ANAEROBIC BIODEGRADATION OF PETROLEUM BASED WASTE

by

Aslınur Çalışıyor

B.Sc. in Molecular Biology and Genetics, İstanbul Technical University, 2016

Submitted to the Institute of Environmental Sciences in partial fulfillment of

the requirements for the degree of

Master of Science

in

Environmental Sciences

Boğaziçi University

2018

'Hayat' en güzel hediye..

ACKNOWLEDGEMENTS

I would like to state my sincere appreciation to my supervisor, Prof. Dr. Bahar INCE for her continuous support of my thesis, also for her patience, great knowledge and motivation. I am thankful for her belief in me; I could not have imagined having a better advisor for my M.Sc. study.

I am grateful to my thesis co-advisor Assoc. Prof. Dr. Sevcan AYDIN for her motivation, enthusiasm and patience. She has been a great advisor and friend for me.

Besides my advisors, I would like to thank the rest of my thesis committee: Prof. Dr. Ferhan ÇEÇEN, Prof. Dr. Ayşen ERDİNÇLER, and Prof. Dr. Bülent Mertoğlu for their comments and contribution.

I would like to express my sincere gratitude to Prof. Dr. Orhan INCE for sharing his experience and invaluable contribution in my M.Sc. study. He was always encouraged and prepared me for future challenges.

Dr. Sabine Kleinsteuber at Helmholtz Center for Environmental Research – UFZ has played one of the major roles in experimental design during my M.Sc. study. In addition, I would like to thank Ute Lohse, Lisa Marie-Bangen and Antonia Aalders at UFZ for their collaborations. I also would like to thank to Dr. Mustafa Kolukırık for his nice attitude to me, sharing his experiences and valuable comments on my thesis. I am thankful to Bioeksen R&D family for their support for my study. I am also thankful to Assoc. Prof. Dr. Bilge Alpaslan Kocamemi at Marmara University for her precious help and contribution. I thank to my fellow lab mates in MEG group: Çağrı Akyol, Emine Gözde Özbayram, Mahir Bozan, Mihriban Seyis and Yıldız Erdener for their endless support.

This work is supported by TUBITAK project no: 114Y014 —Improvement of Anaerobic Biodegradation Efficiency of Petroleum derived wastes-ZEROWASTE.

Last but not least, my deepest gratitude goes to my parents, Yasemin Dingersu and Özden Çalışıyor, and my sister Yaren Çalışıyor for all that they have sacrificed and the continuous supports they give at every step in my life.

ABSTRACT

ANAEROBIC BIODEGRADATION OF PETROLEUM BASED WASTE

Petroleum is the most common raw energy source which causes soil and groundwater pollution during the exploration, refining, transport and storage. Since the physical and chemical treatment methods have some disadvantages as high cost and secondary waste production, biological treatment methods have become important in environmental studies. Besides aerobic degradation, anaerobic biodegradation is an alternative method that has specific properties such as less biomass production and production of biogas under different electron accepting conditions. In this study, the biodegradability of petroleum-contaminated soil was observed under methanogenic and sulphatereducing conditions at different temperatures in microcosms were inoculated with an aquifer from Leuna, Germany. Biodegradation efficiency, microbial community profile and biogas production rates of microcosms were monitored under different conditions and run for approximately 200 days. Microbial community profiles were observed by using quantitative real time polymerase chain reaction (qRT-PCR), high resolution melting (HRM) and Next Generation Sequencing (NGS) based metagenomics analyses. The performance of biodegradation was determined via Total Organic Carbon (TOC) analysis which can be pre-study for total petroleum hydrocarbon (TPH) analysis. According to the results, degradation of organic matter was more efficient under sulphate-reducing conditions than methanogenic conditions. The TOC removal efficiency was as high as 70% under sulphate-reducing conditions while the TOC removal was ignorable under methanogenic conditions. Especially, microbial community profile under 16S rRNA gene expression is highly related with chemical analysis components as TOC removal, gas production and electron acceptor utilization. Molecular microbial analyses showed that aliphatic and aromatic hydrocarbon degradation occurred in the microcosms and the higher TOC removal efficiencies were related to the change in the microbial community profiles under sulphate-reducing conditions.

ÖZET

PETROL BAZLI ATIKLARIN ANAEROBİK BİYODEGRADASYONU

Ham enerji kaynağı olarak yaygın halde kullanılan petrol sondaj, rafinasyon, taşınma ve depolama sırasında toprak ve yeraltı suyu kirliliğine neden olmaktadır. Biyolojik arıtma yöntemleri, fiziksel ve kimyasal arıtma tekniklerinin yüksek maliyetli ve ikincil atık üretimi gibi dezavantajları nedeniyle çevresel çalışmalarda önemli hale gelmiştir. Aerobik degradasyonun yanında, anaerobik biyodegradasyon farklı elektron alıcı koşullarında daha az biyokütle üretimi ve biyogaz oluşumu gibi özgün özellikleri ile alternatif metot olarak kullanılmaktadır. Bu çalışmada, metanojenik ve sülfat indirgeyici koşullarda ve farklı sıcaklıklarda Almanya'nın Leuna kentinden alınmış akiferin aşı olarak kullanıldığı mikrokozmoz testi ile petrolle kirlenmiş toprağın biyodegradasyonu gözlemlenmiştir. Mikrokozmozlarda biyodegradasyon verimliliği, mikrobiyal komünite profili ve biyogaz üretim oranı farklı koşullarda izlenmiştir ve inkübasyon yaklaşık 200 gün sürmüştür. Mikrobiyal topluluk dağılımı, kantitatif gerçek zamanlı polimeraz zincir reaksiyonu (qRT-PCR), yüksek çözünürlüklü erime (HRM) analizi ve metagenomik analizi olarak Yeni Nesil Dizileme (NGS) uygulanarak gözlemlenmistir. Biyodegradasyon performansı toplam petrol hidrokarbon (TPH) analizine ön çalışma olarak toplam organic karbon (TOK) analizi ile belirlenmiştir. Çalışma sonuclarına göre, organik madde degradasyonu metanojenik koşullara göre sülfat indirgevici kosullarda daha verimli olmustur. Metanojenik kosullardaki toplam organic karbon (TOK) giderimi ihmal edilecek kadar az iken, sülfat indirgeyici koşullarda TOK gideriminde %70 kadar verimlilik sağlanmıştır. Özellikle, 16S rRNA gen ekspresyonu altında mikrobiyal topluluk dağılımı, TOK giderimi, gaz oluşumu ve elektron alıcısı kullanımı gibi kimyasal analiz bileşenleri ile oldukça ilişkilidir. Moleküler mikrobiyal analizler, mikrokozmozlarda alifatik ve aromatik hidrokarbon degradasyonunun olduğunu ve daha yüksek TOK giderim verimliliğinin sülfat indirgeyici koşullar altında mikrobiyal topluluk dağılımındaki değişime bağlı olduğunu göstermiştir.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iv
ABSTRACT	V
ÖZET	vi
TABLE OF CONTENTS	vii
LIST OF FIGURES	ix
LIST OF TABLES	xi
LIST OF SYMBOLS/ABBREVIATIONS	xiii
1. INTRODUCTION	1
1.1. Hazards of Petroleum Hydrocarbon Pollution	2
1.2. Removal of Petroleum Hydrocarbon Contaminants	
1.3. Objective of the Thesis	4
2. LITERATURE REVIEW	
2.1. Chemical Composition of Petroleum Hydrocarbons	
2.1.1. Aliphatic Hydrocarbons	5
2.1.2. Aromatic Hydrocarbons	
2.1.3. Resins and Asphaltenes	7
2.2. Bioremediation Techniques for Petroleum Polluted Soils	7
2.2.1. Natural Attenuation	
2.2.2. Bioaugmentation	
2.2.3. Biostimulation	9
2.2.4. Phytoremediation	9
2.3. Anaerobic Degradation of Petroleum Hydrocarbons	9
2.3.1. Methanogenesis Pathways	10
2.3.2. Sulphate-reducing Pathways	11
2.3.3. Anaerobic Degradation of Aliphatic and Aromatic Comp	pounds13
2.4. Petroleum Utilizing Microorganisms	
3. MATERIALS AND METHODS	
3.1. Sampling of the Contaminated Soil and Aquifer	
3.2. Pre-treatment of the Contaminated Soil	
3.3. Physicochemical Characterization of the Contaminated Soil, Tr	reated Soil and
Aquifer	
3.4. Anaerobic Microcosm Cultivation	19

3.5	5. Mi	icrobial Community Analysis	. 20
		3.5.1. Genomic DNA and Total RNA Extraction	21
		3.5.2. PCR Amplification of 16S rRNA Genes and Specific Target Genes	. 21
		3.5.3. Quantitative Real-Time PCR	22
		3.5.4. High Resolution Melting (HRM) Analysis	. 23
		3.5.5. Metagenomics Analysis	. 24
	3.6.	Statistical Analysis	. 25
4.	RES	SULTS AND DISCUSSION	. 26
	4.1.	Results of Physical and Chemical Characterization of Contaminated Soil and	
		Aquifer	. 26
	4.2.	Results of Pre-treatment of Contaminated Soil	. 28
	4.3.	Results of Performance of Anaerobic Microcosm Tests	. 29
		4.3.1. CO ₂ Production	. 31
		4.3.2. CH ₄ Production	. 34
		4.3.3. Sulphate Removal	. 34
		4.3.4. TOC Removal	. 36
	4.4.	Results of Microbial Community Analysis	. 40
		4.4.1. Results of Metagenomics Analysis of Contaminated Soil	40
		4.4.2. Results of Metagenomics Analysis of Aquifer	42
		4.4.3. Results of High Resolution Melting (HRM) Analysis	45
	4.5.	Results of Correlation between Microbial and Chemical Characteristics of	
		Microcosm Tests	. 46
5.	CON	NCLUSIONS AND RECOMMENDATIONS	. 58
RF	EFER	RENCES	. 59

viii

LIST OF FIGURES

Figure 1.1.	Pathways to petroleum utilization	. 1
Figure 1.2.	Classification of petroleum hydrocarbons	5
Figure 2.1.	Structure of 16 US EPA priority pollutant PAH compounds	7
Figure 2.2.	Anaerobic hydrocarbon degradation mechanism	10
Figure 2.3.	Methanogenesis pathways	11
Figure 2.4.	Transformation of sulphate ion in the presence of dsrB gene	12
Figure 2.5.	Anaerobic degradation of aliphatic and aromatic hydrocarbons	14
Figure 4.1.	Cumulative gas production under methanogenic environment	30
Figure 4.2.	Cumulative gas production under sulphate-reducing environment	30
Figure 4.3.	Carbon dioxide production under methanogenic environment	32
Figure 4.4.	Carbon dioxide production under sulphate-reducing environment	33
Figure 4.5.	Methane production under methanogenic environment at mesophilic condition	34
Figure 4.6.	Sulphate removal under sulphate-reducing condition	35
Figure 4.7.	TOC removal efficiency under methanogenic conditions	39
Figure 4.8.	TOC removal efficiency under sulphate conditions	39
Figure 4.9.	The phylogenetic results of DNA from contaminated soil	41

Figure 4.10.	The phylogenetic results of NA from contaminated soil	42
Figure 4.11.	The phylogenetic results of DNA from aquifer	43
Figure 4.12.	The phylogenetic results of NA from aquifer	44
Figure 4.13.	Microbial community profile dendrogram based on bacterial abundance	45
Figure 4.14.	Microbial community profile dendrogram based on bacterial activity	46

LIST OF TABLES

Table 1.1.	Remediation techniques for petroleum hydrocarbons	. 4
Table 2.1.	Different reactions through sulphate reduction pathway	12
Table 2.2.	Petroleum utilizing microorganisms	16
Table 2.3.	Petroleum utilizing microorganisms	17
Table 3.1.	Primer sets and their targets	.22
Table 3.2.	Primer sequences and their annealing temperature	.23
Table 4.1.	Physicochemical characterization of contaminated soil and aquifer	27
Table 4.2.	Results of TPH, aliphatic and aromatic fractions of petroleum hydrocarbons in contaminated soil and aquifer	27
Table 4.3.	Elemental analysis of contaminated soil	28
Table 4.4.	TOC removal under methanogenic environment	37
Table 4.5.	TOC removal under sulphate-reducing environment	38
Table 4.6.	Correlation analysis through the gene expression of 16S rRNA gene under methanogenic environment	48
Table 4.7.	Correlation analysis through the gene expression of 16S rRNA gene under sulphate-reducing environment	49
Table 4.8.	Correlation analysis through the gene expression level of assA gene under methanogenic environment	50

Table 4.9.	Correlation analysis through the gene expression level of assA gene under sulphate-reducing environment	51
Table 4.10.	. Correlation analysis through the gene expression level of bcrA gene under methanogenic environment	52
Table 4.11.	. Correlation analysis through the gene expression level of bcrA gene under sulphate-reducing environment.	53
Table 4.12.	. Correlation analysis through the gene expression level of dsrB gene under methanogenic environment.	54
Table 4.13	. Correlation analysis through the gene expression level of dsrB gene under sulphate-reducing environment	55
Table 4.14.	. Correlation analysis through the gene expression level of mcrA gene under methanogenic conditions	56
Table 4.15	. Correlation analysis through the gene expression level of mcrA gene under sulphate-reducing environment.	57

LIST OF SYMBOLS/ABBREVIATIONS

Symbol	Explanation	Unit
Al	Aluminum	
В	Boron	
bp	Base Pair	
CaCl ₂	Calcium Chloride	
CH ₄	Methane	μmol
CO ₂	Carbon Dioxide	μmol
Cu	Copper	
Fe	Iron	
FeSO ₄	Iron (II) Sulphate	
g	Gram	
H ₂	Hydrogen	
HCO ₃ -	Bicarbonate	
H ₂ O	Dihydrogen Oxide	
H_2S	Hydrogen Sulfide	
I_2	Iodine	
KCl	Potassium Chloride	
kg	Kilogram	
KI	Potassium Iodide	
L	Liter	
М	Molar	
mbar	Millibar	
mg	Milligram	
min	Minute	
mL	Milliliter	
mmol	Millimole	
Mg	Magnesium	
Mn	Manganase	
μg	Microgram	
μL	Microliter	
μΜ	Micromolar	
μmol	Micromole	

N ₂	Nitrogen			
$Na_2S_2O_8$	Sodium Persulfate			
Ni	Nickel			
nm	Nanometer			
nM	Nanomolar			
OH-	Hydroxide			
Р	Phosphorus			
pmol	Picomole			
ppm	Parts Per Million			
rpm	Revolutions Per Minute			
S^0	Elemental Sulfur			
SO_4^{-2}	Sulphate mmol			
Sec	Second			
V	Vanadium			
Zn	Zinc			
Abbreviation	Explanation			
А	Aquifer			
assA	Alkylsuccinate Synthase α-subunit			
bcrA	Benzoyl-CoA Reductase α-subunit			
BTEX	Benzene, Toluene, Ethyl-benzene and Xylene	Benzene, Toluene, Ethyl-benzene and Xylene		
Bss	Benzylsuccinate Synthase	Benzylsuccinate Synthase		
CTAB	Cetyltrimethylammonium Bromide			
Cq	Quantitation Cycle			
DNA	Deoxyribonucleic Acid			
DOC	Dissolved Organic Carbon			
dsrB	Dissimilatory Sulfite Reductase β-subunit			
FAE	Fumarate Adding Enzymes			
FID	Flama Ionization Detector			
GEM	Genetically Engineered Microorganism			
GC	Gas Chromatography	Gas Chromatography		
HMW	High Molecular Weight	High Molecular Weight		
HRM	High Resolution Melting	High Resolution Melting		
ICP-OES	Inductively Coupled Plasma Optical Emission Spectromet	ry		
LMW	Low Molecular Weight	Low Molecular Weight		

Μ	Methanogenic Environment
mcrA	Methyl Coenzyme M Reductase α -subunit
MGW	Molecular Grade Water
MTBE	Methyl Tertbutyl Ether
MS	Mass Spectrometry
NA	Nucleic Acid
NGS	Next Generation Sequencing
РАН	Polycyclic Aromatic Hydrocarbon
PCA	Principal Component Analysis
PCC	Pearson Correlation Coefficient
PCR	Polymerase Chain Reaction
rDNA	Ribosomal Deoxyribonucleic Acid
rRNA	Ribosomal Ribonucleic Acid
RNA	Ribonucleic Acid
S	Sulphate Reducing Environment
SO	Contaminated Soil
TOC	Total Organic Carbon
ТРН	Total Petroleum Hydrocarbon
TSO	Treated Contaminated Soil

1. INTRODUCTION

Petroleum or crude oil is a complex, naturally occurring liquid mixture also called as "black gold" containing mostly hydrocarbons, but containing also oxygen, nitrogen and sulfur. Petroleum is processed for utilization as petroleum products such as gasoline, diesel fuel or fuel oil (Radovic, 1997). Hydrocarbons, one of the major petroleum constituents, mainly include saturated alkanes and cycloalkanes, unsaturated alkenes, alkynes and aromatic hydrocarbons. The light crude oil comprises of mainly 78% saturates, 18% aromatics, 4% resins and <2% asphaltenes (Olah and Molnar, 2003). Processing pathways of petroleum to products is illustrated in Figure 1.1. Economic and population growth, development of industrialization have resulted in high demand on utilization of petrochemical products. Petroleum products are essential raw materials used as energy source in various types of industries. However, natural oil reserves for energy source have not been enough according to rise in human civilization and industrialization in time (Maletić et al., 2013). As a result of insufficient natural energy source, petroleum production has increased gradually. The predicted petroleum production of the World in a year reached twelve million metric tons. 1.7 to 8.8 million metric tons of estimated production amount are released into the environment annually (Koshlaf and Ball, 2017).

Figure 1.1. Pathways to petroleum utilization (Radovic, 1997).

Increment of petroleum production induces a major cause of environmental pollution. Petroleum hydrocarbon pollution has become one of the most remarkable global problems through its effects on environmental and human health due to its toxicity. The most noticeable activities in petroleum industries resulted in petroleum hydrocarbon pollution are associated with leaks and accidental spills during petroleum exploration, transport and processing. Besides oil waste leaks and accidental spills, the industrial companies are insufficient to manage waste oil recycling and disposal of hazardous oil wastes into landfills. Due to the inappropriate management of recycling and disposal, the contaminated sites and landfills have risen rapidly over the years (Brown et al., 2017)

1.1. Hazards of Petroleum Hydrocarbon Pollution

Based on the Toxic Release Inventory report from EPA in 2005, the oil refining and petroleum industry is one of ten main causes of releasing toxic and harmful chemicals into the environment. In recent years, the toxicity of petroleum hydrocarbons has resulted in serious problem to microorganisms and also in human life (Varjani and Upasani, 2017). From industrial zone, oil leakage or releases can also go through the subsurface resulting in natural oil and gas seeps. These leakages and releases through the subsurface of soil or sediment cause petroleum contaminated sites that pose many critical problems comprising of consequent risk to human health, ecology and especially water resources. Released petroleum hydrocarbons include soluble and volatile compounds such as benzene, toluene, ethyl-benzene and xylene (BTEX) and more stable compounds such as polycyclic aromatic hydrocarbons (PAHs) (Brown et al., 2017). Including petroleum hydrocarbon pollutants, 16 PAHs are called as priority pollutants because of their recalcitrance in the environment (Varjani, 2017). Presence of petroleum hydrocarbons in the environment such as soil surface, water resources and oceans leads to accumulation of hemotoxic, carcinogenic and teratogenic components (Meckenstock et al., 2016). Especially for human health, suffocation, anoxia, stunted growth, disturbance in metabolic reactions and hormone imbalance are reported as direct or indirect effects of toxicity of petroleum hydrocarbons. Some short-term impacts such as hypothermia, acute necrosis mortality, smothering and ingestion of toxic compounds and long-term impacts including developmental abnormalities in sea environment such as jaw reductions, lack of pigmentation and unfused skulls evolve out of hazards of petroleum hydrocarbon pollution. All these effects alter in a species population or community following with entire ecosystem (Varjani, 2014). Polycyclic aromatic hydrocarbons have potential to increase the malignant tumors that are prior to affecting skin and other epithelial tissue in order to their affinity for macromolecules like RNA, protein and DNA in the cell directly (Desforges et al., 2016)

1.2. Removal of Petroleum Hydrocarbon Contaminants

Due to its many hazards to the environment, the fate of petroleum hydrocarbons is one of the most considerable issues all over the world. In addition, it is vital to gain knowledge about oil remediation approaches for such contaminants. All treatment methods as physical, chemical and biological treatment have some benefits and limitations about cost, efficient, effectiveness or removal of specific level of contaminants. Especially, the physical or chemical remediation of petroleum products costs expensively, even it takes short time period. In the USA for example, the costs of polluted soil removal was predicted to be more than 1 trillion US dollars (Stroud et al., 2007). In addition, the basic costs for removal of contaminants from huge commercial costs as a minimum of 200,000 US dollars with an additional 40–70 US dollars for each cubic meter of contaminated soil (Arthur et al., 2005).

Petroleum and its products are put to physicochemical methods as soil washing, chemical inactivation and incineration. Some other physicochemical treatment methods are dispersion, dilution, sorption, volatilization and abiotic transformation. In last years, one of the innovative techniques is used for remediation of petroleum hydrocarbons called as bioremediation. Bioremediation is defined as treatment by living organisms for degradation of pollutants (Chandra et al., 2013). Through 20th centuries, the use of microorganisms especially bacteria and fungi, or plants have been focused in remediation strategies of environmental pollutants such as petroleum. PAHs could be removed via volatilization, photo degradation, chemical oxidation, microbial degradation, etc. Previous studies have mainly focused on the aerobic degradation of lowmolecular-weight (LMW) PAHs and the associated degradation pathways have been elucidated. The high-molecular-weight (HMW) PAHs were more recalcitrant and toxic to living organisms than those LMW ones. A close attention should be also paid considering the great public concerns caused by them. Meanwhile, most of the PAHs, contaminated sites, such as sediments and groundwater, were anaerobic and thus the anaerobes and anaerobic biodegradation of PAHs should play greater roles than the respective aerobic ones in natural environments. However, little attention has been paid to the anaerobic degradation of HMW PAHs, it was confined to specific pure strains if any. Besides, the anaerobes had the ability of destructing persistent organic pollutants and several studies have showed the potentially of organic pollutants via anaerobic treatment (Aydın et al., 2016). One the physicochemical treatment method is photo-oxidation affects in limited with only in sunlight-exposed oil. On the other hand, weathering processes such as spreading, evaporation, dispersion, sinking, and emulsification depend on environmental conditions such as temperature, weather factors and ocean currents (Souza et al., 2014). In addition, these conventional engineering for physicochemical methods are not cost effective in order to the cost of excavation and transportation of huge quantities of contaminated sites. Instead of physicochemical applications, microbial degradation becomes an efficient, cost-effective, and applicable over large area and environmentally friendly treatment method especially in terrestrial environments (Chandra et al., 2013). However, like all techniques and strategies there are some disadvantages in biological treatment methods. These include the extended treatment time, low predictability and dependence on environmental factors.

The biodegradability of petroleum hydrocarbons depends on the concentration and bioavailability of the pollutants/contaminants. The bioavailability is affected by the fraction of pollutants, which can be substrate compounds for soil microbial community (Koshlaf and Ball, 2017). The differences between physical, chemical and biological treatment including advantages and disadvantages using one example of method are summarized in Table 1.1.

Remediation Strategy	Example of Method	Treating Site	Benefits	Limitations
Physical	PhysicalVapour extractionEx situ		Fast Permanent removal High level of pollution	Costly Destructive Lead to secondary pollution
Chemical	Thermal desorption	Ex situ	Fast High level of pollution	Costly Destructive Lead to secondary pollution
Biological	Biostimulation	In situ	Environmentally friendly Cost effective Minimum site disruption Low level of pollutants	Long time processing Low predictability Based on environmental factors

Table 1.1. Remediation techniques for petroleum hydrocarbons (Koshlaf and Ball, 2017).

1.3. Objective of the Thesis

The main aim of this study is to determine the biodegradability of petroleum hydrocarbon contaminated soil using mixed microbial population from a aquifer enriched petroleum hydrocarbon fractions under anaerobic condition with terminal electron acceptors at different temperature ranges. In this study, biodegradability test is carried with chemical pre-treatment for enhancement of bioavailability followed by anaerobic microcosm test under methanogenic and sulphate-reducing environment at psychrophilic, mesophilic and thermophilic ranges.

2. LITERATURE REVIEW

2.1. Chemical Composition of Petroleum Hydrocarbons

Over millions of years, petroleum is produced by thermal decay of buried organic material. Petroleum consists of nitrogen, sulfur and oxygen in some amount along with traces of metallic constituents, and mainly hydrocarbons in differentiated ratio of carbon and hydrogen. Crude oil which refers to naturally occurring raw oil is classified as light, medium or heavy oil based on the molecular weight of constituents. Petroleum hydrocarbons are classified in four different fractions: saturates (aliphatics), aromatics (ringed hydrocarbons), resins and asphaltenes as seen Figure 1.2. Oil compounds can be characterized and identified by using commonly High-resolution Gas Chromatography (GC) equipped with flame-ionization detection (FID) and capillary GC-Mass Spectrometry (MS) (Head et al., 2006).

Figure 1.2. Classification of petroleum hydrocarbons.

2.1.1. Aliphatic Hydrocarbons

Aliphatic hydrocarbons is the major constituent of crude oil and petroleum products. Based on their chemical structure, aliphatics include alkanes and cycloalkanes. Also, they are methane derivatives contains both saturated and unsaturated linear or branched open-chain structures (Stroud et al., 2007). According to their molecular weight, aliphatic hydrocarbons are classified into four groups: gaseous alkanes, aliphatics with lower molecular weight (C_8 - C_{16}), aliphatics with medium molecular weight (C_{17} - C_{28}) and aliphatics with high molecular weight (greater than C_{28}) (Abbasian et al., 2015). Aliphatic hydrocarbons with high molecular weight are more persistent in the soil and not easily volatilised and degradable due to their low solubility, bioavailability and stable structure (Stroud et al., 2007).

2.1.2. Aromatic Hydrocarbons

Aromatic hydrocarbons are ringed molecules classified as monocyclic aromatic hydrocarbons such as BTEX (benzene, toluene, ethylbenzene and xylenes) and polycyclic aromatic hydrocarbons (PAHs). Aromatics have two to six aromatic rings, with or without alkyl substituents aligned with linear, cluster or angular type. The major concern to environmental health is polycyclic aromatic hydrocarbons (PAHs) result in toxicity in order to their mutagenic and carcinogenic features (Mishra et al., 2001). PAHs have different structures than the other compounds with their physical-chemical properties such as molecular weight and number of benzene rings. They have low chemical reactivity and volatility and hydrophobic properties with high molecular weight. Due to their complexity and molecular weight, PAHs are highly toxic, carcinogenic and persistent compounds in the environment. According to US EPA, there are sixteen PAHs listed based on environmental significance as priority pollutants (Masih et al., 2012). These are seen in Figure 2.1 with their structures and nomenclatures.

Figure 2.1. Structure of 16 US EPA priority pollutant PAH compounds.

2.1.3. Resins and Asphaltenes

Asphaltenes and resins have more complex structure with more polar constituents than aliphatic and aromatic hydrocarbons. Their properties have an effect on oil production and refining due to presence in crude oil compostion in 10% approximately. Phenols, ketones, esters and porphyrins belong to asphaltenes subgroup that do not have crystallization properties and unstability (Leyva et al., 2013). Asphaltenes are mostly polar compounds and composed of aromatic rings, aliphatic hydrocarbon chains and some heteroatoms. In comparison with asphaltenes, resins are more stable and have strong affinity. Both of them contain nitrogen, oxygen and sulphur with hydrocarbon chains. It is considered that resins and asphaltenes are mostly resistant to biodegradation by microorganisms (He et al., 2015).

2.2. Bioremediation Techniques for Petroleum Polluted Soils

Bioremediation methods are used for removal of toxic substances or pollutants by using microorganisms almost for 40 years (Ding et al., 2013). Bioremediation has eligible properties such as environmentally friendly, feasible and cost-effective features. According to many investigations

and studies, bioremediation process has high efficiency for removal of pollutants and clean up the contaminated sites than physicochemical treatment methods (Mrozik and Piotrowska-Seget, 2010). Environmental conditions such as microbial consortia, nutrient addition determined the application type of remediation due to its efficiency and feasibility. Since the presence of soil dwelling microbes which can degrade the wide range of hydrocarbon fractions, the petroleum contaminated sites may clean up by using some specified bioremediation treatment method including different conditions such as temperature, presence/absence of oxygen (Shahi et al., 2016). Different bioremediation methods being applied are natural attenuation, bioaugmentation, biostimulation and phytoremediation.

2.2.1. Natural Attenuation

Natural attenuation technique which is the simplest bioremediation method has been studied for many years due to removal of toxic substances and pollutants from contaminated sites. In this process, indigenous microbial population including bacteria and fungi which can degrade the hydrocarbon compounds are utilized for attenuation of petroleum polluted sites. These microbial communities use hydrocarbons as carbon source naturally in their metabolic pathways (McKew et al., 2007). According to bioremediation studies, natural attenuation is more efficient than biostimulation and bioaugmentation without any necessesity about enhancement of environment. In addition, this bioremediation technique is more cost-effective treatment method than the others. On the other hand, natural attenuation has some limitations such as unattainable nutrient source and absence of microbial populations which are able to degrade in high activity (Makadia et al., 2011).

2.2.2. Bioaugmentation

One of the *in-situ* bioremediation techniques is bioaugmentation which increase the biodegradability and bioavailability of hydrocarbon compound by utilization of single strains or consortia of microorganisms that have the petroleum hydrocarbon degradation capacity. In recent years, genetically engineered microorganisms (GEMs) are introduced as potential hydrocarbon degradative microbial populations for soil bioaugmentation as well (Mrozik and Piotrowska-Seget, 2010). Natural attenuation is an inappropriate technique in some cases depending on polluted site with insufficient or non-detectable number of microbial populations. Especially, bioaugmentation technique is applied after biostimulation and natural attenuation process for improvement of biodegradability. The hydrocarbon utilizers are isolated from hydrocarbon rich environments. On the other hand, bioaugmentation process requires extensive long-term monitoring and is not always

effective. The efficiency of bioremediation depends on adaptation of isolated strains and microbial consortia to the polluted environment. The introduced microorganisms can be inhibited by co-pollutants or native microorganisms El Fantroussi and Agathos, 2005).

2.2.3. Biostimulation

As bioattenuation, naturally occuring hydrocarbon degrader microorganisms are utilized for bioremediation process during biostimulation. In addition to excessive microbial population, the biodegradability enhances by nutrient addition such as nitrogen and phosphorus (Nikolopoulou and Kalogerakis, 2010). According to literature, petroleum hydrocarbon polluted environments containing 80% carbon can be clean up in a rapid reduction in the presence of inorganic nutrients (Koshlaf and Ball, 2017). These nutrients are essential for microbial cell growth, reducing the lag phase, improvent of log phase of microbial population. Hence, the microbial hydrocarbon degradation is affected positively. For the stimulation, fertilizers and biosurfactants can be used. However, nutrient balance and C:N:P ratio optimization are the most essential features of biostimulation process. Biostimulation technique is more efficient than natural attenuation due to nutrient enhancement as optimal C:N:P ratio for microbial growth (Li et al, 2007).

2.2.4. Phytoremediation

Phytoremediation technique is applied with plants and their associated microorganisms by supporting hydrocarbon degrading microbial populations within plant root. However, pollutants and toxic substances can be harmful for the plants in the contaminated sites (Koshlaf and Ball, 2017).

2.3. Anaerobic Degradation of Petroleum Hydrocarbons

Anaerobic hydrocarbon degradation metabolism has been studied in both highly enriched cultures or pure cultures isolated from hydrocarbon impact environments. Mostly, these cultures includes nitrate-reducing, sulphate-reducing and iron-reducing microorganisms, and methanogens as seen Figure 2.2. Aliphatic and aromatic hydrocarbon compounds are more degradable than asphaltenes and resins (Gieg and Toth, 2016).

Under anaerobic metabolism these aromatic compounds are first oxidized to phenols or organic acids, and then converted into long-chain volatile fatty acids, which result in the production of CH_4 and CO_2 . Many types of terminal electron acceptors nitrate, ferrous iron, manganese or sulphate

ions are reported for anaerobic degradation of petroleum hydrocarbons (Varjani, 2017). Wilkes et al. (2016), observed two biochemical mechanisms that is described as initial activation of alkane degradation are addition of fumarate and carboxylation.

Benzoyl-CoA as common intermediate is present in anaerobic catabolism of many aromatic compounds. Toluene, alkyl benzene and ethylbenzene are oxidized to benzoyl-CoA. Benzene and naphthalene are initially activated by carboxylation. Followed by benzoyl-CoA or naphthalene-CoA pathways, hydrocarbon degradation pathway continues (Foght, 2008). Wilkes et al. (2016) have reported that central benzoyl-CoA pathways are different for many aspects in denitrifying, phototrophic and fermenting bacteria.

In brief, three major pathways for the anaerobic activation of petroleum hydrocarbons are: (i) for alkanes or alkylated aromatics the addition of a methyl or methylene group to fumarate known as fumarate addition; (ii) oxygen independent hydroxylation known to be involved in the degradation of ethylbenzene and related substituted benzenes and (iii) carboxylation as proposed for alkanes, benzene, and polycyclic aromatic compounds (von Netzer et al., 2018).

Figure 2.2. Anaerobic hydrocarbon degradation mechanism (Gieg et al., 2014).

2.3.1. Methanogenesis Pathways

Methanogenesis which is a biological process is performed by methanogenic archaeabacteria. Methanogenesis is carried out by high intracellular concentration of coenzyme F420, the enzyme methyl coenzyme M methylreductase (Mcr), and unique phospholipid membrane components. The two main pathways methane production are acetotrophic (acetate dependent) methanogenesis and hydrogenotrophic (H₂ dependent) methanogenesis as seen in Figure 2.3 (Gieg and Berdugo-Clavijo,

2014). In the acetotrophic step, acetate (CH₃COO) is converted into CH₄ and carbon dioxide (CO₂). During hydrogenotrophic methanogenesis, H_2 reacts with CO₂ forming CH₄ and H₂O. Other low molecular weight organic molecules, such as formate, methanol, dimethyl sulfide (DMS), tri-, di-, and monomethylamines, and ethylamine, can also be utilized for methanogenesis through intermediate steps (Bastviken, 2009). Microbial methanogenesis represents a terminal step of anaerobic organic matter degradation. Before the anaerobic degradation process, complex organic substrates have to undergo several degradation steps. On the other hand, in the presence of oxidized compounds as electron acceptors as nitrate, sulphate, iron resulting in terminal degradation steps like nitrification, iron reduction, sulphate reduction product more energy than methanogenesis does only (Jimenez et al., 2016).

Figure 2.3. Methanogenesis pathways (Gieg et al., 2014).

2.3.2. Sulphate-reducing Pathways

Sulfur is the most abundant elements in ecosystem due to its reactivity in different reduction and oxidation states. The biological roles of inorganic sulfur compounds in anaerobic biodegradation system as acceptors or donors of electrons for dissimilatory energy-generating electron transport mainly among prokaryotes (Barton et al., 2014). Bioremediation using sulphate as the electron acceptor involves oxidation of aromatic hydrocarbons by sulfidogenic organisms coupled with reduction of sulphate to hydrogen sulfide.

The sulphate reduction pathway includes many different intermediate reactions as seen in Table 2.1. Reaction 1 shows that the end products of crude oil degradation are methane and

hydorgen sulfide. Reaction 2 involves the sulphate ion and reduction of S⁺⁶ to lower valance states. Essential reaction products are organic acids, bicarbonate ions and hydrogen sulphide. According to Reaction 4, sulphur is also utilized during degradation of hydrocarbon resulting in hydrogen sulfide and bicarbonate ion. Net reaction is given as overall results of these reactions, main net products of sulphate reuction pathway are bicarbonate and hydrogen sulfide. Carbon dioxide may be evolved during the intermediate steps (Machel, 1989). Also, sulphur, sulphite and thiosulphate are utilized via inorganic sulphur compoun fermantation to convert into sulphate ion (Barton et al., 2014).

D / 1	Q 1 1		
Reaction I	Crude oil	\rightarrow	Light crude oil + H_2S + CH_4
Reaction 2	$4\text{R-CH}_3 + 3\text{SO}_4^{-2} + 6\text{H}^+$	\rightarrow	$4R-COOH + 4H_2O + 3H_2S$
	$R-CH_3 + 2R=CH_2 + CH_4 +$	\rightarrow	$3R\text{-}COOH + HCO_3^- + 3H_2O + 3H_2S$
	$3SO_4^{-2} + 5H^+$		
	$2CH_2O + SO_4^{-2}$	\rightarrow	$2HCO_3^- + H_2S$
Reaction 3	$3H_2S + SO_4^{-2} + 2H^+$	\rightarrow	$4S^0 + 4H_2O$
	$H_2S + SO_4^{-2} + 2H^+$	\longrightarrow	$S^0 + 2H_2O + SO_2$
	H_2S + hydrocarbons	\longrightarrow	S^0 + altered hydrocarbons
	S ⁻²	\longrightarrow	S^0
Reaction 4	$4S^0 + 1.33(-CH_2-) + 2.66 H_2O$	\rightarrow	$4H_2S + 1.33 \text{ HCO}_3^-$
	+ 1.33 OH ⁻		
Net Reaction	Hydrocarbons $+$ SO ₄ ⁻²	\rightarrow	altered hydrocarbons + HCO_3^- + H_2S
			(+CO ₂ ?)

Table 2.1. Different reactions through sulphate reduction pathway.

The presence of sulphate-reducing bacteria are detemined by using dsrB as a universal genetic marker. This gene encodes the β subunit of dissimilatory sulfite reductase, the key enzyme which catalyzes sulfite transformation into sulfide in all sulphate and sulphite reducing microorganisms as shown in Figure 2.4 (Korneeva et al., 2015).

Figure 2.4. Transformation of sulphate ion in the presence of dsrB gene.

2.3.3. Anaerobic Degradation of Aliphatic and Aromatic Compounds

The initial activation reaction is often the crucial step in the degradation of aliphatic or aromatic hydrocarbons by anaerobic degraders. Similar to aerobic hydrocarbon catabolism, the anaerobic degradation of petroleum hydrocarbons also move through several initial activation and transformation mechanisms as intermediate degradation pathways as given in Figure 2.5.

Among the anaerobic biodegradation processes, fumarate addition is considered as initial of anaerobic hydrocarbon degradation mechanisms. It was first observed for the degradation of toluene by the denitrifying *Thauera aromatica* and is catalyzed by a glycyl radical enzyme named benzylsuccinate synthase (Bss). Meanwhile, a role of benzylsuccinate synthase and related fumarate adding enzymes (FAEs) has been reported for a wide phylogenetic diversity and respiratory variety of anaerobic degraders and also for the degradation of other alkylated mono- and polyaromatics, linear and cyclic alkanes. Depending on the nature of the substrate, the FAEs involved are also named as (1-methyl) alkylsuccinate synthases (Ass) (Kolukırık 2011a).

Benzoyl-CoA is the central metabolite of monoaromatic hydrocarbon degradation, and two enzyme systems are known to be involved: either the ATP-dependent class-I benzoyl-CoA reductase (Bcr/Bzd) in facultative anaerobes or the ATP-independent class-II benzoyl-CoA reductase (BamB) in strict anaerobes. After ring reduction, a ring-cleaving hydrolase (BamA) transforms the former aromatic ring into linear CoA-fatty acids, which are then subject to a beta oxidation-like degradation to acetyl-CoA or complete oxidation to CO₂. Such linear CoA-fatty acids are also products of the anaerobic degradation of n-alkanes (Varjani, 2017).

Figure 2.5. Anaerobic degradation of aliphatic and aromatic hydrocarbons.

2.4. Petroleum Utilizing Microorganisms

Some microorganisms have ability to degrade aliphatics; some can degrade monoaromatics or polyaromatics while others degrade resins. In general, Petroleum hydrocarbon pollutants degrading microorganisms and the type of hydrocarbon degraded by them are given in Table 2.2 and 2.3 (Koshlaf and Ball, 2017). Bacterial sp. of genera Achromobacter, Acinetobacter, Arthrobacter, Azoarcus, Brevibacterium, Cellulomonas, Corynebacterium, Flavobacterium, Marinobacter, Micrococcus, Nocardia, Ochrobactrum, Pseudomonas, Stenotrophomaonas and Vibrio are reported as hydrocarbon degraders Yakimov et al. (2007), and Brooijmans et al. (2009), have reported evolution of hydrocarbonoclastic bacterial genera Oleispira, Marinobacter, Thalassolituus, Alcanivorax and Cycloclasticus from petroleum hydrocarbon polluted sites. These indigenous bacteria were present at low or undetectable levels before pollution but were found to dominate in oil polluted sites. Alcanivorax strains grow on n-alkanes and branched alkanes, while they cannot grow on any sugars or amino acids as carbon sources. Cycloclasticus strains grow on aromatic hydrocarbons, naphthalene, phenanthrene and anthracene, whereas Oleispira strains grow on aliphatic hydrocarbons, alkanoles and alkanoates (Harayama et al., 2004). There are several reports available on isolation and identification of P. aeruginosa, S. maltophilia, Rhodococcus sp., Bacillus sp., Acinetobacter sp., Ochrobactrum sp., and Exiguobacterium for hydrocarbon utilization/degradation and biosurfactant production (Varjani and Upasani, 2017). In addition, it is determined that the dominant taxa were primarily known Marinobacter, Vibrio, Pseudomonas, Acinetobacter and Arcobacter being found in hydrocarbon enriched environments as halotolerant microorganisms (Gieg and Toth, 2016). Members of the genera Pseudomonas, Bacillus, Burkholderia, Enterobacter isolated from petoleum contaminated sites which are enriched with hydrocarbon degrading members (Sarkar, 2017).

Species/Strain	Substrate	Species/Strain	Substrate
Achromobacter sp. NCW	CBZ	Geobacillus thermodenitrificans NG80-2	С15-С36
Acinetobacter baylyi ADP1	-C ₃₆	Gordonia sp. TY-5	C ₃ , C ₁₀ –C ₂₂
A. calcoaceticus 69-V	C11-C18	Janibacter sp. YY-1	DBF, FLE, DBT, PHE, ANT, DD
A. calcoaceticus EB104	C6-C18	Marinobacter NCE312	NAP
A. calcoaceticus NCIB 8250	C8-C16	Marinobacter sp. BC36, BC38, & BC42	C ₁₈
Acinetobacter sp. 2796A	C10-C16	Marinobacter hydrocarbonoclasticus 617	C16-C30
Acinetobacter sp. M-1	C13-C44	Mycobacterium avium	paraffins
Acinetobacter calcoaceticus RR8	C10-C34	M. avium subsp. paratuberculosis	paraffins
Acinetobacter lwoffl	C12-C28	M. bovis BCG	C12-C16
Acinetobacter sp. ODDK71	C12-C30	M. smegmatis	C9-C16
Acinetobacter sp. \$30	-C ₃₃	M. tuberculosis H37Rv	C11-C16
Acinetobacter sp. DSM17874	C10-C40	Mycobacterium sp. CH1	C12-C28
Alcanivorax borkumensis AP1	C10-C20	Mycobacterium sp. HXN 600	C ₆ –C ₂₄
Alcanivorax borkumensis SK2	C ₈ -C ₃₂	Mycobacterium sp. OFS	C11-C28
Alcaligenes odorans P20	-C ₃₃	Mycobacterium sp.	PYR, BaP
Alcaligenes denitrificans	FLA	Mycobacterium sp.JS14	FLA
Arthrobacter nicotianae KCC B35	C ₁₀ -C ₄₀	Mycobacterium sp. 6PY1, KR2, AP1	PYR
Arthrobacter sp.F101	FLE	Mycobacterium sp. RJGII-135	PYR,BaA, BaP
Arthrobacter sp. P1-1	DBT, CBZ, PHE	Mycobacterium sp. PYR-1, LB501T	FLA, PYR, PHE, ANT
Arthrobacter sulphureus RKJ4	PHE	Mycobacterium sp. CH1, BG1, BB1, KR20	PHE, FLE, FLA, PYR
Acidovorax delafiel dii P4-1	PHE	Mycobacterium flavescens	PYR, FLA
Bacillus cereus P21	PYR	Mycobacterium vanbaalenii PYR-1	PHE, PYR, dMBaA
Bacillus thermoleovorans B23 & H41	C ₉ C ₃₀	Mycobacterium sp. KMS	PYR
Bacillus thuringiensis/cereus A2	C6-C28	Nocardioides aromaticivorans IC177	CBZ
Brevibacteriumsp. HL4	PHE	Nocardioides sp. CF8	C2-C16
Burkholderia sp.S3702, RP007, 2A	PHE	Paracoccus sereninhilus/marcusii \$7	CC-
12TNFYE-5, BS3770	1112	Taracoccus scremprinus/marcush Txr	06-02
Burkholderia cepacia ATCC 25416	C10-C16	Paracoccus sp. strains Ophel & Sphel	C10-C28
Burkholderia cepacia RR10	C12-C34	Pasteurella sp. IFA	FLA
Burkholderia sp.C3	PHE	Planococcus alkanoclasticus MAE2	C11-C33
Burkholderia cepacia BU-3	NAP, PHE,	Polaromonas naphthalenivorans CJ2	NAP
	PYR		
Burkholderia cocovenenans	PHE	Prauserella rugosa NKKL B-2295	C8-CM
Burkholderia xenovorans LB400	BZ, BP	rseudomonas aureofaciens RWTH 529	C10
B. mallel	C ₁₀ -C ₁₆	Pseudomonas sp. 7/156	n.d
B. pseudomallei	C10-C16	Pseudomonas putida GPo1	C ₅ -C ₁₂
Chryseobacterium sp. NCY	CBZ	P. putida Pl	C ₈

Table 2.2. Petroleum utilizing microorganisms.

Cycloclasticus sp.P1	PYR	Pseudomonas fluore scens CHA0	C12-C32
Brachybacterium sp.	C 10-C20	Pseudomonas aeruginosa PAO1	C12-C24
Desulfatibacillum aliphaticivor ans	C C P annual PC201 C C		0.0
CV2803	CB-C18	C_{13} P. aerugmosa PG201 C_{10} - C_{16}	
Dietzia cinnamea P4	C11-C24	P. aeruginosa KSLA473	C3-C16
Dietzia psychral caliphila	C13-C24	P. aeruginosa NCIMB 8704 & 9571	C3-C16
P. aeruginosa ATCC 17423	C ₈ -C ₁₆	R. erythropolis Q15	C ₈ -C ₃₂
P. aeruginosa RR1	C12-C34	R. erythropolis 35-O	C6-C16
P. aeruginosa strains A 1, A 3, A4, A5, A6	C6-C23	R. erythropolis 23-D	C6-C36
Pseudomonas sp. PUP6	C12-C28	R. erythropolis NRRL B-16531	C6-C36
Pseudomonas sp.C18, PP2, DLC-P11	NAP, PHE	R. erythropolis 42-O	C6-C32
Pseudomonas sp.BT1d	HFBT	R. erythropolis 62-O	C6-C16
Pseudomonas sp.B4	BP, CBP	R. erythropolis 23-D	C6-C36
Pseudomonas sp.HH69	DBF	R. erythropolis 50-V	C6-C32
Pseudomonas sp.CA10	CBZ, CDD	R. erythropolis NRRL B-16531	C6-C36
Pseudomonas sp. NCIB 9816-4	FLE, DBF, DBT	Rhodococcus fascians 115-H	C ₆ -C ₃₂
Pseudomonas sp. F274	FLE	R. fascians 154-S	C6-C24
Pseudomonas paucimobilis	PHE	Rhodococcus rhodochrous	C12-C20
Pseudomonas vesicularis OUS82	FLE	Staphylococcus sp. PN/Y	PHE
Pseudomonas putida P16, BS3701,		Summer Lange and Laboration MRD 10 010	PYR, FLA, BaP
BS3750, BS590-P, BS202-P1	NAP, PHE	Stenotrophomonas mailophilia VUN 10,010	
Pseudomonas putida CSV86	MNAP	S. maltophilia VUN 10,003	PYR, FLA, BaA, BaP, DBA, COR
Pseudomonas fluorescens BS3760	PHE, CHR, BaA	Sphingomonas yanoikuyae R1	PYR
Pseudomonas stutzeri P15	PYR	Sphingomonas yanoikuyae JAR02	BaP
Pseudomonas saccharophilia	PYR	Sphingomonas sp.P2, LB126	FLE, PHE, FLA, ANT
Pseudomonas aeruginosa	PHE	Sphingomonas sp.	DBF, DBT, CBZ
Ralstonia sp. SBUG 290 U2	DBF NAP	Sphingomonas paucimobilis EPA 505	FLA, NAP, ANT, PHE
Rhodanobacter sp. BPC-1	BaP	Sphingomonas wittichii RW1	CDD
Rhodococcus sp.	PYR, FLA	strain AK01	C13-C18
Rhodococcus sp. 1BN	C6-C23	strain HdN1	C14-C20
Rhodococcus sp. RR12 & RR14	C14-C34	strain Hxd3	C12-C20
Rhodococcus sp. strains T12 & TMP2	C ₉ -C ₂₂	Terrabacter sp.DBF63	DBF, CDBF, CDD, FLE
Rhodococcus sp. NCIM5126	C13-C20	Thalassolituus oleivorans	C7-C20
Rhodococcus sp.WU-K2R	NAT, BT	Thermooleophilum album	C13-C20
Rhodococcus erythropolis I-19	ADBT	Thermus sp. C2	C9-C39
R. erythropolis D-1	DBT	Weeksella sp. RR7	C12-C34
P. aeruginosa ATCC 17423	C ₈ -C ₁₆	Xanthamonas sp.	PYR, BaP, CBZ
P. aeruginosa RR1	C12-C34	Xylella fastidiosa RR15	C14-C34

Table 2.3. Petroleum utilizing microorganisms.

3. MATERIALS AND METHODS

3.1. Sampling of the Contaminated Soil and Aquifer

The aquifer that was used as a seed was collected from the capillary fringe and the subjacent region of an aquifer located in Leuna, Germany contaminated with several 10,000 tons of petroleum hydrocarbons including mainly benzene, toluene, ethyl benzene, and xylene (BTEX) and methyl tertbutyl ether (MTBE) (Tischer et al., 2013). The aquifer in this study was taken from below the water table from different cores in September 2017. The petroleum contaminated soil was collected from waste landfill in Adana, Turkey which was highly contaminated with oily wastes taken from petroleum pipeline for transportation and storage.

3.2. Pre-treatment of the Contaminated Soil

Persulfate treatment method is used for remediation of organic fuel-contaminated environment by chemical treatment. Besides some disadvantages such as non-selective for contaminants and harmful to soil organisms, there is a minimum concentration level for oxidants (Satapanajaru et al., 2017). Persulfate oxidation (Wu et al., 2016) was applied as pre-treatment method directly to petroleum contaminated soil. 0.4 g/g TS sodium persulfate (Na₂S₂O₈) was used as oxidizer and 0.5 M of iron (II) sulfate (FeSO₄) and citric acid was used as activator. The contaminated soil sample was placed into a 150 mL conical flask and persulfate, activator and distilled water was added into flask, respectively. In the batch experiment, the soil to liquid ratio was 1:5. After 2 hours incubation on orbital shaker at maximum rpm level, persulfate and activator was added into flask in the same amount. Sample was incubated 2 hours more incubated on the orbital shaker. The mixture of soil sample was centrifuged at 14,000 rpm and the pellet was stored at 4°C until physicochemical analyses and microcosms studies. The supernatant was analyzed for determination of consumption of persulfate by addition of potassium iodide (KI) and formation of iodine (I₂) via spectrophotometrically measurement at 352 nm (Wahba et al., 1959). In addition, dissolved organic carbon was determined for the contaminated soil before and after the pretreatment stage.

3.3. Physicochemical Characterization of the Contaminated Soil, Treated Soil and Aquifer

The pH was measured with an instrumental method for determination of pH using a glass electrode of soil in water, 1 M potassium chloride (KCl) or 0.01 M calcium chloride (CaCl₂) solution based on TS ISO 10390 standard. Total Organic Carbon (TOC) was measured based on SM 5310 standard by an accreditation certificated company. Total Petroleum Hydrocarbon (TPH), aliphatic fractions and aromatic fractions of petroleum hydrocarbons were measured according to TS EN 14039 and S-TPHFID08 standard method respectively by an other accreditation certificated company. Total phosphorus was measured using Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES) according to EPA 200.7 standard. Total nitrogen was analyzed according to TS 8337 ISO 11261 standards include the modified method for determination of Total Kjeldahl Nitrogen. Dissolved Organic Carbon (DOC) was measured using high-temperature combustion method based on SM 5310 B standards. Preparation of sample for elemental analysis was applied through drying at 105°C overnight, digestion by nitric acid and sulfuric acid, and then microwave digestion. Elemental analyses to contaminated soil sample includes determination of magnesium, sulphur, iron, aluminum, manganese, copper, zinc, boron, nickel and vanadium were carried out by using inductively coupled plasma optical emission spectrometry (ICP-OES) through EPA 6010D standard. Total Solid and Volatile Solid were determined according to the Standard Methods (APHA, 2005).

3.4. Anaerobic Microcosm Cultivation

Anaerobic microcosms were set up in glass 120 mL serum bottles sealed with butyl rubber stoppers and aluminum crimps (Aldrich). The total volume of liquid was 80 mL with 40 mL of headspace volume. Microcosms were flushed with atmosphere of nitrogen (100%) and each microcosm had a growth medium with Resazurin for control of excess oxygen. Microcosms were incubated in cooled and heated incubator based on their temperature conditions.

The environmental medium conditions were modified with two different electron acceptor including trace elements and vitamin solution based on OECD 311 protocol "Anaerobic Biodegradability of Organic Compounds in Digested Sludge: by Measurement of Gas Production". Both conditions comprised a medium with sources of nitrogen and phosphorus, vitamin and trace elements prepared in de-ionized water (OECD, 2006).

The base medium includes anhydrous potassium dihydrogen phosphate (KH_2PO_4) (0.27 g/L), disodium hydrogen phosphate dodecahydrate (Na₂HPO₄.12H₂O) (1.12 g/L), ammonium chloride (NH₄Cl) (0.53 g/L), calcium chloride dehydrate (CaCl₂.2H₂O) (0.075 g/L), magnesium chloride hexahydrate (MgCl₂.6H₂O) (0.1 g/L), iron (II) chloride tetrahydrate (FeCl₂.4H₂O) (0.02 g/L), resazurin as oxygen indicator (0.001 g/L), sodium sulphide nonahydrate (Na₂S.9H₂O) (0.1 g/L), 10 mL of trace element stock solution and 10 mL of vitamin stock solution. During preparation of medium, the bottle was flushed with atmosphere of nitrogen (100%). In the sulphate-reducing environment, potassium sulphate (K_2SO_4) (1.8 g/L) was used as source of sulphate. Trace element stock solution included manganese chloride tetrahydrate (MnCl₂.4H₂O) (50 mg/L), boric acid (H₃BO₃) (5 mg/L), zinc chloride (ZnCl₂) (5 mg/L), copper (II) chloride (CuCl₂) (3 mg/L), disodium molybdate dihydrate (Na₂MoO₄.2H₂O) (1 mg/L), cobalt chloride hexahydrate (CoCl₂.6H₂O) (0.1 g/L), nickel chloride hexahydrate (NiCl₂.6H₂O) (10 mg/L), disodium selenite (Na₂SeO₃) (6 mg/L) and sodium tungstate dehydrate ($Na_2WO_4 \cdot 2H_2O$) (8 mg/L). Vitamin stock solution comprised with 4-aminobenzoic acid (40 mg/L), D(+)-biotin (10 mg/L), nicotinic acid (0.1 g/L), calcium D(+)pantothenate (0.05 g/L), pyroxidine dihydrochloride (0,15 g/L), thiamine (0.1 g/L) made up in NaP Buffer (10 mM, pH 7.1). All solutions were autoclaved at 121°C for 15 minutes.

Microcosms were inoculated with 10 g of the aquifer. Microcosms were fed with 5 g of the petroleum contaminated soil (Sherry et al., 2013).

Produced gas volume was determined by using 7,000 mbar manometer (Lutron PM-9107, China) manometer periodically (in each 30-40 days). Gas composition from headspace was analyzed for CH₄ and CO₂ using HP Agilent 6850 Gas Chromatograph (GC) with a thermal conductivity detector (HP Plot Q column 30 m \times 0.53 mm). Peak areas were calibrated using the CH₄ and CO₂ gas standards and the reproducibility of replicate standard analyses were typically less than 1% relative standard deviation.

3.5. Microbial Community Analysis

Genomic DNA and Total RNA extraction, PCR Amplification of 16S rRNA genes and specific target genes, quantitative real time PCR was applied to aquifer and contaminated soil, and samples from microcosms at the beginning and end of cultivation. High resolution melting analysis was done for microbial community profile observation of samples from microcosms. Metagenomics analysis is applied to aquifer and contaminated soil due to determination of microbial population.

3.5.1. Genomic DNA and Total RNA Extraction

Total nucleic acid (Genomic DNA and Total RNA) was extracted by using manual extraction method for soil and aquifer samples by using CTAB Method for NA Extraction. 50-100 mg of soil sample is placed into screw-capped tube includes metal beads inside. After 500 µl of CTAB solution, the sample was vortexed strongly by homogenizator at 7,000 rpm for 2 minutes. After centrifugation at 14,000 g for 2 minutes, supernatant was used through the total nucleic acid extraction method. 500 µl Guanidium isothiocynate (3 M) and 20 µl of Proteinase-K (20 mg/mL) are placed onto the supernatant sample into the clean Eppendorf tube. The sample as incubated at 55°C for 1 hour and then at 95°C for 15 minutes. During incubation, the sample was vortexed in each 5-10 minutes. After cooling down, the sample is centrifuged and the supernatant was transferred into new Eppendorf tube for the binding step. 500 μ l of isopropanol was added into the sample solution. Clean NA column was placed into new Eppendorf tube and the mixture of sample and binding buffer was put into the column. Until the end of the sample, the tube with NA column was centrifuged at 14,000 g for 1 minute and the filtrate was thrown away. Extracted nucleic acid was washed by using Guanidium isothiocynate isopropanol solution and washing buffer through the NA column. For the elution step, 100 µl of MGW was placed into the NA column and then the column was incubated at 50-60°C for 1 minute or at room temperature for 2-3 minutes. At last, the tube was centrifuged and the filtrate includes the extracted total nucleic acid. Total nucleic acid sample was stored at -40°C until polymerase chain reaction analyses and metagenomics analyses.

3.5.2. PCR Amplification of 16S rRNA Genes and Specific Target Genes

Amplification of 16S rRNA from the extracted nucleic acid was run with universal primers pA (5'-GAGTTTGMTCCTGGCTCAG-3') – pH (5'- ACGGYTACCTTGTTACGACTT-3'). The sequences of specific target genes are given in Table 2.1. PCR Amplification was performed with a 10 μ l reaction volume containing 2 μ l of template NA, 100 pmol/ μ l of each primer, 5 μ l of 2×Bioline RT-qPCR mix, 0,5 μ l of 10×LC green dye and completed with MGW. PCR amplification was done by Bio-Rad CFX Connect Instrument (Bio-Rad Inc., USA) with an initial denaturation at 95°C for 5 min followed by 40 cycles of denaturation at 95°C for 15 sec, annealing for 25 sec at 54°C and extension at 72°C for 45 sec, following with melt curve analysis between 65°C – 95°C. For target genes the annealing temperature was given in Table 3.1. The melt curve analysis of specific target genes was between 65°C – 98°C. The results of quantification and melt curve summary were observed from Bio-Rad CFX Manager 3.1.

Primer	Target Gene	Target Organism
assA_1578f	assA	Aliphatic Hydrocarbon Degraders
assA_1967r	assA	Aliphatic Hydrocarbon Degraders
BCR697f	bcrA	Degraders of Aromatics
BCR1178r	bcrA	Degraders of Aromatics
mcrA1f	mcrA	Methanogens
mcrA1r	mcrA	Methanogens
DSRp2060F	dsrB	Sulphate Reducers
DSR4R	dsrB	Sulphate Reducers

Table 3.1. Primer sets and their targets (Kolukırık, 2010).

3.5.3. Quantitative Real-Time PCR

Quantitative Real-Time PCR Amplification of 16S rRNA from the extracted nucleic acid was primers pA (5'-GAGTTTGMTCCTGGCTCAG-3') - pH universal (5'run with ACGGYTACCTTGTTACGACTT-3'). The primer sets refer to specific target genes that are given in Table 2.1 used for the Q-PCR assays. Q-PCR Amplification was performed with a 10 µl reaction volume containing 2 μ l of template NA, 100 pmol/ μ l of each primer, 5 μ l of 2×Bioline RT-qPCR mix, 0,6 µl of RT-RIN mix, 0,5 µl of 10×LC green dye and completed with MGW. Q-PCR assay for 16S rRNA Amplification was done by Bio-Rad CFX Connect Instrument (Bio-Rad Inc., USA) with following thermocycling program as a reverse transcription step at 45°C for 30 min, following with an initial denaturation at 95°C for 3 min followed by 40 cycles of denaturation at 95°C for 15 sec, annealing for 50 secs at 54°C and extension at 72°C for 5 secs, and melt curve analysis was performed from 77°C to 95°C to determine if only one amplified product was generated during Q-PCR. For target genes, primer sequences and their annealing temperature is given in Table 3.2. The melt curve analysis for these target genes was performed between $65^{\circ}C - 98^{\circ}C$. The results of quantification and melt curve summary were observed from Bio-Rad CFX Manager 3.1.
Drimor	Target	Cono Soguenzo	Annealing
rimer	Gene	Gene Sequence	(°C)
assA_1578f	assA	5'-KGAYTTTGAGSASCTTTTCS-3'	56
assA_1967r	assA	5'-TCGTCCACRTARTCGTCGTC-3'	
BCR697f	bcrA	5'-GTYGGMACCGGCTACGGCCG-3'	55
BCR1178r	bcrA	5'-TTCTKVGCIACICCDCCGG-3'	
mcrA1f	mcrA	5'-RTRYTMTWYGACCARATMTG-3'	58
mcrA1r	mcrA	5'-YTGDGAWCCWCCRAAGTG-3'	
DSRp2060F	dsrB	dsrB 5'-CAACATCGTYCAYACCCAGGG-3'	
DSR4R	dsrB	5'-GTGTAGCAGTTACCGCA-3'	

Table 3.2. Primer sequences and their annealing temperatures (Kolukırık, 2010).

3.5.4. High Resolution Melting (HRM) Analysis

The nested PCR approach was used to amplify microbial rDNAs (Kolukirik et al., 2011b). The first round qPCRs were carried out using the pA (5'-GAGTTTGMTCCTGGCTCAG-3') – pH (5'-ACGGYTACCTTGTTACGACTT-3') primer set. The vF (5'-CCTACGGGAGGCAGCAG-3') and vR (5'-ATTACCGCGGCTGCTGG-3') primer set was used for the second round PCR. The following thermal cycling conditions were applied for all of the reactions: 3 min at 95°C, 40 cycles of 20 sec at 95°C, 20 sec at 53°C and 30 sec at 72°C. Biospeedy® HRM Master Mix (Bioeksen Ltd. Co., Turkey) and Bio-Rad CFX Connect Instrument (Bio-Rad Inc., USA) were used for all reactions. The reactions contained 1.5 mM MgCl2, 0.2 mM dNTP mix, 1x Reaction Buffer, 0.1 U Fast Start Proof Reading Recombinant Taq DNA Polymerase, 1x EvaGreen, 5 ng/mL DNA template and 0.5 mM of each primer. To ensure and detect whether the expected product was amplified during PCR and for HRM analysis, melting curve analyses were applied between 60 and 95°C at a fluorescence reading rate of 0.1 C/acquisition. HRM profiles were obtained as described by Reia et al. (2010). Microbial community profile dendrograms were obtained using Minitab 14 Software (Minitab Inc., England) based on the similarities between the HRM profiles. Bivariate correlation analyses between the bacterial and the other characteristics of the samples were performed using MINITAB 14. The correlations were evaluated using Pearson's method. Statistical significance was taken as p < 0.05. Principal component analysis (PCA) ordinations were calculated in MINITAB 14.

3.5.5. Metagenomics Analysis

The protocol included primer pair sequences for the V3 and V4 regions of the 16S rRNA that created a single amplicon of ~460 bp (Klindworth et al. 2013). The protocol also included overhang adapter sequences that must be appended to the primer pair sequences for compatibility with the Illumina index and sequencing adapters. Illumina adapter overhang nucleotide 16S rRNA-specific sequences were 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGG-CWGCAG-3' for the forward primer and 5'-GTCTCGTGGGGCTCGGAGATGTGTATA-AGAGACAGGACTACHVGGGTATCTAATCC-3' for the reverse primer. The first PCR was performed using the Biospeedy Proof Reading DNA Polymerase 2× Reaction Mix (Bioeksen R&D Technologies) and 200 nm of each primer. The following program was performed on a Bio-Rad CFX Connect Instrument (Bio-Rad Laboratories, Hercules, CA, USA): 95°C for 3 min, followed by 25 cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, followed by 72°C for 5 min. The PCR products were separated on an agarose gel to verify the size (~550 bp) and purified using the Biospeedy PCR Product Purification Kit (Bioeksen R&D Technologies).

The dual indices and Illumina sequencing adapters were attached to the purified first PCR products via the second PCR, which was run using the Nextera XT Index Kit (Illumina, Inc., San Diego, CA, USA) and the following program: 95°C for 3 min, eight cycles of 95°C for 30 s, 55°C for 30 s, and 72°C for 30 s, followed by 72°C for 5 min. The PCR products were purified using the Biospeedy PCR Product Purification Kit. The final library was assessed on a Bioanalyzer DNA 1000 chip to confirm the size (~630 bp). The final library was diluted using 10 mM Tris, pH 8.5, to 4 nM, and 5-µL aliquots were mixed for pooling the libraries. In preparation for cluster generation and sequencing, pooled libraries were denatured with NaOH, diluted with hybridization buffer (HT1), and then heat-denatured before the MiSeq sequencing. Illumina MiSeq (ver. 3) reagent kits were used. Each run included a minimum of 5% PhiX as an internal control.

The raw sequence data (concatenated forward and reverse sequence reads) were cleaned, reduced, and analyzed using Mothur (ver. 1.36.1) (Schloss et al. 2009). First, the barcode and the primer sequences were trimmed, and unique sequences were identified. The trimmed unique sequences were aligned with Greengenes rRNA database sequences using the BLASTN algorithm (DeSantis et al. 2006). Before this, the Greengenes database sequences were trimmed to include only the V3–V4 region. The overhangs at both ends were removed by filtering the sequences, and a redundancy check was performed. For further de-nosing, the sequences were pre-clustered. Chimeras were eliminated using the implanted code UCHIME (Edgar et al. 2011). The sequences

were classified using the Bayesian classifier within Mothur. The reference and taxonomy files were adopted from the Greengenes database (DeSantis et al. 2006). After operational taxonomic unit (OTU) picking and taxonomic assignments using the SILVA rDNA database, the OTUs were binned in to phylotypes.

3.6. Statistical Analysis

Statistical analyses were performed using the software MINITAB 14 (Minitab Ltd., England). Correlations were evaluated using Pearson's method. Statistical significance was taken as p<0.05.

4. RESULTS AND DISCUSSION

4.1. Results of Physical and Chemical Characterization of Contaminated Soil and Aquifer

The chemical and physical characterization of the aquifer (A), petroleum contaminated soil (SO) and pre-treated contaminated soil (TSO) was given in Table 4.1 including pH, total phosphorus, C/N ratio, total nitrogen, TS-TVS, TOC and DOC parameters. The results of TPH and, aliphatic and aromatic fractions of petroleum hydrocarbons for aquifer, contaminated soil and treated soil were given in Table 4.2. Tischer et al. (2013) indicated that the inoculum sampling from aquifer in Leuna, Germany consisted of sand and gravel with oxygen concentration in all cores ranged between 0.01 mg l⁻¹ below the water table and almost 10 mg l⁻¹ above the water table. According to Tischer and his colleagues, the aquifer which has 6-8 m depth where they measured MTBE concentrations are evenly distributed over dept and BTEX concentrations are peaked at the top.

The pH of aquifer was neutral, while contaminated soil slightly acidic condition (pH 5) was noted. Total phosphorus and nitrogen were present in relatively higher concentrations in aquifer than contaminated soil. C/N ratio was more in contaminated soil up to 15 times than aquifer. Sulphate concentration in aquifer was slightly same as contaminated soil.

Organic carbon is mostly derived from biota, microbial biomass and others. In general, crude oil contamination in the soil might contribute the TOC concentration due to petroleum hydrocarbon contents (Wang et al., 2013). According to many studies, crude oil or petroleum contaminated sites might have different TPH concentration in wide range such as from 10,000 ppm to 50,000 ppm. Wang and his colleagues reported that the higher TPH level refers to the higher TOC level, so TOC concentration might represent TPH concentration in the soil sample. TOC concentration was detected at considerably higher concentration in contaminated soil (312 g kg⁻¹), related to aquifer (6 g kg⁻¹). As mentioned before, the aquifer includes more low molecular weight hydrocarbons such as BTEX and MTBE than the contaminated soil which is polluted with high molecular weight petroleum hydrocarbons. Total petroleum hydrocarbons (TPHs) and the aliphatic and aromatic fractions of petroleum hydrocarbons were analyzed for the aquifer, contaminated soil and treated contaminated soil in the beginning of the study. As seen in Table 4.2, TPH concentration of both contaminated and treated contaminated soil (69 g kg⁻¹, 74 g kg⁻¹) is 70 times higher than the aquifer (1 g kg⁻¹).

Parameter	Unit	Α	SO	TSO
pH	-	7	5	4
Total Phosphorus (P)	mg/kg	124	119	98
C/N ratio	-	42	614	638
Sulphate (SO_4^{-2})	mg/kg	800	790	11720
Total Kjeldahl Nitrogen (TKN)	mg/kg	340	280	320
Total Solids (TS)	%	80	96	93
Total Volatile Solids (TVS)	%	1	42	30
Total Organic Carbon (TOC)	g/kg	6	312	352
Dissolved Organic Carbon (DOC)	mg/kg	162	53	1422

Table 4.1. Physicochemical characterization of contaminated soil and aquifer.

Table 4.2. Results of TPH, aliphatic and aromatic fractions of petroleum hydrocarbons in contaminated soil and aquifer.

Parameter	Unit	Α	SO	TSO
Total Petroleum Hydrocarbon (TPH)	g/kg	1	69	74
C5-C8 Aliphatic Fraction	mg/kg	67	<60	34
C8-C16 Aliphatic Fraction	mg/kg	286	16,100	10,600
C16-C35 Aliphatic Fraction	mg/kg	<30	83,200	49,800
C5-C9 Aromatic Fraction	mg/kg	9	<80	<16
C9-C16 Aromatic Fraction	mg/kg	40	4,290	999
C16-C35 Aromatic Fraction	mg/kg	<30	50100	10,800

The results of elemental analyses of contaminated soil (SO) were given in Table 4.3. Sulphur element was detected at considerably higher concentration (36,330 mg kg⁻¹) that could be utilized as electron acceptor. Iron and magnesium were present in relatively higher concentration (19,785 mg kg⁻¹ and 16,830 mg kg⁻¹, respectively), while heavy metals like aluminum, manganase, zinc, copper, boron, nickel and vanadium were present at relatively lower concentrations.

Parameter	Amount (mg/kg)
Magnesium (Mg)	16,830
Sulphur (S)	36,330
Iron (Fe)	19,785
Aluminum (Al)	28
Manganase (Mn)	3
Copper (Cu)	19
Zinc (Zn)	41
Boron (B)	18
Nickel (Ni)	51
Vanadium (V)	102

Table 4.3. Elemental analyses of contaminated soil.

4.2. Results of Pre-treatment of the Contaminated Soil

Persulfate oxidation was used for enhancement of bioavailability of organic matter, especially petroleum hydrocarbons. Wu and his colleagues (2016) indicated that soil TPH was removed using a persulfate oxidation, mostly effective by the addition of Fe^{+2} . However, it was not completely removed in such cases due to complicated structure in the residual components of TPH and the existence of TPH components not oxidized by persulfate. As a result of chemical treatment of contaminated soil sample by persulfate oxidation, DOC and consumed persulfate amount was analyzed. Determination of iodine (I₂) formation 90% of persulfate was consumed during treatment process calculated by the calibration factor of 24.4 (MIT Open Course Ware, 2005). Zhao and his colleagues (2013) reported that the removal of PAHs enhanced by citrate-chelated ferrous ion activation. After persulfate oxidation, persulfate was converted into sulphate ion by oxidation reaction given as following sequential equations (Zhao et al., 2013):

$$\begin{split} S_2 O_8^{-2} + F e^{+2} &\rightarrow S O_4^{-2} + S O_4^{\cdot-} + F e^{+3} \ (Eq. \, 4.1) \\ 2H_2 O + S_2 O_8^{-2} &\rightarrow 2H S O_4^{-} + H_2 O_2 \ (Eq. \, 4.2) \\ H_2 O_2 + F e^{+2} &\rightarrow F e^{+3} + O H^{\cdot} + O H^{-} \ (Eq. \, 4.3) \\ S O_4^{\cdot-} + F e^{+2} &\rightarrow S O_4^{-2} + F e^{+3} \ (Eq. \, 4.4) \end{split}$$

Thus, sulphate was present at relatively higher concentration (11,720 mg kg⁻¹) in chemically treated soil than the presence of sulphate in contaminated soil (790 mg kg⁻¹). As seen in Table 4.1,

dissolved carbon of pre-treated contaminated soil was detected greater than dissolved carbon of contaminated soil as 53 and 1,422 mg/kg, respectively. After chemical treatment as oxidation method, the amount of dissolved organic carbon increased (Sharp et al., 1993).

After persulfate oxidation, the removal efficiency is observed via TPH analysis. There is no significant difference in total petroleum hydrocarbon concentration for both contaminated and treated contaminated soil. Based on a study about persulfate oxidation of petroleum contaminated soil, it reported that persulfate reduced the C_{10} - C_{40} hydrocarbon concentrations in soil ecosystem effectively (Satapanajaru et al., 2017). Thus, according to the aliphatic and aromatic fractions of petroleum hydrocarbons results, the concentration of aliphatic and aromatic fractions decreased in all hydrocarbon chains after pre-treatment method (Table 4.2).

4.3. Results of Performance of Anaerobic Microcosm Test

The analyses of anaerobic microcosm cultivation were monitored as cumulative gas production, CO_2 and CH_4 production, SO_4^{-2} removal, and TOC removal efficiency during test period. Cumulative gas production of methanogenic and sulphate-reducing environment under 4 different temperature were given in Figure 4.1 and 4.2, respectively. For all results, "M" refers to methanogenic conditions and "S" refers to sulphate-reducing conditions. As mentioned before, A, SO, and TSO meant the aquifer, contaminated soil and pre-treated contaminated soil sample, respectively. The numbers, which were written following environment conditions, were given the temperature conditions.

For both conditions, cumulative gas production of thermophilic conditions (55°C) was higher than the other temperature conditions. In methanogenic environment, the highest gas production was observed under aquifer and treated soil (M55-A+TSO) incubation with thermophilic conditions. In addition, except thermophilic conditions the other microcosms did not produce more than 40 mL gas over 214 days.

Under sulphate-reducing environment, the highest gas production was observed belongs to the incubation of both aquifer and soil (S55-A+SO) under thermophilic conditions. The incubation of both aquifer and treated soil (S55-A+TSO) continued as close to the highest gas produced microcosm over 205 days.

Figure 4.1. Cumulative gas production under methanogenic environment.

Figure 4.2. Cumulative gas production under sulphate-reducing environment.

4.3.1. CO₂ Production

Methanogenesis is performed by methanogenic archaebacteria under the presence of the enzyme methyl coenzyme M methylreductase (mcrA) resulting in CH_4 and CO_2 production. Before microbial methanogenesis, organic matter degradation process is carried out. Methanogenesis pathway is a strictly anaerobic process including acetrophic and hydrogenotrophic methanogenesis. Acetate (CH_3COO) iss converted into CH_4 and CO_2 . Then, H_2 reacts with CO_2 through CH_4 and H_2O during hydrogentrophic process (Bastviken, 2009). According to many studies, degradation of organic matter may yield more energy in the presence of different electron acceptors as nitrate, sulphate, iron than methanogenesis. Anaerobic biodegradation of organic matter under sulphate-reducing conditions results in bicarbonate (HCO_3) and hydrogen sulfide (H_2S) formation in the net reaction. During intermediate steps of sulphate reduction pathway, CO_2 formation may occur depending on CO_2 evolution resulting from temperature and alkalinty (Jaekel et al., 2015; Machel, 1989).

Over incubation period, CO_2 formation was determined for both environment conditions. The results of CO_2 amount of all microcosms calculated by using produced gas volume from methanogenic and sulphate-reducing environment was given in Figure 4.3 and 4.4, respectively.

As seen in Figure 4.3, the highest CO_2 formation occurred in the microcosm including the aquifer and pre-treated contaminated soil (A+TSO) under mesophilic conditions in methanogenic environment. Over time period, CO_2 production increased rapidly for all different microcosms except aquifer incubation under psychrophilic and thermophilic conditions. In contrast to methanogenic environment, as temperature increased the CO_2 formation increased under sulphate-reducing environment. The highest CO_2 production occurred during incubation of aquifer and pre-treated contaminated soil (A+TSO) at thermophilic conditions under sulphate-reducing environment as approximately 1,600 µmol as seen in Figure 4.4.

Figure 4.3. Carbon dioxide production under methanogenic environment.

Figure 4.4. Carbon dioxide production under sulphate-reducing environment.

4.3.2. CH₄ production

During methanogenesis and sulphate-reducing environment, end production of net reaction may be methane gas (CH₄). Many hydrocarbon degradation pathways include methanogenesis and sulphate reduction processes, respectively. Thus, under net reaction equation of both reducing environment CH₄ formation was occurred as seen Table 2.1 (Jørgensen and Parkes, 2010). However, over time period only the incubation with aquifer at room temperature under methanogenic environment produced methane gas (CH₄) after 50 days as seen in Figure 4.5.

Figure 4.5. Methane production under methanogenic environment at mesophilic condition.

4.3.3. Sulphate Removal

Anaerobic biodegradation under sulphate-reducing environment is carried out by utilizing sulphate (SO_4^{-2}) as electron acceptor during bacterial sulphate reduction as mentioned before. According the net reaction of sulphate reduction pathway, degradation of organic matter results in SO_4^{-2} removal by reduction through the other states in the system. Besides the utilization of sulphate ion, sulphur and its variances may utilize for degradation of organic matter as seen based on Reaction 4 in Table 2.1 (Machel, 1989).

The determination of sulphate (SO_4^{-2}) was applied through only the cultivations under sulphate-reducing environment in Figure 4.6. Removal of sulphate during the incubation with aquifer (A) as control is the highest ratio in each condition as temperature range. Sulphate was

removed from the system approximately 25-50% under the biodegradation test including aquifer and contaminated soil (A+SO), and aquifer and pre-treated contaminated soil (A+TSO). The highest removal of sulphate among them as A+SO occurred at room temperature incubation. In addition, the highest removal of sulphate occurred at psychrophilic conditions between both aquifer and pre-treated contaminated soil (A+TSO).

Figure 4.6. Sulphate removal under sulphate-reducing condition.

4.3.4. TOC Removal

TOC comprises all forms of organic carbon including petroleum hydrocarbons and natural organic matter. TOC is an useful quantitative method for determination of petroleum hydrocarbon presence because TOC includes all weight fractions of TPH (Wang et al.,2009). Besides TPH analysis, TOC concentration was monitored for all microcosms at last day of the incubation for determination of carbon removal efficiency via the difference between first and last samples.

Based on the results, organic carbon degradation under methanogenic condition with different temperature range is less than 3% for each microcosm. On the other hand, microcosm test under sulphate-reducing condition at different temperature ranges affected the efficiency of TOC degradation more than methanogenic environment. Especially, the incubation with aquifer and pre-treated contaminated soil (A+TSO) has the higher removal efficiency in psychrophilic, room temperature and mesophilic conditions. The highest efficiency as 70% is observed in sulphate-reducing environment under mesophilic conditions by running with aquifer and pre-treated contaminated soil (A+TSO). Incubation of aquifer (A) as control has effective TOC degradation between 20-30%. However, control microcosms including contaminated soil (SO) and pre-treated contaminated soil (TSO) had insufficient biodegradability of organic carbon, less than 1%.

The detailed results of TOC removal for methanogenic and sulphate-reducing environment is given in Table 4.4 and 4.5, respectively. In addition, percentage of removal efficiency over the incubation period for both reducing environment is given in Figure 4.7 and 4.8 as a graph.

Methanogenic Environment	TOC removal (mmol)	TOC removal (%)
M12-A	0.01	0.2
M12-SO	0.2	0.2
M12-TSO	0.3	0.2
M12-A+SO	0.6	0.4
M12-A+TSO	0.5	0.3
M25-A	0.1	2.1
M25-SO	0.8	0.6
M25-TSO	0.8	0.5
M25-A+SO	0.6	0.5
M25-A+TSO	0.9	0.6
M37-A	0.1	2.2
M37-SO	0.7	0.6
M37-TSO	1.0	0.7
M37-A+SO	1.0	0.7
M37-A+TSO	1.3	0.9
M55-A	0.01	0.3
M55-SO	0.1	0.1
M55-TSO	0.1	0.1
M55-A+SO	0.3	0.2
M55-A+TSO	0.5	0.3

Table 4.4. TOC removal under methanogenic environment.

Sulphate-reducing Environment	TOC removal (mmol)	TOC removal (%)
S12-A	0.8	17
S12-SO	0.01	0.01
S12-TSO	0.1	0.1
S12-A+SO	65	48
S12-A+TSO	85	56
S25-A	1.4	28
\$25-\$O	0.04	0.03
S25-TSO	0.1	0.1
S25-A+SO	68	50
S25-A+TSO	79	52
S37-A	1.2	25
S37-SO	1.1	0.8
S37-TSO	0.3	0.2
S37-A+SO	58	43
S37-A+TSO	106	70
S55-A	1.1	22
S55-SO	0.4	0.3
S55-TSO	0.2	0.1
S55-A+SO	45	33
S55-A+TSO	24	16

Table 4.5. TOC removal under sulphate-reducing environment.

Figure 4.7. TOC removal efficiency under methanogenic conditions.

Figure 4.8. TOC removal efficiency under sulphate conditions.

4.4. Results of Microbial Community Analysis

16S rRNA based metagenomics analysis by Next Generation Sequencing was applied to contaminated soil and aquifer for determination of microbial population before microcosms set up. High Resolution Melting (HRM) analysis for microbial community profile was done for microcosms at last day of cultivation due to the determination of similarities between cultures used by dendrogram.

16S rRNA based metagenomics analysis is applied to contaminated soil and aquifer for determination of microbial communities before microcosm tests. In these results, metagenomics results are given for both contaminated soil and aquifer depending on bacterial abundance and microbial activity.

Based on the previous studies, the majority of anaerobic hydrocarbon-degrading bacteria have been indicated as *Proteobacteria* and *Firmicutes*. Some pilot studies show that the evolution of the indigenous bacterial community altered over time which is dominated by *Proteobacteria* and *Actinobacteria* (Greer and Juck, 2017). Yang et al. (2016) indicated that most abundant taxa belonged to known hydrocarbon-degrading species as *Sphingomonas*, *Novosphingobium*, *Burkholderia*, *Arthrobacter*, *Rhodococcus* and *Nocardia*. Furthermore, many nodes in the network of specialists for contaminated soil belonged to the *Rhizobiales* have been reported as capable to degrade PAHs.

4.4.1. Results of Metagenomics Analysis of Contaminated Soil

The results of 16S rRNA gene-based Illumina MiSeq high-throughput sequencing through isolated DNA of contaminated soil indicated that *Firmicutes* (30%), *Actinobacteria* (27%) and *Proteobacteria* (20%) were the most dominant phyla, and the most abundant orders were *Actinomycetales* (30%), *Lactobacillales* (30%) and *Burkholderiales* (14%) which can be classified into living microorganism in petroleum impact habitats in Figure 4.9. Based on the previous studies, *Actinobacteria, Firmicutes* and *Proteobacteria* were highly abundant in natural contaminated soil. Also, it is revealed that members of the genara *Bacillus* and *Burkholderia* including as order taxa *Lactobacillales* and *Burkholderiales* were present in the contaminated soil as petroleum utilizing microorganisms. Militon et al. (2010) reported that *Actinomycetales* under Actinobacteria phylum is observed to be able to play a role in a bioremediation of alkane-contaminated soils.

Figure 4.9. The phylogenetic results of DNA from contaminated soil.

Depending on Next Genome Sequencing method, from isolated total nucleic acid which refers to activation of microbial population the results show that the most abundant phyla were *Proteobacteria* (58%) and *Actinobacteria* (39%), and the most abundant orders were *Actinomycetales* (39%), *Rhodobacterales* (25%), *Rhizobiales* (17%) and *Burkholderiales* (10%) in Figure 4.10. Based on RNA-based microbial community analysis showed that the most abundant orders as *Actinomycetales*, *Rhodobacterales*, *Rhizobiales* and *Burkholderiales* has more microbial activity than the other taxa. It means that petroleum utilizing micoorganisms which is known as *Burkholderiales* and *Rhodobacterales* were highly abundant as microbial activation in contaminated soil. In addition, even they were present at low abundance *Pseudomonadales* and *Caulobacterales* are known as petroleum utilizing microorganisms.

Figure 4.10. The phylogenetic results of NA from contaminated soil.

4.4.2. Results of Metagenomics Analysis of Aquifer

The results of 16S rRNA gene-based Next Genome Sequencing through isolated DNA of aquifer indicated that *Firmicutes* (30%), *Actinobacteria* (27%) and *Proteobacteria* (20%) were the most dominant phyla, and the most abundant orders were *Actinomycetales* (30%), *Lactobacillales*

(30%) and *Burkholderiales* (14%) which can be classified as living microorganism in petroleum impact habitats in Figure 4.11. The dominant taxa is as similar as microbial community profile of contaminated soil. Tischer et al. (2013) reported that the other important phylotypes which have a role in anaerobic biodegradation by terminal electron acceptors are *Dehalobacter*, *Desulfobulbaceae*, *Acidovorax*, *Bacilus*, *Clostridiales*, *Geobacter* and *Comamonadaceae*.

Figure 4.11. The phylogenetic results of DNA from aquifer.

Based on Next Genome Sequencing method, from isolated total nucleic acid which refers to activation of microbial population the results show that the most abundant phyla were *Proteobacteria* (51%) and *Actinobacteria* (28%), and the most abundant orders were *Actinomycetales* (28%), *Pseudomonadales* (11%), *Lactobacillales* (11%), *Rhodobacterales* (9%), *Rhizobiales* (9%) and *Burkholderiales* (6%) in Figure 4.12. The order of *Clostriadales* was present

into aquifer at lower abundance (2%) which microorganism plays an essential role in sulphate reduction pathway, especially in step including dissimilatory sulphite reductase gene (dsrB) (Gieg et al., 2014).

Figure 4.12. The phylogenetic results of NA from aquifer.

4.4.3. Results of High Resolution Melting (HRM) analysis

Microbial community profile dendrograms were obtained based on the similarities between the HRM profiles at last day of microcosm tests for all conditions. Based on HRM profiles principal component analysis (PCA) ordinations were calculated for correlation analysis due to the microbial community profile. Depending on the 16s rRNA based analysis for bacterial abundance and bacterial activity, microbial community profile dendrograms are given in Figure 4.13 and 4.14, respectively.

Figure 4.13. Microbial community profile dendrogram based on bacterial abundance.

Figure 4.14. Microbial community profile dendrogram based on bacterial activity.

4.5. Results of Correlation between Microbial and Chemical Characteristics of Microcosm Tests

Correlation statistics are used for determination of relationship between two continuous variables. Pearson correlation coefficient (PCC) refers to the strength and direction of the linear relationship between two variables. The strength of linearity determines by PCC value from -1 to +1. The larger the absolute value of the coefficient makes stronger the relationship between the variables. For the Pearson correlation, an absolute value of 1 indicates a perfect linear relationship. A correlation close to 0 indicates no linear relationship between the variables.

The sign of the coefficient indicates the direction of the relationship. If both variables tend to increase or decrease together, the coefficient is positive, and the line that represents the correlation slopes upward. If one variable tends to increase as the other decreases, the coefficient is negative, and the line that represents the correlation slopes downward. The significance of correlation between variables, p-value is compared. Usually, the significance level in hypothesis is 0.05 works well. If the p-value is equal to or less than 0.05, the correlation is statistically significant. If it is greater than 0.05, the correlation is not statistically significant (MINITAB Inc., 2017).

In this study, microbial and chemical characterization results were correlated between them for statistical analyses. For correlation of the chemical characterization, CO_2 production as volume in μ mol, CH_4 production as volume in μ mol, SO_4^{-2} reduction as amount in mmol, TOC removal as amount in mmol and TOC removal as percentage were used. Relative bacteria quantity, relative bacterial activity, quantity of microbial activation per unit bacteria (Act/Bact), principal component analysis as community profile from high resolution melting analysis for both rDNAs and rRNAs were used for correlation to chemical characterization. Relative bacteria quantity and relative microbial activation quantity were determined by proportion to each other using ΔCq quantification method. Quantity of microbial activation per unit bacteria refers to ratio between relative microbial activation quantity and relative bacteria quantity. HRM results give the alteration of microbial community profile over the incubation period. The statistical analyses were calculated by the expression level of 16S rRNA genes, and expression level of specific target genes assA, bcrA, dsrB and mcrA seperately. In the correlation analyses, the grey highlighted results have PCC values that are close to absolute value of 1 and p-values that are equal or less than 0.05. Thus, results highlighted as grey refers to linearity and statistically significance test results.

Based on the amplification results of 16S rRNA genes using in the correlation analyses in Table 4.6 and 4.7, TOC removal is related to changing in bacterial community profile for M12, M55 and S25 conditions. CO₂ production and TOC removal under S37 condition are related to alteration in bacterial community profile. Specifically, the most related condition to microbial characterization is sulphate-reducing environment under thermophilic condition. In this condition, TOC removal is linearly related to relative bacteria quantity, quantity of microbial activation per unit bacteria and changing in bacterial community profile which is related to CO₂ production.

Pearson correlation Active Relative Relative Bacterial coefficient bacterial pA-pH Bacteria Bacterial Act/Bact community community *p* value Quantity Activity profile profile -0.215 -0.153 -0.567 0.607 -0.8 CO₂ production 0.728 0.806 0.319 0.278 0.104 CH₄ production * * * * * M12 -0.232 -0.159 -0.579 -0.797 0.647 TOC removal 0.707 0.798 0.306 0.238 0.106 -0.397 -0,961 -0.189-0.8210.805 TOC removal (%) 0.089 0.508 0.761 0.1 0,009 0.434 0.304 -0.4510.629 -0.084CO₂ production 0.466 0.62 0.446 0.256 0.894 -0.451 -0.265 0.771 -0.4080.375 CH₄ production 0.446 0.666 0.127 0.495 0.534 M25 0.393 0.242 -0.19 -0.552 0.561 TOC removal 0.513 0.695 0.335 0.325 0.759 -0.427 -0.234 0.818 -0.349 0.425 TOC removal (%) 0.473 0.705 0.091 0.565 0.475 -0.272 -0.696 0.405 0.043 0.616 CO₂ production 0.499 0.658 0.946 0.268 0.192 * * * * * CH₄ production * * * * * M37 -0.71 0.425 -0.294 0.02 0.65 TOC removal 0.476 0.631 0.975 0.235 0.179 -0.192 -0.199 -0.095 0.468 -0.169 TOC removal (%) 0.748 0.879 0.426 0.758 0.786 0.864 0.022 -0.724 -0.259 -0.898 CO₂ production 0.059 0.973 0.167 0.675 0.038 * * * * CH₄ production * * * * * M55 0.863 0.009 -0.724 -0.258 -0.896 TOC removal 0.059 0.989 0.167 0.675 0,04 0.552 -0.152 -0.648 -0.397 -0.425 TOC removal (%) 0.335 0.807 0.508 0.237 0.475

Table 4.6. Correlation analysis through the gene expression of 16S rRNA gene under methanogenic environment.

рА-рН	Pearson correlation coefficient	Relative Bacteria Quantity	Relative Bacterial Activity	Act/Bact	Active bacterial community profile	Bacterial community profile
	n value	-0.463	-0.32	-0.314	*	-0.106
	p value	0.432	0.6	0.607	*	0.865
	SO^{-2} reduction	-0.614	-0.662	0.015	*	-0.359
\$12	504 reduction	0.271	0.223	0.98	*	0.553
512	TOC removal	-0.296	-0.266	-0.597	*	-0.676
		0.629	0.666	0.287	*	0.21
	TOC removal (%)	-0.427	-0.432	-0.482	*	-0.695
		0.473	0.467	0.411	*	0.193
	CO ₂ production	0.239	-0.469	0.284	-0.345	-0.741
		0.699	0.426	0.643	0.569	0.152
	SO ₄ ⁻² reduction	-0.342	-0.877	-0.048	-0.566	-0.434
\$25		0.574	0.051	0.939	0.32	0.466
323	TOC removal	0.241	-0.468	-0.127	-0.413	-0.973
		0.696	0.426	0.839	0.49	0.005
	TOC removal (%)	0.045	-0.709	-0.188	-0.569	-0.922
		0.943	0.18	0.762	0.317	0.026
	CO ₂ production	0.873	-0.352	-0.498	-0.644	-0.95
		0.053	0.561	0.393	0.241	0.013
	SO ₄ ⁻² reduction	-0.237	0.239	0.766	0.754	0.065
\$37		0.701	0.699	0.131	0.141	0.918
0.57	TOC removal	0.692	-0.479	-0.095	-0.377	-0.934
		0.195	0.414	0.879	0.532	0.02
	TOC removal (%)	0.613	-0.503	0.161	-0.046	-0.810
		0.271	0.387	0.796	0.941	0.048
	CO ₂ production	0.746	0.167	-0.502	-0.285	-0.892
		0.147	0.789	0.388	0.642	0.042
\$55	SO_4^{-2} reduction	0.474	-0.03	-0.602	0.751	-0.368
		0.42	0.961	0.282	0.144	0.543
000	TOC removal	1	0.593	-0.914	-0.088	-0.957
		0	0.292	0.03	0.888	0.011
	TOC removal (%)	0.783	0.454	-0.926	0.535	-0.595
	100 reliioval (70)	0.117	0.443	0.024	0.352	0.289

Table 4.7. Correlation analysis through the gene expression of 16S rRNA gene under sulphatereducing environment.

There is a statistical significant correlation between gene expression level of assA under S37 condition which means that assA gene was mainly carried and expressed by sulphate reducers which is the indicator of alkane degradation by sulphate reducers. Since, assA gene expression is highly related to sulphate reduction as seen in Table 4.8 and 4.9.

 Table 4.8. Correlation analysis through the gene expression level of assA gene under methanogenic

 environment.

	Pearson correlation	Relative	Relative	
assA	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
	CO muchaetien	-0.431	-0.494	-0.838
	CO_2 production	0.469	0.398	0.076
		*	*	*
N/10	CH_4 production	*	*	*
M12	TOC remayal	-0.386	-0.476	-0.849
	TOC removal	0.521	0.418	0.069
		-0.483	-0.729	-0.558
	TOC removal (%)	0.41	0.163	0.328
	CO and hustian	0.013	0.156	0.049
	CO_2 production	0.984	0.802	0.938
	CII and heating	-0.13	-0.088	0.371
1425	CH_4 production	0.834	0.888	0.539
M25	TOC removal	0.006	0.142	-0.064
		0.992	0.82	0.919
	TOC removal (%)	-0.142	-0.083	0.438
		0.819	0.894	0.46
	CO and histian	-0.457	-0.557	-0.6
	CO_2 production	0.439	0.33	0.285
	CH ₄ production	*	*	*
1427		*	*	*
IVI3 /	TOC nom aval	-0.495	-0.568	-0.581
	TOC Tellioval	0.397	0.318	0.304
	TOC remarkel $(9/)$	-0.102	0.192	0.727
	TOC TEIlloval (70)	0.871	0.757	0.164
	CO production	-0.651	0.096	-0.239
M55	CO ₂ production	0.234	0.878	0.699
	CII maduation	*	*	*
	CH ₄ production	*	*	*
	TOC removal	-0.661	0.089	-0.244
		0.225	0.886	0.692
	TOC removal (%)	-0.589	0.139	0.046
		0.296	0.824	0.941

	Pearson correlation	Relative	Relative	
assA	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
	CO meduation	-0.492	-0.57	-0.242
	CO_2 production	0.4	0.315	0.695
	SO^{-2} reduction	-0.693	-0.634	0.195
S12	SO ₄ reduction	0.195	0.251	0.753
512	TOC romaval	-0.446	-0.331	-0.332
	TOC removal	0.452	0.586	0.585
	ΤΟΟ	-0.57	-0.435	-0.25
	TOC removal (%)	0.315	0.465	0.685
	CO muchuation	-0.14	-0.103	0.19
	CO_2 production	0.823	0.869	0.759
	SO^{-2} and wation	-0.564	-0.569	0.058
525	SO_4 reduction	0.322	0.317	0.926
525	TOC removal	-0.359	-0.422	-0.255
		0.553	0.48	0.679
	TOC removal (%)	-0.514	-0.576	-0.235
		0.376	0.309	0.703
	CO ₂ production	-0.441	-0.315	-0.266
		0.457	0.606	0.666
	SO ₄ ⁻² reduction	-0.608	-0.751	0.885
627		0.277	0.144	0.046
537	TOC romaval	-0.756	-0.564	0.157
	TOC removal	0.139	0.322	0.801
	TOC remarkel $(0/)$	-0.843	-0.69	0.365
	TOC removal (%)	0.073	0.197	0.546
	CO production	-0.739	-0.144	0.058
955	CO_2 production	0.153	0.817	0.926
	SO^{-2} reduction	-0.432	-0.345	-0.213
	SO ₄ reduction	0.467	0.569	0.731
555	TOC removal	-0.183	0.168	-0.425
		0.768	0.787	0.475
	TOC remarkel $(0/)$	-0.005	0.055	-0.527
	TOC removal (%)	0.993	0.93	0.361

Table 4.9. Correlation analysis through the gene expression level of assA gene under sulphatereducing environment.

For aromatic hydrocarbon degradation, the correlation test was applied by using the results of bcrA target gene amplification. As seen in Table 4.10 and 4.11, there is a statistical significance correlation between the gene expression level of bcrA and TOC removal under thermophilic methanogenic conditions. SO, bcrA gene expression which is indicator of aromatic hyrdrocarbon degrading pathway is highly related to sulphate reduction. For sulphate conditions, the gene expression level of bcrA is related to sulphate reduction and TOC removal.

	Pearson correlation	Relative	Relative	
bcrA	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
	CO and heating	0.064	-0.091	0.336
	CO_2 production	0.919	0.885	0.581
	CII and head's a	*	*	*
M12	CH_4 production	*	*	*
IVIIZ	TOC removal	0.037	-0.064	0.325
		0.953	0.918	0.594
	TOC norm as $1(0/)$	0.191	-0.242	0.682
	10C removal (%)	0.759	0.695	0.204
	CO and heating	-0.476	0.246	-0.249
	CO_2 production	0.417	0.689	0.687
	CH production	0.408	-0.209	0.211
N/25	CH ₄ production	0.495	0.736	0.734
IVI23	TOC removal	-0.429	0.259	-0.261
		0.472	0.674	0.672
	TOC removal (%)	0.38	-0.212	0.214
		0.528	0.732	0.73
	CO moduction	-0.091	0.075	0.003
	CO_2 production	0.884	0.905	0.997
	CH ₄ production	*	*	*
1427		*	*	*
IVI3 /	TOC 1	-0.047	0.106	0.035
	TOC removal	0.941	0.865	0.955
	TOC remarkel $(0/)$	0.524	0.375	0.442
		0.365	0.534	0.456
	CO moduction	0.386	0.215	0.21
	CO_2 production	0.521	0.729	0.734
	CII and heating	*	*	*
M55	CH4 production	*	*	*
10133	TOC removal	0.395	0.227	0.222
		0.51	0.714	0.719
	TOC removal (%)	0.96	0.53	0.526
		0.01	0.358	0.363

Table 4.10. Correlation analysis through the gene expression level of bcrA gene under methanogenic environment.

	Pearson correlation	Relative	Relative	
bcrA	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
	CO. production	-0.057	-0.437	-0.524
	CO ₂ production	0.927	0.461	0.365
	SO^{-2} raduation	0.908	0.399	0.34
\$12	SO4 reduction	0.033	0.505	0.575
512	TOC removal	0.672	-0.322	-0.387
		0.214	0.598	0.52
	TOC removal $(\%)$	0.836	-0.076	-0.144
		0.078	0.904	0.817
	CO maduation	-0.018	0.341	0.345
	CO_2 production	0.976	0.574	0.57
	SO^{-2} reduction	-0.414	0.549	0.564
625	SO ₄ reduction	0.488	0.337	0.322
525	TOC removal	-0.301	0.401	0.411
		0.622	0.504	0.492
	TOC removal (%)	-0.415	0.552	0.566
		0.487	0.335	0.32
	CO ₂ production	0.217	0.216	0.207
		0.68	0.681	0.694
	SO_4^{-2} reduction	0.565	0.032	0.017
627		0.242	0.951	0.974
557	ΤΟΟ	0.473	0.294	0.279
	TOC Temoval	0.343	0.572	0.593
	TOC removal $(0/)$	0.798	0.497	0.478
		0.057	0.316	0.338
	CO production	0.292	0.353	0.389
	CO_2 production	0.575	0.492	0.445
955	SO^{-2} reduction	0.944	0.404	0.133
		0.005	0.427	0.802
555	TOC removel	0.486	0.787	0.876
		0.329	0.063	0.022
	TOC remeval $(0/)$	0.906	0.748	0.63
	TOC removal (%)	0.013	0.087	0.18

Table 4.11. Correlation analysis through the gene expression level of bcrA gene under sulphatereducing environment.

The abundance of bacterial diversity having dissimilatory sulfate reductase gene is correlated to chemical characterization by using dsrB gene expression level in Table 4.12 and 4.13. Under M25 condition, the quantity of microbial activation per unit bacteria is related to all chemical characterization. As seen before, carbon dioxide production is more than methane gas production under methanogenic conditions. Beside methanogenesis depending on the constituents of the environment such as sulphur or sulphite, sulphate reduction pathway may take place, following with carbon dioxide gas production (Bastviken, 2009). Thus, the gene expression level of dsrB gene is highly related to the quantity of microbial activation per unit bacteria. For sulphate-reducing

environment, TOC removal and CO_2 production are related to relative bacterial acitivity for mesophilic and thermophilic conditions which means that the gene expression level of dsrB is highly related to degradation of hydrocarbons.

	Pearson correlation	Relative	Relative	
dsrB	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
	CO muchuation	-0.647	-0.699	-0.023
	CO_2 production	0.238	0.189	0.971
		*	*	*
M12	CH_4 production	*	*	*
IVI I Z	TOC removal	-0.61	-0.739	0.013
	TOC Tellioval	0.274	0.154	0.984
	TOC non-axial ($0/$)	-0.318	-0.648	0.421
	TOC removal (%)	0.602	0.237	0.48
	CO muchuation	0.31	-0.218	-0.903
	CO_2 production	0.612	0.725	0.036
	CII and heating	-0.271	0.319	1
1425	CH ₄ production	0.66	0.601	0
IMI25	TOC removal	0.249	-0.253	-0.943
		0.687	0.682	0.016
	TOC removal (%)	-0.239	0.325	0.998
		0.699	0.594	0
	CO meduation	-0.738	-0.305	0.276
	CO ₂ production	0.155	0.618	0.653
	CH ₄ production	*	*	*
1427		*	*	*
IV13 /	TOC removal	-0.762	-0.335	0.243
	TOC Tellioval	0.134	0.582	0.694
	TOC $max = 1.0(1)$	0.253	-0.148	-0.465
	TOC Tellioval (76)	0.681	0.813	0.43
	CO maduation	0.788	0.677	-0.873
N455	CO_2 production	0.114	0.209	0.054
	CII maduation	*	*	*
	Cri4 production	*	*	*
11/133	TOC romoval	0.796	0.686	-0.865
		0.107	0.201	0.059
	TOC removal $(0/)$	0.62	0.402	-0.023
	TOC removal (%)	0.265	0.502	0.97

Table 4.12. Correlation analysis through the gene expression level of dsrB gene under methanogenic environment.

dsrB	Pearson correlation	Relative	Relative	
	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
612	CO ₂ production	-0.513	-0.271	-0.215
		0.377	0.659	0.729
	SO_4^{-2} reduction	-0.644	-0.784	0.083
		0.241	0.116	0.895
512	TOC removal	-0.433	-0.715	-0.356
		0.466	0.175	0.556
	TOC removal (%)	-0.549	-0.839	-0.315
		0.338	0.076	0.606
	CO ₂ production	-0.127	-0.171	0.26
		0.838	0.783	0.672
	SO^{-2} reduction	-0.566	-0.562	0.567
925	SO_4 reduction	0.32	0.324	0.319
525	TOC removal	-0.437	-0.53	-0.014
		0.462	0.358	0.982
	TOC removal (%)	-0.585	-0.658	0.186
		0.301	0.227	0.764
	CO ₂ production	-0.385	-0.721	-0.063
		0.522	0.17	0.92
	SO_4^{-2} reduction	-0.671	-0.186	0.137
S37		0.215	0.765	0.825
	TOC removal	-0.603	-0.793	-0.164
		0.282	0.11	0.792
	TOC removal (%)	-0.684	-0.901	-0.29
		0.203	0.037	0.637
	CO ₂ production	-0.804	-0.756	-0.663
S55		0.101	0.14	0.223
	SO_4^{-2} reduction	-0.214	-0.565	-0.291
		0.73	0.321	0.635
	TOC removal	-0.235	0.886	-0.789
		0.703	0.046	0.113
	TOC removal (%)	0.116	-0.743	-0.547
		0.852	0.15	0.34

Table 4.13. Correlation analysis through the gene expression level of dsrB gene under sulphatereducing environment.

As mentioned before, CH₄ production occurred under M25 condition. Depending on statistical analyses including the gene expression level of Methyl coenzyme M reductase (McrA) genes, all chemical characterization is related to relative bacteria quantity as given in Table 4.14 and 4.15. Following with sulphate-reducing environment, there is a statistical significance correlation between TOC removal and relative bacteria quantity under S12 and S55 conditions. Under sulphate-reducing environment, methanogenesis may carry out by methanogenes resulting in degradation of hydrocarbons to altered hydrocarbons through production of methane and carbon

dioxide (Machel, 1989). Thus, the gene expression level of Mcr is highly related to TOC removal under sulphate condition.

mcrA	Pearson correlation coefficient p value	Relative Bacteria Quantity	Relative Bacterial Activity	Act/Bact
	CO_2 production	-0.79	0.461	0.642
	- 1	0.112	0.435	0.243
N12	CH ₄ production	*	*	*
INI12	TOC removal	-0.813	0.491	0.68
	TOC removal (%)	-0.945	0.401	0.200
		0.015	0.176	0.048
	CO ₂ production	-0.905	0.158	0.822
		0.035	0.8	0.087
	CII and heating	1	-0.063	-0.844
M25	CH4 production	0	0.919	0.072
1123	TOC	-0.945	0.078	0.817
	TOC Tellioval	0.015	0.9	0.091
	TOC removal (%)	0.997	-0.025	-0.826
		0	0.968	0.085
	CO ₂ production	-0.089	-0.062	0.086
		0.886	0.921	0.89
. (27	CH ₄ production	*	*	*
M37	TOC removal	-0.087 0.889	-0.039	0.118
	TOC removal (%)	0.007	0.467	0.343
		0.739	0.428	0.572
	CO ₂ production	-0.755	-0.117	0.337
		0.14	0.851	0.579
	CH ₄ production	*	*	*
M55	TOC removal	-0.754	-0.102	0.35
		0.141	0.87	0.564
	TOC removal (%)	-0.596	0.277	0.66
		0.288	0.652	0.226

Table 4.14. Correlation analysis through the gene expression level of mcrA gene under methanogenic conditions.

mcrA	Pearson correlation	Relative	Relative	
	coefficient	Bacteria	Bacterial	Act/Bact
	p value	Quantity	Activity	
S12	CO ₂ production	-0.213	-0.058	0.659
		0.731	0.927	0.226
	SO_4^{-2} reduction	-0.73	-0.628	0.676
		0.161	0.257	0.211
512	TOC removal	-0.848	-0.658	0.508
		0.069	0.227	0.382
	TOC removal (%)	-0.918	-0.772	0.587
		0.028	0.126	0.298
	CO ₂ production	-0.281	-0.067	0.219
		0.646	0.915	0.723
	SO^{-2} reduction	-0.413	-0.52	-0.17
625	SO_4 reduction	0.489	0.369	0.785
525	TOC removal	-0.755	-0.404	0.011
		0.14	0.5	0.986
	TOC removal (%)	-0.778	-0.545	-0.073
		0.121	0.342	0.907
	CO ₂ production	-0.787	-0.131	0.31
		0.114	0.834	0.612
0.27	SO_4^{-2} reduction	0.154	-0.253	-0.507
		0.805	0.681	0.384
557	TOC removal	-0.624	-0.008	0.246
		0.26	0.989	0.69
	TOC removal (%)	-0.614	0.027	0.253
		0.27	0.966	0.682
S55	CO ₂ production	-0.465	-0.164	0.334
		0.431	0.793	0.583
	SO ₄ ⁻² reduction	-0.293	0.176	0.608
		0.632	0.777	0.276
	TOC removal	-0.922	-0.56	0.516
		0.026	0.326	0.374
	TOC removal (%)	-0.763	-0.335	0.625
		0.133	0.581	0.259

Table 4.15. Correlation analysis through the gene expression level of mcrA gene under sulphatereducing environment.

5. CONCLUSIONS AND RECOMMENDATIONS

The main findings of our study are summarized as follows:

The highest TOC removal of up to 70% was achieved in microcosms that were setup under sulphate-reducing conditions, operated at mesophilic temperature, seeded with microbial community from petroleum hydrocarbon rich habitat and fed with chemically treated soil.

Although the best results were obtained at mesophilic temperature range, the TOC removal efficiencies at the psychrophilic temperature were comparable.

TOC removal, gas production and the electron acceptor consumption were highly related to the microbial community structure, bacterial abundance and activity that were revealed by molecular analyses.

Measurement of gene expression of mcrA and dsrB gene was the indicator of the presence of methanogenic and sulphate-reducing biodegradation activity, respectively. There were available electron sources and acceptors for both methanogens and sulphate reducers in the microcosms. Our results showed that mcrA and dsrB genes were expressed under both methanogenic and sulphate-reducing conditions.

For the overall results, measurement of gene expression level of assA and bcrA gene was the indicator of degradation of alkanes and aromatics in the microcosm, respectively. However, that conclusion should be confirmed via further analysis of aliphatic and aromatic fraction of total petroleum hydrocarbons by GC–MS.

Considering the environmental impacts, biodegradation test under sulphate reducing conditions at mesophilic and psychrophilic ranges should be improved by nutrient optimization or enrichment; fed with chemically non-treated soil.

At last, the changes in microbial community profile should be confirmed via metagenomics analysis through the last samples of microcosm tests by Next Generation Sequencing (NGS).
REFERENCES

Abbasian, F., Lockington, R., Mallavarapu, M., Naidu, R., 2015. A comprehensive review of aliphatic hydrocarbon biodegradation by bacteria. Applied Biochemistry and Biotechnology, 1–30.

Arthur, E. L., Rice, P. J., Rice, P. J., Anderson T. A., Baladi, S. M., Henderson, K. L. D., Coats, J.R., 2005. Phytoremediation-An Overview. Critical Reviews in Plant Sciences, 24, 109-122.

APHA, 2005. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC, USA.

APHA, 2000. 5310 Total Organic Carbon (TOC). American Public Health Association, Washington, DC, USA.

Aydin, S., Karacay, H. A., Shahi, A., Gokce, S., Ince, B., Ince, O., 2016. Aerobic and anaerobic fungal metabolism and Omics insights for increasing polycyclic aromatic hydrocarbons biodegradation. Fungal Biology Reviews, 31, 61-72.

Barton, L. L., Fardeau, M., Fauque, G. D., 2014. Hydrogen Sulfide: A Toxic Gas Produced by Dissimilatory Sulfate and Sulfur Reduction and Consumed by Microbial Oxidation. In: Kroneck P. M. H., Sosa Torres, M. E. (eds.), The Metal-Driven Biogeochemistry of Gaseous Compounds in the Environment, Metal Ions in Life Sciences 14, Springer Science Business Media Dodrecht.

Bastviken, D., 2009. Methane. In: Encyclopedia of Inland Waters, 785-805, Academic Press, Elsevier Inc.

Brooijmans, R. J. W., Pastink, M. I., Siezen, R. J., 2009. Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microbial Biotechnology, 2, 587-594.

Brown, D. M., Bonte, M., Gill, R., Dawick, J., Boogaard, P. J., 2017. Heavy hydrocarbon fate and transport in he environment. Quarterly Journal of Engineering Geology and Hydrogeology, 50, 333-346.

Chandra, S., Sharma, R., Singh, K., Sharma, A., 2013. Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. Annals of Microbiology, 63, 417–431.

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., Andersen, G. L., 2006. Greengenes, a Chimera-Checked 16S rRNA Gene Database and Workbench Compatible with ARB. Applied and Environmental Microbiology, 72, 5069-5072.

Desforges, J. W., Sonne, C., Levin, M., Siebert, U., Guise, S. D., Dietz, R., 2016. Immunotoxic effects of environmental pollutants in marine mammals. Environment International, 86, 126-139.

Ding, A., Sun, Y., Dou, J., Cheng, L., Jiang, L., Zhang, D., Zhao, X., 2013. Characterizing Microbial Activity and Diversity of Hydrocarbon-Contaminated Sites, In: Kutcherov V. (Eds.), Hydrocarbon, 137-160, IntechOpen, London, UK.

Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C., Knight, R., 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics, 27, 2194-2200.

El Fantroussi, S., Agathos, S.N., 2005. Is bioaugmentation a feasiblestrategy for pollutant removal and site remediation?. Current Opinion in Microbiology, 8, 68-75.

Foght, J.M., 2008. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. Journal of Molecular Microbiology and Biotechnology, 15, 93-120.

Gieg, L. M., Fowler, S. J., Berdugo-Clavijo, C., 2014. Syntrophic biodegradation of hydrocarbon contaminants. Current Opinion in Biotechnology, 27, 21-29.

Gieg L.M., Toth C.R.A., 2016. Anaerobic Biodegradation of Hydrocarbons: Metagenomics and Metabolomics. In: Steffan R. (Eds.) Consequences of Microbial Interactions with Hydrocarbons, Oils, and Lipids: Biodegradation and Bioremediation. Handbook of Hydrocarbon and Lipid Microbiology. Springer, Cham.

Greer, C. W., Juck, D. F., 2017. Bioremediation of Petroleum Hydrocarbon Spills in Cold Terrestrial Environments. In: Margesin, R. (eds.), Psychrophiles: From Biodiversity to Biotechnology, Springer International Publishing AG. Harayama, S., Hara, A., Baik, S., Shutsubo, K., Misawa, N., Smits, T.H.M., van Beilen, J.B., 2004. Cloning and functional analysis of AlkB genes in Alcanivorax borkumensis SK2. Environmental Microbiology, 6, 191–197.

He, L., Lin, F., Li, X., Sui, H., Xu, Z., 2015. Interfacial sciences in unconventional petroleum production: from fundamentals to applications. Chemical Society Reviews, 44, 5446–5494.

Head, I. M., Jones, D. M., Röling, W. F., 2006. Marine microorganisms make a meal of oil. Nature Reviews Microbiology, 4, 173–182.

ISO, 2005. Soil quality -- Determination of pH. International Organization of Standardization, Geneva, Switzerland.

ISO, 1995. Soil quality -- Determination of total nitrogen -- Modified Kjeldahl method, International Organization of Standardization, Geneva, Switzerland.

Jaekel, U., Zedelius, J., Wilkes, H., Musat, F., 2015. Anaerobic degradation of cyclohexane by sulfate-reducing bacteria from hydrocarbon-contaminated marine sediments. Frontiers in Microbiology, 6, 116.

Jørgensen B. B., Parkes, R. J., 2010. Role of sulfate reduction and methane production by organic carbon degradation in eutrophic fjord sediments (Limfjorden, Denmark). Limnology Oceanography, 55, 1338-1352.

Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F. O., 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acid Research, 41, e1.

Kolukirik, M., Ince, O., Ince, B. K., 2011. Increment in Anaerobic Hydrocarbon Degradation Activity of Halic Bay Sediments via Nutrient Amendment. Journal of Microbiology Ecology, 61, 871-884.

Kolukirik, M., Ince, O., Cetecioglu, Z., Celikkol, S., Ince, B., 2011. Spatial and temporal changes in microbial diversity of the Marmara Sea Sediments. Marine Pollution Bulletin, 62, 2384-2394.

Kolukırık, M., 2010. Nutrient Enhanced Bioremediation of Petroleum Hydrocarbons in Anoxic Sediments from Marmara Sea Ph.D. Thesis. Istanbul Technical University, Turkey.

Koshlaf, E., Ball, A. S., 2017. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiology, 3, 25-49.

Korneeva, V. A., Pimenov, N. V., Krek, A. V., Tourova, T. P., Bryukhanov, A. L., 2015. Sulfate Reducing Bacterial Communities in the Water Column of the Gdansk Deep (Baltic Sea). Microbiology, 84, 268-277.

Leyva, C., Ancheyta, J., Berrueco, C., Millan, M., 2013. Chemical characterization of asphaltenes from various crude oils. Fuel Processing Technology, 106, 734–738.

Li, H., Zhao, Q., Boufadel, M. C., Venosa A. D., 2007. A universal nutrient application strategy for the bioremediation of oil-polluted beaches. Marine Pollution Bulletin, 54, 1146–1161.

Liu, A., Garcia-Dominguez, E., Rhine, E.D., Young, L.Y., 2004. A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiology Ecology, 48, 323–332.

Machel, H. G., 1989. Relationships Between Sulphate Reduction and Oxidation Of Organic Compounds to Carbonate Diagenesis, Hydrocarbon Accumulations, Salt Domes, and Metal Sulphide Deposits. Carbonates and Evaporites, 4, 137-151.

Maletić S., Dalmacija B., Rončević S., 2013. Petroleum Hydrocarbon Biodegradability in Soil – Implications for Bioremediation, In: Kutcherov V. (Eds.), Hydrocarbon, 43-64, IntechOpen, London, UK.

Masih, J., Singhvi, R., Kumar, K., Jain, V. K., Taneja, A., 2012. Seasonal variation and sources of polycyclic aromatic hydrocarbons (PAHs) in indoor and outdoor air in a semi-arid tract of northern India. Aerosol and Air Quality Research, 12, 515–525.

Massachusetts Institute of Technology, MIT Open Course Ware. Chemical Kinetics: The Iodine Clock Reaction. https://ocw.mit.edu/courses/chemistry/5-302-introduction-to-experimental-chemistry-january-iap-2005/labs/3_kinetics_2005b.pdf. Data Accessed 2005.

Makadia, T. H., Adetutu, E. M., Simons, K. L., Jardine, D., Sheppard, P. J., Ball, A. S., 2011. Reuse of remediated soils for the bioremediation of waste oil sludge. Journal of Environmental Management, 92, 866–871.

McKew, B. A., Coulon, F., Osborn, A. M., Timmis, K. N., McGenity, T. J., 2007. Determining the identity and roles of oil-metabolizing marine bacteria from the Thames estuary, UK. Environmental Microbiology, 9, 165–176.

Meckenstock, R.U., Boll, M., Mouttaki, H., Koelschbach, J.S., Tarouco, P.C., Weyrauch, P., Dong, X., Himmelberg, A.M., 2016. Anaerobic degradation of benzene and polycyclic aromatic hydrocarbons. Journal of Molecular Microbiology and Biotechnology, 26, 92–118.

Militon, C., Boucher, D., Vachelard, C., Perchet, G., Barra, V., Troquet, J., Peyretaillade, E., Peyret, P., 2010. Bacterial community changes during bioremediation of aliphatic hydrocarbon contaminated soil. FEMS Microbiology Ecology, 74, 669-681.

MINITAB Inc., 2017, Interpret the key results for Correlation, Coventry, United Kingdom.

Mishra, S., Jyot, J., Kuhad, R. C., Banwari, L., 2001. Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Applied and Environmental Microbiology, 67, 1675–1681.

Mrozik, A., Piotrowska-Seget, Z., 2010. Bioaugmentation as a strategy for cleaning up of soils contaminated with aromatic compounds. Microbiological Research, 165, 363-375.

Nikolopoulou, M., Kalogerakis, N., 2010. Biostimulation strategies for enhanced bioremediation of marine oil spills including chronic pollution. In: Timmis, K. N. (Eds.), Handbook of hydrocarbon and lipid microbiology, 2521–2529, Springer-Verlag, Berlin Heidelberg.

OECD, 2006. Test No. 311: Anaerobic Biodegradability of Organic Compounds in Digested Sludge: by Measurement of Gas Production Organisation for Economic Co-operation and Development, Paris, France.

Olah, G.A., Molnar, A., 2003. Hydrocarbon Chemistry, Wiley-blackwell, London, United Kingdom.

Radovic, L. R., 1997. Energy and Fuels in Society: Analysis of Bills and Media Reports. McGraw-Hill Custom Publishing, 8, 137-168.

Reja, V., Kwok, A., Stone, G., Yang, L., Missel, A., Menzel, C., Bassam, B., 2010. ScreenClust: Advanced statistical software for supervised and unsupervised high resolution melting (HRM) analysis. Methods, 50, 10-14.

Sarkar, P., Roy, A., Pal, S., Mohapatra, B., Kazy, S. K., Maiti, M. K., Sar, P., 2017. Enrichment and Characterization of Hydrocarbon-Degrading Bacteria from Petroleum Refinery Waste as Potent Bioaugmentation Agent for In Situ Bioremediation. Bioresource Tecnology, 242, 15-27.

Satapanajaru, T., Chokejaroenrat, C., Sakulthaew, C., Yoo-iam, M., 2017. Remediation and Restoration of Petroleum Hydrocarbon Containing Alcohol-Contaminated Soil by Persulfate Oxidation Activated with Soil Minerals. Water, Air & Soil Pollution, 228, 345.

Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski,
R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van
Horn, D. J., Weber, C. F., 2009. Introducing mothur: Open-Source, Platform-Independent,
Community-Supported Software for Describing and Comparing Microbial Communities. Applied
and Environmental Microbiology, 75, 7537-7541.

Shahi, A., Aydın, S., Ince, B., Ince, O., 2016. The effects of white-rot fungi Trametes versicolor and Bjerkandera adusta on microbial community structure and functional genes during the bioaugmentation process following biostimulation practice of petroleum contaminated soil. International Biodeterioration & Biodegradation, 114, 67-74.

Sharp, J. H., Suzuki, Y., Munday, W. L., 1993. A comparison of dissolved organic carbon in North Atlantic Ocean nearshore waters by high temperature combustion and wet chemical oxidation. Marine Chemistry, 41, 253-259.

Sherry, A., Gray, N. D., Ditchfield, A. K., Aitken, C. M., Jones, D. M., Röling, W. F. M., Hallmann, C., Larter, S. R., Bowler, B. F. J., Head, I. M., 2013. Anaerobic biodegradation of crude oil under sulphate-reducing conditions leads to only modest enrichment of recognized sulphate-reducing taxa. International Biodeterioration & Biodegradation, 81, 105-113.

Souza, E. C., Vessoni-Penna, T. C., Oliveira, R. P. D. S., 2014. Biosurfactant-enhanced hydrocarbon bioremediation: an overview. International Biodeterioration & Biodegradation, 89, 88–94.

Stroud, J. L., Paton, G. I., Semple, K. T., 2007. Microbe-aliphatic hydrocarbon interactions in soil: implications for biodegradation and bioremediation. Journal of Applied Microbiology, 102, 1239–1253.

Tischer, K., Kleinsteuber, S., Schleinitz K. M., Fetzer, I., Spott, O., Stange, F., Lohse, U., Franz, J., Neumann, F., Gerling, S., Schimdt, C., Hasselwander, E., Harms, H., Wendeberg, A., 2013. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer. Environmental Microbiology, 15, 2603–2615.

U.S. Environmental Protection Agency, 2005. Toxics Release Inventory (TRI) Public Data Release Report. Toxics Release Inventory (TRI) Program, Washington, DC. EPA 260-R-07-001, U.S.A.

U.S. EPA. 2014. Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4. Washington, DC.

U.S. EPA. 1994. Method 200.7: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4.4. Cincinnati, OH.

Varjani, S.J., 2014. Hydrocarbon Degrading and Biosurfactants (bioemulsifiers) Producing Bacteria from Petroleum Oil Wells Ph.D. Thesis. Kadi Sarva University, India.

Varjani, S.J., 2017. Microbial degradation of petroleum hydrocarbons. Bioresource Technology, 223, 277-286.

Varjani, S.J., Upasani, V.N., 2017. A new look on factors affecting microbial degradation of petroleum hydrocarbon pollutants. International Biodeterioration & Biodegradation, 120, 71-83.

Von Netzer, F., Granitsiotis, M. S., Szalay, A. R., Lueders, T., 2018. Next-Generation Sequencing of Functional Marker Genes for Anaerobic Degraders of Petroleum Hydrocarbons in Contaminated Environments. In: Boll M. (eds) Anaerobic Utilization of Hydrocarbons, Oils, and Lipids. Handbook of Hydrocarbon and Lipid Microbiology, 1-20, Springer, Cham

Wahba, N., El Asmar, M. F., El Sadr, M. M., 1959. Iodometric Method for Determination of Persulfates. Analytical Chemistry, 31, 1870–1871.

Wang, X., Feng, J., Zhao, J., 2010. Effects of crude oil residuals on soil chemical properties in oil sites, Momoge Wetland, China. Environmental Monitoring and Assessment, 161, 271–280.

Wang, Y., Feng, J., Lin, Q., Lyu, X., Wang, X., Wang, G., 2013. Effects of Crude Oil Contamination on Soil Physical and Chemical Properties in Momoge Wetland of China. Chinese Geographical Science, 23, 708-715.

Wilkes, H., Buckel, W., Golding, B.T., Rabus R., 2016. Metabolism of hydrocarbons in n-Alkane utilizing anaerobic bacteria. Journal of Molecular Microbiology and Biotechnology, 26, 138-151.

Winderl, C., Penning, H., Netzer, F., Meckenstock, R.U., Lueders, T., 2010. DNA-SIP identifies sulfate-reducing *Clostridia* as important toluene degraders in tar-oil contaminated aquifer sediment. ISME Journal, 4, 1314–1325.

Wu, H., Sun, L., Wang, H., Wang, X., 2016. Persulfate Oxidation for the Remediation of Petroleum Hydrocarbon-Contaminated Soils. Polish Journal of Environmental Studies, 25, 851-857.

Yakimov, M. M., Timmis, K. N., Golyshin, P. N., 2007. Obligate oil-degrading marine bacteria. Current Opinion Biotechnology, 18, 257-266.

Yang, S., Wen, X., Shi, Y., Liebner, S., Jin, H., Perfumo, A., 2016. Hydrocarbon degraders establish at the costs of microbial richness, abundance and keystone taxa after crude oil contamination in permafrost environments. Scientific Reports, 6, 37473.

Zhao, D., Liao, X., Yan, X., Huling, S. G., Chai, T., Tao, H., 2013. Effect and mechanism of persulfate activated by different methods for PAHs removal in soil. Journal of Hazardous Materials, 254, 228-235.