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ABSTRACT

TRANSFER LEARNING FOR CONTINUOUS CONTROL

Agents trained with deep reinforcement learning algorithms are capable of performing

highly complex tasks including locomotion in continuous environments. In order to attain

a human-level performance, the next step of research should be to investigate the ability to

transfer the learning acquired in one task to unknown tasks. Concerns on generalization

and overfitting in deep reinforcement learning are not usually addressed in current trans-

fer learning research. This issue results in simplistic benchmarks and inaccurate algorithm

comparisons due to rudimentary assessments. In this thesis, we propose novel regulariza-

tion techniques exclusive to policy gradient algorithms for continuous control through the

application of sample elimination and early stopping. By discarding samples that lead to

overfitting via strict clipping we will generate robust policies for a humanoid with high gen-

eralization capacity. We also suggest the inclusion of training iteration to the hyperparam-

eters in deep transfer learning problems. We recommend resorting to earlier snapshots of

parameters depending on the target task due to the occurrence of overfitting to the source

task. We demonstrate that a humanoid is capable of performing forward locomotion in un-

seen environments with different gravities and tangential frictions using strict clipping and

early stopping. Furthermore, we evaluate our propositions on a delivery task where a hu-

manoid is required to carry a heavy box while walking and inter-robot transfer tasks where

the humanoid transfers its learning to taller and shorter robots. Because source task per-

formance is not indicative of the generalization capacity of the algorithm we propose three

different transfer learning evaluation methods. We increase the generalization capacity of

a state-of-art adversarial algorithm by introducing entropy bonus, proposing different critic

architectures and using simpler adversaries. Finally, we evaluate the robustness of these ad-

versarial algorithms on morphologically modified hopper environments and environments

with unknown gravities according to the criteria we proposed.
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ÖZET

SÜREKLİ KONTROL İÇİN ÖĞRENME AKTARIMI

Derin pekiştirmeli öğrenme algoritmaları ile eğitilen etmenler, sürekli ortamlarda

hareket dahil olmak üzere oldukça karmaşık görevleri gerçekleştirme yeteneğine sahiptir.

İnsan düzeyinde bir performans elde etmek için bir görevde edinilen öğrenmeyi bilinmeyen

görevlere transfer etme yeteneğini geliştirmek bu alandaki araştırmalarının bir sonraki adımı

olmalıdır. Derin pekiştirmeli öğrenmede genelleme, öğrenim aktarımı araştırmalarında yeter-

ince ele alınmamaktadır ve hatalı değerlendirme kriterlerine yol açarak yanlış algoritma

karşılaştırmalarına neden olmaktadır. Bu tezde, örnekleme seçilimi ve erken durdurma yoluy-

la sürekli kontrol için politika gradyan algoritmalarına özgü yeni düzenleme teknikleri öner-

dik. Kırpma parametresi ile örnekleme seçilimi önererek aşırı öğrenmeye engel olarak,

yüksek genelleme kapasitesine sahip bir robot için dayanıklı politikalar elde ettik. Derin

öğrenme aktarımı problemlerinde yaygın olarak kullanılan hiperparametrelere optimizasyon

iterasyonunun da dahil edilmesini önerdik. Yöntemlerimizin geçerliliğini farklı yerçekimleri

ve teğetsel sürtünme ortamlarına başarılı öğrenim aktarımı gerçekleştirerek kanıtladık. Ağır

kutu taşıyan bir kurye robotu deneyi tasarladık ve metotlarımızın üstün performansını grafik-

lerle gösterdik. Standart insansı robottan daha uzun ve daha kısa insansı robotlara başarılı

bir şekilde yürüme görevini aktardık. Kaynak görev performansı, algoritmanın genelleştirme

kapasitesinin bir göstergesi olmadığı için üç farklı öğrenimi aktarımı değerlendirme yöntemi

önerdik. Entropi bonusu, farklı eleştirmen mimarileri ve müfredat öğrenimi kullanarak

dayanıklı çekişmeli pekiştirmeli öğrenme algoritmasının genelleştirme kapasitesini arttırdık.

Çekişmeli ağlar için genelleştirilmiş avantaj hesaplayıcısı tasarladık ve geliştirdiğimiz bu

yöntem ile zıplayıcı robotu ağırlaştırdığımız hedef ortamda daha iyi performans gösteren

politikalar elde ettik. Çekişmeli algoritmaların dayanıklılığını morfolojik olarak değiştirilmiş

zıplayıcı robotlarda ve bilinmeyen yerçekimli ortamlarda tasarladığımız kriterlere göre değer-

lendirdik.
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1. INTRODUCTION

Inferring the general intuition of the learning process and harnessing this to learn an

unseen task is necessary for an autonomous agent to operate in non-stationary real-life en-

vironments. Being able to adapt to the changes in an environment as quickly as possible by

cross-task generalization is preeminent to attain artificial intelligence.

Humans learn new tasks by utilizing the learning process from similar previous tasks

they have faced or observed in real life. Generalizing well among these closely related tasks

often leads to higher performance. This learning process has two major components that

inspire our methodology:

(i) developing a generalizable method from the process of learning a task,

(ii) being able to adapt to the changes in the environment via experiences gained during

learning

In real life, a robot will encounter different environments when executing tasks in

a non-stationary environment. Deep reinforcement learning methods require long training

periods in the source domain to develop a strategy close to a human for the same source

environment [11]. Likewise, imitation learning approaches generate a reward function by

observing the execution of the task by an expert [12].

Manually engineering a reward function for every task or waiting for a robot to interact

millions of times with the environment for the purpose of acquiring a new skill is time-

consuming and impractical. A robot is expected to generalize to a similar task it hasn’t

encountered, adequately and quickly in order to coexist with humans in the real world. As

an illustration, the robot trained solely for walking can’t move forward when it is expected

to carry a box or transfer its learning to a taller or a shorter robot. In order to obtain robust

policies that can excel in the aforementioned tasks the robot should not only learn walking

but to learn walking robustly in many different cases and the learning attained should be

transferable to other types of robots. Hence, the tradeoff between the robustness of the
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learning and the source task performance should be acknowledged when determining the

most pertinent training model.

Analogous to the variety of ways humans carry out a simple task in the real world,

robots can perform a task in continuous control environments distinctively even though the

loss function is immutable. A human can perform locomotion in many different ways rang-

ing from closer to ground running to a careful tiptoeing on a rope. Drawing inspiration from

how humans are able to resort to past knowledge gained during learning to excel in a task we

have focused on increasing scope of abilities gained during learning.

The objective of this thesis is to answer the questions below:

(i) Are current benchmarks for transfer reinforcement learning algorithms sufficient for

algorithm comparison and what evaluation criteria would better suit transfer deep re-

inforcement learning algorithms?

(ii) How can we increase the generalization capacity of current state-of-art transfer learn-

ing methods?

We first provide an outline of our propositions to the initial question:

(i) Initially we prove that source task environment performance isn’t indicative of gener-

alization capacity and target task performance. In continous control environments, we

will leverage the recent policy gradient methods to continuously acquire knowledge in

the form of neural network parameters. In order to achieve an adequate performance

in the target task environment, this statement will be the origin of our methodology.

(ii) Evaluation of generalization in deep reinforcement learning is still an open research

area in transfer learning field [13]. In Chapter 5, we will show how failure of recog-

nizing overfitting would lead to inaccurate algorithm comparisons. We suggest three

transfer learning evaluation structures based on the policy buffer we will propose in

Section 3.1.1 and employ one of them in our evaluations. Policy buffer consists of

promising policy parameters saved during training in the source task environment and

the design is inspired by the human memory.
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(iii) In Chapter 3, we propose new environments inspired real life scenarios for benchmark-

ing transfer learning. First, we increased the range of gravity and robot torso mass

experiments used by Henderson et al. [14], Rajeswaran et al. [1] and Pinto et al. [15]

respectively to demonstrate the limitations of the methods we propose. Then we in-

troduced new morphology and tangential friction environments for humanoid. Robots

should be able to transfer the learning they’ve attained to each other like humans. Sub-

sequently, we designed two new target environments named tall humanoid and short

humanoid, each having different loss function constraints and morphologies than the

standard humanoid source environment. Because carrying a heavy object is among the

expectations of a service robot, we designed a humanoid delivery environment.

The prevalent problem of overfitting is starting to be acknowledged in deep reinforce-

ment learning as the expectation for the algorithm’s robustness increases [16]. In order to

answer the second question specified in our thesis objectives, we focused on various ways of

increasing the algorithm’s generalization capacity.

Our contributions in this work are directed to combat the overfitting problem in transfer

learning and increase the robustness of the state-of-art algorithms are summarized follows:

(i) After proving that the source task performance is not indicative of the performance in

the target environment we introduced a new hyperparameter namely the policy iteration

for benchmarking transfer learning. We will show that earlier iterations of policies per-

formed astoundingly well in target task environments due to the regularization effect

of early stopping. As a result, recognition of the policy iteration as a hyperparameter

will not only prevent inaccurate algorithm evaluations but also potentially increase the

performance of recent algorithms.

(ii) We introduce the method of strict clipping to discard samples that cause overfitting.

This regularization technique is developed for the policy gradient algorithm named

Proximal Policy Optimization(PPO) but we will discuss its possible applications to

other algorithms in future directions.
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(iii) We propose a new advantage estimation technique for Robust Adversarial Reinforce-

ment Learning (RARL) [15] in Section 3.1.3 named Average Consecutive Critic Ro-

bust Adversarial Reinforcement Learning (ACC-RARL) by involving both critics at

each iteration. In morphological experiments, we further demonstrated that a hopper

robot can hop with more than twice it’s original torso mass using learning attained in

the standard environment with this technique [15].

(iv) We compare the generalization capacity of different training methods we proposed in

Section 3.1.3 on a hopper robot, namely advantage estimation techniques, entropies

bonuses and different curriculums [17] after including the iteration of training as a hy-

perparameter. These findings will further asses the neccessity of the evaluation tech-

nique we propose and will be beneficial in constructing a convenient policy buffer.

This thesis is organized as follows. In Chapter 2 we will provide background informa-

tion on deep reinforcement learning and bipedal locomotion and review recent state-of-art

methods introduced for meta-learning and transfer learning. The algorithms and the eval-

uation structure that will be used for the experiments will be discussed in Chapter 3. The

hardware and software specifications will be detailed in Chapter 4. In Chapter 5 the al-

gorithms suggested in Chapter 3 will be compared using modified humanoid and hopper

environments in MuJoCo simulator. [18] Finally, in Chapter 6, the conclusion section will

include a summary our contributions, discussion of the implications of our results, fruitful

future directions for research.
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2. BACKGROUND

Recent research on transfer learning has been build on top of deep reinforcement learn-

ing algorithms that utilize deep neural network as universal function approximators. As a

consequence, in this chapter primarily the fundamental reinforcement learning algorithms

will be discussed and then a thorough introductory material on the contemporary deep neu-

ral network architectures and optimizers will be reviewed. Thenceforth, widely used policy

gradient and the current state-of-art transfer learning algorithms will be surveyed.

2.1. Reinforcement Learning

Reinforcement learning (RL) is a set of methods where learning is attained by utilizing

the data gathered from the environment through trial and error. The most basic reinforce-

ment learning algorithms consist of an environment and an agent. The agent’s sole mission

until termination is to maximize the reward function in initially unknown environmental dy-

namics, exploiting only observations and reward signals. As a consequence, the design of

an accurate reward function is the pivot point in achieving efficacious learning. Deep rein-

forcement learning is a popular field of research which incorporates deep neural networks

into reinforcement learning algorithms.

2.1.1. Markov Decision Process

Reinforcement learning is inherently an iterative decision process of an agent formu-

lated as a Markov Decision Process (MDP). We characterize the MDPs with the initial state

distribution ρ(s0) : S → R, state transition distribution ρ(st+1|st ,at) : S ×A ×S → R ,

reward function rt : S ×A ×S →R and discount factor γ ∈ (0,1) by (S ,A ,ρ(st+1|st ,at),

rt ,ρ(s0),γ). If the decision process is sampled using the policy πθ (at |st) : S ×A → [0,1] it

becomes a Markov reward process because the agent is following a specific decision. MDPs

must initially consort to the Markov property. Markov property enforces the independence

of future states from the past states while being conditioned on the current state [6].
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Environment

Agent

Action 
at 

State 
st 

st+1 

rt+1 

Reward 
rt 

Figure 2.1. Reinforcement Learning from Environment Interaction [6]

In a reinforcement learning setting given in Figure 2.1, the framework by the afore-

mentioned tuple with policy π translates to an agent taking actions in an environment based

on the parametrized stochastic policy πθ and receiving a corresponding reward while tran-

sitioning from one state to another. The transition loop is completed when agent obtains a

reward and a state as a result of the action it chose and the environmental dynamics. Discount

factor encourages the agent to give priority to rewards with higher proximity and induces the

algorithm to converge in infinite horizon cases. In stochastic environments, the agent might

not end up in the same state by taking the same action in the same state. Hence the re-

ward rt from that action depends on the complete transition information denoted by the tuple

(st ,at ,st+1).

2.1.2. Value Function, Q-Function and Advantage Function

Value function Vπθ
(s) at state st is the expected value of rewards Rt+k+1 discounted by

parameter γ from state st onwards following policy πθ . Action-value function also known

as the Q-function Qπθ
(s,a) is the expected value of discounted rewards Gt from state st

onwards by taking action at in state st given by the policy πθ . Both are used for the purpose
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of evaluating current policies by calculating the necessary reward signals received from the

interactions with the environment. Value function and Q-function equations in Sutton et

al. [6] are given in Equation 2.1.

Vπθ
(s) .

= Eπθ
[Gt |St = s] = Eπθ

[
∞

∑
k=0

γ
kRt+k+1|St = s]

Qπθ
(s,a) .

= Eπθ
[Gt |St = s,At = a] = Eπθ

[
∞

∑
k=0

γ
kRt+k+1|St = s,At = a]

(2.1)

As the name suggests the advantage function Aπθ
(s,a) provides the relative benefit

of taking the action at compared taking to all the other possible actions at state st . Value

function serves as a baseline and reduces variance. Current research methods increasingly

use the advantage function and aim to estimate it for policy evaluation. As given in Equation

2.2, the advantage function employs both of the functions in Equation 2.1

Aπθ
(s,a) .

= Qπθ
(s,a)−Vπθ

(s) (2.2)

2.1.3. Bellman Optimality

Bellman equation for the value function in discrete action spaces is the sum of Q-

values over the set of actions weighted by the probability of taking each action given state,

πθ (a|s) given in Equation 2.3. This equation provides a top-down model for the current and

forthcoming states. In continuous cases, policy is a probability density function instead of

a probability mass function so we integrate Q-values over the probability density function.

Q-values are given by the sum of immediate reward r and the value-function of the next state

vπθ
(s′) discounted by a factor γ weighted by the transition probabilities p(s′,r|s,a) that are

dependent on the environment dynamics and agent’s action.
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vπθ
(s) = ∑

a
πθ (a|s)∑

s′,r
p
(
s′,r|s,a

)[
r+ γvπθ

(
s′
)]
, for all s ∈S (2.3)

On-policy algorithms are methods where the same policy is evaluated and used for

sampling for each episode. Conversely, off-policy algorithms are used in cases where the

objective policy being evaluated is not the policy that the trajectories are being sampled.

[6] Notice that the vπθ
for the next state introduces an ambiguity. vπθ

is learned through

exhaustive iterations via Dynamic Programming [6] by the convergence of the decaying

rewards. Dynamic Programming is an on policy algorithm that requires the environment

dynamic to be known. Nevertheless, in cases where the agent is allowed to have limited

interaction, environment dynamics are not known or the state and action spaces are large or

continuous vπθ
has to be approximated. For the case below, the agent has to perform a one-

step-ahead search to determine the optimal vπθ
. The optimal value of the value function is

derived by taking the action that maximizes ∑s′,r p(s′,r|s,a)[r+ γv∗(s′). Bellman optimality

equation for v∗(s) is given in Equation 2.4

v∗(s) = max
a

E[Rt+1 + γv∗(St+1)|St = s,At = a]

v∗(s) = max
a ∑

s′,r
p(s′,r|s,a)[r+ γv∗(s′)]

(2.4)

Unlike v∗(s) the agent does not have to do a one-step-ahead search when finding q∗(s,a)

because the values of all actions are available at the cost of memory [6]. Bellman optimality

equation for action-value function q∗(s,a) is given in Equation 2.5:

q∗(s,a) = E[Rt+1 + γ max
a′

q∗(St+1,a′)|St = s,At = a]

q∗(s,a) = ∑
s′,r

p(s′,r|s,a)[r+ γ max
a′

q∗(s′,a′)]
(2.5)
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Exploration and exploitation dilemma arises from the tradeoff between the greedy and the

random policies. Exploitation occurs when the agent acts according to what it has known

so far and takes the maximum rewarding action at the cost of converging to a suboptimal

policy. This eventually results in undiscovered states and unsampled actions during learning

thus the agent should explore by taking either random actions or actions that are one standard

deviation away from the mean in the continuous case. An exploration bonus is sometimes

introduced into the reward function to promote state space discovery.

2.1.4. Model-Free Reinforcement Learning

In most of the real-world settings, the environment dynamics rely on complex inter-

actions of many components. Model-free reinforcement learning algorithms are suitable

for cases where the transition dynamics is not known. Transition dynamics are not used in

policy gradient algorithms inspired by REINFORCE [19], instead they are estimated using

samples. Likewise, Monte Carlo and Temporal Difference Learning [6] are also other widely

used value estimation techniques under the topic of Model-free reinforcement learning.

2.1.5. Monte Carlo and Temporal Difference Learning

Monte-Carlo learning is a set of model-free algorithms used to approximate the value

function at a particular state by sampling many trajectories. For instance, in first visit Monte

Carlo, the counter that tracks the number of visits to a particular state is updated only the first

time a state is visited. In the same manner, the cumulative rewards from time-step t onwards

and other rewards from previous episodes for state s are added. Finally, the value function

of the state s is averaged by the most recent sum of discounted rewards and the counter.

Similar to that, in every visit Monte Carlo evaluation, the same process is repeated each

time the state is visited in an episode. Counter incrementation and the value update schemes

are alike in incremental Monte Carlo and every visit Monte Carlo learning. However, the

update algorithm in incremental Monte Carlo learning includes a parameter α to discount
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older value estimates as seen in Equation 2.6:

V (st)←V (st)+α

(
G(n)

t −V (st)
)

(2.6)

In Temporal Difference learning (TD-learning) the value of states are estimated by

looking n-steps into the future and are computed by moving the current estimated value of

that state closer to the estimated Temporal Difference target (TD-target). [6]. TD(0) is shown

in the Equation 2.7 where the value function is encouraged to move towards the biased TD-

target computed as rt+1 + γV (st+1) by one-step-lookahead.

V (st)←V (st)+α (rt+1 + γV (st+1)−V (st)) (2.7)

λ in forward-view TD-learning is the weight coefficient used in geometric average of

n-step discounted rewards as seen in Equation 2.8. Each n-step look ahead is weighted geo-

metrically to construct the TD-target value. The dilemma that occurs during the estimation

process can be identified as a bias-variance tradeoff between the Monte Carlo learning that

has higher variance and the TD-learning for one-step-lookahead which has lower variance

but more bias. As might be expected incremental every-visit Monte Carlo learning is the

same as TD(1).

Gλ
t = (1−λ )

∞

∑
n=1

λ
n−1G(n)

t (2.8)

In Monte Carlo learning, the trajectories should be rolled out until the end of the

episode to compute the reward function whereas in TD-learning the value of states can be

updated after at least 1 episode. In the case of offline updates, the updates are not made until
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the episode termination whereas in online cases the updates can be made before the terminal

state is reached. Monte Carlo updates have higher variance compared to TD-learning but

they are unbiased because the rewards are summed until the end of the episode so the value

function is close to the true value.

2.1.6. Eligibility Traces

Credit assignment problem arises from not knowing how much each action contributes

to the result [20]. Backward T D(λ ) algorithm exploits the credit assignment problem in

the value function estimation. Accrediting the states that are visited more frequently or the

states towards the end more for the performance is used occasionally. Equation 2.9 shows

the computation of the eligibility function of the state.

E0(s) = 0

Et(s) = γλEt−1(s)+1(St = s)
(2.9)

In backward TD(λ ) algorithm defined in Equation 2.10, the value function is updated

using the eligibility of the corresponding state Et(s), update parameter α and TD-error δt .

δt = Rt+1 + γV (st+1)−V (st)

V (s)←V (s)+αδtEt(s)
(2.10)

Accurate evaluation of the policy depends on the accuracy of the reward function.
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2.2. Deep Neural Networks

The proliferation of hype revolving around deep neural networks is due to the proven

successful real-world applications [11,21,22]. Complex tasks like image recognition, speech

processing, recommender systems, action recognition, finance, and deep reinforcement learn-

ing have elaborate functional representations. Most of these implementations consist of nu-

merous unknown parameters that cannot be hand-engineered and tuned specifically for each

task. Deep neural networks are nonlinear function approximators that learn from the input

data by optimizing the loss function via updating the predetermined set of parameters.

Deep reinforcement learning and supervised learning tasks are analogous in a sense

that they both intend to translate the data to an output for a specific purpose based on a loss

function. In deep reinforcement learning, the trajectories sampled from the environment are

used as the input data and the output varies from Q-functions to the set of probabilities of

actions depending on the method.

2.2.1. Artificial Neuron

The analogy between simplified biological neurons and artificial neurons are exten-

sively mentioned in current research because the building block of deep learning has rele-

vance to how a signal travels across the neurons [23]. Structure of an artificial neuron is

inspired by the dendrites and axons of biological neurons. Signals traveling along the den-

drites are analogous to data being fed to the neuron. Similar to the biological mechanism of

impulse transmission to the axons, the connections emerging from the neuron representing

each component of the input data have different strengths. The summation of the weighted

input to the neuron becomes the input of a predetermined activation function. Bias value is

added to the summation as given in Equation 2.11.

y = f

(
∑

i
wixi +b

)
(2.11)
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Forward propagation is the process of computing the output values by sequentially us-

ing equations like Equation 2.11. The output value is used as an input to the loss function that

will be used to update the function parameters by the most befitting optimization algorithm.

2.2.2. Activation Functions

In deep neural networks, artificial neurons essentially are all nonlinear functions which

conform to the characteristic of receiving input and producing a related output. If nonlinear

activations were not applied then the whole deep neural network function can be formulated

as a single linear function which would make the hidden layers redundant.

2.2.2.1. Sigmoid. The Sigmoid function squashes the linear input value between 0 and 1. It

basically decides whether the neuron should be activated or not by outputting values that are

close to 1 or 0 most of the time. The Sigmoid function is given in Equation 2.12.

σ(x) =
1

1+ e−x (2.12)

However, the emergence of more sophisticated activation functions hindered the pop-

ularity of sigmoid function. For instance, tanh activation is the 0-centered alternative to the

sigmoid function which allows the flow of both negative and positive gradients during back-

propagation. Equivalently, the derivative of the sigmoid function is most of the time close to

0 which hinders gradient flow.

2.2.2.2. Hyperbolic Tangent. Similar to the sigmoid function tanh function squashes the in-

put between -1 and 1. Presence of both negative and positive outputs increase expressivity of

the network during backpropagation. Although hyperbolic tangent (tanh) is 0 centered com-

pared to the sigmoid alternative, the gradient flow is still burdensome due to the multitude of

tiny gradients close to 0. The Tanh function is given in Equation 2.13.
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tanh(x) =
ex− e−x

ex + e−x (2.13)

In Chapter 5 we will be using tanh as the activation function of the policy and value

function approximator networks.

2.2.2.3. Rectified Linear Unit. The Rectified Linear Unit(RELU) is among the most popu-

lar choices because of its computational speed. The idea behind it is to exclude all negative

input values and output their value as 0. The linearity of the operation is the rationale behind

its computation speed. The RELU function is given in Equation 2.14.

RELU(x) = max(0,x) (2.14)

Learning rate selection is crucial, especially for this activation function because a neu-

ron might die and start outputting only 0 values that doesn’t effect the output.

2.2.2.4. Leaky RELU. Leaky RELU is an updated version of the RELU which prevents

dying neurons by allowing slight negative values to pass over the neuron by multiplying the

input with a small constant. Leaky RELU function is given in Equation 2.15 where β is a

small hyperparameter between 0 and 1.

LeakyRELU(x) = max(βx,x) (2.15)

2.2.3. Neural Network Architectures

Deep neural networks (DNN) are interconnected artificial neurons in multiple layered

structures. In Figure 2.2, a fully connected 3-layer network is shown with 2 hidden layers.
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Primarily, the structure of the network is set out then the incoming data and the loss function

update the parameters to approximate the parameters of the nonlinear function. Character-

istics of the data and the task at hand determine the number of neurons at each layer, the

number of layers and how the network will be connected.

Hidden 
Layer 1

Hidden 
Layer 2

Input 
Layer

Output 
Layer

Figure 2.2. A fully connected 3-layer neural network

The data are transferred to the hidden layers through the input layers. Output layer

represents how the deep neural network perceives the input data with the current parameters.

The data and the loss function are used to determine the parameters of the unknown complex

nonlinear function. Backward propagation is used to get DNN’s perception of the data close

to our expectations. Most of the time mini batches of data are fed to the model as input and a

nonlinear function at each neuron transforms the data being fed to output which will be used

as one of the inputs for another neuron’s nonlinear function. The input layer is not counted

as a layer in the N− layer network naming convention, only the output and the hidden layers

are taken into account. DNN model, where each neuron in a layer is connected to each layer

in the upcoming layer are called fully connected layers.

The computation direction is always forward in a feed-forward artificial neural network

whereas in recurrent neural networks a more complex architecture is seen where a neuron’s

output might be an input to a neuron in the previous layer. In Figure 2.3, a many-to-many
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Figure 2.3. A many-to-many recurrent neural network [7]

recurrent neural network architecture is provided where the output of a layer is fed to the

next layer along with the next input to exploit sequential structures in data [7].

2.2.4. Loss Functions

The loss function is the most significant component of a neural network that determines

how the parameters will be updated to achieve optimal approximation. In neural network

optimization, most of the time mini batch gradient descent is performed over a batch of input

data. Data loss is the average of each input loss and computed as in Equation 2.16.

L =
1
N ∑

i
Li (2.16)

2.2.4.1. Suppor Vector Machine. Support vectors are N-1 dimensional hyperplanes used in

classification and regression tasks to seperate data points in N-dimensional feature space.

Multi-Class Suppor Vector Machine (SVM) is a widely used algorithm for classification

where f j is the output activation that is not equal to the activation corresponding to the

label [24]. ∆ value is 1 for classification where a binary tensor is expected as an output.
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Support Vector Machine loss is computed as in Equation 2.17

Li = ∑
j 6=yi

max
(
0, f j− fyi +∆

)
(2.17)

2.2.4.2. Cross Entropy Loss. Cross-entropy loss is also broadly used for classification tasks

like image recognition. The function inside −log is called Softmax. Softmax function expo-

nentiates the output activations and compresses them between 0 and 1 by computing each

class’ probabilities as in Equation 2.18 where labels are one-hot vectors.

Li =− log

(
e fyi

∑ j e f j

)
(2.18)

Cross-entropy loss interprets the scores in a more elaborate way by outputting a probability

tensor. Hence it resolves a more complicated problem where all classes are optimized instead

of one class.

2.2.5. Regularization

Regularization techniques are developed to prevent overfitting to the training data by

adding a penalty to the known overfitting indications.

2.2.5.1. L1 Regularization. Each new parameter in the neural network increases the com-

plexity of the function and makes it harder for the network to generalize to the unseen test

data. λ is the regularization hyperparameter and specifies how much we should penalize

overfitting. To overcome this problem, all of the weights are added to the loss function as

seen in Equation 2.19.

Lreg(x) = L(x)+λ

k

∑
i=1
|wi| (2.19)
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2.2.5.2. L2 Regularization. L2 Regularization has the identical motives with the aforemen-

tioned L1 Regularization. The 1/2 coefficient is put to inactivate the effect of the unnecessary

multiplier 2 that will come from the gradient. L2’s decaying effect on the weight parameters

is more stable than L1 Regularization because it will decay it linearly proportional to the

weight whereas L1 will tend to make all the weights directly 0. The updated loss function

with L2 Regularization is given in Equation 2.20.

Lreg(x) = L(x)+(λ/2)
k

∑
i=1

w2
i (2.20)

2.2.5.3. Dropout. Srivastava et al. [25] proposed the Dropout method to avoid neurons to

overfit to specific features of the data. During the training phase, a dropout layer deactivates

each neuron in that layer by a probability p where p is 0 < p < 1. Deep neural networks are

universal function approximators thus this techniques intends to reduce overrepresentation

of the training data in order ton increase the generalization capacity of the neural network.

2.2.6. Optimization

Optimizers are a set of algorithms used to update the parameters of a function approx-

imator to minimize the loss function. In the deep neural networks setting, the parameters of

the network are updated iteratively via a selected optimizer algorithm. Attaining the global

minimum is the aim of the optimizer algorithms but occasionally they suffer from complica-

tions that arise from hyperparameter tuning, insufficient data or bad choice of optimizers.

Gradient descent optimization is performed by first randomly initializing and then it-

eratively updating the parameter vector. The update consists of the partial derivative vector

of the loss function and the step size α as given in Equation 2.21. The gradient vector deter-

mines the direction and the magnitude of the update step. If the aim is to maximize a reward

function, the update is added to the current parameter vector.
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θ := θ −α
δ

δθ
J(θ) (2.21)

Step size is one of the hyperparameters that affect the route of the descent immensely.

Suboptimal convergence to a local minimum is a variant of the widely mentioned exploration

problem. The step-sizes are thus larger in the initial stages of the optimization because the

algorithm should explore the parameter space thoroughly. Similarly, the step-sizes should

decay towards the final stages of the gradient descent to avoid overshooting of the minimum.

2.2.6.1. Stochastic Gradient Descent. In gradient descent, all data should forward propa-

gate along the network to compute the new loss each time the parameters are updated. The

derivative of current loss with respect to the parameters are computed and movement in the

parameter space via backpropagation. One drawback of gradient descent is that it is compu-

tationally expensive. In contrast, its alternative Stochastic Gradient Descent (SGD) performs

update over each data point. Although the direction of updates in gradient descent is more

accurate than the SGD, it takes less time to compute the gradient.

2.2.6.2. Mini-Batch Gradient Descent. Vectorized representations of data allow the com-

putation of gradient over a batch of inputs. Thus depending on the hardware restrictions data

can be divided into mini-batches to attain a middle ground between the robustness of Gradi-

ent Descent and speed of Stochastic Gradient Descent in Mini-Batch Gradient Descent.

2.2.6.3. Momentum. A constant learning rate will cause oscillations once parameter val-

ues gets closer to the optimal point. Standard Momentum Gradient Descent makes use of

the previous gradient values to gain momentum towards the minimum. SGD makes noisy

updates but momentum is a method developed to find the optimal point with less variance

faster. In Equation 2.22, the η value is the learning rate that scales the current step size of

the gradient, µ is the increasing momentum coefficient between [0,1] that creates resistance
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by including the previous iteration’s resulting momentum gradient step [26].

∆ν
momentum
t = µν

momentum
t−1 −η∇θ f (θ) (2.22)

2.2.6.4. Nesterov’s Accelerated Gradient. First, a momentum step is taken based on the

previous gradients in the Nesterov method [27] and then the gradient is computed at the point

after the momentum update [26]. Then, the parameter vector is updated using the derivative

of loss at the momentum updated parameter and new momentum value as in Equation 2.23.

∆ν
Nesterov
t = µν

Nesterov
t−1 −η∇θ f (θ +µν

Nesterov
t−1 ) (2.23)

2.2.6.5. Root Mean Square Propagation. Root Mean Square Propagation (RMSProp) is the

adapted version of gradient descent with momentum presented by Hinton [28]. In Equation

2.24, the proposed update to each parameter is given.

E
[
g2]

t = ρE
[
g2]

t−1 +(1−ρ)∗g2
t

∆θ
RMSProp
t =− η√

E [g2]t + ε1
∗gt

(2.24)

The larger the exponential average of squared gradients the smaller the step size for the new

gradient step will be. This will decrease oscillations and make the gradient step smoother.

In addition to that as the values begin to converge RMSProp algorithm avoids the update

to overshoot the minima. In contrast to the SGD with Momentum, RMSProp is directly

estimating the best step size value for each parameter separately instead of globally adjusting

the gradients.

2.2.6.6. Adam. Adaptive Moment Estimation (Adam) optimizer [29] is inspired from both

adaptive optimization methods and SGD with Momentum to compute a more optimal step
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size in several cases where the learning rate decreases when the gradients are too large but

increases if they are consistently large. The Adam optimizer algorithm’s suggested step size

is given in Equation 2.25.

mt = β1 ∗mt−1 +(1−β1)∗gt

νt = β2 ∗νt−1 +(1−β2)∗g2
t

m̂t =
mt

1−β t
1

v̂t =
vt

1−β t
2

∆θt =−η
m̂t√

v̂t + ε1

(2.25)

Most of the time the decaying hyperparameter β2 is larger than β1. ε1 is an arbitrarily

chosen small number like 0.00001 [30].

2.3. Policy Gradient Methods

Policy in continuous environments refers to the parametrized probability distribution

function over the action space that depends on the states. The policy πθ (a|s) for time t given

in Equation 2.26, is the probability of taking action a in state s with parameter θ .

πθ (a|s) = Pr{At = a|St = s,θt = θ} (2.26)

In policy gradient algorithms, the parameters of the policy network are updated via

batches of trajectories collected from the environment. If the policy being updated is the

policy used for sampling trajectories then it is called an on-policy gradient algorithm. Policy

Gradient is defined as the partial derivative vector of the performance function. In this the-
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sis, we will examine continuous action spaces where vectors of actions are sampled from the

corresponding Multivariate Gaussian distributions. Each action element in the vector of ac-

tions is represented by a univariate Gaussian function with a mean and a standard deviation.

Policy network used for continuous actions spaces is a neural network given in Equation 2.27

that takes the state as input and outputs the mean vector of a Multivariate Gaussian distribu-

tion. A seperate vector of standard deviations is optimized with the policy network at each

iteration simultaneously.

πθ (at |st) = N ( f neural network (st) ;Σ)

=
1

(2π)
n
2 |Σ| 12

exp
(
−1

2
(at− f (st))

T
Σ
−1(at− f (st))

) (2.27)

Step size hyperparameter has a substantial impact on the policy optimization. The

policy parameter might end up on a flat region of the reward function and escaping from that

location via state-of-art optimization algorithms might be hard. Even the small steps in the

policy parameter space might result in drastic changes in the performance.

REINFORCE [19] is widely referred as the vanilla policy gradient algorithm that up-

dates the policy parameter sequentially by sampling sets of trajectories under policy πθ .

Performance function, the expected reward of the trajectories under policy πθ , and the cor-

responding vanilla policy gradient are given in Equation 2.28.
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J(θ) = Eτ∼πθ (τ)

[
∑
t

r (st ,at)

]

θ
? = argmax

θ

J(θ)

∇θ J(θ) =


δJ(θ)
δθ1
...

δJ(θ)
δθn



∇θ J(θ) = Eτ∼πθ (τ) [∇θ logπθ (τ)r(τ)]

(2.28)

Trajectory is a set of sequential state and action tuples of length Horizon H given the

policy πθ . Probability that the sampled trajectory rolls out under parameter θ is given in

Equation 2.29:

πθ (s1, a1, . . . , sT , aT ) = p( s1)
T

∏
t=1

πθ ( at | st) p( st+1| st , at)

logπθ (τ) = log p( s1)+
T

∑
t=1

logπθ ( at | st)+ log p( st+1| st , at)

(2.29)

The probability of the initial state and the state transition probabilities are discarded

while taking the derivative with respect to θ as in Equation 2.30. This implies that knowing

the state transition probabilities of the environment and the initial state distribution is not

necessary, we only need the reward function and policy for optimization. We perform mini-

batch gradient descent utilizing each batch of data gathered from the experience with the

environment thus we know the action taken in each step and the corresponding rewards.
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J(θ) = Eτ∼πθ (τ)[∑
t

r(st ,at)]≈
1
N ∑

i
∑
t

r(si,t ,ai,t)

∇θ J(θ) = Eτ∼πθ (τ)[(
T

∑
t=1

∇θ logπθ (at |st))(
T

∑
t=1

r(st ,at))]

(2.30)

Using Monte Carlo sampling the value of the policy gradient is estimated in Equation

2.31.

∇θ J(θ)≈ 1
N

N

∑
i=1

(
T

∑
t=1

∇θ logπθ ( ai,t | si,t)

)(
T

∑
t=1

r ( si,t , ai,t)

)
θ ← θ +α∇θ J(θ)

(2.31)

In the supervised learning setting, the aim is to find the parameters that best contruct a

model by feeding data as input to the deep neural network. Given the sampled state-action

pairs and rewards, to find the optimal parameters that best fit the data, first the probabilities

of observing each state-action pair are multiplied. Then, gradient descent is performed to

find the corresponding parameters that maximize the occurrence of rewarding data. In policy

networks, an action vector is output by the network given the state. The objective is to find

the parameter that maximizes the probabilities of the most rewarding action conditioned on

the input state. In contradistinction to the idea of each sample having equal weight while

fitting the parameters, in early policy gradient algorithms, the weight of sample is updated

by the cumulative rewards after taking action a at state s from current time step until the end

of the episode (Q-Value). Negative rewards assure the decrease in probability density of the

corresponding action occurring at that state.

Vanilla policy gradient is a sample inefficient on-policy algorithm where samples col-

lected from previous policies are discarded after the update is performed. By importance

sampling, we can use the samples from the old policy while performing multiple iterations
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of mini batch gradient descent. Proximal Policy Optimization (PPO) is a variant of these

set of algorithms where the old policy is the constant denominator in the policy ratio and it

stays the same until the last sampled trajectory is exhausted by the predetermined number of

optimization iterations [31]. In these off-policy gradient methods like PPO and Trust Region

Policy Optimization (TRPO) old policy is used to restrict the movement in the parameter

space as well as importance correction. PPO algorithm will be the primary policy gradient

algorithm we will use in our experiments thus further explanation will be provided in Section

2.5. Similarly Fujita et al. [32]introduced an algorithm similar to Proximal Policy Optimiza-

tion named Clipped Action Policy Gradients. Instead of clipping with importance sampling

and using the old policy’s likelihood function they clipped the actions directly with constants

α and β .

2.4. Actor Critic Methods

Policy gradient methods rely on the performance function to increase the probability

of more rewarding actions. Performance function J(θ) has various definitions ranging from

the summation of discounted rewards over all sampled trajectories to the advantage function.

Various types of reward functions have been introduced for the policy gradient methods.

Increasing interest in this area of research is due to the strong influence of them on the policy

gradients.

When the policy and reward functions are unwrapped to timesteps from horizon-length

trajectories, a better option of taking the reward from the current timestep onwards becomes

prominent. Expected sum of rewards from time t to the terminal state conditioned on statet

and actiont tuple, denoted as the action-value function is still an unsophisticated choice

because it doesn’t provide information on the performance of that action relative to other

possible actions. Hence a more suitable reward function which offers more information

would be the advantage function which is derived as in Equation 2.32.
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ĝ =
1
N

N

∑
n=1

∞

∑
t=0

Ân
t ∇θ logπθ (an

t |sn
t )

Est+1[δ
V π,γ

t ] = Est+1[rt + γV π,γ (st+1)−V π,γ(st)]

Est+1 [Q
π,γ(st ,at)−V π,γ(st)] = Aπ,γ(st ,at)

(2.32)

Using advantage function for policy gradient methods will result in a decrease in the

probabilities of the less than average performing samples by the induction of negative re-

wards via advantage estimation. Correspondingly, positive rewards increase the probabilities

of better performing samples.

In actor-critic methods [33], both policy network and value network approximators are

optimized. The critic is the value-function which evaluates the policy and actor is the pol-

icy that takes actions according to the policy parameters. The actor takes actions based on

the guidance of the critic. Policy gradient algorithms rely heavily on the advantage func-

tion during the backpropagation phase because the output of the critic value approximation

network is used to calculate the advantage function during the policy optimization. The pol-

icy parameters aren’t merely updated by using the advantages computed using the sample

of that particular iteration but also by the information from previous iterations embedded in

the output of the critic network. Advantage function estimation is a subject of bias-variance

tradeoff. Decreasing the number of steps into the future reduces the variance at the cost of

introducing the bias.

2.5. Proximal Policy Optimization with Generalized Advantage Estimation

Policy gradient methods have gained vast popularity against Deep Q-Networks (DQNs)

[11] after the introduction of algorithms that constrain gradient movement in the policy pa-

rameter space such as Trust Region Policy Optimization(TRPO) and Proximal Policy Opti-

mization (PPO) [31, 34]. In the open-source OpenAI Baselines framework [30], PPO [31] is

used to optimize the actor policy network and the generalized advantage estimator (GAE) is
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used to optimize the critic value function network simultaneously [35].

High bias suggests that the model underfits data and generalizes too much whereas high

variance is an indication of overfitting to the data by taking the noise too much into account

[36]. Value function approximation is a supervised learning problem where bias-variance

tradeoff occurs. Schulman et al. [35] proposed a more sophisticated generalized advantage

estimation technique that tackles this topic of bias-variance tradeoff. The γ hyperparameter

first reduces the variance by decaying the rewards that are far away. The decaying telescoping

sum of advantage function estimators δV
t with differing k-steps into the future is denoted as

Â(k)
t . Expansions of different k-step estimators are provided in Equation 2.33.

Â(k=1)
t := δV

t =−V (st)+ rt + γV (st+1)

Â(k=2)
t := δV

t + γδV
t+1 =−V (st)+ rt + γrt+1 + γ2V (st+2)

Â(k=3)
t := δV

t + γδV
t+1 + γ2δV

t+2 =−V (st)+ rt + γrt+1 + γ2rt+2 + γ3V (st+3)

Â(k=∞)
t = ∑

∞
l=0 γ lδV

t+l =−V (st)+∑
∞
l=0 γ lrt+l

(2.33)

Similar to the formula of T D(λ ) provided in Equation 2.8, the k-step advantage es-

timators are weighted exponentially to balance bias and variance. Bias is the smallest for

Â(∞)
t because the reward function is known for all future states of the trajectory. Although

γ reduces variance by decaying the weights of the rewards far away, it increases the bias in

an undiscounted estimation. As a result, the data might underfit by generalizing too much

due to the high weights assigned to the most recent rewards. Determining a low λ would

result in higher bias and lower variance if value function is an approximation. On the other

hand, this GAE value will be further away the real advantage value is the value function is

not completely accurate. The latter estimate that has lower bias has higher accuracy at the

cost of variance. ÂGAE(γ,λ )
t derivation is provided in Equation 2.34 [35]. Schulman et al. [35]

suggest that the optimal λ should be lower than the optimal γ value.
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ÂGAE(γ,λ )
t = (1−λ )

(
Â(k=1)

t +λ Â(k=2)
t +λ

2Â(k=3)
t + . . .

)
= (1−λ )

(
δ

V
t

(
1

1−λ

)
+ γδ

V
t+1

(
λ

1−λ

)
+ γ

2
δ

V
t+2

(
λ 2

1−λ

)
+ . . .

)
=

∞

∑
l=0

(γλ )l
δ

V
t+l

(2.34)

Practical calculations of advantage function estimators make use of finite horizon

trajectories sampled from multiple environments. Advantage function is estimated by T-

step-lookahead of immediate rewards and the value function in asynchronous advantage

critic [37]. Trajectories of predetermined length are accumulated from multiple agents run-

ning simulataneously in different environments. Each gradient step is taken with respect to

the current critic network parameters using the samples gathered from parallel runs. Inspired

by this implementation, a truncated version of generalized advantage estimation is used in

PPO, provided in Equation 2.35 [31] .

ÂGAE(γ,λ )
t = δt +(γλ )δt+1 + · · ·+ · · ·+(γλ )T−t+1δT−1

where δt = rt + γV (st+1)−V (st)
(2.35)

Value functions V (st) in GAE formula are found by performing forward propagation

on the value function approximator network (critic). Policy gradient’s advantage function

component is then updated by using the rewards sampled from parallel environments and the

approximated value function output. An example of GAE usage in vanilla policy gradient

algorithm is shown in Equation 2.36.

gγ ≈ E

[
∞

∑
t=0

∇θ logπθ (at |st) ÂGAE(γ,λ )
t

]
= E

[
∞

∑
t=0

∇θ logπθ (at |st)
∞

∑
l=0

(γλ )l
δ

V
t+l

]
(2.36)
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Actor-Critic architectures are used to estimate the advantages [35] because we do not

know the actual value of the state, as a matter of fact, we are only trying to approximate their

value based on the samples we have seen so far. Thus, it is reasonable to train a separate

critic network to predict the value of a given state.

Value function loss is the mean squared difference between the target value V targ
t and

the predicted critic network output. In the OpenAI Baselines framework, the target value is

the sum of generalized advantage estimation and the output of the value function network

as seen in Equation 2.37 [30]. Mini-batch gradient descent is performed over both actor

and critic networks using the set of trajectories for multiple epochs so the samples are used

for multiple times to compute updates. Target values are constant throughout the global

optimization iteration.

V targ
t = ÂGAE(γ,λ )

t +V sampled
t

LV F
t (θ) =

(
Vθ (st)−V targ

t

)2 (2.37)

The surrogate objective LCPI(θ) [31,34] shown in Equation 2.38 is used in both TRPO

and PPO. The advantage estimates are computed by the samples gathered using the old policy

πθ old . Hence, in order to take multiple gradient steps utilizing the latest samples collected

using πθ , the importance sampling correction is necessary. At each iteration, the policy

gradient step is computed by taking the derivative of the surrogate objective with respect to

θ when performing mini batch gradient descent.

LCPI(θ) = Êt

[
πθ (at |st)

πθ old (at |st)
ÂGAE(γ,λ )

t

]
= Êt

[
rt(θ)Â

GAE(γ,λ )
t

]
(2.38)
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If the advantage is negative then all the ratios below 1− ε will be clipped because the

optimistic scenario is to decrease the likelihood of sampling that action under the new policy.

Likewise, if the advantage is positive, then all the ratios above 1+ ε will be clipped and the

gradient of clipped loss will be 0. In both cases, the clipping assures that the current location

of the policy parameters in the parameter space is invariant since it is already sufficiently

good. This protects against updates that would result in a catastrophically worse location.

LCLIP(θ) = Êt
[
min

(
rt(θ)Ât ,clip(rt(θ),1− ε,1+ ε) Ât

)]
(2.39)

Equation 2.40 consists of value-function-approximator loss LV F
t , entropy reward LS

t

and the clipped surrogate objective LCLIP
t .

LCLIP+V F+S
t (θ)= Êt

[
LCLIP

t (θ)− c1LV F
t (θ)+ c2S [πθ ] (st)

]
(2.40)

At the very first iteration of surrogate loss calculation, the ratio of the old and new

policy is 1 because the parameters are not yet updated. We will take the derivative with

respect to the new parameters so the value of old policy is a constant importance correction.

The output layer size is the same as the agent’s action space. Concurrently, the logarithm

of standard deviations vector is optimized that has the same dimensions as the action space

of the agent. The output mean and the vector of logarithm of standard deviations are used

to compute the diagonal multivariate probability distribution. It must be borne in mind that,

policy is stochastic in this case, given the observation, it will sample randomly from the

distribution with mean f (st) and variance Σ.

The parallel implementation of the algorithm is provided in Figure 2.5 where d is a

binary that denotes whether the episode terminated or not. Adam optimization is used to
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Require α : step size hyperparameter

Require i : process

Require n : number of parallel processes

Initialize the fully connected layer weights using σ = 0.01 and the logσ vector with 0

in θ ;

for k = 1 to Iteratons do

Sample a trajectory τ = (s1,a1,r1,d1...sH) by θ

Compute advantage estimates by θcritic and τ , Â = Âs1,a1...ÂsH ,aH using Equation

2.35

θold⇐ θ ;

for e = 1 to E pochs do

for batch = 1 to BatchSize do

Compute the Lbatchi using Equation 2.40;

θ ⇐ θ −α∇θ
1
n ∑processi Lbatch ;

end for

end for

end for

Figure 2.4. PPO Algorithm.
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compute the parameter updates according to the Equation 2.25. Because this algorithm will

be used for the baseline policy gradient method in our experiments, further implementation

details will be discussed in Chapter 5.

2.6. Transfer Learning

A human brain can easily transfer the learning attained from one task to another, for

instance, babies use their knowledge of crawling to walk. Transfer Learning exploits the

similarities between different but related tasks by utilizing the learning acquired in source

task to the target task. Transfer learning is implemented in the cases where the environment

dynamics or the tasks in the training and testing phases are different. Training a task from

the beginning is time-consuming and most of the time computationally expensive. Conse-

quently, it is widely used in the areas of image and speech recognition, natural language pro-

cessing and reinforcement learning. As an illustration, given a learning curve of performance

against timesteps, the transfer learning algorithms are designed to attain either higher slope,

higher asymptote or higher start than the learning curve of non-transfer counterparts. [38]

In some settings, it is possible to achieve higher performance in all cases but according

to the requirement of the design, sometimes the purpose can be just to achieve one of them.

For instance, in computer vision, the network’s accuracy is proportional to the amount of

data until the overfitting point so if the data is insufficient, it is compelling to beat algorithms

with transfer learning.

Time to threshold is also one of the aspirations to attain a successful transfer that

focuses on decreasing the amount of time needed to achieve a certain value of goal [39]. In

curriculum learning, it is used in Autonomous Task Sequencing for Customized Curriculum

Design in Reinforcement Learning [40] to compare the performance of different curriculum

methods.

Transfer Learning is widely used in the computer vision field. Most of the current

research in the field use pretrained weights for the network parameter initialization of a new

task. The pretrained weights usually dominate the earlier layer and the following layers have
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parameters specific to the problem [41]. More precisely convolutional layers at the earlier

layers trained on bigger datasets retain information on the shared features of the common

image recognition tasks such as edge detectors [41]. Depending on the structure of the

problem, fine-tuning the convolutional layers are allowed during training phase or the earlier

layers are frozen where gradient flow through the convolutional layers are restricted and new

layers are put on top of the network.

Continuous vectorized representations are used to represent observation and action

space in deep reinforcement learning. However, they are not only used in the reinforcement

learning domain. Words are mapped to a continuous meaning space in natural language pro-

cessing. Subsequently, this suggests that the learning methods used in reinforcement learning

might be applicable to NLP for future work. Likewise, parameters of word representations

that are trained on vast data are used for initialization [42].

2.6.1. Forward Transfer Learning

Transferring the knowledge and representation gained from one task to another task

is called one task transfer learning. Most applications include transferring the deep neural

network parameters to the new task using modifications to the course of training or the archi-

tecture to begin learning from a higher start or to learn faster [1, 43]. The transferred neural

network is expected to generalize to the new task and adapt to the new task’s domain.

Development in computer vision has advanced the research in robotics because most

complex robotics tasks process image data. Inspired by the fruitful implementations of trans-

fer learning on computer vision field Rusu et al. [43] implemented fine-tuning and addition

of new layers to an already trained network in the deep reinforcement learning in Atari do-

main. In their work, earlier convolutional layers are initialized with the parameters of a

source task and frozen. The last layers of the network are allowed to specialize in the target

task.

A transfer can occur from a large domain to a small domain and vice versa. In both

cases, the possibility of negative transfer exists. If the algorithm is performing worse than
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not using any transfer at all it is called negative transfer learning. For instance, if the al-

gorithm is initialized from an optimal point for the source task but a suboptimal point for

the target task, insufficient exploration might occur which would result in a negative trans-

fer so random initialization would have been a better choice. When a transfer occurs from

a larger domain to a smaller domain it is called partial transfer learning. One example of

this in computer vision is tackled by Cao et al. [44] for the case where the source space

is the subset of the target space. The transfer cases they have covered in the experiments

section include performing transfer from ImageNet 1000 [45] to Caltech 84, and Caltech

256 [46] to ImageNet 84 where the corresponding numbers stand for the number of classes.

Solely utilizing the labels of the source domain for the associated labels belonging to the

target domain does not prevent the occurrence of negative transfer. The labels not present in

the target domain are called the outlier labels. Outlier label data present in the source do-

main reduce the classifier’s accuracy thus to counteract this, a domain discriminator network

and an opposing domain-invariant feature extractor network are assembled in an adversarial

architecture. The loss function simultaneously maximizes the discriminator’s and features

extractor’s accuracy [44]. Then, a domain discriminator is assigned for each class to obtain

the weighted average of the domain loss where the outlier classes have less weight. In conse-

quence, they have attempted to counteract the effects of negative transfer via discriminating

the outlier classes from the source domain and maximizing the accuracy of the source and

target distribution locations.

Transferring from simulation to the real world is often times a tedious task. Model-free

algorithms rely on samples however the cost of sampling from a real-world environment is

high in robotics settings. Tobin et al. [47] implemented the method of domain randomization

in the physics simulator to accurately localize the objects in the real world for a manipula-

tion task. Similarly Sadeghi et al. [48] used domain variation in 3D Modeling simulator

Blender [49] by generating distinct pieces of furniture and hallway textures to train a simu-

lated quadcopter. They later transferred the learned Q-value function network to a real-world

quadcopter to avoid collisions while flying through a hallway.

Adversarial scenarios have also been widely used for robotics tasks involving vision.

For instance, Bousmalis et al. [50], and Tzeng et al. [51] used adversarial networks where
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one neural network is optimized to discriminate the image data of real world from the sim-

ulation and the other optimizes to generate simulator images that can fool the discriminator.

The generator network will come up with better representations of the real image data as the

discriminator approaches the minima.

2.6.1.1. Ensemble Policy Optimization [1]. Control tasks have benefitted immensely from

the adversarial implementations. Increasing the robustness of policy leads to high perfor-

mance in a multitude of target tasks. Rajeswaran et al. [1] suggested a method to increase ro-

bustness of the policy network in Ensemble Policy Optimization(EPOpt) algorithm by train-

ing an ensemble of different tasks. Their dual-step approach to perform transfer from one

distribution of tasks to another distribution of tasks consists of Robust Policy Search where

policy optimization is performed using samples from a batch of different tasks and Model-

Based Bayesian Reinforcement Learning where the source task distribution parameters are

updated via experience on the target task during training. In the policy search phase denoted

by the Equation 2.41, the expected rewards of the trajectories from each task are computed.

JD(θ) = Ep∼P [Eτ̂ [
T−1

∑
t=0

γ
trt(st ,at)|p]] = Eτ [

T−1

∑
t=0

γ
trt(st ,at)] (2.41)

The conditional value at risk algorithm presented by Tamar et al. [52], is used to form

a subset of the worst performing ε-percentile of the distribution. Experiments in EPOpt

further asses that performing batch policy optimization solely on the worst performing subset

as seen in Equation 2.42 while discarding the higher performing trajectories leads to more

robust policies.

F (θ) = {p|JM (θ , p)≤ y}

max
θ ,y

∫
F (θ)

JM (θ , p)P(p)d p s.t. P(JM (θ ,P)≤ y) = ε

(2.42)
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In the source task update phase, the ensemble’s distribution parameters are updated

given the trajectories sampled from the target task to move the source distribution parameters

closer to the target distribution parameters. In Equation 2.43, Bayesian inference is used to

update the posterior distribution of the source task parameters given the trajectories sampled

from the target environment. Initially, a set of parameters (pi) are sampled from the target

task distribution. Then the set of model parameters and the sampled trajectories are used

to formulate the Bayesian equation. Pp(pi) is our initial belief (prior) of the target task

parameters which is the probability of sampling target task parameters from the source task

parameters. Using importance sampling we correct the Pp(pi) by dividing it to the probability

of sampling the set (pi) from the target task distribution to be able to use the likelihood

function formed by the trajectories from the target task distribution given the set of (pi).

The update uses the probability of the next state instead of the probability of actions given

the state because the target environment’s response is more crucial to adapt the source task

model parameters since we aim to learn the model of the target environment.

P(P|τk) =
1
Z
×P(τk|P)×P(P) =

1
Z
×

T−1

∏
t=0

P(St+1 = s(k)t+1|s
(k)
t ,a(k)t , p)×P(P = p)

P(St+1|st ,at , p)≡Tp(st ,at)

pi = [p1, p2, . . . , pM]

P(pi|τk) ∝ L (τk|pi)×
PP(pi)

PS(pi)
(2.43)

Two phases are repeated consecutively for a predetermined number of iterations. Al-

though not experimented in the paper, this setting is applicable to problems where a limited

number of trials are allowed in the real world target setting. The simulation would represent

the source task distribution that is iteratively getting better at simulating the real world en-

vironment. Accordingly, our suggestions in Chapter 3 will be targeted for these use cases.

All in all, they provide satisfactory results by comparing their results from EPOpt on 10th

percentile with Trust Region Policy Optimization (TRPO) trained on a single source task for

each mass, EPOpt without the use of worst percentile subset extraction.
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2.6.1.2. Adversarial and Competitive Environments. In Robust Adversarial Reinforcement

Learning (RARL) [15], a separate adversarial network is created to destabilize the agent

during training in a more intelligent way for increased robustness in the target environment.

RARL algorithm will be used as the baseline algorithms in some of our experiments so

detailed information will be presented in Section 3.1.3 . The proposed scenario is a two-

player zero sum discounted game where the agent tries to maximize its own reward which

is actively minimized by the adversary. Actions (A1) are sampled from the agent’s policy

denoted as µ whereas the actions (A2) are rolled out from the adversary’s policy ν . Equation

2.44 refers to the reward function of the agent. Corresponding to that, the reward function of

the adversary is R2 =−R1.

R1 = Es0∼ρ,a1∼θ pro(s),a2∼θ adv(s)

[
T−1

∑
t=0

r1 (s,a1,a2)] (2.44)

Due to computational constraints, instead of optimizing the minimax equation at each

iteration they maximized the reward functions of the agent and the adversary consecutively.

For j number of iterations, the agent’s policy is optimized iteratively, while collecting sam-

ples using a fixed adversary policy. After that, the same number of rollouts are collected from

the environment for the adversary’s optimization while the agent’s last policy’s parameters

are used. It is not required for the policy networks of the agent and the adversary to have the

same output layer sizes. First, they have compared TRPO and RARL using the default envi-

ronment hyperparameters without any disturbances for 500 iterations on tasks HalfCheetah,

Swimmer, Hopper, and Walker2d in MuJoCo environments with 50 different seeds. Training

with RARL achieved a better mean reward than the TRPO. In addition to that, RARL and

TRPO are evaluated with a trained adversary in the test environment where RARL performed

significantly better on all tasks compared to TRPO. They’ve also tested the aforementioned

tasks by varying torso mass and friction coefficients which were not seen during the training

phase and again RARL yielded better results than the TRPO baseline. An implementation

of the algorithm using rllab framework and a single critic, simultaneous PPO variant using
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OpenAI Baselines framework are open-sourced [10] [53] [54] [8]. We will compare double,

single and shared double critic structure in Section 5.3.1 and Section 5.5.1 to evaluate how

the critic effects the algorithm’s generalization capability using OpenAI Baselines frame-

work.

Separate critic networks are consecutively optimized with their policy network coun-

terparts in RARL [15]. However, the reward functions of the protagonist and the antagonist

are each others’ negative in the algorithm thus a single shared critic network is also a relevant

architecture. For instance, in Dong’s implementation both of the networks are optimized re-

dundantly but only the protagonist critic network’s resulting advantage estimation is used in

policy optimization resulting in a single shared critic network architecture [8]. Shared Critic

Robust Adversarial Reinforcement Learning (SC-RARL) is the second type of architecture

we will use for our experiments in Chapter 5.

Inspired by the fruitful results of RARL [15], Shioya et al. [17] proposed two exten-

sions to the RARL algorithm by varying the adversary policies. Their first proposal is to

add a penalty term as seen in Equation 2.45 to the adversary policy’s reward function by

sampling from the test domain to adapt the source task’s transition function. This, however,

is tailored robustness for each test task at hand which requires peeking into the test domain

similar to the Bayesian update used in EPOpt [1].

min
πadv

R+λ
1
N

N

∑
i
‖st+1−Tt (st ,at)‖2 (2.45)

The second extension is inspired by Curriculum Learning to select the adversarial

agents based on the progress of learning instead of naively taking the latest adversarial pol-

icy. The protagonist policies trained in harder environments doesn’t guarantee a more robust

performance, in fact, the randomization of adversaries during training was explored in some

previous works [55] [17]. In both Shioya et al.’s [17] and Bansal et al.’s [55] experiments,

using the latest and the hardest adversarial policy hinders the learning progression of the
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protagonist. In [17], first, multiple adversaries are created and samples from the latest T

iterations of the adversary policies are ranked according to the progress of learning using

linear regression. The ranks are used to determine the probabilities of using the samples

which are selected stochastically during training. Each adversary policy is maximized us-

ing the negative reward of the protagonist agent and the sum of KL Divergence from all the

other adversary policies as seen in Equation 2.46 to encourage diversity between the multiple

adversarial agents.

min
πadv

R− γ ∑
i j

KL
(
πadvi (at |st)πadv j (at |st)

)
(2.46)

Bansal et al. [55] used Uniform (δv,v) distribution for determining opponent hu-

manoid’s policy iteration where δ is the percentage of the constructed set’s coverage from

the last T adversary policy iterations. Shioya et al. [17] used multiple adversaries and ranked

each sample’s performance to determine the set of samples that should be used for optimiza-

tion.

Experiments were done using Hopper and Walker2d environments in MuJoCo [18] to

compare the results to the RARL Algorithm [17]. It is found that in the Hopper environment

ranking the policies to adapt the probability of their selection performs better than RARL

and uniform random selection but performed worse than the latter in Walker2d environment.

In both of the environments using the trajectories which yielded fewer rewards performed

worse than all the methods. As a contrast to this result, optimizing over the worst perform-

ing samples generated more robust policies in Hopper task when tested with different torso

masses in EPOpt Algorithm [1] when an adversary policy is not present.

The adversarial algorithms can be considered as a dynamic way of creating different

tasks for the agent at each iteration to encourage it to be more robust in unseen test conditions

[56]. Challenging tasks allow agents to grasp complex latent features of the task thereby

enable more robust policies to flourish.



40

2.6.2. Multi-Task Transfer Learning

In contrast to forward task transfer learning, in a multi-task transfer learning setting,

the transferred knowledge, and the representation are based on multiple different tasks. In

order to excel in multiple tasks in the test environment, these algorithms aim to attain an

overall target environment performance [57]. Source tasks may have different loss functions

or domains but should be relevant so that the extracted knowledge can be used in a new

setting.

Transferring the best performing policy network parameters to a new task would of-

tentimes result in a negative transfer. Optimizing the policy network might wipe out a good

initialization or may hinder the exploration of the new task. Initializing the neural network

parameters in target task with the policy network trained on multiple tasks is one way of

performing multitask transfer. Joint Proximal Policy Optimization (Joint PPO) [58] is a

multi-task learning variant of PPO [31] which jointly trains all tasks from the distribution

and performs a gradient step using a set of rollouts sampled from different tasks. Joint PPO

should have a large batch size for each gradient update because small batches do not pro-

vide sufficient diversity to decrease the bias for an efficient gradient step. In PPO [31], a

variant named RoboschoolHumanoidFlagrun where the agent is expected to run in various

directions is also experimented.

Multi-task transfer learning heavily relies on the distribution and features of the tasks

used in training. Excluding the tasks causing negative transfer thus distilling the relevant

knowledge from the source tasks might solve the challenges encountered in multi-task trans-

fer problems. If the exclusion is attempted in the testing phase it might reduce the learning

speed. Nevertheless, recognizing the irrelevant source tasks during training is challenging

without using any information from the target task.

2.6.2.1. Actor Mimic Network [2]. Multi-task transfer learning is utilized in both discrete

and continuous environments. Parisotto et al. [2] suggested an actor mimic method to learn

different games in the Atari domain . The first phase of the method aims to construct Deep
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Q-Network (DQN) trained on a multitude of source tasks that is capable of performing each

source task. The action space is discrete in the Atari domain and the Q-values in the output

layer differ between source tasks. The output layer of the DQN network that consists Q-

values is converted to a policy network using Boltzmann distribution. Due to the fact that

the action spaces of the Atari games differ, multitask actor mimic network’s outer layer

consists of 18 units. Network architectures of DQNs of each source task and the Actor

Mimic Network (AMN) are the same in some cases except the outer layers. The objective

of the AMN for each source task is the summation of the cross-entropy between source task

and the AMN and the feature regression loss. Feature regression loss intends to predict the

last hidden layer of the source task DQN given the last hidden layer of AMN. The second

phase involves transferring the multitask AMN to a new target task which is not seen in the

training phase by initializing the DQN of the new target task via AMN without the softmax

layer.

2.6.3. Multi-Task Meta-Learning

Meta-learning, scrutinizes the way different tasks that belong to the same distribution

learn. Although the setting in multi-task transfer and meta-learning is the same, their main

difference resides in the representation that is being transferred. Especially the essential

focus of meta learning is the learning process. The objective is not to learn a certain task but

to obtain the best initialization parameters for all the tasks in the distribution set. Finding

the meta-policy parameters that directs the agent to receive higher task-specific reward in

test tasks after performing a few gradient steps for adaptation is the ultimate goal for meta-

learning in few-shot learning setting.

Meta-learning for few-shot classification has gained popularity in the field of computer

vision [3,59–61]. In the typical naming convention for K-shot N-way classification K stands

for the number of examples from each given class and N represents the number of classes

for each task. Moreover, in meta-training phase, each input task consists of both K examples

from each N number of classes and a test set of novel samples from the N classes. During

the meta-testing phase, the resulting representation from the training phase is used to classify

the similarly structured task that involves novel data. The input training data can also be
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structured as a recurrent neural network where each subtask in the training set gets input

from the previous task. For instance Ravi et al. [59] and Al-Shedivat et al. [56] constructed an

Long Short-Term Memory (LSTM) meta learner to exploit the sequence structure of the data

for image classification and continuous control respectively. Duan et al. [62] also focused

on the recurrent implementations on continuous control by representing trajectories as a

Recurrent Neural Network (RNN) policy.

2.6.3.1. Model Agnostic Meta Learning [3]. Model Agnostic Meta Learning was introduced

by Finn et al. [3] where the objective is to derive a meta-policy capable of adapting to a mul-

titude of tasks after a few gradient steps in the target environment. Initially, a batch of tasks

are sampled from the source task distribution. Then using the meta policy parameters we

sample trajectories from each task from the batch. The following Equation 2.47 shows the

loss function used to compute gradient descent with respect to the meta policy for each task.

LTi

(
fφ

)
=−Est ,at∼ fφ ,qIi

[
H

∑
t=1

Ri (st ,at)

]
(2.47)

Meta policy parameters are adapted for each task by mini-batch gradient descent. Sub-

sequently, trajectories are sampled from the corresponding tasks once more using the adapted

parameters. Each sample from the sampled batch of tasks are used to update the meta policy

parameter as seen in Equation 2.48.

θ ← θ −β∇θ ∑
T∼p(T )

LTi

(
fθ−α∇θ LTi( fθ )

)
(2.48)
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In order to take a gradient step with respect to the meta policy, second order gradients

should be computed to perform gradient descent on the samples generated by adapted poli-

cies. Practical implementations include stopping the second order gradient flow and treating

the update on the meta policy as a constant during meta optimization due to concerns related

to computation.

In the reinforcement learning setting, Finn et al. [3] carried out experiments using the

Model-Agnostic Meta-Learning (MAML) model on a half cheetah and an ant in MuJoCo

simulator [18]. Both agents are trained with tasks that required them to run in 2 opposite

directions. In the test environment they are required to run at a direction seen in the training

phase without knowing the direction the task is formulated for. The average returns yielded

using the meta policy have high variance at the asymptote of the learning curve thus they’ve

used the best performing meta policy parameters instead of the parameters yielded from the

last iteration. After one gradient step in the test environment, the agent was able to adapt to

the given task and improve. Similar to that, goal velocity environments are introduced where

the velocity objective is sampled from a uniform distribution between [0.0,2.0] for the half

cheetah and [0.0,3.0] for the ant. At test time, the agent is expected to run at a given velocity

sampled from the distribution seen at training time. In both of these cases, the loss functions

of the tasks are different but the domains and the essence of locomotion are alike.

2.6.3.2. Hierarchical Neural Network Structures. Benefits of hierarchical neural network

structures are examined in Meta-Learning for Shared Hierarchies (MLSH) and Option Gen-

erative Adversarial Networks (OptionGAN) [63]. [64] The structure consists of a higher level

master policy parametrized by θ and a set of subpolicies where each sub-policy parameter

is denoted as φi. The master policy performs classification on the set of sub-policies at its

output layer based on the observations from the environment. Right after a task is sampled

from the source task distribution the warmup period begins where only the master policy

is optimized. In the second phase, a joint update period occurs where master policy and

sub-policy parameters are updated. Frans et al. [63] have conducted similar random direc-

tion experiments similar to MAML where the tasks is to make ant agent move either up or

right. Furthermore, they experimented with a humanoid by designing a task that required
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the humanoid to both walk and crawl. When the loss functions of the tasks differ a set of

expert sub-policies and a higher level task classifier network that recognizes the context of

the task is a promising neural network architecture. In fact this architecture is embedded in

the algorithm architecture in Option Generative Adversarial Networks (OptionGAN). [64]

2.6.4. Meta Transfer Learning

Learning to transfer learn is a recent research area proposed by Wei et al. [57] with

the objective of transfering what to transfer. They have parametrized the transfer learning

algorithms used in source and target task pairs to deduce the maximizing transfer learning

algorithm parameters for a novel source and target task pair. First, they learn a function

mapping from the source, target task pairs and transfer learning algorithm parameters as

input to performance improvement. At the testing phase, they intend to discover the transfer

learning parameters that maximize the derived function.

2.7. Transfer Learning Evaluation Structure

Evaluation of generalization in deep reinforcement learning is a recently popularized

research area that spurred from the need for accurate comparison of the novel algorithms

[16] [13]. Cobbe et al. [13] created a CoinRun environment game with different test and

training environments to construct a benchmark for generalization. In CoinRun the agent is

trained on the different number of training levels for a 256M timesteps with PPO and the

relation between level numbers and the overfitting are analyzed.

Concerns over the reproducibility and evaluation of deep reinforcement learning algo-

rithms have also been brought up by Henderson et al. [65] and the results of poor hyper-

parameter selection and neural network architectures were analyzed. In transfer learning,

these aspects are even trickier because the training performance is not informative on the

generalization capability thus sampling in the target environment is required.

The testing and the training environment are usually exactly the same in the field of

deep reinforcement learning. [16] In contrast, the data is composed of a training set, a vali-
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dation set and a test set in supervised learning problems. Cross-validation is used for hyper-

parameter tuning on the training set. The training set is divided into a predetermined number

of groups and for each hyperparameter search iteration, each group should be used once as

the test environment while the rest are combined for training. After all the hyperparameters

are used, the algorithm is ready to be tested on the unseen test set.

Recent research in the field of transfer reinforcement learning increasingly utilize the

actor-critic policy gradient algorithms to build novel algorithms through the incorporation

of a similar set of hyperparameters. [31] [55] [56] [66] [65] [65] [67] [3] However, when

neural networks are involved skipping the hyperparameter tuning would bring about low

proposed algorithm performance or even worse wrong comparisons thus hyperparameter

tuning is the building block in transfer reinforcement learning. More importantly, source

task performance is an inadequate assessment of the generalization capacity.

2.8. Bipedal Locomotion

Robust bipedal locomotion for a humanoid robot is still an open area for research

mostly by the challenges imposed by the altering dynamics of the environment and the agent.

Increasing the degrees of freedom of the humanoid robot allows the robot to perform more

elaborate actions yet introduces more complexity to its anthropomorphic mechanism.

The bipedal locomotion problem without learning consists of a trajectory planning and

an inverse kinematics phase [68]. First, the optimal stable trajectory should be determined

for single and double support phases. Then, the inverse kinematics problem where the ar-

rangement of the joints in the kinematic chain should be addressed to adjust the position

of a rigid body to the targets imposed by the trajectory [69]. On frictional surfaces, Zero

Moment Point criterion is a bottom-up approach to bipedal locomotion that enforces the net

moment of horizontal components of inertial and gravitational forces to be zero to avoid

slipping [70].
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2.8.1. Bipedal Locomotion for Cassie

In this section, we will review two different approaches to bipedal locomotion on a

bipedal robot named Cassie designed solely for walking and running by Agility Robotics

[71].

2.8.1.1. Fast Online Trajectory Optimization for the Bipedal Robot Cassie [4]. Differential

dynamic programming for unconstrained control and constrained optimization problems are

techniques that are widely used to solve the trajectory optimization problem. Both of these

methods have a high computational cost. Apgar et al. [4] suggest using a simplified model

to reduce the computational costs. For instance, a spring-loaded inverted pendulum is a sur-

rogate model that simulates external dynamics involved in the human bipedal locomotion

namely ground reaction normal force. In fact, they apply the surrogate model in the multi-

step forward motion case. As an example of this approach, utilizing the foot location to

estimate the center of mass is given. Conversely, for the Operational Space Control (OSC)

in order to output the motor torque commands, the system needs to be aware of the full

dynamics model of the agent.

Their proposed system consists of two main algorithms namely the planner and the

OSC. The goal of the robot is to reach the final pose while conforming to the given contact

schedule. The step time and the duration of both feet on the ground phase constitute the

contact schedule and there is a perfect oscillation between one foot and both feet on the

ground phase. Planner gets the goal position, state of the robot and the contact schedule

as the input and outputs body and foot trajectories. OSC processes the trajectory data and

outputs motor torque commands for the robot to execute. The resulting state of the robot in

the environment is provided as feedback to both planner and OSC. The computation of the

actions that should be taken by the robot takes longer than the computation of the planner,

therefore, the planner has more time to optimize the trajectory data which can be fed to the

OSC system. Considering that the OSC part of the loop is constant by using the latest state of

art techniques it is sensible to focus on ways of improving the planner for better optimization.



47

2.8.1.2. Feedback Control For Cassie With Deep Reinforcement Learning [5]. Model-free

approaches tends to look more promising than the model-based approaches because all the

constraints and non-linearities during the optimization phase cannot be taken into account

during optimal control computations. Xie et al. [5] used MuJoCo simulator to implement

the PPO Algorithm [31] with feedback control to initiate bipedal locomotion in Cassie.

Feedback mechanisms are model-based approaches designed to compute the trajectory

of the robot. Usually, the eventual tradeoff of computation cost, the feedback mechanism

does not reflect the system accurately, potentially yielding suboptimal results. The Cassie

has fewer actuators than the degree of freedoms which makes this a harder problem for

learning because it is an underactuated robot [5].

2.8.2. Center of Mass

The vertical and horizontal displacement of the center of mass during bipedal locomo-

tion provides crucial insight into the anthropomorphic motion [72]. Dynamic balance and

the optimal trajectory of a humanoid depend on the center of mass. Research on finding the

route of the agent’s center of mass during bipedal locomotion is prevailing. For instance,

Carpentier et al. [72] analyzed the motion of a male subject walking on a flat surface to illus-

trate the center of mass’s trajectory. They further prove that the center of mass’s movement

is characterized as a curtate cycloid while walking.

2.8.3. Friction

The friction between the feet of the robot and the surface are divided into two cate-

gories for bipedal locomotion: static and kinetic friction [73]. If the robot is slipping while

walking kinetic friction coefficient is used whereas the static friction coefficient is used for

non-slipping cases.

There are two main types of tangential friction when moving forward: landing your

foot on the ground which is basically applying forward force to the ground by the heel and

taking off your feet from the ground by the forefoot palm [73]. Friction acts in the opposite
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direction by the ground in each of these cases.

When two surfaces contact, intermolecular forces occur which are named generally as

frictional forces. Contact of uneven surfaces creates a higher frictional force because at the

molecular level they have higher attraction among each other. In our case, the normal force

is perpendicular to the contact surface and prevents the humanoid from sinking through the

floor. The normal force is canceled out by the humanoid’s weight.

Tangential forces are parallel to the contact surface and act in the opposite direction

to the applied force [73]. Each force applied to the materials at the contact point cause the

molecules at the surface to be disturbed and relocated. This decreases the intermolecular

connection between the surfaces and allows the object to slide. The static friction force is

calculated by multiplying the coefficient of static friction with the Normal force. If the force

applied to the object is more than the static friction the object starts to move and the kinetic

friction force starts acting on the object which calculated same as static friction force but

has a different coefficient which is usually less than the static friction coefficient because the

intermolecular attraction between moving surfaces is less.
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3. METHODOLOGY AND IMPLEMENTATION

Deep reinforcement learning methods are phenomenal in learning the task at hand with

sufficient training but they often fail to generalize to an ensemble of different tasks. More

importantly, training a robot for each possible real-life scenario is impractical thus if we

strive for a human level performance we should draw inspiration from how humans adapt to

unforeseen challenges.

In this chapter, we elaborate on our propositions on the policy gradient, actor-critic

and adversarial learning algorithms to illustrate the methods we will use to increase the

robustness of the robots and introduce policy buffer evaluation. Subsequently, we present the

set of environments that we designed to compare and evaluate the algorithms we propose.

Particularly, inter-robot learning transfer, high tangential frictional ground and the delivery

robot environments are applicable to real life scenarios.

3.1. Methodology

In this section, the algorithms used in Chapter 5 are discussed in detail to build a solid

background for our design decisions. First, we introduce Policy Buffer in Section 3.1.1 for

transfer learning evaluation. We provide intuition on the techniques we suggest to increase

generalization capacity of the policy, namely Strict Clipping Proximal Policy Optimization

(SC-PPO), Average Consecutive Critic Robust Adversarial Reinforcement Learning (ACC-

RARL) and Asymmetric Entropy Bonus. Essentially, we suggest regularization techniques

for PPO [31] and discuss the variants we suggest for RARL [15].

3.1.1. Policy Buffer

Walking in different environments may require different policies. Policies that are

trained with different hyperparameters show different walking patterns at each optimization

iteration. We propose a policy buffer to store these different policies trained on the same

source task environment with the same loss function. We will show in our experiments
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that it is possible to extract a comprehensive set of policies representative of distinct control

patterns just from one source task environment.

Different snapshots of the policy network parameters taken during training in the

source task environment perform dramatically different in the target task environment. Over-

training in the source task environment causes overfitting which leads to a worse result on

the target environments as the distance between the target environment and the source task

environment increase in the environment parameter space. In order to discover the most

suitable policy network for the target task, we first take snapshots of the policy network at

each sampling iteration at predetermined intervals. The snapshots of the policies trained with

different hyperparameters in the source task environment will be saved in the policy buffer.

We will further prove that the performance of the policy on the source task does not

give sufficient insight into the average return in the test environment. Considering the striking

difference between the policy iterations’ ability to transfer, evaluations at different iterations

are necessary to compare various methods. Taking the resulting parameters after a constant

number of training iterations does not constitute a valid comparison because full scope of the

algorithms’ generalization capacity is omitted.

The iteration of the policy that will be used in the target environment is a hyperparam-

eter that should not be ignored. Sampling from the target environment during training is used

in several transfer learning algorithms to demonstrate the use cases where the real world is

the target environment where the sample set is restricted and the simulator is the source envi-

ronment where the sampling phase is only restricted by the computational resources [1] [17].

In scenarios where the difference between source task and target task can be paramet-

rized, we propose that designing a surrogate validation task will prove to be informative

in finding the interval of policy iterations with the highest adaptability to an alike target

task. The surrogate validation task should have parameters closer to the target environment

if possible and just a few samples from the surrogate validation task would be an adequate

starting point for determining the policies that should be given priority during target environ-

ment sampling. Surrogate validation task’s purpose is analogous to hyperparameter tuning
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using a validation set in supervised learning algorithms.

3.1.2. Regularization via PPO Hyperparameter Tuning

Policy gradient algorithms are the building blocks of the recent transfer learning and

generalization algorithms. The choice of the clipping hyperparameter of Proximal Policy

Optimization is crucial when using the algorithm as a transfer learning benchmark. Open

AI Baselines framework and most of the literature use the clip parameter of 0.2 for contin-

uous control tasks [30] [31] [55] [56] [66] [65]. In addition to that, the clipping parameter

is discounted using a learning rate multiplier in Open AI Baselines framework to encourage

swift reaching to the asymptote for all continuous control tasks in MuJoCo. In our ex-

periments, we have found out that decaying the clipping parameter decreases the asymptotic

performance of the algorithm in the Humanoid environment and submitted it as an issue. De-

caying the clipping parameter linearly by the learning rate After our suggestion, the clipping

hyperparameter annealing in the ppo1 algorithm has been omitted in the Open AI Baselines

framework [30].

We hypothesize that in a transfer learning setting, strict clipping can be used to dis-

card the MDP tuples that lead to overfitting. In this thesis, we propose strict clipping as a

regularization technique for PPO to decrease variance introduced by the source task-specific

samples. In order to construct a fair comparison between state of art transfer learning algo-

rithms, various lower values of clipping parameters are analyzed. Strict clipping is performed

by decreasing the clipping parameter to unconventional values, for instance as low as 0.01.

In Chapter 5 we prove that this method is a competitive benchmark for the transfer learning

algorithms.

Increasing the batch size can also be used to increase the robustness of the resulting

policy in PPO for transfer learning. More frequent gradient steps will be taken when the

batch size is small and the resulting noise introduced will decrease the generalization ca-

pacity of the resulting policy. The average loss of the all the tuples in the batch is used to

compute the gradient so the movement in a parameter so a larger batch size won’t necessarily

amount to a larger gradient step. Accordingly, each tuple’s impact on the resulting gradient
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step will decrease with increased batch size. Strict clipping to unconventional values dis-

cards the overly optimistic tuples directly whereas increasing batch size results in reduced

variance and overfitting.

3.1.3. Robust Adversarial Reinforcement Learning Variations

Initially, the policy’s generalization capacity should be maximized when transferring

the learning from a source task to a target task. Training the policy aiming general robustness

for a range of possible unknown scenarios is one way of achieving a successful initial test

performance. Adversarial scenarios are inspired by the success of domain randomization

during training. Introducing an adversary during training whose sole purpose is to destabi-

lize the agent using multidimensional forces in Robust Adversarial Reinforcement Learning

(RARL) have proven successful results in continuous control tasks. [15]

There is a continuous competition for exactly opposite rewards in RARL depending on

the destabilizing capability of the adversary. For instance, an adversary policy with a two di-

mensional output has a restricted power due to low dimensional action space and might have

a hard time destabilizing a Humanoid robot with 17-dimensional action space during train-

ing. However, an adversary with a 27-dimensional action space that applies a 3-dimensional

force to each body component of the protagonist humanoid might even hinder the policy

from reaching convergence. Overfitting is at utmost importance in finding the policy with the

highest generalization capability considering the tidal nature of the algorithm. Thus we will

compare and analyze the variants of RARL using the Transfer Learning Evaluation Structure

we’ve proposed in the previous section and extract the best performing policies enhancing

the capability of the algorithm. Because we will use the technique of policy buffer in our

comparisons each RARL algorithm variant’s real generalization capacity will be presented.

3.1.3.1. Critic Network Architectures. In order to analyze the effect of different critic ar-

chitectures on the generalization capacity of the policy we will compare three different

critic architectures: single critic networks in Shared Critic Robust Adversarial Reinforce-

ment Learning (SC-RARL) [8],separate double critic networks that is used in RARL [10]
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and our proposition Average Consecutive Critic Robust Adversarial Reinforcement Learning

(ACC-RARL). Critic networks are inherently function approximators so they are vulnerable

to overfitting as well as the actor networks.

Figure 3.1. Protagonist policy and critic networks in Shared Critic Robust Adversarial

Reinforcement Learning (SC-RARL) [8], neural network figures are generated using [9]

Figure 3.2. Adversary policy network in Shared Critic Robust Adversarial Reinforcement

Learning (SC-RARL) [8], neural network figures are generated using [9]

Figure 3.1 shows the protagonist policy and critic network pairs for Shared Critic

Robust Adversarial Reinforcement Learning (SC-RARL) where the policy network output

layer size is 3 denoting the number of actions hopper can take. In Figure 3.2 the adversary
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policy network is provided where each neuron in the output layer stands for one of the 2-

dimensional force applied to the hopper’s heel. The adversary does not have its own critic

network and uses the negative of the protagonist’s critic network output for target value com-

putation. In SC-RARL, adversary policy is updated with AGAE(γ,λ ) computed with the pre-

viously updated critic network of the protagonist but during adversary policy’s optimization,

no critic network is optimized. Since the advantage function computation for the adversary is

exactly negative of the protagonist this architecture type is meaningful but the protagonist’s

critic network is only updated by the rewards gained in the protagonist’s optimization phase.

Fewer samples and optimization iterations might act as a regularization but we should also

explore ways of using the rewards from other sampling iteration without overfitting.

In contrast to SC-RARL, in RARL, each critic network is separate from each other and

at each global iteration protagonist and adversary policies are updated with the AGAE(γ,λ )

computed using the rewards from different trajectories and separate randomly initialized

critic network outputs. In SC-RARL, the shared critic is updated by the rewards gained dur-

ing protagonist optimization phase and in RARL each critic is updated only by the rewards

gained during its corresponding policy’s optimization phase. The total number of samples

used to update the critic networks are the same for RARL and SC-RARL.

In this thesis, we propose a third architecture named Average Consecutive Critic Ro-

bust Adversarial Reinforcement Learning (ACC-RARL) that computes advantage estimate

using the mean of both critic’s output but consecutively and separately optimizes each critic

network along with their corresponding policies. Figure 3.5 shows the protagonist’s policy,

critic and adversary’s critic network. The same protagonist’s network is seen in the grouping

made in Figure 3.6 that also includes the adversary’s policy and critic. By this method, we

aim to decrease overfitting via using double critic networks with different random initializa-

tions and restrict the catastrophic movement of the critic in parameter space by including

the output of the previously updated critic in advantage estimation. The δt values for both

adversary and protagonist in ACC-RARL algorithm are shown in Equation 3.1.
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Figure 3.3. Protagonist policy and critic networks in Robust Adversarial Reinforcement

Learning (RARL) [10] and Average Consecutive Critic Robust Adversarial Reinforcement

Learning (ACC-RARL), neural network figures are generated using [9]

Figure 3.4. Adversary policy and critic networks in Robust Adversarial Reinforcement

Learning (RARL) [10] and Average Consecutive Critic Robust Adversarial Reinforcement

Learning (ACC-RARL), neural network figures are generated using [9]
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Figure 3.5. Protagonist policy, critic networks and adversary critic network in Average

Consecutive Critic Robust Adversarial Reinforcement Learning (ACC-RARL), neural

network figures are generated using [9]

Figure 3.6. Adversary policy, critic networks and protagonist critic network in Average

Consecutive Critic Robust Adversarial Reinforcement Learning (ACC-RARL), neural

network figures are generated using [9]
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δ
protagonist

t = (−Vprotagonist (st)+Vadversary (st))/2+

rt + γ(Vprotagonist (st+1)−Vadversary (st+1))/2

δ
adversary
t =−δ

protagonist
t

(3.1)

The parallel implementation of the proposed ACC-RARL algorithm pseudocode is

outlined in Figure 3.1.3.1.

In ACC-RARL, each critic is updated by the average of two sequentially updated critic

outputs and the rewards gained during their corresponding policy’s optimization phase. In

RARL, policies are not informed of each other’s critic output but they rely on the similar-

ity of 2 consecutive sets of rewards accumulated by a different group of agents. On the

other hand, in ACC-RARL, both critics are updated by each others’ critic outputs with the

rewards gained during their own optimization phase. Updating the critic function more fre-

quently than the policies would increase overfitting so by ACC-RARL we aim to increase

generalization capacity by encouraging them to optimize with different reward batches while

considering each other’s critic outputs. Thus, each critic network observes all the rewards

sampled in the environment but assigns more weight to the rewards gained during its own

optimization phase.

Figures 3.1,3.2,3.3,3.4, 3.5, 3.6 are generated using the neural network generator de-

veloped by LeNail [9]. All neural networks depicted have 2 hidden layers with size 64 and

input layer of size 11. All policy networks have a seperate logarithm of standard deviations

vector that has the same size as the corresponding policy network’s output. These vectors

are optimized simultaneously with the policy networks as described in the implementation

detailed in Section 2.5.

3.1.3.2. Entropy Bonus. Entropy bonus is used to aid in exploration by rewarding the vari-

ance in the multivariate Gaussian distribution of action probabilities by a coefficient c2 given

in Equation 3.2.
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Require α : step size hyperparameter ; i : process ; n : number of parallel processes

Initialize the fully connected layer weights using standard normal distribution with

σ = 1.0, the final fully connected layer weights with σ = 0.01 in θ pro and θ adv ;

for k = 1 to Iteratons do

for j = 1 to Iteratonspro do

Sample a trajectory τ = (s1,a
pro
1 ,aadv

1 ,r1,d1, ...sH) using θ pro and θ adv for all i

Compute generalized advantage estimates Âpro = Âpro
s1,a1...Â

pro
sH ,aH by θ

pro
critic,θ adv

critic

and τ , using Equations 2.35,3.1

θ
pro
old ⇐ θ pro ;

for e = 1 to E pochs do

for batch = 1 to BatchSize do

Compute the L pro
batchi

using Equation2.40;

θ pro⇐ θ pro−α∇θ pro 1
n ∑processi L

pro
batch ;

end for

end for

end for

for j = 1 to Iteratonsadv do

Sample a trajectory τ = (s1,a
pro
1 ,aadv

1 ,r1,d1...sH) using θ pro and θ adv for all i

Compute generalized advantage estimates Âadv = Âadv
s1,a1

...Âadv
sH ,aH

using θ
pro
critic,θ adv

critic

and τ using Equations 2.35,3.1

θ adv
old ⇐ θ adv ;

for e = 1 to E pochs do

for batch = 1 to BatchSize do

Compute the L adv
batchi

using Equation 2.40;

θ adv⇐ θ adv−α∇θ adv
1
n ∑processi L

adv
batch ;

end for

end for

end for

end for

Figure 3.7. ACC-RARL Algorithm.
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c2S[πθ ](st) = c2 ∗∑(log(σ)+0.5∗ log(2πe)) (3.2)

Although entropy bonus is a part of PPO total loss function we did not include it in the

loss function because it decreased the performance of the policy. However, entropy bonus

should be a part of our comparisons in adversarial training scenarios and will introduce asym-

metry thus we will compare its inclusion in the protagonist and the adversary’s loss function

separately. Our hypothesis is motivated by the works on competitive and adversarial envi-

ronments that suggest that hard environments might hinder learning [55] [17]. Subsequently

impelling the protagonist to explore might prove to be beneficial in a randomized scenario al-

though it decreases the performance in environments with no adversaries. Similarly, adding

an entropy bonus to adversary’s loss function might prepare the protagonist for a wider range

of target tasks by extended domain randomization. Correspondingly the entropy bonus might

also hinder adversary to reach peak performance and simplify the environment. The entropy

coefficient we will use is 0.001 for adversary and protagonist loss function. All in all, two

different trained policies will be added to the policy buffer for each critic architecture.

3.1.3.3. Curriculum Learning. Curriculum Learning is a recent branch in transfer learning

that focuses on discovering the optimal arrangement of a group of source tasks to perform

better on the target task. In order to excel in complex tasks, humans follow specifically

designed curricula in higher education [74]. A more personalized curriculum will most

certainly lead to a more successful result for humans so we hypothesize that it will prove

beneficial for the learning of robots.

Similar to [55] [17], we will construct a random curriculum by randomizing the adver-

sary policy iterations during training. In our experiments, we will compare the performance

of protagonist policies trained with adversaries randomly chosen from different last T iter-

ations. We will use uniform sampling from a restricted last T adversary policy set for this

experiment because the Shioya et al.’s [17]’s proposition is computationally intensive and
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the first method corresponds to Shioya et al.’s [17] ”mean” method. In this thesis, we intro-

duce RARL PS-Curriculum where we first train the policy with the adversary in the source

task and record all the adversary policy snapshots at each iteration to policy storage. Then

at each iteration based on the sampling from the Uniform (δv,v) distribution, the adversary

from the policy storage will be loaded during sampling. This method is included in our ex-

periments because the adversaries loaded from and recorded to the buffer during curriculum

training become less capable and more inconsistent as the training progress and δ decreases.

3.2. Implementation

In this thesis, in order to demonstrate the generalization capability of our resulting pol-

icy, we introduce a set of transfer learning benchmarks on the Hopper-v2 and Humanoid-v2

environment in MuJoCo. Reproducibility of reinforcement learning algorithms is challeng-

ing due to colossal dependability on hyperparameters and implementation details. Conse-

quently, we will provide detailed information on experimental design and hyperparameters.

We will be using tanh activation functions for the hidden layers of the policy and the

critic network. tanh is a much better alternative to the sigmoid function because its mean

is centered around 0. The policy outputs the means of a multivariate Gaussian distribution.

Simultaneously a vector of logarithm of standard deviations representing the diagonal co-

variance matrix will be optimized as a separate variable tensor. If the policy is stochastic

then the action vector will either be the mean or a random value sampled from the resulting

multivariate Gaussian distribution. We will use a stochastic policy for the training and a

deterministic policy for the testing environment.

In the [30] implementation for humanoid, 16 parallel processes was used to sample

from structurally same environments concurrently with different random seeds during train-

ing time. Considering the hardware limitations and for the sake of consistent comparison we

will use 16 number of processes in our experiments. It is important to note that the number

of parallel evironments for sampling is a hyperparameter in the implementation because each

process uses different seeds for batch shuffling. The MuJoCo environments are stochastic

and the initial state of the agent is sampled from a random distribution thus each environment
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is initialized with a different initial seed. Similarly, the policy and critic network parameters

are initialized using separate random seeds at each process but before training phase, all the

policies are synchronized to take gradient with respect to the same parameters for an update

so the initialization randomness doesn’t effect the policies in PPO algorithm. Each MDP tu-

ple in the horizon of 2048 will be shuffled randomly before the beginning of the optimization

at each iteration. The resulting gradient step will be calculated for each batch by averaging

the gradients from all processes. The process of shuffling and optimizing overall batches will

be repeated for 10 epochs before sampling the next trajectory from the environment [30].

The adversarial architecture consists of a total of 2 actor-critic neural network pairs

and 2 old policy networks. The inputs of each neural network are the same however the

outputs of the adversary policy network differ from each other. Because Hopper-v2 is a 2-

dimensional environment 2 output neurons are specified to represent each force applied to the

geom component of the robot. The environment simulates actions from both the protagonist

and adversary at each iteration and outputs the reward based on the next derived position of

the agent.

3.2.1. Environment Variation

Friction is one of the environmental dynamics that have a substantial effect on bipedal

locomotion. In the MuJoCo simulator [18] the friction component of the floor consists of

three parameters which are tangential, torsional and rolling. When two surfaces come into

contact, the friction of the geometric surface that is higher in the hierarchy is used. If they

share the same hierarchy the maximum of the friction parameters are used. The tangential

coefficient of the friction is also valid across the surface.

Altering the gravity for each target task for the Humanoid and Hopper was one of

the Henderson et al. [14] designed multi-task environments in line with OpenAI’s request

for research [75]. For this implementation setting, we chose to implement one task trans-

fer learning from an environment with ground tangential friction 1 to an environment with

ground tangential friction 3 and 3.5. In [64] 4 target tasks are created with 0.25 increments

of the environment gravity more specifically 0.50G,0.75G,1.25G and 1.5G using MuJoCo
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simulator where G=-9.81. In our gravity experiments, we will use 0.50G,1.5G and 1.75G as

the target environment gravities to benchmark our propositions.

The environments are diverse enough to pose a challenging transfer learning problem

because the representation of a humanoid trained for the source environment friction with

parameters optimized for source task can’t walk in the target environment. No modifications

will be made to the loss functions for these environmental conditions.

3.2.2. Morphological Variation

Transferring among morphologically different robots with different limb sizes or torso

masses have been a popular multi-task learning benchmark [14] [1] [15]. In the first section,

we will test the generalization capability of our trained policy on a hopper with differing torso

masses to compare our proposition to other algorithms. In Section 5.3 we will introduce two

new target environments: a tall, heavy humanoid and a short, lightweight humanoid.
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4. ENVIRONMENT SETUP

This chapter provides information on the software and hardware used to carry out our

implementations. The same environmental setup is also used to reproduce results from [31].

4.1. Software Setup

Recent developments in the field of deep reinforcement learning commonly use the

open source toolkit named Gym developed by OpenAI [3, 55, 76, 77]. Gym toolkit offers

Algorithms, Atari, Box2D, Classic Control, Toy Text environments that are readily available

within the toolkit as well as MuJoCo and Robotics environments that should be integrated

with the MuJoCo physics engine [18].

MuJoCo is widely used by the research community due to its superior accuracy and sta-

bility among its counterparts [78]. The action spaces of the MuJoCo Humanoid and Hopper

environments are shown in Table 4.1 and Table 4.2 [76]. Continuous action and state spaces

are demonstrated as vectors where an element of the vector is assigned a value between a

specified interval in the environment. The environment also allows restricting the action

space to allow flexibility for researchers to demonstrate a malfunctioning joint. In particular

this case was implemented as a benchmark for adaptability of meta learning in [77].

Tensorflow version 1.10 for CPU is used to construct the deep neural networks used

in our experiments [79]. Learning curves are plotted using Tensorboard visualization toolkit

that is integrated with the Tensorflow framework. We use the Linux version and have installed

it in our Python 3 virtual environment.

4.2. Hardware Setup

After experimenting with the continuous control tasks we have found out that using

multiple processing with CPU provided faster results than the GPU alternative. Subsequently

all of our experiments are carried out by using 16 parallel processes. In order to avoid
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Table 4.1. Humanoid Actions

Name Gear

0 abdomen y 100

1 abdomen z 100

2 abdomen x 100

3 right hip x 100

4 right hip z 100

5 right hip y 300

6 right knee 200

7 left hip x 100

8 left hip z 100

9 left hip y 300

10 left knee 200

11 right shoulder1 25

12 right shoulder2 25

13 right elbow 25

14 left shoulder1 25

15 left shoulder2 25

16 left elbow 25

Table 4.2. Hopper Actions

Name Gear

0 thigh joint 200

1 leg joint 200

2 foot joint 200
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overheating on our local computer we conduct the meta training phases of our research on a

shared remote Ubuntu 16.04 server with 20 CPU cores.
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5. EXPERIMENTS AND DISCUSSION

In this chapter we will first discuss the details of the experiments conducted in the

source environments in Sections 5.1,5.2, then the target environment experiments will be

presented and analyzed using the methodology detailed in Chapter 3. All of the experiments

are performed in the MuJoCo simulator [18], the results are plotted in Matplotlib [80].

5.1. Humanoid Robot

As detailed in Equation 5.1, the reward function in the Humanoid environment consists

of

• an alive bonus,

• linear forward velocity reward,

• quadratic impact cost with lower bound 10

• quadratic control cost.

rhumanoid(s,a) = 0.25∗ rv f wd +min(5 ·10−7 ∗ cimpact(s,a),10)+0.1∗ ccontrol(s,a)+Cbonus

(5.1)

If the z coordinate of the agent’s root which lays at the center of the torso is not between

the interval 1 and 2, the episode terminates. The alive bonus Cbonus is specified as +5 for the

Humanoid task which is the default value for the Gym Humanoid Environment.

LCLIP+V F
t (θ)= Êt

[
LCLIP

t (θ)− c1LV F
t (θ)

]
(5.2)
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In Equation 5.2, the total loss function of the PPO algorithm that we will use to update

actor and critic networks is given. We do not use the entropy reward in the original algo-

rithm for PPO implementation because although we have used small entropy coefficients like

0.005, we did not see any improvement in the learning curve. Moreover, the entropy bonus

is not used in PPO implementation [30] [31]. In addition to that, in the OpenAI Baselines

framework [30], the clipping hyperparameter decays by the learning rate multiplier, we also

omit that because the learning curve tends to decrease after reaching the asymptote at the

later stages of training for higher state-action space environments. In the latest version of

PPO algorithm in OpenAI Baselines framework, clipping annealing in higher dimensional

environments was omitted after we submitted an issue. The algorithm moves away from the

minimum in the earlier implementation, as more samples are discarded because the clipping

parameter approaches 0 due to the decay.

Running Mean Standard deviation allows the mean µ and standard deviation σ of the

observations to update during training. It is also important to point out that at each iteration

the parameters of the value function approximator network change along with the policy

network. All of the observations are standardized and clipped to range [−5,5] before being

fed to the network as seen in Equation 5.3 [30].

s = clip((s−µ(s))/σ(s),−ζ ,ζ ) (5.3)

The hyperparameter space that will be used for the PPO policy gradient algorithm for

the source and target environments in this chapter is shown in Table 5.1. We propose a

constant clipping schedule and strict clipping parameters for action and state spaces with

higher dimensions and transfer learning scenarios.

In Figure 5.1 average episode rewards of policies trained with 4 different sets of hy-

perparameters are shown. 16 different seeds are used in parallel with the OpenAI Baselines

framework [30] implementation for each process and the policy parameters of each are saved
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Table 5.1. Hyperparameters

Hyperparameters Symbol Values

Clipping Parameter ε 0.01 0.025 0.05 0.1 0.2 0.3

Batch size b 64 512

Step Size α 0.0001 0.0003

Curriculum Parameter χ 0.3 0.5

Learning Schedule constant linear

Clipping Schedule constant linear

Trajectory Size H 2048

Discount γ 0.99

GAE Parameter λ 0.95

Adam Optimizer β1 0.9

Adam Optimizer β2 0.999

Number of Epochs 10

Entropy Coefficient 0.001

Number of Hidden Layers 2

Hidden Layer Size 64

Activation Function tanh
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Figure 5.1. Learning curve of policies trained in the standard humanoid environment with

different hyperparameters

Figure 5.2. Humanoid running in source environment using the last policy trained with PPO

ε = 0.1
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at intervals of 50 iterations. Learning curve obtained with the latest PPO hyperparameters

suggested in OpenAI Baselines framework [30] for the Humanoid environment are repre-

sented by the red curve. The learning curves for the strict clipping methods for generaliza-

tion are shown with clipping hyperparameters 0.01, 0.025 and 0.01 decaying learning rate

and clipping. Linearly decaying learning rate and clipping is a method used for environments

with lower dimensions but we include strict clipping variations with clipping hyperparame-

ters 0.01 and 0.025 of it in our benchmarks. In the testing phase, we will sample a trajectory

of 2048 timesteps from 32 different seeded target task environments for each policy in the

policy buffer.

5.2. Hopper Robot

Reward function of the hopper environment is given in Equation 5.4. Alive bonus in

the Hopper environment is Cbonus is +1 and the termination constraints ensure that the angle

between the hopper body and the ground and the hopper height are not below 0.2 and 0.7

respectively. Sum of squared actions could be regarded as a more primitive way of computing

control cost in the humanoid environment.

• an alive bonus,

• linear forward velocity reward,

• sum of squared actions

rhopper(s,a) = rv f wd −0.001∗∑a2 +Cbonus (5.4)

We choose to initiate 16 parallel processes with different random seeds for the Hop-

per environment and 1.875M timesteps of samples are collected from each uniquely seeded

environment. Hyperparameters of the best performing PPO in this experimental setting are

found via simple grid search. The input observations are standardized and clipped as in
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Equation 5.3 before being fed into the neural networks.The best performing clipping param-

eter, step size and batch size in source task environment are α = 0.0003,ε = 0.3 and b = 512.

Average reward per episode of PPO and RARL with different critic architectures at source

environment over a total of 30 million timesteps are shown in Figure 5.3.

Figure 5.3. Learning curve of policies trained in the standard hopper environment

The policies trained with different variations of RARL perform worse in the source

task environment, consistent with the comparison of the policies proposed in the Humanoid

experiments. The protagonist policy gains fewer rewards due to domain randomization cre-

ated by the adversary but a natural regularization occurs which counteracts to overfitting to

the target environment. We will further prove our hypothesis by introducing a validation task

in hopper morphology experiments. If an episode has not reached the termination in the hori-

zon of 2048 timesteps it gets truncated. The shaded regions around average episode rewards

as in Figure 5.4 reflect the standard deviation of the episode returns from 32 trajectories.

5.3. Morphology Experiments

5.3.1. Hopper

In these sets of morphology experiments, we will compare a total of 7 variants of

adversarial training: 2 entropy bonus and 4 curriculum learning for each critic structure we

have proposed in Section 3.1.3. Initially, the performance of different critic structures will
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be compared: RARL [10], shared critic network (SC-RARL) [8], our proposition Average

Consecutive Critic Robust Adversarial Reinforcement Learning (ACC-RARL). Next, the

best performing variation of each critic structure will be analyzed. Figure 5.2 shows the

morphological specifications of the standard Hopper.

Table 5.2. Source Environment

Body Unit Mass

Torso 3.53429174

Thigh 3.92699082

Leg 2.71433605

Foot 5.0893801

Total Body 15.26499871

Satisfactory average reward per episode for Hopper environment in the original PPO

benchmark has been found to be between 2000 and 2500 [31]. In Figure 5.3, best source

task reward is found to be above 3000 where the hopper hops quickly and seamlessly. In

RARL with TRPO, the torso mass range chosen for the experiments is [2.5−4.75] [15], we

will experiment with torso unit masses in the range[1−8]. [1−6] unit masses will prove to

be easier benchmarks thus the best performing policy for each critic structure comparison

will be omitted. The right iterations of baseline policy PPO performed adequately between

[1− 5] which suggests that domain randomization via adversary is unnecessary for some

tasks and succeeding in the target environment might boil down to knowing where to stop

during training or using the right iteration of policy from the policy buffer.

Algorithms trained with adversaries proposed in Section 3.1.3 are more unstable during

the training phase. In our experiments, we have witnessed that wrong choice of hyperparam-

eters destabilizes learning after convergence and the learning curve in the source environment

becomes concave as the average reward per episode starts to decrease after convergence.

First, the policy buffer is created based on our suggestion in Section 3.1.1. The policy

buffer will consist of snapshots of policies trained with PPO and 21 variants of RARL taken
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Figure 5.4. Average reward per episode at target environment with torso mass 1 of every 10

iterations from policy buffer

at intervals of 10. Hence, we will analyze the average reward per episode of 2002 different

policies and comment on their generalization capacities for torso masses [6−8]. For instance,

in Figure 5.4 the value of the last point on the ACC-RARL line represents the average reward

gained in the target hopper environment with torso mass 1 following the last snapshot of the

policy trained with ACC-RARL algorithm in the source environment where torso mass is

3.53429174 as given in Figure 5.2.

Figure 5.5. Average reward per episode at target environment with torso mass 2 of every 10

iterations from policy buffer
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In Figure 5.5, it is seen that different iterations of each algorithm reach maximum

performance in the target environment.

Figure 5.6. Average reward per episode at target environment with torso mass 3 of every 10

iterations from policy buffer

Figure 5.7. Average reward per episode at target environment with torso mass 4 of every 10

iterations from policy buffer

Figures 5.6 and 5.7 show that RARL and SC-RARL perform uniformly satisfactory for

the corresponding benchmarks close to the source environment. Analyzing only these target

environments might lead to failing to recognize policy iteration as a hyperparameter because

it doesn’t have much effect in these particular cases. Although both algorithms have different
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critic initializations each critic is updated for the same number of iterations and using same

structured loss functions thus it is understandable that In Figure 5.7 , the SC-RARL, and

RARL perform similarly in the target environment with torso unit mass 4.

Figure 5.8. Average reward per episode at target environment with torso mass 5 of every 10

iterations from policy buffer

There is a considerable difference between the target environment performances of

SC-RARL and RARL, especially in 800th iteration, in Figure 5.8 which implies that training

with the rewards of different trajectories sampled using different protagonist adversary pairs

do indeed have a drastic effect on the type of control behavior learned.

The performance of the last iteration of RARL starts to decay in Figures 5.4 and 5.8.

As a consequence, the agent should first resort to earlier snapshots of the policy intended for

transfer to succeed in the harder target environments. Let us assume that the agent only has

several snapshots of the policy in its policy buffer trained in the source environment with

standard torso mass. Then the agent is put in a target environment with torso mass 6 which is

analogous to an agent expected to carry weight while performing a control task. We propose

that in cases like these, instead of training from the very beginning because the last iteration

of each policy known by the agent performs below a certain threshold as in Figure 5.8, the

agent should primarily resort to earlier policies at intervals suited for the context because

the policies performing above 3000 are readily available in the agent’s memory if the policy

iterations are saved during training.
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The policy buffer allows us to analyze all the different patterns of hopping learned

during training. For instance, the type of hopping learned by the ACC-RARL between the

iterations 550 and 800 is successful in the source task environment and environment where

torso mass is 3 provided in Figure 5.6 but it is clearly unsuccessful in environments where

torso mass is 1 and 2 as illustrated in Figures 5.4, 5.5. If we had not recognized the policy

iteration as a hyperparameter then comparing the algorithms at arbitrarily selected iterations

would not constitute a fair comparison. More importantly, the PPO that is generally used

as a benchmark algorithm performs poorly if the last snapshot of it is used for comparison

in a target task in Figure 5.4. However, for target environments with torso masses [1− 5],

the right snapshots of PPO are capable of obtaining above 2500 average reward per episode

from the environment as seen in Figures 5.4, 5.5, 5.6, 5.7, 5.8. Thus, transfer learning

problem reduces to finding the most suitable snapshot of the policies from the policy buffer

and constructing a meaningful policy buffer.

We should be aware that these target environment performance plots are unknown to

us before sampling in the target environment. Consequently, we suggest that an alternative

proper comparison of algorithms can be made by computing the area above a predetermined

threshold for each line because that would suggest that the likelihood of choosing a robust

policy from the snapshots of policies trained with the corresponding algorithm is higher if the

area is bigger. Another evaluation method that we propose is to group the target environments

and compare the algorithms based on their average performance of all tasks from the same

group. However, in this thesis, we will plot the consecutive policy iterations of the algorithm

that generated best performing policy in the target environment to prove that an expert level

policy for a variety of environments has already been saved during training.

If target task with torso mass 3 is regarded as the validation task and a limited num-

ber of experiences were gathered to approximate generalization capacity of each policy, we

might have had some idea of what the jumpstart performance of each policy might be but we

cannot have anticipated that the policy iterations of ACC-RARL and RARL saved between

600 and 800 will perform worse for target task masses 1 and 2 as seen in Figures 5.4, 5.5.

Similarly, this method does not work for the iterations of PPO saved near 800. The best

performing policy iterations of PPO at validation environment yield fewer rewards than the
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earlier iterations as given in Figure 5.4.

Assuming that the environments are parametrized and the distance between the source

and target environments can be computed as a nonlinear function, it might be possible to

predict performance of the policies residing in the policy buffer. Coinciding with the per-

formances seen in Figures 5.4,5.9,5.11,5.13, it is anticipated that the earlier policy iterations

trained with less samples perform better as the distance between target environment and the

source environment increases in the parameter space. As seen in Figures 5.5, 5.6 and 5.7, the

last iteration of the policy trained with RARL with PPO perform better or same compared to

the original RARL experimentsn carried out with TRPO in [15]. For masses below hopper’s

torso mass the last iterations of ACC-RARL shown in Figures 5.4, 5.5, 5.6 performs superior

to the last iteration of SC-RARL and RARL.

Figure 5.9. Average reward per episode at target environment with torso mass 6 of every 10

iterations from policy buffer

In Figure 5.9, a significant target environment performance drop occurs after approxi-

mately 300th until the last policy iteration where all algorithms are affected. This implies that

the type of hopping behavior learned after a certain point of training can’t generalize to hop-

per environments with higher torso masses and all policy iterations trained via PPO algorithm

with the given hyperparameters are inadequate. It should be pointed out that the best per-

forming policy iterations of all algorithms start to get concentrated to the range [150−300]

thus a mapping between the target environment parameters and the policy iterations is highly
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probable.

Figure 5.10. Average reward per episode at target environment with torso mass 6 of every

10 iterations from policy buffer

Addition of the entropy bonus increased the fluctuation of the average rewards for all

algorithms as seen in Figure 5.10 but for the better. Because the standard deviations of ad-

versary’s output action probability distributions are increased during optimization, the adver-

sary takes more randomized actions which often changes the protagonist’s way of hopping

by destabilizing the equilibrium.

In harder environments with torso mass 7 and 8, the earlier iterations of the policy

trained with critic architecture ACC-RARL that we propose performs the best. Figure 5.11

shows that the range of the best performing policy iterations are contracted more and the

performance similarities of RARL and SC-RARL are more apparent as illustrated in Figure

5.7. Moreover, it is observed in Figure 5.12 that the benefit of adding entropy to the adversary

loss function in ACC-RARL and SC-RARL continues in the target environment with torso

unit mass 7 whereas standard RARL is seen to perform better in this case. Due to this

observation, it is deduced that the addition of entropy bonus is not guaranteed to increase the

maximum average performance in the target environment.

The best average episode rewards for SC-RARL is trained with adversary loss function

including the entropy bonus with entropy coefficient cadversary = 0.001 as shown in Figures
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Figure 5.11. Average reward per episode at target environment with torso mass 7 of every

10 iterations from policy buffer

Figure 5.12. Average reward per episode at target environment with torso mass 7 of every

10 iterations from policy buffer
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Figure 5.13. Average reward per episode at target environment with torso mass 8 of every

10 iterations from policy buffer

Figure 5.14. Average reward per episode at target environment with torso mass 8 of every

10 iterations from policy buffer
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5.10, 5.12, 5.14. Training with adversary entropy shifts the best-performing policy iterations

slightly to the right due to the increased domain randomization through the encouragement

of adversary policy exploration via entropy bonus.

Figure 5.15. Hopper robot hopping with torso mass 8 in target environment using the 150th

iteration of policy trained with ACC-RARL

When the mass of the torso is increased to 8, 150th iteration of policy trained with

ACC-RARL gains an average episode reward of 1914± 531.8 as plotted in Figure 5.13.

The hopper hopping in this environment is shown in Figure 5.15. It is observed that the

aforementioned policy is able to hop carefully until it loses balance and falls.

Although RARL trained with curriculum (RARL PS-Curriculum χ = 0.3) still per-

formed worse than ACC-RARL, it is observed that there is less variation among policy

snapshots recorded after 100 iterations as shown in Figure 5.14. The increase in the per-

formance indicates that training with the hardest adversary policies might not be beneficial.

The robustness of a randomly chosen snapshot from the policies trained with RARL PS-

Curriculum χ = 0.3 has increased. The curriculum learning variants don’t guarantee a better

performance since the only case one of them performed better than the original algorithms
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for this benchmark is in the target environment with torso unit mass 8 and the maximum

performance increase is negligible.

Table 5.3. Average Reward per Episode of 2 policy iterations trained with ACC-RARL

Unit Mass Iteration Average Reward per Episode

1 170 2903±11.74

2 170 3028±9.902

3 170 3132±3.32

4 170 3199±5.411

5 170 3152±444.4

6 170 3172±489.8

7 150 2606±952.3

8 150 1914±531.8

If the target environments are grouped as all the target environments lower than the

source environment’s torso mass and as all the target environments higher than the source

environment’s torso mass we find that each target group requires a different policy if the

highest possible target performance is intended. We show the performance of two policy

iterations with high generalization capacity trained with the ACC-RARL algorithm in Table

5.3 to demonstrate that only two closely saved policy iterations are capable of performing

forward locomotion when torso mass is in the range [1−8]. As the target environment gets

harder it is seen that the earlier iterations perform better due to the regularization effect of

early stopping.

5.3.2. Humanoid

Our aim in this section is to demonstrate the applicability of the method we proposed

in Section 3.1.2 in real life scenarios by transferring learning among different robots and

to accomplish a delivery task. We extend the morphological modification experiments to

cases where the loss function differs by introducing transferring learning among robots with

different morphologies. Since the termination criterion depends on the location of the center
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of the torso, the loss functions of both tall and short humanoid environment are updated. For

the tall humanoid, the range of the constraint shifts higher and for the short humanoid, it

shifts lower by the height of the waist component variant. In addition to that, the total body

weights of short and tall humanoids differ from the standard humanoid by the exclusion and

inclusion of the upper waist respectively as seen in Figure 5.16.

One of the expected critical missions of a service robot is to carry out household chores.

A large portion of these requirements involves tidying up the house and fetching the items

required by the humans. Relocating non-homogenous objects is a part of the problems that

occur in bipedal locomotion. In contrast to the tall and short humanoid environments, the

loss function does not differ from the standard humanoid source environment for the delivery

robot but the total body mass increases as much as the mass of the delivery box similar to

the tall humanoid benchmark.

The method of clipping is primarily used to discourage catastrophic displacement in

the parameter space. We observed that a higher clipping parameter causes a sudden drop in

the learning curve and puts the policy in an unrecoverable location at the policy parameter

space. We have found that when strict clipping with unconventional values like ε = 0.01 is

used in a transfer learning setting, the MDP samples that lead to overfitting to the source task

are discarded. Using strict clipping the trajectory that is used in the optimization process will

be free of the variance introduced by the source task-specific samples.

Table 5.4. Delivery Environment

Body Unit Mass

Delivery Box 5

Right Hand 1.19834313

Torso 8.32207894

Total Body without Delivery Box 39.64581713

Figures 5.16, 5.19 and 5.21 show the performance the of policies trained with clipping

parameter of ε = 0.1 and ε = 0.01. The lines of the strictly clipped policy iterations tend
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to be smooth thus saving the policy parameters every 50 iterations for all environments is

sufficient for this experiment. Additionally, we’ve also tried RARL algorithm for these tasks

but strict clipping performed superior with the hyperparameters we’ve used. Besides, strict

clipping achieved remarkably well results in our benchmarks so the domain randomization

enacted by the adversary is not needed. Strict clipping allows the humanoid to learn general

characteristics of forward locomotion that can be transferred to various different environ-

ments by discarding samples that cause overfitting.

Figure 5.16 shows that all the policies trained in the standard humanoid environment

with strict clipping ε = 0.01, saved after 950th iteration perform exceptionally well in the tar-

get environment. 1100th and 1250th policy iterations not only gained a high average reward

per episode but also performed consistently well with low standard deviation over all the

trajectories sampled from 32 environments with different seeds. The policy with the highest

average reward per episode 1250th is used for the short humanoid environment simulation.

The policy is directly transferred to the shorter humanoid and the short humanoid is able to

run without the need for adaptation. In contrast, the policy with clipping parameter ε = 0.1

can’t transfer the learning it attained in the source environment because the additional sam-

ples used during optimization caused overfitting to the source environment. It is seen in

Figure 5.16, that even the earlier iterations of the policy trained with clipping parameter

ε = 0.1 can’t be transferred to a shorter robot.

Figure 5.18 is a snapshot from the tall humanoid environment simulation when the

1450th policy iteration is used. We observed that the humanoid takes smalles steps to stay

in balance with a larger upperbody and a higher +z constraint. Although presumably taller

humanoid would be situated at an approximately opposite location in a hypothetical environ-

ment parameter space, the Figure 5.19 proves that same policy iterations trained with strict

clipping performs well in the tall humanoid environment. This suggests that the form of

moving forward is applicable in both of these environments as well as the source environ-

ment. As a result, a tradeoff between generalization capacity and the performance arises as

we prove that overfitting to the source task samples is a crucial issue. The tall humanoid

environment is a harder environment than the short humanoid in our results as expected be-

cause it is harder to keep balance with heavier upper body mass. Similarly, we also observe
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Figure 5.16. Average reward per episode of every 50 iterations from policy buffer for a

shorter humanoid

Figure 5.17. Short humanoid
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Figure 5.18. Tall humanoid

Figure 5.19. Average reward per episode of every 50 iterations from policy buffer for a

taller humanoid
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higher variance in the average rewards collected from the hopper environments with heavier

unit torso mass discussed in Section 5.3.1.

Figure 5.20. Standard delivery humanoid

Figure 5.21. Average reward per episode of every 50 iterations from policy buffer at target

environment where a delivery box of mass 5 unit is carried using right hand

Masses of relevant body parts for the delivery robot are given in Table 5.4. Taking into

account the total body mass, a delivery box with a unit mass of 5 constitutes a challenging

benchmark. The design decision was made to create imbalance by enforcing the humanoid

to carry the box only by the right hand. Humanoid is able to carry the heavy box just like a
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human using the 1200th policy. 1200th policy iteration that has the best target environment

jumpstart performance is shown in the simulation snapshot in Figure 5.20. The simulation

performance shows that the humanoid can generalize to this delivery task just by utilizing the

learning attained from standard humanoid environment. The reduction in the performance

after the 1200th iteration in Figure 5.21, supports our method of resorting to the earlier policy

iterations before discarding all the snapshots of the corresponding algorithm. This concavity

is also observed in the heavier hopper environments in Section 5.3.1 and suggests that the

experience and learning gained from the target environment is detrimental after a point based

on the target environment.

The humanoids fall immediately in the target environments when the best-performing

policy in the source environment is used thus the orange curves in Figures 5.16, 5.19 and 5.21

assess our claim that source environment performance isn’t indicative of the generalization

capacity. In contrast, when strict clipping is used as a regularization technique for PPO, the

humanoid is able to run in the proposed target environments. In these sets of experiments,

our policy buffer consisted of snapshots of policies trained with only ε = 0.1 and ε = 0.01.

An alternative policy buffer might consist of snapshots of policies trained with different hy-

perparameters or training methods and a better performing snapshot trained solely in the

source environment might be found for each benchmark. In order to find the best performing

policy from the buffer when there is no surrogate validation environment, more sampling

should be done in the target environment. Thus, the tradeoff between the number of trajecto-

ries rolled out and the performance in the target environment emerges. If this problem is not

acknowledged the number of experiences gathered from the environment might even exceed

the number of samples used for random initialization from the beginning. In consequence,

the policy buffer should consist of the least amount of snapshots possible. In this thesis, we

show how different policies perform in different target environments to provide insight on

logical ways of constructing a policy buffer.

5.4. The Friction Environment

Frictional variation is one of the most common scenarios encountered in real life for

bipedal locomotion of a humanoid. The environment we designed to benchmark this scenario
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is shown in Figure 5.22. The humanoid is seen sinking to the ground due to high tangential

friction but still is able to run using the policy trained with strict clipping unaware of the

environment friction.

When transferring the last iteration of a policy trained in an environment with tangen-

tial friction of 1 to an environment with tangential friction 4, we found that transferring the

learning from an easier task results in a higher asymptote and slope compared to jumpstart-

ing the harder task from ground zero. The striking difference of asymptotic performance

inspired us to look for better ways of designing the training environment.

Figure 5.22. Humanoid runing in target environment with tangential friction 3.5 times the

source environment

Instead of using multiple different policies for environments with different friction

coefficients, choosing a policy with a higher generalization capacity is sufficient even for a

target environment with 3.5 times the tangential friction of the source environment.

Table 5.5. Best Performing Iterations of Policies in Target Friction Environment

Clip Iteration Average Reward per Episode

0.01 1500 8283±24.26

0.1 300 1078±336.4

In Figure 5.23, the best jumpstart performances for each clipping parameter are given.

Each policy is tested on 32 different target environments initialized with 32 different seeds
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Figure 5.23. Comparison of average reward per episode of policies at target environment

with tangential friction 3.5 times the source environment

but has the same friction coefficient of 3.5. For instance, as seen in Figure 5.5, the last it-

eration of the policy with a strict clipping ε = 0.01 trained in the source environment has

an average reward of 8283 and a standard deviation of 24.26 across all target environments.

In contrast, the best performing policy in the source environment has a low generalization

capacity due to the fact that it overfits the source task environment. More samples are dis-

carded and the movement in parameter space is restricted using strict clipping thus the agent

learns more generalizable patterns of bipedal locomotion.

5.5. The Gravity Environment

During training in the source environment with earth’s gravity, hopper and humanoid

learn a variety of different techniques at different stages of training to perform target tasks.

When put in a challenging environment, the robot should resort to the snapshots of memories

engraved as the recorded saved policy parameters.



91

5.5.1. Hopper

In Learning Joint Reward Policy Options using Generative Adversarial Inverse Re-

inforcement Learning (OptionGAN) [64], the parameter space of gravity environment is

between 0.5Gearth and 1.5Gearth for both humanoid and hopper. The policy over options

converges to 2 different policies for Hopper tasks: one for lower and one for higher than

the earth’s gravity indicating that the tasks are complex enough to be solved with different

policies. In these sets of experiments conducted with a larger range of gravity environments

specifically 0.5Gearth and 1.75Gearth, we will prove that by only choosing the right iteration

of policies, gaining average episode reward greater than 3000 in the target environment is

possible without expert demonstrations.

Figure 5.24. Average reward per episode at target environment with Gravity= -4.905

(0.5Gearth)

For these sets of tasks, we will use the same policy buffer we’ve created using PPO

and different variations of RARL for the experiments in Section 5.3.1. The plots in Figures

5.24 and 5.25 prove that the probability of picking the right iteration of policies trained using

curriculum from the policy buffer that conforms to expectations is higher.

In Figure 5.26 the baseline PPO’s 420
th

policy is shown where the average return is

3493±294.2. Although it is the best performing policy among the policy iterations recorded

at intervals of 10 it is harder to find this iteration than the policies trained with RARL. The
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Figure 5.25. Average reward per episode at target environment with Gravity= - 4.905

(0.5Gearth)

Figure 5.26. Average reward per episode at target environment with Gravity= - 14.715

(1.5Gearth)
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Figure 5.27. Average reward per episode at target environment with Gravity= - 14.715

(1.5Gearth)

Figure 5.27 shows that training SC-RARL with curriculum and inclusion of entropy bonus

in adversary loss function not only increased the average reward per episode for the best

performing policy iterations but also increased the number of policy snapshots that achieved

an average episode reward above 2000.

Figure 5.28. Average reward per episode at target environment with Gravity= - 17.1675

(1.75Gearth)

As the target environment gets harder thus further away from the source environment,

the best performing iterations of policies are aggregated around earlier iterations. As seen
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in Figure 5.28 the domain randomization in naive PPO doesn’t suffice for generalization in

harder target environments.

Figure 5.29. Hopper robot hopping at target environment with Gravity= - 17.1675

(1.75Gearth)

Figure 5.30. Average reward per episode at target environment with Gravity= - 17.1675

(1.75Gearth)

In Figure 5.30 we see that encouraging the exploration of the protagonist policy through

the inclusion of entropy bonus increases performance for policies trained with ACC-RARL
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and SC-RARL. Although entropy doesn’t guarantee an increase in all harder target environ-

ments, in Section 5.3.1 we’ve also demonstrated that entropy increases the performance for

ACC-RARL and SC-RARL if included in the loss function of the adversary.

Figure 5.29 shows the hopper hopping in target environment with Gravity= - 17.1675

(1.75Gearth) following the policy trained via SC-RARL with protagonist entropy bonus

cprotagonist = 0.001. In Figures 5.28 and 5.30 we see the same concavity encountered in the

performance plots of heavier torso mass target environments in Section 5.3.1 and delivery

environment in Section 5.3.2. As the difference between the target environment and the

source environment increases, the range of the better performing policy iterations reduces

similar to the observations for the heavier torso mass environments discussed in Section

5.3.1. This curve is analogous to the convexity of the test error curve in supervised learning

problems where movement towards the earlier training cycles along the training error curve

leads to underfitting and the later training cycles results in overfitting. The optimum point

on the curve has high generalization capacity and performance in the target environment.

Additionally, just as the training error curve stays the same the source task performance is

the invariant whereas the target environment structure is the variable affecting the learning

curve of the test error.

The higher gravitational force also acts similar to heavier torso mass so there might be

some correlations between the proposed environments but the regularization effect of early

stopping does contribute to the increased generalization capacity. Above all, the gravity envi-

ronments performed in line with morphological modifications and resorting to earlier policy

parameters is shown to be a befitting method to succeed in harder target environments.

5.5.2. Humanoid

In order to stay in balance under harsh circumstances, the policy that is being trans-

ferred should be robust to unknown environmental dynamics. Walking uninterruptedly in

gravities lower and higher than the earth’s environment requires different patterns of forward

locomotion unlike the morphological humanoid benchmarks in 5.3.2 where the 150th iter-

ation of each policy trained with the same clipping parameter gained above 4000 average
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rewards per episode for all environments.

Figure 5.31. Humanoid in target environment with gravity= -4.905 (0.5Gearth)

Figure 5.32. Average reward per episode at target environment with gravity= -4.905

(0.5Gearth)

Figure 5.31 shows that when the last iteration of the policy trained with strict clip-

ping ε = 0.025 is used in the target environment with gravity = −4.905 (0.5Gearth) the hu-

manoid is able to run. Although earlier snapshots of the policy that shows the best training

performance yields less average rewards than the last policy iteration of PPO trained with

ε = 0.025 in the target environment, the performance is still remarkably well. Both regular-

ization techniques namely early stopping and strict clipping show the same performance and

generalization to this target environment.
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Figure 5.33. Humanoid in target environment with gravity= - 14.715 (1.5Gearth)

Figure 5.34. Average reward per episode at target environment with gravity= - 14.715

(1.5Gearth)
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Utilizing both strict clipping and early stopping was used together in harder environ-

ments like the delivery environment in Section 5.3.2. Similarly, in the target environment

with gravity= - 14.715 (1.5Gearth) the humanoid needs to resort to the previous snapshots of

the policy trained with strict clipping ε = 0.025 as plotted in the Figure 5.34. The bipedal lo-

comotion pattern in the simulated target environment with gravity= - 14.715 (1.5Gearth) when

the humanoid jumpstarts with the 600
th

policy trained with clipping parameter ε = 0.025 is

shown in Figure 5.33.

Figure 5.35. Humanoid in target environment with gravity= - 17.1675 (1.75Gearth)

Gravity benchmarks for the humanoid indicate that snapshots of different policies

should be used for the target environment with gravity= - 17.1675 (1.75Gearth).The policy

iterations trained with hyperparameters ”ε = 0.01, and decaying learning rate and clipping”

performed poorly in the source environment and target environment with lower gravities

given in Figures 5.1 and 5.32 respectively. However, the last iterations of them perform

consistently well in environments with higher gravities. Figures 5.34 and 5.36 reveal that

decaying clipping during training might have hindered the exploration and restricted the hu-

manoid to stick to a more careful way of stepping forward under the high gravitational force

which pulls the humanoid to the ground as in Figure 5.35.
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Figure 5.36. Average reward per episode at target environment with gravity= - 17.1675

(1.75Gearth)
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6. CONCLUSION

Humans are capable of analyzing continuously arriving data from five senses and ac-

cumulate vast knowledge throughout their existence. In the quest of building machines with

higher capabilities, transferring the accumulated knowledge among tasks and starting an un-

known task with a strong prior understanding are essential. On account of this, we address

the crucial problems in transfer learning that should not be neglected to develop meaningful

novel algorithms and suggest new methods to increase the ability of generalization.

Transfer learning via deep reinforcement learning techniques is shown to be tricky

because the generalization capacity is inherently dependent on the hyperparameters. The

results we show in Chapter 5 are in line with our hypothesis that overtraining is, in fact, a

major issue in transfer deep reinforcement learning.

In this thesis, we first proved that source task environment performance isn’t indica-

tive of generalization capacity and target task performance in deep transfer reinforcement

learning. An agent tries a substantial amount of different action combinations depending on

the hyperparameters in the training phase of deep reinforcement learning algorithms. With

each environment interaction, the agent’s strategy of solving that particular task is aimed to

advance globally. At some point, the agent becomes an expert at performing that task but

doesn’t remember the strategies it has acquired during the earlier phases of learning. We

proved that these overridden strategies or robust strategies with poorer training performance

yield higher performance in our transfer learning benchmarks. Provided that forward loco-

motion is an integral problem in continuous control, we altered the gravity and the tangential

friction of the environment and the morphology of the agent in our benchmarks.

In our work, we propose keeping a policy buffer analogous to human memory to cap-

ture different strategies because training performance doesn’t determine test performance in

supervised learning problems. Accordingly, transferring the best performing policy at source

task environment to the target environment will prove to be an inadequate evaluation tech-

nique as the difference between the source and target environment increases. Consequently,
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this methodology allowed us to compare the extended scope of each algorithm and transfer

the learning attained in a source environment to harder target environments. Hence we re-

duced the problem to choosing the best performing policy for the target environment from

the buffer. In addition to that, we suggest the use of surrogate validation environment if

possible, to tune the hyperparameters via choosing the best fitting policy from the buffer.

In supervised learning for deep neural networks, early stopping [81] is used when the

algorithm’s generalization capacity starts to decrease. To the best of our knowledge, this

thesis is the first study that extends the use of early stopping as a regularization technique

to deep reinforcement learning. Knowing where to stop depends on the difference between

target and the source environment thus since we’re not given the context of the target en-

vironment during training in the source environment we keep snapshots of policies in the

policy buffer. By recognizing the iteration of training as a hyperparameter in our exper-

iments we’ve managed to retrieve the overridden strategies that yield high rewards in the

target environments due to their generalization capacity. For instance, we proved that a hop-

per robot is capable of performing forward locomotion in an unknown environment 1.75

times the source task’s gravity using the policies saved at earlier iterations.

We provided comparisons of RARL algorithms trained with different critic structures,

curriculum learning, and entropy bonus and showed how the choice of training affect the

generalization capacity for Hopper task. We proposed the ACC-RARL algorithm as a new

critic structure and showed that it increased performance significantly in harder torso mass

tasks.

Furthermore, we introduce strict clipping for Proximal Policy Optimization (PPO) [31]

as a regularization technique. Using an unconventionally low clipping parameter we dis-

carded the samples that overfit the source task namely the standard humanoid environment.

We observed higher jumpstart performance in humanoid environments with higher tangential

friction, a larger range of gravity and morphological modifications using the robust policies

saved during training. Decreasing the Kullback–Leibler divergence constraint for Trust Re-

gion Policy Optimization (TRPO) is a future research direction we would like to explore.
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Although outside the scope of transfer learning, we’ve discovered that decaying the

clipping parameter decreases final policy performance for the humanoid environment that

has higher state, action space. The transfer learning algorithms we use are based on the

state-of-art algorithms built for continuous control thus this finding had a substantial effect

on our experiments.

We believe that the first step of determining the most promising policy parameters lies

in the accurate parametrization of the environment. We would like to investigate the relation-

ship between the parametrized distance between environments and the policies residing in

the buffer. This unknown mapping might be depicted as a nonlinear function approximator

and should be estimated with the least amount of data possible.

In this thesis, we showed the necessity of hyperparameter tuning to increase the gener-

alization capacity of the transferred policy. However, in some cases we proved that a median

task between the source task and the target task might not always give us an idea of source

task performance. Accordingly, we believe designing a better surrogate validation task is a

fruitful future research direction.
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