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ABSTRACT 

 

 

Polyhalogenated compounds (PHCs) such as polybrominated and polychlorinated 

diphenyl ethers (PBDEs/PCDEs) are an important chemical group because of their 

environmental persistence, high hydrophobicity, and bioaccumulation in humans. Their 

physico-chemical properties such as n-octanol/air partition coefficient (log Koa) and n-

octanol/water partition coefficient (log Kow) and toxicities are of fundamental importance 

to gain a better understanding of the environmental fate and behavior of these compounds.  

 

In this study, several Quantitative Structure-Activity Relationship/Quantitative 

Structure-Property Relationship (QSAR/QSPR) models were developed on log Koa of 

PBDEs, log Kow of PBDEs and PCDEs, and the aryl hydrocarbon receptor relative binding 

affinity (log RBA) of PBDEs by employing Heuristic Method (HM) and Multiple Linear 

Regression (MLR). Descriptors used were from DRAGON 5.4, SPARTAN 06, and 

CODESSA 2.2 software and the Characteristic Root Index (CRI) program. All the best 

models were internally validated for their performance using the leave-one-out procedure 

and scrambling of the responses. External validation was provided by splitting the data sets 

into training and test sets either using random division in terms of property modeled or 

Kohonen network considering the size of the data sets.  

 

Of the models developed log Koa and log Kow models were validated externally by 

using test sets. log RBA model could not be validated externally because of a lack of RBA 

data. EHOMO and Eaq from SPARTAN, and the CRI appeared to be significant descriptors 

for the developed log Kow models of PBDEs/PCDEs. The CRI also appeared to be an 

important parameter in modeling log Koa of PBDEs. The statistical quality of all the 

models for polyhalogenated diphenyl ethers is compared to those of the previously 

published models using the same experimental data and found to be superior to those 

models. All the QSAR/QSPR models were developed taking into account the OECD 

principles for validation, for regulatory purposes, of QSAR. This implied internal and 

external validations, the analysis of the applicability domain (AD) and, when possible, a 

mechanistic interpretation of the models. 
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ÖZET 

 

 

Polibromlu ve poliklorlu difenil eterler (PBDEs/PCDEs) gibi Polihalojenli 

bileşikler çevredeki dayanıklıkları, yüksek hidrofob özellikleri ve canlılardaki 

biyobirikimlerinden dolayı önemli bir kimyasal gruplardır. n-oktanol/hava (log Koa), n-

oktanol/su (log Kow) dağılım katsayısı gibi fizikokimyasal ve toksisite gibi özellikleri, bu 

bileşiklerin çevresel akıbeti ve davranışlarını daha iyi anlayabilmek için önem 

taşımaktadır.  

 

Bu çalışmada, PBDE için log Koa ve log RBA, PBDE ve PCDE için log Kow 

modelleri Heuristic yöntem ve Çoklu Doğrusal Regresyon (MLR) kullanılarak Kantitatif 

yapı-aktivite/Kantitatif yapı-özellik ilişkisi (QSAR/QSPR) ile oluşturuldu. Tanımlayıcılar 

DRAGON 5.4, SPARTAN 06 ve CODESSA 2.2 programları ve CRI programından elde 

edilmiştir. Tüm modellerin içsel validasyonları, birini dışarda bırak (leave-one-out) ve 

bağımlı değişkenin rastgele karıştırılması (scrambling of the responses) yöntemleri 

kullanılarak yapıldı. Dışsal validasyon için veri setini eğitim ve test setlerine ayırmada 

modellenen özelliğe ait veri setinin boyutu göz önünde bulundurularak rastgele ayırma 

veya Kohonen ağları kullanıldı. 

 

log Koa ve log Kow modelleri test set kullanılarak dışsal olarak valide edildi.          

Log RBA modeli, RBA verisi eksikliğinden dolayı dışsal olarak valide edilemedi. 

PBDEs/PCDEs için oluşturulan log Kow modelinde, SPARTAN programı ile hesaplanan 

EHOMO ve Eaq, ve CRI tanımlayıcıları en önemli tanımlayıcı olarak yer aldılar. CRI ayrıca 

PBDEler için oluşturulan log Koa modelinde de önemli bir tanımlayıcı olarak ortaya çıktı. 

Polihalojenli difenil eterler için oluşturulan modeller, literatürde daha önce aynı deneysel 

veri için yayınlanmış olan modeller ile kıyaslandığında, bu çalışmadaki modellerin 

literatürdeki modellere göre istatistiksel kalite bakımından daha üstün oldukları bulundu. 

Bütün QSAR/QSPR modelleri yönetmelik amaçlı kullanılabilecek şekilde OECD 

tarafından yayınlanan prensipler göz önünde bulundurularak oluşturuldu. Bu prensipler, 

modellerin içsel ve dışsal validasyonunu, uygulanabilirlik alanının (AD) analizini ve 

mümkünse mekanistik yorumunu içermektedir. 
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1. INTRODUCTION 

 

 

The European Union (EU) Registration, Evaluation, Authorization and Restrictions 

of Chemicals (REACH) regulation encourages the use of alternative in vitro and in silico 

methods in order to minimize animal testing, costs and time. In this context the use of 

Quantitative Structure-(Activity/Property/Toxicity) Relationships (QSAR/QSPR/QSTR) 

becomes particularly useful to predict unknown activities/properties for existing or even 

not yet synthesized chemicals.  

 

In the EU REACH regulation, the chemicals with particularly harmful behaviors, 

such as endocrine disruptors (EDs), are subject to authorization, and the identification of 

safer alternatives to these chemicals is required. In this context, the use of QSAR and 

QSPR becomes particularly useful to fill the data gap due to the very small number of 

experimental data available to characterize the environmental and toxicological profiles of 

new and emerging pollutants with ED behavior such as polybrominated diphenyl ethers 

(PBDEs) and polychlorinated diphenyl ethers (PCDEs). 

 

Brominated flame retardants including PBDEs are man-made chemicals that are 

widely used to decrease the flammability of plastics, electronic appliances, textiles, and 

polyurethanes (Pirard et al., 2003; Birnbaum and Staskal, 2004; Richardson, 2004; Keum 

and Li, 2005). Because of their relatively low cost and effective flame retardation 

capabilities, more than 67,400 tons of PBDEs were produced annually throughout the 

world, including penta-BDE, octa-BDE, and deca-BDE (Birnbaum and Staskal, 2004; 

Richardson, 2004). Unlike more reactive fire retardants such as tetrabromobisphenol-A, 

PBDEs can be readily incorporated into polymers without making any covalent bonds to 

adjacent materials. Therefore, they can easily migrate to the environment by improper 

disposal of used products that contain these substances. Their widespread presence and 

rapid appearance in mammalian tissues through bioaccumulation have evoked concern 

over their toxicity and potential ability to cause endocrine disruption (Hakk and Letcher, 

2003; Birnbaum and Staskal, 2004). Recently, PBDEs with 4 to 7 bromines were newly 

listed as persistent organic pollutants (POPs) in the Stockholm Convention.  
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PCDEs have been found as by-products in chlorinated phenols and chlorinated 

phenoxyacetic acids, where they have been identified at a level of 100-1000 mg/kg 

(Nilsson and Renberg, 1974; Kurz and Ballschmiter, 1995a; 1995b). The extensive use of 

the chlorinated phenols, especially pentachlorophenol as an herbicide and in wood 

preserving formulations, leads to a ubiquitous appearance of the PCDEs in the 

environment. Another source of PCDEs is all processes of incomplete combustion e.g., 

municipal waste incinerators (Paasivirta et al., 1986; Kurz and Ballschmiter, 1995a). 

PCDEs have been detected in a wide range of environmental samples. PCDEs have been 

determined in sediments and fish from the North American Great Lakes (Coburn and 

Comba, 1981; Coburn and Comba, 1985; Niimi et al., 1994), in bird tissue and eggs 

(Stafford, 1983), in white-tailed eagle muscles (Paasivirta et al., 1986; Koistinen et al., 

1993a), in salmon (Koistinen et al., 1993b), in cod liver oils (Kurz and Ballschmiter, 

1995a; 1995b), and in human adipose tissue (Stonley et al., 1990; Williams et al., 1991). 

Besides the knowledge of toxicological and analytical data, the availability of physico-

chemical data of the PCDEs is important. From the knowledge of physico-chemical 

properties (e.g., vapour pressure, aqueous solubility) statements can be made about the 

distribution, and the regional and global transport in the different environmental 

compartments. 

 

Predicting the fate and transport of these compounds remains tenuous due to the 

lack of physical-chemical data. Physico-chemical properties of micropollutants, especially 

those partitioning properties such as n-octanol/air partition coefficient (Koa) and n-

octanol/water partition coefficient (Kow) play a major role in their transport and mobility in 

the global environment. This is particularly true for those Persistent Organic Pollutants 

(POPs) chemicals like PBDEs and PCDEs. The distribution of these substances between 

the particle and gas phases in the atmosphere is a key factor which governs their deposition 

to water bodies and vegetation and controls their atmospheric lifetimes which are 

dependent on removal by gas-phase reactions. Other significant partition coefficient is Kow 

and describes partitioning of the substance between water and environmental organic 

phases. They are mathematically defined as a quotient of n-octanol/air and n-octanol/water 

concentration at the equilibrium state (Xiao and Wania, 2003; Wania and Su, 2004).  
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Besides physico-chemical properties the toxicology of PBDEs is currently under 

investigation. But, evidences emerge that PBDEs may be developmental neurotoxicants, 

and may cause neurochemical and hormonal deficits (Eriksson et al., 2001; Viberg et al., 

2002; Zhou et al., 2002; Branchi et al., 2003). EU has banned the use in all applications of 

penta-BDE and octa-BDE in the EU market. However, limited toxicological data are 

obtained for only the most prevalent individual PBDE congeners (e.g., BDE-47, BDE-99, 

and BDE-100) (Chen et al., 2001; Rahman et al., 2001). Additionally, Aryl hydrocarbon 

Receptor (AhR) binding affinities of some PBDE congeners have been determined. The 

AhR is a ligand-activated transcription factor. AhR plays a very important role in the 

detoxification of endo- and xenobiotics. The large number of PBDE congeners complicates 

toxicological studies further. 

 

Maximum half of the congeners of PBDEs and PCDEs have reported log Kow and 

only 22 and 18 congeners of PBDEs have reported log Koa and log RBA values, 

respectively. Although no experimental data concerning the physico-chemical and toxic 

properties of the remaining PBDE and PCDE congeners are currently available, it has been 

suggested that QSPR can be an alternative approach for estimating these physico-chemical 

properties. As a common and successful research approach, QSAR/QSPR studies are 

applied extensively to chemometrics, pharmacodynamics, pharmacokinetics, toxicology 

and so on. 

 

Multiple Linear Regression (MLR) is one of the earliest methods used for 

constructing QSAR/QSPR models, but it is still one of the most commonly used ones to 

date. The advantage of MLR is its simple form and easily interpretable mathematical 

expression. Although utilized to great effect, MLR is vulnerable to descriptors which are 

correlated to one another, making it incapable of deciding which correlated sets may be 

more significant to the model. Some new methodologies based on MLR have been 

developed and reported in recent papers aimed at improving this technique. Heuristic 

Method (HM), an advanced algorithm based on MLR, is popular for building linear 

QSAR/QSPR equations because of its convenience and high calculation speed. The 

advantage of HM is totally based on its unique strategy of selecting variables.  
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HM is commonly used in linear QSAR and QSPR studies, and also as an excellent 

tool for descriptor selection before a linear or nonlinear model is built (Luan et al., 2006; 

Xia et al., 2009). The advantages of HM are the high speed and the absence of software 

restrictions on the size of the data set. HM can either quickly give a good estimation about 

what quality of correlation to expect from the data, or derive several best regression 

models. HM usually produces correlations 2-5 times faster than other methods with 

comparable quality. Additionally, the maximum number of parameters in the resulting 

model can be fixed in accordance with the situation so as to save time. As a method 

inherited from MLR, HM is also limited in linear models. 

 

In this work, several QSPR models were used to predict some important physico-

chemical properties for all the 209 PBDE and PCDE congeners along with the diphenyl 

ether. The studied end points were: n-octanol/air partition coefficient (log Koa), n-

octanol/water partition coefficient (log Kow) and Ah receptor binding affinity (log RBA). In 

previous studies, the Characteristic Root Index (CRI), which comprises all possible orders 

of path-type valence connectivity indices, has been demonstrated to correlate many 

physico-chemical and biological properties of organic compounds including solubility 

(Saçan and İnel, 1993), n-octanol/water partition coefficient (Saçan and İnel, 1995; Saçan 

et al., 2005), soil sorption coefficient (Koc) (Saçan and Balcıoğlu, 1996), vapor pressure 

(Saçan and Balcıoğlu, 1998), bioconcentration factor (Saçan et al., 2003), and toxicity of 

aromatic compounds to algae (Saçan et al., 2007). Hence, it is logical to examine the 

relationship between the CRI and physico-chemical properties and toxicities of 

polyhalogenated diphenyl ethers. The CRI was calculated by using a program written in 

Delphi 2007 by Ünal Taşdizen for Polyhalogenated Diphenyl Ethers. Other descriptors 

were calculated using DRAGON 5.4, CODESSA 2.2 (Comprehensive Descriptors for 

Structural and Statistical Analysis) and SPARTAN 06 software. The latter descriptors were 

used to increase the predictive ability of the CRI-based models. 

 

A total of 1164 from DRAGON 5.4, 163 from CODESSA 2.2, and 8 from 

SPARTAN 06 software and CRI descriptors were retained and subsequently used in model 

development. The predictive ability of the resulting models is compared in order to 

determine whether or not the more complex descriptors are necessary to predict the 

property or activity of interest. For comparative purposes, predictive models based on each 
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descriptor class, alone, were also developed. To compare the predictive performance of all 

the models developed for training and test sets in this study with those of the literature 

models R
2

cv and R
2

pred were compared. 

 

1.1. Purpose of the Study 

 

The aim of the present study is (1) to calculate the theoretical molecular descriptors 

representing the studied molecular structures from DRAGON 5.4, SPARTAN 06 and 

CODESSA 2.2 software and the CRI program; (2) to select descriptors with HM of 

CODESSA 2.2; (3) to explore QSPR models relating to log Koa of PBDEs, log Kow of 

PBDEs and PCDEs, and log RBA of PBDEs by employing Multiple Linear Regression 

(MLR) method. Additionally, the purpose of the study is to build models according to the 

following scheme: (1) a split of the chemicals into a training set and test set in terms of the 

property to be modeled for small data set and using Kohonen network for large data set; 

(2) selection of a model satisfactory for the training set; (3) external validation of the 

model with the test set; (4) using the leave-one/many-out cross-validation and Y-

scrambling procedures for the internal validation of all the best models; (5) using the 

leverage approach for verifying the applicability domain by highlighting both the response-

outliers and the structural influential chemicals (Williams graph). Another purpose of the 

study is to predict log Kow values of PBDE/PCDE congeners, and log Koa and log RBA 

values of PBDE congeners outside the sample set with the best developed models and to 

compare the best models with the reported literature models. 

 

We hope that the resulting QSPRs are to be both descriptive (pinpointing the key 

descriptors) and predictive (able to predict the physico-chemical properties of compounds 

which are not included in the QSPR determinations).  
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2. THEORETICAL BACKGROUND 

 

 

2.1.  Polybrominated Diphenyl Ethers (PBDEs)  

 

Polybrominated diphenyl ethers (PBDEs) are chemical relatives of Polychlorinated 

biphenyls (PCBs), another family of highly persistent and bioaccumulative toxicants with a 

structure very much like PCBs that came to the attention after a huge quantity of them had 

been released into the environment (Hites, 2004). 

 

2.1.1. Structure of PBDEs 

 

PBDEs are a class of structurally similar brominated hydrocarbons, in which 2-10 

bromine atoms are attached to the diphenyl ether molecule. Monobrominated structures 

(i.e., one bromine atom attached to the molecule) are often included when describing 

PBDEs. 

 

PBDE is the common name for the 209 different Brominated Diphenyl Ether 

(BDE) congeners that can theoretically be obtained in complex mixtures via bromination 

of diphenyl ether or as individual, pure, compounds via specific routes for their synthesis. 

The common structure of PBDE congeners is depicted in Figure 2.1.  

 

 

Figure 2.1 Common structure (General structural formula) and substitution positions of the 

PBDEs. The numbers denote the various bromine atoms numbering by carbon position. 

 

para 

meta 

ortho 

meta 

ortho 
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Various synonyms and abbreviations of polybrominated diphenyl ethers are used in 

the literature. In this thesis - in accordance with the monograph from IPCS (1994) - the 

chemical name polybrominated diphenyl ethers is used. To indicate that it is a group of 

compounds the abbreviation PBDEs is used instead of the more widespread PBDE. The 

same group may as well be named polybrominated biphenyl ethers (PBBEs), 

polybrominated biphenyl oxides (PBBOs), or polybrominated diphenyl oxides (PBDOs) in 

the literature. 

 

The 209 possible compounds for PBDEs are called “congeners”. The term 

“homolog” is used to refer to all PBDEs with the same number of bromines (e.g., 

tribromodiphenyl ether refers to PBDEs containing only three bromine atoms). Based on 

the number of bromine substituents, there are 10 homologous groups of PBDEs 

(monobrominated through decabrominated). Each homologous group contains one or more 

congeners. The mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, and decabromo-

congeners can exist in 3, 12, 24, 42, 46, 42, 24, 12, 3, and 1 forms, respectively. Homologs 

with different substitution patterns are referred to as isomers. For example, the group of 

dibromodiphenyl ether homologs contains 12 isomers. There are important three-

dimensional differences in their structures within congeners due to the ether linkage and 

location/number of halogen atoms.  

 

The ether linkage in the diphenyl oxide molecule introduces a high barrier to 

rotation and prevents the two aromatic rings from assuming a planar configuration. In 

addition, the ortho positions of the aromatic rings must be nonhalogen-substituted for a 

biphenyl or diphenyl oxide (diphenyl ether) molecule to assume a planar or near planar 

configuration. 

 

Halogen substitution of the diphenyl ether molecule in the ortho positions 

(2,2‟,6,6‟) will force the aromatic rings orthogonal to one another. Decabromodiphenyl 

ether (DBDPE), fully substituted at all ring positions, exists with its two aromatic rings 

orthogonal to one another. In addition, the ether bridge in the DBDPE molecule introduces 

a 120° bend in the alignment of the biphenyl rings. The benzene rings of non-ortho 

substituted PBDEs may assume a small dihedral angle (in which the dihedral angle is 

small, but >0°) or “near” planar configuration. These molecules are referred to as planar or 
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coplanar congeners. The molecular weights of the PBDEs range from 249.103 g/mol to 

959.167 g/mol based on the natural abundance of carbon, hydrogen, and bromine. The 

PBDEs and polychlorinated diphenyl ethers (PCDEs) are numbered as proposed for the 

PCBs by Ballschmiter and Zell (1980) and Schulte and Malisch (1983) by using the 

abbreviation BDE and their corresponding number (which are also referred to as congener, 

IUPAC, or BZ numbers) (Table 2.1.). 

 

Table 2.1 Systemic numbers of the PBDEs and PCDEs
1
. 

 

No Structure No Structure No Structure No Structure No Structure 

1 2 43 2,2',3,5  85 2,2',3,4,4'  127 3,3',4,5,5'  169 3,3',4,4',5,5'  

2 3 44 2,2',3,5'  86 2,2',3,4,5  128 2,2',3,3',4,4'  170 2,2',3,3',4,4',5  

3 4 45 2,2',3,6  87 2,2',3,4,5'  129 2,2',3,3',4,5  171 2,2',3,3',4,4',6  

4 2,2'  46 2,2',3,6'  88 2,2',3,4,6  130 2,2',3,3',4,5'  172 2,2',3,3',4,5,5'  

5 2.3 47 2,2',4,4'  89 2,2',3,4,6'  131 2,2',3,3',4,6  173 2,2',3,3',4,5,6  

6 2,3'  48 2,2',4,5  90 2,2',3,4',5  132 2,2',3,3',4,6'  174 2,2',3,3',4,5,6'  

7 2.4 49 2,2',4,5'  91 2,2',3,4',6  133 2,2',3,3',5,5'  175 2,2',3,3',4,5',6  

8 2,4'  50 2,2',4,6  92 2,2',3,5,5'  134 2,2',3,3',5,6  176 2,2',3,3',4,6,6'  

9 2.5 51 2,2',4,6'  93 2,2',3,5,6  135 2,2',3,3',5,6'  177 2,2',3,3',4,5',6'  

10 2.6 52 2,2',5,5'  94 2,2',3,5,6'  136 2,2',3,3',6,6'  178 2,2',3,3',5,5',6  

11 3,3'  53 2,2',5,6'  95 2,2',3,5',6  137 2,2',3,4,4',5  179 2,2',3,3',5,6,6'  

12 3.4 54 2,2',6,6'  96 2,2',3,6,6'  138 2,2',3,4,4',5'  180 2,2',3,4,4',5,5'  

13 3,4'  55 2,3,3',4  97 2,2',3,4',5'  139 2,2',3,4,4',6  181 2,2',3,4,4',5,6  

14 3.5 56 2,3,3',4'  98 2,2',3,4',6'  140 2,2',3,4,4',6'  182 2,2',3,4,4',5,6'  

15 4,4'  57 2,3,3',5  99 2,2',4,4',5  141 2,2',3,4,5,5'  183 2,2',3,4,4',5',6  

16 2,2',3  58 2,3,3',5'  100 2,2',4,4',6  142 2,2',3,4,5,6  184 2,2',3,4,4',6,6'  

17 2,2',4  59 2,3,3',6  101 2,2',4,5,5'  143 2,2',3,4,5,6'  185 2,2',3,4,5,5',6  

18 2,2',5  60 2,3,4,4'  102 2,2',4,5,6'  144 2,2',3,4,5',6  186 2,2',3,4,5,6,6'  

19 2,2',6  61 2,3,4,5  103 2,2',4,5',6  145 2,2',3,4,6,6'  187 2,2',3,4',5,5',6  

20 2,3,3'  62 2,3,4,6  104 2,2',4,6,6'  146 2,2',3,4',5,5'  188 2,2',3,4',5,6,6'  

21 2,3,4  63 2,3,4',5  105 2,3,3',4,4'  147 2,2',3,4',5,6  189 2,3,3',4,4',5,5'  

22 2,3,4'  64 2,3,4',6  106 2,3,3',4,5  148 2,2',3,4',5,6'  190 2,3,3',4,4',5,6  

23 2,3,5  65 2,3,5,6  107 2,3,3',4',5  149 2,2',3,4',5',6  191 2,3,3',4,4',5',6  

24 2,3,6 66 2,3',4,4'  108 2,3,3',4,5'  150 2,2',3,4',6,6'  192 2,3,3',4,5,5',6  

25 2,3',4  67 2,3', 4,5  109 2,3,3',4,6  151 2,2',3,5,5',6  193 2,3,3',4',5,5',6  

26 2,3',5  68 2,3',4,5'  110 2,3,3',4',6  152 2,2',3,5,6,6'  194 2,2',3,3',4,4',5,5'  

27 2,3',6  69 2,3',4,6  111 2,3,3',5,5'  153 2,2',4,4',5,5'  195 2,2',3,3',4,4',5,6  

28 2,4,4'  70 2,3',4',5  112 2,3,3',5,6  154 2,2',4,4',5,6'  196 2,2',3,3',4,4',5,6'  

29 2,4,5  71 2,3',4',6  113 2,3,3',5',6  155 2,2',4,4',6,6'  197 2,2',3,3',4,4',6,6'  

30 2,4,6  72 2,3',5,5'  114 2,3,4,4',5  156 2,3,3',4,4',5  198 2,2',3,3',4,5,5',6  

31 2,4',5  73 2,3',5',6  115 2,3,4,4',6  157 2,3,3',4,4',5'  199 2,2',3,3',4,5,5',6'  

32 2,4',6  74 2,4,4',5  116 2,3,4,5,6  158 2,3,3',4,4',6  200 2,2',3,3',4,5,6,6'  

33 2,3',4'  75 2,4,4',6  117 2,3,4',5,6  159 2,3,3',4,5,5'  201 2,2',3,3',4,5',6,6'  

34 2,3',5'  76 2,3',4',5'  118 2,3',4,4',5  160 2,3,3',4,5,6  202 2,2',3,3',5,5',6,6'  

35 3,3',4  77 3,3',4,4'  119 2,3',4,4',6  161 2,3,3',4,5',6  203 2,2',3,4,4',5,5',6  

36 3,3',5  78 3,3',4,5  120 2,3',4,5,5'  162 2,3,3',4',5,5'  204 2,2',3,4,4',5,6,6'  

37 3,4,4'  79 3,3',4,5'  121 2,3',4,5',6  163 2,3,3',4',5,6  205 2,3,3',4,4',5,5',6  

38 3,4,5  80 3,3',5,5'  122 2,3,3',4',5'  164 2,3,3',4',5',6  206 2,2',3,3',4,4',5,5',6  

39 3,4',5  81 3,4',4,5  123 2,3',4,4',5'  165 2,3,3',5,5',6  207 2,2',3,3',4,4',5,6,6'  

40 2,2',3,3'  82 2,2',3,3',4  124 2,3',4',5,5'  166 2,3,4,4',5,6  208 2,2',3,3',4,5,5',6,6'  

41 2,2',3,4  83 2,2',3,3',5  125 2,3',4',5',6  167 2,3',4,4',5,5'  209 2,2',3,3',4,4',5,5',6,6'  

42 2,2',3,4'  84 2,2',3,3',6  126 3,3',4,4',5  168 2,3',4,4',5',6      
1Ballschmiter and Zell, 1980; Schulte and Malisch, 1983. 
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Structural difference between the chlorinated and brominated molecules relates to 

molecular geometries. Bromine atoms occupy a considerably larger volume than chlorine 

atoms, and as a consequence, brominated molecules have a larger molecular volume than 

do molecules containing a similar number of chlorine atoms (Hardy, 2002). 

 

2.1.2. Uses 

 

PBDEs are used as flame retardants with amounts ranging from 5 to 30% added to 

products to protect them from catching on fire. The products may be polymers, resins, 

rubbers or textiles (WHO, 1994).  

 

PBDEs are one of the Brominated Flame Retardants (BFRs) which are a diverse 

group of chemicals that are used to increase fire safety. They are incorporated into a wide 

range of products, such as TVs, computers, household appliances, textiles and upholstery. 

BFRs have led to both scientific and public concern since they have been found to 

accumulate in man and wildlife. BFRs are linked to adverse physiological effects both in 

vitro and in vivo (e.g., interference in neurobehavioral development, fetal health and 

thyroid function). Adequate data on the effects are currently still insufficient to fully 

understand their toxicology.  

 

The PBDEs are used as additives, which mean that they are moulded with the 

polymer or rubber to form the final product. Since the PBDEs are not covalently bound 

with the product, they can migrate (diffuse) out of the products during their lifetime. A 

study has shown the migration of PBDEs from electronic devices into air, from recycling 

of electronic equipment, followed by uptake in humans (Sjödin et al., 2001).  

 

2.1.3. Physico-chemical Properties of PBDEs 

 

PBDEs have high octanol-water partitioning coefficient (log Kow) values, all above 

5, which is an indication of possible bioaccumulation. The high log Kow values generate 

problems when performing tests in aqueous media, which is one reason for them not 

passing the ready biodegradability tests (RBT tests). For BDE-209, solubility in water is 

extremely low and its abundance for possible microbial degradation in any water based 
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RBT is therefore an inappropriate methodology for assessment of persistence. PBDEs also 

have low vapour pressures at room temperature, changing in relation to the bromine 

content of the congener with lower values for the more brominated congeners. Vapour 

pressure for BDE-47 has been measured to be 2.5x10
-4

 Pa (Wong et al., 2001), while BDE-

183 has a vapour pressure of 4.7x10
-7

 Pa (Tittlemier et al., 2002). The chemical 

characteristics of PBDEs influence their behaviour in the abiotic environment and in biota. 

In other words, these characteristics are critical for modeling aspects such as the transport 

and fate, persistence, bioconcentration, and biological activity of the congeners. 

 

2.1.4. PBDE Human Levels: A Cause of Concern 

 

Synthetic halogenated compounds including chlorinated dioxins, dibenzofurans, 

and PCBs have been identified as global environmental and human contaminants over the 

past 30 years. Their harmful effects on wildlife and humans have been extensively 

reviewed, although their mechanism(s) of action remains unclear. Continuous monitoring 

of human samples has revealed that PBDE levels have exponentially increased in the last 

decades. For example, an analysis of human breast milk between 1972 and 1997 showed a 

60-fold increase in the PBDE levels in Swedish women (Meironyte et al., 1999), and 

recent studies have reported much higher levels in human breast adipose tissue (She et al., 

2002) and human breast milk (Schecter et al., 2003). In the last years, a large number of 

articles have been published reporting very high levels of this compound in milk, blood 

and adipose tissue. Like environmental levels, an exponential increase with a doubling 

time of ~5 years has also been observed in human tissue, and the levels have risen by a 

factor of ~100 over the last 30 years according to Hites (2004). Another interesting factor 

is that North American samples are always above the regression line by a factor of >10 

(when the data from all countries are plotted together) and the Japanese always below by a 

factor of ~5 with Europe in the middle range. European and Japanese demand for PBDEs 

are mostly deca-BDE mixtures, whereas there is a massive demand for penta-BDE 

mixtures in the U.S., accounting for 98% of total world production (BSEF, 2004). Deca-

BDE congeners in the environment vary from nondetectable to low detectable levels, while 

tetra- and penta-BDE congeners are very persistent (WHO, 1994). Thus, it has been 

suggested that the “quality” of PBDEs has a direct impact on human and environmental 



11 

levels. Moreover, widespread use of manufacture products with flame retardancy 

mandated by federal law may account for the high levels in the U.S. 

 

Congener-specific analysis in human samples should not be taken literally into 

account because only a few congeners have been measured thus far. However, it gives a 

rough, but extremely valuable, estimation of congener distribution. The most predominant 

PBDE congener is the tetra-BDE 47 (accounting for more than 50% of total PBDE), 

followed by penta-BDE 99 (the subject of the present investigation), hexa-BDE 153 and 

penta-BDE 100 (Krupp et al., 1988; de Wit, 2002; Kalantzi et al., 2004; Sjödin et al., 

2004). A recent study estimated the half-life of the most predominant congeners, PBDE 

47, PBDE 99, PBDE 100, PBDE 154 and PBDE 153, which reported a very high half-life 

of 1.8, 2.9, 1.6, 3.3 and 6.5 years, respectively (Geyer et al., 2004). The predominance of 

these congeners with long half-lives in commercial mixtures is the key factor for their 

persistence in environmental and human samples. Given that PBDE are used in plastics 

and in electronic products, one would expect that workers involved in assembling or 

disassembling these products would have a higher burden. In a few publications, PBDE 

serum concentrations from occupationally exposed employees (involved in dismantling 

electronics like computers) were compared to those of non-exposed employees in the same 

facility. Although the data for occupational exposure are not as complete as those for 

environmental exposure, a congener-specific analysis has shown that blood levels of 

exposed workers were twice those of the controls (Sjödin et al., 1999; Thomsen et al., 

2001; Lado-Abeal et al., 2003). 

 

While there is a considerable amount of information on PBDE levels in human 

samples, no data has thus far been reported on their toxicological effects in humans. 

Several studies have only recently published experimental evidence from animal studies 

suggesting that PBDEs may interfere with normal developmental and physiological 

processes sometimes at dose levels close to human exposure. Moreover, congener-specific 

potency and a broad scope of toxic effects have been demonstrated for PBDEs similar to 

PCB-mediated toxic effects. 
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2.1.5. Metabolism and Toxicological Effects of PBDEs 

 

The metabolism of Brominated Flame Retardants (BFRs) was recently reviewed by 

Hakk and Letcher (2003). Congener specific PBDE uptake and metabolism has been 

investigated for several PBDE congeners, in the rat and mouse. The uptake of 
14

C-labelled 

BDE-47 is similar to PCBs in the rodents and the compounds are retained in the body as 

observed after five days (Klasson Wehler et al., 1996; Örn and Klasson Wehler, 1998). 

The uptake of BDE-99 in orally dosed rats is also extensive, and comparable to that of 

BDE-47 (Hakk et al., 1999). The lower brominated PBDEs, BDE-47 and BDE-99, are 

distributed to lipid rich tissues as expected (Örn and Klasson Wehler, 1998; Hakk et al., 

1999). BDE-209 that is orally dosed to rats has shown to be absorbed to at least 10% 

(Mörck et al., 2003), while previous studies have indicated poor uptake (Norris et al., 

1975; El Dareer et al., 1987). The previously low reported absorption of BDE-209 

following an oral exposure may display a dosing vehicle dependency (Hakk and Letcher, 

2003). 

 

From an exposure point of view it is interesting to see how PBDEs are transformed 

in animal experiments in vivo. Six metabolites of BDE-47 have been identified in rat and 

mouse excreta after orally dosing. Most of these metabolites were hydroxylated PBDEs 

and it was shown that mice are metabolizing BDE-47 rather fast, which is in contrast to 

rats (Örn and KlassonWehler, 1998). The metabolism of BDE-209 was studied by Mörck 

et al. (2003) indicating the formation of a large number of metabolites. Another 

metabolism study was performed on a mixture of PBDE congeners in order to determine 

whether PBDEs may form OH-PBDEs that are retained in rat blood (Malmberg, 2004a; 

2004b). 

 

The toxicity of PBDEs is not as well understood as that of Polychlorinated dibenzo-

p-dioxins/Polychlorinated dibenzofurans (PCDDs/PCDFs) and PCBs; however, several 

studies reported their ability to cause neurotoxic effects in mice and dioxin-like endocrine 

disruption (Branchi et al., 2002; Viberg et al., 2002; 2003b). During incineration of 

materials containing PBDEs, highly toxic compounds such as polybrominated dibenzo-p-

dioxins and dibenzofurans, which exhibit similar toxicities as their chlorinated analogues 
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(PCDDs/PCDFs), can be formed at low combustion temperatures (Birnbaum and Staskal, 

2004).  

 

The present knowledge of PBDE toxicity was recently summarised by Gill et al. 

(2004) and by Birnbaum and Staskal (2004). Some previous reviews including PBDE 

toxicity have also been published (Darnerud et al., 2001; McDonald, 2002; Darnerud, 

2003). PBDEs have toxic effects at relevant concentrations to consider in the risk 

assessment work. Among those are the endocrine effects, relating both to thyroidogenic 

and estrogenic effects (Vos et al., 2003). Developmental neurotoxicity has been shown for 

a number of PBDEs, including BDE-209 (Eriksson et al., 2001; 2002; Viberg et al., 2003a; 

2003b; 2004a; 2004b) and the latter compound has been indicated to cause cancer (El 

Dareer et al., 1987). PBDEs are non-dioxin like compounds even though contradicting 

results have been presented but that was probably due to contamination of polybrominated 

dibenzofurans in the technical PBDE products. 

 

PBDEs have several toxic effects. Neurobehavioral effects of PBDEs include 

primarily impairment in motor behavior, reduced learning and reduction in memory 

process (Branchi et al., 2003). Reproductive effects e.g., delay in onset of puberty, 

decrease in the sperm count and reduction in weight of gonads have been seen in male rats. 

(Birnbaum and Staskal, 2004). PBDEs closely resemble thyroid hormones (T3 & T4) and 

bind competitively to thyroid hormone transfer proteins thus acting as endocrine disrupters 

(McDonald, 2002). Chronic exposure to deca-BDE resulted in hepatic and pancreatic 

adenomas in rats, whereas, a combined incidence of hepatocellular adenomas and 

carcinomas was seen in mice (NTP, 1986). 

 

2.1.6. Bioaccumulation of PBDEs 

 

Bioaccumulation of individual PBDE congeners depends on their solubility and 

bioavailability. As the highly brominated deca-BDE has, owing to its high molecular 

weight, a limited tendency to bioaccumulate, especially the less brominated diphenyl 

ethers, such as penta-BDEs, which tend to strongly bioaccumulate and have been restricted 

in several countries. However, in the environment, both microbial reductive 

dehalogenation and photocatalytic debromination by UV light can produce these critical 
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congeners from higher brominated diphenyl ethers like deca-BDE or nona-BDEs. Lower 

brominated diphenyl ethers (Rayne et al., 2003; Söderström et al., 2004) are now 

commonly detected in the soil around landfills, sludge, and wastewater treatment plants 

(Richardson, 2004).  

 

In spite of the rapid emergence and accumulation of these contaminants in the 

environment, the remediation technology for these persisting PBDEs has not been 

investigated sufficiently. Recent studies showed the possibility of abiotic degradation of 

PBDEs using zero valent iron through reductive debromination and photolytic 

debromination using UV light (Keum and Li, 2005). However, in most cases, this results in 

the production of lower brominated diphenyl ethers being generated from deca-BDE or 

octa-BDE (Rayne et al., 2003; Söderström et al., 2004; Cupples et al., 2005). With respect 

to biological degradation, the ether bonds in organic compounds are usually considered to 

be difficult to be degraded via enzymatic reaction because of their thermodynamic stability 

(White et al., 1996). Previously, however, the aerobic bacterial degradation and 

transformation of mono- and dihalogenated diphenyl ethers by Sphingomonas sp. SS3 and 

SS31 was reported (Schmidt et al., 1992; 1993). Further, the fungal transformation was 

reported for diphenyl ether and mono halogenated diphenyl ethers by the white rot fungus 

Trametes versicolor (Hundt et al., 1999) demonstrating an oxidative transformation of 

diphenyl ether and the halogenated derivatives.  Schematic representation of environmental 

behavior of BFRs was given in Figure 2.2.  

 

 

Figure 2.2 Schematic representation of environmental behavior of brominated flame 

retardants (Watanabea and Sakai, 2003). 
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2.1.7. Experimental Studies on Toxicology of PBDEs 

 

Most experimental toxicological studies have used commercial PBDE mixtures, but 

a few investigators did use a single congener. The main criticism of using commercial 

mixtures is the comparably low purity of the mixtures and lack of knowledge about the 

possible interference of other compounds (e.g., dioxins). The main toxicological effects 

and possible modes of action of PBDEs are summarized below. 

 

In rodents, penta-BDE showed a low acute toxicity displaying an LD-50 (lethal 

dose necessary to kill 50%) in the range of 0.5-5 g/kg body weight (BW). Clinical signs 

included reduced growth, diarrhea, piloerection, reduced activity, forelimb tremors, 

reddening around the eyes and nose and continuous chewing. The porphyrin concentration 

increased considerably after oral dosing with the commercial penta-BDE mixture, DE-71 

(mixture of tetra- penta- and hexa-BDE), at 100 mg/kg BW for 13 weeks. No mutagenic 

activity was observed in the Ames test using several Salmonella strains under induced and 

noninduced microsomal activation conditions (WHO, 1994). Immunological effects were 

suggested in mice after exposure to DE-71; suppression of the anti-SRBC response was 

observed as well as decreased thymus weight (Fowles et al., 1994). The congener PBDE 

47 markedly reduced the number of splenocytes in mice (C57BL) after daily oral 

administration for 14 days (Darnerud and Thuvander, 1999). 

 

Both commercial penta-BDE and single congeners have been known to affect 

thyroid hormone homeostasis by reducing serum thyroxin levels in rats and mice (WHO, 

1994; Hallgren et al., 2001; Zhou et al., 2001; 2002; Hallgren and Darnerud, 2002). This 

system seems to be one of the most sensitive to PBDE exposure. Effects on thyroxin levels 

were observed already at single dose of 0.8 mg/kg (Fowles et al., 1994). Tetra-BDE 

congeners reduced thyroid hormone levels in female rats following 14-day oral 

administration (18 mg/kg) (Hallgren and Darnerud, 2002). In another study, commercial 

technical mixtures were administered for 4 days at dosages of 0, 0.3, 1, 3, 10, 30, 100 and 

300 mg/kg BW. Dose-related reductions in serum T4 levels were observed for penta- and 

octa-BDE but not for deca-BDE mixtures. When pregnant rats were treated orally with 0, 

1, 10 and 30 mg penta-BDE mixture/kg BW from gestational day 6 to postnatal day 21, the 

fetuses and dams on gestational day 21 and the offspring on postnatal day 4 and 14 had 
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lower serum concentrations of T4 in all doses tested (Zhou et al., 2002). Two mechanisms 

have thus far been proposed to explain the PBDE-induced hypothyroidism. PBDE 

metabolites are thought to bind to the thyroxin-transporting protein TTR, thereby 

decreasing the thyroxin levels in blood (Meerts et al., 2000). Moreover, PBDEs may 

induce the phase II enzyme uridine diphosphoglucuronosyl transferase (UDPGT), the 

enzyme involved in the metabolism of T4 that increases the rate of elimination (Zhou et al., 

2001). However, insufficient information and a lack of consistency in the set of data 

reported thus far warrant further investigation on the mode of action in thyroid disruption. 

 

Technical PBDE mixtures as well as some congeners are able to induce both phase 

I and phase II detoxification enzymes in the liver, which are involved in the metabolism 

and/or metabolic activation of xenobiotics. Regarding cytochrome P450-mediated phase I 

metabolism, CYP 1A and CYP 2B families were induced as demonstrated by the 

increasing activity of liver microsomal ethoxyresurufin-O-deethylase (EROD), 

methoxyresorufin-O-demethylase (MROD) and penthoxyresorufin-O-despenthylase 

(PROD) after exposure to Bromkal 70, DE-71, DE-79 (pentaBDE mixtures) and PBDE 47 

(Hallgren et al., 2001; Zhou et al., 2001; 2002; Hallgren and Darnerud, 2002). Other 

enzymes used as indicators of microsomal phase I activity were also induced by PBDEs, 

including benzphetamine N-demethylation, p-nitroanisole demethylase, aryl hydrocarbon 

hydroxylase (AHH) and benzo(a)pyrene hydroxylase (Carlson, 1980a; 1980b; Trainor et 

al., 2003). In a 14-day study, penta- and octa-BDE mixtures, but not deca-BDE, induced 

long-lasting UDPGT activity in rats. In two studies, Hallgren et al. (2001) and Hallgren 

and Darnerud (2002) demonstrated that Bromkal 70 and PBDE 47 also increased the 

UDPGT activity but to a lesser degree (Hallgren et al., 2001; Hallgren and Darnerud, 

2002). 

 

Some studies have also shown that PBDE is a potent neurotoxicant displaying 

effects similar to PCBs. Based on the available data; this system seems to be the most 

sensitive to PBDE-induced toxicity. For example, mice neonatally and perinatally exposed 

to PBDEs have shown impaired sensorimotor development, altered locomotor activity and 

delayed development of spontaneous behavior (Branchi et al., 2002; 2003; Viberg et al., 

2003a; 2003b). When a single dose of PBDE 47 (0.7 or 10.5 mg/kg) or PBDE 99 (0.8 or 

12 mg/kg) was administered to mice on postnatal day 10, these animals exhibited 
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permanent aberrations in motor behavior. Moreover, learning and memory deficits were 

also observed in PBDE 99-treated mice (Eriksson et al., 2001; 2002). Two studies suggest 

that cholinergic nicotinic receptors may also be a target of PBDEs, since a decrease in 

alpha-bungarotoxin binding in the hippocampus was found in mice neonatally exposed to 

PBDE 153 and the response of the cholinergic agent nicotine was also altered in mice 

neonatally exposed to PBDE 99 (Viberg et al., 2002; 2003a). In vitro, PBDEs were capable 

of inducing cell death in cerebellar granule cells in culture (Reistad et al., 2002) and 

releasing arachidonic acid via the phospholipase A2 pathway, which is associated with 

learning and memory (Kodavanti et al., 2002). 

 

The most relevant data on the toxicological effects of PBDEs were given above, 

leading to the conclusion that a greater effort should be made in the experimental field in 

the coming years. This is extremely important for identifying and assessing the risks to 

humans from this new environmental pollutant. The available data indicate that PBDEs 

display variable dose-related effects, suggesting various modes of action for this 

compound similar to those of PCBs.  

 

2.2. Polychlorinated Diphenyl Ethers (PCDEs) 

 

2.2.1. Structures and Nomenclature 

 

PCDEs are a group of halogenated aromatic compounds. PCDEs have physico-

chemical properties similar to those PCBs, PCDDs and PCDFs (Kurz and Ballschmiter, 

1999). Figure 2.3 shows the structure of the PCDEs, which have one to ten chlorine atoms 

and a nomenclature following the numbering system of PCBs (Ballschmiter and Zell, 

1980).  

 

PCDEs are also called bis (chlorophenyl) ethers and chlorodiphenyl oxides. The 

empirical formula of the PCDEs is C12H10–nClnO, where n = 1-10. Similarly to PCBs, there 

are 209 possible PCDE congeners, in which the number of chlorines varies from one to 

ten. The numbers of possible isomers at each chlorination degree (congener groups) from 

mono to decachlorinated PCDEs are presented in Table 2.3. The PCDEs congeners are 

numbered analogously to PCBs (Paasivirta and Koistinen, 1994) following the systematic 
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numbering presented by Ballschmiter and Zell (1980), except that according to the 

numbering rules the order of a few congeners should be different (Ballschmiter et al., 

1989; Kurz, 1994). The chlorine substitution and numbering of PCDEs is presented in 

Table 2.1. 

 

 

Figure 2.3 The structure of PCDEs (209 Congeners). 

 

2.2.2. Sources and Usage 

 

PCDEs are industrial by-products found in many ecosystems at low levels (Rosiak 

et al., 1997) and have been found as by-products of technical chlorophenols (Kurz and 

Ballschmiter, 1994) and chlorinated phenoxyacetic acids (Nevalainen and Kolehmainen, 

1994). PCDEs also come from processes of incomplete combustion, fly ashes, transformer 

fluids, wood preservatives and flues of municipal waste incinerators (Williams et al., 1991; 

Koistinen et al., 1993b). PCDEs are also a group of environmental pollutants with potential 

toxic effects in mammals (Domingo, 2006).   

 

PCDEs can also be formed by perchlorination of industrial or sewage effluents 

containing diphenyl ether (Komsta et al., 1988). Combustion is a well known source of 

various groups of organic compounds (Junk and Ford, 1980) and the occurrence of PCDEs 

in combustion wastes was reported by Paasivirta et al. (1986).  

 

There have been many patents for PCDEs and desired applications have included 

use as hydraulic fluids, electric insulators, flame retardants, lubricants, and plasticizers 

(Koistinen, 2000). 
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Lower chlorinated PCDEs, mono- and di-chlorinated, have aroused interest as 

chemical intermediates (Hake and Rowe, 1963) and 4-mono-CDE has been desirable as a 

synthetic intermediate in agricultural and topical medicinal applications (Koistinen, 2000). 

Higher chlorinated PCDEs have been used in the electrical industry, but their toxicity 

hindered their use as plasticizers and in high-pressure greases (Hake and Rowe, 1963). 

Tetra- through hexa-CDEs was suspected of causing handling hazards, since they showed 

high toxicity when fed to guinea pigs.  

 

PCDEs have also been suggested for other applications such as for pesticides and 

synergistics in pesticides. Dichlorodiphenyl ether was among 34 most effective materials 

out of 5963 tested for clothing treatments against chigger mites, but it was suspected of 

being unsafe for use on clothing worn for an extended period. One di-CDE showed 

acaricidal activity against the citrus red mite when 100 organic compounds related to DDT 

were tested, but no insecticidal activity against the greenhouse thrips. The toxicity of a 

mono-CDE was tested among 106 compounds as an insecticide to body lice, but it proved 

to be not very toxic. Insecticidal activity of mono- through trichlorodiphenyl ethers has not 

been high to house flies, but they have acted as synergists when mixed with pyrethrins. 

OCDE has been synergistic with insecticides such as Sumithion, DDT, malation, and 

bromophos (Koistinen, 2000). 

 

PCDEs have been found nearly everywhere (Stanley et al., 1990; Huestis and 

Sergeant, 1992; Koistinen et al., 1995b; Koistinen et al., 1997), and the highest 

concentrations of these pollutants were found in fish and seafood, dairy products, meats, 

oils and fats, and cereals (Falco‟ et al., 2005). They are calling increasing attention because 

of their immunotoxicity similarity to PCBs (Huang et al., 2004). They can induce 

cytochrome P-450-dependent monoxygenase activity and have a broad spectrum of 

toxicity (Kurz and Ballschmiter, 1995a). PCDEs are regarded as additional persistent 

indicator molecules for a global pollution of the environment by organochlorine 

compounds (Kurz and Ballschmiter, 1999). Also, as potential persistent organic pollutants 

(POPs), PCDEs‟ risk assessment and exposure evaluation have received increasing 

researchers‟ interest. 
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PCDEs have been frequently detected in a wide range of environmental samples 

including sediments (Koistinen et al., 1995a), fishes (Koistinen et al., 1993b), white-tailed 

sea eagle (Koistinen et al., 1995a), foodstuffs (vegetables, tubers, pulses, cereals, fruits, 

fish and shellfish, meat and meat products, eggs, milk and dairy products, and fats and oils) 

(Bocio et al., 2004) and human adipose tissue (Stanley et al., 1991; Williams et al., 1991). 

The studies have shown that PCDEs have similar toxic properties to PCBs (Becker et al., 

1991), and therefore they are also regarded as a type of persistent indicator molecules other 

than PCBs for a global environmental pollution by organochlorine compounds (Kurz and 

Ballschmiter, 1999). Wide distribution, high lipophilicity, and persistence of PCDEs have 

raised concern about their bioaccumulation, their potential biomagnification in the food 

webs, and their adverse effects (Domingo, 2006). Hence PCDEs have attracted great 

attention recently as an important type of environmental pollutants. 

 

2.2.3. Physico-chemical Properties of PCDEs 

 

PCDEs are similar to PCBs by their structure and physical properties. They have 

low water solubility and are lipophilic. PCDEs are quite resistant to degradation and are 

persistent in the environment. These compounds are found in sediment, mussel, fish, bird, 

and seal. PCDEs show biomagnification potential, since levels of PCDEs increase in 

species at higher trophic levels. PCDEs are also detected in human tissue. Despite the 

persistence and bioaccumulation, the significance of PCDEs as environmental 

contaminants is uncertain. The acute toxicity and Ah-receptor-mediated (aryl hydrocarbon) 

activity of PCDEs is low compared to those of PCDDs and PCDFs. Due to structural 

similarity to thyroid hormone, PCDEs could bind to thyroid hormone receptor and alter 

thyroid function. Furthermore, PCDEs might be metabolized to toxic metabolites. In the 

environment, it is possible that photolysis converts PCDEs to toxic PCDDs and PCDFs. 

 

Properties of PCDEs, including physico-chemical ones, are not well known as the 

literature reviews of PCDEs have shown (Becker et al., 1991; Kurz, 1994; de Boer and 

Denneman, 1998). PCDEs like PCDDs, PCDFs, and related compounds, are known to be 

stable and resistant to breakdown by heat, hydrolysis, bases, and acids. PCBs are also quite 

stable to oxidation under moderate conditions (Ballschmiter et al., 1989), but there is not 

much data about PCDEs concerning their stability. There is some evidence that PCDEs are 
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resistant to bases and acids and the occurrence of PCDEs in the environment indicates that 

PCDEs are persistent and bioaccumulating compounds. The study of Koistinen (2000) 

already showed that PCDEs are quite stable, since PCDEs could be measured in 

chlorophenol extracts after sulfuric acid treatment. Tetra- and octa-chlorinated PCDE 

congeners were later proven resistant in treatment with concentrated sulfuric acid 

(Koistinen et al., 1993b). Chemical treatment of PCDE-containing wastes with NaClO and 

NaOH has not affect the content of PCDEs (Paasivirta et al., 1982). Reactions of PCDEs 

that are significant from the environmental point of view include photochemical reactions, 

thermal reactions, hydrolysis in water, and oxidation by air, but they have not been studied 

intensively. 

 

Most PCDEs synthesized are solids and their vapor pressures are low (Kurz, 1994; 

Kurz and Ballschmiter, 1999). The vapor pressures of sub-cooled liquids (–log PL) of 

PCDEs, determined from gas chromatographic (GC) data for 106 PCDE congeners at 

30°C, have ranged between 0.27 and 5.80 Pa, being similar to those of PCBs (Kurz, 1994;  

Kurz and Ballschmiter, 1999). 

 

Henry’s law constants for PCDEs, which describe the distribution between air and 

water and can be calculated from vapor pressure and water solubility, increase with 

increasing chlorination degree (Kurz and Ballschmiter, 1999). The values of Henry‟s law 

constant for PCDEs calculated based on chromatographic data at 30°C have ranged from 

2.95 Pa m
3
/mol to 14125.37 Pa m

3
/mol (Kurz and Ballschmiter, 1999). 

 

Water solubility is one of the major parameters which affect the fate and 

distribution in the environment. Hydrophobic compounds with high octanol-water partition 

coefficients tend to bioaccumulate. Opperhuizen and Voors (1987) have shown that 

hydrophobicity of PCDEs determines the bioconcentration factor of PCDEs and that 

bioconcentration kinetics of PCDEs resemble those of PCBs. 

 

The aqueous solubilities (–log S) of mono- through deca-CDEs (106 PCDE 

congeners) range between 4.21 mol/L and 12.95 mol/L
 
(Kurz and Ballschmiter, 1999). 

These values were calculated from high performance liquid chromatography (HPLC) data 

at 30°C. PCDEs are more soluble in water than PCBs, which have extremely low water 
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solubilities. The water solubilities of PCBs range from 7x10
3
 µg/L to 0.02 µg/L 

(Ballschmiter et al., 1989). 

 

Physico-chemical properties of an organic chemical compound play an important 

role in determining its distribution and fate in the global environment. Due to not only the 

time consumption and high expense, but also the unavailability of chemical standards of 

many PCDEs, it is very difficult to determine experimentally the physico-chemical 

properties and biological activity for all the PCDE congeners. Therefore, alternative 

approaches are needed. Many previous studies showed that it was indeed feasible to 

predict the properties or activities with QSAR/QSPR models for many organic compounds 

(Tuppurainen and Ruuskanen, 2000; Zou et al., 2005; Ghasemi and Saaidpour, 2007; 

Toropov et al., 2008; Puzyn et al., 2009). In fact, QSAR/QSPR studies with respect to 

PCDEs can also be found sporadically in recent publications (Huang et al., 2004; Chen et 

al., 2007; Sun et al., 2007; Zeng et al., 2007), although most of these studies aimed at only 

one or few properties (usually chromatographic relative retention time). 

 

2.3. Quantitative Structure-Property Relationship (QSPR) Method 

 

The QSPR method is based on the principle that the properties of a compound are 

directly related to, or at least correlated with, the molecular structure. The goal of the QSPR 

method is to construct a quantitative relationship between structure and one or more properties 

of interest based on existing data. The compounds with known property data are called the 

training set, and by comparing structural variation with property variation for the training 

set, predictive relationships can be established. 

 

It is helpful to clarify what is meant by property and structure. The QSPR method is 

very general, so the properties that can be analyzed using this method include all types of bulk 

physical properties of compounds along with the chemical interactions they exhibit such as 

reactivity or biological activity. Molecular structure itself is an abstract concept, but at the 

most basic level it involves a symbolic representation that typically includes the chemical 

composition of a molecule and the connectivity (that is, what atoms are present and how are 

they connected to one another). 
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Given this general outline of the QSPR method, it can be readily seen there are two 

major difficulties associated with creating a functional relationship between property data 

and molecular structure. The first difficulty is quantifying the inherently abstract molecular 

structure. This problem is overcome by calculating molecular descriptors, which are 

developed to quantify various aspects of molecular structure. In fact, hundreds of descriptors 

have been created to numerically quantify a diverse array of structural features. The second 

difficulty is determining which structural features most influence a given property and then 

establishing the functional relationship that best describes the relationship between these 

structure descriptors and the property data. To accomplish this, a variety of statistical 

methods are used for descriptor selection and regression. 

 

Once a structure-property relationship has been developed, there are two main end uses 

for these models. One use is to analyze the functional descriptors that are preferentially selected 

for the model. These descriptors indicate which structural features of a molecule most 

influence the property of interest and give an idea of  how varying the structure can change 

the resulting property. This is very useful for trying to design a compound to have favorable 

properties. The other use is to calculate descriptors for compounds with unknown property 

data and use structure-property relationships for property prediction. 

 

In the following sections, the major elements of the QSPR method are discussed. 

This involves a general introduction to the use of descriptors for quantifying structural features 

and a discussion of the statistical methods used to create structure-property models based on 

these descriptors.  

 

2.3.1.   Using Molecular Descriptors to Quantify Structure 

 

In general, a descriptor is a number or set of numbers generated for a compound either 

by experimental determination or through a functional transformation which operates on a 

symbolic representation of the compound. The purpose of the descriptor is to create a 

numerical scale to capture the variation in some structural feature. An example of an 

experimentally determined descriptor is the octanol-water partition coefficient, Kow, which 

measures the relative solubility of a compound in octanol and water phases and therefore 

quantifies the hydrophobicity of a compound (a very hydrophobic molecule prefers the octanol 
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phase and so the Kow value is very high). In fact, this descriptor has found wide use in the 

structure-toxicity modeling community, where it has been found that toxicity is often 

directly correlated with the log Kow parameter. An example of a computational descriptor is 

molecular weight, which can be calculated based solely on the composition of a molecule and 

quantifies the size of a compound. 

 

As shown above, descriptors can be obtained experimentally or numerically. Since 

experimental descriptors can be time-consuming to determine and require that a compound be 

available for experimentation, much more emphasis has been placed on theoretical descriptors, 

which can be directly calculated using only the molecular representation of a compound‟s 

structure. Because of this, there are varying degrees of complexity for theoretical 

descriptors. It is useful to examine how varying levels of structural information can be used 

to calculate these theoretical descriptors. For instance, the lowest level of structural 

information would contain only the composition, such as number and type of atoms. From 

this information molecular weight could be calculated along with atom counts. At the next 

level, there might be basic connectivity information, which would allow fragment count 

descriptors, for example. A fragment would be a specific functional group, such as a carbonyl 

or methylene group, and these fragment count descriptors have found wide use in group 

contribution methods. By including full connectivity, the whole family of topological 

descriptors becomes available, which can describe general shape, size and branching of a 

compound. Continuing on, the three-dimensional structure of a molecule can be used for 

descriptor calculation, and even the electronic structure obtained from quantum calculations can 

be used, especially for reactivity descriptors. Therefore, it can be seen that numerical 

descriptors allow varying levels of structural information to be used depending upon the level 

of information needed. 

 

While there is a certain amount of freedom in choosing descriptors, there are also some 

limitations, in the form of certain desirable characteristics that descriptors should have. If 

experimental descriptors are used, they should preferably be quick and inexpensive to 

measure. For theoretical descriptors, they should be easy to calculate and not require a lot of 

time for calculation. It is also preferable that descriptors be easy to interpret, meaning that a 

descriptor should vary in a regular way with the structural feature or features it attempts to 

quantify. Also, since multiple descriptors are calculated for a compound, it is also helpful if 
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this pool of descriptors is orthogonal, meaning the descriptors are completely uncorrelated with 

one another. In practice, descriptors are typically correlated with one another to varying 

degrees. 

 

As shown above, there are varying levels of information that can be derived from 

molecular structure. There is similarly a large variety of structural characteristics that can be 

useful in describing different properties and correspondingly a wide array of descriptors that 

have been developed to quantify various structural elements. Therefore the number of 

descriptors that are available for calculation is extremely large. This allows a higher degree of 

freedom in creating structure-property relationships, but it also introduces the added need to 

preferentially select the most important descriptors. In the next section, the methods used to 

select the optimal descriptors and establish structure-property relationships are discussed. 

 

Table 2.2 List of desirable requirements for molecular descriptors. 

 

No. Descriptors 

1 Should have structural interpretation 

2 Should have good correlation with at least one property 

3 Should preferably discriminate among isomers 

4 Should be possible to apply to local structure 

5 Should possible to generalize to „higher‟ descriptors 

6 Descriptors should be preferably independent 

7 Should be simple 

8 Should not be based on properties 

9 Should not be trivially related to other descriptors 

10 Should be possible to construct efficiently 

11 Should use familiar structural concepts 

12 Should have the correct size dependence 

13 Should change gradually with gradual change in structures 
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2.3.2.   Descriptor Selection and Regression 

 

Since the ultimate aim of a QSPR analysis is to take a set of compounds with 

corresponding property data and create a structure-property model, the next step after 

quantifying the structure for the compounds is model creation. As detailed in the previous 

section, it is possible to generate hundreds of descriptors to quantify the various elements of 

molecular structure. In many cases, these descriptors can be correlated to some degree, even being 

completely redundant in some cases, and many may have little to no influence over the 

property of interest. Therefore, methods are needed to search through this descriptor space 

and reduce it down to the most significant descriptors. In addition, a functional relationship 

between these descriptors must be developed or assumed either following descriptor selection or, 

more commonly, at the same time. 

 

As a first step toward constructing a model, variable reduction techniques can be used to 

eliminate unnecessary descriptors. Some simple techniques include eliminating descriptors that 

are nearly constant for all compounds and discarding one of a pair of descriptors that are 

highly correlated. More involved techniques use tools such as principal component analysis or 

cluster analysis to eliminate descriptors while retaining the original information of the full 

descriptor set. Performing this initial pruning of the descriptor pool can simplify the following 

process of selection and model building. The selection of variables/descriptors/predictors in 

the model can be performed also by one of those techniques Genetic Algorithm (GA), 

Principal Component Analysis (PCA) or Factor Analysis (FA). 

 

Once molecular descriptors are generated, the heuristic method in CODESSA was 

used to accomplish the pre-selection of the descriptors and build the linear model 

(Katritzky et al., 1994). Its advantages are the high speed and no software restrictions on 

the size of the data set. The heuristic method can either quickly give a good estimation 

about what quality of correlation to expect from the data, or derive several best regression 

models. Besides, it will demonstrate which descriptors have bad or missing values, which 

descriptors are insignificant (from the standpoint of a single-parameter correlation), and 

which descriptors are highly intercorrelated. This information will be helpful in reducing 

the number of descriptors involved in the search for the best QSAR/QSPR model. 
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First of all, all descriptors are checked to ensure: (a) that values of each descriptor 

are available for each structure and (b) that there is a variation in these values. Descriptors 

for which values are not available for every structure in the data in question are discarded. 

Descriptors having a constant value for all structures in the data set are also discarded. 

Thereafter all possible 1-parameter regression models are tested and insignificant 

descriptors removed. As a next step, the program calculates the pair correlation matrix of 

descriptors and further reduces the descriptor pool by eliminating highly correlated 

descriptors. All 2-parameter regression models with remaining descriptors are 

subsequently developed and ranked by the regression correlation coefficient, R
2
. A 

stepwise addition of further descriptor scales is performed to find the best multi-parameter 

regression models with the optimum values of statistical criteria (highest values of R
2
, the 

cross-validated 2

cvR , and the F-value). 

 

The heuristic method usually produces correlations 2-5 times faster than other 

methods with comparable quality (Katritzky et al., 2001). The rapidity of calculations from 

the heuristic method renders it the first method of choice in practical research. Thus, in the 

present investigation, we used this method to select structural descriptors and build the 

linear model. 

 

Typically the process of descriptor selection and model building are conducted 

simultaneously. To do this, a linear functional relationship between property data and 

descriptors is typically assumed. Given this, the goal is now to determine which subset of 

descriptors out of the available set best models the property data. At the same time, it is 

desirable to minimize the number of descriptors used and maximize the predictive ability of 

the model. The most direct way to do this would be to test every possible combination of 

descriptors; however, since the number of possible models grows exponentially with the size of 

the descriptor pool, this is usually impossible. For example, with a pool of 50 descriptors, there 

are nearly 2.5 million possible equations using one to five descriptors. In place of an exhaustive 

search, one popular technique is stepwise regression, where descriptors are added one by one until 

further addition no longer improves the model. Another popular method is the genetic 

algorithm approach, where a small population of equations is randomly generated and then 

evolved by using a set of evolution operations to finally create a population of optimal 

models. Finally, there are also some nonlinear methods, such as neural network algorithms, 
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which bypass the assumption of a linear model and perform variable selection and model 

development simultaneously. Overall, though, all methods focus on selecting the optimum 

descriptors and the optimal functional relationship using a variety of statistical techniques. 

 

In developing QSPR/QSTR models, the approach begins with the compilation of 

available endpoint data sets for a variety of chemicals. If endpoint data are available for a 

sufficient number of chemicals, the data set is often divided into a training set used in the 

model development, and a test set containing chemicals not used in the derivation of the 

model but used to evaluate the model. The method used for splitting the data set should be 

clear in proposed model. Methods available include those based on similarity analysis, for 

example, D-optimal distance (Hasegawaa and Funatsub, 1998), Kohonen map or self-

organizing map (SOM) (Vracko et al., 2006), the k-means cluster analysis (Caballero and 

Fernandez, 2006), sphere-exclusion algorithms (Golbraikh et al., 2003) or random 

selection through activity sampling (Gramatica, 2007).  

 

Since structure-property models are often developed for prediction of new compounds 

based on available data, predictive capability is an important criterion in the creation and 

assessment of QSPR models. The first indicator of predictive ability is the ability of the 

model to predict property data for the training set. 

 

However, since the training set data are used in the model creation, the model is 

optimized to predict training set data, so this gives little indication of how purely predictive 

the model is. One way to provide a better predictive estimate is to leave out of the data set a 

small set of validation compounds. After a model has been developed using the training set, 

the model is used to predict data for the validation set compounds. If the predictions for the 

validation compounds are significantly worse than for the training set, this indicates poor 

predictive ability. 

 

Another method used to assess predictive ability using only the training data is the 

leave-one-out (LOO) cross-validation method. In this method, a reduced training set is 

created by eliminating one compound. A new model is developed using the reduced training 

set and used to predict the left out compound. This procedure is performed for every 

compound and the resulting predicted vs. experimental correlation is a numerical measure of 
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predictive ability. As with the validation set method described above, if the cross-validated 

predictive ability is significantly lower than for the full training set, the predictive ability is 

poor. For large data sets, the LOO method can be too optimistic since the reduced training set 

is not a significant perturbation from the original. In this case, leave-more-out techniques can 

be used, which remove multiple compounds to create the reduced training set. There are 

additional techniques which can be used to assess predictive ability. In many cases, these 

predictive measures can be used during model creation to not only optimize the ability to 

model the training set but also to optimize the predictive ability of the model. 

 

The final result of the QSPR method is a model that uses the most important 

descriptors to optimally describe the relationship between property data and molecular 

structure for training set compounds. Additionally, this model is designed to predict 

property data for compounds outside of the training set. However, for compounds that are 

structurally very dissimilar to the training set compounds, the prediction is less likely to be 

accurate.  

 

2.4. QSPR/QSTR Studies on Physico-chemical Properties and Toxicity of 

PBDEs/PCDEs 

 

QSPR/QSAR/QSTR studies are expected to reduce the cost and the number of 

organisms used for toxicity testing and to fill the existing data gaps within the REACH 

regulatory framework in the EU. Many QSTR studies in environmental chemistry and 

ecotoxicology are carried out with different types of descriptors using statistical methods 

like regression analysis (Cronin et al., 2004; Saçan et al., 2007), partial least squares (PLS) 

(Roy and Gosh, 2006; 2007) and artificial neural network (ANN) (Roy and Roy, 2009) for 

diverse set of chemicals.   

 

The octanol-air partition coefficient (Koa) is useful for predicting the partitioning 

behavior of organic compounds between air and environmental matrices such as soil, 

vegetation, and aerosol particles. At present, experimentally determined Koa values are 

available for only several hundred compounds. Therefore, the ability to estimate Koa is 

necessary for screening level evaluation of most chemicals. Although it is possible to 

estimate Koa from the octanol-water partition coefficient (Kow) and Henry's law constant 
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(H) various concerns have been raised in prediction of this property from molecular 

structure. 

 

Various models utilize Koa to screen and rank chemicals for environmental 

persistence and long-range transport (Webster et al., 1998; Gouin et al., 2000; Bennett et 

al., 2001). The molecular weights of PCDDs, PCDFs, and PBDEs have been shown to 

correlate well with the corresponding log Koa values (Xiao and Wania, 2003). Accurate 

QSPRs have been developed for PCBs, Polychlorinated naphthalenes (PCNs), PCDDs, 

PCDFs, PBDEs and other similar compound classes using combined molecular descriptors 

such as polarizability, dipole moment, electronic energy, core repulsion energy, and 

various molecular orbital descriptors (HOMO, LUMO, etc.) (Chen et al., 2001; 2002a; 

2002b; 2003).  

 

Wania et al. (2002) used relative gas chromatographic retention times on a 

nonpolar stationary phase to determine log Koa of nonpolar semi-volatile organic 

compounds, including PBDEs. Additionally, Harner and Shoeib (2002) measured Koa 

values for 13 PBDEs at temperatures ranging from 15 to 45°C. It is apparent that the data 

is not enough since Koa values for the other 196 PBDEs are lacking. Experimental 

determination of Koa is costly in expenditures such as equipment and time. Furthermore, 

because of the limited number of standard PBDE congeners, it seems impossible to 

measure Koa values for all the other PBDEs. Thus, it is the purpose of this study to develop 

QSTR models for PBDEs, based on the reported experimental values. 

 

PLS regression was used to develop models for log Koa of PBDEs at different 

environmental temperatures (T) by Chen et al. (2003). The optimal model contains nine 

theoretical molecular descriptors and 1/T as predictor variables. Intermolecular dispersive 

interactions play a leading role in governing the magnitude of log Koa. 

 

Zhao et al. (2005) proposed a QSPR approach to predict log Koa for 13 PBDEs 

using molecular connectivity indexes which are topological descriptors of molecular 

structure based on a count of skeletal atom groupings. The stepwise multiple linear 

regression was used to derive equation with correlation coefficients with 0.96 for PBDEs 

with descriptors, χp and χvp . 
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Xu et al. (2007) reported linear relationships between log Koa and log RBA of 

PBDEs and the structural descriptors. For log Koa, they obtained a model with 2 descriptors 

and R
2 

= 0.9761. For log RBA, they obtained a model with 4 descriptors and R
2
 = 0.647. It 

has been shown that structural descriptors derived from molecular electrostatic potentials 

together with molecular volume can be well used to express the quantitative structure –

property relationships of PBDEs. As for the prediction of biological activity or toxicity, 

this parameter set does not offer significant advantage over other kinds of descriptors due 

to inherent limitations. The QSAR model for the Ah receptor binding affinity (RBA) is 

relatively poor, which can be ascribed to the complexity of factors which affect biological 

activity and the limitations of the present parameter set in describing steric characters of 

the molecule.  

 

Wang et al. (2008) modeled log Koa values of PBDEs in their study. The molecular 

geometries of 209 PBDEs were optimized at the B3LYP/6-31G* level with Gaussian 98 

program. The calculated structural parameters were taken as theoretical descriptors to 

establish one novel QSPR models for predicting octanol/air partition coefficients (Koa) of 

PBDEs based on the theoretical linear solvation energy relationship (TLSER) model. The 

model achieved in their work contains three variables: most negative atomic partial charge 

in molecule (q
-
), dipole moment of the molecules (µ) and mean molecular polarizability 

(α), of which R
2
 value is as high as 0.997, its root-mean-square errors in modeling (RMSE) 

is 0.062. 

 

Papa et al. (2009) modeled log Koa and log Kow values of PBDEs. The molecular 

descriptors (0D, 1D, 2D, 3D) for the studied compounds were computed by the software 

DRAGON 5.4 (Ver. 5.4 for Windows, 2006). In addition, four quantum-chemical 

descriptors were included in their modeling procedure: highest occupied molecular orbital 

(HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-LUMO gap, and 

ionization potential. Linear regression models were performed by ordinary least squares 

(OLS) regression using the software MOBYDIGS (Ver. 1.0 beta for Windows, 2004). Due 

to the limited dimension of the studied data sets, the All Subset Models selection method 

was applied in their study to select the best single descriptor-based models. All the models 

were internally validated by the LOO procedure (Q
2

LOO), and the robustness of the models 

were further evaluated by the bootstrap method (Q
2

BOOT). To verify the real predictive 
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power of the developed models external validation was performed in the presence of a 

sufficient number of experimental data (nobj > 20). This procedure differs from the literally 

meant „external validation‟, which is based on the use of „new measured‟ data as prediction 

set. Their approach was different simply for the fact that the prediction set is chosen, 

before the modeling step, by splitting the available experimental data. Therefore, the 

„sampled‟ prediction set is completely excluded from the development of QSPR models, 

which are performed, and internally validated, only on the basis of the complementary pool 

of data (training set). The real predictive power of these models is then externally checked 

on the prediction set chemicals. T(O...Br), was selected as the best modeling variable for 

three different properties which are strongly related to each other log 1/PL, log Koa, log 

Kow. This descriptor gives double structural information: its values increases according to 

both the number and the distance of bromine substituents, on each phenyl ring, from the 

oxygen ether. Thus, T(O...Br) takes also into account the information related to the 

position of the bromine atoms on the phenyl rings (R
2
 for log Koa 0.973; for log Kow 0.964). 

 

Of the physico-chemical parameters indispensable to the fate assessment of 

persistent organic pollutants, the octanol–water partition coefficient (Kow) indicates the 

environmental behavior of hydrophobic organic compounds (Sabljic et al., 1995). The Kow 

is defined as the ratio of a compound‟s concentration in octanol to its concentration in 

water after the partition between two phases reaches equilibrium at a specified 

temperature. Although other partition coefficients such as octanol–air partition coefficient 

were discovered to influence the Bioconcentration Factors (BCFs) of organic chemicals 

recently, Kow still plays an important role in governing BCFs (Streets et al., 2006; Kelly et 

al., 2007). Thus, it is important to obtain more information about Kow of PBDEs/PCDEs. 

Several reports have appeared on predicting log Kow for PBDEs and PCDEs separately.  

 

Two one-descriptor models were established by Wania and Dugani (2003) and 

Braekevelt et al. (2003) at 25°C for log Kow of PBDEs. Single descriptor was molecular 

mass in the former model, whereas the number of Br atoms was the descriptor appearing in 

the latter model. Li et al. (2008) used PLS regression method for modeling the log Kow 

values of PBDEs based on quantum molecular descriptors. The values of log Kow for 

PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied 

molecular orbital and the net atomic charges on the oxygen atom. All these descriptors 
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have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk 

property of the molecules represented by molecular surface area is the leading factor, and 

Kow values increase with the increase of molecular surface area. In conclusion it was stated 

that higher energy of the lowest unoccupied molecular orbital and higher net atomic charge 

on the oxygen atom of PBDEs result in smaller Kow. The energy of the lowest unoccupied 

molecular orbital and the net atomic charge on PBDEs oxygen also play important roles in 

affecting the partition of PBDEs between octanol and water by influencing the interactions 

between PBDEs and solvent molecules. 

 

Kurz and Ballschmiter (1999) synthesized 106 PCDEs along with diphenyl ether at 

the laboratory and measured the log Kow values by HPLC method. Yang et al. (2003) 

performed PLS regression to build the QSPR model for log Kow values of PCDEs by using 

12 quantum chemical descriptors. Sun et al. (2007) developed QSPR Model to predict log 

Kow values of PCDEs by using MLR method with molecular electronegativity distance 

vector (MEDV-4) descriptor which is a structural descriptor. In their method, they did not 

separate the data set (107) into training and test set. Their conclusion in their study was log 

Kow increase with the degree of chlorination in general. In another study, Chen et al. (2007) 

modeled log Kow values of PCDEs by the method of Cl substitution position. Stepwise 

MLR has been used to construct the QSPR models by using six elements (the numbers of 

positions of Cl substitution (NPCS). Xu et al. (2010) obtained model for log Kow with 3 

descriptors with the R
2 

= 0.974; 2

cvR  = 0.972 without dividing data set into training and test 

set (N = 107); and R
2
 = 0.976; 2

cvR  = 0.972 by division the data set into training and test set 

(N = 72). However, no QSPR study on log Kow for the combination of these two sets 

(PBDEs/PCDEs) has been reported so far. It is reasonable to derive a new model 

combining these two chemical classes. The purpose of this study is to develop a 

comprehensive and explainable Kow prediction model for all 209 PBDEs and PCDEs along 

with the diphenyl ether, based on the experimental data.  

 

Three-dimensional quantitative structure activity relationships (3-D-QSAR) 

models, using comparative molecular field analysis (CoMFA) and comparative similarity 

indices analysis (CoMSIA), were built based on calculated structural indices and a reported 

experimental toxicology index (aryl hydrocarbon receptor (AhR) relative binding affinities 
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(RBA)) of 18 PBDEs congeners, to determine the factors required for the RBA of these 

PBDEs (Wang et al., 2005). The results showed clearly that the nonplanar conformations 

of PBDEs result in the lowest energy level and that the electrostatic index was the main 

factor reflecting the RBA of PBDEs. The two QSAR models were then used to predict the 

RBA value of 46 PBDEs for which experimental values are unavailable at present. 

 

Wang et al. (2006) constructed QSAR models based on 406 descriptors for the log 

RBA of 18 PBDE congeners. The best regression model involved four descriptors, which 

were related to the conformational changes, atomic reactivity, molecular electrostatic field, 

and non-uniformity of mass distribution in a molecule of PBDEs. 

 

Zheng et al. (2007) used PLS method for predicting log RBA of PBDEs. Using 

Support Vector Machines (SVM) and Radial Basis Function Neural Networks (RBFNs), 

the log RBAs of 15 PBDE congeners have been correlated with the extracted seven 

quantum chemical descriptors. The SVM models generalize better than the RBFN models. 

The good performance of the QSAR models based on net atomic charges suggests that 

electrostatic interactions may play important roles in the log RBA of PBDEs. 

 

With quantum chemical computation of density functional theory (DFT), the 

electronic properties including the polarisabilities, polarisability anisotropies and 

quadrupole moments of a total of 209 congeners of PBDEs were evaluated (Gu et al., 

2009). The electronic properties were shown to be highly dependent on the bromination 

pattern, i.e. their values changed sensitively with the number and sites of bromination. 

Some of electronic properties were found to be potent in explaining the variance of 

toxicity, and the potency was verified by the development of QSARs. To further improve 

the stability and predictability of QSARs for toxicity, two-dimensional topological indices 

were introduced. In QSARs, polarisability anisotropy was more significant than other 

polarisability tensors, indicating the implicit occurrence of dispersion interaction between 

the ligand and AhR. For PBDEs, the quadrupole moment was as significant as shown 

previously for dioxins. QSARs were developed from MLR analysis to test the validity and 

significance of electronic properties in correlation with the relative binding affinities of 

PBDEs. Polarisability anisotropy ( α), polarisability tensor (αxy), SIC which is a 

topological descriptor significantly entered the equation they obtained. They concluded 
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that with quantum chemical computation of all PBDE congeners by DFT, the variation of 

such important electronic properties as the polarisability, polarisability anisotropy and 

quadrupole moment has been clearly illustrated with a strong dependence on the 

bromination pattern. On the basis of bromination pattern dependence, the role of electronic 

properties in explaining the toxicity variance of PBDE congeners has been confirmed by 

the development of satisfactory QSAR models, in which either the polarisability 

anisotropy or the quadrupole moment tensor has proved to be more statistically significant 

and favourable to improving the model‟s stability and predictability. The superior 

performance of the chosen descriptors in explaining the toxicity variance of PBDEs 

implies that the dispersion and electrostatic interactions are important and necessary to the 

binding affinities of AhR.  

 

Papa et al. (2010) used DRAGON software to calculate the descriptors and to 

model log RBA of PBDEs. In addition, four quantum-chemical descriptors, calculated by 

the HYPERCHEM program, were included in the modeling procedure: highest occupied 

molecular orbital (HOMO), lowest unoccupied molecular orbital (LUMO), HOMO-

LUMO gap, and ionization potential. Multiple linear regression analysis and variable 

selection were performed by the software MOBY-DIGS using, respectively, the ordinary 

least squares (OLS) regression and the All Subset Selection method that verifies the 

modeling ability of all of the possible combinations of the available descriptors. To 

generate QSAR models that are also able to give reliable prediction for new chemicals 

(compounds not participating in model development), external validation was performed 

(Tropsha et al., 2003; Gramatica, 2007). Thus, when a sufficient number of experimental 

data were available (nobj > 16), the original data sets were preliminarily split into a training 

set, on which the models were developed, and a prediction set, on which the developed 

models were verified. The descriptors involved in the equation were L1v and Mor22u with 

R
2 
= 0.9. 
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3.  MATERIALS AND METHODS 

 

3.1. Data Sets 

 

The general steps of constructing a QSPR model include compilation of 

experimental data of chemical property of interest, selection of descriptors that influence 

the target physico-chemical properties, calculation of the derived molecular structural 

descriptors of compounds, development of the QSPR model, and validation of the 

developed model. 

 

Experimental data on 22 n-octanol/air partition coefficients (log Koa) at 298.15 K 

were taken from Wania et al. (2002) and Harner and Shoeib (2002) and the values range 

from 7.24 (2-Mono-BDE) to 12.15 (2,2′,4,4′,5,5′-Hexa-BDE).  

 

The experimental log Kow values for 107 PCDEs were mainly obtained from the 

investigations performed by Kurz and Ballschmiter (1999). The experimentally determined 

log Kow values for 14 PBDEs were taken from different literatures (Darnerud et al., 2001; 

Braekevelt et al., 2003; Hayward et al., 2006). log Kow values of the PBDEs and PCDEs 

range from 5.51 to 10.00 and 3.97 to 8.16, respectively.  

 

Eighteen PBDE congeners that were synthesised and tested for their AhR binding 

affinities (log RBA) in rat hepatocytes were taken from the literature (Chen et al., 2001) 

and used for the structure based QSAR study. The binding affinities were calculated as the 

ratios of EC50 values for AhR binding of individual congeners to that of the reference 

compound, namely [
3
H]-TCDD in 1.0 nM, where EC50 was the molar concentration of 

chemical necessary to inhibit 50% of the specific binding of radio-labelled TCDD. To 

facilitate the analysis, the ratios could be expressed as the negative of logarithm range -log 

RBA, i.e. pRBA. It is obvious that the selected data span a range of at least 3-log units, 

which guarantees a broad and homogenous dataset (McKinney et al., 2000). 
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3.2. Calculation and Selection of Molecular Descriptor 

 

The main step in every QSAR/QSPR/QSTR study is to calculate and select the 

structural descriptors in which they encode numerical parameters representing the 

chemical structures.  

 

The descriptors were calculated from the energy-minimized three-dimensional 

conformations. Semi-empirical PM3 method (Stewart, 1989a; 1989b) was used to optimize 

the conformations by including the effect of an aqueous solvent in SPARTAN 06 software 

package (Wavefunction, 2006).  

 

Aqueous solvation energies of all the conformers were estimated by using the SM 

5.4 model (Chambers et al., 1996) and added to the gas phase energies. Based on these 

optimized geometries, for all 209 PCDEs and 209 PBDEs along with diphenyl ether 

calculations of semi-emprical molecular descriptors were performed for the conformer 

having the lowest total energy in aqueous phase.  The molecular descriptors obtained from 

SPARTAN software are the energy values of the highest occupied molecular orbital 

(EHOMO) - eV, the energy values of the lowest unoccupied molecular orbital (ELUMO) - eV, 

gas-phase energy (E) - eV, aqueous-phase energy (Eaq) - eV, dipole moment (µ) – debye 

and standard heat of formation (ΔHf). Using these quantum-chemical parameters additional 

variables such as ELUMO-EHOMO gap; quantum chemical indices of hardness (η); softness 

(S); electro-negativity (χ); and electrophilicity (ω) were calculated according to the 

equations proposed by Thanikaivelan et al., (2000).  

 

Optimized SPARTAN structures were saved as mol2 file. The descriptor values 

from SPARTAN and DRAGON were saved as text file to be loaded to CODESSA 2.2 

software package. Molecular structures with mol2 extension were converted into MDL 

mol files with ChemBio3D Ultra 12.0 software (CambridgeSoft, 2010) to be loaded into 

CODESSA software for the calculation of CODESSA descriptors (Katritzky, 1994).  

 

DRAGON 5.4 software (Talete, 2006) was used to calculate the theoretical 

molecular descriptors, belonging to 20 different types of theoretical descriptors for each 

molecule. 
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Constitutional descriptors are basically related to the number of atoms and bonds in 

each molecule. Topological descriptors include valence and non-valence molecular 

connectivity indices calculated from the hydrogen-suppressed formula of the molecule, 

encoding information about the size, composition and the degree of branching of a 

molecule. The topological descriptors describe the atomic connectivity in the molecule. 

The geometrical descriptors describe the size of the molecule and require 3D-co-ordinates of 

the atoms in the given molecule. The electrostatic descriptors reflect characteristics of the 

charge distribution of the molecule. The quantum chemical descriptors include information 

about binding and formation energies, partial atom charge, dipole moment, and molecular 

orbital energy levels (Lu et al., 2007). 

 

DRAGON 5.4 can calculate a total of 1664 descriptors; however, this number 

decreases depending on the structure of the molecules. In this study, the number of 

descriptors calculated was 1162 and 1172 for PCDEs and PBDEs, respectively.  

 

Additionally, the Characteristic Root Index (CRI) which is a hybrid of path-type 

valence connectivity index and distance matrix was included in descriptor pool. The CRI is 

calculated from the structure of the compound. The calculation of the CRI starts from the 

hydrogen suppressed skeleton of a molecule. First, each non-hydrogen atom is assigned a 

delta value, which is calculated from their electronic configuration by equation 3.1.  

       

δ
υ 
=                                                                                                                              (3.1) 

 

Z
v 

is the number of valance electrons in an atom, Z is its atomic number and h is 

the number of hydrogen atoms bound to the same atom.  

 

Secondly, the structural graph, G, of a hydrogen suppressed skeleton of a molecule 

is drawn. Graph, G, is defined as a square matrix with the entries, wij, representing the 

weighted distance traversed in moving from vertex i, to vertex j in G and calculated using  

atomic δ
υ
  values reported by Hall and Kier (2001). Thus, the constructed matrix comprises 

all possible orders of path-type valence connectivity index for a molecule, except zero 

order. 

( Z
v 
– h ) 

 (Z - Z
v
 -1) 
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wij = (δi
υ
. δj

υ
…..δn

υ
)

-1/2
 (3.2) 

where i,j,…..,n correspond to consecutive non-hydrogen atoms. 

 

Each non-hydrogen atom is assigned a value which is equal to the number of non-

hydrogen atoms or is the difference between outer shell electrons and the number of 

hydrogen atoms attached to that atom. The entries, wij, of the matrix are calculated by 

considering the shortest path to any other non-hydrogen atoms. In case of equal paths (wij = 

wji) clockwise direction is chosen. Using Bocher‟s formula (Istefanopulos, 1981) which 

states that the sum of the diagonal elements of a square matrix is equal to the sum of its 

characteristic values, a computer program written in Delphi 2007 by Ünal TAŞDİZEN for 

a personal computer was used to convert the constructed matrix into characteristic 

polynomial form (Figure 3.1). Then the CRI was obtained by summing up the positive 

characteristic roots of the polynomial calculated with Scientific Workplace 3.0 

(MacKichan Software, Inc.). 

 

 
Figure 3.1 The output of characteristic root equation generator program for    

Polyhalogenated Diphenyl Ether written by our group. 

http://www.tcisoft.com/
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The CRI has also been reviewed by Todeschini et al. (2009) as below. 

 

The sum of the positive eigenvalues λ of the → χ matrix, based on the path 

connectivities calculated by the → valence vertex degree δ
v  

of  the atoms in the path:  

 

CRI = ∑m  λm       for   λm  > 0                        (3.3) 

 

The CRI descriptor encodes information about all connectivities in the H-depleted 

molecular graph and is sensitive to the presence of heteroatoms in the molecule (Saçan and 

Inel, 1993; Saçan and Inel, 1995; Saçan and Balcioglu, 1996). 

 

In the present work, the heuristic method (HM) algorithm running in CODESSA 

2.2 was used for the selection of the most relevant descriptors from the descriptors pool. 

The program calculates all correlations between individual descriptors and property (log 

Kow) and eliminates descriptors. The HM for descriptor selection proceeds with a pre-

selection of descriptors by sequentially eliminating descriptors that do not match any of the 

following criteria: (i) Fisher F-criteria (F-test) greater than 1.0; (ii) R
2
 value less than a 

value defined at the start (0.1); (iii) the Student‟s t-criterion (t-test) less than a defined 

value (0.1); and (iv) duplicate descriptors having a higher squared inter-correlation 

coefficient than 0.8 “a predetermined level” (retaining the descriptor with higher R
2
 with 

reference to the property). The next step involves correlation of the given property with (i) 

the top descriptor in the above list with each of the remaining descriptors, and (ii) the next 

one with each of the remaining descriptors, etc. The best pairs, as evidenced by the highest 

F-values in the two parameter correlations, are chosen and used for further inclusion of 

descriptors in a similar manner. 

 

The goodness of the correlation is tested by the correlation coefficient (R
2
), the F-

test (F), and the squared standard error (s
2
). The stability of the correlations was tested 

against the cross-validated coefficient, 2

cvR  , or adjusted squared correlation coefficient, 

R
2
adj,  these two parameters can avoid the over training of the model. The heuristic method‟s 

advantages are the high speed and no restrictions on the size of the data set. The heuristic 

method can either quickly give a good estimation about what quality of correlation to 

expect from the data, or derive several best regression models. Besides, it will demonstrate 
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descriptors which have bad or missing values, which are insignificant and which are highly 

inter-correlated. This information will be helpful in reducing the number of descriptors 

involved in the search for the best QSAR/QSPR model. The heuristic method usually 

produces correlations 2-5 times faster than other methods with comparable quality. The 

rapidity of calculations from the heuristic method makes it the first choice of method for 

building the best QSAR models. 

 

The descriptors that remain are then listed in decreasing order of correlation 

coefficients when used in global search for 2-parameter correlations. Each significant 2-

parameter correlation by F-criteria is recursively expanded to an n-parameter correlation 

till the normalized F-criteria remains greater than the startup value. The best correlations 

up to 5-descriptor sorted by R
2
, as well as by F-criterion, are saved.  

 

Heuristic methods successfully solve the initial selection problem by reducing the 

number of pairs of descriptors in the "starting set". The major limitations of these methods 

are the pairwise selection on the first step and the low consistence of the presentation of 

the upper (according to the selected criteria) segment of the search (N in both cases is 400) 

due to the small size of the correlation selection. 

 

A flowchart of QSPR method employed in this thesis for log Kow constant is given 

in Figure 3.2 as a representation. 
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Figure 3.2 Flowchart of QSPR method 

 

3.3. Model Development and Validation 

 

QSPR models for each physico-chemical parameter for PBDEs and PCDEs were 

developed using MLR considering the Organisation for Economic Cooperation and 

Development (OECD) principles.  

  

Selected compounds (PBDEs/PCDEs) 

Compile experimental data 

Generate Molecular Descriptors using 

the CRI program, SPARTAN 06, 

DRAGON 5.4 and CODESSA2.2 

Softwares 

Data processing and scaling 

Variable selection – HM 

(1-5 descriptors) 

Dividing data set into training and test 

sets (80-20%) 

Outlier analysis for the training set, 

internal and external validation of the 

model 

Final Model 

Prediction of 

properties of 

compounds outside 

of the data set 
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The OECD principles of QSAR validation give five basic elements for a reliable 

model. 

1.  a defined endpoint; 

2.  an unambiguous algorithm; 

3.  a defined domain of applicability; 

4.  appropriate measures of goodness-of-fit, robustness, and predictivity; 

5.  a mechanistic interpretation, if possible. 

 

The OECD principles of QSAR validation give four basic elements for a reliable 

model. According to Principle 4, a QSAR model should have appropriate measures of 

goodness-of-fit, robustness, and predictivity. While the internal performance of a model 

determined by using a training set, the predictivity is determined by using an appropriate 

test set (OECD, 2007). Therefore, before performing modeling, the data set was divided 

into training and test set. The data sets were split into training, for model development, and 

test (prediction) sets, for predictivity check, in two different ways: a) by random selection 

of response values (for log Koa), and b) by structural similarity verified by using Self-

organized map (SOM, i.e., Kohonen Neural Network) in case of large data set (for log 

Kow). Kohonen networks are able to select a meaningful training set and a representative 

test set. Kohonen networks have been adequately explained by Zupan and Gasteiger (1999) 

and Devillers (1996). Kohonen networks project multi-dimensional space onto 2D array of 

neurons. The projection, which is called learning of network, runs in two steps. In the first 

step, an object (represented by a vector) is presented to all neurons and the algorithm 

selects the neuron that is most similar to it. The selected neuron is called “winning 

neuron”. In the second step, the weights of the winning neuron are modified to the vector 

values and in the same time the neighboring neurons are modified to become similar to it 

(Vracko, 2005). We used different networks for log Kow model and approximately 80% of 

the data set was allocated for training set. For log RBA we did not use division of the data 

set into training and test set, since the data set is small (n < 20). 
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3.3.1. Multiple Linear Regression 

 

Once descriptors were generated, a forward stepwise regression method was used 

to develop the linear model of the property of interest, which takes the form below: 

 

Y = b0 + b1X1 + b2X2 + ... + bnXn                    (3.4) 

 

In this equation, Y is the property, that is, the dependent variable, X1–Xn represent 

the specific descriptor, while b1–bn represent the coefficients of those descriptors, and b0 

the intercept of this equation. The LOO cross-validation method was used to evaluate the 

modeling ability of the model. 

 

MLR analysis was carried out using the stepwise strategy in the Statistical Package 

for Social Scientists (SPSS® 17.0) for Windows (SPSS Inc., 2008). For each regression, 

the following descriptive information was provided: number of observations used in the 

analysis (n), standard error of estimate (SE), square of the correlation coefficient adjusted 

for degrees of freedom (R
2
) and Fisher‟s criterion (F). 

 

The quality of the model was considered as statistically satisfactory on the basis of 

the number of compounds (n), squared correlation coefficient (R
2
), standard error of 

estimate (SE), t-values (to compare the importance of the descriptors appearing in the model) 

and F values when all the variables in the final model are significant at the 95% confidence 

level. Colinearity between variables in the model was tested by variance inflation factor 

(VIF) using SPSS® 17.0. The VIF is defined as 1/(1-r
2
), where r is the correlation 

coefficient of one independent variable against others. Large VIF values imply strong 

correlation between variables in the model. To safeguard against chance correlations, 

another recommended criterion is that the ratio of training set compounds to descriptors in 

the QSPR should be at least 5:1 (Topliss and Costello, 1972). 

 

Furthermore, to compare the predictive performance of the all models developed 

for training and test sets in this study with those of the literature models, both the root 

mean square error (RMSE) values was compared. Formula for RMSE is given in equation 

3.5.  
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RMSE = 
n

yy
n

i

ii

1

2)ˆ(

                                                                                                 (3.5) 

 

where, n is the number of compounds, iŷ  is predicted and yi is observed physico-chemical 

value. 

 

Internal validation of all models was tested with the LOO cross validation 2

cvR
 

procedure. According to the literature ( 2

cvR ) should be higher than 0.50 for obtaining a 

validated model (Golbraikh and Tropsha, 2002). Additionally, leave-many-out (LMO) 

procedure was performed for MLR models using Weka 3.6.1 (2009) software. 

 

The robustness of MLR models was also tested by response randomization (Y-

scrambling) procedure (Wold et al., 1995). This technique consisted of scrambling the 

physico-chemical property values in such a way that they did not correspond to the 

respective compounds.  

 

For model randomization, the dependent variables of the training set are shuffled 

and new correlation coefficients are calculated. The process is repeated several times. 

Kiralj and Ferreira (2009) demonstrated that it is sufficient to perform 10-25 Y-

randomization runs for a model validation. The significantly low correlation coefficients of 

the new models indicate that the originally proposed model was not obtained by chance 

correlation. Y-scrambling procedure was run in MDM 2010.2 (Molegro Data Modeler, 

2007-2010). 

 

3.3.2. Validation 

 

The best ways to validate a model is through an external test set, i.e. a set of 

compounds that have been left out from modeling, to assess the validity of the established 

model. However all molecules are often needed for the model building in QSAR and it 

might be too time consuming to generate new ones. When building a model with all 

molecules available the model still has to be evaluated.  
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We selected the molecules composing the training and test series as a previous step 

to the model search, and this was done in such a way that both sets shared similar 

qualitative structure-property characteristics for the compounds of the sets. 

 

Consonni et al. (2009) formulated a novel external correlation coefficient ( 2

3FQ ) for 

the test set based on sum of squares (SS) referring to mean deviations of observed values 

from the training set mean over the training set instead of the external evaluation set. They 

concluded that correlation coefficients using either training set activity mean or test set 

activity mean have drawbacks. Therefore, the external predictive ability of the models 

should have information about the whole data set. They proposed equation 3.6 to test the 

external predictive ability of the models, 

 

tr
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3                                       (3.6) 

where, iŷ  is the predicted test set compound, iy  is the observed value, try  is the mean of 

training set compounds, ntest  is the number of compounds in test set and ntr  is the number 

of compounds in training set. 

 

We adopted the criteria of Golbraikh et al. (2003) which correspond to OECD 

principle no 4 (OECD, 2007). Models were considered acceptable, if they satisfied all of 

the following conditions: 

I. 2

cvR  > 0.5 

II. 2R  > 0.6,  

III. 2

0R  or 2'

0R  close to R
2
.   

i.e.: (a) (R
2
 − 2

0R ) / R
2
 < 0.1 and 0.85 ≤ k ≤ 1.15 or  

 (b) (R
2
 − 2'

0R ) / R
2
 < 0.1 and 0.85 ≤ k' ≤ 1.15  
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IV. │ 2

0R - 2'

0R │< 0.3,  

where 2R  is predicted vs. observed, 2'R  is observed vs. predicted, k and k' are slopes, 2

0R  

and 2'

0R are squared correlation coefficients (without intercept). 

 

(i) correlation coefficient R between the predicted and observed activities; (ii) 

coefficients of determination (predicted versus observed activities 2

0R , and observed 

versus predicted activities 2'

0R , for regressions through the origin); (iii) slopes k and k' of 

regression lines through the origin. 

 

        
2

cvR  is the cross-validated correlation coefficient calculated for the training set, but 

all other criteria are calculated for the test set. 

 

3.3.3. Applicability Domain 

 

The QSAR models are derived empirically from the analysis of a training set of 

chemicals, whose biological activity is known. The QSAR analysis is aimed at discovering 

the properties, or features of the molecules that correlate with the biological activity. In 

order to attain the best results, a QSPR analysis should focus on a well defined set of 

congeneric chemicals, i.e., chemicals with similar structure that act through the same 

mechanism of action (Franke 1984; Hansch and Leo 1995). Thus when the QSPR model is 

applied to new chemicals to predict their biological activity, it is crucial that the chemicals 

to be predicted have the same characteristics of the training set. These characteristics are 

called Applicability Domain of the model, and are typical of each individual model. 

 

The Applicability Domain of the models contained in this expert system is defined 

in terms of structural characteristics of the chemical classes to which they apply. This 

expert system applies the models only to chemicals that respect such constraints. 

 

The concept of AD concerns the predictive use of QSAR/QSPR models and, then, 

is closely related to the concept of model validation. In other words, the AD is a concept 

related to the quality of the QSAR/QSPR model predictions and prevention of the potential 
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misuse of model‟s results. A key component of the quality prediction is to define when a 

QSAR/QSPR model is suitable to predict a property/activity of a new compound, that is, 

define model‟s AD (Eriksson et al., 2003; Tropsha et al., 2003; Dimitrov et al., 2005; 

Nikolova-Jeliazkova and Jaworska, 2005; Jaworska et al., 2005a, 2005b; Tetko et al., 

2006). A model will yield reliable predictions when model assumptions are fulfilled and 

unreliable predictions when they are violated. In particular, for QSAR/QSPR models, 

based on statistical mining techniques, the training set and the model prediction space are 

the basis for estimation of chemical space where predictions are reliable. 

 

Two basic approaches were proposed to evaluate the AD. The first approach to AD 

evaluation is the analysis of the training set, which has its grounds in statistics, because the 

interpolated prediction results are more reliable than extrapolated. Extrapolation is not a 

problem in principle, because extrapolated results from theoretical well-founded models 

can often be reliable. However, QSAR/QSPR models are usually based on empirical and 

limited experimental evidence and/or are only locally valid; therefore, extrapolation always 

results in higher uncertainty and usually in unreliable predictions. 

 

Different approaches to estimate interpolation regions in a multivariate space were 

evaluated by Jaworska (Netzeva et al., 2005; Jaworska et al., 2005) based on (1) ranges of 

the descriptor space; (2) distance-based methods, using Euclidean, Manhattan, and 

Mahalanobis distances, Hotelling T
2
 method, and leverage values; and (3) probability 

density distribution methods based on parametric and nonparametric approaches. Both 

ranges and distance-based methods were also evaluated in the principal component space. 

 

One of the common tools used to visualize the AD of a QSAR model is the plot of 

standardized residuals in prediction (ri) versus leverage values (hi) for each ith sample. 

This plot, called Williams plot, allows an immediate and simple graphical detection of both 

the response outliers (i.e., compounds with standardized residuals in prediction greater 

than three standard deviation units, ri > 3σ) and structurally influential chemicals in a 

model (hi > h*), where h* is a threshold value, usually 2 or 3 times the average leverage 

value. h* is generally fixed at 3p/n, where n is the number of training compounds and p the 

number of model parameters, whereas x = 2 or 3, lying outside this area (vertical lines) the 

outliers and (horizontal lines) influential chemicals. In effect, when the leverage value of a 
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compound is lower than the critical value h*, the probability of accordance between 

predicted and actual values is as high as that for the training set chemicals. Conversely, a 

high leverage chemical is structurally distant from the other chemicals; thus, it can be 

considered outside the AD of the model. 

 

In any case, regardless of the specific method chosen for AD evaluation, this is 

always a very important task in order to avoid unreliable predictions and a misuse of the 

results. 

 

The chemical domain of the studied chemicals in the models was verified by the 

leverage approach to verify prediction reliability. The plot of standardised residuals versus 

leverages (hat diagonals), i.e. the Williams graph verified the presence of response outliers 

(i.e. compounds with cross-validated standardized residuals greater than two-three standard 

deviation units, (±2σ-3σ) and chemicals very structurally influential in determining model 

parameters. Also the data predicted by the models were verified for reliability by their 

leverage, so that only predicted data for chemicals belonging to the chemical domain of the 

training set would be proposed.  
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4. RESULTS AND DISCUSSION 

 

 

4.1. Modeling log Koa for PBDEs 

 

Wania et al. (2002) used relative gas chromatographic retention times on a 

nonpolar stationary phase to determine the octanol/air partition coefficients (Koa) of 

nonpolar semi-volatile organic compounds, including PBDEs. Harner and Shoeib (2002) 

measured Koa values for 13 PBDEs at temperatures ranging from 15 to 45°C. It is apparent 

that the data are not enough since Koa values for the other 196 PBDEs are lacking as stated 

before. Experimental determination of Koa is costly in expenditures such as equipment and 

time. Furthermore, because of the limited number of standard PBDE congeners, it seems 

impossible to measure Koa values for all the other PBDEs. Thus it is the purpose of this 

study to develop QSPR models for PBDEs, based on the experimental values. 

 

Of the 22 log Koa values of PBDEs reported by Wania et al. (2002), 3 of them were 

selected as test set compounds. The data (22 compounds) were divided into training/test set 

compounds in terms of property (log Koa) value using an 80/20 split. Additionally, 8 log 

Koa values of PBDEs taken from Harner and Shoeib (2002) were included in the test set. 

Descriptors were selected from 3 software (DRAGON 5.4, SPARTAN 06 and CODESSA 

2.2) and the CRI program separately and combined using Heuristic Method (HM). 

 

The main target of any QSAR modeling is that the developed model should be 

robust enough to be capable of making accurate and reliable predictions of biological 

activities of new compounds (Leonard and Roy, 2006; Roy, 2007; Roy et al., 2008).
 
 So, 

QSAR models that are developed from a training set should be validated using new 

chemical entities for checking the predictive capacity of the developed models. The 

validation strategies check the reliability of the developed models for their possible 

application on a new set of data, and confidence of prediction can thus be judged (Roy and 

Mandal, 2008). In many cases, enough new chemicals being unavailable for prediction 

purpose, the original data set is divided into a training set and a test set. For the present 

work, the compounds were ranked in terms of the log Koa values and 11 of them were 

selected as a test set. 
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A number of QSPR models were built to assess the predictive power of QSPR 

models for log Koa. Although analysis is done with various models where the number of 

descriptors is increased from 1 to 5, it is interesting to note that in most cases one 

descriptor-based models are adequate. Two one-descriptor models were obtained with the 

highest predictive ability obtained for the prediction of log Koa using a training set of 19 

compounds (Equations 4.1 and 4.2). Eq. 4.1 includes one descriptor from DRAGON and 

Eq. 4.2 includes descriptor from SPARTAN-CRI group. Both models have no response 

outlier.  

 

log Koa = -3.533 (±0.231) + 0.126 (±0.002) D/Dr06                                        (4.1) 

                             (Model 1) 

n = 19, R
2 
= 0.995,    F = 3246.33,    SE = 0.101 

 

log Koa = 4.086 (±0.175) + 0.966 (±0.030) CRI                           (4.2) 

                            (Model 2) 

n = 19,  R
2 
= 0.984,   F = 1043.50,    SE = 0.178 

 

It is interesting to note that both descriptors appeared in Equations 4.1 and 4.2 have 

topological characteristics. Each of the descriptors, D/Dr06 and the CRI from topological 

group explained 99 and 98% of variance for log Koa value of PBDEs, respectively. D/Dr06 

is the distance/detour ring index of order 6. The CRI which is an eigenvalue-based 

descriptor has been shown to be effective in modeling various properties of chemicals 

including the toxicity (Saçan et al., 2007). 

 

In Table 4.1, the descriptors selected by HM are given together with the statistical 

parameters for DRAGON-based and SPARTAN-CRI-based models for log Koa of PBDEs. 

The model obtained using all (1339) descriptors from DRAGON 5.4 (1167), SPARTAN 

06-CRI (9) and CODESSA 2.2 (163) resulted in the same model as Eq. 4.1. 
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Table 4.1 Statistical parameters for one-parameter models developed for log Koa of PBDEs. 

log Koa = ax + b 

Model 

No 

Descriptors 

(x) 
a b R

2
 F R

2
cv t-test R

2
pred RMSE 

DRAGON Model 

1 D/Dr06 
0.126 

(±0.002)
#
 

-3.533 

(±0.231) 
0.995 3246 0.993 

a: 56.98 

b: -15.28 

 

0.861 

 

 

0.096 

 

SPARTAN-CRI Model 

2 CRI 
0.966 

(±0.030) 

4.086 

(±0.175) 
0.984 1043 0.980 

a: 32.30 

b: 23.41 

 

0.857 

 

 

0.173 

 

# The numbers in the parentheses are 95% confidence intervals. 

 

The CRI-based model (Eq. 4.2) was highlighted instead of DRAGON-based model 

(Eq. 4.1), because the CRI encodes global molecular properties such as size, volume, and 

surface area (Saçan and Balcıoğlu, 1996; 1998; Saçan et al., 2003), as well as 

hydrophobicity (log Kow) (Saçan and İnel, 1995) whereas D/Dr06 explained as the 

distance/detour ring index of order 6. Although it was used in Partial Least Square (PLS) 

modeling of transfer protein inhibitors for a series of cholesteryl ester compounds by 

Castilho et al. (2007), it is difficult to explain its mechanistic relationship with log Koa.  

 

The CRI, which comprises all possible orders of path-type molecular indices, 

encodes local structural properties and possible long-range interactions described by path-

type molecular indices. The CRI reflects the change in substituent pattern in PBDEs. In 

other words, it gives double structural information: its value changes according to both the 

number and the distance of bromine substituent, on each phenyl ring, from the oxygen 

ether. Thus, it takes also into account the information related not only molecular dimension 

but also the presence and the position of Br substitution on the phenyl rings like T(O...Br) 

reported by Papa et al. (2009). Considering Eq. 4.2, the higher the CRI was, the higher the 

log Koa was. The dependence of the log Kao of PBDEs on the compound size is reasonable, 
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since their log Koa is related chiefly to their ability to stay in organic phase rather than to 

escape to the air phase.  

 

Although we highlighted Eq. 4.2 in terms of mechanistic interpretation, internal 

validation and applicability domain of both models were given in the following 

paragraphs. For Eq. 4.1 and 2, 9 and 10 fold cross validations were run using Weka 3.6.1 

(Waikato, 2009). The overall results of random deletion study statistics are summarized in 

Table 4.2. 

 

Table 4.2  Leave-many-out cross validation results for Eq. 4.1 and Eq. 4.2. 

 

Number of compounds 

deleted 

Eq. 4.1  Eq. 4.2 

Average 
2

LMOR  
Average 

RMSE 
 

Average 
2

LMOR  
Average 

RMSE 

2 0.997 0.098  0.990 0.182 

2 0.996 0.120  0.988 0.198 

 

Applicability domain of the proposed models is defined by the following limits 

given in Table 4.3. 

 

Table 4.3 Boundaries of the proposed models for log Koa. 

 

Compound Name 
log Koa D/Dr06 CRI 

min max min max min max 

2- 7.24  85.829  3.495  

2,2',4,4',5,5'-  12.15  125.388  8.559 

 

The observed values, predicted values from Eq. 4.2 are plotted in Figure 4.1. It 

shows a good alignment of the studied PBDE congeners along the optimal line.  
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Figure 4.1 Plot of calculated/predicted vs. observed values of log Koa for the training/test 

set compounds by Eq. 4.2. 

 

The [(R
2
-R0

2
)/R

2
 and k values for Eq. 4.2 are found to be within the acceptable 

range with values being equal to 0.002 and 1.01, respectively. External validation set of 

Eq. 4.2 with 11 compounds yielded good prediction statistics as indicated below. 

 

(i)  Correlation coefficient R
2
 between the predicted and observed activities is 0.864 

        which is higher than 0.6. 

(ii) 2

0R  or 2'

0R  close to R
2
.  2

0R  and 2'

0R  are 0.862 and 0.830, respectively. 

 (a) (R
2
 − 2

0R ) / R
2
 < 0.1 and 0.85 ≤ k ≤ 1.15 

   (R
2
 − 2

0R ) / R
2
 = 2.31x10

-3
 and k = 1.01 

 

(b)  (R
2
 − 2'

0R ) / R
2
 < 0.1 and 0.85 ≤ k' ≤ 1.15  

 (R
2
 − 2'

0R ) / R
2
 = 0.039 and k' = 0.987 

 

(iii) │ 2

0R - 2'

0R │< 0.3, 

                   │ 2

0R - 2'

0R │= 0.032 
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The Eq. 4.2 was also subjected to a randomisation test. In this test, the log Koa 

values (Y) are randomly permuted keeping the descriptor matrix intact, followed by a MLR 

run. Each randomisation and subsequent MLR analysis generates a new set of R
2
 values, 

which are plotted against the correlation coefficient between the original Y values and the 

permuted Y values. Random shuffling of response was repeated several times (15) for Eq. 

4.2 and the average R
2
 was 0.1057. The results confirm that the proposed model is well 

founded and not just the result of a chance correlation. 

 

4.1.1. Analysis of the Applicability Domain 

 

The AD of Eq. 4.2 exploited by Williams plot is shown in Figure 4.2. It can be seen 

that hi values of all compounds are lower than the warning value (h* = 0.315). For all the 

compounds in the training and test sets, their standardized residuals are smaller than two 

standard deviation units, i.e., there are no outliers for the developed QSPR model. 

Standardized residuals are symmetrically distributed around zero with no specific trend for 

Eq. 4.2 as shown in Figure 4.2. Therefore, the Eq. 4.2 can be employed to predict log Koa 

for PBDEs.  
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Figure 4.2 Williams plot for the Eq. 4.2. The log Koa values for the training and test 

chemicals are labeled differently. The dotted lines are the 2.5σ limit and the warning value 

of hat (h* = 0.315), respectively. 

 

The observed and predicted values of PBDEs for training and test sets are listed 

together with the residuals and literature range for PBDE congeners in Table 4.4. New 

reliable and predictive MLR-QSPR models were proposed for the prediction of the log Koa 

values of PBDEs. The best model chosen to predict the data set was evaluated for its 

predictivity by external validation in agreement with the OECD principles for QSAR 

validation. The predictive ability of the model was high ( 2

3FQ  = 0.857).  

 

Because of its high statistical significance, the externally and internally validated 

Eq. 4.2 has been used to predict the log Koa of those compounds where there are no 

experimental measurements (Appendix B, Table B.1). It is important to notice that the    

● Training set 

○ Test set 
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log Koa values of compounds/congeners outside of the applicability domain of Eq. 4.2 were 

indicated (Figure 4.3). 

 

 

Figure 4.3 Plot of hat values vs. log Koa predicted values of PBDEs (Eq. 4.2, Table 4.1).  

 

Chemicals with the leverage values of higher than h* = 0.315 reported in Figure 4.3 

are considered to be out of the domain of the respective model (values marked with an 

asterisk (*) given in Appendix B (Table B.1). The model predictions for the chemicals 

with a leverage value higher than h* should be considered potentially unreliable, since they 

are extrapolated. 

 

7.65% of 209 PBDEs fell outside the AD. Those 16 PBDEs congeners belong to 8-

10 bromination degree. Approximately, 93% of log Koa values of PBDEs can be predicted 

with Eq. 4.2.  

 Studied compounds      

    (Test set) 

● Studied compounds  

    (Training set) 

○ Compound predicted 
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Table 4.4 The Compound names, descriptor, observed, predicted and reported literature values of log Koa (25°C) values obtained from MLR 

(Eq. 4.2).  

 

Congener 

Number 

Compound 

Name 
CRI 

Observed 

value of log Koa 

Predicted 

value 

From Eq. 4.2 

res 

log Koa (25°C) 

Literature Range 

Minimum Maximum 

1 2- 3.495 7.24 7.46 -0.22 7.24
a
 7.4

c
 

2 3- 3.504 7.36 7.47 -0.11 7.17
c
 7.39

b
 

7 2,4- 4.468 8.37 8.40 -0.03 8.37
a,c

 8.38
b
 

8 2,4'-* 4.481 8.47 8.42 0.05 8.47
a
 8.85

c
 

10 2,6- 4.483 8.12 8.42 -0.30 8.08
b
 8.52

c
 

12 3,4- 4.511 8.55 8.44 0.11 8.48
c
 8.57

b
 

13 3,4'- 4.495 8.57 8.43 0.14 8.53
c
 8.57

a,b
 

15 4,4'- 4.487 8.64 8.42 0.22 8.58
b
 8.7

c
 

17 2,2',4-* 5.484 9.27 9.38 -0.11 9.39
e
 9.4

f
 

21 2,3,4- 5.531 9.49 9.43 0.06 9.07
c
 9.49

a
 

28 2,4,4'-* 5.479 9.46 9.38 0.08 9.62
f
 9.7

e
 

30 2,4,6-* 5.491 9.02 9.39 -0.37 9.02
a,c

 9.08
b
 

32 2,4',6- 5.463 9.28 9.36 -0.08 9.18
b
 9.28

a
 

35 3,3',4- 5.536 9.61 9.44 0.17 9.38
c
 9.61

a
 

37 3,4,4'- 5.519 9.68 9.42 0.26 9.47
c
 9.68

a
 

47 2,2',4,4'- 6.497 10.34 10.36 -0.02 10.1
b
 10.63

f
 

66 2,3',4,4'- 6.544 10.49 10.41 0.08 10.25
b
 10.77

d,e
 

69 2,3',4,6- 6.490 10.23 10.36 -0.13 10.2
b
 10.38

c
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Table 4.4 (continued). 

Congener 

Number 

Compound 

Name 
CRI 

Observed 

value of log Koa 

Predicted 

value 

From Eq. 4.2 

res 

log Koa (25°C) 

Literature Range 

Minimum Maximum 

75 2,4,4',6- 6.489 10.13 10.36 -0.23 10.11
b
 10.25

c
 

77 3,3',4,4'- 6.590 10.70 10.45 0.25 10.41
c
 10.83

d
 

82 2,2',3,3',4-* 7.577 11.14 11.41 -0.27 11.14
a
 10.94

b
 

85 2,2',3,4,4'-* 7.546 11.63 11.38 0.25 11.35
f
 11.55

e
 

99 2,2',4,4',5- 7.533 11.28 11.36 -0.08 11.18
f
 11.49

e
 

100 2,2',4,4',6-* 7.515 11.19 11.35 -0.16 11.14
e
 11.7

f
 

119 2,3',4,4',6- 7.562 11.52 11.39 0.13 11.17
b
 11.52

a
 

126 3,3',4,4',5-* 7.608 12.00 11.44 0.56 11.65
f
 11.99

e
 

153 2,2',4,4',5,5'- 8.559 12.15 12.36 -0.21 11.73
f
 12.32

c
 

154 2,2',4,4',5,6'-* 8.526 11.94 12.32 -0.38 11.89
e
 12.26

f
 

156 2,3,3',4,4',5-* 8.610 11.98 12.40 -0.42 11.96
f
 12.63

e
 

183 2,2',3,4,4',5',6-* 9.546 11.96 13.31 -1.35 11.97
f
 12.68

e
 

a Wania et al., 2002; bWang et al., 2008; c Xu et al., 2007; dHarner and Shoeib, 2002; eChen et al., 2003; fZhao et al., 2005. *the ones marked by an asterisk are the PBDE 
congeners in the test set. 
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4.1.2. Comparison with the Reported Methods 

 

The studied physico-chemical property, log Koa, has already been modeled by 

different authors (Chen et al., 2003; Wania et al., 2003; Zhao et al., 2005; Xu et al., 2007; 

Wang et al., 2008; Papa et al., 2009). However, none of the other already published QSPRs 

were externally validated and checked for their applicability domain, with the only 

exception of log Koa model by Wang et al. (2008) and Papa et al. (2009). This fact is 

important to note since, as demonstrated in this study, predicted values calculated by 

models based on few experimental data are extrapolated, and possibly unreliable, for 

compounds that fall out of their structural applicability domain. 

 

Due to different amount of studied compounds or differences in the development of 

the models, it is not possible to perform strict comparisons among our proposed models 

and already published QSPRs for PBDEs. However, some general considerations can still 

be made. As shown in Table 4.5, our models had comparable or even better performances 

in comparison to other QSPRs at the same level of complexity (one descriptor) or higher. 

The CRI-based model is superior to the models reported in Table 4.5 in terms of number of 

variables and statistical parameters. It is important to note that the high values of the 

calculated statistical parameters of the existing models, shown in Table 4.5, could give 

overoptimistic idea of the predictive ability of the models.  

 

Normally the ratio of observations to variables should be as high as possible and at 

least 5:1 (Topliss and Costello, 1972). Of the results reported in Table 4.5, models reported 

by Zhao et al. (2005) and Xu et al. (2007) have higher standard errors than the CRI-based 

model. It must be also noted that training and test set division are missing in four of the six 

reported models. The model developed by Wang et al. (2008) for the property log Koa was 

the result of a stepwise multiple linear regression based on three theoretical descriptors. 

Predictions were given for all the 209 PBDEs for these three models, but no parameter was 

calculated to verify the AD of the model and/or to evaluate the reliability of predictions. 

 

On the other hand, the models by Wania and Dugani (2003) as well as by Papa et 

al. (2009) were built by using only very simple variables such as molar mass and sum of 

topological distances between oxygen and bromine atoms T(O..Br), as molecular 
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descriptors, respectively. In the study of Papa et al. (2009), BDE183 was identified as 

strong response outlier in the training set (residual > 3.5σ) for the property log Koa. When 

molar mass is used as descriptor its value is constant for isomeric compounds and 

calculates constant predictions for each group of PBDE congeners. Even though this QSPR 

is very simple, it is not sensitive at all to variations in the responses and the AD of this 

model was not investigated. 

 

Our model is also superior to the T(O…Br)-based model proposed by Papa et al. 

(2009) in many aspects, including statistical parameter and mechanistic interpretation of 

the descriptor appearing in model e.g., information encoded by the CRI which is explained 

well previously. 



 
6
2

 

Table 4.5 Statistical performance comparison of different QSPR models of log Koa for PBDEs. 

 

Number of 

descriptors 
Descriptor type 

Training/test 

set 
R

2
 SE F N* 

 

R
2

pred References 

1 CRI 19/11 0.984 0.178 1043.50 30 0.82 Current study 

9 

1/T; CAA; CSEV; α; 

TE; Mw; CMA; Hf; 

CCR; ELUMO 

__ 0.979 0.150 __ 36 __ Chen et al. (2003) 

1 MM __ 0.994 __ __ 9 __ 
Wania and Dugani 

(2003) 

2 χp;  χvp __ 0.927 0.275 64 13 __ Zhao et al. (2005) 

2 Vmc; ∑Vs
+ 

__ 0.976 0.218 388.94 22 __ Xu et al. (2007) 

3 q
-
; µ; α __ 0.997 __ 2176.64 22 0.98 Wang et al. (2008) 

1 T(O...Br) 24/6 0. 960 __ __ 30 0.98 Papa et al. (2009) 

*Here N donates the total number of chemicals in the data set. 
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4.2. Modeling log Kow for PBDEs and PCDEs 

 

The splitting of the data on PBDEs and PCDEs into training and test sets was 

realized by applying Self Organized Maps (SOM) Kohonen Artificial Neural Networks (K-

ANN) in the software CODESSA 2.2. The training set was formed by Kohonen network 

after HM analysis on 1186 DRAGON, 163 CODESSA and 8 SPARTAN and the CRI. The 

training data set were used to develop 1-5 descriptor QSPR models for log Kow of 

PBDEs/PCDEs. Different network size and epochs (iterations) were tried to obtain a 

training/test set ratio as 80/20 (Table 4.6). At the end of the iterative learning process of 

the map, it is assumed that similar chemicals, which carry the same structural information, 

fall within the same neuron (cell in the top map). Chemicals sampled as a test set (about 

20% of overall data) was those with the minimal distance from the centroid of each cell of 

the top map. We wrote in bold the selected 13x13 network and 500 epochs combination in 

Table 4.6.  

 

Table 4.6 Kohonen division trials of log Kow data set of PBDEs/PCDEs. 

 

Architecture Network size Epochs 
Number of compounds in 

training / test set 

1 11x11 100 79 / 42 

2 11x11 500 76 / 45 

3 11x11 800  71 / 50 

4 12x12 100  76 / 45 

5 12x12 400   80 / 41 

6 13x13 100   84 / 37 

7 13x13 200   81 / 40 

8 13x13 400   88 / 33 

9 13x13 500   93 / 28 

10 13x13 800   89 / 32 

11 13x13 1000   88 / 33 
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Descriptors appeared in 1-5 variable models for log Kow of the training set were 

given in Table 4.7. DRAGON-based models included mostly GETAWAY (GEometry, 

Topology and Atom-Weights AssemblY) descriptors (R1e, H2e, HATS8p and HIC), 

constitutional (nBr), 3D MoRSE (Mor02u) and WHIM (G2p) descriptors.  

 

GETAWAY descriptors are 3D Descriptors or Geometrical Descriptors which are 

obtained by using double-weighted autocorrelation functions, where one weighting scheme 

is the leverage and the other is an atomic property (e.g., atomic mass).  

 

The GETAWAY class of descriptors represents recently proposed  group of 

descriptors, which are based on a leverage matrix similar to that defined in statistics and 

usually used for regression diagnostics. These molecular descriptors match the three 

dimensional molecular geometry provided by the molecular influence matrix and atom 

relatedness by molecular topology, with chemical information by using various atomic 

weight schemes (Consonni et al., 2002a; 2002b). Therefore, this class of descriptors is 

highly sensitive to the 3-dimensional molecular structure. Combined with appropriate 

weighting schemes the GETAWAY descriptors are used to compare molecules or even 

conformers taking into account their molecular shape, size symmetry and atom 

distribution, which are „scaled‟ using specific atomic property. 

 

WHIM descriptors are the molecular descriptors based on statistical indices 

calculated on the projections of the atoms along principal axes (Todeschini and Gramatica, 

1997; Todeschini and Consonni, 2000). They are built in such a way as to capture relevant 

molecular 3-dimensional information regarding molecular size, shape, symmetry, and atom 

distribution with respect to invariant reference frames. 

 

One-descriptor MLR model have been developed to calculate the log Kow of 

PBDEs and PCDEs from GETAWAY descriptor, namely, R1e. Data set on 121 

compounds (107 PCDE, 14 PBDE) is divided into a training set and a test set (93 and 28) 

by SOM Method (13x13 neuron, 500 epochs).  

 

R1e is based on the relationship between electronegativity and atomic size, and 

calculated from the reciprocal of the atomic volume. A preliminary MLR model of log Kow 
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led to a model with one DRAGON descriptor (R1e) having R
2
 value of 0.971 with four 

outliers: 2,2‟,4-trichloro-DPE, 3,3‟,4,4‟-tetrabromo-DPE, 2,2‟,4-tribromo-DPE and 3,3‟,4-

tribromo-DPE. After removal of outliers, the following equation was found (Model 4 in 

Table 4.7).  

 

log Kow = 23.539 (±0.320) – 15.168 (±0.280) R1e                                      (4.3) 

                             (Model 4) 

 

ntraining = 89,     R
2
 = 0.971,     F = 2936.62,     SE = 0.151,     R

2
cv = 0.9767,     R

2
pred = 0.973 

 

The 98% confidence intervals are given in parentheses. All the -coefficients are 

significant at 95% level. All compounds were estimated within a three standard deviation 

range for Eq. 4.3. R1e is based on the relationship between electronegativity and atomic 

size, and calculated from the reciprocal of the atomic volume. Although R1e seems to be a 

prevailing descriptor in modeling log Kow of the combined dataset, it is not an important 

descriptor for the PCDE subset. For the PCDE subset containing 107 compounds separate 

correlations with another GETAWAY descriptors H2e and Mor08v (3D-MoRSE 

descriptor) significantly improve the quality of the model and give SE = 0.090 (Eq. 4.7). 

 

Two-descriptor MLR model developed for training set without an outlier is given 

in Eq. 4.4 (Model 5; Table 4.7). The t-values for partial correlation coefficients in Eq. 4.4 

are 69.1915 and 58.0169 for the H2e and nBr, respectively. On the basis of the t-values, it 

can be concluded that H2e explains the log Kow significantly more than nBr.  

 

log Kow = –19.108 (± 0.3641) + 14. 967 (± 0.2163) H2e + 0.413 (± 0.007) nBr             (4.4) 

                                                                                                                                  (Model 5) 

 

ntraining  =  93,     R
2 
= 0.9856,    F = 3089.35,    SE = 0.011,     R

2
cv = 0.9846 

 

CODESSA descriptor, XY shadow, alone explained more than 90% of variances of 

log Kow of PBDEs/PCDEs with an outlier (2,2‟,4-trichlorinated diphenyl ether) (Table 4.7). 

The model was stabilized after removal of this outlier with R
2
 = 0.965. Increasing the 
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number of descriptors, replaced XY Shadow with the other descriptors from CODESSA. 

Those descriptors were given in Table 4.7. The XY shadow (XY) is the projection of the 

molecules onto the XY-plane oriented in space along the axes of inertia and represents the 

size of the molecule along the longest axis. 

 

It can be seen from Table 4.7 that the performance of the models changed with the 

number of selected descriptors in the models. The values of R
2
 and R

2
cv increase gradually 

with the increase in the number of descriptors (m). However, when m reaches four, its 

succeeding increase will have only trivial influence on all these values, which suggesting 

that the addition of variable number has not significant difference in statistical quantities 

and the simpler is always the better option. Additionally, some of these descriptors (nBr) 

resulted too simple (constant predictions for different classes of PBDEs and PCDEs) and 

not sensitive at all to the variations in the substitution on the aromatic rings (same 

predicted value for isomers); other variables were of too complex interpretation (i.e. 3D 

descriptors) and thus not mechanistically informative. Among these variables appearing in 

models listed in Table 4.7 the CRI was the one which gave a clear additional contribution 

to mechanistic interpretation by taking into account not only molecular dimension but also 

the presence, and the position of Br and Cl substitution. Additionally, the CRI along with 

other quantum chemical descriptors (EHOMO and Eaq) is a more powerful model (Eq. 4.5; 

model 16). Therefore, it was highlighted in Table 4.7 and is regarded as the best model.
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Table 4.7 Comparative analysis of QSPR models based on Heuristic method for log Kow of PBDEs and PCDEs. 

 

Model 

No 

Number of 

descriptor 

(m) 

Variables R
2
 F SE R

2
cv 

DRAGON-based models 

3 1 Mor02u 0.956 1959 0.034 0.953 

4 1 R1e 0.956 1954 0.034 0.954 

5 2 H2e, nBr 0.986 3089 0.011 0.985 

6 3 H2e, nBr, HATS8p 0.988 2418 0.009 0.987 

7 5 H2e, nBr, HATS8p, G2p, HIC 0.990 1679 0.008 0.988 

CODESSA-based models 

8 1 SXY 0.961 2250 0.030 0.960 

9 2 M; WNSA3 0.971 1487 0.023 0.969 

10 3 WNSA3; NBr; P 0.980 1424 0.016 0.977 

11 4 
v0
; WNSA3; Qmax for a O atom; P 0.986 1549 0.011 0.984 

12 5 v0
; WNSA3; Qmax for a O  atom; Qmax for a C  atom; Ik 0.987 1278 0.011 0.985 

SPARTAN-CRI based models 

13 1 ELUMO 0.806 377 0.152 0.792 

14 1 CRI 0.762 292 0.186 0.740 

15 2 CRI, Eaq 0.953 912 0.037   0.950 

16 3 CRI, Eaq, EHOMO 0.970 954   0.024   0.967 

17 4 CRI, Eaq, EHOMO, µ 0.977 935   0.019   0.974 

18 5 CRI, Eaq, ELUMO, µ, η 0.977 741  0.019   0.974 
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As it can be observed from Eq. 4.5, the non-cross-validated R
2 

= 0.970 and             

F = 49.749 indicates that log Kow model is highly satisfactory. Next, the R
2

cv is highly 

significant and calculated root mean square error of cross-validation (RMSEcv = 0.090) was 

low which suggest the good stability of the model. The plot of calculated/predicted versus 

observed values of log Kow (see Figure 4.4) also confirmed the linear character of the 

model. The CRI from SPARTAN-CRI group alone explained more than 75% of the 

variance in log Kow of PBDEs/PCDEs.  

 

 log Kow =  – 6.341 (± 1.262) + 0.765 (± 0.015) CRI – 0.625 (± 0.029) Eaq  

                  – 0.958 (±0.136) EHOMO                                              (4.5) 

                           (Model 16) 

 

n training  = 93,         R
2 
= 0.970,              

2

adjR  = 0.969,           2

cvR  = 0.967, 

        F = 49.749,              SE = 0.155,          RMSE = 0.151 

ntest = 28,  R
2 
= 0.9472,  R0

2
 = 0.9471,    2'

0R = 0.946,    2

3FQ = 0.940 

 

The t-values are 52,633, -21.399, and -7.053 for the CRI, Eaq and EHOMO, 

respectively. The t-values indicate that each parameter is highly significant (p < 0.05). This 

model explains more than 95% of the variance in the experimental log Kow values for 

combined set. The greater the t-value, the more contribution to the regression equation. 

VIF values for descriptors the CRI, Eaq and EHOMO appeared in Eq. 4.5 are 1.436, 3.055 and 

2.625, respectively, indicating that these variables are not intercorrelated. 

 

In this study, the CRI relates hydrophobicity since the bigger the molecules, the 

greater the CRI and thus the greater the hydrophobicity. The CRI represents many 

molecular properties besides hydrophobicity as explained before. The CRI term was 

introduced in Eq. 4.5 because the larger PBDE and PCDE molecule would yield stronger 

dispersion-type interaction between each other (lowering the volatility and liquid vapour 

pressure) or with the n-octanol molecule (i.e. the log Kow value becomes larger), and tend 

to be excluded from water (i.e. water solubility becomes smaller). 
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In the octanol-water system, octanol molecules are easier to release electrons than 

water molecules, since octanol have smaller EHOMO values. The lower the EHOMO values, 

the greater is the tendency of chemicals to donate electrons in intermolecular interactions, 

the greater is the intermolecular interactions between octanol molecules and 

PCDEs/PBDEs, the higher the log Kow values. Similarly, in a study reported by Reddy and 

Locke (1996) EHOMO was found to be significant rather than ELUMO in describing the log 

Kow of 90 herbicides. In other words, EHOMO seems particularly related to the tendency to 

dissolve in octanol phase. 

 

The lower the Eaq values, the greater the tendency of PBDE/PCDE molecules to 

stay in water phase the greater the intermolecular interactions between PBDE/PCDE and 

water molecules, and thus the lower the log Kow value. For training set of 93 compounds in 

Eq. 4.5, 31, 15 and 10 fold cross validations were run using Weka 3.6.1 (Waikato, 2009). 

The overall results of random deletion study statistics are summarized in Table 4.8. 

 

Table 4.8 Leave-many-out cross validation results for Eq. 4.5. 

 

Number of compounds 

deleted 

Average 

2

LMOR  

Average 

RMSE 

3 0.983 0.160 

6 0.983 0.159 

9 0.983 0.159 

 

The predicted vs. observed log Kow values of the training and test set compounds 

obtained from Eq. 4.5 are shown in Figure 4.4. The [(R
2
-R0

2
)/R

2
 and k values for Eq. 4.5 

are found to be within the acceptable range with values being equal to 0.0001 and 0.994, 

respectively. External validation set of Eq. 4.5 with 28 compounds yielded good prediction 

statistics as indicated below. 
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(i) Correlation coefficient R
2
 between the predicted and observed activities is 

0.9472 which is higher than 0.6. 

(ii) 2

0R  or 2'

0R  close to R
2
.  2

0R  and 2'

0R  are 0.9471 and 0.946, respectively. 

 (a)  (R
2
 − 2

0R )/R
2
 < 0.1 and 0.85 ≤ k ≤ 1.15 

        (R
2
 − 2

0R )/R
2
 = 1.05x10

-4
 and k = 0.994 

 

(b)  (R
2
 − 2'

0R )/R
2
 < 0.1 and 0.85 ≤ k‟ ≤ 1.15  

  (R
2
 − 2'

0R )/R
2
 = 1.266x10

-3
 and k‟ = 1.004 

 

(iii) │ 2

0R - 2'

0R │< 0.3, 

│ 2

0R - 2'

0R │= 0.001 

 

Moreover, the model robustness was also checked by response randomization (Y-

scrambling). The log Kow values were shuffled randomly between the molecules and 

regression models were developed. Random shuffling of response was repeated several 

times (15) for Eq. 4.5. R
2
 values were between 0.0016 and 0.094, and the average R

2
 was 

0.0382. The results confirm that the proposed model is well founded and not just the result 

of a chance correlation. 
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Figure 4.4 Plot of calculated/predicted vs. observed values of log Kow for the training/test 

set compounds for PBDEs/PCDEs (Eq. 4.5). 

 

As far as our knowledge there is no reported model in the literature for log Kow of 

the combined data set. We applied the same procedure, to generate a QSPR models for the 

compounds of the PBDE and PCDE subsets. The CRI also appears to be the most 

significant descriptor in modeling log Kow values of PBDE and PCDE subsets. The QSPR 

equation in terms of the CRI turned out to be basically the same in both combined set and 

PBDE subset models (Eq. 4.6). 

 

log Kow = –5.691 (± 2.313) + 0.506 (± 0.024) CRI – 0.939 (± 0.254) EHOMO                (4.6)           

 

n = 13,        R
2 
= 0.993,     F = 728.289,      SE = 0.113,       R

2
cv = 0.993 

 

We obtained above equation within 2.0σ standard deviation limit with one outlier 

(2,2‟,4-tri-BDE). The t-values are 21.213 and -3.698 for the CRI and EHOMO, respectively. 

The t-values indicate that each parameter is highly significant (p<0.05). The CRI explained 

more than 95% variances in log Kow values of PBDEs. 
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 Data set on 107 PCDE is divided into a training set and a test set by SOM Method 

(11x11 neuron, 100 epochs). The 79 PCDE as the training set is used to generate the log 

Kow models. There is only one outlier (2,2‟,4-trichloro diphenyl ether (PCDE-17) with a 

slightly larger predictive error of 0.45. The same compound was detected as an outlier in a 

structure-log Kow correlation reported by Yang et al. (2003) and Sun et al. (2007).  Yang et 

al. (2003) also reported that PCDE molecules with great molecular size or high degree of 

chlorination may have high strong intermolecular dispersive interactions, which result in 

high log Kow values. PCDE molecules with high molecular size (volume) need more free 

energy of enthalpy input to overcome solvent-solvent cohesive interactions to provide a 

suitable sized cavity for solutes. Their model has one outlier (PCDE-17) similar to our 

study. Generally, log Kow values should increase with increasing molecular size, which 

implies that higher chlorinated PCDE congeners have higher log Kow values. However, 

observing the log Kow values reported by Kurz and Ballschmiter (1999), it can be found 

that the log Kow values of the three dichlorinated diphenyl ethers (PCDE-13, 14, 15) are 

larger than the log Kow value of PCDE-17, a trichlorinated diphenyl ether. As can be found 

from Table B.2, the log Kow value of PCDE-17 is the smallest among the 16 trichlorinated 

diphenyl ethers. Therefore, the log Kow value of PCDE-17 reported by Kurz and 

Ballschmiter (1999) may have relevant experimental errors. However, if we discard this 

compound from the training set, for the remaining 78 PCDE, a two-parameter model 

including the H2e and Mor08v is obtained along with the statistical parameters were 

shown in the following equation (Eq. 4.7). 

 

log Kow = – 19.600 (±0.346) + 15.132 (± 0.187) H2e – 0.441 (± 0.175) Mor08v    (4.7) 

 

n = 78,     R
2 
= 0.989,    SE = 0.090,    F = 6.330,    R

2
cv

 
= 0.9939,    R

2
pred = 0.976  

 

A comparison of calculated or predicted log Kow values and experimental data for 

107 PCDEs is shown in Figure 4.5. One can observe that calculated or predicted log Kow 

values agree well with experimental data, and the plot shows no obviously observable 

pattern. Therefore, the final model (Eq. 4.7) represents an excellent QSPR model judging 

from the statistics and the plot in Figure 4.5.  
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Figure 4.5 Plot of calculated/predicted vs. observed values of log Kow for the training/test 

set compounds for PCDEs.
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Table 4.9 The Compound names, descriptors, observed and predicted log Kow values, and residuals obtained from MLR (Eq. 4.5). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

Training Set        

2- 1 3.04 -9.36 0.51 4.45 4.63 -0.18 

4- 3 2.96 -9.26 0.45 4.7 4.52 0.18 

2,4- 7 3.44 -9.32 0.25 4.93 5.06 -0.13 

2,5- 9 3.46 -9.23 0.25 5.13 5.00 0.13 

2,6- 10 3.43 -9.26 0.32 4.64 4.96 -0.32 

3,4- 12 3.42 -9.23 0.22 4.99 4.99 0.00 

3,4‟- 13 3.42 -9.35 0.17 5.13 5.12 0.01 

3,5- 14 3.46 -9.52 0.20 5.21 5.30 -0.09 

4,4‟- 15 3.40 -9.31 0.17 5.25 5.08 0.17 

2,2‟,4- 17 3.90 -9.04 0.04 4.96 5.27 -0.31 

2,3,4- 21 3.82 -9.36 0.05 5.55 5.52 0.03 

2,3,4‟- 22 3.85 -9.40 -0.01 5.63 5.62 0.01 

2,3,5- 23 3.86 -9.26 0.04 5.62 5.46 0.16 

2,3,6 24 3.84 -9.27 0.10 5.35 5.42 -0.07 

2,3‟,4- 25 3.90 -9.38 -0.04 5.65 5.66 -0.01 



 
7
5

 

Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

2,4,4‟- 28 3.88 -9.36 -0.03 5.53 5.61 -0.08 

2,4,5- 29 3.86 -9.21 0.04 5.58 5.41 0.17 

2,4‟,5- 31 3.86 -9.30 -0.03 5.66 5.54 0.12 

2,4‟,6- 32 3.87 -9.07 0.04 5.3 5.29 0.01 

2,3‟,4‟- 33 3.89 -9.30 -0.01 5.5 5.55 -0.05 

3,3‟,4- 35 3.86 -9.28 -0.06 5.74 5.55 0.19 

3,4,4‟- 37 3.86 -9.28 -0.06 5.88 5.55 0.33 

3,4,5- 38 3.84 -9.08 0.00 5.7 5.30 0.40 

3,4‟,5- 39 3.86 -9.42 -0.08 5.77 5.68 0.09 

2,2‟,3,4- 41 4.32 -9.08 -0.17 5.72 5.77 -0.05 

2,2‟,3,4‟- 42 4.33 -9.15 -0.20 5.88 5.86 0.02 

2,2‟,4,4‟- 47 4.37 -9.07 -0.22 5.95 5.83 0.12 

2,2‟,4,5‟- 49 4.36 -9.09 -0.22 5.78 5.84 -0.06 

2,3,3‟,4- 55 4.33 -9.41 -0.24 6.07 6.14 -0.07 

2,3,3‟,4‟- 56 4.32 -9.35 -0.25 5.99 6.08 -0.09 

2,3,4,4‟- 60 4.32 -9.39 -0.23 6.14 6.11 0.03 
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Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

2,3,4,6- 62 4.31 -9.30 -0.10 5.88 5.92 -0.04 

2,3,4‟,5- 63 4.34 -9.32 -0.24 6.21 6.06 0.15 

2,3,4‟,6- 64 4.34 -9.12 -0.18 5.64 5.83 -0.19 

2,3,5,6- 65 4.25 -9.22 -0.10 5.82 5.80 0.02 

2,3‟,4,4‟- 66 4.35 -9.35 -0.27 6.13 6.12 0.01 

2,3‟,4‟,5- 70 4.37 -9.33 -0.27 6.11 6.10 0.01 

2,3‟,4‟,6- 71 4.35 -9.07 -0.20 5.7 5.80 -0.10 

2,4,4‟,5- 74 4.34 -9.26 -0.24 5.99 6.01 -0.02 

2,4,4‟,6- 75 4.37 -9.12 -0.20 5.92 5.87 0.05 

3,3‟,4,4‟- 77 4.33 -9.31 -0.30 6.36 6.07 0.29 

3,4‟,4,5- 81 4.30 -9.34 -0.28 6.3 6.07 0.23 

2,2‟,3,3‟,4- 82 4.72 -9.16 -0.41 6.3 6.30 0.00 

2,2‟,3,4,4‟- 85 4.75 -9.12 -0.43 6.28 6.29 -0.01 

2,2‟,3,4,5‟- 87 4.80 -9.13 -0.42 6.51 6.34 0.17 

2,2‟,3,4,6‟- 89 4.75 -9.10 -0.38 6.11 6.25 -0.14 

2,2‟,3,4‟,5- 90 4.79 -9.17 -0.45 6.54 6.38 0.16 
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Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

2,2‟,3,4‟,6- 91 4.77 -9.10 -0.39 6.06 6.27 -0.21 

2,2‟,3,4‟,5‟- 97 4.75 -9.22 -0.44 6.22 6.40 -0.18 

2,2‟,4,4‟,5- 99 4.79 -9.05 -0.44 6.38 6.27 0.11 

2,2‟,4,5,5‟- 101 4.82 -9.07 -0.44 6.22 6.31 -0.09 

2,2‟,4,5,6‟- 102 4.79 -9.00 -0.39 5.98 6.19 -0.21 

2,3,3‟,4‟,5- 107 4.76 -9.35 -0.49 6.52 6.57 -0.05 

2,3,3‟,4,5‟- 108 4.78 -9.47 -0.48 6.58 6.69 -0.11 

2,3,3‟,4‟,6- 110 4.75 -9.11 -0.43 6.31 6.29 0.02 

2,3,4,5,6- 116 4.71 -9.27 -0.27 6.37 6.31 0.06 

2,3,4‟,5,6- 117 4.77 -9.16 -0.38 6.41 6.32 0.09 

2,3‟,4,4‟,5- 118 4.76 -9.30 -0.49 6.6 6.51 0.09 

2,3‟,4,4‟,6- 119 4.77 -9.12 -0.44 6.44 6.32 0.12 

3,3‟,4,4‟,5- 126 4.74 -9.35 -0.52 6.83 6.57 0.26 

2,2‟,3,3‟,4,6‟- 132 5.20 -9.15 -0.60 6.47 6.78 -0.31 

2,2‟,3,4,4‟,5- 137 5.16 -9.25 -0.64 6.72 6.87 -0.15 

2,2‟,3,4,4‟,5‟- 138 5.21 -9.26 -0.66 7.01 6.93 0.08 
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Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

2,2‟,3,4,4‟,6‟- 140 5.34 -9.16 -0.61 6.65 6.90 -0.25 

2,2‟,3,4‟,5,5‟- 146 5.24 -9.15 -0.66 6.76 6.84 -0.08 

2,2‟,3,4‟,5,6- 147 5.17 -9.14 -0.59 6.76 6.74 0.02 

2,2‟,3,4‟,5‟,6- 149 5.23 -9.04 -0.61 6.47 6.71 -0.24 

2,3,3‟,4,4‟,5- 156 5.13 -9.35 -0.67 7.07 6.96 0.11 

2,3,3‟,4,4‟,5‟- 157 5.20 -9.42 -0.68 6.99 7.09 -0.10 

2,3,3‟,4‟,5,6- 163 5.21 -9.15 -0.62 6.78 6.80 -0.02 

2,3,4,4‟,5,6- 166 5.15 -9.19 -0.55 6.95 6.75 0.20 

2,3‟,4,4‟,5,5‟- 167 5.22 -9.33 -0.70 7.11 7.03 0.08 

2,2‟,3,3‟,4,4‟,5- 170 5.66 -9.14 -0.84 7.28 7.27 0.01 

2,2‟,3,3‟,4,5,6‟- 174 5.68 -9.10 -0.80 6.98 7.22 -0.24 

2,2‟,3,4,4‟,5,5‟- 180 5.68 -9.12 -0.85 7.46 7.28 0.18 

2,2‟,3,4,4‟,5,6- 181 5.63 -9.17 -0.75 7.31 7.22 0.09 

2,2‟,3,4‟,5,5‟,6- 187 5.71 -9.08 -0.81 7.13 7.23 -0.10 

2,3,3‟,4,4‟,5,5‟- 189 5.67 -9.38 -0.88 7.55 7.53 0.02 

2,3,3‟,4,4‟,5,6- 190 5.62 -9.17 -0.79 7.31 7.25 0.06 



 
7
9

 

Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

2,2‟,3,3‟,4,4‟,5,5‟- 194 6.10 -9.16 -1.03 7.78 7.75 0.03 

2,2‟,3,3‟,4,5,5‟,6‟- 199 6.13 -9.14 -1.00 7.63 7.72 -0.09 

4,4‟- 315 4.49 -9.68 1.37 5.51 5.51 0.00 

2,2‟,4- 317 5.48 -9.61 1.71 5.74 5.99 -0.25 

2,4,4‟- 328 5.48 -9.46 1.80 5.84 5.79 0.05 

2,4‟,6- 332 5.46 -9.36 1.94 5.8 5.59 0.21 

3,3‟,4- 335 5.54 -9.73 1.73 5.87 6.14 -0.27 

3,3‟,4,4‟- 377 6.59 -9.78 2.09 6.42 6.77 -0.35 

2,2‟,4,4‟,5- 399 7.53 -9.75 2.43 7.32 7.25 0.07 

2,2‟,4,4‟,6- 400 7.51 -9.78 2.60 7.24 7.16 0.08 

2,2‟,4,4‟,5,5‟- 453 8.56 -9.78 2.79 7.9 7.84 0.06 

2,2‟,4,4‟,5,6‟- 454 8.53 -9.81 2.99 7.82 7.71 0.11 

2,2‟,3,3‟,4,4‟,5,5‟,6,6‟- 509 12.74 -9.79 4.55 10 9.94 0.06 

diphenyl ether 600 2.48 -9.48 0.72 3.97 4.19 -0.22 
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Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

Test Set        

3- 2 2.99 -9.41 0.45 4.75 4.68 0.07 

2,3- 5 3.40 -9.34 0.27 5 5.04 -0.04 

2,4‟- 8 3.41 -9.35 0.23 5.03 5.08 -0.05 

2,4,6- 30 3.86 -9.45 0.09 5.32 5.61 -0.29 

2,2‟,4,5- 48 4.36 -9.00 -0.19 5.97 5.73 0.24 

2,3,4,5- 61 4.24 -9.02 -0.15 6.01 5.64 0.37 

2,3‟, 4,5- 67 4.36 -9.26 -0.25 6.14 6.03 0.11 

2,3‟,4,5‟- 68 4.39 -9.44 -0.28 6.13 6.24 -0.11 

3,3‟,4,5‟- 79 4.37 -9.36 -0.32 6.22 6.16 0.06 

2,2‟,4,4‟,6- 100 4.79 -9.11 -0.40 6.11 6.30 -0.19 

2,3,3‟,4,4‟- 105 4.73 -9.37 -0.48 6.51 6.55 -0.04 

2,3,4,4‟,5- 114 4.74 -9.31 -0.43 6.61 6.48 0.13 

2,3,4,4‟,6- 115 4.77 -9.16 -0.38 6.47 6.32 0.15 

2,3‟,4,5,5‟- 120 4.81 -9.31 -0.50 6.66 6.57 0.09 

2,3‟,4,4‟,5‟- 123 4.78 -9.16 -0.48 6.63 6.39 0.24 

2,2‟,3,3‟,4,4‟- 128 5.19 -9.15 -0.63 6.82 6.79 0.03 

2,2‟,3,3‟,4,5‟- 130 5.21 -9.20 -0.65 7.01 6.86 0.15 
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Table 4.9 (continued). 

 

Compound name 
Congener 

number 
CRI EHOMO Eaq log Kow obs log Kow pred from 

Eq. 4.5 
res 

2,2‟,3,4,4‟,6- 139 5.22 -9.14 -0.59 6.84 6.78 0.06 

2,2‟,4,4‟,5,5‟- 153 5.23 -9.08 -0.66 6.72 6.77 -0.05 

2,2‟,4,4‟,5,6‟- 154 5.36 -9.05 -0.63 6.49 6.82 -0.33 

2,2‟,3,3‟,4,5‟,6‟- 177 5.67 -9.19 -0.79 7.14 7.30 -0.16 

2,2‟,3,3‟,4,4‟,5,6- 195 5.38 -9.22 -0.96 7.84 7.21 0.63 

2,2‟,3,4,4‟,5,5‟,6- 203 6.11 -9.10 -0.98 7.81 7.66 0.15 

2,2‟,3,3‟,4,4‟,5,5‟,6- 206 6.52 -9.16 -1.17 8.07 8.15 -0.08 

2,2‟,3,3‟,4,4‟,5,5‟,6,6‟- 209 6.91 -9.26 -1.21 8.16 8.58 -0.42 

2,2‟,4,4‟- 347 6.50 -9.70 2.06 6.81 6.64 0.17 

2,2‟,3,4,4‟- 385 7.55 -9.75 2.48 7.37 7.22 0.15 

2,2‟,3,4,4‟,5‟,6- 483 9.55 -9.90 3.40 8.27 8.32 -0.05 
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4.2.1. Analysis of the Applicability Domain 

 

The AD of the developed model for the combined data set exploited by Williams 

plot is shown in Figure 4.6. It can be seen that hi values of all compounds are lower than 

the warning value (h* = 0.129) except for 2,2‟,3,3‟,4,4‟,5,5‟,6,6‟-BDE whose maximum 

descriptor values (the CRI and EHOMO) and maximum log Kow values within the data set 

leads to it far from the centroid of the descriptor space. However, its standardized residual 

is nearly zero, thus it stabilizes the model and makes the model more precise. 

2,2‟,3,4,4‟,5‟,6-BDE whose EHOMO value falls out of EHOMO values range of the training 

set. This compound is from test set. For all the compounds in the training and test sets, 

their standardized residuals are smaller than three standard deviation units, i.e., there is no 

response outlier for the developed QSPR model. Therefore, the developed QSPR model 

was used to predict log Kow for PBDEs and PCDEs.  

 

Due to different amount of studied compounds or differences in the development of 

the models, it is not possible to perform strict comparisons among our proposed models 

and already published QSPRs for PBDEs and PCDEs. However, some general 

considerations can still be made. As shown in Table 4.11, our models had comparable or 

even better performances in comparison to other QSPRs at the same level of complexity 

(three descriptor) or higher. 
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Table 4.10 Boundaries of the proposed models log Kow values of PBDEs/PCDEs (Eq. 4.5). 

 

 Training set Test set 

 min max min max 

log Kow 
3.97 

(diphenyl ether) 

10 

(2,2‟,3,3‟,4,4‟,5,5‟,6,6‟-BDE) 

4.75 

(3-CDE) 

8.27 

(2,2‟,3,4,4‟,5‟,6-BDE) 

CRI 
2.48 

(diphenyl  ether) 

12.74 

(2,2‟,3,3‟,4,4‟,5,5‟,6,6‟-BDE) 

2.99 

(3-CDE) 

9.55 

(2,2‟,3,4,4‟,5‟,6-BDE) 

Eaq 
-1.03 

(2,2‟,3,3‟,4,4‟,5,5‟-CDE) 

4.55 

(2,2‟,3,3‟,4,4‟,5,5‟,6,6‟-BDE) 

-1.21 

(2,2‟,3,3‟,4,4‟,5,5‟,6,6‟-CDE) 

3.40 

(2,2‟,3,4,4‟,5‟,6-BDE) 

EHOMO 
-9.81 

(2,2‟,4,4‟,5,6‟-BDE) 

-9.00 

(2,2‟,4,5,6‟-CDE) 

-9.90 

(2,2‟,3,4,4‟,5‟,6-BDE) 

-9.00 

(2,2‟,4,5-CDE) 
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Figure 4.6 Williams plot for the Eq. 4.5. The log Kow values for the training and test 

chemicals are labeled differently. The dotted lines are the 3.0σ limit and the warning value 

of hat (h* = 0.129), respectively.

○Training set 

● Test set 
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Figure 4.7 Plot of hat values vs. log Kow predicted values of PBDEs/PCDEs (Eq. 4.5).  

 

The model predictions for the chemicals with the leverage values of higher than   

h* = 0.129 reported in Figure 4.7 are considered to be out of the domain of the respective 

model and predicted values of those chemicals should be considered potentially unreliable, 

since they are extrapolated (congener number marked with an asterisk (*) in Appendix B, 

Table B.2). Bromination degrees of extrapolated PBDE congeners are from 4 to 9. 

 

21% of PBDE congeners for log Kow predictions fell outside the AD of Eq. 4.5 and 

should be considered as extrapolations (Figure 4.7). The reason for this can be related to 

the limited number of chemicals available for this endpoint (log Kow of PBDEs). On the 

other hand, the Eq. 4.5 covers a large part of the log Kow prediction of PBDEs (79%). 

 

 

 

 

 Studied compounds      
    (Test set) 

● Studied compounds  

    (Training set) 

○ Compound predicted 
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4.2.2. Comparison with the Reported Methods 

 

There is no reported model for the combined data set. Therefore, we applied the 

same computational procedure to generate a QSPR models for PBDEs and PCDEs 

separately. Hence, we compared each model obtained for PBDE and PCDE with the 

reported models. 

 

It is important to note that the one-parameter models for PBDE by Wania and 

Dugani (2003), and Braekevelt (2003) were built by using only very simple properties 

(molar mass and number of bromine substituents) as molecular descriptors. These 

descriptors, whose value is constant for isomeric compounds, calculate constant 

predictions for each group of PBDE congeners. Even though these models are very simple, 

they are not sensitive at all to variations in the responses, which are related to other 

structural properties such as the position of the bromine atoms on the phenyl ring. 

 

Papa et al. (2009) obtained a QSPR model for log Kow values of BFRs with 

T(O...Br) (R
2
 = 0.97). No outliers were detected in the log Kow model response domain. 

Yang et al. (2003) used MOPAC software for computing 12 quantum chemical descriptors. 

PLS regression was performed to build the QSPR model for log Kow values of PCDEs. Sun 

et al. (2007) developed QSPR Model to predict log Kow values of PCDEs by using MLR 

method with molecular electronegativity distance vector (MEDV-4) descriptor. In their 

method, they did not separate the data set (107) into training and test set. They concluded 

that log Kow increases with the degree of chlorination in general. Chen et al. (2007) 

modeled log Kow values of PCDEs by the method of Cl substitution position. Stepwise 

MLR has been used to construct the QSPR models by using six elements (the numbers of 

positions of Cl substitution (NPCS)).  

 

Xu et al. (2010) modeled the structural descriptors of PCDEs and the physico-

chemical properties and biological activity by stepwise linear regression analysis.  They 

randomly split these data into calibration and test sets in the ratio of 2:1 (72 vs. 35) to 

evaluate further the predictive power of the log Kow model. By using stepwise linear 

regression analysis, the relationship has been established for the calibration set. They 

obtained model for log Kow with 3 descriptors, namely NCl, N
+

V, V
-
s,av. With the R

2 
= 0.974; 
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2

cvR  = 0.972 without dividing data set into training and test set (N = 107); and R
2
 = 0.976; 

2

cvR  = 0.972 by dividing the data set into training and test set (N = 72). 

 

Li et al. (2008) used PLS regression method for modeling the log Kow values of 

PBDEs based on quantum molecular descriptors. Theoretical molecular descriptors were 

tested against log Kow values for PBDEs using the PLS regression method which can be 

used to analyze data with many variables and few observations. The values of log Kow for 

PBDEs are mainly governed by molecular surface area, energy of the lowest unoccupied 

molecular orbital and the net atomic charges on the oxygen atom. All these descriptors 

have been discussed to interpret the partitioning mechanism of PBDE chemicals. The bulk 

property of the molecules represented by molecular surface area is the leading factor, and 

Kow values increase with the increase of molecular surface area. In conclusion it was stated 

that higher energy of the lowest unoccupied molecular orbital and higher net atomic charge 

on the oxygen atom of PBDEs result in smaller Kow.  

 

The models developed for each of PBDEs and PCDEs are superior to the literature 

models in terms of mechanistic interpretation of descriptors appearing in the relevant 

models. 
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Table 4.11 Statistical performance comparison of different QSPR models of log Kow for PBDEs/PCDEs. 

 

Chemical 

Group 

Number of 

descriptors 
Descriptor type 

Training/

test set 
Method  R

2
 SE F N* R

2
pred References 

PBDEs/PCDEs 3 CRI; Eaq; EHOMO 93/28 MLR 0.970 0.155 49.749 121 0.940 Current study 

PCDE 2 H2e; Mor08v 79/28 MLR 0.989 0.090 6.330 107 0.976 Current study 

PBDE 2 CRI; EHOMO __ MLR 0.993 0.113 728.289 14 __ Current study 

PBDEs 3 SAG; ELUMO; q
-
o __ PLS 0.989 __ __ 9 __ 

Li et al., 

(2008) 

PBDEs 1 Mw __ LRTP 0.975 __ __ 6 __ 
Wania and 

Dugani, 2003 

PBDEs 1 nBr __  0.970 __ __ 9 __ 
Braekvelt et 

al., (2003) 

PCDEs 3 
Hf; α; Mw 

 __ PLS 0.976 __ __ 107 __ 
Yang et al., 

(2003) 

PCDEs 4 
(MEDV-4 type) 

M11; M13; M22; M33 
__ MLR 0.984 0.101 __ 107 __ 

Sun et al., 

(2007) 

PCDEs 3 N2(6); N3(5); N4 72/35 MLR 0.984 0.10 __ 107 __ 
Chen et al., 

(2007) 

PCDEs 3 
0
χA; 

1
χA; 

2
χA __ MCI 0.894 0.18 __ 107 __ 

Huang et  al., 

(2004) 

PCDEs 3 NCl, N
+

V, V
-
s,av 

 

72/35 

 

MLR 0.976 __ __ 107 0.972 
Xu et al., 

(2010) 

*Here N donates the total number of chemicals in the data set. MCI: Molecular Connectivity Indices; PLS: Partial Least-Squares; LRTP: Long-Range Transport Potential 
assessment methods.
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4.3. Modeling log RBA for PBDEs 

 

MLR models were developed for log RBA of 18 PBDE congeners. The heuristic 

correlations were performed for the whole set provided the optimal equations for different 

numbers of descriptors in the range of 1-4. To avoid the over-parameterization of the 

model, an increase of the R
2
 value of less than 0.02 was chosen as the breakpoint criterion. 

From the viewpoint of statistics, the number of samples should be 4-5 times of that of 

variables for linear regression. Plotting of R
2
 and R

2
cv values against the number of 

descriptors (Figure 4.8) which provide guidance regarding the number of descriptors to 

retain in the models suggested that the best model contained four parameters. Our 

approach was based on the parsimony principle, which implies, inter alia, that the ratio of 

observations to variables should be as high as possible and at least 5:1 (Topliss and 

Costello, 1972; Cronin and Schultz, 2003). This approach is efficient to reduce the chance 

of overfitting, which increases with the increase in the number of the variables included in 

the models and gives an overoptimistic idea of their predictive ability. 

 

The experimental versus calculated log RBA of PBDEs and the residuals of the best 

regression model (Table 4.12) indicated that the best regression model (containing four 

descriptors, Eq. 4.8; Model 30) was very satisfactory. 

 

 
 

Figure 4.8 Correlation coefficients (R
2
,  R

2
cv) versus number of descriptors. 
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The descriptors involved in these correlations and the regression coefficients were 

also listed in Table 4.12. 

 

log RBA = – 1.751 (±0.078) – 0.392 (±0.027) RDF075p + 0.725 (±0.049) Mor28m  

                    + 8.327 (±1.253) XY-S/R + 0.482 (±0.098) RDF090u        (4.8) 

(Model 30) 

n = 18,        R
2
 = 0.977,         F = 139.97,        SE = 0.017,         R

2
cv = 0.959 

 

The t-values are -14.5097, 14.7810, 6.6425 and 4.9089 for RDF075p, Mor28m, 

XY-S/R and RDF090u, respectively. The t-values indicate that each parameter is highly 

significant (p<0.05). Mor28m is the most important descriptor for predicting log RBA 

considering the t-values. This model explains more than 97% of the variance in the 

experimental log RBA values for PBDEs.  

 

3D-MoRSE descriptors (Schuur et al., 1996) are based on the idea of obtaining 

information from the 3D atomic coordinates by the transform used in electron diffraction 

studies for preparing theoretical scattering curves. The derived expression is shown in    

Eq. 4.9. 

 

 

(4.9) 

where I(s) is the scattered electron intensity, w an atomic property (e.g., the atomic 

number), rij the interatomic distance between the ith and the jth atoms, and A the number of 

atoms. Radial distribution function (RDF) descriptors (Raevsky et al., 2000) are based on 

the distance distribution in the geometrical representation of a molecule and constitute a 

RDF code that shows certain characteristics in common with the 3D-MoRSE descriptors. 

RDF075p means Radial distribution function – 7.5/weighted by atomic polarizabilities. 

RDF090u means Radial Distribution Function – 9.0 / unweighted. Mor28m means – signal 

28 / weighted by atomic masses.  
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Descriptors that belong to the class of RDF descriptors (Hemmer et al., 1999) are 

based on the distance distribution in the geometrical representation of the molecule. In 

addition to interatomic distances in the entire molecule, the RDF also provides valuable 

information about bond distances, ring types, planar and non-planar systems, atom types 

and other important structural motifs. By using different weighting schemes, which include 

atom types, electronegativity, atom mass or van der Waals radii, RDF can be adjusted to 

select among those atoms of molecule, which give rise to an important descriptor in 

deriving an appropriate QSAR. 

 

Formally, the RDF of a molecule of A atoms can be interpreted as the probability 

distribution of finding an atom in a spherical volume of radius R. In this sense, according 

to our model a spherical molecular volume with these dimensions could have certain 

restrictions to the addition of bulky substituents. 

 

XY-S/R is the projection of the molecules onto the XY-plane oriented in space 

along the axes of inertia and represents the size of the molecule along the longest axis. XY 

Shadow appeared in the model proposed by Colombo et al., 2008. Colombo et al. (2008) 

studied the toxicity of 568 industrial organic compounds and their acute toxicity data 

expressed as lethal concentration (LC50) in 96-flow-through exposures for the juvenile 

stage of the Fathead minnow. 

 

The Compound names, descriptor values, observed and predicted log RBA of 

PBDEs, and residuals obtained from Eq. 4.8 are given in Table 4.13. 
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Table 4.12 Comparative statistics of QSTR models based on Heuristic method for log RBA of PBDEs. 
 

Model 

Number 

Number of 

descriptors 
Variables R

2
 F SE R

2
cv 

DRAGON-based models 

19 1 RDF075u 0.673 32.98 0.200 0.586 

20 2 QYYp; Mor28p 0.858 45.18 0.093 0.779 

21 3 QYYp; Mor28p; SPAM 0.935 67.21 0.045 0.877 

22 4 QYYp; Mor28p; Mor09m; Mor26m 0.975 127.47 0.019 0.948 

CODESSA-based models 

23 1 WPSA1 0.452 13.20 0.336 0.319 

24 2 P ; Information content (order 2) 0.672 15.34 0.215 0.584 

25 3 P ; Information content (order 2); SYZ 0.811 19.98 0.133 0.683 

26 4 P ; Information content (order 2); Yz-S/R; WPSA3 0.873 22.41 0.096 0.722 

DRAGON-CODESSA-SPARTAN-CRI based  models 

27 1 RDF075u 0.674 33.08 0.200 0.587 

28 2 QYYp; Mor28p 0.857 45.04 0.093 0.778 

29 3 RDF075p; Mor28m; VXYZ 0.947 82.68 0.037 0.909 

30 4 RDF075p; RDF090u; Mor28m; XY-S/R  0.977 139.97 0.017 0.959 
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Table 4.13 The Compound names, descriptors, observed and predicted log RBA of PBDEs obtained from Eq. 4.8. 

 

Congener number 
Compound 

name 
RDF090u RDF075p Mor28m XY-S/R 

Observed value of  

log RBA 

Predicted value 

from Eq. 4.8 
res 

3 4- 1.268 1.124 0.223 0.642 3.89 3.93 -0.04 

15 4,4‟- 0.437 3.529 0.672 0.708 3.42 3.45 -0.03 

17 2,2‟,4- 1.509 2.398 0.315 0.619 3.64 3.42 0.22 

28 2,4,4‟- 1.122 3.283 0.193 0.629 2.92 2.88 0.04 

47 2,2‟,4,4‟- 1.312 3.331 0.265 0.675 3.25 3.39 -0.13 

49 2,2‟,4,5‟- 2.076 1.679 0.227 0.657 4.17 4.23 -0.05 

66 2,3‟,4,4‟- 0.377 5.104 0.964 0.661 2.70 2.63 0.07 

71 2,3‟,4‟,6- 1.245 4.198 1.410 0.688 3.87 3.96 -0.09 

75 2,4,4‟,6- 1.122 3.283 1.066 0.630 3.40 3.52 -0.12 

77 3,3‟,4,4‟- 0.776 8.058 1.100 0.761 2.66 2.60 0.06 

85 2,2‟,3,4,4‟- 0.919 6.482 -0.198 0.697 1.72 1.81 -0.09 

99 2,2‟,4,4‟,5- 1.195 2.929 0.968 0.647 3.85 3.76 0.09 

100 2,2‟,4,4‟,6- 1.312 3.331 1.384 0.655 4.11 4.03 0.08 

119 2,3‟,4,4‟,6- 0.377 5.104 1.651 0.653 2.96 3.06 -0.10 

126 3,3‟,4,4‟,5- 0.657 7.705 2.011 0.680 2.57 2.66 -0.09 

153 2,2‟,4,4‟,5,5‟- 1.029 2.459 1.793 0.652 4.60 4.51 0.09 

154 2,2‟,4,4‟,5,6‟- 1.195 2.929 2.069 0.671 4.64 4.76 -0.13 

183 2,2‟,3,4,4‟,5‟,6- 0.753 6.011 1.555 0.720 3.60 3.38 0.23 
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4.3.1. Comparison with the Reported Methods 

 

Since data set of log RBA was small, validation steps proposed by OECD principles 

4 were not performed. AD analysis with Williams plot was not performed either. Only 

comparison with literature was done to compare our log RBA model.  

 

A strict comparison between our models and the already published QSARs for log 

RBA (Wang et al., 2005; 2006; Zheng et al., 2007; Xu et al., 2007; Papa et al., 2010) was 

not possible either, due to the different amounts of studied compounds or differences in the 

development of the models; however, some general considerations can be made. Table 

4.11 shows that our log RBA model had comparable or, in some cases, better performances 

than other more complex QSTRs. 

 

Papa et al. (2010) studied the endocrine-disrupting potencies of BFRs including 

PBDEs. They modeled log RBA endpoint using L1v and Mor22u DRAGON descriptors by 

MLR method. L1v is WHIM descriptor (Todeschini and Gramatica, 1997), Mor22u is 3D-

MoRSE group (Schuur et al., 1996). L1v is defined as the first component size directional 

WHIM index weighted by atomic van der Waals volumes and provides information about 

the distribution of the molecular size along the first principal direction of the molecule. 

Mor22u (Morse signal no. 22 unweighted) and Mor08e (Morse signal no. 08 weighted by 

the Sanderson electronegativity) provide 3D information related to the weights of the 

atoms in the structure, as viewed by an angular scattering function. The values of these 

functions are calculated at 32 evenly distributed values of scattering angles of 0-32 Å-1 

from the 3D atomic coordinates of a molecule (Schuur et al., 1996). 

 

The general tendency that we observed in other existing models with only a few 

exceptions was to use more than two variables and complex modeling techniques. A 

comparison of the models proposed here with other QSTRs demonstrated that our models 

have comparable or higher fitting performance than the existing ones, which are in general 

more complex in terms of number and type of variables or modeling methods such as PLS 

even for small data sets (Wang et al., 2007). 
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This study and the study done by Papa et al. (2010) resulted in common 3D 

descriptor in the models obtained for log RBA values of PBDEs. The type of the 

descriptors is different because the data set are different in these two studies. While we 

modeled only for PBDEs, Papa et al. (2010) modeled log RBA values for BFRs.   
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Table 4.14 Comparison of the performances of the QSAR models developed in this study for the end point log RBA for PBDEs with other 

models existing in literature. 

 

Chemical 

Group 

no. of 

variables 

or PLS 

components 

Descriptor type 
Training/

test set 
Method R

2
 SE F N* References 

PBDEs 4 

RDF075p; 

RDF090u; 

Mor28m; XY-S/R 

__ MLR 0.977   0.017   139.97   18 Current study 

BFRs 2 L1v; Mor22u __ MLR 0.82 
RMSE: 

0.31 
__ 18 Papa et al. (2010) 

PBDEs 4 σ
2

tot; N
-
v; ; Vs,min __ MLR 0.647 0.515 5.97 18 Xu et al. (2007) 

PBDEs 4 

DIP; D (ZX 

shadow); 

ER(C–C); B 

(Balaban index) 

__ MLR 0.90 0.270 30.20 18 Wang et al. (2006) 

PBDEs 6 __ __ 
CoMFA 

(PLS) 
0.995 0.057 __ 18 Wang et al. (2005) 

PBDEs 6 __ __ 
  CoMSIA     

(PLS) 
0.982 0.105 __ 18 Wang et al. (2005) 

*Here N donates the total number of chemicals in the data set. 
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5. CONCLUSIONS 

 

 

In this study, new predictive QSAR/QSPR models were developed for several 

physico-chemical properties of the 209 PBDEs and 209 PCDEs congeners along with the 

diphenyl ether molecule.  

 

We calculated for the first time a large number of descriptors for PBDE and PCDE 

using DRAGON 5.4, CODESSA 2.2-SPARTAN 06 software and the CRI program. We 

used an efficient variable selection procedure like Heuristic Method; and a training/test set 

splitting methodology like Kohonen networks. The obtained structural parameters were 

taken as theoretical descriptors to correlate three QSPR models for predicting log Koa and 

log RBA of PBDEs and log Kow of PBDEs and PCDEs. We compared the outputs of linear 

modeling applied to these data sets with the previously published models. 

 

The contribution of this study is to develop new, robust, comprehensive and 

validated MLR model for the log Kow of PBDE/PCDE along with the diphenyl ether. In 

other words, this study highlights modeling log Kow values of combined sets of 

PBDEs/PCDEs which were never done before. The models developed for log Koa and log 

Kow indicated that the topology based CRI was the most important parameter in modeling 

these parameters. The highlighted three-descriptor log Kow model included the CRI, Eaq 

and EHOMO with R
2
 values as high as 0.970, whereas one-descriptor log Koa model for 

PBDE included only the CRI.  The CRI represents the size of the molecule, branching and 

global molecular properties, such as size, volume and surface area are important in the 

prediction of 97hysic-chemical properties. The CRI relates hydrophobicity since the bigger 

the molecules, the greater the CRI and thus the greater the hydrophobicity.  

 

In the octanol–water system, octanol molecules are easier to release electrons than 

water molecules, since octanol have smaller EHOMO values. The lower the EHOMO values, 

the greater is the tendency of chemicals to donate electrons in intermolecular interactions, 

the greater is the intermolecular interactions between octanol molecules and 

PBDEs/PCDEs the higher the log Kow values. In other words, EHOMO seems particularly 

related to the tendency to dissolve in octanol phase. 
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The lower the Eaq values, the greater the tendency of PBDE/PCDE molecules to 

stay in water phase the greater the intermolecular interactions between PBDE/PCDE and 

water molecules, and thus the lower the log Kow value. The cross validated R
2

cv values for 

models are all high, indicating a good predictive ability and stability. The proposed models 

have been proved to fulfill the fundamental points set down by OECD principles for 

regulatory QSAR acceptability.  

 

A particular attention was paid to validation of models obtained, also external 

validation if it is applicable, and to the definition of their applicability domain. Reliable 

predictions for the studied endpoints were provided for all the PBDEs/PCDEs belonging to 

the chemical domain of the models, which was higher than 90% for log Koa values of 

PBDEs and 79% for log Kow values of PBDEs/PCDEs. 

 

The comparison of the proposed models with other QSAR/QSPR models 

demonstrated that our models have comparable or higher fitting performance than the 

existing ones, which are in general more complex in terms of variables or modeling 

method.  

 

Depending on the predictive power of the CRI based models which were built in 

this study, log Koa and log Kow of some other chemicals  not being used in the data set and 

having environmental importance can be predicted through these models. These 

compounds might include PBDE and PCDE congeners – with unknown properties – and 

PCBs (polychlorinated biphenyls), polychlorinated benzenes, etc. that fall into the AD of 

the models. Therefore, these models can be used to fill data gaps according to the new 

REACH regulation, facilitating the screening and prioritization of chemicals and for the 

identification of more problematic compounds even before their synthesis. The information 

from these models could be also used for the design of safer alternatives to dangerous 

PBDEs which is a subgroup of brominated flame retardants and PCDEs which are quite 

resistant to degradation, persistent in the environment, and bioaccumulate in aquatic 

media. 
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Those properties estimated in this study can be used to determine the distribution of 

PBDEs and PCDEs in the environment, thus are used in modeling the environmental fate 

of these compounds. 

 

Although a four-parameter log RBA model for PBDE has been developed, it 

couldn‟t be validated according to the OECD principles. The descriptors appeared in this 

model were from DRAGON and CODESSA. Therefore, this study also highlights the 

urgent need to have more experimental data on log RBA and toxicity of PBDEs. 

 

Compared with the direct measured methods, the developed models need only 

chemical structure data which can be easily calculated using chemical software. 
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Appendix A. The abbreviations and full names of theoretical molecular descriptors appeared in the QSAR/QSPR models selected by the HM. 

Name Description 
1
 Type 

DRAGON 5.4 
a
   

D/Dr06 distance/detour ring index of order 6 Topological 

nBr number of Bromine atoms Constitutional 

R1e 
R autocorrelation of lag 1 / weighted by atomic Sanderson 

electronegativities 
GETAWAY descriptors 

H2e 
H autocorrelation of lag 2 / weighted by atomic Sanderson 

electronegativities 
GETAWAY descriptors 

HIC mean information content on the leverage magnitude GETAWAY descriptors 

HATS8p 
leverage-weighted autocorrelation of lag 8 / weighted by atomic 

polarizabilities 
GETAWAY descriptors 

G2p 
2st component symmetry directional WHIM index / weighted by atomic 

polarizabilities 
WHIM 

RDF075u Radial Distribution Function – 7.5 / unweighted 
Radial distribution function (RDF) 

descriptors 

RDF075p Radial distribution function – 7.5 / weighted by atomic polarizabilities 
Radial distribution function (RDF) 

descriptors 

                                                
1
 Todeschini and Consonni (2000) ); 

a
 Talete (2006); 

b
 Wavefunction (2006);  

c
 Semichem (1996); 

d
 Delphi 2007 
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Appendix A (continued). 

Name Description 
1
 Type 

RDF090u Radial Distribution Function – 9.0 / unweighted 
Radial distribution function (RDF) 

descriptors 

QYYp quadrupole y-component value / weighted by polarizability Geometrical descriptors 

SPAM average span R Geometrical descriptors 

Mor08v signal 08 / weighted by van der Waals volume 3D-MoRSE 

Mor28p signal 28 / weighted by atomic polarizabilities 3D-MoRSE 

Mor02u 3D-MoRSE - signal 02 / unweighted 3D MoRSE 

Mor28m signal 28 / weighted by atomic masses 3D-MoRSE 

Mor09m signal 09 / weighted by atomic masses 3D-MoRSE 

Mor26m signal 26 / weighted by atomic masses 3D-MoRSE 

SPARTAN 06
 b

   

EHOMO Highest occupied molecular orbital energy 
Semi-empirical quantum chemical 

descriptor 

ELUMO Lowest unoccupied molecular orbital energy 
Semi-empirical quantum chemical 

descriptor 

Eaq aqueous-phase energy 
Semi-empirical quantum chemical 

descriptor 



 
1
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Appendix A (continued). 

Name Description 
1
 Type 

µ dipole moment 
Semi-empirical quantum chemical 

descriptor 

η hardness 
Semi-empirical quantum chemical 

descriptor 

CODESSA 2.2
 c
   

SXY XY Shadow Geometrical descriptor 

SYZ YZ Shadow Geometrical descriptor 

YZ-S/R YZ Shadow / YZ Rectangle Geometrical descriptor 

XY-S/R XY Shadow / XY Rectangle Geometrical descriptor 

VXYZ Molecular Volume/XYZBox Geometrical descriptor 

M Relative molecular weight Constitutional descriptor 

WNSA3 
Surface weighted charged partial negative charged surface area 

WNSA-3 Weighted PNSA (PNSA3*TMSA/1000) [Zefirov's PC] 

Charged partial surface area 

(CPSA) descriptor 

WPSA1 
Surface weighted charged partial positive charged surface area 

WPSA-1 Weighted PPSA (PPSA1*TMSA/1000) [Zefirov's PC] 

Charged partial surface area 

(CPSA) descriptor 
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Appendix A (continued). 

Name Description 
1
 Type 

WPSA3 
Surface weighted charged partial positive charged surface area 

WPSA-3 Weighted PPSA (PPSA3*TMSA/1000) [Zefirov's PC] 

Charged partial surface area 

(CPSA) descriptor 

NBr Number of Br atoms Constitutional descriptor 

P Polarity parameter (Qmax-Qmin) Electrostatic descriptor 

v0
 Kier and Hall valence connectivity indices (order 0) Topological descriptor 

Qmax for a O atom Max partial charge for a O  atom [Zefirov's PC] Electrostatic descriptor 

Qmax for a C  atom Max partial charge for a C  atom [Zefirov's PC] Electrostatic descriptor 

kI  Moment of Inertia A Geometrical descriptor 

P  Polarity parameter / square distance Electrostatic descriptor 

CRI Program written in 

Delphi
d
 

  

CRI Characteristic Root Index Eigenvalue-based descriptor 
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Appendix B. Values of the descriptors appeared in the proposed models, experimental, 

and calculated/predicted log Koa and log Kow values of PBDEs/PCDEs. 

 

Table B.1. Congener numbers and names of the PBDEs, descriptors, experimental, and 

calculated/predicted values from Eq. 4.2.  

 

PBDE Congener 

Numbers 
Compound Names CRI 

log Koa 

Exp. 
Calc/Pred res 

0 Diphenyl ether 2.485  6.49  

1 2-monoBDE 3.495 7.24 7.46 -0.22 

2 3-monoBDE 3.504 7.36 7.47 -0.11 

3 4-monoBDE 3.489  7.46  

4 2,2'-diBDE 4.505  8.44  

5 2,3-diBDE 4.529  8.46  

6 2,3'-diBDE 4.504  8.44  

7 2,4-diBDE 4.468 8.37 8.40 -0.03 

8 2,4'-diBDE 4.481 8.47 8.42 0.05 

9 2,5-diBDE 4.484  8.42  

10 2,6-diBDE 4.483 8.12 8.42 -0.30 

11 3,3'-biBDE 4.520  8.45  

12 3,4-diBDE 4.511 8.55 8.44 0.11 

13 3,4'-diBDE 4.495 8.57 8.43 0.14 

14 3,5-diBDE 4.505  8.44  

15 4,4'-diBDE 4.487 8.64 8.42 0.22 

16 2,2',3-triBDE 5.505  9.40  

17 2,2',4-triBDE 5.484 9.27 9.38 -0.11 

18 2,2',5-triBDE 5.517  9.42  

19 2,2',6-triBDE 5.462  9.36  

20 2,3,3'-triBDE 5.519  9.42  

21 2,3,4-triBDE 5.531 9.49 9.43 0.06 

22 2,3,4'-triBDE 5.504  9.40  

23 2,3,5-triBDE 5.520  9.42  

24 2,3,6-triBDE 5.509  9.41  

25 2,3',4-triBDE 5.498  9.40  

26 2,3',5-triBDE 5.530  9.43  

27 2,3',6-triBDE 5.477  9.38  

28 2,4,4'-triBDE 5.479 9.46 9.38 0.08 

29 2,4,5-triBDE 5.517  9.42  

30 2,4,6-triBDE 5.491 9.02 9.39 -0.37 

31 2,4',5-triBDE 5.472  9.37  

32 2,4',6-triBDE 5.463 9.28 9.36 -0.08 

33 2,3',4'-triBDE 5.527  9.43  

34 2,3',5'-triBDE 5.534  9.43  

35 3,3',4-triBDE 5.536 9.61 9.44 0.17 

36 2,3',5-triBDE 5.547  9.45  

37 3,4,4'-triBDE 5.519 9.68 9.42 0.26 
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Table B.1. (continued). 

PBDE Congener 

Numbers 
Compound Names CRI 

log Koa 

Exp. 
Calc/Pred res 

38 3,4,5-triBDE 5.551  9.45  

39 3,4',5-triBDE 5.500  9.40  

40 2,2',3,3'-tetraBDE 6.559  10.42  

41 2,2',3,4-tetraBDE 6.504  10.37  

42 2,2',3,4'-tetraBDE 6.527  10.39  

43 2,2',3,5-tetraBDE 6.490  10.36  

44 2,2',3,5'-tetraBDE 6.516  10.38  

45 2,2',3,6-tetraBDE 6.503  10.37  

46 2,2',3,6'-tetraBDE 6.512  10.38  

47 2,2',4,4'-tetraBDE 6.497 10.34 10.36 -0.02 

48 2,2',4,5-tetraBDE 6.522  10.39  

49 2,2',4,5'-tetraBDE 6.464  10.33  

50 2,2',4,6-tetraBDE 6.493  10.36  

51 2,2',4,6'-tetraBDE 6.481  10.35  

52 2,2',5,5'-tetraBDE 6.487  10.35  

53 2,2',5,6'-tetraBDE 6.471  10.34  

54 2,2',6,6'-tetraBDE 6.464  10.33  

55 2,3,3',4-tetraBDE 6.519  10.39  

56 2,3,3',4'-tetraBDE 6.574  10.44  

57 2,3,3',5-tetraBDE 6.504  10.37  

58 2,3,3',5'-tetraBDE 6.548  10.41  

59 2,3,3',6-tetraBDE 6.519  10.38  

60 2,3,4,4'-tetraBDE 6.508  10.37  

61 2,3,4,5-tetraBDE 6.544  10.41  

62 2,3,4,6-tetraBDE 6.514  10.38  

63 2,3,4',5-tetraBDE 6.493  10.36  

64 2,3,4',6-tetraBDE 6.476  10.34  

65 2,3,5,6-tetraBDE 6.521  10.39  

66 2,3',4,4'-tetraBDE 6.544 10.49 10.41 0.08 

67 2,3',4,5-tetraBDE 6.501  10.37  

68 2,3',4,5'-tetraBDE 6.502  10.37  

69 2,3',4,6-tetraBDE 6.490 10.23 10.36 -0.13 

70 2,3',4',5-tetraBDE 6.507  10.37  

71 2,3',4',6-tetraBDE 6.528  10.39  

72 2,3',5,5'-tetraBDE 6.505  10.37  

73 2,3',5',6-tetraBDE 6.504  10.37  

74 2,4,4',5-tetraBDE 6.491  10.36  

75 2,4,4',6-tetraBDE 6.489 10.13 10.36 -0.23 

76 2,3',4',5
,
-tetraBDE 6.532  10.40  

77 3,3',4,4'-tetraBDE 6.590 10.70 10.45 0.25 

78 3,3',4,5-tetraBDE 6.544  10.41  

79 3,3',4,5'-tetraBDE 6.546  10.41  

80 3,3',5,5'-tetraBDE 6.515  10.38  

81 3,4,4',5-tetraBDE 6.526  10.39  
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Table B.1. (continued). 

PBDE Congener 

Numbers 
Compound Names CRI 

log Koa 

Exp. 
Calc/Pred res 

82 2,2',3,3',4-pentaBDE 7.577 11.14 11.41 -0.27 

83 2,2',3,3',5-pentaBDE 7.562  11.39  

84 2,2',3,3',6-pentaBDE 7.545  11.38  

85 2,2',3,4,4'-pentaBDE 7.546 11.63 11.38 0.25 

86 2,2',3,4,5-pentaBDE 7.547  11.38  

87 2,2',3,4,5'-pentaBDE 7.529  11.36  

88 2,2',3,4,6-pentaBDE 7.520  11.35  

89 2,2',3,4,6'-pentaBDE 7.529  11.36  

90 2,2',3,4',5-pentaBDE 7.530  11.36  

91 2,2',3,4',6-pentaBDE 7.517  11.35  

92 2,2',3,5,5'-pentaBDE 7.514  11.35  

93 2,2',3,5,6-pentaBDE 7.527  11.36  

94 2,2',3,5,6'-pentaBDE 7.514  11.35  

95 2,2',3,5',6-pentaBDE 7.501  11.33  

96 2,2',3,6,6'-pentaBDE 7.495  11.33  

97 2,2',3,4',5
,
-pentaBDE 7.560  11.39  

98 2,2',3,4',6
,
-pentaBDE 7.543  11.37  

99 2,2',4,4',5-pentaBDE 7.533 11.28 11.36 -0.08 

100 2,2',4,4',6-pentaBDE 7.515 11.19 11.35 -0.16 

101 2,2',4,5,5'-pentaBDE 7.511  11.34  

102 2,2',4,5,6'-pentaBDE 7.512  11.34  

103 2,2',4,5',6-pentaBDE 7.515  11.35  

104 2,2',4,6,6'-pentaBDE 7.494  11.33  

105 2,3,3',4,4'-pentaBDE 7.593  11.42  

106 2,3,3',4,5-pentaBDE 7.562  11.39  

107 2,3,3',4',5-pentaBDE 7.578  11.41  

108 2,3,3',4,5'-pentaBDE 7.565  11.40  

109 2,3,3',4,6-pentaBDE 7.535  11.37  

110 2,3,3',4',6-pentaBDE 7.565  11.40  

111 2,3,3',5,5'-pentaBDE 7.578  11.41  

112 2,3,3',5,6-pentaBDE 7.542  11.37  

113 2,3,3',5',6-pentaBDE 7.561  11.39  

114 2,3,4,4',5-pentaBDE 7.541  11.37  

115 2,3,4,4',6-pentaBDE 7.522  11.35  

116 2,3,4,5,6-pentaBDE 7.528  11.36  

117 2,3,4',5,6-pentaBDE 7.512  11.34  

118 2,3',4,4',5-pentaBDE 7.576  11.41  

119 2,3',4,4',6-pentaBDE 7.562 11.52 11.39 0.13 

120 2,3',4,5,5'-pentaBDE 7.575  11.40  

121 2,3',4,5',6-pentaBDE 7.538  11.37  

122 2,3,3',4',5
,
-pentaBDE 7.593  11.42  

123 2,3',4,4',5'-pentaBDE 7.561  11.39  

124 2,3',4',5,5'-pentaBDE 7.539  11.37  

125 2,3',4',5',6-pentaBDE 7.545  11.38  
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Table B.1. (continued). 

PBDE Congener 

Numbers 
Compound Names CRI 

log Koa 

Exp. 
Calc/Pred res 

126 3,3',4,4',5-pentaBDE 7.608 12.00 11.44 0.56 

127 3,3',4,5,5'-pentaBDE 7.576  11.41  

128 2,2',3,3',4,4
,
-hexaBDE 8.596  12.39  

129 2,2',3,3',4,5-hexaBDE 8.593  12.39  

130 2,2',3,3',4,5'-hexaBDE 8.579  12.38  

131 2,2',3,3',4,6-hexaBDE 8.561  12.36  

132 2,2',3,3',4,6
,
-hexaBDE 8.561  12.36  

133 2,2',3,3',5,5'-hexaBDE 8.562  12.36  

134 2,2',3,3',5,6-hexaBDE 8.566  12.36  

135 2,2',3,3',5,6
,
-hexaBDE 8.544  12.34  

136 2,2',3,3',6,6
,
-hexaBDE 8.525  12.32  

137 2,2',3,4,4',5-hexaBDE 8.565  12.36  

138 2,2',3,4,4',5'-hexaBDE 8.577  12.37  

139 2,2',3,4,4',6-hexaBDE 8.534  12.33  

140 2,2',3,4,4',6
,
-hexaBDE 8.543  12.34  

141 2,2',3,4,5,5'-hexaBDE 8.564  12.36  

142 2,2',3,4,5,6-hexaBDE 8.542  12.34  

143 2,2',3,4,5,6'-hexaBDE 8.545  12.34  

144 2,2',3,4,5',6-hexaBDE 8.532  12.33  

145 2,2',3,4,6,6'-hexaBDE 8.513  12.31  

146 2,2',3,4',5,5
,
-hexaBDE 8.560  12.36  

147 2,2',3,4',5,6-hexaBDE 8.540  12.34  

148 2,2',3,4',5,6'-hexaBDE 8.528  12.33  

149 2,2',3,4',5',6-hexaBDE 8.542  12.34  

150 2,2',3,4',6,6
,
-hexaBDE 8.506  12.30  

151 2,2',3,5,5',6-hexaBDE 8.538  12.34  

152 2,2',3,5,6,6'-hexaBDE 8.519  12.32  

153 2,2',4,4',5,5
,
-hexaBDE 8.559 12.15 12.36 -0.21 

154 2,2',4,4',5,6
,
-hexaBDE 8.526 11.94 12.32 -0.38 

155 2,2',4,4',6,6'-hexaBDE 8.489  12.29  

156 2,3,3',4,4',5-hexaBDE 8.610 11.98 12.40 -0.42 

157 2,3,3',4,4',5
,
-hexaBDE 8.613  12.41  

158 2,3,3',4,4',6-hexaBDE 8.580  12.38  

159 2,3,3',4,5,5'-hexaBDE 8.587  12.38  

160 2,3,3',4,5,6-hexaBDE 8.551  12.35  

161 2,3,3',4,5',6-hexaBDE 8.559  12.36  

162 2,3,3',4',5,5'-hexaBDE 8.596  12.39  

163 2,3,3',4',5,6-hexaBDE 8.586  12.38  

164 2,3,3',4',5',6-hexaBDE 8.580  12.38  

165 2,3,3',5,5',6-hexaBDE 8.563  12.36  

166 2,3,4,4',5,6-hexaBDE 8.540  12.34  

167 2,3',4,4',5,5
,
-hexaBDE 8.595  12.39  

168 2,3',4,4',5',6-hexaBDE 8.562  12.36  

169 3,3',4,4',5,5'-hexaBDE 8.629  12.42  
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Table B.1. (continued). 

PBDE Congener 

Numbers 
Compound Names CRI 

log Koa 

Exp. 
Calc/Pred res 

170 2,2',3,3',4,4',5-heptaBDE 9.594  13.36  

171 2,2',3,3',4,4',6-heptaBDE 9.564  13.33  

172 2,2',3,3',4,5,5'-heptaBDE 9.579  13.34  

173 2,2',3,3',4,5,6-heptaBDE 9.571  13.33  

174 2,2',3,3',4,5,6
,
-heptaBDE 9.560  13.32  

175 2,2',3,3',4,5',6-heptaBDE 9.548  13.31  

176 2,2',3,3',4,6,6'-heptaBDE 9.528  13.29  

177 2,2',3,3',4,5
,
,6

,
-heptaBDE 9.569  13.33  

178 2,2',3,3',5,5',6-heptaBDE 9.554  13.32  

179 2,2',3,3',5,6,6'-heptaBDE 9.534  13.30  

180 2,2',3,4,4',5,5
,
-heptaBDE 9.577  13.34  

181 2,2',3,4,4',5,6-heptaBDE 9.545  13.31  

182 2,2',3,4,4',5,6'-heptaBDE 9.542  13.31  

183 2,2',3,4,4',5',6-heptaBDE 9.546 11.96 13.31 -1.35 

184 2,2',3,4,4',6,6
,
-heptaBDE 9.510  13.27  

185 2,2',3,4,5,5',6-heptaBDE 9.542  13.31  

186 2,2',3,4,5,6,6'-heptaBDE 9.523  13.29  

187 2,2',3,4',5,5',6-heptaBDE 9.552  13.32  

188 2,2',3,4',5,6,6
,
-heptaBDE 9.516  13.28  

189 2,3,3',4,4',5,5
,
-heptaBDE 9.612  13.37  

190 2,3,3',4,4',5,6-heptaBDE 9.591  13.35  

191 2,3,3',4,4',5',6-heptaBDE 9.584  13.35  

192 2,3,3',4,5,5',6-heptaBDE 9.570  13.33  

193 2,3,3',4',5,5',6-heptaBDE 9.590  13.35  

194* 2,2',3,3',4,4',5,5'-octaBDE* 10.594  14.32  

195* 2,2',3,3',4,4',5,6-octaBDE* 10.589  14.32  

196* 2,2',3,3',4,4
,
,5,6

,
-octaBDE* 10.563  14.29  

197* 2,2',3,3',4,4',6,6'-octaBDE* 10.531  14.26  

198* 2,2',3,3',4,5,5',6-octaBDE* 10.559  14.29  

199* 2,2',3,3',4,5,5
,
,6

,
-octaBDE* 10.569  14.30  

200* 2,2',3,3',4,5,6,6'-octaBDE* 10.539  14.27  

201* 2,2',3,3',4,5',6,6'-octaBDE* 10.536  14.27  

202* 2,2',3,3',5,5
,
,6,6

,
-octaBDE* 10.542  14.27  

203* 2,2',3,4,4',5,5',6-octaBDE* 10.557  14.29  

204* 2,2',3,4,4',5,6,6'-octaBDE* 10.521  14.25  

205* 2,3,3',4,4',5,5',6-octaBDE* 10.596  14.32  

206* 2,2',3,3',4,4
,
,5,5

,
,6-nonaBDE* 11.574  15.27  

207* 2,2',3,3',4,4',5,6,6'-nonaBDE* 11.551  15.25  

208* 2,2',3,3',4,5,5',6,6'-nonaBDE* 11.574  15.27  

209* 2,2',3,3',4,4
,
,5,5

,
,6,6

,
-decaBDE* 12.736  16.39  

*Compounds fall outside the applicability domain (AD) of model (Eq. 4.2) (extrapolated values). 
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Table B.2. Congener numbers and names of the PBDEs/PCDEs, descriptors, experimental, and calculated/predicted log Kow values from          

Eq. 4.5). 

 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

0 Diphenyl ether 2.485 -9.480 0.723 3.97 4.19 -0.22 1 2-monoCDE 3.038 -9.358 0.506 4.45 4.63 -0.18 

1 2-monoBDE 3.495 -9.249 1.128  4.49  2 3-monoCDE 2.989 -9.415 0.450 4.75 4.68 0.07 

2 3-monoBDE 3.504 -9.602 1.051  4.88  3 4-monoCDE 2.961 -9.263 0.449 4.7 4.52 0.18 

3 4-monoBDE 3.489 -9.571 1.048  4.84  4 2,2'-diCDE 3.390 -9.057 0.299  4.74  

4 2,2'-diBDE 4.505 -9.500 1.354  5.36  5 2,3-diCDE 3.403 -9.342 0.268 5 5.04 -0.04 

5 2,3-diBDE 4.529 -9.382 1.494  5.18  6 2,3'-diCDE 3.415 -9.419 0.222  5.16  

6 2,3'-diBDE 4.504 -9.353 1.460  5.15  7 2,4-diCDE 3.437 -9.321 0.251 4.93 5.06 -0.13 

7 2,4-diBDE 4.468 -9.389 1.471  5.15  8 2,4'-diCDE 3.413 -9.352 0.232 5.03 5.08 -0.05 

8 2,4'-diBDE 4.481 -9.351 1.459  5.14  9 2,5-diCDE 3.461 -9.235 0.249 5.13 5.00 0.13 

9 2,5-diBDE 4.484 -9.437 1.462  5.22  10 2,6-diCDE 3.433 -9.265 0.317 4.64 4.96 -0.32 

10 2,6-diBDE 4.483 -9.617 1.631  5.28  11 3,3'-biCDE 3.422 -9.459 0.171  5.23  

11 3,3'-biBDE 4.520 -9.723 1.379  5.57  12 3,4-diCDE 3.424 -9.230 0.218 4.99 4.99 0.00 

12 3,4-diBDE 4.511 -9.634 1.403  5.46  13 3,4'-diCDE 3.415 -9.350 0.173 5.13 5.12 0.01 

13 3,4'-diBDE 4.495 -9.687 1.377  5.52  14 3,5-diCDE 3.465 -9.519 0.199 5.21 5.30 -0.09 

14 3,5-diBDE 4.505 -9.728 1.415  5.54  15 4,4'-diCDE 3.404 -9.308 0.168 5.25 5.08 0.17 

15 4,4'-diBDE 4.487 -9.677 1.372 5.51 5.51 0.00 16 2,2',3-triCDE 3.880 -9.150 0.054  5.36  

16 2,2',3-triBDE 5.505 -9.602 1.763  5.97  17 2,2',4-triCDE 3.897 -9.036 0.039 4.96 5.27 -0.31 

17 2,2',4-triBDE 5.484 -9.605 1.709 5.74 5.99 -0.25 18 2,2',5-triCDE 3.910 -9.051 0.033  5.30  

18 2,2',5-triBDE 5.517 -9.600 1.702  6.01  19 2,2',6-triCDE 3.893 -9.094 0.088  5.30  

19 2,2',6-triBDE 5.462 -9.567 1.821  5.87  20 2,3,3'-triCDE 3.885 -9.391 -0.022  5.64  

20 2,3,3'-triBDE 5.519 -9.457 1.829  5.80  21 2,3,4-triCDE 3.821 -9.357 0.050 5.55 5.52 0.03 

21 2,3,4-triBDE 5.531 -9.431 1.888  5.75  22 2,3,4'-triCDE 3.854 -9.401 -0.008 5.63 5.62 0.01 

22 2,3,4'-triBDE 5.504 -9.446 1.828  5.78  23 2,3,5-triCDE 3.861 -9.260 0.036 5.62 5.46 0.16 

23 2,3,5-triBDE 5.520 -9.548 1.856  5.87  24 2,3,6-triCDE 3.841 -9.274 0.099 5.35 5.42 -0.07 

24 2,3,6-triBDE 5.509 -9.383 1.966  5.64  25 2,3',4-triCDE 3.904 -9.384 -0.037 5.65 5.66 -0.01 

25 2,3',4-triBDE 5.498 -9.465 1.804  5.81  26 2,3',5-triCDE 3.893 -9.290 -0.035  5.56  

26 2,3',5-triBDE 5.530 -9.511 1.795  5.88  27 2,3',6-triCDE 3.900 -9.273 0.032  5.51  
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

27 2,3',6-triBDE 5.477 -9.449 1.942  5.69  28 2,4,4'-triCDE 3.876 -9.360 -0.028 5.53 5.61 -0.08 

28 2,4,4'-triBDE 5.479 -9.457 1.803 5.84 5.79 0.05 29 2,4,5-triCDE 3.857 -9.205 0.036 5.58 5.41 0.17 

29 2,4,5-triBDE 5.517 -9.463 1.825  5.81  30 2,4,6-triCDE 3.863 -9.449 0.086 5.32 5.61 -0.29 

30 2,4,6-triBDE 5.491 -9.282 2.008  5.50  31 2,4',5-triCDE 3.862 -9.296 -0.028 5.66 5.54 0.12 

31 2,4',5-triBDE 5.472 -9.511 1.794  5.84  32 2,4',6-triCDE 3.874 -9.066 0.037 5.3 5.29 0.01 

32 2,4',6-triBDE 5.463 -9.361 1.943 5.8 5.59 0.21 33 2,3',4'-triCDE 3.887 -9.302 -0.009 5.5 5.55 -0.05 

33 2,3',4'-triBDE 5.527 -9.392 1.818  5.75  34 2,3',5'-triCDE 3.999 -9.353 -0.023  5.69  

34 2,3',5'-triBDE 5.534 -9.436 1.828  5.79  35 3,3',4-triCDE 3.862 -9.283 -0.063 5.74 5.55 0.19 

35 3,3',4-triBDE 5.536 -9.732 1.733 5.87 6.14 -0.27 36 2,3',5-triCDE 3.916 -9.549 -0.079  5.85  

36 2,3',5-triBDE 5.547 -9.853 1.745  6.25  37 3,4,4'-triCDE 3.861 -9.283 -0.064 5.88 5.55 0.33 

37 3,4,4'-triBDE 5.519 -9.729 1.729  6.12  38 3,4,5-triCDE 3.844 -9.084 0.002 5.7 5.30 0.40 

38 3,4,5-triBDE 5.551 -9.502 1.832  5.87  39 3,4',5-triCDE 3.855 -9.419 -0.082 5.77 5.68 0.09 

39 3,4',5-triBDE 5.500 -9.795 1.741  6.16  40 2,2',3,3'-tetraCDE 4.314 -9.226 -0.187  5.92  

40 2,2',3,3'-tetraBDE 6.559 -9.461 2.062  6.45  41 2,2',3,4-tetraCDE 4.322 -9.081 -0.170 5.72 5.77 -0.05 

41 2,2',3,4-tetraBDE 6.504 -9.651 2.123  6.56  42 2,2',3,4'-tetraCDE 4.332 -9.148 -0.203 5.88 5.86 0.02 

42 2,2',3,4'-tetraBDE 6.527 -9.705 2.119  6.63  43 2,2',3,5-tetraCDE 4.360 -9.116 -0.192  5.85  

43 2,2',3,5-tetraBDE 6.490 -9.521 2.090  6.44  44 2,2',3,5'-tetraCDE 4.360 -9.247 -0.220  5.99  

44 2,2',3,5'-tetraBDE 6.516 -9.700 2.113  6.62  45 2,2',3,6-tetraCDE 4.355 -9.148 -0.129  5.84  

45 2,2',3,6-tetraBDE 6.503 -9.683 2.222  6.52  46 2,2',3,6'-tetraCDE 4.330 -9.176 -0.157  5.86  

46 2,2',3,6'-tetraBDE 6.512 -9.750 2.167  6.63  47 2,2',4,4'-tetraCDE 4.366 -9.072 -0.219 5.95 5.83 0.12 

47 2,2',4,4'-tetraBDE 6.497 -9.700 2.062 6.81 6.64 0.17 48 2,2',4,5-tetraCDE 4.359 -8.995 -0.187 5.97 5.73 0.24 

48 2,2',4,5-tetraBDE 6.522 -9.663 2.074  6.61  49 2,2',4,5'-tetraCDE 4.359 -9.090 -0.223 5.78 5.84 -0.06 

49 2,2',4,5'-tetraBDE 6.464 -9.713 2.054  6.63  50 2,2',4,6-tetraCDE 4.380 -9.157 -0.141  5.87  

50 2,2',4,6-tetraBDE 6.493 -9.741 2.265  6.55  51 2,2',4,6'-tetraCDE 4.364 -9.050 -0.172  5.78  

51 2,2',4,6'-tetraBDE 6.481 -9.703 2.235  6.52  52 2,2',5,5'-tetraCDE 4.402 -9.104 -0.221  5.89  

52 2,2',5,5'-tetraBDE 6.487 -9.705 2.048  6.64  53 2,2',5,6'-tetraCDE 4.388 -9.050 -0.177  5.80  

53 2,2',5,6'-tetraBDE 6.471 -9.738 2.221  6.55  54 2,2',6,6'-tetraCDE 4.360 -9.243 -0.019  5.86  

54 2,2',6,6'-tetraBDE 6.464 -9.597 2.319  6.35  55 2,3,3',4-tetraCDE 4.327 -9.413 -0.241 6.07 6.14 -0.07 

55 2,3,3',4-tetraBDE 6.519 -9.504 2.223  6.37  56 2,3,3',4'-tetraCDE 4.320 -9.346 -0.253 5.99 6.08 -0.09 

56 2,3,3',4'-tetraBDE 6.574 -9.584 2.186  6.51  57 2,3,3',5-tetraCDE 4.366 -9.310 -0.252  6.08  
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

57 2,3,3',5-tetraBDE 6.504 -9.626 2.192  6.49  58 2,3,3',5'-tetraCDE 4.360 -9.446 -0.263  6.21  

58 2,3,3',5'-tetraBDE 6.548 -9.780 2.199  6.67  59 2,3,3',6-tetraCDE 4.359 -9.313 -0.187  6.03  

59 2,3,3',6-tetraBDE 6.519 -9.525 2.285  6.35  60 2,3,4,4'-tetraCDE 4.321 -9.390 -0.231 6.14 6.11 0.03 

60 2,3,4,4'-tetraBDE 6.508 -9.512 2.221  6.36  61 2,3,4,5-tetraCDE 4.237 -9.023 -0.149 6.01 5.64 0.37 

61 2,3,4,5-tetraBDE 6.544 -9.509 2.274  6.36  62 2,3,4,6-tetraCDE 4.305 -9.295 -0.096 5.88 5.92 -0.04 

62 2,3,4,6-tetraBDE 6.514 -9.467 2.418  6.20  63 2,3,4',5-tetraCDE 4.344 -9.321 -0.244 6.21 6.06 0.15 

63 2,3,4',5-tetraBDE 6.493 -9.623 2.190  6.48  64 2,3,4',6-tetraCDE 4.339 -9.116 -0.183 5.64 5.83 -0.19 

64 2,3,4',6-tetraBDE 6.476 -9.475 2.286  6.26  65 2,3,5,6-tetraCDE 4.250 -9.215 -0.099 5.82 5.80 0.02 

65 2,3,5,6-tetraBDE 6.521 -9.804 2.322  6.59  66 2,3',4,4'-tetraCDE 4.355 -9.347 -0.271 6.13 6.12 0.01 

66 2,3',4,4'-tetraBDE 6.544 -9.505 2.163  6.42  67 2,3',4,5-tetraCDE 4.363 -9.260 -0.251 6.14 6.03 0.11 

67 2,3',4,5-tetraBDE 6.501 -9.538 2.160  6.42  68 2,3',4,5'-tetraCDE 4.391 -9.444 -0.282 6.13 6.24 -0.11 

68 2,3',4,5'-tetraBDE 6.502 -9.530 2.176  6.41  69 2,3',4,6-tetraCDE 4.386 -9.329 -0.200  6.08  

69 2,3',4,6-tetraBDE 6.490 -9.428 2.325  6.21  70 2,3',4',5-tetraCDE 4.367 -9.326 -0.268 6.11 6.10 0.01 

70 2,3',4',5-tetraBDE 6.507 -9.559 2.154  6.45  71 2,3',4',6-tetraCDE 4.352 -9.068 -0.204 5.7 5.80 -0.10 

71 2,3',4',6-tetraBDE 6.528 -9.452 2.291  6.28  72 2,3',5,5'-tetraCDE 4.451 -9.342 -0.282  6.19  

72 2,3',5,5'-tetraBDE 6.505 -9.596 2.166  6.48  73 2,3',5',6-tetraCDE 4.387 -9.451 -0.226  6.21  

73 2,3',5',6-tetraBDE 6.504 -9.634 2.297  6.43  74 2,4,4',5-tetraCDE 4.342 -9.264 -0.245 5.99 6.01 -0.02 

74 2,4,4',5-tetraBDE 6.491 -9.535 2.159  6.41  75 2,4,4',6-tetraCDE 4.371 -9.124 -0.197 5.92 5.87 0.05 

75 2,4,4',6-tetraBDE 6.489 -9.390 2.327  6.17  76 2,3',4',5,-tetraCDE 4.348 -9.110 -0.222  5.85  

76 2,3',4',5,-tetraBDE 6.532 -9.442 2.253  6.30  77 3,3',4,4'-tetraCDE 4.326 -9.306 -0.302 6.36 6.07 0.29 

77 3,3',4,4'-tetraBDE 6.590 -9.785 2.087 6.42 6.77 -0.35 78 3,3',4,5-tetraCDE 4.333 -9.338 -0.277  6.09  

78 3,3',4,5-tetraBDE 6.544 -9.559 2.170  6.47  79 3,3',4,5'-tetraCDE 4.367 -9.355 -0.317 6.22 6.16 0.06 

79 3,3',4,5'-tetraBDE 6.546 -9.846 2.099  6.79  80 3,3',5,5'-tetraCDE 4.448 -9.607 -0.333  6.47  

80* 3,3',5,5'-tetraBDE 6.515 -9.994 2.111  6.90  81 3,4,4',5-tetraCDE 4.301 -9.337 -0.282 6.3 6.07 0.23 

81 3,4,4',5-tetraBDE 6.526 -9.793 2.165  6.68  82 2,2',3,3',4-pentaCDE 4.721 -9.161 -0.409 6.3 6.30 0.00 

82 2,2',3,3',4-pentaBDE 7.577 -9.535 2.495  7.03  83 2,2',3,3',5-pentaCDE 4.751 -9.177 -0.429  6.35  

83 2,2',3,3',5-pentaBDE 7.562 -9.566 2.441  7.09  84 2,2',3,3',6-pentaCDE 4.742 -9.223 -0.376  6.36  

84 2,2',3,3',6-pentaBDE 7.545 -9.559 2.566  6.99  85 2,2',3,4,4'-pentaCDE 4.751 -9.116 -0.427 6.28 6.29 -0.01 

85 2,2',3,4,4'-pentaBDE 7.546 -9.748 2.480 7.37 7.22 0.15 86 2,2',3,4,5-pentaCDE 4.758 -9.046 -0.381  6.20  

86 2,2',3,4,5-pentaBDE 7.547 -9.750 2.542  7.19  87 2,2',3,4,5'-pentaCDE 4.796 -9.131 -0.423 6.51 6.34 0.17 
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

87 2,2',3,4,5'-pentaBDE 7.529 -9.742 2.475  7.21  88 2,2',3,4,6-pentaCDE 4.768 -9.191 -0.323  6.31  

88 2,2',3,4,6-pentaBDE 7.520 -9.786 2.688  7.11  89 2,2',3,4,6'-pentaCDE 4.751 -9.104 -0.378 6.11 6.25 -0.14 

89 2,2',3,4,6'-pentaBDE 7.529 -9.574 2.651  6.94  90 2,2',3,4',5-pentaCDE 4.791 -9.165 -0.446 6.54 6.38 0.16 

90 2,2',3,4',5-pentaBDE 7.530 -9.836 2.438  7.32  91 2,2',3,4',6-pentaCDE 4.773 -9.098 -0.391 6.06 6.27 -0.21 

91 2,2',3,4',6-pentaBDE 7.517 -9.752 2.574  7.15  92 2,2',3,5,5'-pentaCDE 4.830 -9.168 -0.444  6.42  

92 2,2',3,5,5'-pentaBDE 7.514 -9.822 2.433  7.30  93 2,2',3,5,6-pentaCDE 4.771 -9.194 -0.324  6.32  

93 2,2',3,5,6-pentaBDE 7.527 -9.803 2.575  7.20  94 2,2',3,5,6'-pentaCDE 4.789 -9.114 -0.399  6.30  

94 2,2',3,5,6'-pentaBDE 7.514 -9.603 2.588  6.99  95 2,2',3,5',6-pentaCDE 4.814 -9.094 -0.396  6.30  

95 2,2',3,5',6-pentaBDE 7.501 -9.785 2.560  7.17  96 2,2',3,6,6'-pentaCDE 4.772 -9.232 -0.243  6.31  

96 2,2',3,6,6'-pentaBDE 7.495 -9.733 2.441  7.19  97 2,2',3,4',5,-pentaCDE 4.749 -9.223 -0.436 6.22 6.40 -0.18 

97 2,2',3,4',5,-pentaBDE 7.560 -9.798 2.429  7.31  98 2,2',3,4',6,-pentaCDE 4.746 -9.231 -0.389  6.38  

98 2,2',3,4',6,-pentaBDE 7.543 -9.600 2.606  7.00  99 2,2',4,4',5-pentaCDE 4.789 -9.048 -0.443 6.38 6.27 0.11 

99 2,2',4,4',5-pentaBDE 7.533 -9.752 2.430 7.32 7.25 0.07 100 2,2',4,4',6-pentaCDE 4.790 -9.107 -0.404 6.11 6.30 -0.19 

100 2,2',4,4',6-pentaBDE 7.515 -9.783 2.599 7.24 7.16 0.08 101 2,2',4,5,5'-pentaCDE 4.820 -9.074 -0.439 6.22 6.31 -0.09 

101 2,2',4,5,5'-pentaBDE 7.511 -9.762 2.422  7.25  102 2,2',4,5,6'-pentaCDE 4.788 -8.999 -0.395 5.98 6.19 -0.21 

102 2,2',4,5,6'-pentaBDE 7.512 -9.760 2.589  7.14  103 2,2',4,5',6-pentaCDE 4.832 -9.103 -0.408  6.33  

103 2,2',4,5',6-pentaBDE 7.515 -9.793 2.588  7.18  104 2,2',4,6,6'-pentaCDE 4.789 -9.217 -0.254  6.31  

104 2,2',4,6,6'-pentaBDE 7.494 -9.788 2.494  7.21  105 2,3,3',4,4'-pentaCDE 4.729 -9.372 -0.476 6.51 6.55 -0.04 

105 2,3,3',4,4'-pentaBDE 7.593 -9.556 2.582  7.01  106 2,3,3',4,5-pentaCDE 4.761 -9.308 -0.436  6.49  

106 2,3,3',4,5-pentaBDE 7.562 -9.593 2.611  7.01  107 2,3,3',4',5-pentaCDE 4.761 -9.352 -0.487 6.52 6.57 -0.05 

107 2,3,3',4',5-pentaBDE 7.578 -9.660 2.554  7.12  108 2,3,3',4,5'-pentaCDE 4.780 -9.466 -0.485 6.58 6.69 -0.11 

108 2,3,3',4,5'-pentaBDE 7.565 -9.584 2.595  7.01  109 2,3,3',4,6-pentaCDE 4.776 -9.352 -0.384  6.51  

109 2,3,3',4,6-pentaBDE 7.535 -9.569 2.739  6.88  110 2,3,3',4',6-pentaCDE 4.752 -9.112 -0.425 6.31 6.29 0.02 

110 2,3,3',4',6-pentaBDE 7.565 -9.541 2.637  6.94  111 2,3,3',5,5'-pentaCDE 4.818 -9.359 -0.498  6.62  

111 2,3,3',5,5'-pentaBDE 7.578 -9.680 2.568  7.13  112 2,3,3',5,6-pentaCDE 4.777 -9.258 -0.385  6.42  

112 2,3,3',5,6-pentaBDE 7.542 -9.924 2.647  7.28  113 2,3,3',5',6-pentaCDE 4.800 -9.368 -0.445  6.59  

113 2,3,3',5',6-pentaBDE 7.561 -9.669 2.646  7.06  114 2,3,4,4',5-pentaCDE 4.739 -9.314 -0.430 6.61 6.48 0.13 

114 2,3,4,4',5-pentaBDE 7.541 -9.594 2.610  6.99  115 2,3,4,4',6-pentaCDE 4.772 -9.157 -0.381 6.47 6.32 0.15 

115 2,3,4,4',6-pentaBDE 7.522 -9.529 2.740  6.83  116 2,3,4,5,6-pentaCDE 4.712 -9.272 -0.266 6.37 6.31 0.06 

116 2,3,4,5,6-pentaBDE 7.528 -9.830 2.826  7.07  117 2,3,4',5,6-pentaCDE 4.771 -9.160 -0.381 6.41 6.32 0.09 
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

117 2,3,4',5,6-pentaBDE 7.512 -9.838 2.653  7.18  118 2,3',4,4',5-pentaCDE 4.757 -9.298 -0.487 6.6 6.51 0.09 

118 2,3',4,4',5-pentaBDE 7.576 -9.572 2.521  7.05  119 2,3',4,4',6-pentaCDE 4.767 -9.120 -0.439 6.44 6.32 0.12 

119 2,3',4,4',6-pentaBDE 7.562 -9.464 2.676  6.84  120 2,3',4,5,5'-pentaCDE 4.807 -9.309 -0.499 6.66 6.57 0.09 

120 2,3',4,5,5'-pentaBDE 7.575 -9.604 2.534  7.07  121 2,3',4,5',6-pentaCDE 4.814 -9.503 -0.459  6.73  

121 2,3',4,5',6-pentaBDE 7.538 -9.558 2.686  6.91  122 2,3,3',4',5,-pentaCDE 4.734 -9.172 -0.462  6.36  

122 2,3,3',4',5,-pentaBDE 7.593 -9.649 2.623  7.08  123 2,3',4,4',5'-pentaCDE 4.776 -9.156 -0.481 6.63 6.39 0.24 

123 2,3',4,4',5'-pentaBDE 7.561 -9.546 2.605  6.96  124 2,3',4',5,5'-pentaCDE 4.808 -9.364 -0.477  6.61  

124 2,3',4',5,5'-pentaBDE 7.539 -9.590 2.596  6.99  125 2,3',4',5',6-pentaCDE 4.774 -9.136 -0.423  6.33  

125 2,3',4',5',6-pentaBDE 7.545 -9.557 2.715  6.89  126 3,3',4,4',5-pentaCDE 4.741 -9.352 -0.517 6.83 6.57 0.26 

126 3,3',4,4',5-pentaBDE 7.608 -9.848 2.524  7.34  127 3,3',4,5,5'-pentaCDE 4.804 -9.394 -0.532  6.67  

127 3,3',4,5,5'-pentaBDE 7.576 -9.922 2.536  7.38  128 2,2',3,3',4,4,-hexaCDE 5.188 -9.152 -0.631 6.82 6.79 0.03 

128 2,2',3,3',4,4,-hexaBDE 8.596 -9.627 2.918  7.64  129 2,2',3,3',4,5-hexaCDE 5.190 -9.115 -0.616  6.75  

129 2,2',3,3',4,5-hexaBDE 8.593 -9.607 2.869  7.65  130 2,2',3,3',4,5'-hexaCDE 5.213 -9.195 -0.649 7.01 6.86 0.15 

130 2,2',3,3',4,5'-hexaBDE 8.579 -9.624 2.874  7.65  131 2,2',3,3',4,6-hexaCDE 5.200 -9.261 -0.571  6.87  

131 2,2',3,3',4,6-hexaBDE 8.561 -9.614 3.032  7.53  132 2,2',3,3',4,6,-hexaCDE 5.205 -9.151 -0.598 6.47 6.78 -0.31 

132 2,2',3,3',4,6,-hexaBDE 8.561 -9.641 3.000  7.57  133 2,2',3,3',5,5'-hexaCDE 5.239 -9.225 -0.659  6.92  

133 2,2',3,3',5,5'-hexaBDE 8.562 -9.666 2.880  7.67  134 2,2',3,3',5,6-hexaCDE 5.202 -9.263 -0.571  6.87  

134 2,2',3,3',5,6-hexaBDE 8.566 -9.687 2.927  7.67  135 2,2',3,3',5,6,-hexaCDE 5.230 -9.154 -0.618  6.82  

135 2,2',3,3',5,6,-hexaBDE 8.544 -9.675 2.940  7.63  136 2,2',3,3',6,6,-hexaCDE 5.223 -9.224 -0.467  6.78  

136 2,2',3,3',6,6,-hexaBDE 8.525 -9.555 2.977  7.48  137 2,2',3,4,4',5-hexaCDE 5.157 -9.252 -0.638 6.72 6.87 -0.15 

137 2,2',3,4,4',5-hexaBDE 8.565 -9.812 2.901  7.80  138 2,2',3,4,4',5'-hexaCDE 5.210 -9.264 -0.657 7.01 6.93 0.08 

138 2,2',3,4,4',5'-hexaBDE 8.577 -9.796 2.850  7.83  139 2,2',3,4,4',6-hexaCDE 5.223 -9.139 -0.587 6.84 6.78 0.06 

139 2,2',3,4,4',6-hexaBDE 8.534 -9.853 3.044  7.73  140 2,2',3,4,4',6,-hexaCDE 5.337 -9.159 -0.612 6.65 6.90 -0.25 

140 2,2',3,4,4',6,-hexaBDE 8.543 -9.672 3.040  7.56  141 2,2',3,4,5,5'-hexaCDE 5.204 -9.109 -0.631  6.76  

141 2,2',3,4,5,5'-hexaBDE 8.564 -9.835 2.898  7.82  142 2,2',3,4,5,6-hexaCDE 5.149 -9.222 -0.489  6.74  

142 2,2',3,4,5,6-hexaBDE 8.542 -9.773 3.078  7.64  143 2,2',3,4,5,6'-hexaCDE 5.159 -9.059 -0.583  6.65  

143 2,2',3,4,5,6'-hexaBDE 8.545 -9.653 3.033  7.55  144 2,2',3,4,5',6-hexaCDE 5.216 -9.130 -0.591  6.77  

144 2,2',3,4,5',6-hexaBDE 8.532 -9.871 3.028  7.75  145 2,2',3,4,6,6'-hexaCDE 5.172 -9.206 -0.441  6.71  

145 2,2',3,4,6,6'-hexaBDE 8.513 -9.781 2.910  7.73  146 2,2',3,4',5,5,-hexaCDE 5.236 -9.148 -0.658 6.76 6.84 -0.08 

146 2,2',3,4',5,5,-hexaBDE 8.560 -9.877 2.808  7.92  147 2,2',3,4',5,6-hexaCDE 5.172 -9.142 -0.587 6.76 6.74 0.02 
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

147 2,2',3,4',5,6-hexaBDE 8.540 -9.895 2.935  7.84  148 2,2',3,4',5,6'-hexaCDE 5.363 -9.163 -0.631  6.94  

148 2,2',3,4',5,6'-hexaBDE 8.528 -9.704 2.978  7.62  149 2,2',3,4',5',6-hexaCDE 5.227 -9.042 -0.614 6.47 6.71 -0.24 

149 2,2',3,4',5',6-hexaBDE 8.542 -9.804 2.930  7.76  150 2,2',3,4',6,6,-hexaCDE 5.357 -9.272 -0.479  6.94  

150 2,2',3,4',6,6,-hexaBDE 8.506 -9.643 3.041  7.51  151 2,2',3,5,5',6-hexaCDE 5.218 -9.132 -0.591  6.77  

151 2,2',3,5,5',6-hexaBDE 8.538 -9.648 2.913  7.62  152 2,2',3,5,6,6'-hexaCDE 5.174 -9.172 -0.444  6.68  

152 2,2',3,5,6,6'-hexaBDE 8.519 -9.667 3.046  7.54  153 2,2',4,4',5,5,-hexaCDE 5.233 -9.075 -0.657 6.72 6.77 -0.05 

153 2,2',4,4',5,5,-hexaBDE 8.559 -9.784 2.795 7.9 7.84 0.06 154 2,2',4,4',5,6,-hexaCDE 5.362 -9.050 -0.628 6.49 6.82 -0.33 

154 2,2',4,4',5,6,-hexaBDE 8.526 -9.811 2.994 7.82 7.71 0.11 155 2,2',4,4',6,6'-hexaCDE 5.373 -9.223 -0.490  6.91  

155 2,2',4,4',6,6'-hexaBDE 8.489 -9.878 2.878  7.82  156 2,3,3',4,4',5-hexaCDE 5.128 -9.346 -0.674 7.07 6.96 0.11 

156 2,3,3',4,4',5-hexaBDE 8.610 -9.623 2.976  7.61  157 2,3,3',4,4',5,-hexaCDE 5.198 -9.418 -0.683 6.99 7.09 -0.10 

157 2,3,3',4,4',5,-hexaBDE 8.613 -9.611 3.026  7.57  158 2,3,3',4,4',6-hexaCDE 5.206 -9.149 -0.624  6.80  

158* 2,3,3',4,4',6-hexaBDE 8.580 -9.587 3.093  7.48  159 2,3,3',4,5,5'-hexaCDE 5.182 -9.358 -0.683  7.02  

159 2,3,3',4,5,5'-hexaBDE 8.587 -9.640 2.991  7.60  160 2,3,3',4,5,6-hexaCDE 5.156 -9.313 -0.552  6.87  

160* 2,3,3',4,5,6-hexaBDE 8.551 -9.948 3.153  7.76  161 2,3,3',4,5',6-hexaCDE 5.189 -9.407 -0.643  7.04  

161 2,3,3',4,5',6-hexaBDE 8.559 -9.699 3.104  7.56  162 2,3,3',4',5,5'-hexaCDE 5.171 -9.386 -0.695  7.04  

162 2,3,3',4',5,5'-hexaBDE 8.596 -9.738 3.005  7.69  163 2,3,3',4',5,6-hexaCDE 5.208 -9.151 -0.624 6.78 6.80 -0.02 

163 2,3,3',4',5,6-hexaBDE 8.586 -9.899 3.007  7.83  164 2,3,3',4',5',6-hexaCDE 5.215 -9.178 -0.645  6.84  

164 2,3,3',4',5',6-hexaBDE 8.580 -9.617 3.067  7.52  165 2,3,3',5,5',6-hexaCDE 4.366 -9.308 -0.643  6.32  

165* 2,3,3',5,5',6-hexaBDE 8.563 -10.057 3.001  7.97  166 2,3,4,4',5,6-hexaCDE 5.153 -9.186 -0.550 6.95 6.75 0.20 

166 2,3,4,4',5,6-hexaBDE 8.540 -9.862 3.158  7.67  167 2,3',4,4',5,5,-hexaCDE 5.221 -9.332 -0.697 7.11 7.03 0.08 

167 2,3',4,4',5,5
,
-hexaBDE 8.595 -9.614 2.966  7.59  168 2,3',4,4',5',6-hexaCDE 5.346 -9.186 -0.659  6.96  

168* 2,3',4,4',5',6-hexaBDE 8.562 -9.541 3.109  7.41  169 3,3',4,4',5,5'-hexaCDE 5.153 -9.399 -0.735  7.07  

169 3,3',4,4',5,5'-hexaBDE 8.629 -9.916 2.962  7.91  170 2,2',3,3',4,4',5-heptaCDE 5.662 -9.137 -0.837 7.28 7.27 0.01 

170* 2,2',3,3',4,4',5-heptaBDE 9.594 -9.694 3.295  8.23  171 2,2',3,3',4,4',6-heptaCDE 5.674 -9.189 -0.795  7.30  

171* 2,2',3,3',4,4',6-heptaBDE 9.564 -9.685 3.467  8.09  172 2,2',3,3',4,5,5'-heptaCDE 5.683 -9.177 -0.845  7.33  

172* 2,2',3,3',4,5,5'-heptaBDE 9.579 -9.694 3.250  8.25  173 2,2',3,3',4,5,6-heptaCDE 5.617 -9.288 -0.738  7.32  

173* 2,2',3,3',4,5,6-heptaBDE 9.571 -9.629 3.423  8.07  174 2,2',3,3',4,5,6,-heptaCDE 5.677 -9.100 -0.803 6.98 7.22 -0.24 

174* 2,2',3,3',4,5,6,-heptaBDE 9.560 -9.675 3.365  8.14  175 2,2',3,3',4,5',6-heptaCDE 5.714 -9.189 -0.814  7.34  

175* 2,2',3,3',4,5',6-heptaBDE 9.548 -9.716 3.406  8.15  176 2,2',3,3',4,6,6'-heptaCDE 5.709 -9.220 -0.666  7.28  

176* 2,2',3,3',4,6,6'-heptaBDE 9.528 -9.577 3.424  7.99  177 2,2',3,3',4,5,,6,-heptaCDE 5.673 -9.193 -0.795 7.14 7.30 -0.16 
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

177* 2,2',3,3',4,5,,6,-heptaBDE 9.569 -9.702 3.365  8.18  178 2,2',3,3',5,5',6-heptaCDE 5.713 -9.190 -0.814  7.34  

178* 2,2',3,3',5,5',6-heptaBDE 9.554 -9.689 3.289  8.20  179 2,2',3,3',5,6,6'-heptaCDE 5.709 -9.213 -0.669  7.27  

179* 2,2',3,3',5,6,6'-heptaBDE 9.534 -9.671 3.377  8.11  180 2,2',3,4,4',5,5,-heptaCDE 5.680 -9.124 -0.847 7.46 7.28 0.18 

180* 2,2',3,4,4',5,5,-heptaBDE 9.577 -9.858 3.273  8.39  181 2,2',3,4,4',5,6-heptaCDE 5.634 -9.167 -0.755 7.31 7.22 0.09 

181* 2,2',3,4,4',5,6-heptaBDE 9.545 -9.861 3.439  8.26  182 2,2',3,4,4',5,6'-heptaCDE 5.768 -9.108 -0.818  7.31  

182* 2,2',3,4,4',5,6'-heptaBDE 9.542 -9.741 3.424  8.16  183 2,2',3,4,4',5',6-heptaCDE 5.712 -9.077 -0.811  7.23  

183* 2,2',3,4,4',5',6-heptaBDE 9.546 -9.895 3.402 8.27 8.32 -0.05 184 2,2',3,4,4',6,6,-heptaCDE 5.779 -9.231 -0.679  7.35  

184* 2,2',3,4,4',6,6,-heptaBDE 9.510 -9.879 3.296  8.34  185 2,2',3,4,5,5',6-heptaCDE 5.591 -9.155 -0.758  7.18  

185* 2,2',3,4,5,5',6-heptaBDE 9.542 -9.851 3.425  8.26  186 2,2',3,4,5,6,6'-heptaCDE 5.631 -9.204 -0.613  7.17  

186* 2,2',3,4,5,6,6'-heptaBDE 9.523 -9.427 3.556  7.76  187 2,2',3,4',5,5',6-heptaCDE 5.712 -9.079 -0.811 7.13 7.23 -0.10 

187* 2,2',3,4',5,5',6-heptaBDE 9.552 -9.912 3.300  8.40  188 2,2',3,4',5,6,6,-heptaCDE 5.777 -9.219 -0.681  7.34  

188* 2,2',3,4',5,6,6,-heptaBDE 9.516 -9.767 3.437  8.15  189 2,3,3',4,4',5,5,-heptaCDE 5.668 -9.379 -0.883 7.55 7.53 0.02 

189* 2,3,3',4,4',5,5,-heptaBDE 9.612 -9.658 3.422  8.13  190 2,3,3',4,4',5,6-heptaCDE 5.622 -9.174 -0.794 7.31 7.25 0.06 

190* 2,3,3',4,4',5,6-heptaBDE 9.591 -9.569 3.510  7.97  191 2,3,3',4,4',5',6-heptaCDE 5.700 -9.212 -0.844  7.37  

191* 2,3,3',4,4',5',6-heptaBDE 9.584 -9.666 3.527  8.05  192 2,3,3',4,5,5',6-heptaCDE 5.646 -9.362 -0.812  7.46  

192* 2,3,3',4,5,5',6-heptaBDE 9.570 -10.085 3.522  8.44  193 2,3,3',4',5,5',6-heptaCDE 5.681 -9.214 -0.843  7.36  

193* 2,3,3',4',5,5',6-heptaBDE 9.590 -9.990 3.445  8.42  194 2,2',3,3',4,4',5,5'-octaCDE 6.101 -9.163 -1.032 7.78 7.75 0.03 

194* 2,2',3,3',4,4',5,5'-octaBDE 10.594 -9.736 3.743  8.76  195 2,2',3,3',4,4',5,6-octaCDE 5.379 -9.216 -0.962 7.84 7.21 0.63 

195* 2,2',3,3',4,4',5,6-octaBDE 10.589 -9.694 3.861  8.64  196 2,2',3,3',4,4,,5,6,-octaCDE 6.128 -9.134 -1.001  7.72  

196* 2,2',3,3',4,4,,5,6,-octaBDE 10.563 -9.730 3.826  8.67  197 2,2',3,3',4,4',6,6'-octaCDE 6.153 -9.208 -0.866  7.73  

197* 2,2',3,3',4,4',6,6'-octaBDE 10.531 -9.777 3.695  8.78  198 2,2',3,3',4,5,5',6-octaCDE 6.110 -9.211 -0.981  7.77  

198* 2,2',3,3',4,5,5',6-octaBDE 10.559 -9.724 3.801  8.68  199 2,2',3,3',4,5,5,,6,-octaCDE 6.127 -9.136 -1.000 7.63 7.72 -0.09 

199* 2,2',3,3',4,5,5,,6,-octaBDE 10.569 -9.762 3.732  8.77  200 2,2',3,3',4,5,6,6'-octaCDE 6.104 -9.250 -0.838  7.72  

200* 2,2',3,3',4,5,6,6'-octaBDE 10.539 -9.657 3.875  8.56  201 2,2',3,3',4,5',6,6'-octaCDE 6.145 -9.241 -0.868  7.76  

201* 2,2',3,3',4,5',6,6'-octaBDE 10.536 -9.769 3.619  8.82  202 2,2',3,3',5,5,,6,6,-octaCDE 6.142 -9.244 -0.870  7.76  

202* 2,2',3,3',5,5,,6,6,-octaBDE 10.542 -9.784 3.748  8.76  203 2,2',3,4,4',5,5',6-octaCDE 6.109 -9.100 -0.978 7.81 7.66 0.15 

203* 2,2',3,4,4',5,5',6-octaBDE 10.557 -9.938 3.806  8.88  204 2,2',3,4,4',5,6,6'-octaCDE 6.139 -9.234 -0.851  7.73  

204* 2,2',3,4,4',5,6,6'-octaBDE 10.521 -9.770 3.711  8.75  205 2,3,3',4,4',5,5',6-octaCDE 6.093 -9.236 -1.013  7.80  

205* 2,3,3',4,4',5,5',6-octaBDE 10.596 -9.641 3.951  8.54  206 2,2',3,3',4,4,,5,5,,6-nonaCDE 6.515 -9.157 -1.168 8.07 8.15 -0.08 
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Table B.2. (continued). 

PBDE Compound Name CRI EHOMO Eaq 
log Kow 

Exp. 
Calc/Pred res PCDE Compound Name CRI EHOMO Eaq 

log Kow 

Exp. 
Calc/Pred res 

206* 
2,2',3,3',4,4,,5,5,,6-

nonaBDE 
11.574 -9.760 4.235  9.22  207 2,2',3,3',4,4',5,6,6'-nonaCDE 6.534 -9.252 -1.038  8.17  

207* 
2,2',3,3',4,4',5,6,6'-

nonaBDE 
11.551 -9.753 4.125  9.27  208 2,2',3,3',4,5,5',6,6'-nonaCDE 6.533 -9.261 -1.039  8.18  

208* 
2,2',3,3',4,5,5',6,6'-

nonaBDE 
11.574 -9.753 4.042  9.34  209 2,2',3,3',4,4,,5,5,,6,6,decaCDE 6.915 -9.263 -1.209 8.16 8.58 -0.42 

209* 
2,2',3,3',4,4,,5,5,,6,6,-

decaBDE 
12.736 -9.787 4.550 10 9.94 0.06         

*Compounds fall outside the applicability domain (AD) of model (Eq. 4.5) (extrapolated values). 




