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ABSTRACT 

 

 

THE IMPACT OF FLOW CONNECTIVITY ON THE INTERPRETATION 

OF PUMPING TEST DATA 

 

 

The spatial variability of subsurface flow parameters, such as the transmissivity or storativity, 

is a common feature of all geologic systems. Traditional geostatistical techniques expressed this 

heterogeneity in terms of two-point correlations. Recent research suggests that such characterization 

technique may not be adequate to fully represent the complex patterns of flow and transport in 

heterogeneous subsurface systems. The concept of flow connectivity has been introduced to 

describe how different regions of the aquifer relate to each other. In this study, the impact of point-

to-point flow connectivity on radially convergent flow towards a well is investigated numerically. A 

Monte Carlo approach is adopted whereby a large number of heterogeneous aquifer systems with 

different levels of connectivity are synthetically generated and then used to simulate pumping tests. 

Two pumping test methods, the Cooper-Jacob Method and the Continuous Derivation Method, are 

used to estimate the flow parameters from the time-drawdown curves, and examine how the 

estimated parameters relate to the underlying heterogeneous aquifer systems. Results indicate that 

the estimated transmissivity value approaches to the geometric mean of the full transmissivity field 

as the time-drawdown derivative dataset is included in the interpretation. On the other hand, the 

estimated storativity is strongly influenced by the spatial distribution of the transmissivity, the 

aquifer point-to-point flow connectivity and the relative locations of the observation and pumping 

wells. The relations between the estimated storage coefficient and a static measure of connectivity 

are also examined.  

  



 

 

iv 

 

ÖZET 

 

 

AKIŞ BAĞLANTISALLIĞININ POMPAJ DENEYİ VERİLERİNİN 

YORUMLANMASINA ETKİSİ 

 

Hidrolik iletkenlik ya da transmisivite gibi yeraltı akış parametrelerinin mekana bağlı olarak 

değişim göstermesi tüm jeolojik sistemlerin ortak bir özelliğidir. Geleneksel jeoistatistiksel 

teknikler bu heterojenliği iki nokta korelasyonları olarak ele almaktadır. Buna göre, iki noktadaki 

akış parametrelerinin kovaryansı yalnızca mesafenin bir fonksiyonu olarak ifade edilmiştir. Son 

araştırmalar, bu karakterizasyon tekniğinin, heterojen yeraltı sistemlerindeki karmaşık akış ve 

taşınım modellerini temsil etmek için yeterli olmayabileceğini göstermektedir. Bu sorunu ele almak 

ve akiferin farklı bölgelerinin birbiriyle nasıl ilişki kurduğunu tanımlamak adına akış bağlantısallığı 

kavramı üzerine yoğunlaşılmaktadır. Bu çalışmada, akış bağlantısının yanal yeraltı suyu akışına ve 

pompaj testi verilerine olan etkisi sayısal olarak incelenmiştir. Pompaj testleri uygulamada yeraltı 

akış parametrelerinin belirlenmesinde sıklıkla kullanıldığı için bu çalışmanın da temelini 

oluşturmaktadır. Farklı akış bağlantı seviyelerine sahip çok sayıda heterojen akifer sistemi sentetik 

olarak üretilmiş ve bu akiferlerde pompaj deneylerinin simüle edildiği bir Monte Carlo yaklaşımı 

benimsenmiştir. İki farklı pompalama deneyi çözümleme yöntemi, Cooper-Jacob Yöntemi ve 

Sürekli Türevleme Yöntemi, zaman-alçalma eğrilerinden faydalanarak akış parametrelerini 

belirlemek ve bu parametrelerin heterojen akifer sistemleri ile ilişkisini incelemek için 

kullanılmıştır. Sonuçlar, hesaplanan transmisivitelerin sentetik olarak oluşturulan alanların 

transmisivite değerlerinin geometrik ortalamasına yakınsadığını göstermektedir. Öte yandan, yeraltı 

suyu seviyesi alçalma verilerinden hesaplanan depolama katsayısı transmisivitenin mekansal 

dağılımına, akifer noktadan noktaya akış bağlantısına ve gözlem ve pompalama kuyularının 

konumuna göre değişim göstermektedir. Son olarak, bu iki yöntemle hesaplanan depolama 

katsayıları ile statik bir bağlanabilirlik ölçüsü arasındaki ilişki incelenmektedir. 
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1.  INTRODUCTION 

 

 

 Water is one of the essential resources for the survival of humans and living organisms on 

Earth. Although 80% of the Earth surface area is covered with water, the freshwater that can be 

utilized for personal, domestic, agricultural and industrial purposes accounts for only 3% of the 

total amount (Figure 1.1). Moreover, 69% of freshwater is in the form of glaciers and not available 

for use. Groundwater, which is the water stored under the surface of Earth, in the pores of rocks and 

soil, accounts for 97% of unfrozen freshwater (Kresic, 2007). As shown in Figure 1.2, the volume 

of groundwater accounts for most of the total amount of freshwater that is available to use.  

 

 

Figure 1.1. Distribution of Earth’s water 
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Figure 1.2. Distribution of freshwater based on its source 

 

Groundwater is the most precious resource of fresh water not only because it is the most 

abundant but also because of its resilience to the impacts of seasonal changes and temperature 

variations compared to surface waters. Moreover, it is generally less polluted than surface water 

bodies. It is a critical buffer resource, especially where surface waters are not sufficient such as in 

arid and semi-arid regions. In other words, groundwater is almost readily available to use, reliable 

in drought years and, under normal conditions, it requires minimal treatment (Foster and Chilton, 

2003). It should be noted that although groundwater bodies are less sensitive to human-based 

pollution than surface water bodies, when groundwater is polluted it is much more challenging to 

remove the contaminants due to difficulties in determining the source and location of 

contamination, physical inaccessibility, and the need to remediate large volumes of groundwater. 

Moreover, it may take tens or even hundreds of years to experience the adverse impacts of pollution 

which makes control of pollution more problematic. 

 

The modeling of groundwater flow and contaminant fate and transport has become an effective 

tool for evaluating the availability of groundwater resources, assessing the impact of pollution if 

there is any, and in support of remedial activities. Accurate modeling of subsurface flow and 

pollutant transport requires accurate estimates of aquifer parameters to represent the essential 

features of the subsurface system. All aquifers have two major characteristics: the capacity of water 

flow and the capacity for water storage. Hydraulic conductivity and transmissivity are the 
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parameters used to define the capacity of water flow, and specific storage or storativity are the 

parameters that determines the capacity of water storage. In order to model groundwater flow and 

contaminant transport behavior of an aquifer realistically, transmissivity and storativity should be 

estimated properly over the entire domain of interest. 

 

It is widely acknowledged in the literature that these parameters vary significantly in space and 

that variability has a large influence on the behavior of groundwater flow and contaminant transport 

(Dagan and Neuman, 1997). Therefore, developing accurate representations of aquifers systems for 

modeling purposes requires the use of data acquisition and interpretation techniques that can 

provide quantitative detailed information about the spatial variability of the flow parameters. 

 

Pumping tests have been used for the estimation of subsurface flow parameters for many 

decades. Pumping tests involve the extraction of water and monitoring the change in water levels at 

one or more observation wells. From the water level response, the aquifer parameters are estimated. 

Traditionally, pumping test interpretation techniques are based on the assumption of soil 

homogeneity (Sanchez-Vila et al., 1999). However, extensive field data have shown that subsurface 

flow parameters are almost always heterogeneous with complex patterns of spatial variability 

(Seyfried and Wilcox, 1995; Fogg et al., 1998; Kresic, 2007). Moreover, the use of average values 

of flow parameters in modeling efforts can lead to inaccurate predictions of flow and transport. 

 

The complexity in the spatial variability of subsurface formations has led researchers to 

develop the field of geostatistics (Gelhar, 1993). Geostatistics is the application of statistical 

techniques to Earth sciences that was developed to account for the heterogeneity of the subsurface 

and the uncertainty in the definition of Earth properties. In geostatistics, soil parameters are defined 

in a stochastic framework, meaning that they do not have a single unique value but can have a range 

of possible values. This range of possible values reflects the level of uncertainty in the definition of 

these parameters. As a result, the dependent variables, such as groundwater flow and transport 

parameters, are also considered as random spatial variables. In recent years, these geostatistical 

methods have been widely used to account for soil heterogeneity relating to groundwater flow 

problems.  

 

A fundamental feature of gesotatistics is that parameters are correlated in space, meaning 

that parameters, such as hydraulic conductivity, at two locations are correlated. This correlation is 

expressed in terms of a covariance function that is a function of separation distance of these two 

points. The covariance function defines statistically the spatial heterogeneity of the parameters. 
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However, it has been reported in the literature that this two-point statistical approach is often not 

sufficient to fully represent complex patterns of flow and transport in heterogeneous subsurface 

systems (Sanchez-Vila et al., 1996; Gomez-Hernandez and Wen, 1998; Western et al., 2001). Two 

aquifers may have the same two-point statistical parameters, variance, and integral scale, but may 

end up showing very different water flow or solute transport behaviors.  

 

To address this issue, the concept of flow connectivity has been introduced to describe how 

different regions of the aquifer relate to each other. Flow connectivity refers to the presence of 

preferential flow channels where the groundwater flow and contaminant transport can occur faster 

than the other regions of the aquifer. Although the concept of flow connectivity is simple to 

understand and has been often reported in field studies, there is no single quantitative measure of 

connectivity that is accepted universally (Renard and Allard, 2011). Moreover, the impact of 

connectivity on pumping tests is still not well understood. Thus, the main focus of this study is to 

examine the impact of the flow connectivity on radially converging flow to a well in the 

heterogeneous confined aquifers and on the interpretation of pumping tests. This way, the 

interpreted flow parameters using pumping test analysis may be estimated more accurately by 

taking the spatial subsurface structure and flow connectivity into consideration. Ultimately, the 

performances of the groundwater flow and transport models that use these estimated parameters as 

input are improved since the real aquifers are represented more realistically.  
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2.  LITERATURE REVIEW 

 

 

2.1.  Aquifer Characteristics and Their Stochastic Analysis 

 

A natural geological formation that allows a significant amount of water to flow under the 

surface is called an aquifer (Kresic, 2007). There are 3 general types of aquifers, namely confined, 

unconfined, and semi-confined or leaky. A confined aquifer can be defined as an aquifer that is 

located between two impermeable layers and totally saturated with water. An unconfined aquifer, 

on the other hand, has no confining layer at the top, but still sits upon an impermeable bed. Leaky 

aquifers occur when the underlying and/or overlying layers allow some inflow into the aquifer.  

 

Groundwater flows from locations of high hydraulic head to low hydraulic head. The first 

quantitative analysis of water flow through porous media was performed by Henry Darcy in 1856 in 

the city of Dijon, France to describe water flow through sand beds. He designed an experiment that 

allows water to flow through a homogeneous send bed and derived the rate of flow equation 

empirically as given below: 

 

 
dh

Q KA
l


 


 (2.1) 

 

Where 

Q rate of flow [L3/T] 

K hydraulic conductivity [L/T] 

A cross sectional area [L2] 

𝛥ℎ𝑑 hydraulic head difference [L] 

𝛥𝑙 length of flow [L] 

 

Darcy Law (1856) that is shown by equation (2.1) states that the rate of flow through porous 

media is directly proportional to the cross-sectional area of flow (A) and the hydraulic head 

difference between the initial and final points (Δh), and is inversely proportional to the length of 

flow (Δl). The proportionality constant K is referred to as the hydraulic conductivity, which is a 

measure of how easily a fluid can pass through the soil. It depends on both soil type and fluid 

properties and has units of [L/T]. When the fluid flowing through the porous media is water, the 

hydraulic conductivity range is from about 10−2 m/s in gravel to 10−17 m/s in clay (Heath, 1983). 
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Hydraulic conductivity is an essential parameter to understand the behavior of subsurface water 

flow. However, the wide range of values observed in real soils means that the accurate definition of 

the hydraulic conductivity is difficult in practice. 

 

In many cases, it is more convenient to work with the transmissivity parameter (T) which is the 

integral of hydraulic conductivity as a function of aquifer thickness and has a dimension of [L2/T]. 

The mathematical equation of transmissivity is given in equation (2.2) below: 

 

 T Kdz   (2.2) 

 

The second fundamental parameter for the characterization of groundwater flow behavior is the 

specific storage (Ss), which is defined by Freeze and Cherry (1979) as “the volume of water than an 

aquifer releases from storage, per unit aquifer volume per unit decline in the hydraulic head”. It has 

units of [1/L] and it is a function of aquifer and water compressibility, water density, soil porosity 

(the volume of voids over the total volume of soil) and gravitational acceleration. 

 

A parameter directly related to the specific storage is the storativity (S) which is the volume of 

water released from unit surface area of the aquifer for a unit decline in the hydraulic head (Delleur, 

1999). For confined aquifers, storativity equals to specific storage times the saturated thickness of 

the aquifer: 

 

 sS S b  (2.3) 

   

 

Where 

S storativity [-] 

Ss specific storage [1/L] 

b aquifer thickness [L] 

 

These parameters are often determined from pumping test analysis, which includes examining 

the change in water levels at various locations due to water extraction from a pumping well. The 

change in water level due to pumping is referred to as drawdown (s). Generally, the drawdown vs. 

time graphs observed at the pumping well or nearby monitoring wells due to constant pumping are 

analyzed to determine flow and storage parameters (Delleur, 1999). However, commonly used 
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pumping test analysis methods are based on aquifer homogeneity and isotropy, which are almost 

never the case in real life. Numerous studies have shown that flow parameters vary significantly in 

space in a complex pattern (Gelhar, 1984; Kuang et al., 2020). Thus, one single estimate of flow 

parameters would not be adequate to provide a good representation of the whole subsurface 

structure. 

 

Spatial variability of flow and transport parameters can be defined at various characteristic 

length scales ranging from the pore scale (in the order of millimeters), to the local scale (in the 

order of up to several tens of meters) and regional scale (in the order of up to several kilometers) 

(Dagan, 1986). Characteristic length is defined by Dagan (1986) as “the average distance over 

which properties are correlated”. Because of that, identifying the length scale of concern is an 

essential step before starting the analysis. The emphasis in this study is on the intermediate (local 

scale heterogeneity) which is relevant to many contamination fate and transport problems. 

 

The spatial variability and high uncertainty in flow parameters have led to the development of 

stochastic analysis in hydrogeology. In a stochastic approach, the flow parameters are treated as 

spatial random variables and it is assumed that they can be represented by statistical models. As a 

result, dependent parameters such as hydraulic head, velocity and concentration are also random 

spatial functions. (Gomez-Hernandez, 1998).  

 

It has been observed at numerous field experiments that the hydraulic conductivity and 

transmissivity are often log-normally distributed (Freeze, 1975; Gelhar, 1993). In other words, the 

natural logarithm of transmissivity has normal Gaussian distribution which is the distribution of 

many other parameters in nature. In order to work with a normal distribution, a new variable Y, 

where Y=lnT or Y=lnK is defined and used for calculations. Because Y is normally distributed, its 

histogram can be represented by two statistical measures: its mean and variance, where mean is the 

arithmetic average of natural logarithms of measured data, or the geometric mean of the 

untransfromated hydraulic conductivity or transmissivity data, and variance is the spread of 

measured data around the mean (Kitanidis, 1997). Based on these observations, the multivariate 

Gaussian spatial random function model is often used for the representation of spatial variability of 

flow parameters such as the hydraulic conductivity or transmissivity. This fundamental continuous 

model assumes that the flow parameters have a Gaussian distribution and are correlated in space. 

The model enables the statistical representation of flow parameters in terms of the mean and 

semivariogram, or a covariance function which is typically expressed in terms of the variance and 

correlation scale. The correlation scale indicates the distances over which a parameter is correlated 
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in space. Larger values of the correlation scale means that the correlation persists over longer 

distances. 

While the mean and variance combine all available data without considering their location, the 

semi-variogram (also the covariance) describes the spatial variability and the continuity of the 

parameters within the field. The semi-variogram is calculated as the difference of all measured data 

pairs separated at a fixed distance from each other. Deciding on the most accurate semi-variogram 

function is critical for the development of the geostatistical model. The most commonly used semi-

variogram in hydrogeology is the exponential model since it provides an effective representation of 

the spatial distribution of soil parameters (Kitanidis, 1997; Dagan and Neuman, 1997). The 

exponential semi-variogram function is shown in equation (2.4) below: 

 

 
2( ) 1 exp

h
h

I
 

  
    

  
 (2.4) 

 

Where 

( )h  semi-variogram function 

h  separation distance, 

2  variance of the log-transmissivity distribution, 

I  integral scale which describes the distance overwhich the parameter of concern 

shows correlation in scale. For distances greater than 3I, data are assumed to be completely 

independent from each other. 

 

As such the log-transmissivity field can be represented using three statistical parameters, 

namely, the log-transmissivity mean, variance and semi-variogram integral scale (Rubin, 2003; 

Copty and Findikakis, 2004a). The main problem with this classical stochastic approach, which 

relies on two-point statistics, is that it only considers the flow parameters separated by a certain 

distance and ignores the values between the two points. Because of that, it is not always sufficient 

to grasp the heterogeneity of flow parameters. In the recent literature, a new statistical parameter, 

referred to as connectivity is introduced in an attempt to represent the spatial variability of 

parameters and how they are connected in space (Westen et al., 2001; Zinn and Harvey, 2003; 

Renard and Allan, 2011). Flow and transport connectivity is reviewed in detail in Section 2.3.  
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2.2.  Interpretation of Groundwater Flow and Contaminant Transport Parameters Based on 

Pumping Test Analysis 

 

A pumping test is the most commonly used field experiment for the estimation of subsurface 

flow parameters. It includes extraction of water, generally at a constant rate, and recording of the 

drawdown curve at the pumping well and several observation wells. The time-dependent drawdown 

curve is then analyzed with either analytical or numerical methods. The first analytical estimation 

method of flow and transport parameters using the drawdown curve was proposed by Theis (1935). 

This method requires graphical curve matching for estimation, and it is derived for pumping tests in 

confined aquifers. The Theis equation is can be written as: 

 

 

( , ) ( )
4

Q
s r t W u

T
  

 

2

4

r S
u

Tt
  

(2.5) 

 

 

(2.6) 

 

Where 

r radial distance from the pumping well [L], 

t pumping time [T], 

Q constant well discharge [L3/T], 

T transmissivity of the aquifer [L2/T], 

S storativity of the aquifer, [-], 

s(r,t) drawdown as a function of time and radial distance from the well, [L], 

W(u) Theis well function, [-] 

 

The well function is defined as: 

  

 ( )
u

u

e
W u du

u

 

   (2.7) 

 

It can also be written in a series form as follows: 

 

 
2 3 4

( ) 0.5772 ln( ) ...
2*2! 3*3! 4*4!

u u u
W u u u         (2.8) 
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As mentioned above, the Theis method is a graphical application that gives estimates of the 

transmissivity and storativity if the other parameters, flow rate, distance and time, are known. It 

requires the graphical matching of W(u) vs. 1/u curve with the drawdown vs. time curve. Then, 

drawdown, time, parameter u, and W(u) are determined from the point of match. When multiple 

pumping tests are performed, each test is typically analyzed separately.  

 

It is important to note that this method is built on many assumptions. The fundamental 

assumptions are as follows: 

 

 The aquifer is considered as infinite in size, homogeneous, isotropic, confined and 

uniform in thickness. 

 Well storage is ignored; all discharge is received from the aquifer. 

 Fully penetrating, 100% efficient well is assumed. 

 

If the conditions are not met, which happens frequently in real life, then this method cannot be 

used and other estimation methods should be considered (Kresic, 2007). 

 

Cooper-Jacob (1946) proposed a modified version of the Theis equation that does not require 

graphically matching and thus, it simplifies the estimation of flow and transport parameters. It 

involves the semi-log plot of drawdown data and the method is only applicable for the late times of 

the drawdown curve where the parameter u is equal to or less than 0.1 (Kresic, 2007). Briefly, late 

time drawdown data are averaged to estimate flow and transport parameters. After estimation of the 

transmissivity (T) and storativity (S), the u parameter should be recalculated to make sure that its 

condition is still met. As the Cooper-Jacob method starts from the Theis solution, it relies on the 

same assumptions as Theis method. The heterogeneity of soil, for example, cannot be investigated 

with these methods. Due to the oversimplification of subsurface system, the estimated parameters 

may not be adequate to represent real field conditions. 

 

In recent years, many studies have been conducted to examine the effects of subsurface 

heterogeneity and spatial variability of the flow and transport parameters on the estimates of flow 

parameters derived from pumping tests. Butler (1990) demonstrated that the estimated 

transmissivities using the Theis Method gets affected by the transmissivity around the well. Feitosa 

et al. (1994) used an inverse method to estimate flow parameters as a function of radial distance 

from the extraction well by positioning the transmissivity field as consequent homogeneus rings. 
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Meier et al. (1998) numerically investigated the impact of aquifer heterogeneity on the estimated 

parameters from the analysis of pumping tests. They found that the estimated transmissivity of the 

heterogeneous field was close to the geometric mean of the transmissivity calculated by the Cooper-

Jacob Method. Moreover, it was shown that the observation location does not affect the estimated 

transmissivity significantly. Estimated storativity, on the other hand, varied significantly with the 

location of observation. 

 

Because pumping tests are cost intensive, generally only one or a few pumping tests are 

present for a given field and it is difficult to infer information about the statistical parameters of 

local scale heterogeneity from limited data using the classical interpretation techniques. Lately, a 

number of new techniques have been developed in an attempt to estimate the statistical parameters 

that describe the hydraulic conductivity field from pumping tests. The rationale of these methods is 

to try and maximize the information that can be inferred from pumping test data. 

 

Copty and Findikakis (2004b) attempted to estimate the statistical parameters of the 

transmissivity field using time-drawdown data derived from pumping tests. For this purpose, 

synthetic transmissivity fields with different log-transmissivity variance and integral scale values 

were generated and the time-drawdown graph of each field is computed under 

constant well discharge. The transient drawdown of an equivalent homogeneous field was also 

computed for comparison and normalization. Then, a Bayesian parameter estimation method was 

applied to get the probability distribution functions of log-transmissivity variance and integral scale. 

They concluded that the semi-variogram can be estimated from pumping test data, and the accuracy 

of the estimated semi-variogram increases as the number of pumping tests increase. 

 

Neuman et al. (2004) developed a graphical type-curve method for the estimation of the 

variance and integral scale of local log-transmissivity fields from quasi steady state distance-

drawdown data due to constant well discharge. They also concluded that the reliability of the 

estimates increases as the number of available pumping test data increases. Neuman et al. (2007) 

applied the type-curve method for an aquifer in Tübingen, Germany. They performed pumping tests 

in four wells and estimated the log transmissivity mean, variance and integral scale. They compared 

their estimations with estimates produced from large number of field measurements of hydraulic 

conductivity. They found that distance-drawdown data obtained from the four pumping tests is 

sufficient to infer the spatial structure of transmissivity for this site. However, they were unable to 

compare their estimations for the integral scale since the measurements were obtained from a 

limited number of boreholes. Riva et al (2009) also applied that methodology to interpret the 
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pumping test data of an aquifer in Poitiers, France. They used the results of 32 hydraulic tests that 

were performed in 2004 and 2005 and applied the type-curve estimation method. Then, they 

compared their results with deterministic approach results and geostatistic analysis of previous 

geophysical data of the site. They concluded that their results were consistent with geophysical 

information and the general trend in published worldwide data. An overarching review of pumping 

test interpretation techniques for the estimation of hydraulic conductivity can be found in Sanchez-

Vila et al. (2006).  

 

Copty et al. (2011) used the drawdown data and its time derivative for the estimation of flow 

parameters at the pumping test evolves in time using a variation of Theis (1935) equation. In this 

method, it is assumed that the heterogeneous system can be defined with a homogeneous system 

where the estimated parameters change and evolve throughout the test. After the flow parameters 

are estimated, the time-dependent function was converted to distance-dependent. This way, the 

change in flow parameters in time and space can be analyzed and heterogeneity can be taken into 

consideration. Avci et al. (2011) developed a novel graphical method, based on the Theis method, 

called incremental area method (IAM) that facilitated the estimation of flow and transport 

parameters. This method also enabled the determination of the type of the aquifer system, such as 

confined, unconfined, or leaky (Avci et al., 2013). 

 

Demir et al. (2017) investigated the possibility of estimating the integral scale and variance 

from pumping tests. They used the methodology derived by Copty et al. (2011) , referred to as 

continuous derivation (CD) to first estimate the transmissivity as a function of radial distance, and 

then applied a Bayesian parameter estimation method on the estimated transmissivities to obtain the 

probability distribution functions of transmissivity variance and integral scale. Their results showed 

that the data obtained from as little as 5 pumping tests were enough to estimate the statistical 

parameters of the transmissivity field. 

 

2.3.  Connectivity as a Novel Geostatistical Parameter 

 

It has been observed that even though different fields share the same log-transmissivity mean, 

variance, and integral scale values, they may not exhibit the same water flow and solute transport 

behavior (Zinn and Harvey, 2003). In other words, those three fundamental statistical parameters 

may not be sufficient to accurately simulate groundwater flow and contaminant transport. A new 

additional parameter was introduced by the authors which is referred to as the connectivity between 

the points. Connectivity refers to how two points in the aquifer are related to each other. It can be 
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simply defined as the presence of preferential channels in the aquifer that allows faster water flow 

than the other parts of the aquifer (Garcia et al., 2010). Connectivity cannot be represented by the 

standard geostatistical approach, because the semi-variogram only considers the difference of the 

values between two points that are separated at a fixed distance and does not take into account the 

values located between and connecting these two points (Western et al., 2001). Although it can be 

easily understood intuitively that different aquifers may have different levels of connectivity 

structures, it is not that trivial to find a parameter to express connectivity numerically. It is more 

widely investigated in oil industry and petroleum engineering, since it is essential to understand the 

geological system between the extraction well and the oil reservoir. In Karst aquifer systems, 

connectivity is a dominant feature as cracks in the rock volume generates preferential flow paths. In 

soils, on the other hand, the attempts to conceptualize connectivity and its impact on groundwater 

flow and contaminant transport is relatively new and still requires additional work (deMarsily, 

2005; Renard and Allan, 2011). 

 

Renard and Allan (2011) provide a summary of connectivity measures used in hydrogeology 

and petroleum engineering. They group the measures as static and dynamic connectivity, based on 

whether they are affected by physical processes such as subsurface water flow, contaminant 

transport, or the boundary conditions of the aquifer. The static connectivity scale is a function of the 

spatial distribution of the property (such as hydraulic conductivity) and it is independent of the 

physical processes. In other words, static connectivity scales do not change based on flow or 

transport. The dynamic connectivity on the other hand is dependent on the flow or solute transport 

response. 

 

A number of static connectivity measures with different levels of complexity have been 

proposed in recent years. Many of these measures have been adopted from the field of integral 

geometry in mathematics (Renard and Allan 2011). For domains defined as either permeable/non-

permeable based on some threshold, the number of clusters can be considered as a simple measure 

of the connectivity (Allard, 1993). The Euler characteristic, which is a parameter that can be 

computed from the number of vertices, edges areas and volumes of an object, is also a measure of 

static connectivity (Serra, 1984). From the theory of percolation, Havedik et al. (2007) proposed the 

use of the ratio of the volume (or area in 2D domains) to the total volume (or area) of the domain as 

a measure of static connectivity. Another metric of connected is the ratio of the number of 

connected grids to the total number of permeable grids. For continuous fields such as the hydraulic 

conductivity of the transmissivity which vary continuously in space, Renard and Alard (2011) 
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propose the application of the above connectivity metrics with different thresholds between 

permeable and non-permeable grids to get a more complete image of the domain connectivity. 

 

Another metric of the static connectivity is the integral connectivity scale proposed by Western 

et al (2001). This scale is only based on the spatial distribution of the transmissivity field, and it 

does not change based on physical processes such as pumping or boundary conditions. 

 

Many researchers have argued that the hydraulic conductivity or transmissivity in the field is 

not well described with the broadly used multi-Gaussian assumption. The multi-Gaussian model 

assumes that areas of average hydraulic conductivity tend to be connected in space with isolated 

pockets of high or low permeability. Zinn and Harvey (2003) developed a method that allows the 

definition of non-Gaussian fields where high transmissivity areas or low transmissivity areas are 

spatially connected. Although all three types of fields have the same two-point statistics- i.e., the 

same log-transmissivity mean, variance and integral scale, their connectivity structures are very 

different. It is found that the connected high-conductivity field had greater effective conductivity 

than the geometric mean. Significant solute transfer between the mobile-immobile domain is also 

observed. The connected low-conductivity field, on the other hand, had smaller effective 

conductivity than the geometric mean, and no significant solute transfer was observed between the 

domains. The traditional multi-Gaussian field was the only one that was consistent with the existing 

stochastic theory. 

 

Dynamic measures of connectivity, on the other hand, are affected by the imposed boundary 

conditions and by changes in flow and transport conditions. For example, in the unsaturated zone, 

the value of hydraulic conductivity and its connectivity with other regions is affected by the 

distribution of the water saturation in the soil. Some of the dynamic metrics can be calculated in 

field experiments more easily than static connectivity metrics. If the existence of some level of 

correlation between dynamic and static connectivity measures can be shown by further studies, then 

it would be possible to quantify the level of connectivity of an aquifer by static measures combined 

with dynamic measures that are derived from the field tests (Renard and Allan, 2011).  

 

Knudby and Carrera (2005) evaluated several dynamic conductivity indicators and tested them 

on well-connected and multigaussian  fields. They used steady-state flow simulations to test 

dynamic flow connectivity indicators, and advective transport for transport connectivity indicators. 

They concluded that some of the tested indicators, especially the indicator that is defined as the 

ratio of effective conductivity to the geometric mean of the conductivity, responded well to changes 



 

 

 

15 

5
 

in connectivity features. They found a weak connection between flow and transport indicators and 

argued that flow connectivity is strongly affected by the low-K barriers in the path, whereas 

transport connectivity is controlled by the width of the high-K path. In a subsequent study, Knudby 

and Carrera (2006) analyzed the use of apparent diffusivity as a dynamic connectivity measure, 

which is the estimated transmissivity over the estimated storativity calculated based on Cooper-

Jacob Method (1946), as a flow and transport indicator. They found that the apparent diffusivity 

provides a good correlation between flow and transport connectivity indicators for most aquifers. 

 

Trinchero et al. (2008) analyzed the relationship between flow and transport connectivity 

indicators. They proposed the use of the estimated storativity as a dynamic flow connectivity 

indicator and estimated porosity as a transport connectivity indicator. The flow connectivity 

indicator was calculated based on the Cooper-Jacob method (1946). They used perturbation theory 

to analyze the relationship between the flow and transport connectivity indicators. It was concluded 

that the estimated porosity is a function of point transmissivity values, the distance between the 

injection and observation points, and estimated storativity.  

 

Dato et al, (2019) examined numerically the impact of the hydraulic conductivity connectivity 

on the breakthrough curves of a pollutant due to pumping from a well. The results of this study 

show that the hydraulic conductivity structure is not significant for mildly heterogeneous aquifers 

but can be more important for highly heterogeneous systems. The authors argue that the imposed 

pumping rate forces flow and solute transport to flow through high conductivity zones even if they 

are disconnected.  
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3.  RESEARCH OBJECTIVE 

 

 

This study focuses on the assessing the impact of flow connectivity on the interpretation of 

pumping tests. The analysis considers two-dimensional radially convergent flow towards a fully 

penetrating well in a heterogeneous confined aquifer with different levels of connectivity. The first 

objective of this study is to numerically investigate the effect of flow connectivity on the estimated 

groundwater flow parameters, transmissivity and storativity. The parameters are numerically 

calculated using two different estimation techniques, namely the Cooper-Jacob method and the 

continuous derivation method. The aim here is to explore the correlation between flow parameters 

and flow connectivity.  

 

The second objective is to broaden the understanding of flow connectivity by examining the 

relationship between estimated parameters and the underlying level of flow connectivity. The main 

purpose here is to investigate whether estimated flow parameters could give some information 

about the level of field connectivity. It is done by comparing and investigating the estimated 

parameters obtained from synthetically-generated fields with different levels of static connectivities. 

In the end, results from different interpretation techniques are compared and the ability to estimate 

quantitative measures of connectivity from pumping tests is evaluated.  

 

The overarching aim of this research is to advance the understanding of water flow and 

contaminant transport parameters in order to increase the accuracy of groundwater flow and 

contaminant transport modeling in porous media. 
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4.  METHODOLOGY 

 

Numerical modeling is used to assess the impact of connectivity on pumping tests and to 

examine whether connectivity indicators can be estimated from pumping test data. First, the 

synthetic transmissivity fields are generated, and the fields are conditioned using the method 

proposed by Zinn and Harvey (2003). Then, a well is placed at the center of each field and a 

pumping test simulation is performed using MODFLOW computer program (Harbough et al., 

2000). The change in the groundwater level as a function of time is recorded as the output of the 

simulation. After that, the groundwater flow and contaminant transport parameters transmissivity 

and storativity are estimated using two different interpretation techniques, namely the Cooper-Jacob 

Method (1946) and the Continuous Derivation Method (Copty et al. 2011). Independent of the 

pumping tests and parameter estimations, the connectivity scale of each generated field is calculated 

using a static connectivity measure derived by Western et al. (2001). In the end, the relationship 

between the connectivity scale and estimated parameters is analyzed. The correlation between the 

transmissivity estimate and the geometric mean of transmissivity field is also examined.  

 

4.1.  Generation of Transmissivity Fields 

  

Transmissivity fields are generated using a sequential Gaussian simulation program (sgsim) 

which is a module of a public-domain geostatistical library called GSLIB (Deutsch and Journel, 

1998). The natural logarithm distribution of transmissivity is a multivariate Gaussian distribution. 

For simplicity, these fields that have multivariate Gaussian distribution for natural logarithm of 

transmissivities will be referred to as Gaussian transmissivity fields, or Gaussian fields.  

 

Generated fields have a general size of 999 by 999 arbitrary length units (lu) and uniform grid 

size of 1 by 1. The mean and the variance of the generated ln(T) fields are taken as 0 and 1, 

respectively. Thus, the standard normal distribution is assumed for the probability distribution 

functions of the log-transmissivity fields. Since the focus of this study is on the local scale 

heterogeneity, the integral scale is taken as 10 to provide the intermediate correlation length scale 

(Dagan, 1986; Zheng and Silliman, 2000). The semivariogram function is assumed to be 

exponential which is often used in hydrological models (Kitanidis, 1997). 

 

In this study, the pumping well is located at the center of each field. Butler (1990) showed that 

the transmissivity at the location of pumping can have a big influence on the estimation of flow and 

transport parameters. In order to analyze this impact, the first set of the Gaussian fields are assumed 
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to have a variable transmissivity at the location of extraction and referred to as unconditional fields, 

and the second set of the Gaussian fields are assumed to have a constant transmissivity at the 

location of pumping and referred to as conditional fields. In total, 200 Gaussian transmissivity 

fields, 100 of which are unconditional and 100 of which are conditional, are generated. The 

conditional fields are also produced by sgsim module of GSLIB, where the natural logarithm of 

transmissivity at the center is assumed 0.2. The statistical variables for unconditional and 

conditional realizations are given in Table 4.1 below. 

 

Table 4.1. Parameter values used in Gaussian transmissivity field generation 

Parameters Gaussian Transmissivity Fields 

Type of Field Unconditional Conditional 

Number of Realizations 100 100 

Semivariogram Type Exponential Exponential 

Mean 0 0 

Variance 1 1 

Integral Scale 10 10 

Transmissivity at the Extraction Location Variable Constant, ln(T)=0.2 

 

The connected high transmissivity and connected low transmissivity fields are generated using 

the method proposed by Zinn and Harvey (2003). The non-Gaussian fields are generated by 

transforming the synthetically developed Gaussian fields. This conceptual idea of field 

transformation takes its foundation from an explanation given by Journel and Deutch (1993), which 

says that, in reality, the extreme transmissivities, high or low, tend to cluster as isolated groups, 

whereas transmissivities closer to the mean usually form channels within the field. In order to use 

this characteristic, first, the absolute value of each transmissivity value of the field is taken. This 

way, all extreme high/low values are converted to extreme high values. In other words, this new 

field is expected to have isolated clusters of high transmissivities and channels of low 

transmissivity. Then, the cumulative distribution function (CDF) of this new field is normalized in 

order to convert its distribution to the normal distribution. This way, the mean and variance became 

0 and 1, respectively. These fields with channels of low transmissivities are referred to as low 

transmissivity connected fields, or low-T connected fields. The mapping is performed using the 

following equation: 
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Where 

𝑇′ transformed transmissivity 

𝑇 transmissivity of the original Gaussian field 

Then, the last group of the fields, high transmissivity connected fields or high-T connected 

fields are generated by mirroring the values of the low transmissivity connected field around the 

mean. Examples of the generated Gaussian, low-T connected, and high-T connected fields are given 

in Section 5.1. 

 

As mentioned above, natural logarithm of transmissivity at the location of pumping well is 

assumed 0.2 for the conditional Gaussian fields. This condition, together with equation (4.1), results 

in having constant transmissivity values at the location of pumping for conditional non-Gaussian 

fields. The corresponding natural logarithm of transmissivity at the location of extraction is 

calculated as -1 for low-T connected fields (Equation 4.1), and as 1 for high-T connected fields. The 

realizations used for this study are summarized in Table 2. 

 

Table 4.2. Summary information of the transmissivity fields used in the study 

Field Types Field Sets Number of realizations 
T at the pumping well 

location 

Unconditional 

Gaussian 100 Variable 

Low-T Connected 100 Variable 

High-T Connected 100 Variable 

   
 

Conditional 

Gaussian 100 Constant, ln(T)=0.2 

Low-T Connected 100 Constant, ln(T)=-1 

High-T Connected 100 Constant, ln(T)=1 

 

 

4.2.  Simulation of Pumping Tests 

 

Pumping tests are simulated using the computer program MODFLOW, a widely used public-

domain groundwater simulator (Harbough et al., 2000). MODFLOW uses the finite-difference 

numerical approach to simulate the hydraulic head distribution under various boundary conditions. 

In this study, the pumping well is located at the center of the field, and two monitoring wells are 

located at distances r/I=0.1 and r/I=0.5, with distances normalized by the integral scale, I. This way, 

two transient drawdown curves are analyzed for each field. A total of 600 transmissivity fields that 
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were generated in Section 4.2 were used for the pumping test simulations. Other important 

parameters used for the simulations are shown in Table 4.3 below. After the necessary parameters 

are defined, pumping simulations are performed for each aquifer transmissivity field individually. 

In order to obtain these individual simulations, a script was written to automatically change the 

transmissivity input file of MODFLOW while keeping all other parameters the same. This way, the 

pumping tests are performed for each of the 600 generated aquifer transmissivity field.  The 

storativity was assumed to be uniform equal to 10-4 which is a typical value for confined aquifers 

(Freeze and Cherry, 1979).  

 

Table 4.3. Required parameters for the pumping test simulations 

Parameter description Value 

the time unit of the simulation time units 

the length units of the simulation lu 

aquifer type confined 

flow condition transient 

flow rate (positive:injection, negative:extraction) -2 

duration of the simulation 2 

number of layers in the model grid 1 

number of rows 999 

number of columns 999 

column spacing in the row direction 1 lu 

row spacing in the column direction 1 lu 

initial head 20 lu 

storativity 1.00E-04 

transmissivity 
spatially variable, generated using the 

GSLIB geostatistics software 

 

In this study, the aquifer is assumed to be confined and fully saturated with water. Constant 

head conditions are imposed at the outer boundaries. Pumping tests are performed on generated 

synthetically generated transmissivity fields and it is assumed that the pumping tests are terminated 

before the prescribed head at the boundaries influenced the simulated drawdown. It means that it is 

expected that the drawdown curve is not affected by the change in boundary conditions. In order to 

test the validation of this assumption, several pumping tests are continued until the drawdown 

curves obtained with different boundary conditions start to differ and the tests are terminated before 

the curves start to diverge.  
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4.3.  Estimation of Groundwater Flow and Solute Transport Parameters 

 

4.3.1.  Cooper-Jacob Method 

 

The late time data of the drawdown curve is used for the flow and transport parameter 

estimation with the Cooper-Jacob method (1946). Assuming that the parameter u is equal to or less 

than 0.1, the Theis well function can be simplified as: 

 

 ( ) 0.5772 ln( )W u u    (4.2) 

 or  
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Then, the Cooper-Jacob equation becomes: 
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In order to make the equation more workable, the natural logarithm is changed to logarithm 

base 10. The fraction inside the logarithm is also separated and written in two parts. This way, the 

drawdown curve can be plotted to log(t) semilogarithmic sheets. The last form of the equation 

becomes: 
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If drawdown vs. log time graph is drawn, the slope of this line is 
2.303

4

Q

T
, and the intercept of 

the line with drawdown axis is 10 2

2.303 2.25
log ( )

4

Q T

T r S
. Using the line equation, the parameters S and 

T are calculated. 

 

The estimation of flow parameters is done by linear regression. The general representation of a 

linear equation is given below: 
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 y ax b   (4.6) 

  

The parameters a and b are formulated as follows: 

 

 2 2( ) ( )

n xy x y
a

n x x






  
 

 (4.7) 

   

 

2

2 2( ) ( )

y x x xy
b

x x






   
 

 (4.8) 

 

The linear regression formulation and Cooper-Jacob equation is combined, and the final 

equations are given as below: 
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Where 

n number of data points  

 

Based on Equations (4.9) and (4.10), transmissivity and storativity parameters are determined 

when other variables are known and predefined. For each realization, the estimations are made at 

two different locations using the drawdown curves obtained from two observation wells. The 

method is applied for all realizations. In order to facilitate the interpretation of final estimations, 

both transmissivity and storativity are normalized based on the geometric mean of T and constant S0 

respectively used in the pumping test simulations. 

 

4.3.2.  Continuous Derivation Method 

 

In this method, the drawdown data and its time derivative are used for the determination of 

flow parameters at a specific point in time (Copty et al., 2011). The analysis is then repeated for all 

pumping times. Data from different times are not jointly used in this method because different part 
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of the aquifer influence the pumping well at different times. This allows for better identification of 

the flow parameters in heterogeneous aquifers.  

 

The drawdown function was used as it is defined in Theis method. The well function W(u) was 

written as its integral form. Recall from Section 2.2: 

 

Equation (2.5): ( , ) ( )
4

Q
s r t W u

T
   

   

Equation (2.6):  
2

4

r S
u
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The log time derivative of the drawdown is given in the following: 
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The ratio of drawdown to is derivative is shown below equation: 
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The unique parameter u that is necessary to generate that specific ratio is calculate and this u 

value is denoted as u*. Then, the flow parameters transmissivity and storativity are calculated for a 

given time as given below:  

 

 ( *)
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After the flow parameters are estimated, the time-dependent function can be converted to 

distance-dependent using the following equation: 
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In order to smoothen the small fluctuations in the data, a moving average is used on estimated 

parameters. First, the flow and transport parameters are calculated as a function of pumping time. 

Then, the time-dependent parameter curves are converted to radial distance-dependent curves in 

order to fully understand the effect of the expansion of the effective area on the values of the 

estimated parameters. To facilitate the interpretation of final estimations, both transmissivity and 

storativity are normalized based on the values used for the pumping simulations, as it was done for 

the parameters estimated by the Cooper-Jacob Method.  

 

Moreover, the geometric mean of generated transmissivity field as a function of radial distance 

around the well is also calculated and compared with estimated transmissivity curve to investigate 

the relationship between the two. The geometric mean of transmissivity fields are calculated using 

the generated transmissivity fields. Starting from the location of the extraction well, the radial 

distance around the well is gradually increased and the geometric mean of the transmissivity values 

that are located closer to the well than the radial distance is calculated.  

 

4.4.  Calculation of Integral Connectivity Scales of Generated Fields 

 

The integral connectivity scale of each generated field is calculated using the method proposed 

by Western et al. (2001). First, a binary indicator variable is defined at each grid. If the cell is 

having a high transmissivity value, then the indicator takes the value 1, and 0 otherwise. The status 

of the cell as high-transmissivity or low-transmissivity is decided based on a predetermined 

threshold transmissivity value. The integral connectivity, (h) is defined as the probability that two 

points separated a distance of h fall within the same cluster. In this study, the threshold 

transmissivity value is chosen as 1. The generated binary matrix shows the size of high/low 

transmissivity clusters and each cluster is labeled with a unique value. In order to label each cluster, 

a loop goes through all points in the binary matrix. When an unlabeled high-T point is encountered, 

it is labeled with a unique cluster number. Then, the four neighbor cells to that point are checked to 

see whether they too are high-T. Any adjacent high T points are also labeled with the same cluster 

number and the procedure is repeated for every point in the matrix.  

 

After the clusters are determined, the connectivity function is calculated as follows. Starting 

from the first point (1,1) of the cluster matrix and looping through all points, whenever a high-T 
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point is detected, a second loop starts and calculates the separation distances between that high-T 

point and all the points in the matrix. The number of total pairs for each separation distance bin are 

incremented accordingly. When the second loop encounters another high-T point which has the 

same cluster number as the initial high-T point, the number of connected pairs for that separation 

distance is also incremented by one. When both of the loops are executed, the connectivity of every 

bin is computed as the ratio of the number connected pairs (equivalent to probability) to the number 

of total pairs in that bin. The connectivity function is shown in Equation 4.16. The integral 

connectivity scale is then computed as the integral of the connectivity function as shown in 

Equation 4.17. This connectivity function provides a measure of static flow connectivity that is 

independent of the pumping test and the ensuing flow field.  

 

 
( )

CP
h

TP
   (4.16) 

 

Where 

𝜏(ℎ) Connectivity function 

ℎ Separation distance 

𝐶𝑃 Number of connected pairs 

𝑇𝑃 Number of total pairs 

 

 

0

( )conI h dh


   (4.17) 

Where 

conI  Integral connectivity scale 

 

After the integral connectivity scale of each simulation is calculated, the estimated flow 

parameters and the calculated integral connectivity scales are analyzed together for possible 

correlation. 
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5.  RESULTS 

 

 

This chapter presents the results of the numerical investigation of the impact of connectivity on 

groundwater flow parameters estimated from pumping tests. Section 5.1 presents the synthetically 

generated transmissivity fields used in the numerical simulations. As noted in Chapter 4, a total of 

600 fields are generated: 200 Gaussian, 200 low-T connected and 200 high-T connected fields. 

Section 5.2 examines the pumping test simulations and shows the transient drawdown and 

drawdown derivative for randomly selected realizations to better understand the impact of 

connectivity on the drawdown behavior that can be obtained from the pumping tests. Section 5.3 

presents the integral connectivity scale, a static measure of connectivity. Example connectivity 

functions and the integral connectivity scales of each field used in the study are also presented. 

Section 5.4 presents the interpreted pumping test analysis using the Cooper-Jacob method and 

shows the estimated groundwater flow parameters, transmissivity and storativity. The correlation of 

the estimated parameters to the connectivity measures calculated in the previous section are 

examined. Lastly, Section 5.5 presents the application of the Continuous Derivation method on 

pumping test data for the estimation of the flow parameters. The estimated parameters as a function 

of both time and radial distance are shown for five randomly selected high-T connected, Gaussian, 

and low-T connected fields. In addition, the geometric mean of transmissivity fields as a function of 

radial distance are also calculated and compared with the transmissivity estimated with the 

Continuous Derivation to examine the relation of the estimated transmissivity to the underlying 

aquifer heterogeneity.  

 

5.1.  Generation of Transmissivity Fields 

 

In this section the generated transmissivity fields, which are grouped as Gaussian, high-T 

connected and low-T connected fields, are presented. As described in Section 4.1, the Gaussian 

fields are generated using the sequential Gaussian simulation program, sgsim, of the geostatistical 

library GSLIB (Deutsch and Journel, 1998).  

 

The main statistical parameters used to generated the Gaussian transmissivity fields are the 

mean mY=0, variance 
Y=1, and the integral scale I=10 length units (lu) where Y=ln(T) is the 

natural log transform of T. Defining the main random variable as Y instead of T guarantees that 

negative t values are not generated. The storativity is assumed to be uniform. This is justified as 

numerous field studies have shown that the variation of S is much smaller than that of T. In order to 
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observe the effect of transmissivity at the location of pumping, one half of the Gaussian realizations 

are assumed to have a variable transmissivity at the pumping location, the other half, referred to as 

conditional transmissivity fields, are assumed to have a constant transmissivity taken as ln(T)=0.2 

(Table 4.1). 

 

The non-Gaussian low-T connected and high-T connected fields are generated according to the 

method of Zinn and Harvey (2003). In total 200 fields are generated for each type of field (Table 

4.2).  

 

Figure 5.1a, b, and c show a randomly selected generated Gaussian field along with the 

corresponding low-T connected and high-T connected fields, respectively. As mentioned before, 

these generated fields represent the distribution of the natural logarithm of transmissivity values 

Y=ln(T).  

 

The natural logarithm of transmissivities that are larger than 1 are shown in red, the values 

between 1 and -1 are shown in green, and the values smaller than -1 are shown in blue. In Figure 

5.1a, it can be observed that the middle range transmissivity values (green color) are well connected 

with discontinuous clusters of high and low transmissivity values. This type of field with 

discontinuous high and low transmissivity clusters is a feature of Gaussian fields that has been 

reported in the literature (e.g., Trinchero et al., 2008; Renard and Allard, 2011). In Figure 5.1b, low 

transmissivity values generated channels in blue, and high transmissivity values remained as 

discontinuous clusters. Hence, this type of field is called low-T connected fields. Figure 5.1c is the 

mirror of Figure 5.1b around the mean. Because of that mirroring effect, now high transmissivity 

channels and low transmissivity clusters can be observed. This last type of field is referred to as 

high-T connected fields. Similar features are observed in the other generated transmissivity fields 

and are therefore not shown here.   
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(a) 

 

(b) 
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(c) 

 

Figure 5.1. Graphical representation of a randomly selected (a) Gaussian field, (b) low-T connected 

field, and (c) high-T connected field 

 

5.2.  Pumping Test Simulations 

 

This section describes the pumping test simulations that were performed using MODFLOW 

groundwater flow simulation model (Harbough et al., 2000). Each transmissivity fields (600 in 

total) presented in the previous section were used for the simulations. In order to explore the effect 

of observation location on parameter estimation, two observation wells are located at two different 

locations r/I=0.1 and r/I=0.5, where r represents the radial distance from the pumping location, and I 

represents the integral scale, which is assumed as 10 lu. The necessary variables used in the 

simulation are listed in Table 4.3. The outputs of the pumping tests are the transient drawdown 

curves obtained at two different locations for all generated fields. The drawdown derivative with 

respect to the log of the time, ds/dlog(t) are also calculated since they will be used for the parameter 

estimation using the Continuous Derivation method. 

 

Figure 5.2 shows the results obtained from the pumping test for a randomly selected field set. 

Figure 5.2 a and b demonstrate the transient drawdown curve and time derivative of the drawdown 
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curve, respectively. The observation well is located near the pumping well, where r/I=0.1. Figure 

5.2 c and d show the transient drawdown and drawdown derivative curves, where r/I=0.5.  

 

Comparison of the transient drawdown curves obtained at two different locations show that the 

drawdown increases with distance for all types of fields. Water extraction starts from the pumping 

well location and expands radially in time. Because of that, the drawdown is expected to be smaller 

as the radial distance from the pumping well increases. Moreover, it can be seen that when the 

pumping is terminated, low-T connected field has the largest drawdown, and the high-T connected 

field has the smallest. But this is not necessarily the case for all other realizations. 

 

The shape of the drawdown and drawdown derivative curves depend on the actual transmissivity 

distribution around the pumping well. It is seen that the derivative curves exhibit more variability 

than the drawdown. For that reason, it has been reported in the literature that the derivative may be 

a better parameter to reveal information about the aquifer heterogeneity.  



 

 

 

31 

5
 

  

  

Figure 5.2. MODFLOW simulation outputs for a randomly selected Gaussian, low-T connected and 

high-T connected fields. (a) shows drawdown vs. time at r/I=0.1. (b) shows drawdown derivative 

vs. time with the observation well is located at r/I=0.1. (c) shows drawdown vs. time at r/I=0.5. (d) 

shows drawdown deivative vs. time with the observation well is located ar r/I=0.5. 

 

5.3.  Static Measure of Connectivity 

 

In this section, the connectivity function and its integral, which is referred to as the integral 

connectivity scale, are calculated based on the method proposed by Western et al. (2001). This 

methodology provides a static measure of connectivity meaning that it is independent of the flow 

(pumping rate, boundary conditions, etc.). The calculation procedure is explained in Section 4.4. 

Transmissivity fields described in Section 5.1 are used for the calculation of the connectivity 

measure. The calculation of the integral connectivity is applied to all generated transmissivity 

fields. 
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Figure 5.3 shows the connectivity function of a randomly selected Gaussian field and its non-

Gaussian variations, high-T connected and low-T connected fields. These three fields only vary in 

their levels of connectivity. The integral connectivity scale, which is the measure of connectivity, is 

the integral of the connectivity function; it can be determined by numerically calculating the area 

under the connectivity curve. Here, for this randomly selected example field set, it can be seen that 

the high-T connected field has the largest integral connectivity scale, followed by the Gaussian 

field. Low-T connected field has the smallest integral connectivity scale, as expected. This confirms 

the initial expectation that fields with high transmissivity channels throughout the field should have 

a larger integral connectivity scales, whereas the fields with low transmissivity barriers should have 

smaller integral connectivity scales. Figure 5.3 shows that the connectivity function generally 

decreases with distance, however, because of the irregular shape of structures some fluctuations 

occur. 

 

 

Figure 5.3. Connectivity function as a function of separation distance for a randomly selected 

unconditional Gaussian field (field 10), and its variations different levels of connectivity as low-T 

connected and high-T connected 

 

Table 5.1 represents the average and the standard deviation of integral connectivity function 

that are calculated over the different types of fields and generation conditions. On average, high-T 

connected fields have larger integral connectivity scales, followed by Gaussian fields and low-T 

connected fields, respectively. This ranking is valid for both unconditional and conditional fields. 

This result is also consistent with the initial expectation. The standard deviations, on the other hand, 
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are generally large for all types and this indicates that the integral connectivity scale of individual 

fields varies widely. Low-T connected fields have lower standard deviations for both conditions. 

When the unconditional and unconditional realizations are evaluated together, the conditional 

realizations have relatively smaller standard deviations for all field types because of the additional 

constraint on them (transmissivity at the well is Y=ln(T)=0.2).  

 

Figure 5.4 shows the integral connectivity scale of each transmissivity field used in this study. 

Although many low-T connected fields have smaller integral connectivity scales compared to their 

Gaussian and high-T connected versions, some exceptions can be also observed. Moreover, high-T 

connected fields do not always have the largest integral connectivity scales and many exceptions 

with Gaussian fields having the largest integral connectivity scale can be observed both for 

unconditional and conditional realizations. Thus, although the average integral connectivity scales 

follow the expected trend, this is not always the case for individual field sets. Because of that, it can 

be said that the method of integral connectivity scale proposed by Western et al. (2001) may not be 

enough to differentiate the fields with different levels of connectivity generated by the method 

proposed by Zinn and Harley (2003). On the other hand, one can say that the fields generated by 

using the Zinn and Harvey method may not always comply with the integral connectivity scales. 

 

Table 5.1. Average and standard deviation of integral connectivity scales over the field sets, 

Gaussian, low-T connected, and high-T connected 

 

Gaussian Low-T Connected High-T Connected 

Average 

(lu) 

standard 

deviation (lu) 

Average 

(lu) 

standard 

deviation (lu) 

Average 

(lu) 

standard 

deviation (lu) 

Unconditional 

realizations 
33.48 19.88 19.88 13.68 43.93 19.43 

Conditional 

realizations 
33.03 18.15 17.98 9.15 46.22 18.14 
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(a) 

 

(b) 

 

Figure 5.4. Integral connectivity scales of (a) unconditional and (b) conditional realizations 

 

5.4.  Application of Cooper-Jacob Method 

 

This section describes the pumping test analysis and estimation of groundwater flow 

parameters using the Cooper-Jacob linear estimation method. As mentioned in Section 4.3.1, this 

method uses the late time data of the drawdown curves obtained from pumping tests to estimate a 

single representative value for the aquifer volume surrounding the pumping well. Both 

transmissivity and storativity parameters are estimated for all the generated fields. In order to 

understand the relation between the estimated parameters and initial values, the transmissivity 

estimates are normalized with the geometric mean of the transmissivity field, and the storativity 

estimates are normalized with the initial storativity used in the pumping tests. As mentioned before, 
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the geometric mean of the generated transmissivity fields, Tg, is equal to 1, while the storativity, S0, 

is 10-4. Figure 5.5 shows the histogram of normalized transmissivity values estimated for 

unconditional realizations and Figure 5.6 shows the histogram of normalized storativity values 

estimated for unconditional realizations. Both parameter estimations are performed at r/I=0.1. Here, 

it is seen that the variation in estimated transmissitivy values is much smaller compared to the 

variation in estimated storativity values. Moreover, the majority of the estimated transmissivities 

are very close to the geometric mean of transmissivity fields, whereas the estimated storativities can 

differ a lot from the initial storativity.  

 

 

Figure 5.5. Histogram of T/Tg of unconditional realizations where r/I=0.1 
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Figure 5.6. Histogram of S/S0 of unconditional realizations where r/I=0.1 

 

Figure 5.7a-c show the transmissivity vs. integral connectivity scale comparison for high-T 

connected, low-T connected, and Gaussian fields, respectively. Figure 5.7d shows all of them 

together on one graph to evaluate the parameter estimation more completely. This figure only 

considers the fields of unconditional realizations as an example, and the estimations are made for 

the observation well located at r/I=0.1. The transmissivity estimations of the remaining fields are 

not shown graphically because they follow a similar trend. Table 5.2 depicts the corresponding 

statistics for all types of realizations and observation locations. Here, the average (avg) and the 

standard deviation (st dev) of transmissivities estimated over different field types are shown. 

Average transmissivities are all very close to 1, and the standard deviations are considerably small. 

That can be concluded as that the level of connectivity does not greatly affect the estimation of 

transmissivity using the Cooper-Jacob method. The estimated transmissivities are also very close to 

the geometric mean of transmissivity fields. These results are in parallel with the results of previous 

research that is performed by Meier et al. (1998).  
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(a) 
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(d) 

 

Figure 5.7. Transmissivity vs integral connectivity scale for (a) high-T connected fields, (b) low-T 

connected fields, (c) Gaussian fields and (d) all fields combined together for unconditional 

realizations where the observation well is located at r/I=0.1 

 

Table 5.2. Average and standard deviation of transmissivities estimated for different types of 

realizations and fields 

Estimated parameter: Gaussian  Low-T Connected High-T Connected  All Combined  

Transmissivity 

(T/Tgeomean) 
avg st dev avg st dev avg st dev avg st dev 

Unconditional 

realizations 

r/I=0.1 0.96 0.11 0.95 0.09 0.99 0.11 0.97 0.11 

r/I=0.5 0.97 0.09 0.96 0.07 0.99 0.11 0.97 0.09 

Conditional 

realizations 

r/I=0.1 0.96 0.12 0.95 0.07 1.00 0.08 0.97 0.09 

r/I=0.5 0.97 0.09 0.95 0.06 1.00 0.07 0.97 0.08 

 

Figure 5.8a and b show the normalized storativity vs. integral connectivity scales for 

unconditional fields with the observation well located at r/I=0.1 and r/I=0.5, respectively. Figure 

5.8c and d show the normalized storativity vs. integral connectivity scales for conditional fields 

with the observation well located at r/I=0.1 and r/I=0.5, respectively. The logarithmic trendlines 

numerically show the correlation between the estimated storativity and integral connectivity scales. 

Figure 5.8 clearly demonstrates the difficulty of estimating the storativity of heterogeneous aquifers 

from pumping test data. The storativity estimate is directly related to the variation of the 

transmssivity as some researchers have reported in the literature (Trinchero et al., 2008; Meier et 

al., 1998) This variability in the transmissivity masks the actual storativity of the aquifer. This 

observation is true for all Gaussian low-T connected and high-T connected fields. When the 

transmissivity at the pumping location is fixed, the variability in storativity values decrease 

significantly.  
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Figure 5.8 also shows that the estimated storativity is influenced by the level of connectivity. 

For low-T connected fields the estimated storativity is consistently lower than So. On the other 

hand, the estimated S for the Gaussian and high-T fields over-estimate So. The highest S estimates 

are for the high-T fields. However, there is significant overlap between these two sets of S 

estimates. The trendlines show that there is low correlation between the estimated storativity and 

the integral connectivity scales. As expected, the correlation increases when the transmissivity at 

the pumping location is fixed. It also increases when the observation well is located at a farther 

away point because of the averaging of the values. 

 

 The variability in integral connectivity scales can also be seen in Figure 5.8. As it was 

summarized in Table 5.1, on average, low-T connected fields have smaller integral connectivity 

scales and high-T connected fields have larger integral connectivity scales. However, the integral 

connectivity scales of individual fields vary widely for all Gaussian, low-T connected and high-T 

connected fields.  

 

Figure 5.9a-d show the histogram of S/S0 for unconditional and conditional realizations. Figure 

5.9a and b are the histograms of normalized storativities that are estimated at r/I=0.1 and r/I=0.5, 

respectively. Figure 5.9c and d show the histograms of S/S0 that are estimated at r/I=0.1 and r/I=0.5, 

respectively. Table 5.3 depicts the related statistics for all types of realizations and observation 

locations. The average (avg) and the standard deviation (st dev) of normalized storativities 

estimated over different field types are shown. The standard deviation of the unconditional 

realizations estimated at r/I=0.1 is considerably large for all field types. This wide variety in the 

distribution can also be seen in both Figure 5.9 and Table 5.3. As the observation location shifts 

from r/I=0.1 to 0.5, the variation decreases for both types of realizations. This observation is 

consistent with the fact that as the separation distance between the observation and pumping well 

increases, the estimation averages a larger area, and thus, the variation between different 

estimations becomes smaller. 

 

When the estimated storativities and the level of connectivities are compared in Table 5.3, it 

can be seen that there is low correlation between the two. Estimated storativity values vary 

significantly from realization to realization. This is an important finding as it shows that it is not 

very likely to reliably quantify the level of connectivity of a field by analyzing its storativity 

estimation that is determined by the Cooper-Jacob method. This is also the case for the 

transmissivity estimation as it does not get affected by the level of connectivity of the transmissivity 

field. In other words, although there is a slight correlation between the estimated storativity and the 
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level of connectivity, the flow parameters that are estimated using the Cooper-Jacob method do not 

uniquely reveal the connectivity structure of the related aquifer.  
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(b)  

 

(c)  
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(d)  

 

 

Figure 5.8. Estimated storativity vs integral connectivity scale of combined field sets. (a) and (b) 

correspond to unconditional realizations with the observation well located at r/I=0.1 and r/I=0.5, 

respectively. (c) and (d) show conditional realizations with the observation well located at r/I=0.1 

and r/I=0.5, respectively.  
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(c)  
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(d)  

 

Figure 5.9. Histograms of S/S0 estimated for unconditional fields where (a) r/I=0.1 and (b) r/I=0.5 

and conditional fields where (c) r/I=0.1 and (d) r/I=0.5  

 

Table 5.3. Average and standard deviation of normalized storativities estimated for different types 

of realizations and fields 

Estimated parameter: Gaussian  Low-T Connected High-T Connected  All Combined  

Storativity (S/S0) avg st dev avg st dev avg st dev avg st dev 

Unconditional 

realizations 

r/I=0.1 16.22 54.42 14.60 57.83 5.28 6.83 12.03 46.11 

r/I=0.5 2.19 3.46 2.11 4.26 1.69 1.25 2.00 3.25 

Conditional 

realizations 

r/I=0.1 5.78 7.27 0.18 0.49 10.04 7.17 5.33 7.14 

r/I=0.5 2.19 2.14 0.98 1.23 2.08 1.13 1.75 1.66 

 

 

5.5.  Application of Continuous Derivation Method 

 

In this section, the Continuous Derivation method (Copty et al., 2001) is used as the second 

interpretation technique to estimate the flow parameters. Unlike the Cooper-Jacob method, which 

calculates a single value for parameters, the parameters estimated using the Continuous Derivation 

method vary in time or, equivalently, with radial distance from the well. The procedure is applied as 

described in Section 4.3.2 so that transmissivity and storativity are estimated as a function of both 

groundwater extraction time and then converted to radial distance from the extraction well. The 

graphs of selected fields are shown and examined. The geometric mean of the transmissivity fields 
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as a function of radial distance is also calculated and compared with the estimated transmissivity to 

investigate the correlation between the two. Lastly, storativities estimated at a selected time is 

shown and the value distribution is investigated.  

 

5 fields are randomly selected from all sets of realizations. These fields are chosen for both 

conditional and unconditional realizations and all three levels of connectivity. The 5 realizations are 

labelled as A, B, C, D and E. Table 5.4 represents the integral connectivity scales of these selected 

fields. This table is used for the comparison of the estimated parameters and the integral 

connectivity scales.  

 

Table 5.4. Integral connectivity scales of selected fields 

  A B C D E 

Unconditional 

Realizations 

Gaussian 34.01 17.27 51.80 39.83 26.22 

High-T 

Connected 
54.17 78.11 59.39 59.28 67.24 

Low-T 

Connected 
17.50 9.43 10.54 20.34 10.45 

Conditional 

Realizations 

Gaussian 21.58 30.73 24.13 54.43 16.64 

High-T 

Connected 
44.73 38.80 45.31 53.64 44.24 

Low-T 

Connected 
27.55 34.47 10.85 12.03 12.37 

 

Estimated transmissivity graphs are grouped as Gaussian, high-T connected, and low-T 

connected to represent different field types clearly. Figure 5.10-5.12 show the estimated 

transmissivities as a function of time for Gaussian, high-T connected and low-T connected selected 

fields, respectively. The non-Gaussian fields are the modified fields corresponding to the Gaussian 

field (A to E). The first two images show the transmissivity estimations of unconditional fields at 

r/I=0.1 and 0.5, and the third and the fourth images depict the transmissivities of conditional fields 

at r/I=0.1 and 0.5, respectively. This ordering of realizations and observation wells are the same for 

Figure 5.10, 5.11, and 5.12.  
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(c)  

 

(d)  

 

Figure 5.10. Estimated transmissivity as a function of time for randomly selected Gaussian fields. 

(a) and (b) correspond to unconditional realizations with the observation well located at r/I=0.1 and 

r/I=0.5, respectively. (c) and (d) show conditional realizations with the observation well located at 

r/I=0.1 and r/I=0.5, respectively  
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(a)  

 

(b)  
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(c)  

 

(d)  

 

Figure 5.11. Estimated transmissivity as a function of time for randomly selected high-T connected 

fields. (a) and (b) correspond to unconditional realizations with the observation well located at 

r/I=0.1 and r/I=0.5, respectively. (c) and (d) show conditional realizations with the observation well 

located at r/I=0.1 and r/I=0.5, respectively  
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(a)  
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(c)  

 

(d)  

 

Figure 5.12. Estimated transmissivity as a function of time for randomly selected low-T connected 

fields. (a) and (b) correspond to unconditional realizations with the observation well located at 

r/I=0.1 and r/I=0.5, respectively. (c) and (d) show conditional realizations with the observation well 

located at r/I=0.1 and r/I=0.5, respectively 
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The most compelling similarity between all the transmissivity estimates, independent of their 

level of connectivities or type of realizations, is that as the groundwater extraction continues, all the 

curves approach to 1, that is, the estimated transmissivity approaches the geometric mean of the 

transmissivity fields. This finding is consistent with the previous studies (e.g., Meier et al., 1998; 

Copty et al., 2011). This is also in parallel with the estimated parameters using the Cooper-Jacob 

method which leads to T estimated close to the geometric mean for all cases considered (Table 5.2). 

At late times, a large volume of the aquifer is perturbed by the pumping well such the well acts like 

an equivalent homogenous system with transmissivity equal to the geometric mean of the point 

transmissivities. Moreover, when the Figures 5.10-5.12 are analyzed together, the parameters 

estimated for the conditional realizations have less variability than the variability of estimated 

parameters for unconditional realizations. This is because the transmissivity at the well location is 

constant for the fields of conditional realizations and this constrain limits the range of the estimated 

transmissivities. 

 

Examination of Figures 5.10-5-12 shows that when the location of the observation point is 

further away from the pumping well, the early-time variation in the estimated transmissivity is lost. 

By the time the drawdown signal reaches the observation point, the aquifer has become closer to an 

equivalent homogeneous system. 

 

Transmissivity parameter estimation using this method does not appear to be affected by the 

changes in the level of connectivity. It can also be understood when the figures are compared with 

the integral connectivity scales shown in Table 5.4. There is no direct correlation between this static 

measure of connectivity and the estimated transmissivities.  

  

The transient transmissivity curves are transformed to radially dependent curves using 

Equation 4.15. Figure 5.13 shows the estimated transmissivities as a function of radial distance 

from the pumping well for the selected Gaussian fields. Again, Figure 5.13 a and b show the 

unconditional realizations where the observation wells are located at r/I=0.1 and 0.5, respectively, 

and Figure 5.13 c and d show the estimations of conditional realizations at the same distances, 

respectively. The time axis of the graphs in Figure 5.8 are transformed to the radial distance to 

generate the graphs in Figure 5.13. The same procedure is applied to all selected fields.  
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(c)  

 
(d)  

 
Figure 5.13. Estimated transmissivity as a function of radial distance for randomly selected 

Gaussian fields. (a) and (b) correspond to unconditional realizations with the observation well 

located at r/I=0.1 and r/I=0.5, respectively. (c) and (d) show conditional realizations with the 

observation well located at r/I=0.1 and r/I=0.5, respectively  
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This transformation enables the comparison of the estimated transmissivity curve and the geometric 

mean curve as a function of the radial distance from the extraction well. In order to actualize this 

comparison, the geometric mean of transmissivity functions as a function of radial distance are also 

calculated. The procedure used to calculate them is explained in Section 4.3.2.  

 

Figure 5.14 shows the geometric mean of the selected fields as a function of distance. The 

unconditional and conditional realizations of Gaussian fields are graphically shown. The same 

selected fields are used for comparison as they are used in the previous calculations.  
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(b)  

 

Figure 5.14. Geometric mean of transmissivity as a function of radial distance for randomly 

selected Gaussian fields of (a) unconditional realizations and (b) conditional realizations 

 

Figure 5.15 superimposes the geometric mean curve (thin lines) and estimated transmissivity 

curve (bold lines). To better visualize the agreement, the graphs are produced for realizations B and 

E. However, similar results can also be seen for the other realizations for two realizations only. 

Figure 5.15a-c are for Gaussian, low-T connected, and high-T connected fields, respectively. For all 

three types of fields, the estimated transmissivity curves are highly correlated with the field’s 

geometric mean of the transmissivity curve. In other words, the transmissivity curve estimated with 

the Continuous Derivation method are good estimates of the geometric mean of field transmissivity 

structure as a function of radial distance. This is true for Gaussian fields as well as non-Gaussian 

fields. The results are shown only for the unconditional fields but similar results are also obtained 

for the conditional fields.  
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(c) 

 

Figure 5.15. Comparison of Tgeomean (thin lines) and Test (bold lines) as a function of  r/I for 

randomly selected (a) Gaussian, (b) low-T connected, and (c) high-T connected unconditional 

selected fields. Black lines show field B and red lines show field E realizations. Observation well is 

located at r/I=0.1 

 

In order to investigate the relationship between the transmissivity estimations and the 

geometric mean calculations of field transmissivities, these two estimates are calculated at various 

radial distances around the extraction well and compared graphically. Figure 5.16 shows the 

comparison for unconditional realizations, where the radial distance is taken as r/I=0.5, 1, 5, and 10, 

respectively. For points on the geometric mean of transmissivity vs. the estimated transmissivity 

curve are close to the x=y bisector, this means that the two values are close to each other. Table 5.5 

displays the coefficient of determination, R2, of these realizations. All coefficient of determinations 

are large, showing that the geometric mean values and the estimated transmissivity values are close 

to each other. However, the coefficient of determination decreases slightly as the radial distance 

from the well increases. Figure 5.16 also confirms that as the radial distance increases, both the 

geometric mean values and estimated transmissivity values approach to 1 and this is in parallel with 

the previous findings of this study.  
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(c) 

 

(d) 

 

Figure 5.16. Tgeomean vs. Test at distance (a) r/I=0.5, (b) r/I=1, (c) r/I=5, and (d) r/I=10 for all 

unconditional realizations 
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Table 5.5. Coefficient of determination for different field types at various distances 

r/I Gaussian Low-T Connected High-T Connected 

0.5 0.91 0.96 0.94 

1 0.91 0.89 0.94 

5 0.88 0.89 0.84 

10 0.78 0.85 0.84 

 

Figure 5.17-5.19 represents the estimated time-dependent storativity values for selected 

Gaussian, high-T connected and low-T connected fields, respectively. The first two images in these 

three figures correspond to unconditional realizations with the observation well located at r/I=0.1 

and 0.5, respectively and the third and the fourth images show the conditional realizations with the 

same observation well positions. Figure 5.20 represents the radially-dependent storativity values for 

selected Gaussian fields. The transformation from time to radial distance is performed using 

Equation 4.15. The same procedure is applied to the other selected fields. 

  

Examination of the results shown in Figure 5.17, 5.18 and 5.19 indicate that the estimated 

storativity values are closer to the initial storativity at early times of extraction, but that the 

storativity estimate varies significantly as the pumping test evolves. Moreover, according to these 

figures, the estimated storativities do not vary much after 1 time units of extraction. Figure 5.21 

shows the estimated storativities at that time of stabilization plotted against their integral 

connectivity scales. Figure 5.21a and b show the normalized storativity vs. integral connectivity 

scales for unconditional fields with the observation well located at r/I=0.1 and r/I=0.5, respectively. 

Figure 5.21c and d show the normalized storativity vs. integral connectivity scales for conditional 

fields with the observation well located at r/I=0.1 and r/I=0.5, respectively. The logarithmic 

trendlines numerically show the correlation between the estimated storativity and integral 

connectivity scales. Again, it is observed that the estimated S generally underestimated S0 (the 

value used in the simulation of the pumping tests) for low-T connected fields and overestimated for 

the Gaussian and high-T connected fields. The trendlines show that there is a low correlation 

between the estimated storativity and the integral connectivity scales. Table 5.6 shows the average 

(avg) and the standard deviation (st dev) of estimated storativities at t=1 time units for different 

field types. The standard deviation of the unconditional realizations estimated at r/I=0.1 is 

considerably large for all field types. The standard deviation of the unconditional realizations 

estimated at r/I=0.1 is the largest for all field types. This wide variability is also shown in Figure 
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5.21a. Moreover, as the observation location shifts from r/I=0.1 to 0.5, the variation decreases for 

both types of realizations as unconditional and conditional. The estimated storativities of 

conditional fields with the observation well at r/I=0.1 captures the correlation between the estimated 

parameter and the connectivity the most. This can also be seen in Figure 5.21c. 

 

Overall, the variability in the estimated storativities appears to be strongly dependent on the 

actual transmissivity distribution around the well. This makes it difficult to relate the estimated 

storativity to the integral connectivity scale, a static connectivity, a binary metric that is based on 

whether the transmissivity is higher/lower than some threshold. This difficulty is attributed to the 

difficulty of solving the groundwater inverse problem. In the forward problem, all aquifer 

parameters are given and used to simulate the head distribution. In the inverse problem, the head 

distribution is used to estimate the flow problems. Numerous studies have shown that the inverse 

problem is not unique, meaning that different flow parameters may yield the same head at an 

observation point. In the context of the current study, the non-uniqueness of the inverse problem 

means that time drawdown data from a single pumping test may not be adequate to quantify the 

level of connectivity of the aquifer. 

 

Another finding is that the variability decreases as the observation well is located farther away 

from the extraction well. This is a reasonable outcome since averaging is more when the 

observation well is located farther away. The variability is also smaller for the conditional 

realizations since the initial constraint limits the variation up to a certain degree. 

 

Lastly, when the estimated storativities calculated using the Continuous Derivation method at a 

particular time is compared with the variability in storativity estimations calculated by the Cooper-

Jacob method, clear similarities in the value distribution of storativity can be observed. The widest 

variability is observed for unconditional fields with the observation well located at r/I=0.1. The 

average estimated storativities and their standard deviations estimated using these two methods are 

also very close to each other. The variability is slightly smaller for the parameters calculated with 

the Cooper-Jacob method since it is based on the drawdown data over a range of times (late times) 

where as the S estimates for the Continuous Derivation method are taken at a single time. 

 

In summary, connectivity is seen as an important parameter that can influence the time-

drawdown data due to pumping and that interpreted results. However, because of the complexity of 

transmissivity spatial distribution and its influence on the estimated flow parameters, reliably 

estimating the connectivity metric may not be possible from a single pumping test. 
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(c)  

 

(d)  

 

Figure 5.17. Estimated storativity as a function of time for randomly selected Gaussian fields. (a) 

and (b) shows unconditional realizations where the observation well is located at r/I=0.1 and 

r/I=0.5, respectively. (c) and (d) shows conditional realizations where the observation well is 

located at r/I=0.1 and r/I=0.5, respectively  
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(a)  

 

(b)  
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(c)  
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(d)  

 

Figure 5.18. Estimated storativity as a function of time for randomly selected high-T connected 

fields. (a) and (b) shows unconditional realizations where the observation well is located at r/I=0.1 

and r/I=0.5, respectively. (c) and (d) shows conditional realizations where the observation well is 

located at r/I=0.1 and r/I=0.5, respectively  
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(a)  
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(b)  

 

(c)  
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(d)  

 

Figure 5.19. Estimated storativity as a function of time for randomly selected low-T connected 

fields. (a) and (b) shows unconditional realizations where the observation well is located at r/I=0.1 

and r/I=0.5, respectively. (c) and (d) shows conditional realizations where the observation well is 

located at r/I=0.1 and r/I=0.5, respectively.  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time (t)

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

S
/S

0

A

B

C

D

E

Fields

Conditional Realizations 

Observation well at r/I=0.5 



 

 

 

72 

5
 

(a)  

 

(b)  
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(c)  
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(d)  

 

Figure 5.20. Estimated storativity as a function of radial distance from the extraction well for 

randomly selected Gaussian fields. (a) and (b) shows unconditional realizations where the 

observation well is located at r/I=0.1 and r/I=0.5, respectively. (c) and (d) shows conditional 

realizations where the observation well is located at r/I=0.1 and r/I=0.5, respectively  

0 2 4 6 8 10 12 14 16 18 20 22

r/I

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

S
/S

0

A

B

C

D

E

Fields

Conditional Realizations 

Observation well at r/I=0.5 



 

 

 

75 

5
 

(a)  
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(c)  

 

(d)  

 

Figure 5.21. Estimated storativity at t=1 vs integral connectivity scale of combined field sets. (a) 

and (b) correspond to unconditional realizations with the observation well located at r/I=0.1 and 

r/I=0.5, respectively. (c) and (d) show conditional realizations with the observation well located at 

r/I=0.1 and r/I=0.5, respectively 
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Table 5.6. Average and standard deviation of normalized storativities estimated at t=1 time units for 

different types of realizations and fields 

Estimated parameter: Gaussian  Low-T Connected High-T Connected  All Combined  

Storativity (S/S0) avg st dev avg st dev avg st dev avg st dev 

Unconditional 

realizations 

r/I=0.1 17.00 55.58 15.21 57.11 5.49 7.00 12.57 46.31 

r/I=0.5 2.23 3.57 2.12 4.26 1.79 1.35 2.05 3.30 

Conditional 

realizations 

r/I=0.1 5.97 8.85 0.16 0.42 10.21 7.38 5.45 7.81 

r/I=0.5 2.21 2.14 1.00 1.25 2.11 1.16 1.77 1.67 
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6.  CONCLUSIONS AND FUTURE RESEARCH 

 

 

The modeling of groundwater flow and contaminant transport depends on accurate definition 

of the flow parameters over the entire domain of interest. In order to model groundwater flow and 

contaminant transport behavior of an aquifer realistically, the necessary flow parameters 

transmissivity and storativity should be estimated properly. Pumping tests are traditionally used for 

the estimation of flow parameters. Traditional interpretation methods of pumping tests are based on 

the assumption of the homogeneous distribution of flow parameters. However, these parameters 

vary greatly in space and their complex heterogeneous structure complicates the parameter 

estimation. This complexity in the spatial variability of subsurface formations has led researchers to 

use geostatistics to advance the accuracy of estimations (Gelhar, 1993).  

 

Commonly used geostatistical approaches are based on two-point statistics, where the 

correlation between two points is taken into consideration. However, this two-point statistical 

approach may not be sufficient to fully represent complex patterns of flow and transport in 

heterogeneous subsurface systems. Two aquifers may have the same two-point statistical 

parameters, variance, and integral scale, but may end up showing very different water flow or solute 

transport behaviors (Zinn and Harvey, 2003). As a novel approach to address this issue, the concept 

of flow connectivity has been introduced in recent years to describe how different regions of the 

aquifer relate to each other. Flow connectivity refers to the presence of preferential flow channels 

where the groundwater flow and contaminant transport can occur faster than the other regions of the 

aquifer. Although the concept itself is clear and easy to comprehend, the unique quantitative 

measure of connectivity has not yet been defined (Renard and Allard, 2011). Moreover, the impact 

of connectivity on the interpretation of pumping tests is still not well understood.  

 

The first objective of this study was to numerically investigate the effect of flow connectivity 

on pumping test data and on the estimated groundwater flow parameters, transmissivity and 

storativity. The analysis considered 2D transient flow in a confined aquifer. Synthetic transmissivity 

fields were generated using the sequential Gaussian simulation, GSLIB geostatistical library 

(Deutsch and Journel, 1998). The conditioning technique proposed by Zinn and Harvey (2003) was 

applied to these Gaussian fields to generate low-transmissivity (low-T) connected and high-

transmissivity (high-T) connected fields.  
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In order to investigate the impact of transmissivity on the location of extraction, a second set of 

realizations were generated. The transmissivity at the extraction well is fixed at a constant value for 

this set and they are referred to as the conditional realizations. This way, the effect of the local 

transmissivity on flow parameter estimation is investigated by comparing these two sets of 

realizations. 

 

Because the variability of the storativity is much less than that of the transmissivity, the 

storativity is assumed to be uniform. The storativity value is assumed to be 10-4 which is typical for 

confined aquifers (Freeze and Cherry, 1979). Then, pumping tests were conducted using the 

MODFLOW groundwater flow simulation program for each generated field (Harbough et al., 

2000). The decrease in the groundwater level as a function of time was recorded at two different 

observation wells located at r/I=0.1 and r/I=0.5, where r represents the radial distance from the 

extraction well, and I represents the integral scale of the transmissivity field. These output data were 

used for the estimation of the groundwater flow parameters transmissivity and storativity using two 

different interpretation techniques, namely the Cooper-Jacob Method (1946) and the Continuous 

Derivation Method (Copty et al., 2011). The correlation between the transmissivity estimate and the 

geometric mean of the transmissivity field as a function of radial distance was also examined. 

 

When the flow parameters estimated using the Cooper-Jacob Method were investigated, it was 

seen that the type of field and their connectivity structure did not have a big impact on the 

transmissivity estimations. Overall, the estimated transmissivities were close to the geometric mean 

of the transmissivity fields. This finding is in parallel with previous research (Meier et al., 1998; 

Sanchez-Vila et al., 1999). Estimated storativities, on the other hand, had much larger variability. In 

general, low-T connected fields had smaller storativities and high-T connected fields had larger 

estimated storativities. The Gaussian fields had estimated storativity values between the two, but 

they had the largest variability. These trends were particularly explicit for conditional fields. It 

showed the transmissivity at the location of extraction affects the storativity estimation greatly. 

 

The outputs of the Continuous Derivation method also showed that as the extraction proceeds, 

the estimated transmissivity approaches to the geometric mean of the transmissivity field. The 

variabilities between different realizations with different levels of connectivity were considerably 

small. Again, the connectivity structure did not have a big effect on the transmissivity estimation. 

The geometric mean of the transmissivity field as a function of radial distance from the extraction 

well was also compared with the transmissivity estimation curve. The two curves were very similar 
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to each other showing that the Continuous Derivation method provides an accurate estimation of 

transmissivity. 

 

Estimated storativities calculated using the Continuous Derivation started from a value close to 

the storativity value used in pumping simulations and varied as the pumping test progressed in time. 

Specifically, the estimated storativity was seen to be highly dependent on the spatial variability of 

the transmissivity field. The variability was less for the conditional realizations, demonstrating the 

heavy impact of transmissivity at the point of extraction. It was also less for the observation well at 

r/I=0.5 because the effective area of extraction is larger for this point. As the effective area 

increases, the estimation averages a larger volume of the aquifer volume, and thus, the variation 

between different estimations becomes smaller. It was observed that with time the variability of the 

storativity decreased indicating that the aquifer system starts to behave as an equivalent 

homogeneous system. However, the apparent storativity estimate at these late times can be orders of 

magnitude different that the storativity value used in the simulation of the pumping tests. As it was 

the case for the storativity estimations performed using the Cooper-Jacob method, the low-T 

connected fields mostly had the smallest estimated storativities, followed by the Gaussian fields and 

high-T connected fields, respectively. At late times, the estimated storativity values over different 

field types and their standard deviations were very similar to that of calculated by Cooper-Jacob. 

This finding showed that after a certain time of extraction, the values calculated with the 

Continuous Derivation method were close to the values estimated with the Cooper-Jacob method. 

As the latter method averages the late time data of the head drawdown curve, this finding was also 

expected. This is in contrast to the storativity estimated at intermediate times which tend to be 

strongly dependent on time. This also proved that the drawdown derivative curve could give more 

detailed information about the flow parameters than the drawdown curve itself. 

 

The second objective of this study was to quantify a static measure of connectivity and 

examine its relationship with the estimated parameters and to investigate whether estimated flow 

parameters could give some information about the level of field connectivity. The connectivity 

measure proposed by Western et al. (2001) was chosen as the static connectivity indicator and the 

connectivity scale of each synthetically generated field was calculated. The relationship between the 

connectivity scale and estimated parameters was analyzed as well. 

 

It was observed that, on average, low-T connected fields had the lowest integral connectivity 

scale, followed by the Gaussian fields and high-T connected fields, respectively. This behavior was 

observed both for conditional and unconditional realizations. However, although the average 



 

 

 

81 

5
 

integral connectivity scales followed this trend, this is not always the case for individual 

realizations, indicating the complex relation between the drawdown and the spatial variability of the 

transmissivity field. 

 

The relationship between the integral connectivity scales and the transmissivity values 

estimated with the Cooper-Jacob Method are examined, and no correlation between the two is 

detected. Most fields had a transmissivity value near the geometric mean of the transmissivity field, 

independent of the field’s integral connectivity scale. The estimated storativities showed a low 

correlation with the integral connectivity scales. The correlation was larger for the conditional 

realizations, showing that the integral connectivity scale had an impact on storativity estimation, but 

not as dominant as the impact of local transmissivity. The late time estimations of storativities using 

the Continuous Derivation method had the same features as the ones estimated with the Cooper-

Jacob method. There is a slight correlation between the estimated storativities and the integral 

connectivity scales and the correlation is larger for conditional realizations. In other words, the 

transmissivity around the well has a larger impact on flow parameter estimation than the impact of 

this static connectivity measure. 

 

Overall, this study is performed to investigate the impact of connectivity on the analysis of 

pumping tests and to assess whether connectivity metrics can be estiamted from pumping tests. An 

improved estimation of the flow paramters will ultimately lead to more accurate groundwater flow 

models that can more relaibly simulate the effects of heterogeneity and flow connectivity. The 

results of this study demonstrate the difficulty of interpreting the meaning of the estimated flow 

parameters conducted in heterogeneous aquifer systems. In particular, the storativity estimate is 

seen to vary strongly with the spatial variability of the transmissivity field casting some doubt on 

the meaning of the estimated flow parameters and how they relate to actual aquifer systems. There 

is clear evidence that the storativity is influenced by the connectivity of the transmissivity field but 

the time-drawdown data obtained from single pumping tests is not adequate to reliably estimate 

aquifer connectivity.  

 

Future research related to this study should focus on: 

 

 Considering different levels of soil heterogeneity by changing the variance and the integral 

scale of the generated fields.  
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 Testing the estimation of the integral connectivity scale by changing the threshold value 

differentiating between high/low transmissivity values.. Increasing the threshold might be 

helpful to differentiate highly connected fields. The estimation of the correlation between 

the integral connectivity scale and the estimated flow parameters for different threshold 

values can shed additional light on the aquifer’s level of connectivity. 

 Improving the quantitative measure of the flow connectivity and developing novel 

approaches to measure the static connectivity. Here only one method is examined (proposed 

by Western et al., 2001) but there is still a need for research on accurate measures of 

connectivity. 

 Developing three-dimensional models of the aquifer instead of two-dimensional models. 

The flow through the well in the vertical direction is assumed negligible in this research. 

Taking the heterogeneity in the third direction into consideration would obviously 

complicate the flow system but may also provide additional information about the 

connectivity of an aquifer. Although it would increase the computer memory requirement of 

the study tremendously, recent advancement in the technology would make it possible to 

work on a number of 3D realizations easily.  
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