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ABSTRACT

BEHAVIOURAL INTERPLAY AND PREPOTANCY COMPARISON
BETWEEN Wolbachia AND HAPLOTYPE-ASSOCIATED REPRODUCTIVE
BARRIERS BETWEEN TWO POPULATIONS OF Tetranychus urticae KOCH

Tetranychus urticae Koch (two-spotted spider mite) is an arachnid species that infests and
damages several economically valuable crops. Wolbachia pipientis is an intracellular endosymbiont
alpha-proteobacterium. These bacteria cause a unidirectional reproductive mismatch between
uninfected females and infected males, though Tetranychus urticae females are capable of producing
male offspring via arrhenotokous parthenogenesis (laying haploid male bearing eggs without
copulation). Also, another natural unidirectional reproductive barrier was found among two
populations of Tetranychus urticae, namely green and red morphs. Wolbachia causes embryonic

mortality, while population based incompatibility causes excessive male offspring production.

In this study, we investigated whether these population-based reproductive barriers were
behavioural (i.e. due to prezygotic reasons) or not, through observations and tests on the frequency,
latency and duration of matings. We found no differences before and during copulation, therefore we
consider this incompatibility to be postzygotic. As our second experiment, we took records of all the
crosses between the populations and compared our results using statistical techniques. We measured
the fitness and sex ratio of the offsprings by including Wolbachia infected males in our experimental
design. We also tested the cytoplasmic incompatibility that was either Wolbachia-based or
population-based, and tested the incompatibility of the individuals that have the natural barrier and
were infected by Wolbachia. Our results showed that when the copulation possesses two types of
incompatibilities, though a slight effect of embryonic mortality can be observed, population-based

excess in male production surpasses Wolbachia-based incompatibility.



Vi

OZET

IKi Tetranychus urticae KOCH POPULASYONU ARASINDAKI Wolbachia VE
HAPLOTIP-TABANLI UREME BARIYERLERININ DAVRANISSAL
ETKILESiMi VE BASKINLIK KARSILASTIRMASI

Tetranychus urticae Koch (iki benekli 6riimcek akar1) ekonomik olarak degerli olan pek ¢ok
tarim driiniini istila ederek zarar veren bir 6riimcegimsi (araknid) tiirdiir. Wolbachia pipientis ise
hiicre i¢i endosimbiyont olan bir alfa-proteobakteri tiiriidiir. Bu bakteriler, her ne kadar Tetranychus
urticae disileri arhenotokik partenogenez (eseysiz olarak haploid erkek verecek yumurta
yumurtlamak) ile erkek dol elde edebilse de, saglikli bir disi ve enfekte bir erkek arasinda tek yonlii
bir {lireme uyusmazligima yol ac¢maktadir. Bununla birlikte yesil ve kirmizi olarak
adlandirabilecegimiz iki Tetranychus urticae popiilasyonu arasinda da tek tarafli dogal bir tireme
bariyerine rastlanmistir. Wolbachia embriyonik 6liime sebep olurken, popiilasyon tabanli uyusmazlik

asirt miktarda erkek dol tiretimine sebep olmaktadir.

Calisgmamizda bu popiilasyon tabanli iireme bariyerinin davranigsal olup olmadigmnt (yani
prezigotik sebep) gozlemler ve giftlesme sikligi, ¢iftlesme gergeklesene kadar gegen siire ve ¢iftlesme
stiresini test ederek arastirdik. Ciftlesme Oncesi veya esnasinda bir farklilik bulmadigimiz i¢in bu
uyusmazligin sebebinin postzigotik oldugunu diisiiniiyoruz. Ikinci deneyimizde popiilasyonlar arasi
biitiin ¢aprazlamalarin kaydini tuttuk ve sonuglarimiz istatistiki teknikler ile karsilagtirdik. Deney
diizenegimize Wolbachia ile enfekte erkekleri de ekleyerek doliin uyarlanma giiciinii (yeti) ve cinsiyet
oranini olgtiik. Ayrica popiilasyon tabanli ve Wolbachia tabanli sitoplazmik uyumsuzluk ile birlikte,
hem dogal bariyer hem de Wolbachia ile enfekte bireylerin déliinii test ettik. Sonuglarimiz iki
uyumsuzlugun ayni anda yasandigi ciftlesmelerde, ¢ok az miktarda embriyonik 6liim etkisi goriilse
de, popiilasyon tabanli asir1 miktarda erkek dol iiretiminin, Wolbachia tabanli uyumsuzlugun 6niine

gectigini gosterdi.
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1. INTRODUCTION

Pesticides still represent the main weapon used to control crop pests. However, these chemicals
are major threats for food safety and for the environment, in general. In order to keep the acaricidal
chemicals as environmental friendly as possible (for the environment and for the consumer health),
recent studies also focus on plant essential oils and oil vapour use (Aslan et al. 2004; Calmasur et al.
2006). However, the ubiquitous evolution of resistance to these compounds challenges the efficiency
of such measures (Casida and Quistad 1998). Spider mites are among the most resistant groups to
several pesticides, as they can rapidly develop resistance (Van Leeuwen et al. 2010). Therefore,
alternative control measures are being investigated, with natural enemies giving some positive results,

albeit to a limited extent.

In my thesis, we planned to use characteristics of the two-spotted spider mite (Tetranychus
urticae) populations to gather knowledge on the mechanisms governing reproductive
incompatibilities that naturally occur in this species. Indeed, sterilization-like phenomena like
cytoplasmic incompatibility, can potentially be used as a novel environmentally friendly tool for the
control of pest populations (Turelli and Hoffman, 1995; Engelstaedter and Telschow, 2009; Zabalou
et al 2004). This knowledge could thus be used for pest control and reduce pesticide use in field crops.

Aside from its utilization in nature for manipulating reproductive barriers to develop a potential
bioagent for agricultural purposes, understanding further steps and details about the natural
unidirectional reproductive barriers within Tetranychus urticae might provide new ideas on the
processes of speciation and evolution. Despite the high degree of polyphagy of T. urticae, host plant
adaptation has been considered as a factor influencing population differentiation in spider mites,
though not necessarily translating into speciation (Magalhdes et al. 2007). Indeed, partial
incompatibility on mating between conspecific populations that originate from different
environments is a commonly occurring phenomenon in spider mites (Helle and Pieterse, 1965; de
Boer, 1985). These reproductive incompatibilities have been attributed both to genetic factors
(Navajas et al. 2000), and to infection by the bacterial reproductive manipulator Wolbachia (Gotoh
et al. 1993, Navajas et al. 2000; Gotoh et al. 2003; Suh et al. 2015) — see details below.

However, the interaction between these two sources of incompatibility has not been studied until
very recently (Z¢€l€ et al. in prep.). Z¢lé and colleagues studied two populations of T. urticae: one

population, namely TOM was obtained from tomato (Solanum lycopersicum), in Corregado / Portugal



in 2010, and the other, namely AMP, was obtained in Aldeia da Mata Pequena / Portugal from datura
plants (Datura spp.) in 2013. They found that uninfected AMP females (AMP is the assigned name
for the red morph) are compatible with uninfected TOM males (TOM is the assigned name for the
green morph), while uninfected TOM females are incompatible with AMP males. The same AMP
and TOM population sources of Tetranychus urticae were used as the test subjects in this study. It is
extremely important to understand the ongoing differentiation process that is a potential speciation
initiator in spider mites, as well as its consequences for the population dynamics (i.e. a crucial
parameter for pest control) of both (TOM and AMP) spider mite populations, and Wolbachia spread
among populations. Yet, a good understanding of the mechanisms underlying this interaction are still

lacking.



2. LITERATURE REVIEW

This experiment focuses on two main species and their interactions as a symbiotic relationship.
To be able to apprehend and appreciate this topic; the Literature Review section will focus on the
concept, definition and abilities of the host species Tetranychus urticae and the vector Wolbachia
pipientis. Furthermore, their interactions with each other and other species will provide an

understanding of the natural interplay of these species.

2.1. The Focus Species — Two Spotted Spider Mite (Tetranychus urticae Koch)

The two-spotted spider mite, Tetranychus urticae Koch, is a globally dispersed arachnid species.
It is found to infest more than 1000 host species (Navajas, 1998), including several economically
significant agricultural crops (Helle and Sabelis, 1985). In the presence of sperm —with a successful
copulation- female offspring can be produced from fertilized eggs. If the female has not successfully
mated with a male spider mite —or in some cases not at all-, unfertilized eggs produce only male
offspring. This asexually reproduction phenomenon is called “arrhenotoky”. Around 15% of
arthropod species repopulate through haplodiploidy (de la Filia AG et al., 2015). Offspring produced

through copulation (females) are diploids, while those that form through parthenogenesis (males) are
haploids (Hill and O’Donell, 1991).

Figure 2.1. An illustration of T. urticae phases from binocular stereoscope display. Taken from The

Ohio State University and the College of Food, Agricultural, and Environmental Sciences website.



Spider mite populations can rapidly increase in numbers, due to their haplodiploid nature.
Consequently, the species can infect many valuable crop species such as tomato, zucchini, bean,
cotton and eggplant (Helle and Sabelis, 1985). They can occur in green house crops, as well as on
open fields. Its large number of host species, widespread distribution, and high fecundity makes it a
major worldwide pest, destroying annual and perennial crops. For example, tomato and cotton, two
major crop products of Turkey, according to the USDA Foreign Agricultural Service reports of 2009
and 2014 (TU9022 & TR5017) are frequently infested by spider mites in nature and greenhouses (Ay
and Giirkan, 2005; Satar et al. 2013; Keskin and Kumral, 2015). The annual cost of chemical pest
control of spider mites is estimated at 0.35 - 0.7 billion Euros worldwide, reflecting the significant
economic impact of these pests. Computer models also suggest that with increasing global warming,

the harmful effects of spider mites in agriculture will increase, as well (Migeon et al 2009).

Figure 2.2. Spider mite infestation that is observable with the naked eye. Photo credit: Nikolas R.
Schiller.



Figure 2.3. Close up spider mite infestation with visible web production to keep the colony intact.

Taken from Planet Natural website.

There are several studies on biological removal of T. urticae using other species. Howell &
Daugovish (2016) mention that they used four commercially available predatory mites
(Phytoseiidae): Phytoseiulus persimilis, Neoseiulus californicus, N. fallacis, and Amblyseius
andersoni to be able to decrease or eliminate T. urticae and Lewis spider mite Eotetranychus lewisi
infestation on strawberry plants in California, USA. The results showed that even though the pest
numbers decreased initially, they were not able to keep the numbers below those for the economic
thresholds.

On the study of Bugeme et al. (2014), the fungus species Metarhizium anisopliae was used on
common bean to treat T. urticae infested leaves. Synthetic acaricide abamectin, the organosilicone
surfactant Silwet L-77, oil and water were used for comparisons (water being the control). The
experiments were conducted both in screenhouses, and on the field. They observed similar results on
their field and screenhouse trials (Figures 2.4. and 2.5.). In their conclusion, Bugeme and colleagues
(2014) stated that M. anisopliae treatments were as successful as abamectin, and suggested the
Metarhizium anisopliae application as an alternative to the chemical compound.
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Figure 2.4. Efficacy of fungal applications on Figure 2.5. Efficacy of fungal applications on
T. urticae population density on top (A) and T. urticae population density on top (A) and
middle (B) common bean leaves during the middle (B) common bean leaves during the
screenhouse trial I. T1: untreated control; T2: screenhouse trial 11. T1: untreated control; T2:
water + Silwet-L77; T3: water + Oil + Silwet- water + Silwet-L77; T3: water + Oil + Silwet-
L77; T4: fungus in water formulation; T5: L77; T4: fungus in water formulation; T5:
fungus in emulsifiable oil formulation; and fungus in emulsifiable oil formulation; and
T6: abamectin (Bugeme et al., 2014). T6: abamectin (Bugeme et al., 2014).

2.2. Haplodiploidy

For understanding the reproduction mechanism of Tetranychus urticae, it is important to analyse
and comprehend the evolutionary costs and benefits of haplodiploidy. This has a crucial role on the
life circle of the spider mite, and its symbiotic niche with Wolbachia.

Hartl & Brown’s (1970) and Bull’s (1979) models showed that when a haplodiploid mother
produces haploid sons, the mother manages to pass on her full genetic composition, rather than
passing on half to a diploid offspring. Therefore, she benefits fully from this occasion in terms of
genetic succession. However, haploid sons are expected to live shorter than their diploid counterparts,
which counterbalances their evolutionary demand. Consequently, haplodiploidy requires male
offspring to survive a lifespan that is at least half as long as that of a diploid offspring, in order to

continue to exist as a valid reproductive option. These models were confirmed by several studies that



were built upon Hartl & Brown’s (1970) and Bull’s (1979) work (Bull, 1983; Haig, 1993a,b; Nomark,
2004; Burt and Trivers 2006).

In a system where it seems that male offspring production leads to genetic success for mothers,
a good question is why a fitness reduction in terms of female offspring is not observed. The reason is
that in these species, sperm is produced by mitotic division (Bull, 1983) and the only possible
reproductive and genetic succession for males is through producing daughters; hence these demands

counterbalance each other (Kraaijeveld K., 2009).

Bull (1983) also suggested that haplodiploidy occurs more frequently in clades with fewer
chromosomes. Bachtrog et al. (2014) stated that haplodiploidy seems to evolve from male
heterogamety, based on Vicoso & Charlesworth’s (2006) study that proposed X-linked deleterious
recessive mutations being terminated in males (lower numbers of effective mutations lead to lower
genetic loads). Bull also stated that the reason males are expected to live shorter than diploids is due
to X-linked genomes being in majority among species with low chromosome numbers. Blackmon et
al. (2016) tested this idea, and indeed found a correlation between low chromosome numbers and the
likelihood of evolving into haplodiploidy, in mites. Furthermore, the lower genetic load in
haplodiploid species, which is caused by parthenogenetic reproduction, is considered to lead to
reduced inbreeding depression (Werren, 1993; Henter, 2003; Antolin 1999; Tien et al., 2015).

Finally, haplodiploidy also helped us determine the results of the fitness tests in this study. Since
in arrhenotokous species, parthenogenesis results in male offspring, it is possible to monitor the
success of the copulation. Male offspring can be the sign of reproductive incompatibilities due to
prezygotic or postzygotic isolation, when mating is observed. The reproduction process of spider

mites can be observed in the Figure 2.6., below.
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Figure 2.6. Reproduction process of spider mites. Used by courtesy of Flore Z¢é1é (University of
Lisbon, CE3C).

2.3. The Infecting Bacteria - Wolbachia

Bacteria that belong to genus called Wolbachia infect spider mites and change the course of their
natural reproduction process. Generally, the type species is called Wolbachia pipientis, due to the
species’ first discovery in the mosquito Culex pipiens (Hertig and Wolbach, 1924). The
alphaproteobacteria endosymbiont Wolbachia are transmitted vertically through the mites’ eggs and
supress the natural productive process. Manipulations in terms of feminization, parthenogenesis, male

killing and egg-sperm incompatibility among insects were reported by Werren et al. (2008).

Breeuwer (1997) states that Wolbachia was studied thoroughly in insects until 1996 and cites
Breeuwer and Jacobs (1996) as a surprising discovery of wide Wolbachia infestation among spider
mites. A meta-analysis that was conducted in 2008 revealed that >65% of insect species are hosts of
Wolbachia, which makes it one of the most abundant intracellular bacteria genus that affects at least
1,000,000 species (Hilgenboecker et al. 2008).

Wolbachia are highly adapted to living in invertebrate cells. It was shown that they can even use
the spindle apparatus during the division of the cell leading to a possible mitosis disruption (Kose and
Karr, 1995). A study suggests that Wolbachia modifies the sperm of the infected male during
maturation, and if the infected individual mates with an uninfected female or a female that carries a

different strain (another Wolbachia or a completely different endosymbiont), the results is embryonic



mortality in diploid species, and this drastically increases the number of male offspring in
haplodiploid species (Tram, Feree & Sullivan, 2003). Wolbachia is transmitted maternally (through
the cytoplasm of egg) and infects the offspring. Gotoh et al. (2003) stated that seven out of 42 spider

mite species in Japan are infected by Wolbachia.
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Figure 2.7. Wolbachia induced phenotypes (from Werren et al. 2008).

An important question is about the reason behind Wolbachia being so common in invertebrates.
This question has more than one answer. Wolbachia’s strategy is wide and effectively applicable. It
has evolved to target the gonads, which allows it to participate directly in the reproductive process
and generation flow. In parthenogenic species, they are transmitted vertically, which allows them to
even bypass the sexual reproduction phase. Moreover, they are also adapted to interact with its host
species, even mutualistically. Its mutual interactions can be exemplified as positive immune
responses in Nematodes (Simon et al., 2007), regulating the production of ovarian cells in the parasitic
wasp species Asobara tabida by taking a role in the apoptosis mechanism (Pannebakker et al., 2007),
and higher immune protection against RNA viruses in the fruit fly Drosophila melanogaster (Koukou
et al., 2006). Additionally, according to the study of Dobson et al. (2004), Wolbachia can extend the
fitness of its host by increasing the host’s immunity against viral infections, and extending the female
host’s chances of survival and reproduction. It should also be noted that an infected female can mate

with a male whether it is infected or not, thus slightly increasing her fitness.
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In addition to its ubiquity, Wolbachia’s impressive survival and infection abilities should be
mentioned as well. Studies have shown that Wolbachia, once assumed to die out after the host dies,
actually survives long after the hosting cell dies according to culture experiments (Fallon, 2008). If it
is taken out from the host, it can live up to one week at room temperature (Rasgon et al., 2006).
Finally, when they are injected into the body of the host, e.g. D. melanogaster, they can find their
way into the ovary at the somatic stem cell niche and reach into the reproductive cells, and ultimately

into the developing eggs (Frydman et al., 2006).

Wolbachia has been used as a biological agent to control parasite populations on different
species, previously. One of the most important approaches and applications is the vector control
projects for the Dengue fever, which is caused by Aedes mosquitos. The early stages of the trials
regarding their utilization as bioagents can be seen in the work of Brownstein et al. (2003). The topic
has gained popularity over time, and recently Callaway (2016) suggested the technique of releasing
Wolbachia to infect Aedes aegypti mosquitoes in order to decrease the prevalency of mosquitos
carrying Zika, dengue fever and other viruses. In 2011, massive amounts of pre-infected mosquitos
were released near the Northern Australian city of Cairns, and Wolbachia infected about 90% of the
Aedes mosquitos in the designated area within weeks. An in situ Wolbachia that infested in mosquito
ovarian tissue can be seen on Figure 2.8 (provided courtesy of Inaki Iturbe-Ormaetxe from the

Eliminate Dengue Program).

Trials were also conducted in Indonesia and Vietnam, with similar success. Small amounts were
tested in Rio de Janeiro, Brazil and Medellin, Colombia to fight Zika, Dengue, chikungunya and other
mosquito related viruses. The trials that were conducted in Rio de Janeiro (2014) and Medellin (2015)
gave positive results with regards to halting the Zika and chikungunya viral replications, which had
caused massive outbreaks in Latin America and the Caribbean. These two major projects were halted
due to insufficient funds, but are being revived by the Eliminate Dengue Program, Brazilian
government and some U.S. and U.K. based funders. Especially the Brazilian government being a
funder is a good example for the importance of Wolbachia as a potential biocontrol agent, both today

and in the future.
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A. Localization of Wolbachia in mosquito ovarian tissue. B. Cellular localization of Wolbachia.

Figure 2.8. Wolbachia in mosquito ovarian tissue. DNA is stained with DAPI (blue) and
Wolbachia (green) in in situ environment. Images belong to Inaki Iturbe-Ormaetxe from the

Eliminate Dengue Program.

The peer-reviewed book series Advances in Experimental Medicine and Biology, Issue 627 -
Transgenesis and the Management of VVector-Borne Disease dedicated several chapters to Wolbachia
and Biocontrol. In Chapter 9, Bourtzis (2008) gives the artificially infected European cherry fruit fly
Rhagoletis cerasi as an example for the use of Wolbachia as a population control bioagent, and based
on the study of Zabalou et al. (2004), points out that egg mortality rate was %100 (%16 - %32 egg
mortality on reciprocal crosses) between uninfected females and infected males. Zabalou et al.
suggest that Wolbachia-induced CI can be used; as an alternative population control mechanism to
“Sterile Insect Technique”, as a tool to spread desirable genotypes among the host, to control the age
structure by the effect of virulency, and to dictate asexual reproduction to the host species as a
biological control agent. Brelsfoard and Dobson’s (2009) also listed important approaches concerning

the release of a Wolbachia strain into the environment for biocontrol.

An agricultural approach can be exemplified by the study of Marino et al. (2017) that focuses on
the world’s biggest coffee pest, the coffee berry borer (CBB), Hypothenemus hampei. After applying
certain doses of tetracycline and experimenting with Wolbachia infected CBB individuals, Marifio et
al. concluded that Wolbachia’s effect in reproductive regulation and overall manipulation is a
promising population control method that could be executed as a biological control mechanism.
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2.4. Cytoplasmic Incompatibility

Cytoplasmic incompatibility (CI) occurs when an infected male copulates with a female that is
uninfected or is infected, but which possesses a different Wolbachia strain (Perlman et al. 2008).
Sperm that was produced and supplied from an infected male cannot fertilize an uninfected female or
an infected female that harbours another Wolbachia type (Werren et al. 2008). In contrast, when both
male and female are infected with the same type of Wolbachia, they can copulate successfully, though
there is the possibility for disruptions mentioned above and the long term outcome of infestation:
passing on of Wolbachia to the offspring since it can be transmitted vertically through the egg’s

cytoplasm, which leads to rapid and widespread infestation among the populations.

Apart from the effects of Wolbachia, partial sterility has also been observed in different strains
of T. urticae populations. Helle and Pieterse (1965) showed a high rate of failed egg hatchability
among nine T. urticae populations. In a more recent study, Sun et al. (2016) also stated the
significantly high ratio of unhatched eggs of uninfected female x infected male crosses of the same
populations, when compared to other crosses (both uninfected, both infected, infected female x
uninfected male) in all three Tetranychus urticae populations they examined. Fry (1988) suggested
that the difference between nuclear genes were responsible for the high rate of unhatched eggs
produced by hybrid spider mites.

CI comprises two processes. The first process is the modification of the sperms by Wolbachia
during spermatogenesis. The second process is the “rescue” phenomenon, which can be explained as
the possibility of development for the Wolbachia-infested embryos that have the same strain of
infection in the eggs and sperms that produced them. This system is the result of the incompatibility
of an infected male crossing with an uninfected female. If this sperm does not encounter the
appropriate Wolbachia in the egg, embryonic development is interrupted (Werren, 1997). Results of
several studies (Vala, Breeuwer & Sabelis, 2000, 2003; Perrot-Minnot et al., 2002; Vala et al., 2002;
Gotoh, Noda & Hong, 2003; Gotoh et al., 2007; Xie, Chen & Hong, 2011) show that Wolbachia
induced CI can be observed in different intensities in T. urticae, spanning the range from no
expression to complete expression, and with different types of effects as well (e.g. female embryo

termination, male transformation).

Individuals can be infected by two different strains of Wolbachia, when these strains exist in the
same habitat. Brelsfoard and Dobson (2009) explain this process in their study on multiple strains of

Wolbachia. Figure 2.9. (from their work) explains the copulatory aspect of Wolbachia-induced ClI
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regarding one, two, or combined infections of insects with different strains. On part (a), Wolbachia
causes a unidirectional reproductive failure when an uninfected female and an infected male copulate.
The other combinations result in successful copulations. However, when there is an infection in
female, it passes on to the offspring even if the male is uninfected. On the circumstance that two
Wolbachia strains coexist and infect in the same environment (b), they cause a bidirectional
reproductive failure if the counterpart sex carries the other strain. Copulation of the same strain
carriers are successful and the respective infection passes on to the offspring. In this scenario, the
major infector or stronger CI penetrator is expected to become dominant in the population. Finally,
if there is a superinfection occurring in the population (c), the superinfected male? (infected by two
strains) is incompatible with a single infected female. When females are superinfected, that

superinfection is expected to spread through the population.
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Figure 2.9. Examples of cytoplasmic incompatibility (Brelsfoard and Dobson, 2009).

Regarding the vectors’ effect on Tetranychus urticae, Xie and colleagues’ (2016) work can be a
source, where they investigated the impacts of Wolbachia, Cardinium and their double infection on

the two-spotted spider mites. They observed significantly increased fecundity among Cardinium
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infected individuals, and lifetime longevity among all three types of infected T. urtiae females.
Detailed Cardinium / Wolbachia interactions can be seen in their work.

At a cytological level, the reason for the incompatibility of crosses lies under the asynchrony of
the nuclei of male and female gametes during their initial stage of mitosis (Reed and Werren, 1995).
Intergenomic interactions leading to reproductive incompatibilities can also be adapted for population
control by manipulation of sex ratio. Perrot-Minnot and colleagues (2004) state that introgression
causes a change in female fecundity and increases the number of male spider mites and suggest that

a nuclear gene might be controlling fecundity in T. urticae.

2.5. Aim of the Study

With this study, we want to contribute to a better understanding of mechanisms associated with
Wolbachia related CI and host-associated CI, using a two-step experiment. Our main goals were to
determine whether incompatibilities (due to genetic factors, to Wolbachia, and their interaction) that
arise between populations are due to pre- (i.e. behavioural isolation) or post- (i.e. problems of sperm
transfer or storage) copulatory mechanisms. Additionally, we wanted to see the effects of both types
of reproductive barriers (Wolbachia related & host associated), when they occur at the same time.
Finally, we wanted to understand how the results of copulation differ under the conditions of host
associated (sex regulating) and Wolbachia related (offspring terminating) incompatibilities and

determine which of these two barriers dominate when they coexist in an individual.
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3. MATERIALS AND METHODS

3.1. Spider Mite Populations and Rearing

In this experiment, two populations of spider mites were studied: a green coloured population
and a red coloured population of Tetranychus urticae. The first one, traditionally referred to as
“TOM?”, belongs to the green morph of T. urticae and was sampled on tomato plants (Solanum
lycopersicum L.) in Portugal in 2010. The second one, referred to as “AMP”, belongs to the red morph

of T. urticae and was sampled on datura plants (Datura spp.) in Portugal in 2013. Typical females

belonging to these two populations can be seen in Figure 3.1., below.

) ]
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Figure 3.1. Female individuals of AMP and TOM morphs. Used by the courtesy of Gilles San
Martin.

These two populations are naturally infected by Wolbachia and will be called hereafter AMP[+]
and TOM[+], respectively. In order to obtain their Wolbachia-free counterpart (AMP[-] and TOM[-
], respectively), both have been cured of Wolbachia by antibiotic treatment (Tetracycline
Hydrochloride; Li et al 2014) in a period of three generations in 2014 (Z¢I1¢ et al. in prep). Previous
experiments conducted in S. Magalhdes’ laboratory have shown that AMP[+] and TOM[+] are
infected by similar Wolbachia strains (based on the Wolbachia MLST; Baldo et al., 2006) that induce
either a high level (c.a. 60% of daughters’ embryonic mortality in incompatible crosses; Z¢l¢€ et al. in
prep) or no cytoplasmic incompatibility (CI), respectively, indicating an effect of the host genotype
at the CI level. During the course of the experiment, each population was maintained under standard
conditions (25 + 2°C, 60% RH, 16/8 h L/D) on bean (Phaseolus vulgaris L.) leaves, placed on wet
cotton within petri dishes.



16

In order to study all the possible combinations of both mite and Wolbachia associated
incompatibilities, as well as their interaction within a single experiment, we performed the crosses

outlined in the section below.

3.2. Crosses

(1) Incompatible crosses:

- TOM[-] females x AMP[-] males (mite-associated incompatible crosses)
- AMPI-] females x AMP[+] males (Wolbachia-associated incompatible crosses)
- TOM][-] females x AMP[+] males (both types of incompatibility)

(2) Compatible controls:

- TOM[-] females x TOM[-] males
- AMP[-] females x TOM[-] males
- AMP[-] females x AMP][-] males

To obtain a sufficient sample size, the target number for the test subjects was set as 50
successfully mated females in each cross (300 in total). From a hypothetical mating success of 50%
during the first step of the experiment, a total of 600 females (covering the six types of crosses) were
used in this experiment. For Test A and Test B, 600 and 367 additional males were used, respectively.
Each individual that was used in Test A and Test B were sampled as virgins to ensure their desire to
mate. Since the females were selected through fitness tests due to their ability to lay eggs, their
number in overall crosses represents the final sample size. The various combinations of crosses are

presented in Table 3.1., below. The outcomes of these crosses can be seen in Figure 3.2.

Table 3.1. Sample size for each type of cross.

TOM[-] & AMP[-] & AMP[+] &
TOM[-] @ n =100 n =100 n =100
AMP[-] € n =100 n =100 n =100
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Figure 3.2. Every cross and outcome of AMP x TOM spider mite varieties. “tet” represents the mites
that were treated by tetracycline antibiotics, which therefore were Wolbachia-free. Gray coloured
symbols represent the expected copulatory success and failure for the respective crosses on the figure,

but which were not studied in our experiments.

Due to the first male precedence (i.e. only the first mating of a female is successful; Helle 1967),
and to avoid sperm depletion in males (males copulate 15 times the first day in average; Krainacker
and Carey, 1989), we used both virgin males and females for these crosses. Virginity was also needed
for a sufficient mating desire for both sexes, as mentioned previously. To ensure virginity, both males
and females were isolated from our base colonies during their quiescent deutochrysalis stage one day
prior to the mating event. Males and females of this species can be determined by their idiosomal
width.

All individuals that were taken in their quiescent phase were grouped (TOM.tet females,
TOM.tet males, AMP.tet females, AMP.tet males & AMP males), respectively and were put into
separated petri dishes with wet cotton on their base, and parafilm around the dishes to prevent their

escape. Therefore, all groups were isolated from each other until copulation.
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Figure 3.3. The quiescent stage (deutochrysalis) of T. urticae. Taken from Mid-Florida Research &

Education Centre.

To determine whether the excess of males observed in crosses involving mite-associated
incompatibility is due to pre-copulatory incompatibility, the experiment was designed in three steps.
Indeed, since males are haploids in this species, these males may come either (i) from unfertilized
eggs (as in compatible crosses) due to a decrease in mating proportions (i.e. behavioural avoidance
of mating) or due to fertilization problems (i.e. problems of sperm transfer, storage and/or gamete

recognition); or (ii) from post-zygotic haploidization of the eggs following fertilization (i.e. paternal

genome elimination in fertilized eggs).

Figure 3.4. Size and Body Difference of Green Morph (TOM) of T. urticae. Used by the courtesy
of Gilles San Martin.
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3.3. Experimental Procedure
3.3.1. First Mating Event

To detect potential problems during mating (e.g. male-female recognition and/or copulatory
organ dysfunction before and during sperm transfer), behavioural observations of the copulation
events were conducted for all of the crosses mentioned above. Briefly, we installed both males and
females of a given cross on a bean leaf disc (surface area ~0.5 cm?) and recorded three important
variables of the mite mating behaviour: (1) frequency of mating, (2) mating latency, and (3) mating
duration. Mating frequency was then analysed in two ways: (i) the probability of mating, which
corresponds to whether the mites mated or not, and (ii) the number of mating events during the time
of observation. Mating latency corresponds to the time taken by the mites between the moment they
were installed onto the leaf and the copulation event. Finally, mating duration is the (cumulative) time
spent by the mites to copulate during the whole duration of the test. The entire test was conducted in
blocs of nine simultaneous crosses observed continuously under the stereoscope for 60 minutes. Four

blocs took place per day for a total of 19 blocs.

3.3.2. Second Mating Event

To determine whether the first mating was successful or not, we performed a double-mating test.
This test assumes first-male sperm precedence in T. urticae and decreased female receptivity to a
second mate if the first mating was successful: only when the first male has not delivered its sperm
will the second copulation effectively contribute to fertilization (Helle, 1967). Thus 24 hours after the
first mating event (Table 3.2.), females that had mated in the first mating event were paired with a
compatible male (i.e. a Wolbachia-free male from their own population; TOM[-] and AMP[-] males
for TOM[-] and AMP[-] females, respectively). Behavioural observations and measurements were

conducted under the same criteria as those previously described for the first mating event.
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Figure 3.5. An illustrated bloc.

3.3.3. Fitness Measurements

To determine potential Cl and/or any other incompatibilities between populations, we measured
the fecundity of the females, the hatching rate of the eggs, and the sex-ratio of the offspring for each
cross. All successfully mated females from the first step (independently of whether they mated or not
during the second step) were placed under controlled conditions (25 + 2°C, 60% RH, 16/8 h L/D)
right after the second step, and were allowed to lay eggs on 2cm? bean leaf discs placed on wet cotton
during the next three days. Every day, the females were controlled to record mortality. This
information allowed to compute the daily fecundity. After three days, females were taken out from
the petri dishes and the number of eggs were counted under the stereoscope (Fecunditiy (Fec) = total
number of eggs divided by the total number of days the females are alive, in the first three days after
the second mating event). Unhatched eggs and young adult males & females were counted 6 and 10
days later, respectively (Table 3.2.). Any Wolbachia-induced incompatible mating was spotted by a
significant increase in embryonic mortality (i.e. an increase in the proportion of unhatched eggs),
while host-associated incompatible matings resulted in a decrease in female offspring production (i.e.

male-biased sex ratio). Differences between single- and multiple-mated females’ offspring for these
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traits revealed whether the first mating events involving incompatible males were successful. An
overview of the procedure can be seen in Figure 3.6. The table of maintenance (Table 3.2.) is

presented below, as well.

@ No choice test
Re-mating test
60min @\ 24h later with a compatible male
e
n 60m|n
Mating frequency
Mating latency Mated
Mating duration ? Re-mating frequency
yes
Re-mating latency
Re-mating duration

@ Measures of offspring production

Fecundi [7:’——
M Sex ratio
Mated© atching rate
from test 2
Eggs hatching &
Juvenile development a Juvenile development a
Eggs

laying ; kllled

Figure 3.6. Overall experimental design.

Table 3.2. Summary of the experimental procedure.

1) Isolation of quiescent individuals Day 1
2) First mating Day 3
3) Second mating Day 4
4) Counting total eggs (removing the female) Day 7
5) Counting unhatched eggs Day 13
6) Counting the offspring based on their sex Day 15
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3.4. Statistical Analyses

All analyses were carried out using the R statistical package (v. 3.2.0). The general procedure
for building the statistical models used to analyse the interaction between the effects of Wolbachia-
induced CI and the host-associated reproductive incompatibility was as follows: the type of males
(TOM.tet, AMP.tet or AMP) and of females (TOM.tet or AMP.tet) tested were set as fixed

explanatory variables, whereas “observation” was Set as random explanatory variables.

The proportion of matings (i.e. mating probability) for the two tests (no choice and re-mating
tests), the embryonic mortality (i.e. proportion of unhatched eggs), and the proportion of both
daughters and sons in the brood produced from each cross, were analysed using a generalized linear
mixed model with a binomial error distribution (glmer, Ime4 package) (Bates et al., 2015). The
number of mating, the latency to copulation, and the duration of copulation were observed to be
greatly overdispersed. One way of handling this overdispersion is through the use of pseudo
distributions (Crawley, 2007). However, to our knowledge, it is not currently possible to account for
quasi distributions within a mixed model glmer procedure. For this reason, we instead used a glm
model with a quasipoisson error distribution and we fitted “observation™ as fixed factors, next to our
variables of interest. Using fixed rather than mixed models results in some loss of statistical power,
but the results are likely to be conservative, especially when the random factors consist of a few levels
(Bolker, 2008).

When the variable “male” was found to be significant, a stepwise a posteriori procedure was
carried out for the contrasts between male types (Crawley, 2007). Similarly, when a significant
interaction was found between female and male, a new factor “type cross” including all the
combinations tested here (six crosses) was created, and a posteriori contrasts between these crosses
were carried out by aggregating factor levels together and by testing the fit of the simplified model
using an ANOVA.

For all analyses described here, maximal models were simplified by sequentially eliminating
non-significant terms to establish a minimal model (Crawley, 2007), and the significance of the
explanatory variables was established using chi-squared tests (Bolker, 2008). The significant y?
values given in the text are based on the minimal model of Crawley (2007).

In our analyses of Offspring Production, we preferred to use offspring numbers rather than sex

ratios of the offspring. This allowed us to keep the input category of “unhatched” for all six crosses,
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since it is very important for comparing Wolbachia’s effect among the crosses. Our general average
of unhatched eggs is 15%. However, this value goes up to 21% in individuals that laid one and two
eggs. This significant difference would cause a bias in our statistical analyses. We have a normal
distribution of produced eggs, with 14 eggs in average among nearly 300 mated females that produced
at least one egg. In this regard, using the sex ratios in the cases of eggs laid in low numbers (for
instance in our study there are 23 fertile test subjects that laid <2 eggs) would give us a biased
distribution in terms of the sexes of the offspring. If the sex ratio of the offspring per test subject
(mated female mites) was taken into account, the eggs that were laid in few numbers would cause
biased changes in our results. For instance, in a scenario where two eggs were produced by one mite,
two unhatched eggs would give us a ratio of 100% unhatched, 0% sons, 0% daughters. Likewise, two
sons or two daughters hatched from a similar scenario would result in 100% sons or 100% daughters
respectively, and decrease the overall unhatched egg ratio immensely with the 0% value. We tried to
avoid these kind of biased percentages, in order to obtain more balanced results. Therefore, the sex
ratio based calculation was not ideal in our study, as it would result in an uneven distribution,
especially with fewer numbers of laid eggs. Since the overall sex/unhatched distribution guided us on
the effects of Wolbachia and host-associated incompatibilities, individual based calculation was a
better fit for our research for being more stable and dependable. Even though it is not a focus point
for this study, the lower hatching percentage among fewer laid eggs might have been caused by
malnutrition (Kliewer, 1961), the abnormal secretion of juvenile hormones (Cabrera et al., 2009) or
inbreeding depression (Welle, 1965; Saito et al., 2000).

A larger sample size, obviously, is more representative for statistical analyses. We did not choose
to exclude these mites that produced fewer eggs, but we chose to calculate the offspring averages
based on actual numbers of offspring (i.e. the numbers of sons, daughters and unhatched eggs
produced by each mating for all crosses), instead of a -sex ratio- in our Offspring Production
calculation, which resulted in less-biased and consistent results. For instance, after calculating the
numbers of offspring cumulatively in each cross, we calculated an overall percentile value as, for
instance; 30% sons, 60% daughters, 10% unhatched for all six crosses we studied, in a consistent

manner.

Finally, the high N/A data (roughly 50%) in our appendix is due to our prediction of 50% mating
success, and our aim to collect data from 300 females, (50 for each cross), as explained above in
section 3.2. Crosses, page 16. As we foresaw this issue, we ran the experiment with 600 females,
about half of which provided the data we needed, and the other half was in the N/A category, as

expected.
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4. RESULTS

4.1. No Choice Test

Overall, we did not find any significant interaction between the types of females and males used
on the proportion of mating (x> = 1.31, p = 0.52). However, TOM.tet females mated circa 7% less
than AMP.tet females (females effect: ¥?1 = 4.84, p = 0.03). Males also affected the proportion of
mating significantly (x% = 6.33, p = 0.04). Indeed, the contrast analyses conducted a posteriori
between males revealed that both AMP and TOM.tet males, and TOM.tet and AMP.tet males mated
equally (x°1=1.56, p =0.21 and x°1 = 1.63, p = 0.20, respectively), however AMP males mated less
than AMP.tet males (%1 = 6.33, p = 0.01).

Similarly, we did not find a significant interaction between the types of females and males used,
in terms of the number of matings (32 = 0.35, p = 0.84). Here we did not find any differences between
the number of matings of TOM.tet and AMP.tet females (x> = 0.62, p = 0.44), however males
exhibited significantly different numbers of mating (x% = 9.32, p = 0.01). Although both AMP and
AMP.tet males, and TOM.tet and AMP.tet males mated equally (Contrast analyses: ¥* = 2.03, p =
0.16 and %1 = 3.00, p = 0.09, respectively), AMP males mated less than TOM.tet males (y%1 = 9.22, p
=0.003).

Only females differed significantly in their latency to copulation, with AMP.tet females being
faster to mate than TOM.tet females (%1 = 9701.2, p < 0.001), independently of the male with which
they mated (male effect: x> = 119.47, p = 0.93; interaction female-male: ¥% = 247.38, p = 0.85).

Conversely, only males significantly affected the duration of copulation (y~2 = 585.44, p < 0.05),
independently of the female with which they mated (female effect: y% = 182.9, p = 0.16; interaction
female-male: y“2 = 68.63, p = 0.69). Indeed, the contrast analyses revealed that TOM.tet males mated
longer than AMP ones (x% = 533.88, p = 0.02), and that AMP.tet males mated with an intermediate
duration (contrast between AMP.tet and TOM.tet males: y°1 = 266.15, p = 0.10; contrast between
AMP.tet and AMP males: ¥%1 = 68.00, p = 0.40). The results can be seen on Figure 4.1. in four
categories as Mating Proportion, Number of Matings, Latency to Copulation and Duration of

Copulation.
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Figure 4.1. Bar graphs for the No Choice Test.
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4.2. Re-Mating Test
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As there is first-male sperm precedence in this species, on average, only a low proportion of the

females (20% in average), which mated during the first test re-mated during this second test. In

contrast with the first test, here TOM.tet females mated more than AMP.tet females (c.a. 25% vs

15%, respectively; ¥?1 = 5.20, p = 0.02), independently of the males (male effect: y?, = 0.3947, p =

0.82; interaction female-male: y“2 = 4.05, p = 0.13).

However, the number of matings performed by these females during this test did not differ

significantly (x?1 = 0.05, p = 0.78), and was not affected by the type of males with which they
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previously mated during the first test (male effect: %= 0.79, p = 0.53; interaction female-male: y%, =

0.79, p = 0.52).

Similarly, during this re-mating test, neither the latency nor the duration of copulation was

significantly different between females (latency: ¥?1 = 25.47, p = 0.83; duration: %1 = 2.24, p = 0.89),

independent of their first mate (male effect on latency: x% = 1885.6, p = 0.17; interaction female-male

on latency: y%2 = 2210, p = 0.13; male effect on duration: y%, = 120.7, p = 0.55; interaction female-

male on duration: x“> = 327.05, p = 0.15). Results of the Re-Mating Test can be seen in Figure 4.2.,

and are divided into the same four categories as in the No Choice Test.
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Figure 4.2. Bar graph for Re-Mating Test.
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4.3. Measures of Offspring Production

The production of offspring in this experiment was strongly affected by the combinations of
crosses. Results of our Offspring Production are visualised in Figure 4.3. below as Sons, Daughters
and Unhatched for their respective crosses. Indeed, we found a highly significant interaction between
the type of males and the type of females used for these crosses for all the variables measured here:
embryonic mortality (i.e. hatching rate; ¥% = 20.98, p < 0.0001), proportion of sons (%2 = 36.5, p <
0.0001) and proportion of daughters (y~2 = 14.44, p < 0.001).

This significant interaction comes from the two different types of incompatibility between spider
mites: (1) induced by Wolbachia and (2) between morphs of spider mites independently of
Wolbachia; as well as (3) from the combination of these two types of incompatibility. Contrasts

analyses, performed between the different crosses on the different variables tested, revealed:

(1) An increase in embryonic mortality (c.a. 31%) of the offspring produced by red uninfected
(AMP.tet) females when crossed with Wolbachia—infected red (AMP) males compared to any other
type of male (x°1 = 325.06, p < 0.0001). Since in haplodiploid species only the females come from
fertilized eggs (males are haploids), this increase of embryonic mortality severely affected only the
proportion of daughters here (y°1=179.29, p < 0.0001).

(2) A drastic increase in the proportion of males (c.a. 24%) of the offspring produced by green
Wolbachia—uninfected (TOM.tet) females when crossed with uninfected red (AMP.tet) males,
compared to uninfected green (TOM.tet) males (%1 = 27.76, p < 0.0001). This effect is obviously
associated with a decrease in the proportion of females (x> = 34.02, p < 0.0001), but not with an

increase in embryonic mortality (x?1 = 0.52, p = 0.47).
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Figure 4.3. Bar graph for Offspring Production.

(3) When both types of incompatibility are combined in the cross between green Wolbachia—
uninfected (TOM.tet) females and red Wolbachia—infected red (AMP) males, we can see a strong
reduction of the effect of Wolbachia on embryonic mortality (contrast with AMP.tet females crossed
with AMP males: 1= 101.05, p < 0.0001), although the embryonic mortality is slightly higher than
in the absence of Wolbachia (contrast with TOM.tet females crossed with AMP.tet males: 1 = 39.89,
p < 0.0001). Conversely, the presence of Wolbachia in males did not significantly affect the
proportion of sons produced in this host-associated incompatible kind of cross (contrast with TOM.tet
females crossed with AMP.tet males: ¥ = 3.54, p = 0.06).

Finally, it should be noted that whether the females re-mated with a compatible male during the
second test or not did not affect the production of offspring in this experiment. The mating pattern
(mating only during the first test or during both tests) did not increase the fit of any of our statistical
models built for hatching rate (x?1 = 2.83, p = 0.09), proportion of sons (x* = 3.48, p = 0.06) or
proportion of daughters (x“1= 0.66, p = 0.42). This latter result corroborates previous results showing
first-male sperm precedence in T. urticae, and indicates that the second copulation event was

ineffective even in compatible crosses.
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On Figure 4.4. above, the results of the Offspring Production were divided in two sub-categories

as “yes” and “no”, for whether they mated for the second time in the Re-Mating Test (yes) or not (no)

in their respected crosses. Sum of the number of test subjects (n) for each cross, corresponds to the

total number of female spider mites that were used in their respective cross.
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5. DISCUSSION

As we can see from our No Choice Test, there are no significance of interactions between two
sexes as a “preferable match” on the proportion of mating. Thus, these data suggest no behavioural
repulse between TOM.tet @ x AMP.tet &, which can be categorized as host-associated
incompatibility. We can interpret that AMP.tet individuals of both sexes mated more than TOM.tet
individuals and AMP males. Fewer number of mated AMP males, when compared to AMP.tet males
might be a sign of the healthy female identifying a Wolbachia infected male, and trying to avoid
copulation. This can be investigated further by a new experimental design that compares the
preferences of TOM and TOM.tet males for copulation with TOM.tet (uninfected) females, in a
possible future study. Independently from the males’ effect, only females showed significance in
latency during copulation. AMP.tet females also approached males more quickly when compared to

TOM .tet females, for copulation.

On the contrary to the latency, for duration of copulation only males showed their effect,
independent of females. TOM.tet males mated longer than AMP males. AMP.tet males were observed
as intermediate in terms of the duration of copulation, out of all three male types. This is a similar
outcome to AMP males being preferred less than AMP.tet males for copulation, as indicated in our
results on proportions. This might be an indication of females identifying the infected male and trying

to avoid contact.

Our Re-Mating Test did not give significant results, which was parallel to the expectations based
on Helle (1967). Since spider mites’ reproductive processing is in favour of the first male precedence,
we observed fewer copulations attempt (20% in average). We were also able to verify this with our
experiment, by using control males (healthy [.tet] males for the respective population) for the second
mating attempt. An interesting point about this experiment was the copulation interest being in the
opposite direction when compared to the previous test, as TOM.tet females mated more than AMP..tet

females, independently of the males.

Corroborating with previous knowledge, we also observed the first sperm precedence in our
experiment. The second mating event did not affect the production of offspring. The mating pattern
(mating only in the first or also in the second test) did not increase the fit of the hatching rate,
proportion of sons or proportion of daughters. This is another indication that the second copulation

was ineffective, even when the crosses were compatible. Also, the number of matings did not differ
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significantly, and the latency of the copulation and the duration of copulation was not different
between females.

Our post-copulatory maintenance and observations, summarized as “Measures of Offspring”,
showed highly significant interactions for the following variables between the type of males and

females that we used in our crossings:

1. Embryonic Mortality
2. Proportion of Sons

3. Proportion of Daughters

The reason for this significant interaction originates from two types of compatibility and their

combination that is outlined in Figure 5.1. as follows:

Reproductive Incompatibility

[ Wolbachia Induced ] [ Host Associated ]

Figure 5.1. Reproductive incompatibility chart of spider mite.

Proportion of Daughters can be considered a proxy for successful mating. In our results, the
largest proportion of daughters can be observed in AMP.tet @ x AMP.tet & and AMP.tet @ x TOM.tet
& crosses (Figure 4.3.). Larger number of female offspring is the outcome of a compatible cross in

T. urticae.

In our experiment, our hatching rate results provided us with data on Wolbachia induced
incompatibility (third bar in Figure 4.3.). For the high embryonic mortality (defined as eggs which
were successfully produced, yet remained unhatched), we expected our cross AMP.tet @ x AMP &
to provide us the highest values, due to the effect of Wolbachia. This cross produced circa 42%
unhatched eggs with high significance, compared to the other male types (p < 0.0001). This result
suggests us that the absence of offspring is not due to unfertilized eggs. Unfertilized eggs should have

produced an increased number of male offspring. Instead, during the development of the embryo, the
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offsprings of this cross were terminated by Wolbachia’s effect. Therefore, a high number of eggs
remained unhatched. As stated in the literature review section above, Wolbachia-induced CI works
as a correlative two-step mechanism. On the first step, Wolbachia modifies the sperm during
spermatogenesis. On the second step, the same Wolbachia strain must be present in the developing
embryo. Therefore, for a modified sperm, an infected egg (with the same strain) must be present for

successful fertilization.

As mentioned before, two-spotted spider mite is an arrhenotokous species. Unfertilized eggs
produce haploid males, thus indicates the asexual reproduction in the species. Therefore, high
frequencies of male offspring signal failed sexual reproduction. We can clearly see the highest male
offspring frequencies in the cross TOM.tet © x AMP.tet &. Alhough both test subjects were clean of
Wolbachia, they produced significantly more males than any other cross by circa 42%. Their opposite
cross AMP.tet @ x TOM.tet & produced much higher levels of female offspring than males. The
number of unhatched eggs was very similar in these two crosses. Another important result is the
similarity of the female production of AMP.tet @ x TOM.tet & cross, when compared to the ideal
AMP.tet @ x AMP.tet & cross. Finally, when we compare the number of unhatched eggs in the host-
associated incompatible cross of TOM.tet @ x AMP.tet & and the ideal cross of AMP.tet @ x AMP.tet
J', we observed lower levels of embryonic mortality in the host-associated incompatible cross. These
results suggest a strong possibility of a unidirectional reproductive incompatibility between TOM.tet

females and AMP.tet males, confirming the previous study of Zélé et al. (in prep).

The last type of incompatibility we studied is the combined (Wolbachia induced and host
associated) kind. We observed the results of this case through our cross TOM.tet @ x AMP & Here,
the female is a tetracycline treated TOM and the male is a Wolbachia infected AMP. In our results,
we detected the significant reduction of embryonic mortality caused by Wolbachia that we observed
on the intra-population cross of AMP.tet ¢ x AMP & (p < 0.0001). When we compare the
incompatible cross of TOM females with AMP males for both infected and treated varieties of T.
urticae, we can see that the existence of Wolbachia slightly increased the embryonic mortality of the
offspring. Even though the number of unhatched eggs differed slightly, son/daughter ratio seemed to

remain similar as that in the host-associated incompatible cross.

In another study, Werren et al. (2008) also presumed that the interactions with Wolbachia can
lead to the evolution of the host species, potentially even into a new species, stating the existence of
supporting empirical and theoretical evidence. Gottlieb & Zchori-Fein (2001) state that

parthenogenesis- inducing bacteria contributed to the evolution of parthenogenetic insect species due
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to the loss of their sexually reproduction abilities, after being cured of bacteria. Thus, Wolbachia can
indeed act as an evolutionary accelerator.
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6. CONCLUSIONS AND RECOMMENDATIONS

In this study, we examined the behavioural display of two Tetranychus urticae populations,
namely TOM.tet females x AMP.tet males in order to better understand if the unidirectional
incompatibility originates before copulation, through repulsive behaviour. We also measured the
fitness of the offsprings in all the crosses, in order to compare the different Cl levels (host-associated
Cl vs. Wolbachia Related CI) when double cytoplasmic incompatibility occurs, and analyse which of

these two CI types happen at a higher frequency.

Conclusions of this study are given below:

1. There were no significant differences between the interactions of healthy individuals of any
population in terms of proportion, frequency latency and duration of the mating. Therefore, we think

the host-associated incompatibility origins from postzygotic mechanisms.

2. Our results confirmed the existence of host-associated unidirectional incompatibility and the

fertilization capability of the first sperm, as recorded in previous studies.

3. Host-associated incompatibility causes a very significant increase on proportion of males and

Wolbachia- associated incompatibility causes a very significant increase on embryonic mortality.

4. Our results showed a highly significant interaction between the type of males and the type of
females used for these crosses for all the variables measured as embryonic mortality (i.e. hatching
rate; x% = 20.98, p < 0.0001), proportion of sons (y% = 36.5, p < 0.0001) and proportion of daughters
(x>2 = 14.44, p < 0.001). When double cytoplasmic incompatibility occurs, host-associated ClI

surpasses Wolbachia-associated CI’s effect, resulting in increased numbers of male offspring.

As a follow-up to this study, we suggest speciation related experiments, which can be executed
on hybrid offspring. In this study, the AMP.tet £ x TOM.tet " crosses provided the only compatible
inter-population hybrids, which were somewhat disfigured, with longer extremities and idiosomal
lengths. The hybrids’ fertility capacity can be investigated, and if they are indeed capable of
reproduction, further genetic analyses can be carried out for a better understanding of the speciation

process.
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Bloc | Name | Treat. | @ | TestAd | Amtd+ | TestBS | Bmtd+ | Eggs | Unhctd | Dghtrs | Sons | Jvnls
11 1| AT A T 1 A 0 10 1 3 2 4
11 2| AA+ | A A+ 0 NA NA | NA NA NA| NA| NA
11 3] AA- | A A- 1 A 0 8 0 5 2
11 41 TA+ | T A+ 1 T 0 14 0 11
11 5/ TT T T 1 T 16 11 5
11 6| TA- T A- 0 NA NA | NA NA NA | NA| NA
11 71 AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
11 8| TA- T A- 1 T 33 0 22 11 0
11 9| TA+ | T A+ 1 T 29 4 3 11 11
1.2 10 | TA- T A- 0 NA NA | NA NA NA | NA| NA
1.2 11| AA+ | A A+ 1 A 0 10 6 1 2 1
1.2 12| TA+ | T A+ 0 NA NA | NA NA NA | NA| NA
1.2 13| TT T T 1 T 0 0 NA NA | NA| NA
1.2 14| AA- | A A- 0 NA NA | NA NA NA | NA| NA
1.2 15| AT A T 1 A 4
1.2 16| TT T T 1 T 1
1.2 171 AA- | A A- 0 NA NA | NA NA NA | NA| NA
1.2 18| AT A T 1 A 0 2 NA | NA| NA
2.1 19| AA- | A A- 1 A 0 1 1
2.1 20 | TA- T A- 1 T 13 0 5
2.1 21| TT T T 0 NA NA | NA NA NA | NA| NA
2.1 22| AT A T 1 A 0 3 0 1
2.1 23 | AA+ | A A+ 1 A 0 30 13 5
2.1 24 | TA+ | T A+ 1 T 0 19 0 19 0
2.1 25| TT T T 1 T 0 4 0 0 0
2.1 26 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
2.1 27| TA+ | T A+ 1 T 15 13
2.2 28| TA+ | T A+ 1 T 9 9
2.2 29| AA- | A A- 0 NA NA | NA NA NA | NA| NA
2.2 30| AT A T 1 A 19 10
2.2 31| TT T T 1 T 3 1
2.2 32| AA+ | A A+ 1 NA NA | NA NA NA | NA| NA
2.2 33| TA- T A- 1 NA NA | NA NA NA | NA| NA
2.2 34| TA- T A- 1 T 0 14 0 6 5 3
2.2 3B AA- | A A- 0 NA NA | NA NA NA | NA| NA
2.2 36| AT A T 1 A 0 5 0 3 2 0
2.3 37| TA+ | T A+ 0 NA NA | NA NA NA | NA| NA
2.3 38| AA- | A A- 1 A 0 12 0 3 5 4
2.3 39| AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
2.3 40| TT T T 0 NA NA | NA NA NA | NA| NA
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9.2 271 | TA- T A- 1 T 1 16 0 1 12 3
9.2 272 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
9.2 273 | TA+ T A+ 1 T 1 3 0 3 0 0
9.2 274 | AT A T 0 NA NA NA NA NA | NA NA
9.2 215 | TT T T 0 NA NA NA NA NA | NA NA
9.2 276 | AA- A A- 0 NA NA NA NA NA | NA NA
9.2 277 | AA- A A- 0 NA NA NA NA NA | NA NA
9.2 278 | TA- T A- 0 NA NA NA NA NA | NA NA
9.2 219 | TT T T 1 T 1 1
9.3 280 | AA- A A- 1 A 0 6
9.3 281 | TT T T 1 NA NA NA NA NA | NA NA
9.3 282 | AT A T 0 NA NA NA NA NA | NA NA
9.3 283 | TA- T A- 0 NA NA NA NA NA | NA NA
9.3 284 | TA+ T A+ 0 NA NA NA NA NA | NA NA
9.3 285 | AA+ | A A+ 1 A 22 1 13 3 5
9.3 286 | AA- A A- 1 A NA NA NA | NA NA
9.3 287 | TA- T A- 0 NA NA NA NA NA | NA NA
9.3 288 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
9.4 280 | TT T T 0 NA NA NA NA NA | NA NA
9.4 290 | AT A T 0 NA NA NA NA NA | NA NA
9.4 291 | TA+ T A+ 0 NA NA NA NA NA | NA NA
9.4 292 | AA- A A- 1 A 0 NA NA | NA NA
9.4 293 | AA+ | A A+ 1 A 21 0 10 8 3
9.4 294 | TA- T A- 1 NA NA NA NA NA | NA NA
9.4 295 | TA+ T A+ 0 NA NA NA NA NA | NA NA
9.4 296 | TT T T 0 NA NA NA NA NA | NA NA
9.4 297 | AT A T 0 NA NA NA NA NA | NA NA
10.1 298 | TT T T 1 T 0 0 NA NA | NA NA
10.1 299 | TA+ T A+ 0 NA NA NA NA NA | NA NA
10.1 300 | AA+ | A A+ 1 A 0 11 7 2 2 0
10.1 301 | AA- A A- 0 NA NA NA NA NA | NA NA
10.1 302 | TA- T A- 1 T 21 4 0 17
10.1 303 | AT A T 1 A 20 5 13 2
10.1 304 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
10.1 305 | TT T T 0 NA NA NA NA NA | NA NA
10.1 306 | TA- T A- 1 T 0 13 3 1 8 1
10.2 307 | AT A T 0 NA NA NA NA NA | NA NA
10.2 308 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
10.2 309 | TA+ T A+ 1 NA NA NA NA NA | NA NA
10.2 310 | TA- T A- 0 NA NA NA NA NA | NA NA
10.2 311 | AA- A A- 1 A 20 15 4
10.2 312 | TT T T 1 T 13 7 3
10.2 313 | TA+ T A+ 0 NA NA NA NA NA | NA NA
10.2 314 | AT A T 0 NA NA NA NA NA | NA NA
10.2 315 | AA- A A- 1 A 19 5 4 6 4
10.3 316 | TT T T 1 T 0 NA NA | NA NA
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10.3 317 | AA- | A A- 1 A 0 16 0 5 6

10.3 318 | TA- T A- 1 T 0 21 0 10 10

10.3 319 | AT A T 1 A 0 21 4 14 2

10.3 320 | TA+ | T A+ 0 NA NA | NA NA NA | NA| NA
10.3 321 | AA+ | A A+ 1 A 0 20 2 7

10.3 322 | AT A T 1 A 0 5 1 1

10.3 323 | TA- T A- 1 T 1 2

10.3 324 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
10.4 325 | AT A T 0 NA NA | NA NA NA | NA| NA
10.4 326 | TA- T A- 1 NA NA | NA NA NA | NA| NA
10.4 327 | AA- | A A- 1 A 0 NA NA | NA| NA
10.4 328 | TT T T 1 T 10 0 6 3 1
10.4 329 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
104 330 | TA+ T A+ 1 T 9 0 1
10.4 331 | TT T T 1 T 19 15 1
104 332 | AA- A A- 0 NA NA NA NA NA NA NA
10.4 333 TA+ | T A+ 0 NA NA | NA NA NA | NA| NA
11.1 334 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
11.1 335 | TA+ T A+ 0 NA NA NA NA NA NA NA
11.1 336 | AA- | A A- 1 A 11 0 6 2 3
11.1 337 TT T T 1 T 2 1 1 0 0
11.1 338 | AT A T 1 A 13 3 7 0 3
11.1 339 | TA- T A- 1 NA NA NA NA NA NA NA
11.1 340 | TA- T A- 1 T NA NA NA NA
11.1 341 | AA- | A A- 1 A 1 2 0 0
11.1 342 TT T T 0 NA NA NA NA NA NA NA
11.2 343 | TA- T A- 1 T 1 0 NA NA | NA| NA
11.2 344 | TA+ T A+ 1 T 0 19 13 2 4 0
11.2 345 | TT T T 0 NA NA | NA NA NA | NA| NA
11.2 346 | AA- | A A- 1 A 1 20 2 12 2 4
11.2 347 | AA+ A A+ 0 NA NA NA NA NA NA NA
11.2 348 | AT A T 1 A 1 18 0 6 1 11
11.2 349 | TA+ T A+ 0 NA NA NA NA NA NA NA
11.2 350 | AA+ | A A+ 1 A 0 20 15 5 0
11.2 351 AT A T 1 A 1 22 5 10 1
11.3 352 | TA- T A- 0 NA NA NA NA NA NA NA
11.3 353 | AT A T 0 NA NA | NA NA NA | NA| NA
11.3 354 | TA+ T A+ 0 NA NA NA NA NA NA NA
11.3 355 | TT T T 0 NA NA | NA NA NA | NA| NA
11.3 356 | AA+ A A+ 0 NA NA NA NA NA NA NA
11.3 357 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
11.3 358 | TT T T 0 NA NA | NA NA NA | NA| NA
11.3 359 | TA+ T A+ 0 NA NA NA NA NA NA NA
11.3 360 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
11.4 361 TT T T 1 T 1 6 6 0 0 0
11.4 362 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
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11.4 363 | TA- T A- 0 NA NA | NA NA NA | NA NA
11.4 364 | TA+ | T A+ 0 NA NA | NA NA NA | NA| NA
11.4 365 | AT A T 1 A 0 20 0 8 7 5
11.4 366 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
11.4 367 | AT A T 1 A 0 10 2 6 1 1
11.4 368 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
11.4 369 | TA- T A- 1 T 0 0 NA NA | NA| NA
12.1 370 | AT A T 0 NA NA | NA NA NA | NA| NA
12.1 371 | TT T T 1 T 0 34 1 24 5 4
12.1 372 | TA+ | T A+ 0 NA NA | NA NA NA | NA| NA
12.1 373 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
12.1 374 | TA- T A- 1 T 0 34 0 2 27 5
12.1 3715 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
12.1 376 AT A T 0 NA NA NA NA NA NA NA
12.1 377 | TA+ | T A+ 1 T 15 0 15

12.1 378 | AA+ | A A+ 1 A 33 26

12.2 379 | AA+ | A A+ 1 A 14 4

12.2 380 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
12.2 381 TT T T 0 NA NA NA NA NA NA NA
12.2 382 | TA+ | T A+ 1 T 0 1 0 1 0 0
12.2 383 | TA- T A- 1 NA NA NA NA NA NA NA
12.2 384 | AT A T 1 A 33 4 21

12.2 385 | AA- A A- 1 A 29 4 17

12.2 386 | TA- T A- 0 NA NA NA NA NA NA NA
12.2 387 | TT T T 1 T 0 5 0 4 1 0
12.3 388 | AA- A A- 0 NA NA NA NA NA NA NA
12.3 389 | TA- T A- 1 T 0 36 0 25 6 5
12.3 390 TT T T 0 NA NA NA NA NA NA NA
12.3 391 | AT A T 1 A 42 33 7

12.3 392 | AA+ | A A+ 1 A 8 1

12.3 393 | TA+ T A+ 1 T 17 12

12.3 394 | AT A T 1 A 28 19 4

12.3 395 | TA+ T A+ 0 NA NA NA NA NA NA NA
12.3 396 | AA+ | A A+ 0 NA NA | NA NA NA | NA| NA
12.4 397 | TA- T A- 1 T 0 2 0 2 0 0
12.4 398 | AA- A A- 0 NA NA NA NA NA NA NA
12.4 399 | AA+ | A A+ 1 NA NA | NA NA NA | NA| NA
12.4 400 TT T T 0 NA NA NA NA NA NA NA
12.4 401 | TA+ | T A+ 1 T 4 1 2

12.4 402 AT A T 1 A 46 2 37

12.4 403 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
12.4 404 | TT T T 0 NA NA | NA NA NA | NA| NA
12.4 405 | TA- T A- 1 T 15 12

13.1 406 | TA+ | T A+ 1 T 5 2

13.1 407 | TA- T A- 1 T 46 28

13.1 408 | AA- | A A- 0 NA NA | NA NA NA | NA| NA
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13.1 409 | TT T T 1 T 0 10 0 7 2
13.1 410 | AA+ | A A+ 1 A 0 20 1 11 3
13.1 411 | AT A T 1 A 0 21 0 15 1
13.1 412 | TT T T 0 NA NA NA NA NA | NA NA
13.1 413 | TA+ T A+ 0 NA NA NA NA NA | NA NA
13.1 414 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
13.2 415 | TT T T 0 NA NA NA NA NA | NA NA
13.2 416 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
13.2 417 | AT A T 1 A 0 42 10 3 26 3
13.2 418 | TA- T A- 0 NA NA NA NA NA | NA NA
13.2 419 | AA- A A- 1 A 0 22 0 15 4 3
13.2 420 | TA+ T A+ 0 NA NA NA NA NA | NA NA
13.2 421 | AT A T 0 NA NA NA NA NA | NA NA
13.2 422 | AA- A A- 1 A 0 22 0 16 5 1
13.2 423 | TA- T A- 0 NA NA NA NA NA | NA NA
13.3 424 | AT A T 1 A 0 34 4 18 8 4
13.3 425 | AA+ | A A+ 1 NA NA NA NA NA | NA NA
13.3 426 | AA- A A- 0 NA NA NA NA NA | NA NA
13.3 427 | TA+ T A+ 1 T 0 34 13 9 9 3
13.3 428 | TA- T A- 0 NA NA NA NA NA | NA NA
13.3 429 | TT T T 1 T 1 33 2 5 22 4
13.3 430 | AT A T 0 NA NA NA NA NA | NA NA
13.3 431 | TA- T A- 0 NA NA NA NA NA | NA NA
13.3 432 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
13.4 433 | TA- T A- 0 NA NA NA NA NA | NA NA
134 434 | AT A T 1 A 0 6 0 3 2 1
13.4 435 | TT T T 0 NA NA NA NA NA | NA NA
134 436 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
13.4 437 | TA+ T A+ 0 NA NA NA NA NA | NA NA
13.4 438 | AA- A A- 0 NA NA NA NA NA | NA NA
13.4 439 | AA- A A- 0 NA NA NA NA NA | NA NA
13.4 440 | TT T T 0 NA NA NA NA NA | NA NA
13.4 441 | TA+ T A+ 0 NA NA NA NA NA | NA NA
14.1 442 | AA- A A- 1 A 1 9 0 5 1 3
14.1 443 | TA- T A- 1 T 1 12 0 5 7 0
14.1 444 | TT T T 1 T 1 12 0 5 5 2
14.1 445 | AT A T 1 A 0 10 0 2 6 2
14.1 446 | TA+ T A+ 1 T 0 10 2 5 3 0
14.1 447 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
14.1 448 | AT A T 1 A 0 8 2 4 2 0
14.1 449 | TA- T A- 0 NA NA NA NA NA | NA NA
14.1 450 | TT T T 1 T 0 12 0 0 6 6
14.2 451 | AA- A A- 0 NA NA NA NA NA | NA NA
14.2 452 | TT T T 1 T 1 12 0 9 3 0
14.2 453 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
14.2 454 | TA- T A- 0 NA NA NA NA NA | NA NA




14.2 455 | AT A T 1 A 0 21 4 14 3 0
14.2 456 | TA+ T A+ 1 T 0 8 0 0 8 0
14.2 457 | TA+ T A+ 1 T 1 10 2 0 8 0
14.2 458 | AA+ | A A+ 1 A 0 17 12 3 0
14.2 459 | AA- A A- 0 NA NA NA NA NA | NA NA
14.3 460 | TA+ T A+ 1 T 1 31 8 0 18 5
14.3 461 | TT T T 1 T 0 11 0 6 1 4
14.3 462 | AT A T 0 NA NA NA NA NA | NA NA
14.3 463 | AA- A A- 0 NA NA NA NA NA | NA NA
14.3 464 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
14.3 465 | TA- T A- 1 T 5 1 3 1
14.3 466 | AT A T 1 A 13 8 1 4
14.3 467 | TA- T A- 1 T 5 1 3

14.3 468 | TA+ T A+ 0 NA NA NA NA NA | NA NA
14.4 469 | TT T T 0 NA NA NA NA NA | NA NA
14.4 470 | TA- T A- 1 T 12

14.4 471 | AA- A A- 1 A 3

14.4 472 | AT A T 0 NA NA NA NA NA | NA NA
14.4 473 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
14.4 474 | TA+ T A+ 0 NA NA NA NA NA | NA NA
14.4 475 | TT T T 1 T 1 18 0 3 9 6
14.4 476 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
14.4 477 | AA- A A- 0 NA NA NA NA NA | NA NA
15.1 478 | AT A T 0 NA NA NA NA NA | NA NA
15.1 479 | TA+ T A+ 0 NA NA NA NA NA | NA NA
15.1 480 | AA- A A- 1 A 13 8 2

15.1 481 | TA- T A- 1 T 22 4 13

15.1 482 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
15.1 483 | TT T T 0 NA NA NA NA NA | NA NA
15.1 484 | AT A T 1 A 19 2 15

15.1 485 | AA+ | A A+ 1 A 15 11 1

15.1 486 | TA+ T A+ 0 NA NA NA NA NA | NA NA
15.2 487 | AA- A A- 1 A 13

15.2 488 | TT T T 1 T 9

15.2 489 | TA- T A- 0 NA NA NA NA NA | NA NA
15.2 490 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
15.2 491 | TA+ T A+ 0 NA NA NA NA NA | NA NA
15.2 492 | AT A T 1 A 0 12 0 8 2 2
15.2 493 | AA- A A- 0 NA NA NA NA NA | NA NA
15.2 494 | TT T T 1 T 0 3 0 2 0 1
15.2 495 | TA- T A- 0 NA NA NA NA NA | NA NA
15.3 496 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
153 497 | AT A T 0 NA NA NA NA NA | NA NA
15.3 498 | TA+ T A+ 0 NA NA NA NA NA | NA NA
153 499 | TT T T 1 T 0 12 0 6 4 2
15.3 500 | TA- T A- 0 NA NA NA NA NA | NA NA
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153 501 | AA- A A- 1 A 1 0 1 1
15.3 502 | TA+ T A+ 1 T 0 0 2 2
15.3 503 | AT A T 1 A 0 15 2 12 1 0
15.3 504 | AA+ | A A+ 1 A 0 1 0 0 1 0
154 505 | AA- A A- 0 NA NA NA NA NA | NA NA
154 506 | AA+ | A A+ 1 A 0 2 0 0 0 2
15.4 507 | TA- T A- 1 T 0 18 0 2 12 4
154 508 | TT T T 0 NA NA NA NA NA | NA NA
15.4 509 | TA+ T A+ 0 NA NA NA NA NA | NA NA
154 510 | AT A T 1 A 0 16 0 12 2 2
15.4 511 | TA- T A- 0 NA NA NA NA NA | NA NA
154 512 | AA- A A- 1 A 0 7 1 3 1 2
154 513 | TT T T 0 NA NA NA NA NA | NA NA
16.1 514 | TA+ T A+ 0 NA NA NA NA NA | NA NA
16.1 515 | AA- A A- 1 A 2 1 1

16.1 516 | AT A T 1 A 22 0 15

16.1 517 | TA- T A- 1 T NA NA NA | NA NA
16.1 518 | TT T T 0 NA NA NA NA NA | NA NA
16.1 519 | AA+ | A A+ 1 A 0 16 5 1
16.1 520 | AA+ | A A+ 1 A 0 19 9 0
16.1 521 | TA+ T A+ 1 T 0 22 0 22 0
16.1 522 | AT A T 1 A 0 19 2 14 2 1
16.2 523 | AT A T 0 NA NA NA NA NA | NA NA
16.2 524 | TA- T A- 0 NA NA NA NA NA | NA NA
16.2 525 | TA+ T A+ 1 T 0 22 2 15

16.2 526 | TT T T 1 T 0 10 0 2

16.2 527 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
16.2 528 | AA- A A- 1 A 17 9 3

16.2 529 | AA- A A- 1 A 13 10 1

16.2 530 | TT T T 0 NA NA NA NA NA | NA NA
16.2 531 | TA- T A- 1 T 0 21 3 4 11 3
16.3 532 | TA- T A- 0 NA NA NA NA NA | NA NA
16.3 533 | AT A T 1 A 0 13 0 10 3 0
16.3 534 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
16.3 535 | AA- A A- 1 A 0 2 0 1 1 0
16.3 536 | TT T T 0 NA NA NA NA NA | NA NA
16.3 537 | TA+ T A+ 0 NA NA NA NA NA | NA NA
16.3 538 | TA- T A- 1 T 1 13 0 1 11

16.3 539 | AT A T 1 A 1 13 3 9 1

16.3 540 | TA+ T A+ 1 T 0 25 4 10 10

16.4 541 | AA+ | A A+ 1 A 1 8 7 1 0

16.4 542 | TT T T 0 NA NA NA NA NA | NA NA
16.4 543 | TA- T A- 0 NA NA NA NA NA | NA NA
16.4 544 | TA+ T A+ 1 T 0 1 0 1 0 0
16.4 545 | AA- A A- 0 NA NA NA NA NA | NA NA
16.4 546 | AT A T 1 A 0 13 0 9 3 1
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16.4 547 | TT T T 1 T 1 23 0 18 3 2
16.4 548 | AA- A A- 0 NA NA NA NA NA | NA NA
16.4 549 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
17.1 550 | TA- T A- 1 T 0 19 1 12 5 1
17.1 551 | AA- A A- 0 NA NA NA NA NA | NA NA
17.1 552 | TT T T 0 NA NA NA NA NA | NA NA
17.1 553 | AT A T 1 A 0 NA NA | NA NA
17.1 554 | AA+ | A A+ 1 A 11 5 4 2 0
17.1 555 | TA+ T A+ 0 NA NA NA NA NA | NA NA
17.1 556 | TA- T A- 1 T 0 16 0 4 11 1
17.1 557 | TA+ T A+ 0 NA NA NA NA NA | NA NA
17.1 558 | AA- A A- 1 A 0 8 0 5 2 1
17.2 559 | TT T T 0 NA NA NA NA NA | NA NA
17.2 560 | AT A T 1 A 0 21 1 15 3 2
17.2 561 | TA+ T A+ 0 NA NA NA NA NA | NA NA
17.2 562 | TA- T A- 0 NA NA NA NA NA | NA NA
17.2 563 | AA- A A- 1 A 0 12 9 3 0
17.2 564 | AA+ | A A+ 1 A 0 17 5 3 0
17.2 565 | AA+ | A A+ 1 A 0 21 11 5 4 1
17.2 566 | AT A T 1 A 0 15 8 3 4
17.2 567 | TT T T 1 T 0 10 7 2 1
17.3 568 | AA- A A- 1 A 0 9 7 2 0
17.3 569 | TT T T 1 T 0 10 8 2 0
17.3 570 | TA- T A- 0 NA NA NA NA NA | NA NA
17.3 571 | AA+ | A A+ 1 A 1 17 4 9 2 2
17.3 572 | AT A T 0 NA NA NA NA NA | NA NA
17.3 573 | TA+ T A+ 1 NA NA NA NA NA | NA NA
17.3 574 | AA+ | A A+ 1 A 10 1

17.3 575 | TA- T A- 1 T 2 2

17.3 576 | AT A T 0 NA NA NA NA NA | NA NA
17.4 577 | AT A T 1 A 0 17 3 11 2 1
17.4 578 | TA+ T A+ 0 NA NA NA NA NA | NA NA
17.4 579 | TT T T 0 NA NA NA NA NA | NA NA
17.4 580 | AA- A A- 1 A 0 14 0 9 4 1
17.4 581 | TA- T A- 0 NA NA NA NA NA | NA NA
17.4 582 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
17.4 583 | AA- A A- 1 A 0 0 NA NA | NA NA
17.4 584 | TT T T 0 NA NA NA NA NA | NA NA
17.4 585 | TA+ T A+ 0 NA NA NA NA NA | NA NA
18.1 586 | AA+ | A A+ 1 NA NA NA NA NA | NA NA
18.1 587 | TT T T 1 T 0 13 0 11 2 0
18.1 588 | TA- T A- 1 NA NA NA NA NA | NA NA
18.1 589 | AT A T 1 A 0 7 5 2 0
18.1 590 | AA- A A- 1 A 0 19 13 4 2
18.1 591 | TA+ T A+ 1 T 1 35 11 12 11 1
18.1 592 | TA- T A- 1 T 0 17 0 1 14 2
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18.1 593 | TA+ T A+ 1 T 24 4 5 14

18.1 594 | AA+ | A A+ 1 A 26 7 10 4

18.2 505 | TT T T 0 NA NA NA NA NA | NA NA
18.2 596 | AT A T 1 A 0 29 1 18 8

18.2 597 | AA- A A- 1 A 0 4 0 1

18.2 598 | AA+ | A A+ 1 A 29 14 9

18.2 599 | TA- T A- 1 NA NA NA NA NA | NA NA
18.2 600 | TA+ T A+ 1 T 1 23 3 5 13 2
18.2 601 | AA- A A- 1 A 0 0 NA NA | NA NA
18.2 602 | AT A T 0 NA NA NA NA NA | NA NA
18.2 603 | TT T T 0 NA NA NA NA NA | NA NA
18.3 604 | AT A T 0 NA NA NA NA NA | NA NA
18.3 605 | TA- T A- 0 NA NA NA NA NA | NA NA
18.3 606 | TT T T 0 NA NA NA NA NA | NA NA
18.3 607 | AA+ | A A+ 1 A 25 1 14 4
18.3 608 | AA- A A- 1 A 34 0 23 6
18.3 609 | TA+ T A+ 0 NA NA NA NA NA | NA NA
18.3 610 | AA- A A- 1 A 0 11 0 9 2 0
18.3 611 | TA- T A- 0 NA NA NA NA NA | NA NA
18.3 612 | TT T T 0 NA NA NA NA NA | NA NA
19.1 613 | TT T T 1 T 0 7 0 6 1 0
19.1 614 | AA- A A- 1 A 0 27 1 19 6 1
19.1 615 | AA- A A- 0 NA NA NA NA NA | NA NA
19.1 616 | TT T T 0 NA NA NA NA NA | NA NA
19.1 617 | TT T T 0 NA NA NA NA NA | NA NA
19.1 618 | AA- A A- 1 A 18 0 15

19.1 619 | TT T T 1 T 28 1 21

19.1 620 | TT T T 0 NA NA NA NA NA | NA NA
19.1 621 | AA- A A- 1 A 0 18 2 11 5 0
19.2 622 | AA- A A- 0 NA NA NA NA NA | NA NA
19.2 623 | AA- A A- 0 NA NA NA NA NA | NA NA
19.2 624 | TT T T 0 NA NA NA NA NA | NA NA
19.2 625 | TT T T 1 T 0 27 0 20 6 1
19.2 626 | AA- A A- 0 NA NA NA NA NA | NA NA
19.2 627 | TT T T 0 NA NA NA NA NA | NA NA
19.2 628 | AA- A A- 1 A 0 21 12 1 0 8
19.2 629 | TT T T 1 T 0 24 0 17 5 2
19.2 630 | TT T T 0 NA NA NA NA NA | NA NA
19.3 631 | AA- A A- 0 NA NA NA NA NA | NA NA
19.3 632 | TT T T 1 T 0 2 0 0 0
19.3 633 | AA- A A- 1 A 1 19 13 3 3
19.3 634 | AA- A A- 0 NA NA NA NA NA | NA NA
19.3 635 | TT T T 0 NA NA NA NA NA | NA NA
19.3 636 | TT T T 1 T 1 30 0 25 4 1
19.3 637 | TT T T 0 NA NA NA NA NA | NA NA
19.3 638 | AA- A A- 0 NA NA NA NA NA | NA NA
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19.3 639 | AA- A A- 1 A 0 31 1 21 8 1
19.4 640 | TT T T 0 NA NA NA NA NA | NA NA
194 641 | TA- T A- 1 T 0 18 0 7 11 0
19.4 642 | TA- T A- 0 NA NA NA NA NA | NA NA
194 643 | AA+ | A A+ 0 NA NA NA NA NA | NA NA
194 644 | TT T T 1 T 0 24 1 4 19 0
19.4 645 | TT T T 0 NA NA NA NA NA | NA NA
194 646 | AA- A A- 0 NA NA NA NA NA | NA NA
19.4 647 | AA- A A- 0 NA NA NA NA NA | NA NA
194 648 | AA- A A- 0 NA NA NA NA NA | NA NA






