	Title card
2	(1814)	Basic control and dimensioning
		parameters (See the discussion in section
		C for definitions of "region", "zone", and
		various types of "cells".)
col.1 -	4 NBURP	Lumped absorber specification
	en O	No lumped absorber
	a 1	Gd 155, Gd 156, Gd 157
	= 2	Silver, Cd 113, In 115
	s 3	Cd 113
	a 4	B 10
col. 5 -	8 N20	Number of regions, sum total for all
		zones (N20 \geq 3). Input of N20 < 3
		causes termination of the run
col, 9 -	12 NGR	Number of condensed (broad) groups
col.13 -	16 NZM	Number of zones with diff er ent moderator
		material (zones without moderator neglected)

1,

. Second

2 (00	ont.)		i.e. number of moderators. Only
			$H = \frac{1}{2} 0$ is in library Only different
			2 modenator densities are most here
			moderator densities are meant here.
	col.17 - 20	ISTO	Case type declaration (See Chapter 2,
			Section 2.3.1)
		a]	Normal cell calculation, coefficients of
			the self shielding polynomial of the fuel
			and related isotopes are generated and
			written to logical I/O device 2. See also
			Section D.
		a 2	Burn-up supercell calculation, the
			coefficients generated by ISTO = 1
			have to be used.
		a 3	Normal cell calculation, full output
			possible.
	N		Normal cell calculation, only homogenized
			library will be generated on logical file
			NUY. (NBURP > 0)
		s 5	Control supercell calculation, the
			homogenized library generated by ISTO = 4
			has to be used.
- 3	(6E12.5)		Input of temperatures
(col. 1-12	TBRENN	Fuel temperature ^Q K
	col 13=24	тмор	Moderator temperature ^O K

н 1977 г.

- - **6** - - -

and a substance of the

į

Card No.

4	(1814)		Output control parameters
	col. 1 - 4	NPRIN3	Print index of the flux field
		= 0	45-group fluxes are printed
		2	2-group fluxes are printed (fast
			and thermal)
	col. 5 - 8	NPRIN5	Print index of the nuclid dependent
			correction factors (EREBUS)
		= 0	No print
		=]	Print
	col. 9 - 12	NPUNC	Output index of the condensed cross
			section library
		"]	Write EREBUS input to mass storage
			(See also _g Card 16)
		# O	No punch
	col:13 - 16	NPRIN1	
		= 0	No effect
		ee]	Suppression of all except synopsis
			output
5	(20A4)		Subtitle card for further specification
6	(1814)		Case control numbers
	co1.1 - 4	NXXX	Punch index for region dependent
			densities-(cards No. 12, 13) for restart
			from a certain time step
		æ ()	No punch
		ai 1	Punch

19

_112-

Card No.

エムウー	

.

0	(cont.)		
	col. 5 - 8	NRSTRT	Time step number of density punch.
			No effect if NXXX = 0
	col. 9 - 12	NDOW	Group condensation control number 🛛 🗕
		= 0	No group condensation performed
		EL -	•Group condensation performed
	col.13 - 16	KSER	Initiation of successor cases
		= 0	No new case
		2	Full new case starting witn card 1
		e م]	New case starting with card 5
	col.17 - 20	JAN	Control for special sequential cases.
		-	No effect if KSER = 0 in the preceding
		N.	case.
		≈ 0	No effect
	b	55	Repeated homogenization with change in
	· .		regions involved. (cf. card No. 7)
	· .		The new input consists only of cards
			No. 5, 6, 7). KSER = -1 in the preceding
			case.
		a 2	Repetition of a case with moderator
			densities altered. The new input consist
			of cards No. 1-6 and card No.8. KSER = 1
			in the preceding case.
7	(1814)		Regional boundaries for homogenization
/	(1081)		Supplied only if JAN = 1 or ISTO = 5
			t t ang subject (groug) (det

Card	N	0.		
	7	(cont.)		· · · · · · · · · · · · · · · · · · ·
		col. 1 - 4	IGC1	First } region participating in
		col. 5 - 8	IGC2	Last) homogenization
	8	(6E12.5)		Moderator densities
		col. 1 - 12	DENM(1)	Density in the first zone containing
			÷ 0	moderator
			DENM(NZM)	Density in the last zone containing
				moderator
	٥	(101/1)		Roundantes of condensed arouns
ł	9	(1014)		(omitted if NDOW - 0)
			1001/11	Number of the highest)
			1000(1)	small group.
		001 E. 0	100/11	Number of the lowest aroup]
			10F(1)	small group
				and trigroup /
			1CPU(NGR)	Number of the highest
	•		sal alumit	small group within broad
		đ	ICP(NGR)	Number of the lowest group NGR
				small group
				Note: The group of the highest energy
				has the lowest number.
				The option ISTO = 4 demands for
				the input of card 9 (and for NDOW 🖌 O)
				Else no library can be produced.

-114- *

Card No. 10-11 Geometry and related input 7 10 (1814)Specification of zones, attachment of regions and moderators to zones. 201.1 - 4 NZO Number of zones col. 5 - 8 MP(1)Number of regions in zone 1 col. 9 - 12 IT(1)Moderator index of zone 1 MP(NZO) IT(NZO) The regions of a zone are annuli of equal thickness IT(J) = K: Zone J contains moderator K. Moderators are indexed by the sequence of their densities (cf. card No. 8). 1 < K < NZM IT(J) = -1: No moderator in zone J. (6E12.5) Specification of radi1 11 Outer radius of zone 1 col. 1 - 12 RZ(1) Outer radius of zone 2 col.13 - 24 RZ(2) . RŽ(NZO) Outer radius of zone NZO Region dependent atomic densities 12-13 This set of cards has to be supplied for every region IR; 1 < IR < N20

Card No	2.		
12	(1814)		Control card
	col.] - 4	NREAD	Number of cards No. 13 having to follow
			card No. 12
	col. 5 - 8	NCHI	Previous region specifier
		= 0	If NREAD ≠ O
	1	≰ 0	If NREAD ∞ O
			Designates a foregoing region with
			identical atomic densities.
13	(14,8X,E12	.5)	Supplied only for NREAD > 0
	col.l-4	L	Isotope number (fixed by library, see
			Section B, following)
	col.13 = 24	DEN(L, ÆR)	Atomic density of isotope L
			(barn ⁻¹ * cm ⁻¹) :
14	(6E12.5)		Liquid boron content of the moderator
			and burn-up data
	col. 1 - 12	РРМ	Parts per million of natural boron
	col.13 - 24	POWER	Integral power per cm in Watts
	col.25 - 36	STOP	Number of burn-up time steps
,	col.37 - 48	DELDAY	Burn-up time step in days
	col.49 - 60	ZKFIND	Minimum k terminating the burn-up
			calculation.
			Notes: POWER #.0, or else print of
			the flux field is wrong.
			STOP =.0, must be put in if no
			burn-up is wanted.

and the second second second second second second second second second second second second second second second

- 116-

÷

j.

Card N	0.		
15	(3I4, E12	.5)	Special input "Burn-up supercell" data
			This card has to be omitted if ISTO 🖌
	col. 1 - 4	ICON	Isotope number of the"leading density"
			(must be 5 for present version of code)
	col. 5 - 8	IGC1	First } region participating
	col. 9 - 12	IGC2	Last in homogenization

Note: The remaining data for the burn-up supercell is read from logical I/O device 2.

≠ 2.

素大

16 (214)Control card for writing output that will be used for EREBUS input. col. 1 - 4 Mass storage logical I/O unit number to IEREB which input for EREBUS is to be written. Should be 23 for first set of data to be read by EREBUS, 24 for recond set, etc. See also Section D.

NPUNC

255 85	0	Do	not	write	EREBUS	input
-----------	---	----	-----	-------	--------	-------

Write EREBUS input = 1

> (One card number 17 must be supplied for each time step - including the zeroth up to the last time step for which it is desired to write EREBUS input. The value of IEREB must be different for each time step at which EREBUS input is to be

- 117-

APPENDIX B

SERIES OF ISOTOPES IN THE ITBRARY

I. <u>Heavy Metals</u> (FUEL = 15)

1	1	Thorium	232
2	F	Protoactinium	233
3	• 1	Jranium	233
4	ι	Jranium	234
5	l	Jranium	235
6	I	Uranium	236
7	l	Uranium	237
8		Neptunium	237
9		Uranium	238
10		Neptunium	239
11		Plutonium	239
12		Plutonium	240
13		Plutonium	241
14		Plutonium	242
15		Americium	243

and and the

II. Fission Products (NLT = 31)

16	Non saturating	fission	product of Th ²³²
17	Non saturating	fission	product of U ²³³
18	Non saturating	fissin	product of U ²³⁵
19	Non saturating	fission	product of U ²³⁸
20	Non saturating	fission	product of Pu ²³⁹
21	Non saturating	fission	product of Pu ²⁴¹
22	Rhodium	103	
23	Iodine	131	Et.,
24	Xenon	131	First chain
25	Xenon	133	
26	Cesium	133	Second chain
27	Cesium	134	
28	Iodine	135	
29	Xenon	135	
30	Cesium	135	446 pa in in 100 an 100 an 100
31	Praseodymium	143	Third chain
32	Neodymium	143	
33	Molybdenum	95	
34	Technetium	99	
35	Neodymium	145	
36	Neodymium	146	
37	Neodymium	147	Fourth chain
38	Promethium	147	

and the

TI3

-120-

39	Promethium	148
40	Promethium	148
41	Promethium	149
42	Samarium	149
43	Samarium	150
44	Promethium	151
45	Samarium	151
46	Samarium	152

III. Lumped absorbers

47	Gadolinium	155)	
48	Gadolinium	156	NBuRP = 1
49	Gadolinium	157	
47	Silver	109)	
48	Cadmium	113	NBuRP = 2
49	Indium	115 /	
47	Cadmium	113	NBuRP = 3
47	Boron	10	NBuRP = 4

IV. Nonburnable isotopes (NOB = 12)

47	Boron 10
48	Chromium
49	Zirconium
50	Oxygen (in UO_2 , see also V. for O in H_2O)
51	Nickel

a in the state

52	Iron	
53	Titanium	
54	Manganese	
55	Copper	
56	Niobium	
57	Molybdenum	
58	Aluminum	

APPENDIX C.

SAMPLE INPUT FOR FUEL CELL CALCULATION

Radius(_in cm)	0,418	0,475	0,6991	0,7296
Zone	ľ	5	24	Ś

Number Densities

Elenent	U-235 U-238 TH-232 02	Gr	() ()	22	Gr	Ma	(24)	N	ND	GR	agang	MO	Hol/2	C C	Ma	¢ Ø	144 e	MĎ	Cr	e the state of the	Mo	HOI/2
Zone	-	N			M									4	-							

.

Number_density(SZILARD)

See tables given below

7,6012164.10 ⁻⁵ 1,5547943.10 ⁻⁴ 1,7507603.10 ⁻⁶ 1,2454089.10 ⁻²	7,1273560.1054 1,768237.1055 8,545346.1054 1,745454.1054 1,745454.1055 2,222834.1056 5,222834.1056 5,222834.1056 5,222834.1056 5,222834.1056 5,222834.1056	2,410121.10-3 1,829595.10-3 2,355045.10-3 8,15627.10-3 1,701181.10-6 2,376601.10-6 4,088135.10-6
C- r	5-HOHHOM04	NH10000044

.

$\mathbf{T}\mathbf{A}$	BLE	C-	1

Number densities for 30%U02-70%TH02 fuel mixture

Enrichment %U-235	^N 235	^N 238	NO2	N _{Th}
10	6,5563410 ⁻⁴	5,82633.10	2,19460.10	- ² 1,59707.10 ⁻¹
12	7,8679.10 ⁻⁴	5,69706.10-	2,19473.10) ⁻² "
14	9,17894.10 ⁻⁴	5,56742.10 ⁻³	2,19487.10) ⁻² "
16	1,04899.10 ⁻³	5,43777.10-3	2,19502.10) ⁻² "
18	1,18007.10 ⁻³	5,30810.10-3	2,19518.10	o ⁻² "
20	1,31115.10 ⁻³	5,17852.10-3	2,19530.10) ⁻² "

TABLE C-2

Number densities for 40% UO2-60% THO2 fuel mixture

Enrichment % U-235	N235	N238	N _{O2}	N _{Th}
10	8.74260.10 ⁻⁴	7,76915.10 ⁻³	2,18978.10-2	1,32435.10-2
12	1,04907.10 ⁻³	7,59626.10 ⁻³	2,19029.10 ⁻²	19
14	1,22389.10 ⁻³	7,42342.10-3	2,19016.10-2	11
16	1,39869.10 ⁻³	7,25057.10 ⁻³	2,19035.10-2	16
18	1,57347.10 ⁻³	$7,07769.10^{-3}$	2,19057.10-2	17
20	1,7426.10-3	6,90489.10 ⁻⁹	2,19073.10 ⁻²	17

TABLE C-3

Number densities for $50\%00_2$ - $50\%THO_2$ fuel mixture

Enrichment %U-235	t N ₂₃₅	^N 238	N ₀₂	N _{Th}
10	1,09094.10 ⁻³	9,699170.10-3	2,1803.10 ⁻²	1,006.10 ⁻²
12	1,30927.10 ⁻³	9,479040.10 ⁻³	2,18057.10	2 "
14	1,52720.10 ⁻³	9,26192.10 ⁻³	2,18203.10 ⁻²	**
1.6	l,74536.10 ⁻³	9,04653.10 ⁻³	2,18103.10 ⁻²	11
18	1,96346.10 ⁻³	8,83232.10 ⁻³	2,18130.10-2	n
20	2,18157.10 ⁻³	8,61631,10 ⁻³	2,18150.10 ⁻²	

TABLE C-4

Number densities for 70%U02-30%TH02 fuel mixture

Enrichment % U-235	^N 235	^N 238	^N 02	N _{Th}
10	1,52997.10 ⁻³	1,35960.10 ⁻²	2,17531.10 ⁻²	6,621178.10 ⁻³
12	1,83590.10 ⁻³	1,32935.10 ⁻²	2,17559.10 ⁻²	F#
14	2,14181.10 ⁻³	1,29909.10 ⁻²	2,17598.10 ⁻²	18
16	2,44771.10 ⁻³	1,26885.10 ⁻²	2,17633.10 ⁻²	**
18	$2,75358.10^{-3}$	1,23859.10 ⁻²	2,17670.10 ⁻²	**
20	3,05965.10-3	1,20843.10 ⁻²	2,17725.10 ⁻²	11

TABLE C-5

Number densities for 90%U02-10%TH02 fuel mixture

Enrichment %U-235	N ₂₃₅	^N 238	N ₀₂	N _{Th}
10	1,96708.10 ⁻³	1,74806.10 ⁻²	2,16566.10 ⁻²	2,20720.10 ⁻³
12	2,3604 ⁰ .10 ⁻³	1,70916.10 ⁻²	2,16613.10 ⁻²	11
14	2,75340.10 ⁻³	1,67010,10 ⁻²	2,16 9 00.10 ⁻²	f8
16	3,14700.10 ⁻³	1,63137.10 ⁻²	2,16695.10 ⁻²	82
18	3,54030.10 ⁻³	1,59248.10 ⁻²	2,16745.10 ⁻²	18
20	3,93350.10 ⁻³	1,55360.10 ⁻²	2,16781.10 ⁻²	n

TABLE C-6

Number densities for pure UO2 fuel

Enrichment % U-235	N ₂₃₅	X 238	N ₀₂	
10	2,18565.10-5	1,94229.10 ⁻²	2,16084.10 ⁻²	
12	2,62229.10 ⁻³	1,89906.10 ⁻²	2,16136.10 ⁻²	
14	3,05972.10 ⁻³	1,85580.10 ⁻²	2,16180.10 ⁻²	
16	3,49673.10 ⁻³	1,81264.10 ⁻²	2,16227.10 ⁻²	
18	3,93368.10 ⁻³	1,76694.1072	2,16282.10-2	
20	4,37706.10 ⁻³	1,72622.10-2	2,16323.10'-2	

APPENDIX D

SAMPLE RIN

1-LESTING OF INPUT DATA FOR NORMAL FUEL CALCULATION (ISTO =3)

KNO CLEAN ZERO PONER ƏHDG DASG,T GERBIST. 24,GERBTST. ƏUSE BASG,T 2. @A56,T 12. DASG,T 13. BASG,T 14. JASG, T 15. JASG,T 16. DASG,T 21. DASG,T 22. DASG, AX BUNE*GELSLIB. aUSE 17, BUNE # GELSLIB. ƏASG,AX BUNE*ABS. ахот BUNE # ABS . GELS KWO CLEAN ZERO POWER 0 5 7 2 3 553,00000 553.0000n 1 0 0 K#O ENRICHMENT 2.58 0 1 0 D [] • D4658 .05047 15 16 45 1 -1 1 2 -1 4 1 2 1 1 .46500 .53700 .81000 .84525 3 0 5 U5 2.5 5.54650-004 9 18 2.13580-002 50 OX 4.38250-002 0 Ũ 4 48 CR 7.60120-005 52 FE 1.55480-004 51 NJ 4.75070-006 49 ZR 4 = 24540-002 6 0 2.02690-004 48 CR 51 NI 4.96380-004 2.43010-004 52 FE 9.18680-007 53 TI 5.02850-006 54 M.V 6.57580-007 55 CU 3.13320-006 56 NB 1016970-006 57 MO 8 0 1.48530-003 48 CR 1.05570-003 51 NI 4.90540-003 52 FE 5-14910-007 53 TI 54 MN 1.26440-004 3.68570=007 55 CU 1.75610-006 56 NB 9.91890-007 57 MO 50. 0 * 151. 2000. 24

1

. 89

2-LISTING OF IMPUT DATA FOR BURNUP FUEL CHLICALCULATION (ISTO=1)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 15 15 17 18	$AASG \cdot A$ 36 $AJSE$ 2,36 $AJSE$ 2,36 $AJSE$ 13, J($AJSE$ 13, J($AJSE$ 13, J($AJSE$ 12, J($AASG \cdot T$ J3 $AJSE$ 12, J($AASG \cdot T$ J3 $AJSE$ 14, J($AASG \cdot T$ J3 $AJSE$ 14, J($AASG \cdot T$ J3 $AJSE$ 22, J($AASG \cdot T$ J3 $AJSE$ 15, J($AJSE$ 16, J($AJSE$ 21, J($AJSE$ 31	LSCOEFZ. LSCOEFZ. JRFILETWO.F24 JRFILETWO. JRFILEFJJ.F24 JRFILEFJJ.F24 JRFILEFJV.F24 JRFILESIX.F24 JRFILESIX.F24 JRFILESIX.F24 JRFILESEV.F24 JRFILEEIG.F24 JRFILEEIG. IRFILEEIG.		
19	AXOT CSEC	VIAN .		
20	KWO CLEAN	ZERO PONER		
21	0 5	2 2 1		
22	553.0000	0 553,00000		
23				
25	NU ENGLUN	"⊑N,I ∠oDao 1 ∩ 0		
25	0 0/ .0504	7 .04658		
27		6 49		
28	,† 5 e	1 1 -1 1	1 1 2	
29	• 4550	0 .53700	.91000	•84525
30	3 0			
31	5 J5 2.5	5.54650-004		
32	9 08	2.13590-002		
35	50 OX	4.38520-005		
34		•		
36	4 U 48 CR	7.60120-005		
37	52 FE	1.55490-004		
38	51 NI	4.75070-006		
39	49 22	4.24540-002		
40	8 0			
41	48 CR	2.02590-004		
42	51 NI	4.95380-004		
43	52 Fil	2•43010=004 3 19690=007		
44 (14)		5.02850-007		
40 46	54 MM 54 C I	5.57590-007		
47	55 V3	3.13320-005		
48	57 MO	1.75970-005		
49	B 0			
50	48 CR	1.43530-003		
51	51 VI	1.05570-003		
52	52 FE	५°२७२२०-००२ ६.14२10-००७		
53	55 14	J@14910-007 1.26440-004		
54		3.59570-007		
25 64	55 UJ 56 NR	1.75610-006		
57	57 40	9,91890-007		~
53 53	2000.	151.	35.	30.

.30

3-lis (ist	TING OF INPUT I	MTA FOR BURNU	P SUPER	CELL	CALCULATION		
$ \begin{array}{c} 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 22 \\ \end{array} $	ΔΑ53+Α SE, ΔUSE 2+SE, ΔASG+T UG, ΔUSE 13+UG, ΔUSE 13+UG, ΔUSE 12+UG, ΔUSE 12+UG, ΔUSE 14+UG, ΔUSE 14+UG, ΔUSE 14+UG, ΔUSE 14+UG, ΔUSE 12+UG, ΔUSE 14+UG, ΔUSE 14+UG, ΔUSE 14+UG, ΔUSE 14+UG, ΔUSE 12+UG, ΔUSE 15+UG, ΔUSE 16+UG, ΔUSE 16+UG, ΔUSE 17+UG, ΔUSE 10,2 ΔUSE 10,2 ΔUSE,	SCOEF2.,F24 SCOEF2. JRFILETWO.,F24 JRFILETWO. RFILETHR. RFILEFOJ.,F24 JRFILEFOJ. RFILEFIV.,F24 JRFILEFIV.,F24 JRFILESIX.,F24 JRFILESIX.,F24 JRFILESIX.,F24 JRFILESIX. RFILESEV.,F24 JRFILESEV. RFILEEIG.,F24 JRFILEEIG.,F24 JRFILEEIG. K*GELSDATA. TE<*GELSDATA. TE<*GELSDATA. TE<*GELSDATA. SCOMER 3 2 553.00000				·	
23 24	KNO ENRICHM	ENT 2,5% SJ	PER-ZEL	LE			
25 25	0 0 1	000 .04991	.02	829			
28 29	1 15 10 5 4 ~1 . 47000	.+5 <u>1 -1 1</u> •52500	1 1	-1	1 2 2 •685n0	3 • 31000	2.935
30	3 0	2.20990-002		0.00			- •
32	48 CD 1	3.34030-004 7.5220-003					
აა 34 35 36	$\begin{array}{c} 49 \\ 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{array}$	1*00900-000					
37 38	4 0 51 c R 2	1.54335-002					
39 40	57 MN 2 55 FE 2	1•39091-003 5•36594-002					
41 42	54 NI 2	8.74815-003					
43	4 0 51 C2 4	1.68920-002					
45	55 FE 4	5.87304-002					
46 47	57 MV 4 54 NI 4	9.57489-003					
48 49	B 0 51 CR 5	4.01770-004					
50 51	57 MN 5 55 FE 5	4.81700-004					
52 53	54 NI 5 59 NB 5	9,83910-004 6,21050-006					
54 54	58 CJ 5	1.30340-006					
55 56	60 MO 5	3.50730-006					
57 58	12 0 5 J5 2•5	1.82791-004					
59	9 UB 53 OX 6	7.03876-003 1.44430-002					
00		•					

61	51 CR 6	1.21952-004		
62	55 FE 6	1.53299-004		
63	54 NI 6	2.73733-004		
64	52 27 6	4.65819-003		
55	57 MN 6	2.81837-005		
66	59 NB 6	1.75510-005		
67	58 CJ 6	3.68551-007		
68	55 TI 6	5.14902-007		
59 .	50 MD 6	9.91892-007		
70	0 9			
71	2000.	151.	0•	50.
72	5 1 10	. 32995		

•89

4-LISTINC	OF	INPUT	DATA	SOE	SUPTR	CARL	CALCULATION
-----------	----	-------	------	-----	-------	------	-------------

V	THOUT BUINTP(COM	PRAT. STEPTS -	TAN TOT	· = ·		
1	AHDG SETT.	CHEROPEI.	212410 28.11 . 1.811()=5)		
2	DASG.T 2.	301 611666	w			
3	DASG,T 12.					1
4	JASG , T 13.					
5	DASG,T 14.					
6	ƏASG,T 15.					
7	DASG.T 16.					
8	DASG,T 21.					
9	JASG,T 22.					
10	aASG _₿ AX BU	NE GELSLIB.				
11	QUSE 17, BU	NE*GELSLIB.	-			
12	BASG, AX BU	NE # ABS .				
13		NE * ABS . GELS				
19	KNO CLEAN Z	ERO PONER				
12		1 4				
17	553,00000	553,00000)			
18	4 Кёо енрісимі	CNT DES				
19			PROZe ANK.	BRENNSTFF=4EL	LF	
20	- 05047	t u				
21	1 15 16	4 5				
22	3 2 -1	1 ** 1 1	1			
23	.46500	•53700	.81000			
24	3 0		· · ·			
25	5 US 2.5	5.54650-004				
26	9 U B	2.13580-002				
27	53 OX .	4.38250-002				
28	0 1			÷	1	
29	4 D					
30	51 CR	7.60120=005				
31	54 ZR	4.24540-002				
52	54 NI 66 mm	4.75070=004				
33 74		1055400-004				
35		/ 2.02690±004				
36	54 NT	4.96380-004	*			
37	55 FF	2.43010-004				
38	56 T I	9.18680-007				
39	57 MN	5.02850-006				
40	58 CU	6.57580-007				
41	59 NB	3 • 13320 - 006				
42	60 MO	1.76970-006				
43	2000.	151.	0•	50.	•89 /	
44						
45	KHO CLEAN ZE	RO POAER				
46	2 10 2	3 5				
47	553-00000	553.00000				
48		NY 2.5%	SHPEP-7FILE	PROZ. ANR.		
17		e#9* 1 D		· ····································		
_⊒ U ແ 1	1 1 1 1	U U				
52	.05104	049907	.028287			
53	1 15 16	45				
54	6 4 -1	1 -1 1	1 1 1	1 2 2	3	
55	.47000	•52500	.64600	.68600	· s1 ŋ0 0	2.83
56	3 D					
57	47 AG 1	2 « 20 9 9 0 - 00 2				
58	48 CD 1	3 ° 3 4 0 3 0 - 0 0 4				
59	49 IN 1	7.65900-003				
60	0					

in a gara wa

.

61	D	1		
62	0	1		
63	4	C)	
64	51	CR	2	1.54335-002
65	57	ΜN	2	1 • 39091-003
66	55	FE	2	5.36594-002
67	54	NI	2	8.74816-003
68	D	Ĺ)	
69	4	í,)	
70	51	CR	4	1.68920-002
71	55	FΕ	4	5 • 87304-002
72	57	ΜN	4	1.52236-003
73	54	NI	44	9.57489-003
74	8	()	
75	51	CR	5	4.01770-004
76	57	ΜN	5	9.96760-006
77	55	FE	5	4.81700-004
78	54	NI	5	9.83910-004
79	59	NB	5	6.21050-006
80	58	Cυ	5	1.30340-006
81	56	ΤI	5	1.82100-006
в 2	60	MO	5	3.50780-006
63	12	C)	
84	5	US	2.5	1.82791-004
85	9	U 8		7.03876-003
86	53	ОХ	6	1 • 44430-002
87	51	CR	6	1.21962-004
88	55	FE	6	1.53299-004
89	54	NI	6	2.78733-004
90	52	ZR	6	4.66819-003
91	57	ΜN	6	2.81837-006
92	59	NB	6	1.75610-006
93	58	СIJ	6	3.68561-007
94	56	ΤI	6	5.14902-007
95	60	MO	6	9.91882-007
96	C	9	ł	
97	200)0,		151.

0.

50.

6 8 9

REFERENCES

- 1. Enginol, T.B., Borak, F., Green, M.D., Sancaktar, S., "Computer Code Complex for the static Neutronic and Thermo Aydraulic computations for PWR Type Nuclear Power Reactors" part-5 Department of Nuclear Engineering, Boğaziçi University july 1977
- 2.American Nuclear Society Student Design Problem Denatured Thorium Fuel cycles (1977-1978)
- 3.Penndorf,K.,k. Schult, and g.Schutz," The PWR Spectral code GELS, Pt.l",Report No.@KSS-76/E21,Gesellschaftfür Kernener gieverwertung inschiffbau und Schiffahrat,2054 Geesthacht/ Hamburg,Germany (1976)
- 4. Bell, George I., and Glasstone, Samuel "Nuclear Reactor Theory", van nostrand Reinhold Company, New York, 1970
- 5.Bewington, Philip R. "Data Reduction and Error Analysis for the Physical Sciences.
- 6.Matzie, R.A., Rec, J.R., "Assessment of Thorium Fuel cycles in Pressurized Water Reactors"TIS-5114(1976)