FOR REFERENCE 54 TEIS ROU¥ 10T . ( 8E . A.

# SIVI AKIŞ PROFILLERININ DAMLAMA YATAK REAKTÖRLERININ ÇALIŞMASINA ETKILERI

## Dr. R. KANDİYOTİ



Eylül 1977 DOÇENTLİK TEZİ

Dolgulu kulelerde akan sıvının önemli bir kısmının ana dolgudan ayrılarak kule duvarlarından asağı süzüldüğü ötedenberi bilinmektedir. Damlama yatak reaktörlerinin matematik modellerinde bu husus şimdiye kadar dikkate alınmamıştır. Bu çalışmada, sıvı fazındaki reaksiyon maddelerinin hareket ve dağılmalarını incelemek üzere reaktör içi sıvı akış profillerini, eksenel dağılma, statik sıvı gözleri ile kütle transferi ve kulenin sıvı tutma oranlarıyla birlikte hesaba alan bir damlama yatak reaktörü modeli geliştirilmiştir. Model, reaktörde kalma süresi dağılımlarının hesaplanarak, deney sonuçları ve evvelce önerilmiş modellerden elde edilen dağılım eğrileriyle karşılaştırılması yöntemi ile değerlendirilmiştir. Geliştirilen model, duvar akışı ihmal edilmek suretiyle, basitleştirildiği takdirde şimdiye kadar bilinen modellere indirgenebilmektedir. Karsılastırma yapabilmek amacıyla bu calısmada geliştirilen model ile birlikte evvelce önerilmiş modellerin denklemleri sonlu farklar yöntemleri ile cözülmüştür.

Bu çalışmada elde edilen sonuçlar aşağıdaki şekilde özetlenebilir:

 Sıvı hızı profillerinin etkilerini de iceren model evvelce önerilmiş modellere oranla düşük sıvı akış hızlarında, deney sonucu elde edilen reaktörde kalma süresi dağılım eğrilerine daha yakın sonuçlar elde edilmesini sağlamıştır. Sıvı akış hızları yükseldikçe bütün modellerin deney sonuçlarına çok yaklaştığı görülmüştür.

2. Gelistirilen model duvar akışı bölgesi ile ana dolgu a-

kışı bölgesi arasındaki kütle transferi hızlarının hesaplanmasını sağlamaktadır. İki bölge arasındaki kütle transferi hızlarının esas itibariyle kon vektif karakterli olduğu ve reaktördeki diğer kütle transferi hızlarından 10<sup>3</sup> mertebesinde daha büyük olduğu görülmüştür.

3. Duvar akışı bölgesi ile ana dolgu akış bölgesi arasın-

daki kütle transferi hızlarının düşük olması halinde meydana gelmesi beklenen yan-geçme (by-pass) olayı, geliştirilen model aracılığı ile izlenebilmektedir.

4. İki bölge arasında kütle transferi hızlarının yüksek olması ve mikro-karışmanın kimyasal reaksiyondaki dö-

nüşmeleri etkilememesi nedeniyle, birinci mertebeden reaksiyonlarda, dönüşme hesaplarında duvar akışının ihmalinin sadece % l civarında bir hataya yol açtığı hesaplanmıştır.

ii

### TEŞEKKÜR

Bu çalışmanın yapılmasına maddi olanak sağlayan Boğaziçi Üniversitesi Mühendislik Fakültesi Dekanlığına, maddi ve manevi hiçbir desteği esirgemeyen Kimya Mühendisliği Bölüm Başkanlığı ve Öğretim elemanlarına teşekkür ederim.

Ayrıca, çalışmanın gerektirdiği yoğun bilgisayar kullanımı esnasında gösterdikleri yakınlıktan ötürü Boğaziçi Üniversitesi Bilgisayar Merkezi kadrosuna, tezin daktilosunu en etkin bir biçimde gerçekleştiren Sürat Daktilo ve Teksir Bürosuna, tezin toplanması ve basılmasındaki değerli yardımlarından dolayı Boğaziçi Üniversitesi İnşaat Mühendisliği Laboratuarları Şefi Erol Yamaç'a ve Boğaziçi Üniversitesi Basımevi Müdürü Mustafa Niksarlı ve personeline teşekkürü borç bilirim.

Son olarak, bu çalışmanın tüm safhalarında beni anlayış ve sabrıyla destekleyen eşim Deniz'e minnet duygularımı belirtmek isterim.

Dr.R. Kandiyoti

# Î Ç Î N D E K Î L E R

C .... C .

|       |      |                                                                                               | Sayra    |
|-------|------|-----------------------------------------------------------------------------------------------|----------|
|       |      | OZET                                                                                          | ii       |
|       |      | TEŞEKKÜR                                                                                      | iii      |
|       |      | TABLOLARIN LISTESI                                                                            | iv       |
|       |      | ŞEKİLLERİN LİSTESİ                                                                            | v        |
|       |      | KULLANILAN NOTASYON                                                                           | vii      |
| BOLOM | Ι.   | GİRİŞ<br>I.l. Çalışmanın Tanımı ve Amacı                                                      | 1<br>1   |
| BÖLÖM | II.  | DAMLAMA YATAK REAKTURLERINDE KALMA                                                            | 0        |
|       |      | II.l. Reaktörde Kalma Süresi Dağılımı                                                         | 9        |
|       |      | Fonksiyonları<br>II 2 Peaktörde Kalma Süresi Dağılım                                          | 9        |
|       |      | Modelleri                                                                                     | 10       |
|       |      | II.2.1. Piston Akışta Eksenel Dağılma<br>Modeli                                               | 11       |
|       |      | II.2.2. Piston Akışta Eksenel Dağılma<br>ve Statik Sıvı Gözleri ile<br>Kütle Transferi Modeli |          |
|       |      | (PDE MODEL1)                                                                                  | 13       |
|       |      | 11.3. Dolgulu Kulelerde Sivi Akiş Profilleri                                                  | 15       |
| BOLOM | III. | DAMLAMA YATAK REAKTORLERINDE SIVI FAZ                                                         | 19       |
|       |      | III.2. Damlama Yatak Reaktörü Modeli                                                          | 22       |
|       |      | III.2.1. Sınır Şartları<br>III.2.2. Mədəli Təməmləyən Domklamlayin                            | 30       |
|       |      | Özeti                                                                                         | 31       |
|       |      | III.3. Sıvı Akış Profilleri Modeli                                                            | 34       |
| •     |      | III.4. Denklemlerin Boyutsuzlandirilmasi                                                      | 35       |
| BQLOM | IV.  | DENKLEM TAKIMLARININ ÇÖZÜMLERİ                                                                | 41       |
|       |      | IV.I. Soniu Farklar Metodiari<br>IV.2. Duvar Akısı Bölgesini İceren                           | <b>4</b> |
|       |      | Damlama Yatak Reaktör Modelinde                                                               |          |
|       |      | Kalma Suresi Dagilimlarininin<br>Hesanlanmasi                                                 | 43       |
|       |      | IV.2.1. Birinci Zaman Adımı                                                                   | 48       |
|       |      | IV.2.2. İkinci ve Sonraki Zaman Adımları<br>IV.2.3. Duyan Akıça Bölçeçi                       | 50       |
|       |      | IV.2.3. Duvar Akişi borgesi<br>IV.2.4. Denklem Dizisinin Çözümü                               | 52       |

| سر     | nga I | IV.3. PDE Modelinden Reaktörde Kalma<br>Süresi Dağılımlarının Hesaplan-<br>ması                                                 | 64         |
|--------|-------|---------------------------------------------------------------------------------------------------------------------------------|------------|
|        |       | IV.4. Sivi Akış Profillerinin Hesaplanması<br>IV.5. Reaktörde Kalma Süresi Dağılımlarının<br>Hesaplanmasında Kullanılan Savısal | 67         |
|        |       | Veriler                                                                                                                         | 72         |
| BQLOM  | ۷.    | SONUÇLARIN DEĞERLENDİRİLMESİ VE TARTIŞILMASI<br>V.l. Ölçülen ve Hesaplanan Reaktörde Kalma                                      | 78         |
|        |       | Süresi Dağılımlarının Karşılaştırması<br>V.2. Önerilen Modelin Yanısal Özellikleri                                              | 78<br>89   |
|        |       | V.3. Sonuçların Toplu Değerlendirmesi                                                                                           | ر<br>97    |
| BØLOM  | VI.   | DÜŞÜNCELER VE TAVSİYELER                                                                                                        | 100        |
| BOLOM  | VII.  | ØZET VE SONUÇLAR                                                                                                                | 104        |
|        |       | VII.l. Özet<br>VII.2. Sonuçlar                                                                                                  | 104<br>105 |
| EKLER: |       |                                                                                                                                 |            |
|        |       | EK I. BILGISAYAR PROGRAMI; GELIŞIIRILEN MODEL<br>EK 2. BİLGİSAYAR PROGRAMI: PDE MODELİ                                          | 108<br>116 |
|        |       | EK 3. BILGISAYAR PROGRAMI; SIVI AKIŞ PROFILLERI                                                                                 | 120        |
|        |       |                                                                                                                                 |            |

REFERANSLAR

# TABLOLARIN LİSTESİ

|                                                                                                      | Sayfa |
|------------------------------------------------------------------------------------------------------|-------|
| TABLO V.1. KARŞILAŞTIRMADA KULLANILAN DENEYLER                                                       | 80    |
| TABLO V.2. k 'NIN AKIŞ HIZINA GÖRE DEĞİŞMESİ                                                         | 94    |
| TABLO V.3. İKİ MODELDEN ELDE EDİLEN BİRİNCİ MERTEBEDEN<br>REAKSİYON DONUŞMELERİNİN KARŞILAŞTIRILMASI | 96    |
| TABLO V.4. ELDE EDILEN PARAMETRE DEGERLERI                                                           | 98    |

11

iv

# SEKILLERIN LISTESI

|       |        |                                                                                                                                             | Sayfa    |
|-------|--------|---------------------------------------------------------------------------------------------------------------------------------------------|----------|
| ŞEKİL | Ι.Ί.   | Dağılım Fonksiyonları                                                                                                                       | <b>4</b> |
| ŞEKİL | I.2.   | Aynı kulede gözeneksiz dolgu (A)<br>ve gözenekli dolgu (B) ile elde<br>edilmesi beklenen, kalitatif re-<br>aktörde kalma süresi dağılımları | 6        |
| ŞEKİL | II.1.  | Piston akışta eksenel dağılma<br>modeli-Peclet sayısının reaktör-<br>de kalma süresi dağılımlarına                                          |          |
|       |        | etkisi                                                                                                                                      | 12       |
| ŞEKIL | II.2.  | Çalışmanın bilgi akış şeması<br>özeti                                                                                                       | 18       |
| ŞEKİL | III.1. | Sıvı akış profilleri                                                                                                                        | 20       |
| ŞEKİL | III.2. | Reaktör elemanı ve reaktörün<br>koordinat eksenleri                                                                                         | 22       |
| ŞEKİL | III.3. | Duvar akışı bölgesinde hacım<br>elemanı                                                                                                     | 26       |
| ŞEKİL | IV.1.  | Cidardan su akışı hızının<br>eksensel uzaklığa bağlı olarak<br>değişmesi                                                                    | 74       |
| ŞEKİL | IV.2.  | Cidardan su akışı hızının<br>eksenel uzaklığa bağlı olarak<br>değişmesi                                                                     | 75       |
| ŞEKİL | V.1.   | Ölçülen ve hesaplanan kalma süresi<br>dağılımlarının karşılaştırılması<br>(DENEY I)                                                         | 82       |
| ŞEKİL | V.2.   | Ölçülen ve hesaplanan kalma süresi<br>dağılımlarının karşılaştırılması<br>(DENEY II)                                                        | 83       |
| ŞEKİL | V.3.   | Ölçülen ve hesaplanan kalma süresi<br>dağılımlarının karşılaştırılması<br>(DENEY III)                                                       | 84       |
| ŞEKİL | V.4.   | Ölçülen ve hesaplanan kalma süresi<br>dağılımlarının karşılaştırılması<br>(DENEY IV)                                                        | 85       |
| ŞEKİL | V.5.   | Ölçülen ve hesaplanan kalma süresi<br>dağılımlarının karşılaştırılması<br>(DENEY V)                                                         | 86       |

V.

| ŞEKİL | V.6. | Ölçülen ve hesaplanan kalma süresi<br>dağılımlarının karşılaştırılması<br>(DENEY VI)                                         | 87 |
|-------|------|------------------------------------------------------------------------------------------------------------------------------|----|
| ŞEKİL | ۷.7. | Proses kabında yan geçmenin teşhisi                                                                                          | 90 |
| ŞEKİL | V.8. | Reaktörde kalma süresi dağılımları-<br>nın R <sub>N</sub> parametresine bağlı olarak<br>değişmesi                            | 91 |
| ŞEKİL | V.9. | Duvar akışı ile ana dolgu akışı böl-<br>geleri arasındaki kütle transferi<br>katsayısının sıvı akış hızına göre<br>değişmesi | 93 |

vi

# KULLANILAN NOTASYON

| a                                                                                 | Kule yarıçapı                                                                                               |
|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| a <sub>j</sub> ,aj                                                                | Geliştirilen modelin sonlu farklar denklemlerinin gu-<br>ruplandırılmış katsayıları                         |
| <b>Ş</b>                                                                          | Birleştirilmiş katsayı matrisi                                                                              |
| A <sub>i,j</sub>                                                                  | A matrisinin elemanları                                                                                     |
| <sup>b</sup> j, <sup>b</sup> j                                                    | Sonlu farklar denklemlerinin guruplandırılmış katsayı-<br>ları.                                             |
| B<br>∼                                                                            | Birleştirilmiş lineer denklem takımının zamana bağımlı<br>vektörü                                           |
| <sup>B</sup> j                                                                    | ${}^{B}_{\mathcal{V}}$ vektörünün elemanları                                                                |
| <b>C</b> .                                                                        | Ana dolgu bölgesinde izleyici konsantrasyonu                                                                |
| C*                                                                                | Statik sıvı bölgelerinde izleyici konsantrasyonu                                                            |
| c <sub>ω</sub>                                                                    | Duvar akışı bölgesinde izleyici konsantrasyonu                                                              |
| <sup>c</sup> <sub>1</sub> , <sup>c</sup> <sub>2</sub> , <sup>c</sup> <sub>3</sub> | , c <sub>4</sub> , c <sub>5</sub> PDE modelinin sonlu farklar denklemlerindeki<br>guruplandırılmış sabitler |
| c, c*;                                                                            | Geliştirilen modelin sonlu farklar denklemlerinin gu-<br>ruplandırılmış katsayıları                         |
| с <sub>о</sub>                                                                    | n/ma <sup>2</sup> Leb <sub>T</sub>                                                                          |
| d'j                                                                               | Geliştirilen modelin sonlu farklar denklemlerinin gu-<br>ruplandırılmış katsayıları                         |
| d <sub>u</sub>                                                                    | Duvar akışında sıvı tabakası kalınlığı                                                                      |
| De                                                                                | Etkin difüzyon katsayısı                                                                                    |
| D <sub>p</sub> , d <sub>p</sub>                                                   | Etkin dolgu maddesi boyu                                                                                    |
| E                                                                                 | Kule geometrik sabiti                                                                                       |
| E(Θ)                                                                              | Reaktörde kalma süresi dağılım fonksiyonu                                                                   |
| f                                                                                 | Ana dolgu bölgesi akış hızı                                                                                 |
| f                                                                                 | Kule girişindeki uniform akış hızı                                                                          |
| F                                                                                 | Boyutsuzlandırılmış ana dolgu bölgesi akış hızı                                                             |
| F(0)                                                                              | <i>∫</i> ⊖ E(ອຶ) dອ<br>ວ                                                                                    |
| g                                                                                 | yerçekimi ivmesi                                                                                            |
| G                                                                                 | Ana dolgudan duvar akışı bölgesine geçiş sınır şartın-<br>daki ampirik katsayı                              |

| G <sub>]</sub> , | 2, G <sub>3</sub> , G <sub>4</sub> , G <sub>5</sub> , G <sub>6</sub> , G <sub>7</sub> , G <sub>8</sub> PD-PDE modelininin sonlu farklar<br>denklemlerindeki guruplandırılmış<br>sabitler                      |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i.               | Radiyal doğrultuda hesap adımı sayısı                                                                                                                                                                         |
| IM               | Radiyal doğrultuda toplam hesap adımı sayısı                                                                                                                                                                  |
| j                | Eksenel doğrultuda hesap adımı sayısı                                                                                                                                                                         |
| JM               | Eksenel doğrultuda toplam hesap adımı sayısı                                                                                                                                                                  |
| k 1              | Reaksiyon hız sabiti                                                                                                                                                                                          |
| k <sub>s</sub> , | A Ana dolgu ile statik sıvı gözleri arasındaki kütle<br>transferi katsayısı                                                                                                                                   |
| k <sub>ω</sub>   | <b>Ana dolgu ile duvar akışı bölgeleri arasındaki kütle</b><br><b>transferi</b> katsayısı                                                                                                                     |
| L                | Kule içindeki dolgu yüksekliği                                                                                                                                                                                |
| n                | Zaman hesap adımı sayısı                                                                                                                                                                                      |
| n                | Kuleye zerkedilen izleyici mol sayısı                                                                                                                                                                         |
| Ν                | Kütle transferi ünitesi sayısı                                                                                                                                                                                |
| Ре               | Peclet sayısı                                                                                                                                                                                                 |
| r                | Radiyal_koordinat                                                                                                                                                                                             |
| r                | $\Delta \Theta / (\Delta z)^2$ , $\Delta R / (\Delta z)^2$                                                                                                                                                    |
| ro               | r/2 Pe                                                                                                                                                                                                        |
| Q <sub>1</sub> , | 2, Q <sub>5</sub> , Q <sub>M</sub> Geliştirilen modelin sonlu farklar denklemlerindeki<br>guruplandırılmış sabitler                                                                                           |
| R                | Boyutsuz radiyal koordinat                                                                                                                                                                                    |
| r <sub>n</sub>   | Ana dolgu ile duvar akışı bölgeleri arasındaki boyut-<br>suzlandırılmış kütle transferi katsayısı                                                                                                             |
| s <sub>l</sub> , | 2, S <sub>3</sub> , S <sub>4</sub> , S <sub>5</sub> , S <sub>6</sub> , S <sub>7</sub> , S <sub>8</sub> , S <sub>9</sub> Geliştirilen modelin sonlu<br>farklar denklemlerindeki gu-<br>ruplandırılmış sabitler |
| t                | zaman                                                                                                                                                                                                         |
| u                | Ana dolgu bölgesindeki boyutsuzlandırılmış izleyici kon-<br>santrasyonu                                                                                                                                       |
| <b>u*</b>        | Statik sıvı bölgelerindeki boyutsuzlandırılmış izleyici<br>konsantrasyonu                                                                                                                                     |
| V                | Duvar akışı bölgesindeki boyutsuzlandırılmış izleyici<br>konsantrasyonu                                                                                                                                       |
| x                | Eksenel koordinat                                                                                                                                                                                             |
| у<br>~           | Birleştirilmiş lineer denklem takımının bilinmeyenler<br>vektörü                                                                                                                                              |

viii

| У <sub>ј</sub> | y vektörünün elemanları                                                     |
|----------------|-----------------------------------------------------------------------------|
| z              | Boyutsuzlandırılmış eksenel koordinat                                       |
| <sup>β</sup> D | Dinamik sıvı tutma oranı                                                    |
| βς, βτ         | Statik sıvı tutma oranı, toplam sıvı tutma oranı                            |
| Ϋ́             | Sıvı profilleri modelinin sınır şartının boyutsuzlan-<br>dırılmış katsayısı |
| ε              | Kule boşluk oranı                                                           |
| ¢ <sub>د</sub> | Dolgu maddesi şekil katsayısı                                               |
| φ              | β <sub>D</sub> /β <sub>T</sub>                                              |
| ٨              | Sivi yayılma katsayısı                                                      |
| λ              | Boyutsuz sıvı yayılma katsayısı                                             |
| Θ              | Boyutsuzlandırılmış zaman                                                   |
| μ              | sıvı vizkositesi                                                            |
| σ              | varyans                                                                     |
| ω, ω*          | Duvara bitişik sıvının akış hızı                                            |
| Ω,Ω*           | Duvar bitişik sıvının boyutsuzlandırılmış akış hızı                         |

1 X

BOLOM I

#### GİRİŞ

#### I.1. Çalışmanın Tanımı ve Amacı

Dolgulu kuleler, gaz ve sıvıların birbiri ile temas ettirilmesi sırasında fazlar arasında sağladıkları geniş yüzey ve yapım kolaylıkları nedeniyle kimya mühendisliğinde çok geniş bir kullanım sahası bulmaktadır. Bu çalışmada konu olarak alınan damlama yatak reaktörleri (trickle bed reactors) gaz ve sıvıların dolgu üzerinde temas ettirilmesi nedeniyle absorpsiyon kulelerini andırdıkları gibi, kule dolgu maddesinin katalizör olmasından ötürü sabit yatak reaktörlerinin de bazı özelliklerini taşımaktadırlar.

Bu tip reaktörler, Çevre mühendisleri tarafından "damlatmalı filtre" adıyla atık sulardaki organik maddelerin ayrıştırılmasında ötedenberi kullanılmaktadır. Bunun yanı sıra Petrol sanayiinde, hidrojenasyon, hidrojenle kükürt giderme ve hidro-kraking proseslerinde de bu tip damlama yatak reaktörleri kullanılmaktadır(30, 35,48,54,56,68}. Rafineriler dışındaki Kimya Sanayiinde bu tip reaktörlerin fazla yaygın olmadığı görülmektedir{49}.

Bunun yanında, son yıllarda özellikle organik sıvıların hidrojenasyon ve oksidasyon reaksiyonlarının gerçekleştirilmesi için bu tip reaktörlerin kullanılması konusunda araştırmaların arttığı göze çarpmaktadır{31,41}. Baca gazlarının kükürtten arıtılması çabalarında da damlama yatak reaktörlerinin kullanımı araştırılmaktadır{18,57}. Damlama yatak reaktörleri üzerindeki çalışmaların geniş bir kısmı da doğrudan proses araştırmalarından çok reaktörün kendi özelliklerini ortaya çıkarmayı hedef almaktadır{50,51,52,65}.

Buradaki problem, dönüşme hesaplarında kullanılabilecek dizayn denklemlerini ortaya çıkarmak ve kullanılacak parametrelerin büyüklüğünü tayin edebilmektedir. Bunun için gerekli olan bilgiler

- a) Toplam reaksiyon hızları,
- b) Reaktör içindeki temperatür profilleri ve
- c) Hız ve konsantrasyon profilleri,

olarak birbirine bağımlı üç ana grupta toplanabilir.

Bu çalışmada reaktör içindeki hız ve konsantrasyon profilleri incelenecektir. Çalışmanın amacı damlama yatak reaktörlerinin işleyişinde şimdiye kadar hesaba katılmamış bazı gözlemleri de içeren bir model geliştirmektir. Geliştirilen model, hesaplanan reaktörde kalma süresi dağılımlarının (residence time distributions) deney sonuçları ile karşılaştırılması yöntemi ile değerlendirilecektir.

Damlama yatak reaktörlerinin dizaynında kule içi akış modeli seçimi yapılırken ilk yaklaşım piston akış (plug flow) rejimini kabul etmektir. Halbuki aynı anda reaktöre giren sıvı elemanlarının reaktörde kalma süreleri ölçüldüğünde bir dağılımla karşılaşılır. Genellikle bu hal reaktör veriminin düşmesine sebep olur ve istenilen dönüşmeyi sağlamak üzere boyu piston akışı modeli ile dizayn edilecek reaktörden daha uzun olan bir

reaktör gerektirir{9,11}.

Ölçülen reaktörde kalma süresi dağılımları, sıvı elemanlarının reaktör içindeki davranışı hususunda bilgi edinilmesini sağlamaktadır. Reaktörde kalma süresi dağılımı doğru hesaplanabildiği takdirde, bu hesaplamada katkısı olan ana etkenleri reaktör hakkındaki diğer bilgilerle, reaksiyon hız sabiti, kütle transferi katsayıları gibi, birleştirerek daha doğru dönüşme hesaplarına yönelmek mümkündür{61}.

Kısaca reaktörde kalma süresi dağılımları, kararlı-haldeki bir sisteme bir izleyici zerkedip, sistem çıkışında izleyici konsantrasyonunun zamana göre değişmesini ölçerek bulunur. İzleyici, genellikle Dirac  $\delta$ fonksiyonunun yaklaşımı olan bir darbe halinde zerkedilir. Bazı hallerde Heaviside birim-basamak fonksiyonu,  $\mu(t)$ , şeklinde izleyici girişi metoduna başvurulur. Bu iki fonksiyonun grafiği ve damlama yatak reaktörlerde bu iki tip girişten elde edilmesi beklenen reaktörde kalma süresi dağılımları şekil I.l. de kalitatif olarak gösterilmiştir{33}. Bu iki deney şeklinin

 $F(\Theta) = \int_{\Theta}^{\infty} E(\Theta) d\Theta$  (1.1)

denklemi yolu ile eşdeğer olduğu bilinmektedir $\{46\}$ . Burada E( $\Theta$ ), Dirac  $\delta$ -fonksiyonu tipi girişten beklenen reaktörde kalma süresi dağılımını; F( $\Theta$ ), birim basamak fonksiyonu tipi girişten beklenen dağılım fonksiyonunu;  $\Theta$ , boyutsuz zamanı ifade etmektedir. Giriş fonksiyonunun sinusoidal olarak seçilmesi $\{28\}$ , deneysel zorlukları nedeni ile ilgi görmemiştir.

Reaktörde kalma süresi dağılım fonksiyonu aynı



Şekil I.l.

kulede gözenekli ve gözeneksiz dolgu üzerinde ve aynı calışma şartları altında ölçüldüğü zaman, iki eğri arasındaki fark reaksiyon maddesi moleküllerinin katalizör gözeneklerinde geçirdiği zaman dağılımları hakkında bilgi taşır (Şekil I.2). Bu bilgiyi değerlendirmek için gerekli teorik temel kısmen geliştirilmiştir{58}. Bu yoldan reaktör dönüşmesinin hesaplanması da, gözeneksiz dolgulu kulelerde kalma süresi dağılımlarının eldeki modellerden daha ayrıntılı bir biçimde açıklanmasını gerektirmektedir{16}.

Damlama yatak reaktörlerinde kalma süresi dağılımları üzerindeki çalışmalar üç genel grupta toplanır.

- a) Piston Akışta Eksenel Dağılma Modeli (PD Modeli): Gözeneksiz dolgulu, isotermal bir kulede kalma süresi dağılımı, bir kısım sıvı elemanlarının dolgu içinde diğer elemanlara göre daha uzun yollar seçerek geride kalmaları, diğer bir kısmının da kısmi kanallanma olayı ile ortalama kalış süresinden önce reaktörü terketmeleri nedeniyle ortaya çıkar. Dağılım tek parametre, etkin difüzyon katsayısı (effective diffusivity), ve buna dayanarak tarif edilen Peclet sayısı yolu ile belirlenir{9,62,70,38}. Bu modeli kullanarak hesaplanan dağılım eğrilerinin şekli, kuleye bir izleyici darbesi zerkedildiğinde elde edilen dağılımın asimetrik şekline uymamaktadır.
- b) Piston Akışta Eksenel Dağılma ve Statik Sıvı Gözleri ile Kütle Transferi Modeli (PDE Modeli):Dolgulu kulelerde "statik sıvı", kulede sıvı akışı kesildiğinde dışarıya dökülemeyen sıvı miktarı olarak tanımlanır. Kule içinde hareketli sıvı ile



Şekil I.2. Aynı kulede gözeneksiz dolgu (A) ve gözenekli dolgu (B) ile elde edilmesi beklenen, kalitatif reaktörde kalma süresi dağılımları.

statik sıvı gözleri arasında devamlı temas ve kütle aktarımının mevcut olduğu ötedenberi bilinmektedir{59}. PDE modeline göre deneysel kalış süresi dağılımında gözlenen asimetri, izleyici moleküllerinin statik sıvı gözlerine girip çıkmak suretiyle gecikmeleri şeklinde izah edilir{71,72,74}. Bu model PD modelinin hatalarını büyük ölçüde kapatabildiği halde hesaplanan eğriler genellikle dağılım eğrisindeki maksimum noktasına erişememektedir. Modelde kullanılan parametreler Peclet sayısı ile birlikte, statik ve dinamik sıvı bölgeleri arasındaki "Kütle Transferi Ünitesi Sayısı", N, ve dinamik sıvı tutma oranının toplam sıvı tutma oranına bölünmesi olarak tanımlanan  $\phi(= \beta_D/\beta_T)$ 'dir.

Yukarıda özetlenen her iki modelde dolgulu kulelerde yukarıdan süzülen sıvının önemli bir kısmının kule duvarlarından aşağıya aktığı göz önüne alınmamıştır.

c) Karışma Hücresi Modelleri: Bazı araştırmalar damlama yatak reaktörlerini, ucuca konmuş uzunlamasına boru reaktörleri ve karıştırıcılı tank tipi sürekli reaktör kombinezonları ile simüle etmeye çalışmışlardır{27,45,32}. Bu modelleme metodları, yapıları itibariyle ayrı bir yaklaşım tarzını temsil etmektedirler. Bu itibarla bu tip modeller bu çalışma içinde ele alınmıyacaktır.

Sunulan çerçeve içinde bu çalışmada üzerinde özellikle durulacak olan konular şunlardır:

> Eksenel dağılma ve statik sıvı gözleri ile kütle transferinin dağılıma olan katkılarıyla beraber, kule cidarlarına bitişik olarak akan sıvının da etkisinin hesaba katılacağı bir

kule modelinin geliştirilmesi ve bu modeli kullanarak reaktörde kalma süresi dağılımlarının hesaplanması;

- 2. Duvar akışı bölgesi ile ana dolgu akışı bölgesi arasındaki kütle transferinin büyüklüğünün araştırılması; iki bölge arasındaki kütle transferi katsayısının kalma süresi dağılımları üzerindeki etkisinin incelenmesi;
- İki bölge arasındaki kütle transferi hızlarının, birinci mertebeden bir reaksiyon için, reaktör dönüşmesi üzerindeki etkilerinin incelenmesi.

#### BOLOM II

### DAMLAMA YATAK REAKTÖRLERINDE KALMA SÜRESI DAĞILIMLARI

II.1. Reaktörde Kalma Süresi Dağılımı Fonksiyonları

Damlama yatak reaktörlerinde piston akıştan sapmalar genellikle beklenen dönüşmeyi olumsuz yönde etkiler. Reaktörün akış ve konsantrasyon profillerinde görülen bu sapmalar, özellikle ölçek büyültmede hesaba katılmazsa büyük hatalara yol açabilir. Reaksiyon maddesi moleküllerinin reaktör içinde geçirdiği aşamaları takip etmek için yararlanılan önemli bir metod reaktörde kalma süresi dağılım fonksiyonlarının değerlendirilmesidir. Bu metod nükleer ve kimyasal reaktörlerde olduğu gibi üstü açık kanal akışlarından insan vücuduna kadar çeşitli sistemlerde gaz ve sıvıların akış tarzlarını incelemek için kullanılmaktadır{1,2,58}.

Reaktörde kalma süresi dağılım fonksiyonu, E(⊖), aynı anda reaktöre giren sıvının ⊖ zamanı ile ⊖ + ∆⊖ zamanı arasında reaktörü terkeden fraksiyonunun E(⊖)d⊖ olduğu şeklinde tarif edilir. Böylece bütün fraksiyonların toplamı

 $\int_{\Omega}^{\infty} E(\Theta) d\Theta = 1$ 

(2.1)

olur. Eğer dağılım fonksiyonu O'nın bütün değerleri için biliniyorsa, reaksiyon maddesi moleküllerinin reaktördeki ortalama kalma süresi, Ō, şu şekilde hesaplanır:

$$\overline{\Theta} = \int_{-\infty}^{\infty} \overline{\Theta} E(\Theta) d\Theta. \qquad (2.2)$$

 $E(\Theta)$  dağılım eğrilerini, dağılımın momentleri yolu ile de tanımlamak mümkündür.  $E(\Theta)$  dağılım fonksiyonun sıfır noktası etrafındaki n'inci momenti şöyle tanımlanır.

$$\mu_{n} = \frac{o^{\int \Theta^{n} E(\Theta) d\Theta}}{\int E(\Theta) d\Theta} = \int \Theta^{n} E(\Theta) d\Theta \qquad (2.3)$$

Görüldüğü gibi ortalama kalış süresi, Ō, dağılım fonksiyonunun sıfır noktası etrafındaki birinci momentidir. Bir dağılım fonksiyonunun ortalama değer , Ō, etrafındaki n'inci momenti de şöyle tanımlanır.

$$\mathcal{H}_{n}^{\prime} = \frac{o^{\int_{0}^{\infty} (\Theta - \overline{\Theta})^{n} E(\Theta) d\Theta}}{o^{\int_{0}^{\infty} E(\Theta) d\Theta}} = \int_{0}^{\infty} (\Theta - \overline{\Theta})^{n} E(\Theta) d\Theta (2.4)$$

Dağılımın varyansı,  $\sigma^2$ , ortalama değer etrafındaki ikinci moment olarak tarif edilir.

$$\sigma^{2} = \frac{\sigma^{\circ}(\Theta - \overline{\Theta})^{2} E(\Theta) d\Theta}{\sigma^{\circ} E(\Theta) d\Theta} = \int_{0}^{\infty} (\Theta - \overline{\Theta})^{2} E(\Theta) d\Theta \quad (2.5)$$

Reaksiyona girmeyen fakat fiziksel özellikleri reaksiyon maddelerinden birine yakın veya eşdeğer olan bir izleyici, damlama yatak reaktörüne zerkedildiği takdirde, bu izleyicinin takibedilmek istenen reaksiyon maddesinin molekülleriyle aynı aşamalardan geçmesi beklenir.

II.2. Reaktörde Kalma Süresi Dağılım Modelleri

Damlama yatak reaktörlerinde genel piston akışı varsayımlarından sapmaları, yatak geometrisi çerçevesi içinde kalaraƙ açıklamayı hedef alan modelleri iki gruba ayırmak mümkündür.

II.2.1. Piston Akışta Eksenel Dağılma Modeli{9,38}

Sıvı elemanlarının ortalama hız etrafında dağılmaları (dispersion) ile açıklanan reaktörde kalma süresi dağılımını hesaplayabilmek için gerekli izleyici kütle dengesi şöyledir

 $D_{e} \frac{\partial^{2} c}{\partial x^{2}} - v \frac{\partial c}{\partial x} = \frac{\partial c}{\partial t} . \qquad (2.6)$ 

Burada D<sub>e</sub>, etkin difüzyon katsayısını; v, yüzeysel sıvı hızını; c, izleyici konsantrasyonunu; x, kule girişinden itibaren eksenel uzaklığı; t, zamanı belirtmektedir. Denklem (2.6) konveksiyon ve difüzyonlu bir ortamda izleyici konsantrasyonunun zaman içindeki değişmelerini tanımlayan bir kısmi diferansiyel denklemdir. Denklemin sekli, etkin difüzyon katsayısının, D\_, moleküler difüzyon katsayısı ile karıştırılmasına yol açabilir. Teorik olarak, izleyicinin fiziksel özellikleri bakımından sıvı moleküllerine çok yakın olması ve konsantrasyon farklarından ötürü ortaya bir difüzyon olayı çıkmaması gerekmektedir. Pratikte bu zorluk, sıvı elemanlarının öne-arkaya dağılmalarının ikili difüzyon olayından daha büyük izleyici hareketlerine yol açmasıyla çözümlenir. Etkin difüzyon katsayısı, D<sub>o</sub>, sıvı elemanlarının bu dağılmalarını tanımlamaktadır.

Boyutsuz değişkenlerle ifade edildiğinde denklem (2.6) aşağıdaki şekle dönüşmektedir.



Şekil II.1- Piston Akışta Eksenel Dağılma Modeli – Peclet sayısının reaktörlerde kalma süresi dağılımlarına etkisi

$$\frac{1}{Pe} \frac{\partial^2 u}{\partial z^2} - \frac{\partial u}{\partial z} = \frac{\partial u}{\partial \Theta}$$
(2.7)

Burada u, boyutsuz konsantrasyonu; z, boyutsuz uzunluğu; 0, boyutsuz zamanı belirtmektedir\*. Peclet sayısı, Pe, ise L'nin toplam kule dolgu uzunluğunu ifade ettiği aşağıdaki formülle gösterilir:

$$Pe = \frac{VL}{D_{e}}$$
(2.8)

Görüldüğü gibi PD modeli tek parametrelidir. Pe büyük olduğu zaman konveksiyonun dağılmaya oranla büyüdüğü, Pe küçüldüğünde de dağılmanın önem kazandığı anlamını taşır. Pe = ∞ özel halinde ise piston akış modeli tekrar ortaya çıkar. Piston akış modelinden sapmalar damlama yatak reaktörlerinin çeşitli özellikleri yüzünden ortaya çıkmaktadır. Oysa ki, bu modelde tek parametre ile bütün sapmaları açıklamak gerekmektedir. Peclet sayısını küçük tutarak, deneysel dağılım eğrileri ile hesaplanan eğri arasındaki farkı kısmen gidermek mümkün ise de reaktör içinde reaksiyon maddesi moleküllerinin geçirdiği aşamaları açıklamak bakımından PD modeli yetersiz kalır.

II.2.2. Piston Akışta Eksenel Dağılma ve Statik Sıvı Gözleri ile Kütle Transferi Modeli (PDE Modeli)

Deneysel reaktörde kalma süresi dağılımlarındaki asimetri ve eğrinin uzun kuyruğu PD-modeliyle simüle edilemez. İzleyici moleküllerinin kuleden çıkmakta gecikmelerini Hoogendorn ve Lips{22} kuledeki statik sıvı

<sup>\*</sup> Boyutsuzlandırma denklemleri ve sınır şartları Bölüm III'de ayrıntılı olarak ele alınmış olduğundan bunlara burada ve Bölüm II.2.2. de yer verilmemiştir.

gözleri ile hareketli sıvı akışı arasındaki kütle alış verişi ile açıklamayı önermişlerdir. Diğer bir deyişle izleyici molekülleri statik sıvı gözlerine de girebilmekte ve burada bekleyerek çıkışa varmakta gecikmektedirler. Bu yaklaşımda eksenel dağılma olmadığı varsayılmıştır. Bu modeli PD- modeli ile birleştirerek her iki olayın etkisini de dağılım fonksiyonuna katmak mümkündür{72}. Denklemlerin boyutsuzlandırılmış şekli şöyledir:

$$\frac{1}{Pe} \quad \frac{\partial^2 u}{\partial z^2} - \frac{1}{\phi} \frac{\partial u}{\partial z} - N(u - u^*) = \frac{\partial u}{\partial \Theta}$$
(2.9)

$$\frac{\partial u^*}{\partial \Theta} = \frac{N\phi}{1-\phi} (u - u^*)$$
(2.10)

Burada u, boyutsuz konsantrasyonu; z, kule girişinden itibaren boyutsuz uzaklığı;  $\Theta$ , boyutsuz zamanı; Pe, Peclet sayısını; u\*, statik sıvı gözlerindeki izleyici konsantrasyonunu; N, statik ve dinamik sıvı bölümleri arasındaki kütle transferini tarif eden transfer ünitesi sayısını;  $\phi$ , dinamik sıvı tutma oranının toplam sıvı tutma oranına bölümünü ifade etmektedir.

Denklem (2.9)'un (2.7) ye göre farkı, bir miktar izleyicinin ana akış bölgesinden ayrılabilmesi veya tekrar katılabilmesidir. Ana akıştan ayrılan izleyici, konsantrasyon itici gücünün doğrultusuna bağlı olarak, birbiri ile teması olmayan statik gözlere veya bu gözlerden tekrar ana akış fazına girer. Statik sıvı gözlerindeki konsantrasyon böylece yerel ana akış konsantrasyonu ile kendi konsantrasyonuna bağlı olarak değişir: denklem (2.10).

PDE Modeli deneysel reaktörde kalma süresi dağılım eğrilerini hesaplamakta büyük ölçüde başarılı olmustur. Ancak içinden sıvı geçirilen herhangi bir dolgulu kulede gözlenebileceği gibi, akış rejimi piston akış rejimine uymaz. Özellikle pilot tesiş ve laboratuar kulesi boyutlarındaki cihazlarda, aşağıya süzülen sıvının koşullara bağlı olarak % 25 ilâ % 55'inin duvarlarda toplanarak asağıya indiği kaydedilmiştir{67,24,40}. Bu durumda PDE modeli, sadece dağılım fonksiyonunun hesaplanmasında kullanılabilirsede, damlama yatak reaktörlerinin içinde vuku bulan olayları tarif ve izah edememektedir. Bu nedenle, deneysel değerler ile hesaplanmış eğriler karşılaştırıldığında model kapsamına alınan olayların relatif büyüklüklerini tayin eden üç parametrenin, Pe, N ve  $\phi$ , denklem yapısı içinde gözükmeyen olaylar yüzünden çıkan farkları da gidermesi gerekmektedir. Probleme bu acıdan bakıldığında, PDE modelinde Pe, N ve  $\phi$  parametrelerinin daha gerçekçi akış profillerini içeren bir modele kıyasla değişik değerler alması beklenir.

## II.3. Dolgulu Kulelerde Sıvı Akış Profilleri

Dolgulu kulelerde sıvı, yüksek eksenel akış hızı bölgelerinden düşük eksenel akış hızı bölgelerine süzülerek akış dağılılımlarını bir dengeye doğru götürür; sıvının gözlenen diğer bir hareketi de kule cidarında toplanma eğilimidir. Sıvı akış profillerinin bu denge arama karakteristiği, olayın difüzyon denklemi tipinde bir denklemle tarif edilmesine yol açmıştır{7}.

$$\frac{\partial f}{\partial x} = \Lambda \left[ \frac{1}{r} \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial r^2} \right] ; L \ge x \ge 0, a \ge r \ge 0 (2.11)$$

Burada f, sıvı akış hızını  $(m^3/m^2-san)$ ; x, dolgu yatağının başlangıcından itibaren uzaklığı; r, kulenin merkezinden yarıçap yönünde uzaklığı; A, sıvının yarıçap istikametinde dağılma katsayısını; a, kule yarıçapını; L, dolgu boyu yüksekliğini ifade eder. Denklem (2.11) değişik cidar sınır şartları için çözülmüştür{21,43,44, 13}.

Bu sınır şartlarının ayrıntılı eleştirisi ve gerçekçi sınır şartları Onda ve yardımcıları{40} tarafından verilmiştir. Buna göre sınır civarındaki ana dolgu sıvı akış hızı f(a,x) duvar üzerindeki akış hızı  $\omega(x)$  ile dengede olmadığı takdirde ana dolgu akış bölgesinden duvar akış bölgesine net sıvı geçişi olacaktır. Her f(a,x) için, kendisi ile dengede olan bir duvar sıvı akış hızı  $\omega^*(x)$  deneysel olarak bulunabilir. Bu durumda ana akış bölgesinden duvar akışı bölgesine sıvı geçiş miktarı { $\omega^*(x) - \omega(x)$ } itici gücüne orantılıdır.

Böylece:

 $-2\pi a \Lambda \left(\frac{\partial f}{\partial r}\right)_{r=a} = G\{\omega^*(x) - \omega(x)\} = \frac{d\omega(x)}{dx}$ (2.12)

Burada G ampirik olarak hesaplanan bir katsayıdır. Denklemin çözümü için gerekli diğer sınır şartı, radiyal simetri şartıdır:

$$\frac{\partial f(0, \chi)}{\partial r} = 0 \tag{2.13}$$

Bu denklem takımı (2.11-2.13), x = 0'da f( $r_0$ ) = f<sub>0</sub>, (f<sub>0</sub> sabit) 16

(2.14)

başlangıç şartı ile çözüldüğünde deneysel sonuçlara çok yakın sıvı akış profilleri ve duvar fazı akış hızları elde edilmiştir. G ve  $\omega^*$  (x) parametrelerinin değerleri Raschig halkaları üzerinden akan susistemi için tesbit edilmiştir. Bu denklem takımının çözümü Bölüm III ve Bölüm IV'de ele alınacaktır.

Bu çalışmada duvar akışı bölgesindeki sıvı akışını, eksenel dağılmayı ve statik sıvı ile kütle transferini içeren bir kule modeli geliştirilecektir. Bu modelin işlerliği, modelden hesaplanan ve deney sonucu bulunan, reaktörde kalma süresi dağılım eğrilerinin karşılaştırılması ile incelenecektir. Geliştirilen modelden reaktörde kalma süresi dağılımlarının hesaplanmasında, yukarıda anlatılan "Onda" modelinin sıvı akış hızları kullanılacaktır. Çalışmanın bilgi akım şeması özeti Şekil II.1. de gösterilmiştir.



Şekil II.2 - Çalışmanın bilgi akış şeması özeti.

#### BÖLÖM III

## DAMLAMA YATAK REAKTORLERINDE SIVI FAZ

### III.1. Modelin Anahatları

Dolgu üzerinden akan sıvının bir kısmının kule cidarlarından aşağıya süzülme eğiliminde olduğu Bölüm II de açıklanmıştı. Dolgulu kulelerin bu özelliğini de içeren bir matematik modelde cidar akışı bölgesinin ana dolgu akışından ayrı bir bölge olarak tanımlanması gerekir. Bu ikinci bölge, ana dolgu akış bölgesi ile kule boyunca temas halindedir. İki bölgeyi ayıran sınırda Denklem (2.12) ile belirlenen <u>net</u> konveksiyon ile ana dolgu akış bölgesinden duvar akış bölgesine sıvı geçişi vardır. Buna ilave olarak sıvının taşıdığı komponentlerden her biri konsantrasyon itici gücü doğrultusunda difüzyonla da bölge değiştirebilir.

Ana akış bölgesinde sıvı elemanlarının akış hızı üniform değildir. Bu çalışmada bilgisayar hesap zamanı ve bilgisayar hafıza ihtiyaçlarını sınırlamak amacı ile ana dolgu akış bölgesindeki hız dağılımlarının ortalaması bu bölgedeki üniform hız olarak kabul edilmiştir. Akış profillerinin genel karakteri ve yapılan kabul Şekil III.1. de kalitatif olarak gösterilmiştir.

Ana akış bölgesinin diğer bir özelliği, bu bölge içinde statik sıvı gözleri bulunması ve reaksiyon maddesi veya izleyici moleküllerinin bu statik bölgelere girerek zaman kaybetmeleridir. Genellikle bu olay reaktör performansını olumsuz yönde etkiler. Statik bölgeler, PDE modelinde olduğu gibi bu çalışmada önerilen modelde de ana akış bölgesinden ayrı bir bölge olarak



a- Dolgulu kulede sıvı akış profilleri



 b - Sıvı akış profillerinin bu çalışmada kabul edilen şekli.

# Şekil Ⅲ.1

ele alınacak ve bu iki bölge arasındaki kütle transferi katsayısı yeni baştan değerlendirilecektir.

Geliştirilen model vasıtasıyla, reaktör içine zerkedilen bir izleyici darbesinin konsantrasyon dağılımlarını, zaman fonksiyonu olarak hesaplamak üzere, belirtilen her üç bölge için birer kütle dengesi denklemi yazılması gerekmektedir.

- a) Ana dolgu akış bölgesinde konsantrasyon dağılımlarını tanımlayan bir kısmi diferansiyel denklem,
- b) Kule cidarından akan sıvı içindeki izleyici konsantrasyonunu tanımlayan bir kısmi diferansiyel denklem ve,
- c) Ana dolgu içindeki statik sıvı gözlerinin konsantrasyon dinamiğini tanımlayan bir adi diferansiyel denklem.

Bu bölümün geri kalan kısmı bahsedilen denklemlerin geliştirilmesine hasredilmiştir. III.2. Damlama yatak reaktörü modeli.

a) Ana akış bölgesi denklemleri



Şekil III.2. Reaktör elemanı ve reaktörün koordinat eksenleri

Ana akış bölgesinde izleyicinin hareketini tarif eden denklemler, Şekil III.2. de gösterilen reaktör elemanı gözönüne alınarak kurulan kütle dengesi vasıtasıyla yazılacaktır.

Eleman içine eksene paralel doğrultuda giren izleyici miktarı

$$-D_{e} \frac{\partial c(x,t)}{\partial x} \pi a^{2} \epsilon \beta_{D} + f(x) c(x,t) \pi a^{2} \qquad (3.1a)$$

denklemiyle ifade edilir. Burada,  $D_e$ , etkin difüzyon katsayısını;  $-D_e \frac{\partial c}{\partial x}$  dağılma kütle akısını; a, kule yarıçapını; ɛ, dolgulu kulenin boşluk oranını;  $\beta_D$ , kulenin dinamik sıvı tutma oranını (dynamic holdup); f(x), sıvının akış hızını (m<sup>3</sup>/m<sup>2</sup>san); c, zaman ve yere bağımlı ana dolgu bölgesi izleyici konsantrasyonunu göstermektedir. Böylece ilk terim difüzyon, ikinci terim de konveksiyon yolu ile elemana giren izleyici miktarını belirtmektedir. Şekil III.2. deki kule elemanından eksenel doğrultuda çıkan izleyici miktarı ise,

$$-D_{e} = \frac{\partial c(x + \Delta x, t)}{\partial x} \pi a^{2} \varepsilon \beta_{D} + f(x + \Delta x) c(x + \Delta x, t) \pi a^{2}$$
(3.1b)

denklemiyle ifade edilir.

Reaktör elemanına giren ve çıkan izleyici miktarları arasındaki fark şöyle açıklanır.

a) Reaktör elemanı içinde birikme:

Bu husus aşağıdaki ifade ile belirlenir;

$$\frac{\partial \overline{c}(x,t)}{\partial t} \pi a^2 \Delta x \varepsilon \beta_{D}. \qquad (3.2a)$$

Burada c(x,t), ∆x kalınlığındaki reaktör elemanındaki ortalama izleyici konsantrasyonudur. ∆x limitte sıfıra yaklaştığında c de c ye yaklaşmaktadır.

> b) Statik sıvı gözleri ile konsantrasyon itici gücü doğrultusunda kütle transferi: Burada

 $k_{s} \{ \overline{c}(x,t) - \overline{c}^{*}(x,t) \} \pi a^{2} \Delta x. \qquad (3.2b)$ 

bağıntısı söz konusudur.

c) Reaktörün ana eksenine dik doğrultuda duvar akışı bölgesine konvektif akım ile geçis:

$$\overline{c}(x,t) \frac{d\omega(x)}{dx} \Delta x$$
 (3.2c)

Bu ifade denklem (2.6) da görülen konvektif sınır şartından ileri gelir. İfadenin  $2\pi a$  ile çarpılmaması  $\omega(x)$ ' in toplam duvar akışı olarak tanımlanması nedeniyledir.

> d) Reaktörün ana eksenine dik doğrultuda duvar akışı bölgesine difüzyon ile geçiş hususu da

$$k_{in} \{c(x,t) - c_{in}(x,t)\} 2\pi a \Delta x$$
 (3.2d)

ifadesiyle belirlenir ki burada k<sub>w</sub> ana akış bölgesi ile duvar akışı bölgesi arasındaki kütle transferi katsayısıdır.

e) Varsa reaksiyon ile kaybolma:

 $k_{1} c(x,t) \pi a^{2} \Delta x.$  (3.2e)

Burada  $k_1$ , birinci mertebeden reaksiyon hız sabitini ifade eder. Önerilen modelin reaktör dönüşmeleri üzerindeki etkilerini de incelemek amacı ile denklem takımına reaksiyon teriminin de katılması gerekir.  $k_1$  c(x,t) reaktör hacmi içindeki dönüşmeyi mol/hacim cinsinden vermektedir. Burada denklem takımının çözümünü daha çapraşık hale getirmemek için birinci mertebeden ve irreversibl bir reaksiyon seçilmiştir.

Bütün terimlerin yazılmasında ana dolgu akış bölgesinin yarı çapı kule yarı çapına eşit tutulmuştur. Bu yaklaşım kule cidarından aşağıya akan sıvı tabakasının kalınlığının kule yarıçapına oranla pek küçük kaldığı gözlemine dayandırılmıştır. (3.1a) ve (3.1b) deki ifadelerle (3.2a-c) ifadelerini birleştirip,  $\pi a^2 (\Delta x) \epsilon \beta_D$ 'y<sup>e</sup> bölüp,  $\Delta x$  sıfıra giderken denklemin her iki yanının da limitini alarak aşağıdaki denklem elde edilir.

$$D_{e} \frac{\partial^{2} c}{\partial x^{2}} - \frac{1}{\epsilon \beta_{D}} \frac{\partial}{\partial x} (fc) - \frac{k_{s}}{\epsilon \beta_{D}} (c - c^{*}) - \frac{c}{\pi a^{2} \epsilon \beta_{D}} \frac{d\omega}{dx}$$
$$- \frac{k_{1}}{\epsilon \beta_{D}} c - \frac{2 k_{\omega}}{a \epsilon \beta_{D}} (c - c_{\omega}) = \frac{\partial c}{\partial t}$$
(3.3)

Ana dolgu akış bölgesindeki izleyici konsantrasyonlarını veren bu denklemin sol tarafındaki terimler, sırasıyla eksenel dağılma, konveksiyon, statik bölgelere kütle transferi, duvar akışı bölgesine konveksiyon ve difüzyon ile geçiş ve nihayet reaksiyonla kaybolmayı ifade eder.

Statik sıvı gözlerindeki konsantrasyon da yer ve zamana bağlı olarak değişir. Bu gözlerin toplam hacmi kulenin statik sıvı tutma oranı,  $\beta_s$ , ile kule boşluk oranı ɛ'un çarpımından bulunur. Kütle dengesi denklemi söyledir:

$$\pi a^{2} \Delta x \epsilon \beta_{s} = \frac{\partial \overline{c}^{*}(x,t)}{\partial t} = k_{s} \{\overline{c}(x,t) - \overline{c}^{*}(x,t)\} \pi a^{2} \Delta x.$$
(3.4)

Sadeleștirince

$$\frac{\partial c^*}{\partial t} = \frac{k_s}{\epsilon \beta_s} (c - c^*)$$
(3.5)  
edilir

elde edilir.

## BOĞAZİÇİ ÜNİVERSITESİ KÜTÜPHANESİ
Görüldüğü gibi  $k_s (zaman)^{-1}$  boyutunu taşımaktadır. Van Swaaij{71} PDE modelinde  $k_s$ 'i birim hacımda statik ve dinamik akış bölgeleri arasındaki alan A ile bu alandaki kütle akısını tanımlayan, k, kütle transfer katsayısının çarpımı olarak tanımlamıştır. Bu tanımlama absorpsiyon kulelerinde kullanılan birleşik kütle transferi katsayısına ( $k_{G}$ a veya  $k_{L}$ a) benzemektedir. Ancak statik sıvı gözlerinin karakteri itibariyle,  $k_s$ 'in aynı zamanda sürekli, karıştırmalı tank reaktörlerin ortalama reaktörde kalma süresini de andırdığına dikkat etmek gerekmektedir. Şöyle ki, statik sıvı gözlerini, konsantrasyonu giren sıvı ile sürekli değişen, ve bu değişmesi, giren sıvının hızı,  $k_s$ , ile ayarlanan birer küçük sürekli, karıştırmalı kap olarak kabul etmek mümkündür.

26

Duvar akışı bölgesi izleyici konsantrasyon profilleri denklemi de, sıvı tabakası etrafında yazılacak kütle dengesinden bulunur. Burada sıvı tabakasının yarıçap doğrultusundaki konsantrasyonlarının eşdeğer olduğu varsayımı kullanılacaktır. Bu varsayımın tabakanın inceliği ve türbülanslı karışma oranının yüksekliği nedeniyle iyi bir yaklaşım olduğu bilinmektedir{25}.



Duvar akışı bölgesinde Sekil III.3. hacım elemanı.

Duvara bitişik akan sıvı tabakasında diferansiyel hacım aşağıdaki ifade ile tanımlanır.

$$\varepsilon \{\pi a^2 - \pi (a^2 - d_{\omega}^2)\} \quad \Delta x = \varepsilon \{2\pi a d_{\omega} - \pi d_{\omega}^2\} \Delta x \quad (3.6)$$

Bu ifadede  $\varepsilon$  kule boşluk oranı, d<sub>w</sub>'da sıvı tabaka kalınlığıdır. Burada a >> d<sub>w</sub> kabul edilecektir. Bölüm IV.5 te verilen (d<sub>w</sub>/L) değerleri bu varsayımı doğrular niteliktedir. Böylece duvar akışı tabakasında hacım elemanı

$$\varepsilon \{2\pi ad_{\omega} - \pi d_{\omega}\} \Delta x \cong 2\pi ad_{\omega} \varepsilon \Delta x \qquad (3.7)$$

olarak bulunmuştur.

Görüldüğü gibi duvar akış bölgesinde dinamik sıvı tutma oranı,

 $\beta_{\rm D} = 1 \tag{3.8}$ 

olarak kabul edilmiştir. Bu da dolgu maddesi arasındaki boşlukların tamamının sıvı tabakası tarafından doldurulduğu gözlemine dayanmaktadır. Tanımlanan hacım elemanına düşey olarak giren izleyici miktarı

$$-2\pi a \varepsilon d_{\omega}(x) D_{e} \frac{dc_{\omega}(x,t)}{dx} + \omega(x) c_{\omega}(x,t) \qquad (3.9)$$

seklinde ifade edilir.

Daha evvel de görüldüğü gibi  $\omega(x)$  cidara bitişik olarak süzülen sıvı miktarının tümü şeklinde tanımlanmıştır. Denklem (3.9) daki ifadenin ilk terimi etkin difüzyon katsayısı ile orantılı dağılmayı, ikinci terim de izleyicinin konveksiyon ile hareketini tanımlamaktadır. Veri eksikliği nedeniyle, bu bölgedeki etkin difüzyon katsayısı ana akış bölgesindeki D<sub>e</sub> ile aynı kabul edilmiştir.

Hacım elemanının ana akış bölgesi ile izleyici transfer ilişkisi aşağıdaki şekildedir.

 $\frac{d\omega(x)}{dx} \overline{c}(x,t) \Delta x + 2\pi \{a - d_{\omega}(x)\} k_{\omega} \{\overline{c}(x,t) - \overline{c}_{\omega}(x,t)\} \Delta x \qquad (3.10)$ 

Bu ifadede ilk terim net konveksiyon ile duvar akışı bölgesine izleyici girişini, ikinci terim ise konsantrasyon itici gücü doğrultusunda net izleyici hareketini gösterir.

Düşey doğrultuda hacım elemanını terkeden izleyici miktarı şöyle ifade edilir.

-2
$$\pi a \epsilon d_{\omega}(x + \Delta x) D_{e} \frac{dc_{\omega}(x + \Delta x, t)}{dx}$$

+ 
$$\omega(x + \Delta x) c_{\omega}(x + \Delta x, t)$$
 (3.11)

Hacım elemanında birikme ise şöyle ifade edilir:

$$2\pi a \overline{d}_{\omega}(x) \varepsilon \Delta x = \frac{\partial \overline{c}_{\omega}(x,t)}{\partial t}$$
 (3.12)

Denklem (3.9-3.12) deki ifadeleri derleyip, girdilerle cıktılar arasındaki farkı birikmeye eşitleyerek, bütün denklemi  $2\pi a \overline{d}_{\omega}(x) \epsilon \Delta x'e$  böldükten sonra, denklemin her iki yanınında  $\Delta x$  sıfıra giderken limitini alınca, duvar akışı bölgesi izleyici konsantrasyonu denklemi elde edilir.

$$\frac{D}{d_{\omega}} \frac{\partial}{\partial x} \left[ d_{\omega} \frac{\partial c_{\omega}}{\partial x} \right] - \frac{1}{2\pi a \varepsilon d_{\omega}} \frac{\partial}{\partial x} (\omega c_{\omega}) + \frac{1}{2\pi a d_{\omega} \varepsilon} c \frac{d\omega}{dx}$$
$$+ \frac{k_{\omega}}{\varepsilon d_{\omega}} (c - c_{\omega}) = \frac{\partial c_{\omega}}{\partial t}$$
(3.13)

Bu denklemin yazılışında (a - d<sub>w</sub>) ≟ a,olarak kabul edilmiştir.

Bu bölümde geliştirilen model, denklem (3.3), (3.5) ve (3.13) de verilen birbirine bağımlı üç denklem ile gösterilmiştir. Bu denklemlerde bağımlı değişken olarak gözüken c, c\* ve c<sub>w</sub> sırasıyla ana dolgu akış bölgesindeki, statik sıvı gözleri bölgesindeki ve duvar akışı bölgesindeki izleyici konsantrasyonlarıdır. Reaktöre Dirac fonksiyonu şeklinde bir izleyici darbesi zerkedildiğinde uygulanması gereken başlangıç şartları çok basittir.

> c(x,0) = 0  $c^{*}(x,0) = 0$   $c_{\omega}(x,0) = 0$   $0 \le x \le L$ (3.14) (3.14)

Buna karşın sınır şartlarının ayrıntılı olarak ele alınması gerekmektedir.

### III.2.1. Sınır Şartları

Eksenel dağılmalı sistemlerde izleyici konsantrasyonu üzerindeki sınır şartları uzun tartışmalara yol açmıştır $\{6,63,69,75\}$ . Dirac  $\delta$ -fonksiyonu cinsinden bir darbe ile izleyici girişi yapıldığında doğru sınır şartları şöyle yazılır $\{61,63\}$ .

$$x = 0; f(0) = f_0$$
 (3.15)

x = 0; 
$$\frac{n\delta(t)}{\pi a^2}$$
 = f<sub>0</sub> c(0,t) - D<sub>e</sub>  $\epsilon \beta_D \frac{\partial c(0,t)}{\partial x}$  (3.16)

Burada f(x) ana dolgu bölgesinde akış hızını; f<sub>o</sub>, kulenin dolgulu kısmının başlangıcındaki üniform akış hızını; n, kuleye giren izleyicinin mol cinsinden miktarını ifade eden Ana dolgudan çıkış sınır şartı ise şöyledir.

$$x = L; \quad \frac{\partial c(L,t)}{\partial x} = 0 \tag{3.17}$$

Bu sınır şartı çıkışta, yani kule içindeki etkenlerin kesildiği sınırdan itibaren, konsantrasyonda azalma veya çoğalma olamayacağını ifade eder. Bu hususun termodinamiğin ikinci kanununun gereği olduğu Standart{63} tarafından gösterilmiştir.

Bu şartlara ek olarak bu çalışmada geliştirilen model ek bazı sınır şartları getirilmesini gerektirmektedir. Giriş sınırında duvar akışı bölgesi henüz oluşmamıştır; bu sınırda:

 $X = 0; \omega(0) = 0$ .

(3.18)

Bu nedenle duvar akışı izleyici konsantrasyonu ancak

sınırın hemen içerisinde, yani duvar akışının sıfırdan değişik olduğu ilk x- uzaklığında tarif edilebilir. Bu ilk duvar akışı izleyici konsantrasyonu yerel ana dolgu izleyici konsantrasyonuna eşittir.

$$x = 0^+$$
;  $c_{\omega}(0^+, t) = c(0^+, t)$ . (3.19)

Duvar akışı bölgesinden çıkış sınır şartı (3.17) nin benzeridir.

$$x = L; \quad \frac{\partial c_{\omega}}{\partial x} (L,t) = 0 \quad (3.20)$$

III.2.2. Modeli Tanımlayan Denklemlerin Özeti

Bu çalışmaya esas teşkil eden modelin denklemleri aşağıdaki şekilde özetlenebilir,

$$D_{e} \frac{\partial^{2} c}{\partial x^{2}} \frac{1}{\epsilon \beta_{D}} \frac{\partial}{\partial x} (fc) - \frac{k_{s}}{\epsilon \beta_{D}} (c - c^{*}) - \frac{c}{\pi a^{2} \epsilon \beta_{D}} \frac{d_{\omega}}{dx}$$
$$- \frac{k_{1}}{\epsilon \beta_{D}} c - \frac{2k_{\omega}}{a \epsilon \beta_{D}} (c - c_{\omega}) = \frac{\partial c}{\partial t} \qquad (3.3)$$

$$\frac{\partial c^*}{\partial t} = \frac{k_s}{\epsilon \beta_s} (c - c^*) \qquad (3.5)$$

$$\frac{D_{e}}{d_{\omega}} \frac{\partial}{\partial x} \left[ d_{\omega} \frac{\partial c_{\omega}}{\partial x} \right] - \frac{1}{2\pi a \varepsilon d_{\omega}} \frac{\partial}{\partial x} (\omega c_{\omega}) + \frac{1}{2\pi a d_{\omega} \varepsilon} c \frac{d\omega}{dx}$$

$$+ \frac{k_{\omega}}{\varepsilon d_{\omega}} (c - c_{\omega}) = \frac{\partial c_{\omega}}{\partial t}$$
(3.13)

Başlangıç şartı:  $c(x,0)=c^*(x,0)=c_{\omega}(x,0)=0; 0 \le x \le L.(3.14)$ 

x = 0 da sinir sartlari:  $f(0) = f_{0} \qquad (3.15)$   $\omega(0) = 0; c_{\omega}(0^{+},t) = c(0^{+},t) \qquad (3.18); (3.19)$   $\frac{n\delta(t)}{\pi a^{2}} = f_{0} c(0,t) - D_{e} \epsilon \beta_{D} \frac{\partial c(0,t)}{\partial x} \qquad (3.16)$  x = L de sinir sartlari:  $\frac{\partial c}{\partial x} (L,t) = 0; \quad \frac{\partial c_{\omega}}{\partial x} (L,t) = 0 \qquad (3.17); (3.20)$ 

Duvar akışının ve reaksiyon teriminin hesaba katılmadığı hallerde model şu hale indirgenebilir:

$$D_{e} \frac{\partial^{2} c}{\partial x^{2}} - \frac{1}{\epsilon \beta_{D}} \frac{\partial}{\partial x} (fc) - \frac{k_{s}}{\epsilon \beta_{D}} (c - c^{*}) = \frac{\partial c}{\partial t}$$
(3.21)

$$\frac{\partial c^*}{\partial t} = \frac{\kappa_s}{\epsilon \beta_D} (c - c^*)$$
(3.5)

Başlangıç ve sınır şartları

$$t=0$$
  $c(x,0)=c^{*}(x,0)=0$  (3.22)

$$x = 0 da: \frac{n\delta(t)}{\pi a^2} = f_0 c(0,t) - D_e \epsilon \beta_D \frac{\partial c(0,t)}{\partial x}$$
(3.16)

$$x = L'de : \frac{\partial c(L,t)}{\partial x} = 0$$
 (3.17)

denklemleriyle verilir.

32

Çalışmamıza esas teşkil eden model bu şekilde sadeleştirince PDE modeline indirgenmektedir. Statik sıvı gözlerinin de hesaba katılmadığı durumda eldeki denklem takımı bir kademe daha basitleştirilebilir.

$$D_{e} \frac{\partial^{2} c}{\partial x^{2}} - \frac{1}{\epsilon \beta_{T}} \frac{\partial}{\partial x} (fc) = \frac{\partial c}{\partial t} \qquad (3.23a)$$
Başlangıç şartı:  
 $c(x,0) = 0 \qquad (3.23b)$ 
olarak verilir.  
Sınır Şartları

x = 0'da 
$$\frac{n\delta(t)}{\pi a^2}$$
 = f<sub>0</sub> c(0,t) - D<sub>e</sub>  $\epsilon \beta_D \frac{\partial c(0,t)}{\partial x}$  (3.23c)

ve

$$x = L^{t} de \frac{\partial c (L,t)}{\partial x} = 0 \qquad (3.23d)$$

sekline dönüsür.

Böylece denklem takımının PD modeline de indirgenebileceği görülmektedir.

Görüldüğü gibi literatürde evvelce önerilmiş olan damlama yatak reaktörü modelleri, çalışmamıza esas teşkil eden modelin özel ve basitleştirilmiş halleri olarak ortaya çıkmaktadır.

# III.3. SIVI AKIŞ PROFİLLERİ MODELİ

Yukarıda açıklanan model, sıvı akış hızları f f(x) ve  $\omega(x)$  ile duvar akışı sıvı tabakası kalınlığı d<sub>m</sub>(x) değerleri veri olarak kabul edilerek geliştirilmiştir. Bunları kule içinde ayrıntılı olarak ölçmek mümkün olsa idi, elde edilen deneysel değerler doğrudan kullanılabilirdi. Elimizde bu nitelikte veri bulunmadığından Bölüm II.3 de özetlenen calısmalar arasında en geliştirilmiş sıvı akış profilleri modelinden elde edilecek f(x),  $\omega(x)$  ve d<sub> $\omega</sub>(x)$  değerlerinin önerilen denk-</sub> lem takımı içinde kullanılması yoluna gidilmiştir. Onda ve yardımcıları{40}, modeli acıkladıkları makalede sadece kısmi diferansiyel denklem takımı ile sonuçlarını göstermişlerdir. Bu nedenle denklem takımı bu çalışmanın cercevesi icinde tekrar cözülmüstür. Denklemin boyutsuzlaştırılması, III.4 de, sonlu farklarla çözümü de Bölüm IV'te gösterilmiştir. Anahatları Bölüm II'de anlatılan modelin matematik tarifi şöyledir:

$$\frac{\partial f(r,x)}{\partial x} = \Lambda \left[ \frac{1}{r} \frac{\partial f}{\partial r} + \frac{\partial^2 f}{\partial r^2} \right] ; \quad x \ge 0 \quad (3.24)$$

$$x = 0$$
 f(r,0) = f<sub>0</sub>; (3.25)

$$r = 0$$
  $\frac{\partial f}{\partial r}(0, x) = 0;$  (3.26)

$$r = a -2\pi a \Lambda \left(\frac{\partial f}{\partial r}\right)_{r=a} = G\left\{\omega^*(x) - \omega(x)\right\} = \frac{d\omega(x)}{dx}; \quad (3.27)$$

Burada x, dolgu başlangıcından itibaren uzaklığı; r, kule ekseninden uzaklığı; f, r ve x'e bağımlı sıvı akış hızını (m<sup>3</sup>/m<sup>2</sup> san); f<sub>o</sub>, f'in x = 0 daki değerini;a, kule yarıçapını;  $\Lambda$ ,sıvı yayılma katsayısını;  $\omega$ , duvardan aşağıya süzülen sıvı akışını;  $\omega^*$  mahalli sınırdaki ana dolgu akışı hızı ile dengeyi sağlıyan duvar akışı hızını göstermektedir; G ise ana dolgudan duvar akışı bölgesine konveksiyon yolu ile geçişin ampirik katsayısıdır. Yukarıdaki denklem takımında (3.24-3.27), denklem (3.24) dolgu içinde düşük akış hızı bölgelerine yüksek akış hızı bölgelerinden radiyal geçiş olduğunu, denklem (3.25) girişte sıvı akış hızlarının üniformluğunu ve denklem (3.27) akış profillerindeki radiyal simetriyi göstermektedir. Denklem (3.27)  $\omega^*(x)$  değeriyle aynı yerdeki  $\omega(x)$  değeri arasındaki farkı net konveksiyon itici gücü olarak kabul eden, iki bölge arasındaki sınır şartıdır. Denklem takımının parametreleri kuleden geçirilen sıvının su olduğu deneylerde ölçülerek aşağıdaki korelasyonlar]averilmiştir.

$$\Lambda = .00231 d_p^{.5} \sigma$$
 (3.28)  
ω\*(x) = .404 π a [f(a,x)]<sup>764</sup> (3.29)

 $\sigma$ 'nın yüzey gerilimini, d<sub>p</sub>'nin de nominal dolgu boyunu ifade ettiği bu denklemde A, metre cinsinden tarif edilmiştir. G parametresi de 18<sup>°</sup>C'da 4.2 m<sup>-1</sup> olarak tesbit edilmiştir.

### III.4. Denklemlerin Boyutsuzlandırılması

Yukarıda geliştirilen denklemlerin sonlu farklar yöntemi ile çözülebilmesi ve sonuçların daha evvelki modellerle karşılaştırılabilmesi için boyutsuzlandırılması gerekmektedir. Boyutsuz değişkenler şöyle tanımlanmıştır.

35

$$u = \frac{c}{c_0} = boyutsuz ana dolgu bölgesi konsantrasyon de-
 $c_0 = giskeni; z ve 0'ya bağımlıdır.$  (3.30)  
Burada  $c_0 = n/\pi a^2 Le \beta_T$  olarak, n de giren izle-  
yici mol sayısı olarak tanımlanır. (3.31)  
 $u^* = \frac{c^*}{c_0} = boyutsuz statik sıvı gözleri konsantrasyon ce-
 $gişkeni; z ve 0'ya bağımlıdır.$  (3.32)  
 $v = \frac{c\omega}{c_0} = boyutsuz duvar akışı bölgesi konsantrasyon de-
 $c_0 = gişkeni; z ve 0'ya bağımlıdır.$  (3.33)  
 $\Omega = \frac{\omega}{\pi a^2 f_0} = boyutsuz duvar bölgesi sıvı akış hızı; z'ye
bağımlıdır. (3.34)
 $z = x /L = boyutsuz eksenel koordinat.$  (3.35)  
 $\Theta = \frac{tf_0}{Le \beta_T} = boyutsuz duvar akışı bölgesi sıvı tabakası ka-
lınlığı; z'ye bağımlıdır. (3.37)
 $F = \frac{f}{f_0} = boyutsuz ana dolgu akış hızı (3.38)$   
 $E = \frac{L}{a\beta_T} = boyutsuz kule geometrik sabiti.$  (3.39)  
T$$$$$$

Kule içindeki konsantrasyon profillerini tarif eden denklemlerin boyutsuzlandırılması ile ortaya çıkan boyutsuz katsayı grupları şunlardır.

$$Pe = \frac{f_0}{\epsilon \beta_T} \frac{L}{D_e} = Peclet sayısı \qquad (3.40)$$

 $(f_0/\epsilon\beta_T)$  kule girişindeki sıvı akış hızı olduğuna göre Pe'nin buradaki tanımlanması PD ve PDE modellerinde tanımlanan Pe sayısının aynıdır.

Bu parametre kule içindeki sıvının dinamik ve statik iki ayrı bölge olarak tanımlanması ile ortaya çıkar.

N, Van Swaaij{71} tarafından aşağıda gösterilen terimler yolu ile tanımlanmaktadır.

$$N = \frac{KL}{u}; K = \frac{kA}{\epsilon\beta_D}$$
(3.43a)

Burada k,iki sıvı bölgesi arasındaki kütle transferi katsayısını; A,iki sıvı arasındaki alanı; L,kule dolgusunun toplam yüksekliğini; ve u, sıvı akış hızını ifade etmektedir. kA,bu çalışmada k<sub>s</sub> olarak, u da f<sub>o</sub>/ $\epsilon\beta_{T}$  olarak tanımlanmıştır.

$$N = \frac{k_{s}L}{\epsilon\beta_{D}u} = \frac{k_{s}L}{\epsilon\beta_{D}}(\frac{\epsilon\beta_{T}}{f_{o}}) = \frac{k_{s}L}{\phi f_{o}}$$
(3.43b)

Böylece iki çalışmada kullanılan N parametresinin aynı şekilde tanımlandığı görülmektedir. PD ve PDE modelle-

37

rinin Pe,  $\phi$ , ve N parametrelerine bu çalışmada önerilen damlama yatak reaktör modeli ile R<sub>N</sub> parametresi eklenir. Buna göre

$$R_{N} = \frac{2k_{\omega}L}{f_{o}a} \qquad (3.44)$$

R<sub>N</sub> duvar akışı bölgesi ile ana dolgu akışı bölgesi arasındaki difüzyona bağlı kütle transferinin boyutsuzlandırılmış katsayısıdır. Son olarak,

$$R_{x} = \frac{K_{1}L}{f_{0}\phi} = boyutsuzlandırılmış birinci (3.45)mertebeden reaksiyon hızı sabitiolarak tanımlanır.$$

Bu değişkenler ve parametrelerin kullanılması ile bu çalışmada önerilen model aşağıda gösterilen şekle dönüşmektedir.

$$\frac{1}{Pe} \frac{\partial^2 u}{\partial z^2} - \frac{1}{\phi} \frac{\partial}{\partial z} (Fu) - N(u - u^*) - \frac{1}{\phi} u \frac{d\Omega}{dz} - R_x u - \frac{R_N}{\phi} (u - v)$$

$$=\frac{90}{90}$$

(3.46)

$$\frac{\partial u^*}{\partial \Theta} = \left(\frac{\Phi}{1-\phi}\right) N(u-u^*)$$
(3.47)

$$\frac{1}{\Delta} \frac{1}{Pe} \frac{\partial}{\partial z} \left[ \Delta \frac{\partial v}{\partial z} \right] - \frac{1}{2E} \frac{\partial}{\partial z} \left( \Omega \cdot v \right) + \frac{1}{2E\Delta} \cdot u \frac{d\Omega}{dz} + \frac{R_{N}}{2E\Delta} \left( u - v \right) = \frac{\partial v}{\partial \Theta}$$
(3.48)

Başlangıç şartları aşağıdaki gibidir.

 $\Theta = 0: u(z,0) = 0$ (3.49a) $\Theta = 0: u^*(z,0) = 0$ (3.49b) $\Theta = 0: v(z,0) = 0$ (3.49c)

Sınır şartları da aşağıda gösterilen şekli almaktadır.

z = 0: F(0) = 1(3.50a) $z = 0: \Omega(0) = 0$ (3.50b) $z = 0^+: v(0^+, \Theta) = u(0^+, \Theta)$ (3.50c)

$$z = 0: \delta(\Theta) = u(0,\Theta) - \frac{\phi}{Pe} \frac{\partial u(0,\Theta)}{\partial z}$$
(3.50d)

 $z = 1: \frac{\partial u(1, \Theta)}{\partial z} = 0$  (3.50e)

$$z = 1: \frac{\partial v(1, \Theta)}{\partial z} = 0$$
(3.50f)

Sıvı akış profillerini boyutsuzlandırmakta üç yeni tanımlamaya gerek vardır.

$$\lambda = \frac{\Lambda}{a}$$
; boyutsuzlandırılmış sıvı yayılma (3.51a)  
a katsayısı.

- $\gamma = \frac{Ga}{2}$ ; boyutsuzlandırılmış duvar akışı (3.51b) bölgesine geçiş parametresi.
  - $\Omega^* = \omega^* / \pi a^2 f_0 = boyutsuzlandırılmış denge (3.5lc)$ duvar akış hızı

Bu tanımlamalarla sıvı akış profillerini tanımlayan denklem, başlangıç ve sınır şartları aşağıdaki şekli almaktadırlar.

$$\frac{\partial F}{\partial z} = \lambda \left[ \frac{1}{R} \frac{\partial F}{\partial R} + \frac{\partial^2 F}{\partial R^2} \right]$$
(3.52)  

$$z = 0; F(R,0) = 1$$
(3.53)  

$$R = 0; \frac{\partial F(0,z)}{\partial R} = 0$$
(3.54)

Denklem (3.27) deki sınır şartı ikiye ayrılarak aşağıda gösterilen şekile dönüşür.

$$R = 1; \frac{\partial F(1,z)}{\partial z} = -\frac{\gamma}{\lambda} \left[ \Omega^*(z) - \Omega(z) \right]$$
(3.55)

$$R = 1; \quad \frac{d\Omega(z)}{dz} = 2\gamma \left[\Omega^*(z) - \Omega(z)\right] \qquad (3.56)$$

Denklem (3.46) - (3.50)'de gösterilen reaktörde kalma süresi dağılım modeli ile denklem (3.52) - (3.56)'da gösterilen sıvı akış profilleri modellerinin denklemleri Bölüm IV de sonlu farklar yöntemleri ile çözülecektir.

#### BÖLÜM IV

## DENKLEM TAKIMLARININ ÇÖZÜMLERİ

## IV.1. Sonlu Farklar Metodları

u(x) fonksiyonu ve türevleri tek-değerli, sonlu, ve sürekli olduğunda, Taylor teoremine göre, b'nin ufak değerleri için

$$u(x + b) = u(x) + bu'(x) + \frac{1}{2}b^{2}u''(x) + \frac{1}{6}b^{3}u'''(x) + \dots$$
  
(4.1)

Burada u', u", u"'..., sırası ile u fonksiyonunun birinci, ikinci, üçüncü, v.s., türevlerini ifade etmektedir. Gene Taylor teoremine göre

$$u(x - b) = u(x) - b u'(x) + \frac{1}{2} b^2 u''(x) - \frac{1}{6} b^3 u'''(x) + \dots$$
  
(4.2)

Denklem (4.2), denklem (4.1)'den çıkarıldığında

$$u'(x) \cong \frac{1}{2b} \{u(x + b) - u(x - b)\},$$
 (4.3)

Bu denklemin yazılışında b<sup>3</sup> ve daha küçük terimler ihmal edilmiştir. Diğer taraftan (4.1) ve (4.2) deki denklemler toplanır ise, aynı yaklaşım kullanılarak

$$u''(x) \cong \frac{1}{b^2} \{u(x + b) - 2u(x) + u(x - b)\}$$
(4.4)  
elde edilir.

Denklem (4.3) ve denklem (4.4) deki ifadeler u(x) fonksiyonunun birinci ve ikinci türevlerinin sonlu farklarda ve merkezi farklar yaklaşımı ile yazılmış halleridir. Bu denklemler biraz değişik bir notasyonla şöyle yazılabilir.

$$u'(x) \cong \frac{1}{2(\Delta x)} (u_{j+1} - u_{j-1}),$$
 (4.5)

$$u''(x) \stackrel{\sim}{=} \frac{1}{(\Delta x)^2} (u_{j+1} - 2u_j + u_{j-1}).$$
(4.6)

u fonksiyonu iki değişkene bağımlı ise, x'e göre kısmi türevleri benzer şekilde yazılır.

$$\frac{\partial u(\mathbf{x},\mathbf{t})}{\partial \mathbf{x}} \cong \frac{1}{2(\Delta \mathbf{x})} (u_{\mathbf{j}+1,\mathbf{n}} - u_{\mathbf{j}-1,\mathbf{n}}), \qquad (4.7)$$

$$\frac{\partial^2 u(\mathbf{x},\mathbf{t})}{\partial \mathbf{x}^2} \cong \frac{1}{(\Delta \mathbf{x})^2} (u_{\mathbf{j}+1,\mathbf{n}} - 2u_{\mathbf{j},\mathbf{n}} + u_{\mathbf{j}-1,\mathbf{n}}). \qquad (4.8)$$

Burada x =  $j \Delta x$  ve  $\Theta$ =  $n \Delta \Theta$  anlamını taşır. Böylece u(x, $\Theta$ ) =  $u_{j,n}$  olarak yazılır. Bu tanımlamaları kısmi diferansiyel denklemlere ithal ederekdenklemleri çözmekte kullanılan metodlara{47,60,37} sonlu farklar metodları denir. Burada kullanılacak olan Crank-Nicolson kapalı (implicit) metodu, burada elde edilen parabolik tip kısmi diferansiyel denklemlerin çözümünde mutlak stabiliteyi sağlamaktadır. Buna göre u, u', ve u" nun değerleri, n ve n + l'inci zaman adımlarındaki değerlerinin aritmetik ortalaması olarak hesaplanır.

 $\Im rne gin \frac{\partial u}{\partial \Theta} = \frac{\partial^2 u}{\partial x^2}$  denklemi açık (explicit) metod-

$$\frac{1}{\Delta \Theta} (u_{j,n+1} - u_{j,n}) = \frac{1}{(\Delta x)^2} \left[ u_{j+1,n} - 2u_{j,n} + u_{j-1,n} \right]$$
(4.9)

1a

şeklinde yazılarak u<sub>j,n+l</sub> için çözülecek yerde, Crank-Nicolson metodu ile yazıldığında şu şekli alır.

$$\frac{1}{\Delta\Theta}(u_{j,n+1} - u_{j,n}) = \frac{1}{2} \left[ \frac{u_{j+1,n+1} - 2u_{j,n+1} + u_{j-1,n+1}}{(\Delta x)^2} + \frac{u_{j+1,n} - 2u_{j,n} + u_{j-1,n}}{\Delta x^2} \right]$$
(4.10)

Kapalı metod çözümleri, açık metod çözümüne nazaran biraz daha çapraşık olmakla beraber, çözümlerin stabilitesini sağlama açısından genellikle tercih edilirler.

IV.2. Duvar Akışı Bölgesini İçeren Damlama Yatak Reaktör Modelinde Kalma Süresi Dağılımlarının Hesaplanması

Crank-Nicolson metoduyla açıldığında denklem (3.41) şu şekli alır:

$$u_{j,n+1} - u_{j,n} = \frac{r}{2Pe} u_{j+1,n+1} - \frac{r}{Pe} u_{j,n+1} + \frac{r}{2Pe} u_{j-1,n+1}$$

$$- \frac{\Delta\Theta}{4\phi\Delta z} F_{j+1} u_{j+1,n+1} + \frac{\Delta\Theta}{4\phi\Delta z} F_{j-1} u_{j-1,n+1} - \frac{N\Delta\Theta}{2} u_{j,n+1}$$

$$+ \frac{N\Delta\Theta}{2} u_{j,n+1}^* - \frac{\Delta\Theta}{4\phi\Delta z} (\Omega_{j+1} - \Omega_{j-1}) u_{j,n+1} - \frac{R_{x}\Delta\Theta}{2} u_{j,n+1}$$

$$- \frac{R_{N}\Delta\Theta}{2\phi} u_{j,n+1} + \frac{R_{N}\Delta\Theta}{2\phi} v_{j,n+1} + \frac{r}{2Pe} u_{j+1,n} - \frac{r}{Pe} u_{j,n}$$

$$+ \frac{r}{2Pe} u_{j-1,n} - \frac{\Delta\Theta}{4\phi\Delta z} F_{j+1} u_{j+1,n} + \frac{\Delta\Theta}{4\phi\Delta z} F_{j-1} u_{j-1,n}$$

$$- \frac{N\Delta\Theta}{2} u_{j,n} + \frac{N\Delta\Theta}{2} u_{j,n}^* - \frac{\Delta\Theta}{4\phi\Delta z} (\Omega_{j+1} - \Omega_{j-1}) u_{j,n} - \frac{R_{x}\Delta\Theta}{2} u_{j,n}$$

44

(4.11)

Sonlu farklar metodlarında denklem, ilk zaman adımı (n = 1) de, başlangıç ve sınır şartlarının da kullanılması ile çözülür. Bundan sonraki her zaman adımı (n+1) de denklem, n'inci zaman adımı için elde edilmiş olan çözümdeki değerlerin de denklem (4.11)'e ithali ile, ve sınır şartları ile beraber çözülür. Burada üç bağımlı değişken, u,  $\hat{u}^*$  ve v bulunmaktadır. Bunlardan u<sub>j,n+1</sub> denklem (4.11) den aşağıda gösterilen şekilde tasfiye edilir.

Denklem (3.47) yi sonlu farklar yaklaşımında

 $\frac{1}{\Delta\Theta} (u_{j,n+1}^{*} - u_{j,n}^{*}) = \frac{N\phi}{1-\phi} (u_{j,n+1} - u_{j,n+1}^{*})$ (4.12a)

seklinde yazıp, u<sup>\*</sup><sub>j,n+1</sub>'ya göre çözerek

 $u_{j,n}^{*} = S_{j}S_{2} u_{j,n+1}^{*} + S_{j} u_{j,n}^{*}$  (4.12b)

denklemi elde edilir. Burada

 $S_1 = \frac{1}{1+S_2}$  ve (4.13a)

 $S_2 = (\frac{N\phi}{1-\phi})\Delta\Theta$ 

(4.13b)

olarak tanımlanmıştır. Denklem (4.12b) 'yi denklem (4.11) e ithal edip, bilinmiyenleri (n + 1 alt simgeli terimleri) denklemin sol tarafında toplıyarak

$$a_{j}u_{j-1,n+1} + b_{j}u_{j,n+1} + c_{j}u_{j+1,n+1} + S_{5}v_{j,n+1} =$$
  
 $-a_{j}u_{j-1,n} + (S_{8} - b_{j})u_{j,n} - c_{j}u_{j+1,n} + S_{7}u_{j,n}^{*}$   
 $- S_{5}v_{j,n}$  (4.14)

denklemi elde edilir. Bu denklemi gruplamak için denklem (4.13) deki S<sub>1</sub> ve S<sub>2</sub>'ye ilave olarak aşağıdaki sabitler tanımlanmıştır.

$$S_{3} = \frac{N\Delta\Theta}{2}; S_{4} = 1$$

$$S_{5} = \frac{R_{N} \Delta\Theta}{2\phi}$$

$$S_{6} = \frac{\Delta\Theta}{4\phi\Delta z}$$

$$(4.15b)$$

$$(4.15b)$$

$$(4.15c)$$

$$S_{7} = -S_{3}(1 + S_{1})$$

$$(4.15d)$$

$$S_{8} = S_{1}S_{2}S_{3}-2$$

$$(4.15e)$$

$$S_{9} = \frac{R_{x} \Delta\Theta}{2}$$

$$(4.15f)$$

$$r = \frac{\Delta\Theta}{(\Delta z)^{2}}; r_{0} = \frac{r}{2Pe}$$

$$(4.15g)$$

$$r_{s} = -(\frac{r}{Pe} + 1 + S_{3} + S_{5} + S_{9} - S_{1}S_{2}S_{3})$$

$$(4.15h)$$

| a <sub>j</sub> | = | ro             | + | <sup>S</sup> 6 | F <sub>j-1</sub>                |  |   | (4.15i | ~~~~ |
|----------------|---|----------------|---|----------------|---------------------------------|--|---|--------|------|
| <sup>b</sup> j | 8 | rs             | - | <sup>S</sup> 6 | $(\Omega_{j+1} - \Omega_{j-1})$ |  |   | (4.15j | )    |
| c <sub>j</sub> | 2 | r <sub>o</sub> | - | <sup>S</sup> 6 | F <sub>j+1</sub>                |  | - | (4.15k | )    |

F ve  $\Omega$  terimleri akış hızları olup, ayrıca hesaplanarak bu denklemlerin çözümünde veri olarak kullanılacaktır. Buraya kadar yapılan işlem, u<sub>j,n+l</sub>'ı taşıyan adi diferansiyel denklemi çözüp (4.11) e ithal ettikten sonra bu denklemi gruplamaktan ibarettir. Denklem (4.14) halen v<sub>i.n+1</sub> fonksiyonunu taşımaktadır. v'yi (4.11) den basit bir tasfiye yolu yoktur. İki kısmi diferansiyel denklemi ayırabilmek için denenen yarı açık bir çözüm metodu sayısal instabiliteye yol açmıştır. Bu nedenle ana dolgu akış bölgesi ile duvar akışı bölgesine ait iki kısmi diferansiyel denklemi birarada çözmek gerekecektir. Bu safhada yapılması gereken işlem denklem (3.46) dan, başlangıç ve sınır şartlarından ortaya çıkan matrisleri, v fonksiyonunu taşır halleri ile yazıp denklem (3.48)'in sonlu farklarda yazılması ile ortaya çıkacak matrislerle birlestirerek problemi pespese cözülecek bir tek matris dizisine indirgemektir.

Bu noktada sınır şartlarının (3.50a-f) sonlu farklara uygulanmasına biraz daha yakından bakılmalıdır. Denklem (4.14)  $F_{j-1}$ ,  $F_{j+1}$ ,  $\Omega_{j-1}$ , ve  $\Omega_{j+1}$  terimlerini içermektedir. Giriş sınırında  $F_{j-1}$  ve  $\Omega_{j-1}$ , çıkış sınırında da  $F_{j+1}$  ve  $\Omega_{j+1}$  reaktör dışında kalır. Bu nedenle girişte bu terimleri taşıyan kısmi türevleri "ileri doğrultuda fark yaklaşımı" (forward difference approximation) ile yazmak gerekmektedir.

47

Diğer taraftan giriş sınırında (j = 1) duvar akış bölgesi henüz teşekkül etmemiştir. Bu yüzden  $R_N(u-v)$ terimi ile u  $\frac{d\Omega}{dz}$  terimi, yani duvar akışı bölgesine difüzyon ve konveksiyonla geçiş terimleri, kule girişi sınır şartlarını içeren denklemden düşer.

# IV.2.1. Birinci Zaman Adımı

Birinci zaman adımında, denklem (4.11) j = 1 etrafında yazıldığında başlangıç şartları da kullanılarak aşağıda gösterilen hali alır.

 $u_{1,1} = \frac{r}{2Pe} u_{2,1} - \frac{r}{Pe} u_{1,1} + \frac{r}{2Pe} u_{0,1} - \frac{\Delta\Theta}{2\phi\Delta z} F_2 u_{2,1}$ 

$$+\frac{\Delta\Theta}{2\phi\Delta z}F_{1}u_{1,1}-\frac{N\Delta\Theta}{2}u_{1,1}+\frac{N\Delta\Theta}{2}u_{1,1}^{*}-\frac{R_{x}\Delta\Theta}{2}u_{1,1}^{*}$$
(4.16)

Bu denklemden u<sub>0,1</sub>'in tasfiyesi gerekir. Denklem (3.50d),  $\delta(\Theta) = u(0,\Theta) - \frac{\phi}{Pe} \frac{\partial u(0,\Theta)}{\partial z}$ 

sonlu farklarla yazıldığında şu hali alır.

$$\frac{1}{\Delta \Theta} = u_{1,1} - \frac{\phi}{2Pe\Delta z} (u_{2,1} - u_{0,1}); n = 0. \qquad (4.17a)$$

$$0 = u_{1,m} - \frac{\phi}{2Pe\Delta z} (u_{2,m} - u_{0,m}); m \ge 2.$$
 (4.17b)

Denklem (4.17a) nın (4.16)'ya ithali ile birinci zaman adımı (n+l = l) için j=l etrafındaki denklem şöyle yazılır.

$$b_1 u_{1,1} + c_1 u_{2,1} = - \frac{r \Delta z}{\phi \Delta \Theta}$$
 (4.18)

Burada

$$b_1 = r_s - \frac{r\Delta z}{\phi} + 2S_6 F_1 + S_5$$
 (4.19a)

ve

$$c_1 = \frac{r}{Pe} - 2S_6F_2$$
 (4.19b)

olarak tanımlanmıştır.

j = 2 etrafında yazılan denklemde (3.50c) de gösterilen sınır şartı geçerlidir:

$$v(0^+,\Theta) = u(0^+,\Theta).$$
 (3.50c)

Bu şart

 $v_{2,1} = u_{2,1}$  (4.20)

eşitliğini gerektirir. Bu durumda denklem (3.46) daki R<sub>N</sub>(u - v) terimi tekrar düşer. Genel sonlu farklar denklemi (4.11) şu şekile indirgenir.

 $a_2v_{1,1} + b_2v_{2,1} + c_2v_{3,1} = 0$  (4.21)

Buradaki  $a_2$  ve  $c_2$  (4.15i) ve (4.15k) denklemlerinde tanımlanmıştır.  $b_2$  ise genel terimden farklı olarak aşağıdaki şekilde tanımlanır:

$$b_2 = r_s + S_5 - S_6(\Omega_3 - \Omega_1)$$
(4.22)

Birinci zaman adımı matrisinde j'nin (2 < j < JM) değerlerini taşıdığı denklemler ise şöyle yazılır.

Burada  $a_j$ ,  $b_j$ ,  $c_j$  ve  $S_5$ , (4.15) te tanımlanmıştır.

Çıkışta (j = JM), sınır şartı (3.50e) geçerlidir.

$$\frac{\partial u(1,\Theta)}{\partial z} = 0 \tag{3.50e}$$

u fonksiyonunun birinci türevleri sıfıra eşitlenip diğer gruplamalar tamamlanınca, (4.11)'den çıkış sınırı denklemi elde edilir.

$$\frac{r}{Pe} u_{JM,1} + \left[ r_{s} - 2S_{6}(F_{JM} - F_{JM-1} + \Omega_{JM} - \Omega_{JM-1}) \right] u_{JM,1} + \frac{s_{5}v_{JM,1}}{(4.24)}$$

IV.2.2. İkinci ve Sonraki Zaman Adımları

Birinci matrisde olduğu gibi burada da (j=1) de duvar akış bölgesi olmadığından, bu bölgeye konveksiyon ve difüzyon vasıtasıyla izleyici transferini tanımlayan terimler düşer. Gene birinci matrisde olduğu gibi, F'nin türevlerini içeren terimler ileri doğrultuda fark yaklaşımı ile yazılır. Denklem (4.11) bu şartlar altında şu hali alır:

$${}^{u}_{1,2} - {}^{u}_{1,1}_{1,1} = \frac{r}{2Pe} {}^{u}_{2,2} - \frac{r}{Pe} {}^{u}_{1,2} + \frac{r}{2Pe} {}^{u}_{0,2} - \frac{\Delta\Theta}{2\phi\Delta z} F_{2} {}^{u}_{2,2} + \frac{\Delta\Theta}{2\phi\Delta z} F_{1} {}^{u}_{1,2} - \frac{N\Delta\Theta}{2} {}^{u}_{1,2} + \frac{N\Delta\Theta}{2} {}^{u}_{1,2} + \frac{r}{2Pe} {}^{u}_{2,1} - \frac{r}{Pe} {}^{u}_{1,1} + \frac{r}{2Pe} {}^{u}_{2,1} - \frac{r}{Pe} {}^{u}_{1,1} + \frac{\Lambda\Theta}{2\phi\Delta z} F_{2} {}^{u}_{2,1} + \frac{\Delta\Theta}{2\phi\Delta z} F_{1} {}^{u}_{1,1} - \frac{N\Delta\Theta}{2} {}^{u}_{1,1} + \frac{N\Delta\Theta}{2} {}^{u}_{1,1} + \frac{N\Delta\Theta}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^{u}_{1,1} + \frac{r}{2} {}^$$

 $u_{0,1}$ ,  $u_{0,2}$  ve  $u_{1,2}^*$ 'nun tasfiyesi için sırasıyla denklem (4.17a-b) ve denklem (4.12) denklem (4.25)'e ithal edilerek, ikinci zaman adımının (j=1) etrafındaki denklemi şu şekilde yazılır:

 $b_1u_{1,2} + c_1u_{2,2} = (S_8 - b_1)u_{1,1} - c_1u_{2,1} + S_7u_{1,1}^* - \frac{r\Delta z}{\phi\Delta\Theta}$  (4.26)

Denklemin sabitleri denklem (4.15) ve denklem (4.19a-b) ile tanımlanmıştır.

İkinci zaman adımının (j≖2) etrafındaki denklemi yazılırken denklem (3.50c) ve denklem (4.20) gözönünde bulundurulur. R<sub>N</sub>(u-v) terimi gene sıfıra eşittir. Denklem (4.11) den başlıyarak

 $a_2u_{1,2}+b_2u_{2,2}+c_2u_{3,2} = S_7u_{2,1}^*-a_2u_{1,1}+(S_8-b_2)u_{2,1}$ 

 $-c_{2}u_{3,1}$  (4.27)

elde edilir. Burada b<sub>2</sub> denklem (4.22), diğer sabitler de denklem (4.15) ile tanımlanmıştır.

İkinci zaman adımının (3≤j<JM) denklemleri denklem (4.11)'den, n+1 = 2 eşitliğinden faydalanılarak yazılır.

$$a_{j}u_{j-1,2}+b_{j}u_{j}2+c_{j}u_{j+1,2}+S_{5}v_{j,2} = -a_{j}u_{j-1,1}+(S_{8}-b_{j})u_{j,1}$$

$$- c_{j}u_{j+1,1}+S_{7}u_{j,1}^{*}-S_{5}v_{j,1} \qquad (4.28)$$

Bu denklemin sabitleri denklem (4.15) te tanımlanmıştır. İkinci zaman adımının son denklemi, (j=JM), denklem (4.24) ile aynı şekilde elde edilir. u fonksiyonunun birinci türevleri sıfıra eşitlendikten sonra elde edilen denklem aşağıda gösterilmiştir.

<sup>a</sup>JM<sup>u</sup>JM-1,2<sup>+b</sup>JM<sup>u</sup>JM,2<sup>+S</sup>5<sup>v</sup>JM,2<sup>=-S</sup>5<sup>v</sup>JM,1<sup>+S</sup>7<sup>u</sup>JM,1<sup>-</sup> Pe<sup>u</sup>JM-1,1

+ 
$$(S_8 - b_{JM})u_{JM,1}$$
 (4.29a)

Burada  $a_{JM}$  ve  $b_{JM}$   $a_{JM} = r/Pe$  (4.29b)  $b_{JM} = r_s - 2S_6(F_{JM} - F_{JM-1} + \Omega_{JM} - \Omega_{JM-1})$  (4.29c)

ifadeleriyle tanımlanır.

Üçüncü ve sonraki zaman adımları için yazılan denklemler ikinci zaman adımı için yazılanlara çok benzemektedir. Aradaki tek fark üçüncü zaman adımından itibaren denklem (4.26) nın sağ tarafındaki  $-\frac{r\Delta z}{\phi\Delta\Theta}$  teriminin düşmeşidir:

$$b_1 u_{1,m} + c_1 u_{2,m} = (S_8 - b_1) u_{1,m-1} - c_1 u_{2,m-1} + S_7 u_{1,m-1}^*, m \ge 3$$
  
(4.30)

Burada elde edilen tüm denklemler, Bölüm IV.2.4 te özetlenecektir.

#### IV.2.3. Duvar Akışı Bölgesi

Duvar akışı bölgesindeki konsantrasyon profillerini tanımlayan denklem (3.48), u ve v bağımlı fonksiyonlarını içermektedir. Sıvı tabakası kalınlığı,  $\Delta$ , ve duvar akışı hızı  $\Omega$ 'nın değerleri Onda modeli ile hesaplanarak denkleme sayısal veri olarak katılacaktır. Burada yapılacak olan işlem, her zaman adımında, kule boyunca duvar akışı konsantrasyonlarını hesaplıyacak matrisi yazıp ortaya çıkan matris dizisini ana dolgu matrisleri ile birleştirerek tek matris dizisi elde etmektir. Denklem (3.48) Crank-Nicolson metodunda şöyle yazılır.

$$v_{j,n+1} - v_{j,n} = \frac{r}{2Pe} v_{j+1,n+1} - \frac{r}{Pe} v_{j,n+1} + \frac{r}{2Pe} v_{j-1,n+1}$$

$$+ \frac{r}{8Pe} \left[ \frac{\Delta_{j+1} - \Delta_{j-1}}{\Delta_{j}} \right] v_{j+1,n+1} - \frac{r}{8Pe} \left[ \frac{\Delta_{j+1} - \Delta_{j-1}}{\Delta_{j}} \right] v_{j-1,n+1}$$

$$- \frac{\Delta\Theta}{8E\Delta z} \frac{\Omega_{j+1}}{\Delta_{j}} v_{j+1,n+1} + \frac{\Delta\Theta}{8E\Delta z} \frac{\Omega_{j-1}}{\Delta_{j}} v_{j-1,n+1}$$

$$+ \frac{\Delta\Theta}{8E\Delta z} \left[ \frac{\Omega_{j+1} - \Omega_{j-1}}{\Delta_{j}} \right] u_{j,n+1} + \frac{R_N \Delta\Theta}{4E\Delta_j} u_{j,n+1} - \frac{R_N \Delta\Theta}{4E\Delta_j} v_{j,n+1}$$

$$+ \frac{r}{2Pe} v_{j+1,n} - \frac{r}{Pe} v_{j,n} + \frac{r}{2Pe} v_{j-1,n} + \frac{R_N \Phi\Theta}{8E\Delta z} \left[ \frac{\Delta_{j+1} - \Delta_{j-1}}{\Delta_j} \right] v_{j+1,n}$$

$$- \frac{r}{8Pe} \left[ \frac{\Delta_{j+1} - \Delta_{j-1}}{\Delta_j} \right] v_{j-1,n} - \frac{\Delta\Theta}{8E\Delta z} \frac{\Omega_{j+1}}{\Delta_j} v_{j+1,n}$$

$$+ \frac{\Delta\Theta}{8E\Delta z} \frac{\Omega_{j-1}}{\Delta_j} v_{j-1,n} + \frac{\Delta\Theta}{8E\Delta z} \left[ \frac{\Omega_{j+1} - \Omega_{j-1}}{\Delta_j} \right] u_{j,n} + \frac{R_N \Delta\Theta}{4E\Delta_j} u_{j,n}$$

$$- \frac{R_N \Delta\Theta}{4E\Delta_j} v_{j,n+1}.$$

$$(4.31)$$

Denklem (4.31) deki (n+1) alt simgeli terimleri sol tarafta toplayıp , (n) alt simgeli terimleri de sağ tarafta grupladıktan sonra, denklemi daha sade bir şekilde ya-

53

zabilmek için şu tanımlamalar yapılmıştır.

$$Q_{1} = \frac{R_{N}\Delta\Theta}{4E}$$

$$(4.32a)$$

$$Q_{2} = -\frac{\Delta\Theta}{8E\Delta z}$$

$$(4.32b)$$

$$Q_{5} = -\frac{Q_{2}}{56}$$

$$(4.32c)$$

$$Q_{M} = -Q_{2}$$

$$(4.32d)$$

$$a'_{j} = \frac{r}{2Pe} - \left[\frac{\Delta j + 1^{-\Delta} j - 1}{\Delta j}\right] \frac{r}{8Pe} + \frac{\Delta\Theta}{8E\Delta z} \frac{\Omega j - 1}{\Delta j}$$

$$(4.33a)$$

$$b'_{j} = - \left[\frac{r}{Pe} + 1 + \frac{R_{N}\Delta\Theta}{4E} \frac{1}{\Delta j}\right]$$

$$(4.33b)$$

$$c'_{j} = \frac{r}{2Pe} + \left[\frac{\Delta j + 1^{-\Delta} j - 1}{\Delta j}\right] \frac{r}{8Pe} - \frac{\Delta\Theta}{8E\Delta z} \frac{\Omega j + 1}{\Delta j}$$

$$(4.33c)$$

$$d'_{j} = Q_{M} \left[\frac{\Omega j + 1^{-\Omega} j - 1}{\Delta j}\right] + \frac{Q_{1}}{\Delta j}$$

$$(4.33d)$$

Bu tanımlamalarla, duvar akışı bölgesi genel denklemi (4.31) aşağıdaki şekle dönüşür.

Sınır şartları, duvar akışının kule girişinin hemen altında başlamasını gerektirir. Bu itibarla denklem (3.48) in çözüm bölgesi (domain of solution) j=2 den itibaren başlar. Denklem (3.50c)'ye göre de j=2 noktasında, yani sınırın hemen içinde, iki akış bölgesi konsantrasyonlarının eşit olmasını gerektirir. Bu durumda duvar akışı bölgesinde bilinmeyen konsantrasyonlar j=3'ten başlamaktadır.

Birinci zaman adımında j=3 etrafındaki denklem, u<sub>2.1</sub>=v<sub>2.1</sub> eşitliği de kullanıldığında şöyledir:

$$a_{3}^{u}u_{2,1}^{+d}a_{3}^{u}u_{3,1}^{+b}a_{3}^{v}v_{3,1}^{+c}a_{3}^{v}u_{4,1}^{=0}$$
 (4.35)

Bu denklem dizisinde j'nin (3 < j < JM) değerlerini taşıdığı denklemler de şöyle yazılır.

$$a_{j}^{v}v_{j-1,1}^{+d}_{j}^{u}u_{j,1}^{+b}_{j}^{v}v_{j,1}^{+c}_{j}^{v}v_{j+1,1} = 0$$
 (4.36)

Kulenin alt sınırında  $(\partial v/\partial z)_{z=1}=0$ . Denklem (3.48), v fonksiyonunun birinci türevlerinin sıfıra eşitlendiği durumda aşağıdaki şekle indirgenir.

$$\frac{1}{Pe} \frac{\partial^2 v}{\partial z^2} - \frac{1}{2E\Delta} v \frac{\partial \Omega}{\partial z} \frac{u}{2E\Delta} \frac{\partial \Omega}{\partial z} - \frac{R_N}{E\Delta} (u-v) = \frac{\partial v}{\partial \Theta}$$
(4.37)

Burada Ω'yı içeren türevleri geri doğrultuda fark yaklaşımı ile yazılınca j=JM etrafındaki denklem aşağıda gösterilen şekli alır.

$$\frac{r}{Pe}v_{JM-1,1} + \left[2Q_{M}\frac{(\Omega_{JM}-\Omega_{JM-1})}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}}\right] u_{JM,1}$$

$$- \left[\frac{r}{Pe} + 1 + 2Q_{M}\frac{(\Omega_{JM}-\Omega_{JM-1})}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}}\right] v_{JM,1} = 0 \qquad (4.38a)$$
Bunneda

Burada

(4.38b)

$$d_{JM} = 2Q_{M} \frac{\left(\Omega_{JM} - \Omega_{JM-1}\right)}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}}$$
(4.38c)

$$b'_{JM} = - \left[ \frac{r}{Pe} + 1 + 2Q_{M} \frac{\left(\Omega_{JM} - \Omega_{JM-1}\right)}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}} \right]$$
(4.38d)

olarak tanımlanarak denklem (4.38a) şöyle yazılır.

$$a_{jM}^{v}_{JM-1,1}^{+d}_{JM}^{u}_{JM,1}^{+b}_{JM}^{v}_{JM,1} = 0$$
 (4.38e)

Duvar akışı bölgesinde giriş sınır şartının şekli, ana akış bölgesindeki gibi zamana bağlı ve kademeli değildir. Bu yüzden başlangıç şartını taşıyan birinci zaman adımından sonra, n ≥ l için kurulan matrisler birbirinin aynıdır. j=3 etrafındaki denklem yazılırken tekrar <sup>u</sup>2,n+1 = <sup>V</sup>2,n+1 eşitliği kullanılır.

$$a_{3}^{i}u_{2,n+1}^{+d}a_{3}^{i}u_{3,n+1}^{+b}a_{3}^{i}v_{3,n+1}^{+c}a_{3}^{i}v_{4,n+1} = -a_{3}^{i}v_{2,n}$$

$$+ \left[\frac{r}{Pe} -1 + \frac{Q_{1}}{\Delta_{3}}\right]v_{3,n}^{-c}a_{3}^{i}v_{4,n}^{-d}a_{3,n}^{i} \qquad (4.39)$$

j'nin (3 < j < JM) değerleri etrafında yazılan denklemler ise aşağıda gösterilen şekilde yazılır.

$$a_{j}^{v}v_{j-1,n+1}^{+d}j_{j}^{u}j_{n+1}^{+b}j_{j}^{v}v_{j,n+1}^{+c}j_{j}^{v}j_{j+1,n+1} = a_{j}^{v}v_{j-1,n}$$

$$\left\{\frac{r}{Pe} - 1 + \frac{Q_1}{\Delta_j}\right\} v_{j,n} - c_j^{i} v_{j+1,n} - d_j^{i} u_{j,n} \qquad (4.40)$$

Kule çıkış sınırında (j=JM), denklem (4.37), Ω'nın geri doğrultuda fark yaklaşımı ile yazılan türevleri de kullanılarak aşağıdaki hali alır.

56

$$\frac{\mathbf{r}}{\mathbf{Pe}} \mathbf{v}_{JM-1,n+1} + \left[ 2Q_{M} \frac{(\Omega_{JM} - \Omega_{JM-1})}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}} \right] \mathbf{u}_{JM,n+1} - \left[ \frac{\mathbf{r}}{\mathbf{Pe}} + 1 \right] \\ + 2Q_{M} \frac{(\Omega_{JM} - \Omega_{JM-1})}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}} \right] \mathbf{v}_{JM,n+1} = -\frac{\mathbf{r}}{\mathbf{Pe}} \mathbf{v}_{JM-1,n} \\ - \left[ 2Q_{M} \frac{(\Omega_{JM} - \Omega_{JM-1})}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}} \right] \mathbf{u}_{JM,n} + \left[ \frac{\mathbf{r}}{\mathbf{Pe}} - 1 \right] \\ + 2Q_{M} \frac{(\Omega_{JM} - \Omega_{JM-1})}{\Delta_{JM}} + \frac{Q_{1}}{\Delta_{JM}} \right] \mathbf{v}_{JM,n}$$
(4.41)

IV.2.4. Denklem Dizisinin Çözümü

Bölüm II.2 ve II.3 de ana dolgu akış bölgesi ve duvar akışı bölgesindeki izleyici konsantrasyonlarını tanımlayan iki kısmi diferansiyel denklem birer lineer denklem dizisine indirgenmişlerdir. Her zaman adımı icin bir defa cözülmesi gereken bu iki dizi denklem ilkinde v ikincisinde de u fonksiyonlarının bulunması nedeniyle birbirine bağımlıdırlar. (n+1) zaman adımında bilinmeyenler (u<sub>1,n+1</sub>, u<sub>2,n+1</sub>, u<sub>3,n+1</sub>, u<sub>4,n+1</sub>, ...., u<sub>JM-1,n+1</sub>, u<sub>JM,n+1</sub>) dizisi ile (v<sub>3,n+1</sub>, v<sub>4,n+1</sub>, ...., v<sub>JM-1,n+1</sub>, v<sub>JM,n+1</sub>) dizisidir. u<sub>j,n</sub> ise denklem (4.12) yolu ile u<sub>j,n</sub> dizisinden yararlanarak hesaplanabilmektedir. Bu aşamada iki bilinmeyen dizisini aşağıda gösterilen yöntemle bir tek bilinmeyen dizisine indirgemek gerekmektedir.  $j = 1; y_{1,n+1} = u_{1,n+1};$   $j = 2; y_{2,n+1} = u_{2,n+1};$   $j = 3; y_{3,n+1} = u_{3,n+1}; y_{4,n+1} = v_{3,n+1}.$   $j = 4; y_{5,n+1} = u_{4,n+1}; y_{6,n+1} = v_{4,n+1}.$  (4.42)  $j = J; y_{2,J-3,n+1} = u_{J,n+1}; y_{2,J-2,n+1} = v_{J,n+1}.$   $j = JM; y_{2,JM-3,n+1} = u_{JM,n+1}; y_{2,JM-2,n+1} = v_{JM,n+1}.$ 

Böylece birbirine akuple iki lineer denklem dizisi birleştirilebilir. Ortaya çıkan denklem dizisi beşli bir bant matrisine dönüşebilecek niteliktedir. Buna uyarak diyagonal elementin alt simgeleri (j,3) olarak yazılır. (n+1)'inci zaman adımında denklem dizisi şu hali alır.

| ang.   | j= 1                           | A1,3 <sup>y</sup> 1 <sup>+A</sup> 1,4 <sup>y</sup> 2                                                                                      | = <sup>B</sup> 1         |
|--------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| leri   | 5 j≡ 2                         | <sup>A</sup> 2,2 <sup>y</sup> 1 <sup>+A</sup> 2,3 <sup>y</sup> 2 <sup>+A</sup> 2,4 <sup>y</sup> 3                                         | = <sup>B</sup> 2         |
| enklen | j<br>2 j= 3                    | <sup>A</sup> 3,2 <sup>y</sup> 2 <sup>+A</sup> 3,3 <sup>y</sup> 3 <sup>+A</sup> 3,4 <sup>y</sup> 4 <sup>+A</sup> 3,5 <sup>y</sup> 5        | = <sup>B</sup> 3         |
| nr De  | j <sub>≡</sub> 3               | <sup>A</sup> 4,1 <sup>y</sup> 2 <sup>+A</sup> 4,2 <sup>y</sup> 3 <sup>+A</sup> 4,3 <sup>y</sup> 4 + <sup>A</sup> 4,5 <sup>y</sup> 6       | =B <sub>4</sub>          |
| S1r    | :<br>) j= 4<br>}               | A <sub>5,1</sub> y <sub>3</sub> +A <sub>5,3</sub> y <sub>5</sub> +A <sub>5,4</sub> y <sub>6</sub> +A <sub>5,5</sub> y <sub>7</sub>        | =B <sub>5</sub>          |
| Gir    | 5 j≖ 4                         | <sup>A</sup> 6,1 <sup>y</sup> 4 <sup>+A</sup> 6,2 <sup>y</sup> 5 <sup>+A</sup> 6,3 <sup>y</sup> 6 <sup>+A</sup> 6,5 <sup>y</sup> 8        | = <sup>B</sup> 6         |
|        |                                |                                                                                                                                           | •                        |
| e      | is j= j                        | <sup>A</sup> 2J-3,1 <sup>y</sup> 2J-5 + <sup>A</sup> 2J-3,3 <sup>y</sup> 2J-3,4 <sup>y</sup> 2J-2,4 <sup>y</sup> 2J-3,5 <sup>y</sup> 2J-1 | = <sup>B</sup> 2J-3      |
| К<br>К | ><br>9<br>13<br>15<br>15<br>15 | $^{A}$ 2J-2,1 $^{y}$ 2J-4 $^{+A}$ 2J-2,2 $^{y}$ 2J-3 $^{+A}$ 2J-2,3 $^{y}$ 2J-2 + $^{A}$ 2J-2,1 $^{y}$ 2J                                 | = <sup>B</sup> 2J-2      |
|        | • •••                          |                                                                                                                                           | •                        |
| เนเนเ  | j=JM                           | A2JM-3,1 <sup>y</sup> 2JM-5 +A2JM-3,3 <sup>y</sup> 2JM-3 <sup>+A</sup> 2JM-3,4 <sup>y</sup> 2J                                            | IM-2 <sup>=B</sup> 2JM-3 |
| k1\$ S | I j≡JM                         | <sup>A</sup> 2JM-2,1 <sup>y</sup> 2JM-4 <sup>+A</sup> 2JM-2,2 <sup>y</sup> 2JM-3 <sup>+A</sup> 2JM-2,3 <sup>y</sup> 2                     | IM-2 <sup>=B</sup> 2JM-2 |
| Ŀ      |                                | · · · · · · · · · · · · · · · · · · ·                                                                                                     | . (4.43)                 |
|        |                                |                                                                                                                                           | <b>v</b>                 |
|        |                                |                                                                                                                                           |                          |

Burada bütün y terimlerinin ikinci alt simgesi olan (n+l) yazı işlemini kısaltmak amacı ile yazılmamıştır. Matris notasyonunda denklem (4.43) aşağıda gösterilen şekilde yazılabilir.

$$\begin{array}{l} A \ y \ = \ B \\ \gtrsim \ \end{array} \tag{4.44}$$

A matrisi beş eleman genişlikli bir bant matrisi olup Zaman adımlarının yürümesi ile değişmez. Vektör y, denklem (4.42) nin yazılışından da görülebileceği gibi her zaman adımındaki konsantrasyon dağılımlarıdır. B vektörü ise, sonlu farklar denklemlerinin sağ tarafı olup, u<sub>n</sub> ve v<sub>n</sub> fonksiyonlarını içerdiğinden, elemanları olan  $B_{2j-3}$  ve  $B_{2j-2}$  her bir zaman adımı için değişik değerler alır.

A matrisinin elemanları bir araya getirilen iki denklem dizisinin sol tarafındaki katsayılardan oluşan matrisdir.

$$\begin{array}{c} A_{1,3}=b_{1}; \ A_{1,4}=c_{1}; \ A_{1,5}=0 \qquad j=1 \\ A_{2,2}=a_{2}; \ A_{2,3}=b_{2}; \ A_{2,4}=c_{2}; \ A_{2,5}=0 \qquad j=2 \\ A_{3,1}=0; \ A_{3,2}=a_{3}; \ A_{3,3}=b_{3}; \ A_{3,4}=S_{5}; \ A_{3,5}=c_{3} \\ A_{4,1}=a_{3}^{1}; \ A_{4,2}=d_{3}^{1}; \ A_{4,3}=b_{3}^{1}; \ A_{4,4}=0 ; \ A_{4,5}=c_{3}^{1} \end{array} \right\} j=3 \\ A_{4,1}=a_{3}^{1}; \ A_{4,2}=d_{3}^{1}; \ A_{4,3}=b_{3}^{1}; \ A_{4,4}=0 ; \ A_{4,5}=c_{3}^{1} \end{array} \right\} j=3 \\ A_{5,1}=a_{4}; \ A_{5,2}=0 ; \ A_{5,3}=b_{4}; \ A_{5,4}=S_{5}; \ A_{5,5}=c_{4} \\ A_{6,1}=a_{4}^{1}; \ A_{6,2}=d_{4}^{1}; \ A_{6,3}=b_{4}^{1}; \ A_{6,4}=0 ; \ A_{6,5}=c_{4}^{1} \end{array} \right\} j=4 \\ A_{2J-3,1}=a_{J}; \ A_{2J-3,2}=0 ; \ A_{2J-3,3}=b_{J}; \ A_{2J-3,4}=S_{5}; \ A_{2J-3,5}=c_{J} \\ j=J \\ A_{2J-2,1}=a_{J}^{1}; \ A_{2J-2,2}=d_{J}^{1}; \ A_{2J-2,3}=b_{J}^{1}; \ A_{2J-2,4}=0 ; \ A_{2J-2,5}=c_{J}^{1} \end{array} \right\} j=J$$

$$\begin{array}{c} A_{2JM-3,1}^{a} = a_{JM}; A_{2JM-3,2}^{a} = 0 ; A_{2JM-3,3}^{a} = b_{JM}; A_{2JM-3,4}^{a} = S_{5} \\ A_{2JM-2,1}^{a} = a_{JM}; A_{2JM-2,2}^{a} = d_{JM}; A_{2JM-2,3}^{a} = b_{JM} \\ \end{array} \right\} j = JM$$

$$\begin{array}{c} A_{2JM-2,1}^{a} = a_{JM}; A_{2JM-2,2}^{a} = d_{JM}; A_{2JM-2,3}^{a} = b_{JM} \\ \vdots & \vdots \\ \end{array}$$

$$(4.45)$$

Burada  $b_1$  ve  $c_1$  denklem (4.29a-b) ile;  $b_2$  denklem (4.22) ile;  $a_j$ ,  $b_j$ ,  $c_j$ ,  $S_5$ , denklem (4.15) ile;  $a_{JM}$  ve  $b_{JM}$ denklem (4.29 b-c) ile;  $a'_j$ ,  $b'_j$ ,  $c'_j$ ,  $d'_j$ , denklem (4.33 a-d) ile;  $a'_{JM}$ ,  $b'_{JM}$ ,  $d'_{JM}$ , denklem (4.38 b-d) ile tanımlanmışlardır.

B vektörü herbir zaman adımı için değerleri değişen elemanlardan oluşur. Birinci zaman adımı (n=0, n+1 = 1) de B vektörü elemanlarının değerlerişöyledir:

$$n+1 = 1$$
;  $B_1 = -\frac{r\Delta z}{\phi\Delta\Theta}$  (4.46a)

 $B_m = 0$ ; (1 < m  $\leq 2JM-2$ ) (4.46b)

İkinci zaman adımında B vektörünün elemanları aşağıda gösterilen denklemler yolu ile değerlendirilirler.

$$B_{1} = -\frac{r\Delta z}{\phi\Delta\Theta} + (S_{8} - A_{1,3})u_{1,1} - A_{1,4}u_{2,1} + S_{7}u_{1,1}^{*}$$

$$B_{2} = -A_{2,2}u_{1,1} + (S_{8} - A_{2,3})u_{2,1} - A_{2,4}u_{3,1} + S_{7}u_{2,1}^{*}$$

$$B_{3} = -A_{3,2}u_{2,1} + (S_{8} - A_{3,3})u_{3,1} - A_{3,5}u_{4,1} + S_{7}u_{3,1}^{*} - S_{5}v_{3,1}$$
$$B_{4} = -A_{4,1}v_{2,1} - A_{4,2}u_{3,1} - (A_{4,3}+2)v_{3,1} - A_{4,5}v_{4,1}$$

$$B_{2J-3} = -A_{2J-3,1}u_{J-1,1} + (S_{8}-A_{2J-3,3})u_{J,1} - A_{2J-3,5}u_{J+1,1} + S_{7}u_{J,1}^{*}, 1 - S_{5}v_{J,1}$$

$$B_{2J-2} = -A_{2J-2,1}v_{J-1,1} - A_{2J-2,2}u_{J,1} - (A_{2J-2,3}+2)v_{J,1} - A_{2J-2,5}v_{J+1,1}$$

$$B_{2JM-3} = -A_{2JM-3,1}u_{JM-1,1} + (S_{8}-A_{2JM-3,3})u_{JM,1} + S_{7}u_{JM,1}^{*} - S_{5}v_{JM,1}$$

$$B_{2JM-2} = -A_{2JM-2,1}v_{JM-1,1} - A_{2JM-2,2}u_{JM,1} - (A_{2JM-2,3}+2)v_{JM,1} - \dots (4.47)$$

$$0$$
Cüncü ve daha sonraki zaman adımlarında, (n+1>2), u, u\*, u ferkediyen lemman divin

Uçuncu ve daha sonrakı zaman adımlarında, (n+1>2), u, u\*, ve v fonksiyonlarının ikinci alt simgesi (n) olarak değişir. Yalnız B<sub>1</sub> bir terim eksiği ile şu hali alır.

 $B_{1}=(S_{8} - A_{1,3})u_{1,n} - A_{1,4}u_{2,n} + S_{7}u_{1,n}^{*}$  (4.48)

B vektörünün diğer elemanları (4.47) de gösterilen ifadelerle, her zaman adımı için baştan, hesaplanır.

Böylece Bölüm III.4'te, iki kısmi diferansiyel denklem, bir adi diferansiyel denklem ile gerekli başlangıç ve sınır şartlarından oluşan denklem takımı, denklem (4.44)'e göre

seklinde özetlenen, birlikte çözümlenecek lineer cebirsel bir denklem dizisine indirgenmiştir. Bu dizi her zaman adımı için bir defa çözülerek, kule boyunca JM adet noktada u, u\*, ve v fonksiyonlarının değerlerinin bulunmasını sağlamaktadır. Bu çözüme göre, her bir zaman adımında alt (çıkış)sınırında, u<sub>JM,n+1</sub> ve v<sub>JM,n+1</sub>, yani ana dolgu akışı bölgesi çıkış konsantrasyonu değeri ile duvar akışı bölgesi çıkış konsantrasyonu değeri tesbit edilir. u<sub>JM,n+1</sub> ve v<sub>JM,n+1</sub>'in akış hızlarına göre ağırlıklı ortalaması alınarak reaktörde kalış süresi dağılım fonksiyonunun⊖'ya bağımlı değerleri

$$E(\Theta) = \frac{F_{JM} u_{JM}(\Theta) + \Omega_{JM} v_{JM}(\Theta)}{F_{JM} + \Omega_{JM}}$$
(4.49)

denklemiyle hesaplanır.

Burada boyutsuzlandırılmış zaman,  $_{\Theta}$ ,

 $\Theta = (n + 1) \Delta \Theta \qquad (4.50)$ 

denklemi ile verilir.

E(⊖) elde edildikten sonra dağılımın sıfır noktası etrafındaki üç momenti hesaplanmıştır.

Kalış süresi dağılımlarını ve momentlerini hesaplamak üzere, bu çalışmada hazırlanan bilgisayar programı Ek l'de gösterilmiştir. Beşli bant matrisini dönüştürme işlemi IMSL{23} program paketi, LEQTIB altprogramı ile gerçekleştirilmiştir. İntegrasyonlarda CUBINT alt-programı{10} kullanılmıştır.

# IV.3. PDE Modelinden Reaktörde Kalma Süresi Dağılımlarının Hesaplanması

Bu çalışmada geliştirilen modelin, duvar akışı ihmal edilerek PDE modeline indirgenebileceği Bölüm III. 2 de gösterilmiştir. PDE modelinde, Dirac δ-fonksiyonu biçiminde bir darbe ile izleyici girişi yapıldığında, reaktörde kalma süresi dağılımları aşağıdaki denklem takımından yararlanarak hesaplanır.

$$\frac{1}{Pe} \frac{\partial^2 u}{\partial z^2} - \frac{1}{\phi} \frac{\partial u}{\partial z} - N(u - u^*) - R_x u = \frac{\partial u}{\partial \Theta}$$
(4.51)

$$\frac{\partial u^*}{\partial \Theta} = N(\frac{\Phi}{1-\Phi})(u-u^*)$$
(4.52)

$$u(z,0) = 0; u^{*}(z,0) = 0$$
 (4.53)

$$\delta(\Theta) = u(0,\Theta) - \frac{\phi}{Pe} \frac{u(0,\Theta)}{\partial z}$$
(4.54)

$$\frac{\partial u}{\partial z} (1, \Theta) = 0 \tag{4.55}$$

Yukarıdaki terimlerin tanımlamaları Bölüm III de verilmiştir. Bu denklem takımının çözümü Bölüm IV.2 de özetlenen yöntemlere benzer olmakla birlikte daha sade işlemler gerektirmektedir. Villermaux ve van Swaaij{74} reaksiyon teriminin ihmal edildiği yarı sonsuz bir damlama yatak reaktöründe kalma süresi dağılımlarını analitik bir çözümle elde etmişlerdir. Gene reaksiyon terimini ihmal eden, fakat kapalı reaktör sınır şartını (denklem 4.55) kabul eden PDE modeli kullanılarak reaktörde kalma süresi dağılımlarının yaklaşık çözümü de analitik olarak elde edilmiştir{4}. Bu çalışmada geliştirilen model ile PDE modelini hem reaksiyonlu, hem de reaksiyonsuz durumlarda karşılaştırmak amacıyla denklem (4.51-4.55) de gösterilen denklem takımı burada Crank-Nicolson kapalı şeması ile çözülmüştür. Denklem (4.51) bu yöntemle açılarak, terimler daha evvel görüldüğü şekilde gruplandırılmak suretiyle, aşağıda gösterilen hali almıştır.

$$c_{1}^{u}_{j-1,n} + c_{2}^{u}_{j,n+1} + c_{3}^{u}_{j+1,n+1} = c_{1}^{u}_{j-1,n} + c_{4}^{u}_{j,n}$$
  
-  $c_{3}^{u}_{j+1,n} + c_{5}^{u}_{j,n}^{*}$  (4.56)

Denklemin kısa halde yazılabilmesi için aşağıdaki tanımlamalar yapılmıştır.

| $c_1 = \frac{r}{2Pe} + \frac{\Delta\Theta}{4\phi\Delta z}$   |                                                                                  | (4.57a) |
|--------------------------------------------------------------|----------------------------------------------------------------------------------|---------|
| $c_2 = -(\frac{r}{Pe} + 1 +$                                 | G <sub>3</sub> - G <sub>1</sub> G <sub>2</sub> G <sub>3</sub> + G <sub>4</sub> ) | (4.57b) |
| $c_3 = \frac{r}{2Pe} - \frac{\Delta\Theta}{4\phi\Delta z}$   |                                                                                  | (4.57c) |
| $c_4 = \frac{r}{Pe} - 1 + G_3$                               | + G <sub>4</sub>                                                                 | (4.57d) |
| $c_5 = -G_3(G_2 + 1)$                                        |                                                                                  | (4.57e) |
| $G_1 = N \Delta \Theta \left( \frac{\phi}{1 - \phi} \right)$ |                                                                                  | (4.57f) |
| $G_2 = \frac{1}{1+G_1}$                                      |                                                                                  | (4.57g) |
| $G_3 = \frac{N \Delta \Theta}{2}$                            |                                                                                  | (4.57h) |
| $G_4 = \frac{R_x \Delta \Theta}{2}$                          |                                                                                  | (4.57i) |

Başlangıç ve sınır şartlarının denklem (4.56)'ya Bölüm IV.2 de görülen yöntemlerle ithali, aşağıda gösterilen denklem dizilerinin elde edilmesini sağlamıştır:

> a) Birinci zaman adımında (n=0) reaktör içindeki konsantrasyon dağılımı

$$G_5^{u_1} + G_6^{u_2} = G_8; (j=1)$$
 (4.58a)

$$c_{1}u_{j-1,1} + c_{2}u_{j,1} + c_{3}u_{j+1,1} = 0; (1 < j < JM)$$
 (4.58b)

$$G_{6}^{u}J_{M-1,1} + c_{2}^{u}J_{M,1} = 0; (j = J_{M})$$
 (4.58c)

denklem dizisi ile hesaplanır. Denklemlerin kısa halde yazılabilmesi için aşağıda gösterilen sabitler tanımlanmıştır.

$$G_5 = C_2 - \frac{2\text{Pec}_1 \Delta z}{\phi}$$
(4.59a)

$$G_6 = c_1 + c_3$$
 (4.59b)

$$G_7 = \frac{2 \operatorname{Pec}_1 \Delta z}{\Phi} + c_4 \qquad (4.59c)$$

$$G_8 = -\frac{2 \operatorname{Pe}_1 \Delta z}{\Phi \Delta \Theta} \qquad (4.59d)$$

b) İkinci zaman adımında (n=1) denklem dizisi aşağıda gösterilen şekli alır.:

$${}^{G_{5}u_{1,2}+G_{6}u_{2,2}=G_{8}+G_{7}u_{1,1}-G_{6}u_{2,1}+c_{5}u_{1,1}^{*}; j = 1}$$
 (4.60a)

$$c_{1^{u}j-1,2}^{+c}c_{2^{u}j,2}^{+c}c_{3^{u}j+1,2}^{=-c}c_{1^{u}j-1,1}^{+c}c_{4^{u}j,1}^{-c}c_{3^{u}j+1,1}^{+l}$$
  
+  $c_{5^{u}j,1}^{*}$ ; (1 < j < JM) (4.60b)

$$^{G}_{6}^{u}_{JM-1,2}^{+c}_{2}^{u}_{JM,2}^{=-G}_{6}^{u}_{JM-1,1}^{+c}_{4}^{u}_{JM,1}^{+c}_{5}^{u}_{JM,1}^{*}; (j=JM)$$
 (4.60c)

c) Üçüncü ve sonraki zaman adımlarında denklem dizisi aşağıdaki şekilde yazılır.

$${}^{G_{5}u_{1,n+1}+G_{6}u_{2,n+1}=G_{7}u_{1,n}-G_{6}u_{2,n}+c_{5}u_{1,n}^{*}; (j=1)}$$
(4.61a)  

$${}^{c_{1}u_{j-1,n+1}+c_{2}u_{j,n+1}+c_{3}u_{j+1,n+1} = {}^{-c_{1}u_{j-1,n}+c_{4}u_{j,n}}$$
(4.61b)  

$${}^{-c_{3}u_{j+1,n}+c_{5}u_{j,n}^{*}; (1 < j < JM)$$
(4.61b)

 $G_{6}^{u}J_{M-1,n+1}^{+c}2^{u}J_{M,n+1} = G_{6}^{u}J_{M-1,n}^{+c}4^{u}J_{M,n}^{+c}5^{u}J_{M,n}^{*}$ ;(j=JM) (4.61c)

Yukarıdaki denklem dizisinden yararlanılarak elde edilen reaktörde kalma süresi dağılımları, Bölüm V'te, bu çalışmada geliştirilen model ve deney sonuçları ile karşılaştırılacaktır.

Hesaplamaları yapmak üzere hazırlanan bilgisayar programı Ek 2 de gösterilmiştir. Matris çözümü TRIDAG adlı alt-program ile yapılmıştır{5}.

IV.4. Sıvı Akış Profillerinin Hesaplanması

Sıvı akış profilleri modelinin geliştirildiği makalede {40} denklem takımının hangi yöntemle çözüldüğü açıklanmamıştır. Bu çalışmada geliştirilen modelde sıvı akış hızlarının veri olarak kullanılabilmesi için "Onda" modelinin denklemleri {(3.24)-(3.29)} boyutsuzlandırılarak denklem (3.52)-(3.56)'da gösterilen şekile dönüştürülmüştür. Bu bölümde denklem (3.52)-(3.56)'nın sonlu farklar yöntemi ile çözümü özetlenecektir. Çözüm, denklem (3.29)'un lineer olmayışı nedeniyle GaussSiedel{60} iterasyonları yolu ile elde edilmiştir.

Denklem (3.52) Crank-Nicolson kapalı şeması ile şu şekilde yazılır.

$$\frac{1}{\Delta z}(F_{i,j+1}-F_{i,j}) = \frac{\lambda}{2} \left[ \frac{1}{2i(\Delta r)^{2}}(F_{i+1,j+1}-F_{i-1,j+1}) + \frac{1}{(\Delta r)^{2}}(F_{i+1,j+1}-2F_{i,j+1}+F_{i-1,j+1}) + \frac{1}{2i(\Delta r)^{2}}(F_{i+1,j}-F_{i-1,j}) + \frac{1}{(\Delta r)^{2}}(F_{i+1,j}-2F_{i,j}+F_{i-1,j}) \right]$$

$$(4.62)$$

Burada F ana dolgu akış hızını; i, radiyal doğrultudaki adım sayısını, j de eksenel doğrultudaki adım sayısını belirtmektedir. Gauss-Seidel iterasyon yöntemini kullanmak için denklem (4.62) nin, i'nin her değeri için yazılıp,  $F_{i,j+1}$ 'e göre çözülmesi gerekir. Sınır şartları için de aynı denklemler yazıldıktan sonra, j adımı için evvelce hesaplanmış olan değerler bu denklemlere ithal edilerek F fonksiyonunun j + l adımındaki ilk yaklaşımı bulunur. Bundan sonra  $F_{i,j}$  ve  $F_{i,j+1}^{(1)}$  değerleri aynı denklemlerde kullanılarak, hesaplanan değerler stabilize olana kadar iterasyonlara devam edilir. Denklem (4.62) den  $F_{i,j+1}$ 'e göre çözerek elde edilen (n+1)' inci iterasyon denklemi şöyledir:

$$F_{i,j+1}^{(n+1)} = \frac{\lambda r}{4(1+\lambda r)} \left[ \frac{2i+1}{1} F_{i+1,j+1}^{(n)} + \frac{2i-1}{1} F_{i-1,j+1}^{(n+1)} + \frac{D_j}{(1+\lambda r)} \right]$$

$$+ \frac{D_j}{(1+\lambda r)}$$
(4.63)

Bu denklemde

$$r = \Delta R / (\Delta z)^2$$
 ve (4.64a)

$$D_{j} = \frac{\lambda r}{4} \left(\frac{2i+1}{i}\right) F_{i+1,j} + (1-\lambda r) F_{i,j} - \frac{\lambda r}{4} \left(\frac{1-2i}{i}\right) F_{i-1,j} \quad (4.64b)$$

olarak tanımlanmıştır. Denklemin sınır şartları, R = 0 ile R = l'de verilmelidir. Radiyal simetri şartı, R= 0 da,

$$\frac{\partial F}{\partial z} \cong 2 \lambda \frac{\partial^2 F}{\partial R^2}$$
(4.65)

eşitliğini gerektirir. Bu denklem (4.62)'ye ithal edilerek F fonksiyonunun ana eksen üzerindeki değeri aşağıda gösterilen şekilde bulunur.

$$F_{1,j+1}^{(n+1)} = \frac{2\lambda r}{1+2\lambda r} F_{2,j+1}^{(n)} + (\frac{1}{1-2\lambda r}) \left[ 2\lambda r F_{2,j} + (1-2\lambda r) F_{1,j} \right]$$

$$(4.66)$$

Ana dolgu sıvı akış hızının kule cidarındaki değerini hesaplıyabilmek için ise denklem (3.55) ve (3. 56)'ın sonlu farklar yöntemi ile yazılması gerekmektedir.

$$\frac{1}{2\Delta r} (F_{IM+1,j+1} - F_{IM-1,j+1}) = -\frac{\gamma}{\lambda} (AF_{IM,j+1}^{*764} - \Omega_{j+1}) \qquad (4.67a)$$

$$\frac{1}{2\Delta r}(F_{IM+1,j}-F_{IM-1,j}) = -\frac{\gamma}{\lambda}(AF_{IM,j}^{.764} - \Omega_{j})$$
(4.67b)

$$\frac{1}{\Delta z} (\Omega_{j+1} - \Omega_{j}) = 2\gamma (AF_{IM,j+1}^{.764} - \Omega_{J+1})$$
(4.68)

Burada IM, radiyal doğrultudaki hesap adımı sayısı i' nin sınırdaki değeridir. A sabiti denklem (3.29)'un boyutsuzlaştırılmasından elde edilen sınır denge katsayısıdır. Denklem (4.67a)'yı  $F_{IM+1,j+1}$ 'ye ve denklem (4.67b)'yi  $F_{IM+1,j}$ 'ye göre çözüp sonuçları denklem (4.63) ye ithal ederek Gauss-Seidel iterasyon yönteminde F fonksiyonunun sınırdaki değerini tanımlayan denklem aşağıdaki şekilde yazılır:

 $F_{\text{IM},j+1}^{(n+1)}+B(\frac{2i+1}{i})(\frac{2\Delta r\gamma A}{\lambda})(F_{\text{IM},j+1}^{(n+1)})^{\bullet 764} = 4BF_{\text{IM}-1,j+1}^{(n+1)}+B(\frac{2i+1}{i})\frac{2\Delta r\gamma \Omega}{\lambda}_{j+1}^{(n)}$ 

+  $\frac{D_j^{(IM)}}{1+\lambda r}$  (4.69)

Burada kullanılan B ve D<sub>J</sub><sup>(IM)</sup> terimleri şöyle tanımlanır.

$$B = \lambda r/4(1 + \lambda r)$$
 (4.70)

$$D_{j}^{(IM)} = (1-\lambda r)F_{IM,j} - \frac{\lambda r}{4} (\frac{2i+1}{i}) (\frac{2\Delta r\gamma A}{\lambda})F_{IM,j}^{.764}$$

+ 
$$\lambda r F_{IM-1,j} + \frac{\lambda r}{2} \left(\frac{2i+1}{i}\right) \frac{\Delta r \gamma}{\lambda} \Omega_{j}$$
 (4.71)

Kule ekseninden cidar doğrultusunda yürüyerek hesaplanan değerlerin sonuncusu duvar akış hızı  $\Omega_{j+1}$ 'dır. Denklem (4.68)'i  $\Omega_{j+1}$  ya göre çözdükten sonra Gauss-Seidel iterasyon yöntemine göre yazarak

$$\Omega_{j+1}^{(n+1)} = \frac{1}{(1+2\gamma\Delta z)} \left[ 2\gamma\Delta z \ A \left( F_{IM,j+1}^{(n+1)} \right) \cdot {}^{764} + \Omega_{j} \right]$$
(4.72)

denklemi elde edilir.

Böylece, F fonksiyonu, kule ekseninde denklem (4.66), i'nin (1 < i < IM) değerlerinde denklem (4.63-4.64), radiyal sınırda denklem (4.69-4.71) ile hesaplanır. Dizinin son denklemi, duvara bitişik sıvı akış hızı  $\Omega_{j+1}$  yı tanımlayan denklem (4.72) dir. İterasyonlar, yarıçap doğrultusundaki sıvı akış hızı profilinin ve duvar akış hızı  $\Omega$ 'ının değerlerini yakınsak hale getirene kadar devam ettirilmiştir.

Damlama yatak reaktörlerinde, cidara bitişik akan sıvı tabakasının kalınlığı ölçümlerine literatürde rastlanmamıştır. Burada, en iyi yaklaşım olarak, duvar tabakası (falling film) absorpsiyon cihazlarından elde edilen sıvı tabakası kalınlığı korelasyonundan faydalanılmıştır{42}.

$$d_{\omega} = \frac{.315 \ \mu^{2/3}}{g^{1/3} \rho_{f}^{2/3}} \left[ .079 \ \text{Re}^{3/4} \right]^{2/3}$$
(4.73)

Bu denklemde, μ, sıvı viskozitesini, g yerçekimi ivmesini; ρ<sub>f</sub> sıvı özgül ağırlığını; Re de Reynolds sayısını belirtmektedir. Burada Reynolds sayısının dolgulu kuleler için geçerli tanımı, duvar boyunca akan sıvının yüzeysel sıvı hızı ile birlikte kullanılacaktır{77}.

$$Re = \frac{D_p}{\mu} \frac{\omega \rho_f}{\pi (2ad_\omega - d_\omega^2)}$$
(4.74)

Reynolds sayısının tanımlanmasında kullanılan etkin dolgu maddesi boyu, D<sub>p</sub>,

$$D_{p} = \frac{6(1-\varepsilon)}{\phi_{s}S}$$
(4.75)

denklemi ile ifade edilir. Bu son ifadede  $\varepsilon$ , kule boşluk oranını;  $\phi_s$ , şekil faktörünü;  $(\frac{s}{1-\varepsilon})$ , dolgu maddesinin spesifik alanını ifade etmektedir{3}.  $\phi_s$  Raschig halkaları için 0.3 değerini alır{78}.

 $\varepsilon$  ve  $\frac{S}{1-\varepsilon}$  sabitlerinin değerleri, kullanılan dolgu boyları ile birlikte Tablo V.l de gösterilmiştir. Kule ekseni boyunca her j hesap adımında, d<sub>w</sub> ve  $\triangle$  denklem (4.73) ve denklem (4.74)'ün iterasyon yöntemi ile çözülmesi yoluyla hesaplanmıştır.

Bu çalışmada geliştirilen modelde veri olarak kullanılan Ω, Δ ve her kesitte F'nin ortalama değerini hesaplamak amacı ile hazırlanan bilgisayar programı, Ek 3'de gösterilmiştir.

IV.5. Reaktörde Kalma Süresi Dağılımlarının Hesaplanmasında Kullanılan Sayısal Veriler

Bu çalışmada geliştirilen model yolu ile reaktörde kalma süresi dağılımlarının hesaplanmasında kullanılan sayısal veriler çeşitli kaynaklardan elde edilmiştir.

Ana dolgunun boyutsuz ortalama sıvı akış hızı F, duvar bölgesi boyutsuz sıvı akış hızı  $\Omega$ ,ve duvar akışı boyutsuz sıvı tabakası kalınlığı  $\Delta$ , Bölüm IV.4 te özetlenen yöntemlerle Ek 3'de gösterilen bilgisayar programı vasıtası ile hesaplanmıştır. Her üç fonksiyonun, eksenel koordinat z'ye bağımlı olarak hesaplanan değerleri sabit hafızada tutularak dağılımların hesaplanmasında kullanılmışlardır. F ve  $\Omega$  birbirlerine F = 1- $\Omega$ denklemiyle bağımlı olduklarından, bu çalışmada yararlanılan altı deneyin akış profilleri sonuçları sadece Ω için gösterilmiştir (Şekil IV.1 ve ŞekilIV.2). Boyutsuz sıvı tabakası kalınlığı ∆'nın değerleri sıfırdan başlıyarak hızla aşağıda gösterilen nihai değerlerine yaklaşmışlardır.

| DENEY<br>NO:      | I         | II                    | III                   | IV                   | ۷                     | VI                    |
|-------------------|-----------|-----------------------|-----------------------|----------------------|-----------------------|-----------------------|
| N1HA1 ∆<br>DEĞER1 | 3.56x10-4 | 5.29x10 <sup>-4</sup> | 6.79x10 <sup>-4</sup> | 2.5×10 <sup>-4</sup> | 3.36x10 <sup>-4</sup> | 4.32x10 <sup>-6</sup> |

Sonlu farklar yöntemlerinden yararlanarak denklem çözümleri hesaplanırken, fiziksel sistemin kaç elemana ayrıldığı ve zaman adımlarının büyüklüğü, çözüme varılmasında büyük önem taşır.  $\Delta\Theta$ 'nın fazla büyük olması çözümün stabilitesini engelliyebileceği gibi, çok küçük olması da hesap sayısının çokluğu nedeniyle, sayıların yuvarlama hatalarının birikmesine yol açabilir. Gene  $\Delta\Theta$ 'nın küçük olması, sonuçları etkilememekle beraber bilgisayarda hesap zamanının gereksiz şekilde uzamasına yol açabilir.

Bu çalışmada stabil çözüme varıldıktan sonra ∆z ve ∆⊖'nın stabiliteyi ve çözüm hassasiyetini bozmayacak mümkün en yüksek değerleri almasına çalışılarak, bilgisayar hesap zamanını sınırlamaya gayret gösterilmiştir. Çözümlerde

 $\Delta z = .0025 \text{ ve } \Delta \Theta = .01$ 

değerleri kullanılmıştır.  $\Delta \Theta$ 'nın on misli küçülmesinin veya  $\Delta z$ 'nin 2.5 kere küçültülmesinin, sonuçları % 0.5



Şekil IV.1 - Cidardan su akışı hızının eksenel uzaklığa bağlı olarak değişmesi.



Şekil IV.2 - Cidardan su akışı hızının eksenel uzaklığa bağlı olarak değişmesi

mertebesinden fazla etkilemediği görülmüştür. Buna karşın hem ∆z ve hem de ∆⊖'nın iki ilâ beş defa büyütülmesinin maksimum noktasının yüksekliğini ve boyutsuz zamanını % l ilâ % 2 civarında değiştirdiği görülmüştür.

Elde edilen eğriler

integralinin bire eşit olup olmadığı kıstası ile değerlendirilmiş, ve hatanın binde 2 ilâ binde 7 arasında değiştiği görülmüştür. Her eğrinin hesaplanması 4 dakika civarında bilgisayar zamanı almıştır. PDE modelinden elde edilen dağılım eğrilerinin hesaplanması da takriben 2 dakika bilgisayar zamanı almıştır. Toplam olarak 350 kadar dağılım eğrisi hesaplanmıştır.

Reaktörde kalma süresi dağılımlarının hesaplanmasındaki diğer önemli bir parametre ¢ dir.

$$\phi = \frac{\beta_{\rm D}}{\beta_{\rm T}} \tag{4.76}$$

Burada  $\beta_D$ , dinamik sıvı tutma oranını;  $\beta_T$  da toplam sıvı tutma oranını belirtmektedir.  $\phi$  parametresinin gerek reaktörde kalma süresi dağılımlarını, ve gerekse de reaktör içindeki kimyasal dönüşmeyi büyük ölçüde etkilediği ötedenberi bilinmektedir{74,55}.  $\phi$  parametresinin, sıvı akış hızları yükseldikçe arttığı, model hesaplamalarında da eğrinin dikleşmesini sağladığı görülmüştür. Bu çalışmada, deneysel reaktörde kalma süresi dağılımları ile birlikte ölçülen{71} kulede sıvı tutma oranlarından yararlanılmış, parametrenin değeri ancak ölçüm hatası seviyesinde düzeltmelerle denklem çözümleri içerisinde kullanılmıştır.

#### BOLOM V

#### SONUÇLARIN DEĞERLENDİRİLMESİ VE TARTIŞILMASI

## V.1. Ölçülen ve Hesaplanan Reaktörde Kalma Süresi Dağılımlarının Karşılaştırması

Teorik olarak bir dağılım eğrisini sadece momentlerinin değerleri ile tamamen tanımlamak mümkündür{17}. Damlama yatak reaktörlerindeki dağılımların değerlendirilmesi de ötedenberi deneysel ve teorik momentlerin karşılaştırılması ile yapılmaktadır{34}. Örneğin PD modelinde, sıfır noktası etrafındaki birinci moment şöyledir:

 $\mu_1 = 1$  (5.1)

Ortalama değer, yani  $\mu_{i}$ , etrafındaki ikinci moment (varyans) de şöyle ifade edilir{69}.

$$\sigma^{2} = \frac{2}{Pe^{2}} (Pe-1+e^{-Pe})$$
 (5.2)

Elde edilen deneysel varyans ile bu denklemi karşılaştırarak Pe sayısı derhal hesaplanabilir.

Dağılım eğrisinin analizini momentlerinden giderek yapmanın bir cazip yönü de bu momentleri elde etmek için sistemi tanımlayan kısmi diferansiyel denklemi (veya denklemleri) çözmeye gerek olmayışıdır. Moment ifadeleri aşağıdaki genel denklemden bulunabilmektedir.

$${}^{\mu}_{k} = (-1)^{k} \lim_{s \to 0} \frac{\partial^{k} \overline{c}}{\partial s^{k}}$$
(5.3)

Burada  $\mu_k$ , dağılımın k mertebeli momentini;  $\overline{c}$ , çıkış konsantrasyonunun Laplace-transformunu; s, transformasyonun kompleks değişkenini ifade eder.

Bu analiz yönteminin çok ciddi sakıncaları vardır. Momentler, dağılım eğrisinin şekline ve maksimum noktasının bulunduğu noktaya yeterli ağırlığı vermemektedir. Ayrıca dağılım eğrisi deneysel olarak ölçülürken, deneyi, ölçme cihazının hassasiyetinin altına düşen konsantrasyonlarda kesmek gerekir. Araştırmacılar bu işlemi genellikle, maksimum konsantrasyon değerinin % l'i civarında yapmaktadırlar{14,53}.

Oysa ki özellikle asimetrik dağılımlarda, eğrinin uzayan kenarı, momentleri ve sıvı tutma oranı ölçümlerini<sup>{</sup>29<sup>}</sup> çok kritik ölçülerde etkiliyebilmektedir. Deneysel ve teorik momentlerin karşılaştırılması ile elde edilen Peclet sayısı, sonradan aynı data ve aynı (PD) modeli ile başka bir sayısal metodla (iki eğri arasında her noktadaki farkın karelerinin toplamının asgariye indirilmesi metoduyla) incelendiğinde öncekinin üç katı büyüklüğünde Pe değerleri bulunabileceği literatürde belirtilmiştir{8}

Bu çalışmada, ölçülen ve hesaplanan eğriler karşılaştırılarak model parametrelerinin değerleri bulunmuştur. Bu karşılaştırmada maksimum noktalarının birbirlerine mümkün olduğu kadar yaklaştırılmaları objektif ölçü olarak kullanılmıştır. Yukarıda bahsedilen, fark karelerinin toplamının minimum olması kıstası, daha hassas olmakla beraber, önerilen modelin bu aşamasında, büyük bilgisayar zamanı gerektiren bu metoda başvurma gereği hissedilmemiştir. Karşılaştırmalarda "en iyi" eğrinin bulunması beş ila otuz denemeyi gerektirmiştir.

Hesaplanan reaktörde kalma süresi dağılım eğrileri ile karsılastırmada kullanılabilecek durumda olan data sasılacak kadar azdır. Basılmıs arastırmalar arasında, konsantrasyona karşı zaman eğrilerini tablo halinde verenlerine rastlanmamıştır. Pek çok araştırmada deney sonuçlarının niteliğini göstermek amacıyla kullanılan grafikler oldukça küçük ve pek az hassas bulunmuştur{29,53,72,74}. Bu konuda yurdumuzda yapılmış olan iki deneysel araştırmada, Eroğlu{14} gözenekli bir dolgu kullandığı için, Cansever de{79} ölçüm sisteminin hassas olmayışı yüzünden, burada kullanılabilir nitelikte data üretememişlerdir. Bu çalışmada hesaplanan eğriler, van Swaaij'in çalışmasında{71} verdiği deneysel eğrilerle karşılaştırılmıştır. Bu çalışmada Raschig halkaları ile doldurulmuş kulelerden su geçirilmiş, sodyum klorür çözeltileri izleyici vazifesi görmüş ve izleyici konsantrasyonları özel elektrodlardan faydalanılarak iletkenlik köprüsü ile sürekli olarak ölçülmüş-'tür. Kullanılan deneylerin şartları Tablo V.1'de gösterilmistir.

| DENEY<br>NO. | KULE DOLGU<br>YÜKSEKLİĞİ<br>(m) | NOMİNAL<br>DOLGU BOYU<br>(cm) | KULE BOŞLUK<br>ORANI<br>ε | <u>S</u><br>1-ε<br>m <sup>-1</sup> | SIVI AKIŞ<br>MİKTARI, L<br>kg/m <sup>2</sup> -s |
|--------------|---------------------------------|-------------------------------|---------------------------|------------------------------------|-------------------------------------------------|
| I            | 1.567                           | 1.0                           | .69                       | 1360                               | 2.3                                             |
| II           | 11                              | 11                            | 18                        | 11                                 | 7.9                                             |
| III          | ·                               | 88                            | li                        | 11                                 | 17.5                                            |
| IV           | 1.63                            | 0.64                          | .70                       | 2818                               | 2                                               |
| ٧            | li                              | li                            | ()                        | 11                                 | 5                                               |
| VI           | 11                              | 11                            | 11                        | 11                                 | 11.1                                            |

Tablo V.1. Karşılaştırmada Kullanılan Deneyler;

KULE ÇAPI = 10 cm, ÇALIŞMA TEMPERATÜRÜ = 20°C.

Reaktörde kalma süresi dağılımlarının hesaplanmasında veri olarak kullanılan sıvı akış hızları "Onda" modelininden hesaplanmıştır. Buna gerekli ek bilgiler şöyledir:

20<sup>°</sup>C'da suyun viskozitesi = 1.0019x10<sup>-3</sup> kg/m-san{3} 20<sup>°</sup>C'da suyun yüzey gerilimi = 72.75 din/cm{39} 20<sup>°</sup>C da suyun özgül ağırlığı = 998.0345 kg/m<sup>3</sup>{26} Raschig halkalarının şekil katsayısı = 0.3{78}

Sekil V.l.'den V.6.'ya kadar olan grafiklerde, Tablo I ile tanımlanan deneylerin sonuçları, PDE modeli ve bu çalışmada geliştirilen model ile karsılastırılmıştır. van Swaaij $\{71\}$  deney sonuçlarını  $E(\Theta)$ 'nın  $\Theta$  ile değişmesi şekli yerine  $\{E(\Theta)/\mu_1\}$  ifadesinin  $\Theta$  ile değişmesi şeklinde vermiştir. Burada deney ile karşılaştırma grafikleri de aynı şekilde sunulmuştur. Grafiklerden görüldüğü gibi bu çalışmada önerilen model, deneysel olarak gözlenen maksimum noktalarına erismekte PDE modeline göre daha tatminkårdır. En düşük akış hızlarında deneysel maksimuma erişmekte güçlük çekilmiştir. Deneysel eğrilerin etekleri ile önerilen modelin etekleri daima üst üste binmemistir; bu olay düsük akıs hızlarında daha iyi gözlenebilmektedir. PDE modelinin deneysel maksimum noktasına erişebilmesi daha güç olmuştur. PDE modelini geliştiren çalışmanın devamı olarak yayınlanan bir makalede{74}

$$F(N,\phi) = \Sigma \left[ E(\Theta_{i}, N,\phi) - E^{*}(\Theta_{i}) \right]^{2}$$

amaç fonksiyonunun en küçük değeri alacağı  $E(\Theta_i, N, \phi)$ 







Şekil X.2 - Ölçülen ve hesaplanan kalma süresi dağılımlarının karşılaştırılması



Şekil ¥.3 - Ölçülen ve hesaplanan kalma süresi dağılımlarının karşılaştırılması



Şekil ¥.4 - Ölçülen ve hesaplanan kalma süresi dağılımlarının karşılıştırılması







<u>E (8)</u> J<sup>µ</sup>1

Şekil I.6 - Ölçülen ve hesaplanan kalma süresi dağılımlarının karşılaştırılması

fonksiyonun aranmasına dayanan parametre optimizasyonuna başvurulmuştur. Dörtköşe bir kulede 22x22 mm boylu dolgular için oldukça elverişli sonuçlar elde edilmiştir. Bu çalışmada ele alınan yuvarlak kule deneylerinden sadece biri, (Deney I) için verilen parametre değerleri ise (Pe=72; N=2.12;  $\phi$ =.65) bu çalışma içinde hazırlanan PDE modeli programı ile hesaplandığında kötü sonuç vermiştir. Bu çalışma çerçevesinde hazırlanan PDE programı van Swaaij'in doktora tezindeki{71} şekil V.2. ile uyustuğu için hatanın makalenin basımında ortaya çıkmış olabileceğini tahmin etmekten öteye gidilemez. Peclet sayısının 22, 32, 42, 52, 62 ve 72 değerleri denenerek deneysel eğriye en yakın olanı Şekil V.l. de gösterilmiştir. Ortadaki hatayı vurgulamak için bu çalışma içinde kullanılan yöntemlerle daha uyumlu bir eğri elde etme cihetine bu deney için gidilmemiştir.

Sonuç olarak, düşük akış hızlarında bu çalışmada önerilen modelin PDE modeline kıyasla deneysel dağılım eğrilerini daha iyi takibettiği, yüksek akış hızlarında ise her iki modelin deney sonuçlarına çok yaklaştığı görülmektedir. Gene yüksek akış hızlarında PD modelinin de deney sonuçlarına yaklaştığı, tüm araştırmacılar tarafından kabul edilmektedir. Bu gözlemlerin fiziksel açıklamasına girmeden önce üstünde durulması gereken bir konu daha vardır.

Çalışmamızda önerilen model, PDE modelinin üç, PD modelinin de bir parametresine karşın, dört parametrelidir. Fiziksel anlamı olsun olmasın, parametre sayısı arttırıldıkça, eldeki modelin sayısal esnekliğinin de artacağı açıktır. Bu durumda çalışmamızın ve içerdiği  $R_N$  parametresinin gerçekten bir katkı niteliğinde olup

olmadığının araştırılması gerekir. Şöyle ki, R<sub>N</sub> parametresi, kule içinde yer aldığı gözlenen olayların bir veya birkaçını açıklıyabilecek ve bunlara göreli veya mutlak bir değer bulmaya yarar nitelikte değil ise, çalışmamızın tamamı soyut bir problem çözümü aşamasında takılır. Eğer yukarıda bahsi geçen niteliklere sahip görülebilirse, modelin kule içinde yer aldığı gözlenen olayların incelenmesi yolunda ileriye doğru atılmış bir adım olduğu ileri sürülebilir.

### V.2. Önerilen Modelin Yapısal Özellikleri

Denklem (3.46) da  $\left[ \frac{u}{\phi} \quad \frac{d\Omega}{dz} \right]$  terimi duvar akışı bölgesine konveksiyon ile  $\begin{bmatrix} R_N \\ \phi \end{bmatrix}$  terimi de difüzyon mekanizması ile iki bölge arasındaki izleyici kütle transferini tayin eden terimler olarak tanımlanmıştır. Kule içinde izleyici moleküllerinin geçirdiği aşamaları incelerken, söyle bir ikilemle karşılaşırız. Duvardan aşağıya süzülen sıvı miktarı toplamın yarısını bulabilmekte, hatta aşabilmektedir. Buna karşılık duvar akışı bölgesini hiç hesaba katmayan bir reaktörde kalma süresi dağılım modeli, örneğin PDE modeli kullanılarak, deney sonuçlarına çok yakın dağılımlar hesaplanabilmektedir. Bu ikilemin çözümüne ancak iki bölge arasında oldukca yüksek kütle transferi hızları bulunması durumunda varılabilir. Diğer taraftan iki bölge arasındaki kütle transferi, kulenin matematik modelinde sıfıra indirgenirse (R<sub>N</sub> = 0) duvar akış bölgesinden izleyicinin (veya reaksiyon varsa reaksiyon maddelerinin) yan geçiş (by-pass) yaparak dolgu maddesiyle (veya katalizörle) temas etmeden kuleyi terketmeleri beklenir. Şöyle ki izleyicinin (veya reaksiyon maddesinin) bir kismi, kuleye girdikten bir süre sonra duvar akış bölgesine konveksiyon ile taşınır; tekrar ana dolgu akış bölgesine geçe-

memesi halinde duvar akışı bölgesinden aşağıya süzülür ve ana dolgu ile pek az temas etmiş olarak kuleyi terkeder. Himmelblau ve Bischoff{20} bu gibi hallerde Şekil V.7. de gösterilen kalitatif eğri şeklinde reaktörde kalma süresi dağılımları beklenebileceğini ileri sürmüşlerdir. Bu hal R<sub>N</sub> parametresinin sıfır veya küçük



Şekil V.7. Proses Kabında Yan-Geçmenin Teşhisi (20)

değerlere sahip olması halinde ortaya çıkar ise R<sub>N</sub> parametresinin kulenin yapısal bir özelliğini yansıttığı ileri sürülebilir. Şekil V.8. R<sub>N</sub> parametresinin reaktörde kalma süresi dağılımlarını bu doğrultuda etkilediğini göstermektedir. Diğer bütün parametrelerin değerleri sabit tutulup, R<sub>N</sub>'nin değeri sıfırdan deney II' de bulunan değerine doğru ilerletildiğinde küçük değerlerde geniş çapta yan geçiş izlenmekte, R<sub>N</sub> gerçekçi değerine yaklaştığında ise eğrinin bu özelliği ortadan kaybolmaktadır.





Esasında,  $\frac{1}{\phi} \frac{d\Omega}{dz}$  terimi duvar akışı bölgesine <u>net</u> konveksiyonu veren terimdir. Yani dolgu (veya katalizör) üzerinden bir miktar sıvı yuvarlanarak ana dolgu akışı bölgesine geçerken bir miktar sıvı duvar akışı bölgesine geçmektedir. Giden ve gelen sıvı elemanlarının da içlerindeki izleyiciyi geçtikleri akış bölgesine taşıyacakları açıktır. Bu itibarla (R<sub>N</sub>/ $\phi$ )(u-v) terimine moleküler difüzyonla geçişten ziyade,

 $D_e \frac{\partial^2 u}{\partial z^2}$  teriminde olduğu gibi <u>net</u> konveksiyonun ötesinde sıvı elemanlarının hacım olarak eşit ve karşıt istikametlerdeki hareketlerinde taşıdıkları izleyici miktarlarını tayin eden terim gözü ile bakmak gerekir. Bu sav doğru ise iki akış bölgesi arasındaki kütle transferi katsayısının;

- a) Toplam akış hızı arttıkça, artan konvektif cereyanlar ve sıvının daha süratli hareketi yüzünden artması
- b) Dolgu maddesi boyu ufaldıkça sıvı elemanlarının daha dolambaçlı yollar seçmek zorunda kalması nedeniyle, duvar akışı bölgesi ile ana dolgu akışı bölgesi arasında daha sık ve kolay temasın mümkün olması gerekir. Bu ikinci halde de dolgu maddesi boyu ufaldıkça iki bölge arasındaki kütle transferi katsayısının yükselmesi beklenir.

R<sub>N</sub>'den geriye doğru giderek hesaplanan kütle transferi katsayısı, k<sub>w</sub>, değerleri Tablo V.2. ve Şekil V.9. da görülmüştür. Deney sayısının sınırlı olması korelasyon hazırlanmasına veya doğruların hassasiyetle



Şekil V.9 - Duvar akışı ile ana dolgu akışı bölgeleri arasındaki kütle transferi katsayısının sıvı akış hızına göre değişmesi.

TABLO V.2. k 'nın akış hızına göre değişmesi

| DENEY<br>NO. | Sıvı Akış<br>Miktarı<br>L <sub>f</sub><br>Kg/m <sup>2</sup> -san | R <sub>N</sub> | k <sub>ω</sub><br>cm/san |
|--------------|------------------------------------------------------------------|----------------|--------------------------|
| I            | 2.3                                                              | 51             | <b>.</b> 375             |
| II           | 7.9                                                              | 44             | 1.11                     |
| III          | 17.5                                                             | 33             | 1.85                     |
| IV           | 2                                                                | 190            | 1.17                     |
| V            | 5                                                                | 102            | 1.57                     |
| VI           | 11.1                                                             | 100            | 3.41                     |

çizilmesine olanak vermemektedir. Bununla beraber hesaplanan k $_{\omega}$  değerlerinin iki akış bölgesi arasındaki kütle transferinin karakterini doğru yönde yansıttığı görülmektedir.

Bulunan k değerlerini damlama yatak reaktörlerinde ölçülen diğer kütle transferi katsayıları ile kıyaslamak mümkündür. Örneğin sıvı ile katalizör arasındaki kütle transferi katsayıları 1/8" katalizör dolgulu bir kulede  $3.x10^{-4}$  cm/sn'yi aşmamaktadır{66}. Gaz-sıvı fazları arasındaki kütle transferi katsayısı daha da küçüktür. 1977'de yayınlanan bir korelasyon ise{12} sıvı-katalizör arası kütle transferi katsayısının yukarıda verilen değerin en çok on katı kadar büyüyebileceğini göstermektedir. Şekil V.9. da görüldüğü gibi k bundan çok daha büyük değerler almaktadır. Bu nedenle  $k_{\omega}$ 'nin sadece difüzyon mekanizmaları ile açıklanabilecek bir kütle transferi olayını yansıtmadığı görülmek\_ tedir. Böylece,  $k_{\omega}$ 'nin iki bölge arasındaki karşılıklı konveksiyon akımlarının ortaya çıkardığı net kütle aktarımının karakteristik katsayısı olduğu savı doğruluk kazanmaktadır.

k, ve dolayısıyla boyutsuz kütle aktarımı katsayısı R<sub>N</sub>'nin damlama yatak reaktörlerinde görülen diğer kütle transferi katsayılarından çok daha büyük değerler alması pratikte şu anlamı taşır. Kuleye giren reaksiyon maddelerinin duvar akışı bölgesine geçen kısmı bu bölgede kaldığı sürece katalizör ile temas olanağını bulamaz. Eğer duvar akış bölgesine giren reaksiyon maddelerinin buradan çıkması için herhangi bir mekanizma mevcut değil ise (örneğin  $R_N = 0$ ), reaksiyon maddesi kule dolgusunu yan geçme (by-pass) ile geride bırakıp reaksiyona girmeden kuleyi terkedebilir. Elimizdeki kule dinamiği modeli R<sub>N</sub> parametresinin küçük değerler alması halinde yan geçme olayını izleme olanağını vermektedir. Deney sonuçları model ile karşılaştırıldığında ise R<sub>N</sub><sup>\*</sup> nin oldukça yüksek değerler aldığını, ve kule yapısının duvar akış bölgesine geçen reaksiyon maddelerinin tekrar dolguya dönmesi için uygun olduğunu göstermektedir. Bu durumda duvar akışı bölgesinin varlığının, reaktör içindeki dönüşmeleri çalışmanın başlangıcında beklenebilecekten çok daha az etkilemesi gerekir.

Yapılan hesaplar ikinci beklentiyi doğrular niteliktedir. Hatırlanacağı gibi denklem (3.46) bir reaksiyon terimini içermektedir. Reaktörde kalma süresi dağılımı hesaplarında reaksiyon olmadığı için bu terim ( $R_x=0$ ) kabul edilmişti. Deney II ve deney V'in koşulla-

rı ve bulunan Pe, N,  $\phi$  ve R<sub>N</sub> değerleri kullanılarak R<sub>v</sub>' in değişik değerlerinde PDE modeli ile bu çalışmada önerilen model kullanılarak zerkedilen darbedeki izleyicinin, reaksiyona girisi halinde, elde edilecek olan dönüşmeleri hesaplanmıştır. Sonuçlar Tablo V.3 te gösterilmistir. İki model arasında dönüsme farkları % l'i geçmemektedir. PDE modelinde duvar akışının hic hesaba alınmadığı göz önünde tutulursa, aradaki farkın küçük olması ancak duvar akışı bölgesi ile ana dolgu bölgesi arasında kütle transferinin çok yüksek olması ile açıklanabilir. Hatırlanması gereken diğer bir husus, mikro seviyede karışmanın birinci mertebeden reaksiyonlarda dönüşmeyi etkilemediğidir. Birden düşük reaksiyon mertebelerinde dönüsme mikro-karışma ile hızla artar; birden yüksek reaksiyon mertebelerinde hızla düşer{11}. Bu itibarla ikinci mertebeden reaksiyonlar olduğu ileri sürülen kükürt ve azot giderme reaksiyonlarında{41} duvar akısı tesekkül etmesinin dönüsmeleri Tablo V.3 'de görülen farklardan daha fazla etkilemesi beklenir.

TABLO V.3. İki modelden elde edilen birinci mertebeden reaksiyon dönüşmelerinin karşılaştırması.

| R <sub>X</sub> | PDE MODELÎ | BU ÇALIŞMA | PDE MODEL1 | BU ÇALIŞMA |
|----------------|------------|------------|------------|------------|
|                | % DữNÜŞME  | % Donoşme  | % D0N0\$ME | % Dönüşme  |
| .05            | .037       | .031       | .037       | .031       |
| .10            | .072       | .066       | .072       | .067       |
| .25            | .171       | .164       | .171       | .167       |
| .50            | .312       | .303       | .313       | .309       |
| 1.00           | .525       | .515       | .527       | .525       |
| 3.00           | .889       | .881       | .893       | .892       |
| 5.00           | .973       | .969       | .975       | .975       |
| 10.00          | .999       | .998       | .999       | .999       |

### V.3. Sonuçların Toplu Değerlendirmesi

Geliştirilen modelden hesaplanan reaktörde kalma süresi dağılımları genel hatları ile deney sonuçlarıyla uyuşmaktadır. Düşük akış hızlarında bu çalışmada geliştirilen modelin PDE modelinden daha iyi sonuçlar verdiği, yüksek akış hızlarında da her iki modelin de deney sonuçlarına çok yaklaştığı Şekil V.l-Şekil V.6. da görülmektedir. R<sub>N</sub> parametresinin değerlerinin artan kütle transferi hızları doğrultusunda büyüdüğü de tesbit edilmiştir. Akış hızları yükseldikçe ana dolgu bölgesinin duvar akışı bölgesi ve statik sıvı gözleri ile arasındaki kütle transferi hızlarının artması nedeniyle bu iki bölgenin varlığının dağılmaya katkısı azalmaktadır. Sıvı akış hizlarının yüksek olması halinde bu çalışmada geliştirilen model ile PD ve PDE modelleri arasındaki farklar böylece küçülmektedir. Sıvı akış hızlarının artmasıyla  $R_N$  ve N parametrelerinin değerlerinin yükselmesi bu açıklamayı doğrular niteliktedir. Her iki parametrenin değerlerindeki artış, akış şartlarına ve dolgu maddesinin boyutlarına bağlı olan bir noktadan sonra dağılım eğrisinin şeklini etkilememektedir. R<sub>N</sub> parametresinin yüksek değerleri için Şekil II.8'de görülen bu özellik N parametresi için Villermaux ve van Swaaij{74} tarafından gösterilmiştir. Tablo V.1'de görüldüğü gibi 0.64 cm boyutlu dolgu maddesi için her iki parametre, R<sub>N</sub> ve N, 5 kg/m<sup>2</sup>-san akış hızı civarında doyma noktasına gelmektedir. Böylece, yüksek akış hızlarında R<sub>N</sub> ve N parametrelerinin doygunluk noktalarına yaklaşmalarıyla, PD ve PDE modeli ile bu çalışmada geliştirilen modelin birbirine yakın sonuçlar vermesi aynı deneysel koşullarda ortaya çıkmaktadır.
Tablo V.4'de bu çalışmada geliştirilen modelin deney sonuçları ile karşılaştırılmasından elde edilen parametre değerleri özetlenmiştir.

| DENEY<br>NO. | DOLGU<br>MADDESİ<br>NOMİNAL<br>BOYU, cm | AKIŞ<br>MİKTARI<br>kg/m <sup>2</sup> -sn | Ре  | N    | φ    | R <sub>N</sub> |
|--------------|-----------------------------------------|------------------------------------------|-----|------|------|----------------|
| I            | 1.                                      | 2.3                                      | 44  | 2.74 | .65  | 51             |
| II           | ti .                                    | 7.9                                      | 77  | 3.6  | .74  | 44             |
| III          | 11                                      | 17.5                                     | 176 | 4.9  | . 82 | 33             |
| I۷           | 0.64                                    | 2                                        | 195 | 4.5  | .67  | 190            |
| V            | 11                                      | 5                                        | 235 | 6    | .753 | 102            |
| VI           | 11                                      | 11.1                                     | 285 | 6    | .83  | 100            |

TABLO V.<sup>4</sup>. Elde Edilen Parametre Değerleri

Dolgu maddesi boyu küçüldükçe veya akış hızı büyüdükçe  $R_N$  ve N parametrelerinde izlenen değişmeler burada topluca görülmektedir. Gene dolgu maddesi boyu küçüldükçe ve sıvı akış hızları arttıkça eksenel dağılmanın, konveksiyona nazaran öneminin azaldığı Peclet sayısındaki artmalardan izlenebilmektedir. Hesaplamalarda  $\phi$  parametresinin değerini tayin ederken van Swaaij' nin{71} verdiği deneysel değerlere sadık kalınmıştır.

Geliştirilen modelin parametrelerinin kendilerine atfedilen fiziksel olayların doğrultusunda değerler aldıkları görülmektedir. Bunun ötesinde hem denklemlerin indirgenmesiyle hem de deneyle karşılaştırmalarda görüldüğü gibi, evvelce geliştirilmiş olan PD ve PDE modelleri, geliştirilen modelin özel ve basitleştirilmiş halleri olarak ortaya çıkmaktadır. R<sub>N</sub> parametresinin doymamış olduğu akış hızlarında, Şekil V.4. gibi, bu çalışmada geliştirilen model diğer modellere göre deneysel eğrilere daha yakın sonuçlar verebilmektedir. R<sub>N</sub> parametresinin sıfıra yaklaştığı teorik limitte de yan-geçiş olayının meydana gelebileceği bu modelde izlenebilmektedir.

## BOLOM VI

## DÜŞÜNCELER VE TAVSİYELER

Dolgulu kulelerde gözlenen duvar akışı olayını da içine alan bir damlama yatak reaktörü modeli geliştirilmiştir. Bu modeli kullanarak gözeneksiz dolgulu, isotermal bir reaktör için hesaplanan kalma süresi dağılımları, düşük akış hızlarında şimdiye kadar geliştirilmiş modellere göre deneysel eğrilere daha yakın sonuçlar elde edilmesini sağlamıştır. Yüksek akış hızlarında, geliştirilen model daha sade modellerle birlikte deney sonuçlarına çok yaklaşan eğriler vermiştir. Model ve deney sonuçlarının karşılaştırılmasından elde edilen parametrelerin, fiziksel tanımlarından beklenen yönde büyüdüğü görülmüştür.

Geliştirilen modelin denklemlerinden duvar akışı bölgesinin kaldırılması halinde, PDE modeline; statik sıvı gözlerinin de kaldırılması halinde PDE modeline indirgenebileceği gösterilmiştir. Ayrıca duvar akışı bölgesi ile ana dolgu akış bölgesi arasında ve konsantrasyon itici gücü doğrultusunda kütle transferinin azalması halinde ortaya çıkması gereken yan-geçiş olayının da geliştirilen model aracılığıyla izlenebileceği görülmüştür.

Zerkedilen izleyicinin birinci mertebeden bir reaksiyonla kaybolmasında meydana gelecek dönüşmeler, geliştirilen model de PDE modeli kullanılarak hesaplanmıştır. İki model ile bulunan değerler arasındaki fark Tablo V.2. de görülebileceği gibi küçüktür. İki model arasındaki farkın küçüklüğünün nedeni, birinci mertebeden reaksiyonlarda dönüşmenin mikro-karışma olayından etkilenmeyişidir. Geliştirilen model yolu ile hesaplanan dönüşmelerin birden daha yüksek mertebeli reaksiyonlarda PDE modeline göre daha küçük, birden küçük reaksiyon mertebelerinde daha büyük olması beklenir{11}.

Damlama yatak reaktörlerinde gaz fazın ters-akım olarak geçmesi hallerinde dahi, taşma noktasına yaklaşılana kadar, sıvı akış profillerinin gaz akımından etkilenmesinin ihmal edilebilir seviyede olduğu görülmektedir. {Onda (1973); Eroğlu (1973)}. Bu çalışmada geliştirilen modelin, gaz ve sıvının geniş bir akış hızı alanında da kullanılabilmesi gerekmektedir.

İleride yapılacak çalışmalarda, aşağıda belirtilen hususların incelenmesinde yarar olacaktır:

> Modeli tanımlayan denklem takımı, kararlı-hal ve sabit reaksiyon maddesi konsantrasyonu sınır şartı,

$$c_0 = c(0) - \frac{1}{Pe} \frac{\partial c(0)}{\partial x}$$
,

ile ve değişken reaksiyon mertebesi ile çözülmelidir. Bu denklem takımı lineer olmıyan bir reaksiyon terimi taşıyacaktır. Gene sonlu farklar metodu ve Gauss-Siedel iterasyon yöntemi ile sonuca gitmek mümkün olacaktır.

Bu çözüm özellikle değişik araştırmacıların birinci veya ikinci mertebeden olduğunu ileri sürdükleri azot ve kükürt giderme reaksiyonlarında{36,41,76} reaksiyon hızını diğer etkenlerden ayırmakta kullanılabilecektir.

2. Geliştirilen modele dolgu maddesinin, yani katalizörün gözenekli olması halini de katmak gerekir. Daha evvel de değinildiği gibi, aynı koşullar altında çalıştırılan kulede gözenekli ve gözeneksiz dolgu maddeleri kullanarak ölçülen dağılım eğrilerinden yararlanarak, dönüşmeyi doğrudan doğruya hesaplıyabilmek için gerekli matematik metodlar kısmen geliştirilmiştir{58,16}. Haynes{19} sadece gazların geçtiği sabit yatak reaktöründe mikro ve makro gözenekli bir katalizör için kalma sürelerini bazı asemtotik haller için analitik olarak elde edebilmiştir. Ancak lineerleştirilmiş bu denklem takımının ve dolayısiyle damlama yatak reaktörünün gözenekli dolgu maddesi ile doldurulmuş modeli için kurulacak denklem takımının klasik sonlu farklar metodlarıyla çözülebileceği görülmektedir.

3. Geliştirilen modelin kullanım alanını genişletmek amacı ile sıvı akış profillerinin hesaplanmasında kullanılan parametrelerin değişik viskozite, yüzey gerilimi, dolgu maddesi boyu ve cinsi ile değişik kule çapları için deneysel olarak ölçülerek genelleştirilmiş korelasyonlar haline dönüştürülmesi gerekmektedir.

4. Ölçülen reaktörde kalma süresi dağılımları, literatürde genellikle hesaplanan parametreler yolu ile açıklanmaktadır. Geliştirilen modelin daha geniş bir deney dizisi ile karşılaştırılabilmesi için, hem gözenekli hem de gözeneksiz dolgu maddesi ile doldurulmuş kulelerde ve değişik viskozitesi olan sıvılarla reaktörde kalma süresi dağılımlarının ölçülmesi gereklidir.

5. Hesaplanan reaktör dönüşmelerini ölçülen değerlerle karşılaştırarak, dizayn denklemlerinin reaksiyon terimi ile reaktör içinde gözlenen diğer etkenler arasındaki ilişkiyi doğru olarak yansıtabilirliği araştırılmalıdır. Yayınlanmış araştırmaların birçoğunda<sup>{4</sup>} bu noktada belirsizlik olduğu, ölçülen reaksiyon hızı sabitinin sıvı akış hızı ile değişmesinden görülmektedir. Deneysel dönüşmeleri ölçmek üzere yüksek basınçlarda da çalışabilecek bir hidrojenle kükürt giderme reaktörü hazırlanmaktadır.

6. Damlama yatak reaktörünün isotermal koşullar altında çalışması hakkında toplanan bu bilgilerin adiyabatik reaktörün modellenmesinde kullanılması yararlı olacaktır. Hesaba katılması gereken radiyal temperatür farklarının sıvı viskozitesine etkisi nedeniyle lineer olmıyan bir denklem takımı elde edilecektir. Denklemlerin çözümü için "ortogonal kollokasiyon" metodları kullanılması gerekmektedir{64,73,15}.

# BÖLÖM VII

### ÖZET VE SONUÇLAR

# VIL1. Özet

Damlama yatak reaktörlerinde elde edilen dönüşmeler, reaksiyon maddelerinin kule içinde geçirdiği aşamalardan ve sıvı akış profillerinden önemli ölçüde etkilenmektedir. Bu çalışmada, reaksiyon maddelerinin kule içindeki hareket ve dağılmalarını etkileyen hususları incelemek amacı ile matematiksel bir damlama yatak reaktörü modeli geliştirilmiştir. Reaksiyon maddelerinin hareket ve dağılmalarını etkileyen ana etkenler aşağıda belirtilmiştir.

- a) Reaktör ana ekseni doğrultusundaki dağılma,
- b) Dolgu içindeki statik sıvı gözleri ile ana dolgu akış bölgesi arasındaki kütle transferi,
- c) Kulenin statik ve dinamik sıvı tutma oranla rı ve bu iki değerin birbirine oranı,
- d) Sıvı fazın önemli bir kısmının reaktör cidarından aşağıya süzülmesi,
- e) Cidara bitişik olarak akan sıvı ile ana dolgu akış bölgesi arasında konsantrasyon itici gücü doğrultusunda kütle transferi.

Geliştirilen modelin değerlendirilmesi için reaktörde kalma süresi dağılımları hesaplanmış ve bunlar hem deney sonuçlarından, ve, hem de diğer modellerden elde edilen eğrilerle karşılaştırılmıştır. Sıvı akış hızları evvelce yayınlanmış{40} bir denklem takımının çözümü ile elde edilmiş ve bunlar geliştirilen modelde veri olarak kullanılmıştır. Geliştirilen modelin, duvar akışı ihmal edildiği takdirde evvelce önerilen modellere indirgenebileceği görülmüş ve duvar akışının ihmal edilmesi halinde de denklemler çözülerek karşılaştırma yoluna gidilmiştir.

Denklem takımları sonlu farklar metodları kullanılarak çözülmüştür. Hesaplamalarda Boğaziçi Üniversitesi Elektronik Hesap Merkezindeki UNIVAC 1106 bilgisayarından yararlanılmıştır.

VII.2. Sonuçlar

Bu çalışmada elde edilen sonuçlar aşağıdaki şekilde özetlenebilir:

 Düşük sıvı akış hızlarında bu çalışmada geliştirilen damlama yatak reaktörü modeli evvelce önerilmiş modellere göre, deney sonucu elde edilen reaktörde kalma süresi dağılımı eğrilerine daha yakın sonuçlara varılmasını sağlamıştır. Sıvı akış hızları yükseldikçe bütün modellerin deney sonuçlarına çok yaklaştığı görülmektedir.

2. Geliştirilen model, evvelce önerilmiş modellerde ihmal edilmiş olan kule cidarına bitişik sıvı akışı bölgesinin özelliklerinin incelenmesini sağlamaktadır. Duvar akışı bölgesi ile ana dolgu akış bölgesi arasında kütle transferinin;

- a) Ana dolgu bölgesinden duvar bölgesine akış net konveksiyon yoluyla izleyici (yahut reaksiyon maddesi) iletimi, ve,
- b) İki bölge arasındaki konsantrasyon itici gücü doğrultusundaki kütle iletimi,

mekanizmalarından ileri geldiği görülmektedir. Açıklanan ikinci mekanizma ile kütle transferi hızının, reaktördeki difüzyon kökenli kütle transferi hızlarından  $10^3$  mertebesinde daha büyük olduğu tesbit edilmiştir. Bu husus k<sub>w</sub> katsayısı ile tanımlanan ikinci kütle transferi mekanizmasının, <u>karşılıklı konveksiyon</u> akımlarının ortaya çıkardığı net kütle transferi olduğunu göstermektedir. k<sub>w</sub> katsayısının akış hızının yükselmesi ve dolgu boyunun küçülmesi ile artması bu bulguyu doğrular niteliktedir.

3. Duvar akışı bölgesine giren izleyicinin (veya reaksiyon maddelerinin) buradan tekrar çıkabilmesi için herhangi bir mekanizmanın mevcut olmaması halinde, izleyicinin (veya reaksiyon maddelerinin) kule dolgusunu yan-geçme ile geride bırakarak reaktörü terkedebilmesi gerekir. Bu çalışmada geliştirilen damlama yatak reaktörü modeli, R<sub>N</sub> parametresinin küçük değerler alması halinde bu yan geçme olayını izleme olanağını vermektedir. Şekil V.8 de görüldüğü gibi R<sub>N</sub>, deneyle karşılaştırarak bulunan değerlere doğru büyüdüğünde yan-geçme olayının teşhisine yarıyan ikinci maksimum ortadan kalkmaktadır. Yan geçme olayını takibedebilmek olanağı, evvelce önerilmiş damlama yatak reaktörü modellerinde bulunmamaktadır. 4. İki bölge arasında kütle transferi hızlarının

yüksek olması nedeniyle birinci mertebeden reaksiyonlarda, dönüşme hesaplarında duvar akışının ihmalinin sadece % l civarında bir hataya yol açtığı hesaplanmıştır. Mikro-karışma olayının dönüşmeyi sadece birinci mertebeden reaksiyonlarda etkilemediği bilinmektedir. Bu itibarla duvar akışının ihmal edilmesinin başka mertebeden reaksiyonların incelenmesinde daha büyük hatalara yol açması beklenir.



| UN+C/RN | RIFAT1       | •111-14-005,TRACEY•7,100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATAIL   | TPF5,        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TA T7 R | L70-5 0      | 9/26-17:01:36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1.      | ∆ASG         | AX TRB1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.      | ∆ASG         | WAX TRACE.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3.      | ∆USE         | 19•TRB1•                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4.      | <b>∆F0</b> R | NIN SWAIN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5.      | C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6.      | С            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.      | С            | BU PROGRAM BU CALISMADA GELISTIRILEN MODEL VASITASIYLA DAMLAMA YATAK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 8.      | С            | REAKTORLERINDE KALMA SURESI DAGILIMLARINI HESAPLAMAKTADIR. EK-3 TE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 9.      | C            | GOSTERILEN PROGRAM YOLU ILE URETILEN SIVI AKIS PROFILLERI DISK UNITESINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 10.     | С            | YUKLENMEKTE VE BU PROGRAMDA VERI OLARAK KULLANILMAK UZERE HESAPLAMALAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 11.     | C ·          | ESNASINDA DISKTEN OKUNMAKTADIR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 12.     | С            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 13.     | С            | INTEGRASYONLAR CUBINI ALT PROGRAMI ILE YAPILMISTIR. BU ALT PROGRAM DA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 14.     | Ç            | DISK UNITESINDE MUHAFAZA EDILIP HESAPLAMA IHTIYACLARINA GORE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 15.     | С            | CAGIRILMAKTADIR, ALI PROGRAMIN METNI EK-STE GUSTERILMISTR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 16.     | · C          | MATRIS COZUMLERI DE LEGTIB ALT PROGRAMI (IMSL : UNIVAC PARET PROGRAMI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 17.     | ç            | KULANILARAK GERCEKLESTIRILMISTIR.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 18.     | С            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 19.     | С            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20.     |              | INTEGER HH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 21.     |              | DIMENSION VV( $201$ ) ( $100$ ( $201$ ) ( $30$ ) ( $100$ ) ( $100$ ) ( $100$ ) ( $100$ ) ( $100$ )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 22.     |              | DIMENSION DMOM1(201), DMOM2(201), DMOM3(20), SAA1(700), CONC(700)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 23.     |              | DIMENSION A(1000,5); $A_{4}(1000,5); X_{4}(1000,5); X_{5}(1000,7); B(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); D(1000,1); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20); Y_{5}(20)$ |
| 24.     |              | DIMENSION 0(500) 005(500) 000(500) 000(500) 000(500) 000(500) 000(500)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 25.     |              | DOUBLE PRECISION WODELIA, FI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20.     | -            | EQUIVALENCE (B) T)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2/.     |              | DATA PYE, NN, MEIKANNY, MITMBILUBINE IN, NCC/3, 141392033848, 3*1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28.     |              | 12*0+2+27+HEKKOK+HOLDOD;KWI+KW2+KW2+EWI+EW2+EW3+8*0+/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 29.     | C C          | CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACTOR AND A CONTRACT                                                                                                                                                                                                                                             |
| 30.     | C C          | SECENERLER VISHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 31.0    | C            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34.     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 530     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 34 .    |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30°     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 219     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20.     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|         |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

∆R ∆D Da

40. H=32.6 41. DZ=.00250 00 42. DT=.01D 00 NDP=1 43. 44 . NZINT2=0 45. C C C 46. ON DEGERLERIN VERILMESI 47. 48. IF (NDP .EQ. 1)NP=1 49. IA=1000 50. IB=1000 51. 52. 53. IU=1000 NDPP=NDP IF(NDPP .LT. 20)NDPP=5\*NDP <u>5</u>4. NX=NDPP 55. c c <u>5</u>6• SAYFA BASLIKLARININ YAZILMASI 57. с 58. BETA=BDYN+BST PHI=BDYN/BETA 59. 60. R=DT/(DZ\*\*2) WRITE(6,220) 220 FORMAT(1H12DX+59HRTD FOR CLOSED END REACTOR WITH STATIC HOLDUP AN 61. 62. 63. 1D WALL FLOW) WRITE(6,221)H,R,DZ,DT 221 FORMAT(//20X,16HREACTOR LENGTH= ,F9.6,7H\*\* R= ,E15+8,8H\*\* AZ= ,E 64. 65. 115.8,8H\*\* AT= /E15.8) WRITE(6,222)PE/VOID/BFTA/PHI 222 FORMAT(25X,4HPE= /E15.8,8H VOID= /E15.8/8H BETA= /E15.8/8H PHI 66. 67. 68. 69. 70. 71. 1= ,E15,8/) WRITE(6,223)BST,BDYN,RST 223 FORMAT(44X,8H BSTAT= ,E15,8,8H BDYN= ,E15,8,8H RST= ,E15,8) 72. WRITE (6,224) RN . RXN RXN= (E15.8) 73. 224 FORMAT(46X+6H RN= +E15.8+8H 74. С **7**5. SONLU FARKLAR DENKLEMLERINDEKI SABITLERIN HESAPLANMASI с с 76. 77. VOID=H/BETA 78. HH=1./DZ 79. JM=HH+1 1 JMMM=JM-1 80. 81. 1J0B=0 82. D(1)=0.D 00 DO 306 JI=2,JM 306 D(JI)=D(JI-1)+DZ JF=2\*JM-2 JFM=JF-1 83. 84. 85. 86. 87. BZZ=-R\*DZ/(PHI\*DT) S2=RST\*DT\*PHI/(1.D\_00-PHI) 88. 89. S1=1.D 00/(1.D 00+S2) S3=RST\*DT/2.D 00 S5=RN\*DT/(2.D 00\*PHI) 90. <u>91</u>. 92, S5=RN#UT/(2.0 00\*PHI\*D2) S6=DT/(4.0 00\*PHI\*D2) S7=-S3\*(1.0 00+S1) S8=S1\*S2\*S3-2.0 00 S9=RXN\*DT/2.0 00 RL=(R/PE)-1.0 00+S3+S3+S9 93. 94. 95. 96% 97. RS=-((R/PE)-S1\*S2\*S3+G3+1.0 00+S5+S9) 98. Q1=RN\*DT/(4.D 00\*VOID) 99. 100. Q2=-DT/(8.D 00\*VOID\*07) 101. GM=-02

| 102. |     |      | Q5=-Q2/S6                                                  |
|------|-----|------|------------------------------------------------------------|
| 103. |     |      | HSB=(H**2)/BETA                                            |
| 104. |     |      | PHIM=1PHI                                                  |
| 105. |     | С    |                                                            |
| 106. |     | C    | BASLANGIC SARTININ VERILMESI : N=0 :                       |
| 107. |     | C    |                                                            |
| 108. |     | 1301 | DO 301 M=2, JF                                             |
| 109. |     | 301  | B(M,1)=0,D 00                                              |
| 110. |     |      | B(1:1)=BZZ                                                 |
| 111. |     | С    |                                                            |
| 112. |     | С    | KATSAYILAR MATRISININ HESAPLANMASI                         |
| 113. |     | С    |                                                            |
| 114. |     | 1800 | DO 800 I=1.3                                               |
| 115. |     |      | READ(19,100)W(I),FI(I),DELTA(I)                            |
| 116. | •   | 100  | FORMAT(3(2X+D23.18))                                       |
| 117. |     |      | DWALL(I)=DELTA(I)                                          |
| 118. |     |      | WRITE(6,226)W(1),FI(1),DELTA(1),I                          |
| 119. |     | 226  | FORMAT(3(2X,D23,16),10X,I4)                                |
| 120. |     | 800  | CONTINUE                                                   |
| 121. |     |      | A(1,3)=RS-(R*DZ/PHI )+2.0 00*S6*FI(1)+S5                   |
| 122. |     |      | A(1+4)=(R/PE)-2.0 00*S6*FI(2)                              |
| 123. |     |      | A(2+2)=RO+S6*FI(1)                                         |
| 124. |     |      | A(2+3)=RS-S6*(W(3)-W(1))+S5                                |
| 125. |     |      | A(2+4)=RO-S6+FI(3)                                         |
| 126. | . 1 |      | A(3,2)=R0+S6*FI(2)                                         |
| 127. |     |      | JP=4                                                       |
| 128. |     | 1799 | D0 799 I=1/2                                               |
| 129. |     |      | FI(I)=FI(I+1)                                              |
| 130. | · · |      | W(I)=W(I+1)                                                |
| 131. |     | 799  | DELTA(I)=DELTA(I+1)                                        |
| 132. |     |      | READ(19,100)W(3),FI(3,)DELTA(3)                            |
| 133. |     |      | DWALL(JP)=DELTA(3)                                         |
| 134. |     |      | WRITE(6,226)W(3),FI(3),DELTA(3),JP                         |
| 135. |     |      | A(3,3)=RS=S6*(W(3)=W(1))                                   |
| 136. |     |      | A(3,4)=S5                                                  |
| 137. |     |      | A(3,5)=RO-S6*FI(3)                                         |
| 138. |     |      | FD=(DELTA(3)-DELTA(1))/DELTA(2)                            |
| 139. |     |      | $A(4+1)=RO-(FD*RO/4,D_0O)-Q2*W(1)/DELTA(2)$                |
| 140. |     |      | A(4+2)=(Q1/DELTA(2))+05*(RS=A(3+3))/DELTA(2)               |
| 141. |     |      | $A(4,3) = -((R/PE) + 1 \cdot D \cdot U_0 + (Q1/DELTA(2)))$ |
| 142. |     |      | A(4+5)=RO+(RO*FD/4.D 00)+02*W(3)/DELTA(2)                  |
| 143. |     | 1302 | DO 302 J=4, JMMM                                           |
| 144. |     | 1801 | DO 801_I=1,2                                               |
| 145. |     |      | FI(I)=F1(I+1)                                              |
| 146. |     |      | W(I) = W(I+1)                                              |
| 147. |     | 801  | DELTA(I)=DELTA(1+1)                                        |
| 148. |     |      | READ(19,100)W(3),FI(3),DELTA(3)                            |
| 149. |     |      | JP=J+1                                                     |
| 150. |     |      | WRITE(6,226)W(3),FI(3),DELTA(3),JP                         |
| 151. |     |      | DWALL (JP) = DELTA(3)                                      |
| 152. |     |      | JI=2*J-2                                                   |
| 153. |     |      | J_=J_=1                                                    |
| 154. |     |      | A(JJ) + 1 + 2RU + S6 + F + (1)                             |
| 155. |     |      | A(JJ)(3)=RS-SG*(W(3)-W(1))                                 |
| 156. |     |      | A (JU) 4) =55                                              |
| 157. |     |      | A(JJ)=51=RO=56*Fi(3)                                       |
| 158. |     |      | FD=10ELIA(3)=0ELIA(1))/0ELIA(2)                            |
| 159. |     |      | FQ1=Q1/DELIA(2)                                            |
| 160. |     |      | FU2=U2/DELTA(2/                                            |
| 161. |     |      | A(JI) = RO*(I) = OO-(FO/4) OO) = FUZ = W(I)                |
| 162. |     |      | A(J1/2)=F01+05*(K3-A(J0/3/)/UEL(A(2)                       |
| 163. |     |      | A(J1+3)=-((R/PE)+1.U ()U+FU1/                              |

164. A(JI+5)=R0+(1.D 00+(Fn/4.D.00))+FQ2+W(3) 302 CONTINUE 165. 166. WFLOW=W(3)\*PYE PFLOW=FI(3)\*PYE TFLOW=PFLOW+WFLOW 167. 168. WRITE (6,24) TELOW, PELOW, WELOW 169. 170. 24 FORMAT(///1X,12H\*\*\*\*\*TFLOW= .E15.8,5X,6HPFLOW=.E15.8,5X.6HWFLOW=.E 171. 115.8) 172. A(JFM,1)=R/PE 173. A(JFM,3)=RS-2.D 00\*S6\*(FI(3)-FI(2)+W(3)-W(2)) 174. A(JFM,4)=55 175. FD=2.D 00+QM+(W(3)-W(2))/DELTA(3) F01=01/DELTA(3) A(JF+1)=R/PE 176. 177. 178. A(JF+2)=FD+F01 A(JF\*3)=-((R/PE)+1.D 00+FQ1+FD) S10=RL+2.D 00\*S6\*(FI(3)-FI(2)+W(3)-W(2)) 179. 180. Q10=A(JF,2)+(R/PE)-1.0 00 181. 1802 D0 802 I=1,JF 1803 D0 803 K=1,5 182. 183. 184. 803 AA(I+K)=A(I+K) 185. 802 CONTINUE 186. 401 IF(NN-2)404,402,403 187. 402 CONTINUE 188. ¢ 189. Ċ IKINCI ZAMAN ADIMI :N=1 : 190. C  $\begin{array}{l} \texttt{FD=A(1,3)+2,D} & \texttt{0}\texttt{0}\texttt{-S1*S2*S3} \\ \texttt{B(1,1)=B}ZZ+S7*UNS(1)\texttt{-FD*U(1)-A(1,4)*U(2)} \end{array}$ 191. 192. 193. GO TO 500 194. 403 CONTINUE 195. C 196. С UCUNCU VE SONRAKI ZAMAN ADIMLARI : N>2 : 197. Ċ B(1+1)=S7\*UNS(1)-FD\*U(1)-A(1+4)\*U(2) 198. 500 B(JFM+1)=-A(JFM+1)\*U(,M-1)+510\*U(JM)-55\*UW(JM)+57\*UNS(JM) 199. 200.  $B(JF \circ 1) = A(JF \circ 1) * UW(J_M - 1) + Q10 * UW(J_M) - A(JF \circ 2) * U(J_M)$ B(2+1)=-A(2+2)\*U(1)+(S8-A(2+3))\*U(2)-A(2+4)\*U(3)+S7\*UNS(2) 201. B(3+1)=-A(3+2)\*U(2)+(SB-A(3+3))\*U(3)-A(3+5)\*U(4)+S7\*UNS(3)-S5\*UW(3 202. 203. 1) 204. B(4+1)=-A(4+2)\*U(3)-A(4+1)\*UW(2)-(A(4+3)+2.D 00)\*UW(3)-A(4+5)\*UW(4 205. 1) 1304 DO 304 J=4+ JMMM 206. 207. JI=2\*J-2 208. JJ=JI-1  $B(JJ_{1}) = A(JJ_{1}) * U(J_{1}) + (S8 - A(JJ_{3})) * U(J) - A(JJ_{5}) * U(J+1) + S7 * UNS(J)$ 209. 210. 1-55\*UW(J)  $304 B(JI_{1})=A(JI_{1})*UW(J_{1})-(A(JI_{1})*2.D 00)*UW(J)-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})-A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{1})+A(JI_{5})*UW(J_{5})+A(JI_{5})*UW(J_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_{5})+A(JI_$ 211. 212. 1JI+2)\*U(J) 213. 404 CALL LEQTIB (AA, JF, NLC, NUC, IA, B, MB, IB, IJOB, XL, IER) 214. U(1)=B(1,1) 215. U(2)=B(2,1) UW(1)=0.D 00 216. 217. 218.  $U_{W}(2) = U(2)$ UNS(1)=S1\*(S2\*U(1)+UNS(1)) 219. UNS(2)=S1\*(S2\*U(2)+UNS(2)) 220. 1305 DO 305 J=3+JM 221. JI=2\*J-2 222. JJ=JI⊶1 U(J)=B(JJ+1) 223. UW(J) = B(JI + 1)305 UNS(J) = S1\*(S2\*U(J)+UNS(J)) 224. 225.

| 2200          | C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 227.          | С       | KULEYI TERKEDEN IZLEYTCI MIKTARININ VE ILK UC MOMENTIN HESAPLANMASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 228.          | с       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 229.          | 999     | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 230.          |         | NNI=NNI+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 231.          |         | CLOCK=NN+DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 232.          |         | VV(NNI)=(PFLOW*U(JM)+wFLOW*UW(JM))/TFLOW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 233.          |         | SAAT(NN)=CLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 234.          |         | CONC(NN) =VV(NNI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 235.          |         | TIME(NNI)=CLOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 236.          |         | UMOM1 (NNI)=VV (NNI)+TIME (NNI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 237.          |         | DMOM2 (NNT) =DMOM1 (NNT) *TTME (NNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 238.          |         | DMOM3(NNT) = DMOM2(NNT) * TIME(NNT)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 239.          |         | IF (NNI .LT. NDPP) GO TO 998                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 240.          |         | KB=NDPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 241.          |         | CALL CUBINT (TIME+VV+KB+KB+KB+RESULT+ERROR+IND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 242.          |         | CALL CUBINT (TIME + DMOM + + KB + KA + KB + RRM1 + FEM1 + IND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 243.          |         | CALL CUBINT (TIME, DMOMO, KB, KA, KB, RRM2, FEM2, IND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 244.          |         | CALL CUBINT (TIME DMOMZOKHOKAOKHORRM3) FEM3, TND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 245.          | 700     | NNT=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 246.          | • • •   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 247.          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 248.          |         | TIME (1) TIME (NDPP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 209.          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 250.          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 261           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2:2.          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 203           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2010          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 256.          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 267           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 258           |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000          |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2070          | 008     | TERNOR-DERRORTENDOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2000          | 990     | Trans one i sond a gan are append to 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2010          | 1710    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2020          | 1010    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2000          | 510     | 101-PHI#0(0)+(IIIM005(0)+H30*((2++0006cc(0))+)-(000-c(0)++2))+00(0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| £6 <b>*</b> • |         | 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 260.          | ç       | ALLE TOTALSERT TO EVICE MATERIAN HESADI ANMAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 200.          | č       | KOLE ICINDERI IZLETICI MINIANININ NEGALERIMADI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2010          | · L     | $T = C N N T$ (1) G(1) T(2), $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ , $T_{0}$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 2/0           |         | (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A + 1) = (A +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20            | 492     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 271.          |         | WOTTER (A. AND TIT - HOLDUNAHERROR, PEST - FRO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/10          | 201     | TOPMAT(102) 104***TOT THE FIS. O. OHEVIT TOT - FIS. O. 10HWITH FOR TOFIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2720          | 2.01    | P(R(MA) (1) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) + T(M) +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 273.          | 500     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2/40          | 1211    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 273.          | 1011    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2700          | 211     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 270           | <br>E07 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2-00          | 202     | $a_{1} = 1072037102210100000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 200           | 1313    | LOVALITYIIIMATA LACKING REPLIESIONALARIASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 201           | 210     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <81.<br>202   | 512     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 2820          | 500     | CALE CODINI OFFICIAL OFFICESFERRESCIENCE INDI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 283.          | 500     | $\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}$ |
| <b>284</b>    | 200     | - LORINI / TYLTOLDINI TO - AFTER 200 POLICE - FILE 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 480 ·         | 1212    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ∠80÷<br>207   | 1313    | - ひしつよう ロニアのm<br>- マイコンコロロロマ(クールDmAli (.1)/い) =∩WA(+(.1) **2)*Liu(.1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <u> </u>      | 313     | LIONALOOXIICE ADAUNCIONUL CONTRACTOR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| 288.  |       | 510   | CALL CUBINT (D,Y,JM,KA,JM,RES2,ERR02,IND)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------|-------|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 290.  |       | 207   | WALTELOFZU/TRESZVERAUD<br>FORMAT(1),10HWALLE(0), DEC-,FIE 8.3Y,2HED-,FIE,0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 291.  |       | 502   | $N_{\text{END}} + N_{\text{D}} + N_{\text{D}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text{M}} + \Gamma_{\text{D}}^{\text$ |
| 292.  |       | 406   | IF(NNI .FQ. 1 .AND. RES1 .LT. UFIN)GO TO 407                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 293.  |       |       | NN=NN+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 294.  |       |       | 1J08=2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 295.  |       |       | GO TO 401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 296.  |       | 407   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 208.  | · · · |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 299.  |       |       | WRTTE 16.103 PM1. FM1. RM2. FM2. RM3. FM3. NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 300.  |       | 193   | FORMAT(////)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 301.  |       | ,     | WRITE (6.210) HOLDUP, HERROR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 302.  |       | 210   | FORMAT(1x,7HHOLDUP=+615.8+SX+6HERROR=+E15.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 303.  |       |       | D0 375 I=1 NN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 304.  |       |       | SAATP=SAAT(I)/RM1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 306.  |       |       | $CONCPECONC(1) \neq MM1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 307.  |       | 200   | FORMAT (5V, SHNNE, FC, SX, U, F(5, S, SY))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 308.  |       | 375   | CONTINUE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 309.  |       | -,-   | STOP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 310.  |       |       | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 311.  | Δ     | FOR 1 | IS LEQTIB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 312.  |       |       | SUBROUTINE LEGT1B(A+N,NLC+NUC+IA+B+M+IB+IJOB+XL+IER) LE180660                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 313.  | C     | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 315.  |       |       | I F190670                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 316.  | c     |       | BU ALT PROGRAM MATRIS COZUMLERINDE KULLANTLMAKTADIR (IMSL : INIVAC PAKET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 317.  | č     |       | PROGRAMI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 318.  | ć     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 319.  | c     | -     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 320.  | С     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 321.  |       |       | $U_{\text{MENSION}} = A(TA, 1) \cdot XL(N, 1) \cdot B(TB, 1) = LE1B0680$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 303-  |       |       | LEINDBUD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 324.  |       |       | 18F6 = NI C+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 325.  |       |       | LC1 = JREG LE180720                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 326.  |       |       | IF (IJOB .EQ. 2) GO TO 80 LE1B0730                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 327.  |       |       | RN = N LE1B0740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 328.  |       |       | I = I LE1B0780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 329.  |       |       | NC = JBEG+NUC LEIBU/9U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 371   |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 332.  |       |       | TF (N FO, 1 OR, NLC FO, 0) GO TO 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 333.  |       | 5     | K = 1 LE180830                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 334.  |       |       | P = ZERO LE1B0840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 335.  |       |       | $DO \ 10 \ J = JBEG JEND $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| .336. |       |       | $A^{(1)}(k) = A(1, 0)$ $LE 180860$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 231.  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 320.  |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 340.  |       | 10    | CONTINUE LE180900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 341.  |       | -     | IF (P .Eq. ZER0) 60 TO 135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 342.  |       |       | $XL(I:NLC_1) = ONE/P$ LE1B0920                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 343.  |       |       | IF (K .GT. NC) GO TO 20 LE180930                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 344.  |       |       | U0 15 J = K/NC LE180940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 345.  |       | 16    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 340.  |       | 20    | L = [1] IFIN970                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 348.  |       | 20    | JBEG = JBEG-1 LE180980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 349.  |       |       | IF $(JEND_JBEG (EQ. N) JEND = JEND^1$ LE180990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|       |       |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

IF (I .LE. NLC) GO TO 5 JBEG = 1 NN = JEND 25 JEND = N-NUC JENU = N = NOC D0 40 I = JEG + N P = 2ER0 D0 30 J = 1 + NN Q = ABS(A(I,J))IF (Q, GT, P) P = QCONTINUE 30 IF (P .EQ. ZERO)  $G_0$  to 135. XL(I.NLC1) = ONE/P IF (I .EQ. JEND)  $G_0$  to 37 IF (I .LT. JEND)  $G_0$  to 40 K = NN+1DO 35 J = K+NC A(I,J) = ZERO 35 37 CONTINUE NN = NN-1 40 CONTINUE L = NLC D0 75 K = 1+N  $P = ABS(A(K,1)) * X_L(K,NLC1)$ I = K IF (L .LT. N) L = L+1 IF (L .L., ... - L K1 = K+1 IF (K1 .GT. L) GO TO 50 DO 45 J = K1.L Q = ABS(A(J,1)) \*XL(J,NLC1) IF (Q .LE. P)  $G_0$  TO 45 P = 0 I = J 45 CONTINUE XL(I:NLC1) = XL(K:NLC1)XL(K:NLC1) = I50 IF (RN+P , EQ, RN)  $_{\rm G}$ 0 TO 135 IF (K .EQ. I) GO TO 60 DO 55 J = 1 HC P = A(K,J) $\begin{array}{l} A(K_{I},J) = A(I_{I},J) \\ A(I_{I},J) = P \end{array}$ CONTINUE 55 IF (K1 .GT. L) GO TO 75 DO 70 I = K1.L P = A(I, I)/A(K, I)60 IK = I-K $XL(K1 \cdot IK) = P$ D0 65 J = 2 · NC A(I,J-1) = A(I,J)-P\*A(K,J) CONTINUE A(I+NC) = ZERO 65 CONTINUE 70 75 CONTINUE IF (IJOB .E0. 1) GO TO 9005 80 L = NLC DO 105 K = 1 N I = XL(K NLC1) IF (I .EQ. K) GO TO 90 D0 85 J =  $1^{M}$ P = B(K,J) B(I) = B(I) = B(I)

350.

351.

352.

353.

354.

355. 356.

357.

358.

359.

360.

361.

362.

363.

364.

365.

366.

367.

368.

369. 370.

371. 372.

373.

374.

375.

376.

377. 378.

379.

380.

381.

382.

383.

384.

385. 386.

387.

388.

389.

390.

391.

392.

393. 394.

395.

396. 397.

398.

399.

400.

401.

402.

403.

404.

405.

406.

407.

408.

409.

410.

411.

LE1B1000 LE181010 LE181020 LE181030 LE181040 LE181050 LE181060 LE1B1070 LE181080 LE181090 LE1B1100 LE1B1110 LE1B1120 LE181130 LE1B1140 LE181150 LE1B1160 LE1B1170 LE1B1180 LE181190 LE1B1200 LE181220 LE181230 LE181240 LE1B1250 LE1B1260 LE181270 LE1B1280 LE1B1290 LE181300 1 E1B1310 LE1B1320 LE181330 LE181340 LE181350 LE1B1370 LE181390 LE181400 LE181410 LE181420 LE1B1430 LE1B1440 LE181450 LE1R1460 LE1R1470 LE181480 1 E181490 LE1B1510 LE181520 LE181530 LE1B1540 LE181550 LE181560 LE1B1580 LE181590 LE181600 LE1B1610 LE181620 LE181630 LE1R1640 LE181650

| 412.       | 85           | CONTINUE                                                          |       | LE181660 |
|------------|--------------|-------------------------------------------------------------------|-------|----------|
| 413.       | 90           | IF (L LT. N) $L = 1+1$                                            |       | LE1B1670 |
| 414.       |              | K1 = K+1                                                          |       | LE181680 |
| 415.       |              | IF (K1 .GT. L) GO TO 105                                          |       | LE181690 |
| 416.       |              | DO 100 I = $K_{1+L}$                                              |       | LE181700 |
| 417.       |              | IK = I - K                                                        |       | LE181710 |
| 418.       |              | $P = XL(K1 \cdot IK)$                                             |       | LE181720 |
| 419.       |              | $D0.95 J = 1 \cdot M$                                             |       | LE1B1730 |
| 420.       |              | B(I,J) = B(I,J) - P * B(K,J)                                      |       | LE181740 |
| 421.       | 95           | CONTINUE                                                          |       | LE181750 |
| 422.       | 100          | CONTINUE                                                          |       | LE181760 |
| 423.       | 105          | CONTINUE                                                          |       | LE1B1770 |
| 424.       |              | JBEG = NUC+NLC                                                    |       | LE181790 |
| 425.       |              | D0 125 $J = 1,M$                                                  |       | LE181800 |
| 426.       |              | L = 1                                                             |       | LE1B1810 |
| 427.       |              | K1 = N+1                                                          |       | LE1B1820 |
| 428.       |              | DO 120 I = $1,N$                                                  |       | LE1B1830 |
| 429.       |              | K = K1 - I                                                        |       | LE1B1840 |
| 430.       |              | $P = B(K_*J)$                                                     |       | LE181850 |
| 431.       |              | IF (L .EQ. 1) GO TO 115                                           |       | LE1B1860 |
| 432.       |              | DO 110 $KK = 2 L$                                                 |       | LE1B1870 |
| 433.       |              | $\mathbf{I}\mathbf{K} = \mathbf{K}\mathbf{K}\mathbf{+}\mathbf{K}$ | ·     | LE1B1880 |
| 434.       |              | P = P - A(K, KK) + B(IK - I, J)                                   |       | LE191890 |
| 435.       | 110          | CONTINUE                                                          |       | LE181900 |
| 436.       | 115          | $B(K_{1}J) = P/A(K_{1})$                                          |       | LE1B1910 |
| 437.       | -            | IF (L .LE. JBEG) $\perp = L+1$                                    |       | LE181920 |
| 438.       | 120          | CONTINUE                                                          |       | LE1B1930 |
| 439.       | 125          | CONTINUE                                                          |       | LE181940 |
| 440.       |              | GO TO 9005                                                        |       | LE181950 |
| 441.       | 135          | IER = 129                                                         |       | LE1B1960 |
| 442.       | 9000         | CONTINUE                                                          |       | LE1B1970 |
| 443.       | 9005         | RETURN                                                            |       | LE181990 |
| 444.       |              | END                                                               |       | LE1B2000 |
| 445.       | <b>∆PREP</b> | TRACE                                                             |       |          |
| 446.       | AMAP .       | [ +TPF\$,MAIN                                                     |       |          |
| 447.       | IN TPR       | FS,MAIN                                                           |       |          |
| 448.       | LIB TH       | RACE                                                              | · · · |          |
| 449.       | ∆XQT         | r i i i i i i i i i i i i i i i i i i i                           |       |          |
| E, D DATA. |              |                                                                   |       |          |
| ΔμΙΝ       |              |                                                                   |       |          |
|            |              |                                                                   |       |          |

.



| ARUN C/RN RIFAT2  | 111-14-005,TRACEY,5,100                                                                                                     |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------|
| ADATAIL THES.     |                                                                                                                             |
| UAIA 17 RL/0-5 09 | //26-1/:02:10                                                                                                               |
| 1. AASG           |                                                                                                                             |
| 2. AFOR:          | TIN PULLIN                                                                                                                  |
| 3. C              |                                                                                                                             |
| 4. L              | BU FRUGRAM PDE VE PD MUDELLERINI KUELANARAR DAMEAMA TATAR<br>DEAKTADI EDINE KAI MA SUBEST DACTI TMI ARTNI LESADI AMAKTADIR. |
| 5. C              | NEAR FORERIDE RACHA SURESI DAGILIMENTATI DESA CAMADINI ADIN                                                                 |
|                   | PD MODELINI KOLLANMAK ICIN PHILIO VE RSILO. DEVERLENI KOLLANILMALIDIK                                                       |
|                   | MATRISLERIN COLUMONDE IRIDAG ALI FROMATICARNATIONICOTTERI VE WILKES ;                                                       |
| 8. U              | 1969) VE INTEGRALLER IN RESAFLANMASINDA CODINI ALI INGGRAMI (DAVIS VE                                                       |
| 9. U              | RADINUWIYZ + 1973 RULANIEMISIIR+<br>Chorne al e ddogame d-sy builtestade mulaeaza edw dîgi icin Budada                      |
| 10. C             | GOSTAL ALI PROGRAMI DISK UNITESINDE MUTAPAZA EDILUTOTI TOTA DURADA                                                          |
| 11. 0             | OUSIERIEMEMISTIK. DU ALT FRUGRAMIN MEINT ER-S TE ORREEDIEIR.                                                                |
|                   | THITEGED IN                                                                                                                 |
| 14.               | 1016/0610 00/2011) • TIME (201) • DMOM1 (201) • DMOM2 (201) / DMOM3 (201)                                                   |
| 15                |                                                                                                                             |
| 15.               | DIMENSION = (N(500) + ((500) + (N(500)) + V(500) + O(500))                                                                  |
| 17.               | DOUBLE PRETSTON HOLD PRESULT FROM HEROR                                                                                     |
| 18.               | DOUBLE POLITICAL INLA B.C.D.Y.L.A                                                                                           |
| 19.               | DOUBLE PRECISION VVATAMERBETA DE VOID ALEARCERH                                                                             |
| 20.               |                                                                                                                             |
| 20                | DOUBLE RECISION DISDARDERS MAN PHISIEN                                                                                      |
| 22.               | DOUBLE FRECISION BOYARES2 FREDOVUNS                                                                                         |
| 23.               | DOUBLE PRECISION C1+C2+C3+C4+C5+G1+G2+G3+G4+G5+G6+G7+G8                                                                     |
| 24 -              | DOUBLE PRECISION RM1 - DM2 - RM3 - EM1 - EM2 - EM3 - RRM1 - RRM2 - RRM3 - EEM1 - EEM2 -                                     |
| 25.               | DEFENSE CLOCK STT                                                                                                           |
| 26.               | EQUIVALENCE (U) UN)                                                                                                         |
| 27.               | DATA HERROR HOLDUP . RM1 . RM2 . RM3 . FM1 . EM2 . EM3 . NP . NNT . NF IN . KA . NN / B*0 . D                               |
| 28.               | 1 00:3*0:2*1/                                                                                                               |
| 29. C             |                                                                                                                             |
| 30. C             | SECENEKLFR KISMI                                                                                                            |
| 31. C             |                                                                                                                             |
| 32.               | PE=300.                                                                                                                     |
| 33.               | RXN=0.D 00                                                                                                                  |
| 34.               | RST=0.                                                                                                                      |
| 35.               | BST=+0525                                                                                                                   |
| 36.               | BDYN=,1575                                                                                                                  |
| 37.               | VOID=,7D 00                                                                                                                 |
| 38.               | H=32.6D 00                                                                                                                  |
| 39.               | UFIN=1.0~04                                                                                                                 |
| -                 |                                                                                                                             |

| 40.          |            |          | DZ=.00250 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------|------------|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 41.          |            |          | DT=-01D 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 42.          |            |          | NDP=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 43.          | C          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 44.          | Č          |          | ON DEGERLERIN VERILMESI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 40.          | Ĺ          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40.          |            |          | IF (NDP .EQ. 1) NP=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 4/.          |            |          | BETA=BST+BDYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40.          |            |          | NDPPENDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 49.          |            |          | IF (NDP - LT - 20) NDPP=5+NDP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 51.0         |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 54.          |            | 200      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50.          | 1.         | 500      | DO SUG MEI.JM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 54.          | •          | 7 0      | UNS(M)=0.D 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 50.          |            | 200      | UN(M)=0.D 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50.          | C          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5/•          | C          |          | SONLO FARKLAR DENKLEMLERINDEKI SABITLERIN HESAPLANMASI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 58.          | · C        |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 59.          |            |          | CG=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 60.          |            |          | ALF A=VOID*BDYN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 61.          |            |          | $H=1 \cdot D = 00/DZ$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 64.          |            |          | JMEHH41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 63.          |            | 7 . F    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 64•          | 1          | 315      | D0 315 M=2, JM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 65.          | •          | 312.     | Q(M) = Q(M-1) + DZ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 60.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 6/•          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60.          |            |          | PRI-DUTN/BETA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 69.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70.          | -          |          | IF (KS1, G1, 1,D=03)60 10 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 71.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 72.          |            |          | G1=0+0 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 73.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 74 •         | -          | 200      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 75.          |            | 150      | $G[\Xi KS] * DT * (PHI) (1 \cdot 0 \cup 0) = PHI) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 70.          |            | <b>.</b> | $62=1.0 \ 00/(1.0 \ 00+61)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| //•          |            | 121      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70.          |            |          | $O_4 = O_1 + O_2 + O_2 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 + O_3 $ |
| / 7 0        |            |          | $C_{2} = (P_{1}) (P_{2}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{1}) (P_{$ |
| 80,          |            |          | $C_2 = (P_1(A_2, B_1), D_1(B_2, B_1), D_2(B_2, B_2), D_2(B_1, B_2, B_2))$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .81.0        |            |          | $C_{1} = (K/(2, U + U) + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + U) + (U + $ |
| 84.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 83.          |            |          | C==C2-(0 D D0+F*C1+0)-(DHI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 05           |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 85.          |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 07           |            |          | $G_{1} = G_{2} = 0  0  0  0  0  0  0  0  0  0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 08           | c          |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 00<br>- 00 | č          |          | SAVEA BACLIKLARININ YAZILMAST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 00.          |            |          | SALLA DASELICA.T.T. THEITERST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 01.          | . <b>.</b> |          | IF(RSTGT1_D=03)60 TO 702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 02.          |            |          | WRITE (6,215)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| a3.          | :          | 215      | FORMAT(1H1,20X,33HRTD FOR SIMPLE CLOSED END REACTOR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 04.          | •          | - 10     | GO TO 703                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 95.          |            | 702      | WRTTE (6,220)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 96           | :          | 220      | FORMAT(1H1+20X+45HRTD FOR CLOSED END REACTOR WITH STATIC HOLDUP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 97.          | -          | 703      | WRITE (6,221)H,R,DZ,DT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 98           |            | 221      | FORMAT(//20X, 16HREACIOR LENGTH= , F9.6, 7H** R= , D15.8, 8H** AZ= ,D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ý9.          |            | 1        | 115.8+8H** AT= ,D15.8)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100.         |            |          | WRITE (6,222) PE . VOID . BFTA . PHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 101.         | ä          | 222      | FORMAT(25x,4HPE= +D15_8,8H VOID= +D15.8+8H BETA= +D15+8+8H PHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|              |            |          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

1= ,D15.8) WRITE(6;223)BST,BDYN,RST 102. 103. 104. 223 FORMAT(44X,8H BSTAT= ,D15.8.8H BDYN= ,D15.8.8H RST= ,D15.8) 105. WRITE (6,23) RXN 106. 23 FORMAT (44X, 8H RXN= .D15.8//) 107. С 108. ĉ BASLANGIC SARTININ VERILMESI : N=0 : 109. 110. 1301 DO 301 M=2,JM 301 D(M)=0.D U0 D(1)=68 111. 112. 113. A(1)=0.D 00 114. B(1)=G5 115. C(1)=G6 116. 1302 DO 302 J=2+JM 117. A(J)=C1 118. B(1)=C5 119. 302 C(J)=C3 C(JM)=0.D 00 A(JM)=G6 120. 121. 122. 401 IF(NN-2)404,402,403 123. 402 CONTINUE 124. с с с 125. IKINCI ZAMAN ADIMI :N=1 : 126. 127.  $D(1)=G8+G7*UN(1)-G_6*UN(2)+C5*UNS(1)$ GO TO 500 403 CONTINUE 128. 129. 130. ¢ c c UCUNCU VE SONRAKI ZAMAN ADIMLARI : 2≼N : 131. 132. 133. D(1)=G7\*UN(1)-G6\*UN(2)+C5\*UNS(1)500 D(JM)=-G6\*UN(JM-1)+C4\*UN(JM)+C5\*UNS(JM) 134. 1304 D0 304 M=2+JMMM 304 D(M)=-C1\*UN(M-1)+C4\*UN(M)-C3\*UN(M+1)+C5\*UNS(M) 135. 136. 137. 404 CALL TRIDAG (U, JM, A, B, C, D) 138. 1305 DO 305 J=1, JM 139. 305 UNS(J)=G2\*(G1\*U(J)+UNS(J)) 140. c C KULEYI TERKEDEN IZLEYTCI MIKTARININ VE ILK UC MOMENTIN HESAPLANMASI 141. 142. С 999 CONTINUE 143. NNI=NNI+1 144. CLOCK=CLOCK+DT 145. VV(NNI)=U(JM) 146. TIME(NNI)=CLOCK 147. IMEX.NUT)=CUC(NuT)\*TIME(NNT)
DMOM1(NNT)=DMOM1(NNT)\*TIME(NNT)
DMOM2(NNT)=DMOM1(NNT)\*TIME(NNT)
IF(NNT).LT.NDP)G0 T0 993
KB=NDPP 148. 149. 150. 151. 152. CALL CUBINT (TIME, VV, KR, KA, KB, RESULT, ERROR, IND) 153. CALL CUBINT(TIME,DMOM),KB;KA;KB;RRM1:EEM1;IND) CALL CUBINT(TIME,DMOM);KB;KA;KB;RRM2;EEM2;IND) CALL CUBINT(TIME,DMOM);KB;KA;KB;RRM3;EEM3;IND) 155. 156. 700 NNT=1 157. NDPP=NX+1 VV(1)=VV(NDPP) 158. 159. TIME(1)=TIME(NDPP) 160. DMOM1(1)=UMOM1(NDPP) 161. DMOM2(1)=DMOM2(NDPP) 162. DMOM3(1)=DMOM3(NDPP) 163.

164. RM1=RM1+(RRM1/CG) RM2=RM2+(RRM2/CG) 165. RM3=RM3+(RRM3/CG) 166. 167. EM1=EM1+EEM1 168. EM2=EM2+EEM2 169. EM3=EM3+EEM3 170. HOLDUP=HOLDUP+(RESULI/CG) 171. HERROR=HERROR+ERROR 998 IF(NN .NE. 1 .AND. TIMER=TIME(NNI) 172. NN .NE. NP)60 TO 406 173. 1310 D0 310 J=1+JM 310 Y(J)=(PHI\*U(J)+(1+D 00-PHI)\*UNS(J))/CG 174. 175. 176. C C C 177. KULE ICINDEKI IZLEYICY MIKTARININ HESAPLANMASI 178. CALL CUBINT(0,Y,JM,KA,JM,RES2,ERRO2,IND) WRITE(6,200)NN,TIMER,VV(NNI),RES2,ERRO2 179. 180. 200 FORMAT(4H N =, 14, 4H T =, F9.6.10H CONC=,D15.8,9HCOL CONT=,D15.8 181. 1,9HWITH ERR=,015.8) 182. IF (NNI .NE. 1)GO TO 502 TTT=HOLDUP+RES2 183. 184. 185. WRITE (6,201) TTT, HOLDUP, HERROR 201 FORMAT (21X, 10H\*\*\*TOT TR=, D15.8, 9HEXIT TOT=, D15.8, 10HWITH ERR =, D15 186. 1.8/) 502 NP=NP+NDP 187. 188. 406 IF (NNI .EQ. 1 .AND. RES2 .LT. UFIN)60 TO 407 NN=NN+1 189: 190. GO TO 401 191. 407 CONTINUE 192. 193. С 194. ċ 195. WRITE(6,193)RM1,EM1,RM2,EM2,RM3,EM3,NN 193 FORMAT(//// ) WRITE(6,210)HOLDUP,HERROR 196. 197. 210 FORMAT(1X,7HHOLDUP=,015.8,5X,6HERROR=,D15.8) 198. STOP 199. 200. END SUBROUTINE TRIDAG(VEC,NO.A.B.C.D) 201. 202. С UCLU DIYAGONAL MATRIS COZUMUNDE KULLANILAN ALT PROGRAM (CARNAHAN, LUTHER, 203. C C C 204. VE WILKES : 1969) 205. DIMENSION A(NO), B(NO), C(NO), D(NO), VEC(NO), GAMA(1650), BETA(1650) 206. DOUBLE PRECISION VEC, A, B, C, D, BETA, GAMA 207. BETA(1)=B(1) 208. 209. GAMA(1)=D(1)/B(1) 210. 1300 DO 300 I=2+NO 211. BETA(I)=B(I)-A(I)\*C(1-1)/BETA(1-1) 300 GAMA(I)=(U(I)-A(I)\*GAMA(I-1))/BETA(I) VEC(NO)=GAMA(NO) 212. 213. L=10-1 214. 1301 DC 301 I=1+L IR=NO-I 215. 216. 217. 301 VEC(IR)=GAMA(IR)-C(IR)\*VEC(IR+1)/BETA(IR) 218. RETURN APREP TRACER 219. 220. AMAP I TPFS.MAIN IN TPFS.MAIN 221. 222. LIB TRACER. ∆XQT 224. E.,D DATA.



| ATA IL TP | 11-A13        | 111-14-005,TRACEY+5,40                                                     |
|-----------|---------------|----------------------------------------------------------------------------|
| TA TT RIT | ເຼາ.<br>ຄ_5 ຄ | 9/96-17+02+10                                                              |
| 1.        | ASG           | C TRC3-65///1000                                                           |
| 2.        | AUSE          | 20.TRC3.                                                                   |
| 3.        | AFOR          | IS MAIN                                                                    |
| 4.        | c             |                                                                            |
| 5.        | č             | BU PROGRAMDA SIVI AKIS PROFILIERI VE DUVAR AKISI SIVI TABAKASI             |
| 6.        | č             | KALINI TGT HESAPLANMAKTADIR                                                |
| 7.        | c             |                                                                            |
| 8.        | •             | DIMENSIONET (2010)                                                         |
| 9.        |               | DIMENSION $FR(10) + E(10) + Y(10) + JINT(30)$                              |
| 10.       |               | COMMON/PROW/DEN, VISC, SURFT, GAMA, SLAMDA, VOID, A, G, AA, H, FO, X       |
| 11.       |               | COMMON/FL 2/PYF+DR+DZ+RIJ+NFTC+NR                                          |
| 12.       |               | COMMON/FL3/FIM+FIP                                                         |
| 13.       |               | COMMON/CONST/SR, SR2, OpSR, B, OMSR, SR04, OPSR2, OMSR2, SR2F, GRAOS, GROS |
| 14.       |               | COMMON/FL1/FB(2010), W(2010), DEL(2010), F(30), FN(30)                     |
| 15.       |               | COMMON/BLAST/CONFI, CONS, RH                                               |
| 16.       |               | DOUBLE PRECISION SRISB2, OPSRIB, OMSRISRO4, OPSR2, OMSR2; SR2F, GRAOS,     |
| 17.       |               | 1GROS, FN, FI, CONFI, CONS                                                 |
| 18.       |               | DOUBLE PRECISION DENIVISCISURFT, GAMAISLAMDA, VOID, PYE, A, DR, DZ, F,     |
| 19.       |               | 1FBIRIJOGISPACKITEMPI WODELIRHO FIMOFIPIAAOHIFO                            |
| 20.       |               | DOUBLE PRECISION FRIE, SUMF, RES1, RES2, TINTF, FLORAT, AA2                |
| 21.       | С             |                                                                            |
| 22.       | С             | SECENEKLER KISMI                                                           |
| 23.       | С             | NFTC = 1 TEK BORUDAN KULEYE SIVI GIRISI SINIR SARIINI KULLANDIRIR          |
| 24.       | С             | NFTC = 2 KULE KESITINDE UNIFORM SIVI GIRIS HIZI SINIR SARTINI              |
| 25.       | С             | KULLANDIRIR                                                                |
| 26.       | С             |                                                                            |
| 27.       |               | NFTC=2                                                                     |
| 28.       |               | NR=20                                                                      |
| 29.       |               | NRP=NR+1                                                                   |
| 30.       | С             |                                                                            |
| 31.       | С             | KULE KESITINDE AKIS HIZLARI INTEGRALININ HESAPLANMASI                      |
| 32.       | С             | EN COR ALTI INTEGRAL HESAPLANABILIR                                        |
| 33.       | С             |                                                                            |
| 34.       |               | JINI(1)=41                                                                 |
| 35.       |               | JINI (2)=101                                                               |
| 36.       |               | JINI(3)=201                                                                |
| 37.       |               |                                                                            |
| 38.       |               |                                                                            |
| 39.       |               | NCTC-4                                                                     |

Δ<sub>R</sub>UN+C/RN RIFAT3+111-14-005+TRACEY+5+ ΔΔΑΤΑ-IL TPF5. DATA T7 RL70-5 09/26-17:03:19

| 40.<br>41.                             | C<br>C      | NR/NCYL DORDE ESIT VEYA DORTTEN FAZLA OLMALIDIR                                                                                                                    |
|----------------------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4∠°<br>43°                             | C           | BASKI KONTROL KISMI                                                                                                                                                |
| 45.<br>46.<br>47.                      | c           | NOINT=1<br>NRD=5<br>JMMD=10                                                                                                                                        |
| 48.<br>49.<br>50.                      | C C C C C   | AKIS SARTLARININ VERILMESI                                                                                                                                         |
| 51.<br>52.<br>53.<br>54.<br>55.<br>56. |             | RH=1.63D 00<br>DEN=998.0345D 00<br>FLORAT=39960.D 00<br>VISC=1.0019D 00<br>SPACK=.64D 00<br>TEMP=20.D 00                                                           |
| 57.<br>58.<br>59.<br>60.<br>61.        |             | AA=.05D 00<br>V0ID=,7D 00<br>SURFT=72.75D 00<br>CONFT=.3D 00<br>CONS=845.4D 00                                                                                     |
| 62.<br>63.                             | C           | DZ=.0815D 00<br>JM=420                                                                                                                                             |
| 65.<br>66.                             | · č<br>c    | SABITLER                                                                                                                                                           |
| 67.<br>68.<br>69.<br>70.               |             | PYE=3,1415926535898<br>G=32.18D 00<br>FO=FLORAT/DEN<br>KP=11                                                                                                       |
| 71.<br>72.<br>73.                      | C<br>C<br>C | SONLU FARKLAR DENKLEMLERININ SABITLERININ HESAPLANMASI                                                                                                             |
| 74 •<br>75 •<br>76 •                   | C           | DR=1.D 00/FLOAT(NR)<br>HIJ=DZ/(DR**2)                                                                                                                              |
| 78.<br>79.<br>80.                      | •<br>• •    | CALL PROP(TEMP+SPACK)<br>SR=RIJ*SLAMDA<br>SR2=2,D 00+SR<br>OUSP=1 D 00+SR                                                                                          |
| 81.<br>82.<br>83.<br>84.               |             | OPSR-1:D         OPSR           B=SR/((4,D)00)*0PSR)         OMSR=1:D           OMSR=1:D         00~SR           SR04=SR/4.D         00                            |
| 85.<br>86.<br>87.<br>88.<br>89.        |             | OPSR2=1.D 00+SR2<br>OMSR2=1.D 00-SR2<br>SR2F=SR2/OPSR2<br>GRAOS=GAMA*DR*A/SLAMDA<br>GROS=GAMA*DR*A/SLAMDA                                                          |
| 90.<br>91.<br>92.                      | C<br>C<br>C | SAYFA BASLIKLARININ YAZILMASI                                                                                                                                      |
| 93.<br>94.<br>95.<br>96.               |             | R1=0.<br>R2=FLOAT(NRD)/FLOAT(NR)<br>R3=2.+R2<br>R4=3.+R2                                                                                                           |
| 97.<br>98.<br>99.<br>100.<br>101.      | 200<br>201  | WRITE(6,200)<br>FORMAT(1H1,///30X+36HLIQUID DISTRIBUTION IN PACKED COLUMN)<br>WRITE(6,201)<br>FORMAT(//30X+38HLATERAL BOUNDARY CHOSEN AT COLUMN WALL)<br>GO TO 501 |

501 1F(NFTC .GT. 1)G0 TO 502 WRITE(6,203) 102. 103. 104. 203 FORMAT(30X, 17HPOINT SOURCE FEED) GO TO 503 502 WRITE (6:204) 105. 106. 107. 204 FORMAT(30X, 23HEVENLY DISTRIBUTED FEED) 108. C 109. C HESAP SONUCLARININ BASKI KONTROLU 110. C 111. 503 H=FLOAT (, MM) +DZ\*AA 112. WRITE (6,1201) TEMP .H 113. 1201 FORMAT(/////1X+18HTFMPERATURE = ,D15,8,7H DEG C,30X,22HCOLU 114. 1MN LENGTH = ,D15.8,7H METERS) AA2=2,D+00\*AA WRITE(6,1202)DEN;AA2 115. 116. 1202 FORMAT(1X,18HLIQUID DENSITY = ,D15.8,9H KG/M\*\*3,28X,22HCOLUMN D 11AMETER = ,D15.8,7H METERS) WRITE(6,1203)VISC.VOID 117. 118. 119. 1203 FORMAT(1X,18HLIQUID VISCOSITY= ,D15.8,10H KG/M-SEC+27X+22HVOID F 120. 121. 1RACTION = ,D15.8) WRITE(6,1204)SURFT,SPACK 1204 FORMAT(1X,18HSURFACE TENSION = ,D15.8,10H DYNES/CM/27X,22HNOMINAL 122. 123. 124. 1 PACKING SIZE= +D15.8, 3H CM) WRITE (6,1205) DR, FLORAT 125. 1205 FORMAT(14X, SHDR = ,D15.8, 37X, 9HFLOW RATE, 11X, 2H= ,D15,8,12H KG/SQ-126. 1M\*HR ) 127. WRITE (6,1206) DZ, GAMA 128. 1206 FORMAT(14X;5HDZ = ,D15.8;37X;4HGAMA;16X;2H= ,D15.87 WRITE(6;1207)RIJ;SLAMDA 129. 130. 1207 FORMAT(6x,13HDZ/(DR\*\*2) = ,D15.8,37X,5HLAMDA,15x,2H= ,D15.8) \_ 131. 132. ç SONUCLARIN SUTUN BASLIKLARI 1.33. 134. С 135. WRITE (6,205) R2+R3+R4 136. 205 FORMAT(5x,1HZ,6X,1HJ,7X,4HR=0,,7X,3(2HR=,F7,4,5X),6HR= RB,9X,6HDE 137. 1LTA +5X+11HWALL FLOW+9X+2HF1) 138. WRITE(6:206) W/AREA\*FO) 139. 206 FORMAT(86X+23H IF(NFTC .EQ. 2)60 TO 40 1030 DO 30 II=2.NRP 30 FN(II)=0.D 00 140. 141. 142. FN(1)=(2.D 00/DR)\*\*2 FB(1)=0.D 00 143. 144. GO TO 41 145. 40 CONTINUE 146. 1031 DO 31 II=1.NRP 31 FN(II)=1.D 00 147. 148. FB(1)=1.D 00 FI(1)=1.D 00 149. 150. DEL(1)=0.0 00 151. 152. 41 W(1)=0.D 00 WRITE(20,20)W(1),FL(1),DEL(1) 153. 20 FORMAT(3(2X,D23.18)) 154. 155. c c ILK SATIR 156. с 157. D1=0. 158. ປ≃1 159. WRITE(6,207)D1, J. (FN(T), 1=1, NR, NRD), FB(1), DEL(1), W(1), FI(1) 160. 207 FORMAT(1X)F7.3)1X)14,AD14.8) 43 IF(J.EQ. JM)GO TO 600 CALL CALC(J)ICALC) 161. 162. 163.

164. IF(ICALC .EQ. 1)60 TO 60 165. WRITE(6,250)J 250 FORMAT(1X,11HSTUCK AFTER,15,10H 166. IN CALC) GO TO 600 168. 60 MJ=J 169. J=J+1 1032 D0 32 II=1,NRP 32 FN(II)=F(II) 170. 171. 172. DIST=DZ\*FLOAT (MJ) 173. C C C 174. ANA DOLGU BOLGESI ORTALAMA SIVI AKIS HIZLARININ HESAPLANMASI 175. FI(J)=(1,D 00-W(J)) WRITE(20,20)W(J),FI(J),DEL(J) IF(J .NE, KP)G0 TO 43 KP=KP+JMMD 176. 177. 178. 179. 180. WRITE(6,208)DIST, J, (F(I), I=1, NR, NRD), FB(J), DEL(J), W(J), FI(J) 181. 208 FORMAT(1X,F7.3+1X+14+8014.7) c c 182. 183. AKIS HIZLARI INTEGRASYON KISMI Ċ 184. 185. IF (NOINT .EQ. 0)GO TO 43 IF(J, EQ, JINT(1),  $OR_{J}$ , EQ, JINT(2),  $OR_{J}$ , EQ, JINT(3)) GO TO 44 IF(J, NE, JINT(4), AND, J, NE, JINT(5), AND, J, NE, JINT(6)) GO TO 186. 187. 188. 143 189. 44 CONTINUE 190. WRITE (6,209) 209 FORMAT(///30x, 55HFLOW DISTRIBUTIONS IN CONCENTRIC SECTIONS OF THE 191. 1COLUMN) 192. 193. ປປະປ CALL FLINT (FR.E.Y.JJ.NCYL, IND, TINTF) 194. IF (IND .NE. 1)GO TO 400 NCYLM=NCYL-1 195. 196. 197. SUMF=FR (NCYL) 1302 DO 302 L=1+NCYLM SUMF=SUMF+FR(L) 198. 199. 302 E(L)=(E(L)/FR(L))\*1,0 02 200. E(NCYL)=(E(NCYL)/(FR(NCYL)-W(J)\*PYE))\*1.0 02201. 202. ZZ=DZ\*FLOAT(JJ=1) 203. WRITE(6,210)2Z+FR(1)+Y(1)+Y(2)+E(1) 210 FORMAT(/1X,7HDEPTH ,F9.5:3X:10HFLOW RATE=,D15.8;1X:10HSECTN FROM, 1F9.6:2HT0:F9.6:29HEST;MATED INTG ERR (PERCENT)=,D15.8////) 1303 D0 303 L=2:NCYL 204. 205. 206. LL=L+1 207. WRITE(6,211)FR(L),Y(L),Y(LL),E(L) 208. 211 FORMAT (30X+D15+8+11X+F9.6+2X+F9.6+29X+D15.8) 209. 210. 303 CONTINUE RES1=(DABS((SUMF=PYE)/PYE))\*1.D 02 RES2=(DABS((TINTF=PYE)/PYE))\*1.D 02 211. 212. KE52-(UABS(())V(F-PYE)/PYE))\*1.0 U2
WRITE(6:212)SUMF:PYE.RES1
212 FORMAT(/1X:25HSUM OF INTEGRATED FLOWS =:D15.8:2X:6HINPUT=:D15.8:2X
1:14HPERCENT ERROR=:D15.8)
WRITE(6:213)TINTF:PYE.RES2 213. 214. 215. 216. 213 FORMAT(1X,25HINTEG OVER CROSS-SECTION=,D15.8,2X,6HINPUT=,D15.8,2X, 217. 114HPERCENT ERROR=, D15,8) 218. 400 CONTINUE 219. 220. GO TO 43 600 CONTINUE 221. STOP 2220 END 223. AFORIIS .CALC 224. SUBROUTINE CALC(J.ICALC) 225.

| c20;         | <u> </u> |                                                                                      |
|--------------|----------|--------------------------------------------------------------------------------------|
| 227.         | С .      | HESAP KONTROL ALT PROGRAMI                                                           |
| 228.         | С        |                                                                                      |
| 229.         |          | DIMENSION T(30)                                                                      |
| 230.         |          | COMMON/B1/IBPP                                                                       |
| 231.         |          | COMMON/CONST/SR+SR2+0PSR+B+OMSR+SR04+0PSR2+OMSR2+SR2F+GRAOS+GR0S                     |
| 232.         |          | COMMON/FL2/PYE/DR/DZ/RIJ/NFTC/NR                                                     |
| 233.         |          | COMMON/FL3/FIM+FIP                                                                   |
| 234.         |          | COMMON/PROW/DEN,VISC,SURFT,GAMA,SLAMDA,VOID,A,G,AA <sup>7</sup> H <sup>2</sup> FO,X  |
| 235.         |          | COMMON/FDB/JF                                                                        |
| 236.         |          | COMMON/FL1/FB(2010),W(2010),DEL(2010),TP(30),TN(30)                                  |
| 237.         |          | DOUBLE PRECISION SRISR2, OPSRIB, OMSRISRO4, OPSR2, OMSR2, SR2F, GRAOS,               |
| 238.         |          | 1GROS, G, AA, H, FO                                                                  |
| 239.         |          | DOUBLE PRECISION DENIVISCISURFT, GAMAISLAMDA, VOIDIA BOWDEL                          |
| 240.         |          | DOUBLE PRECISION PYETOR, DZ, RIJ, T, TP, Q, ZERO, C1, C2, C3, OM, OMP                |
| 241.         |          | DOUBLE PRECISION TN, GJ,QDEL,FF,TF,FIP,FIM,DD                                        |
| <b>4</b> 42• |          | NGJEU                                                                                |
| 243.         |          | 1 BENK                                                                               |
| <44•<br>245  |          |                                                                                      |
| 6434<br>0.7  | •        |                                                                                      |
| 640 · ·      |          | NIRT=0                                                                               |
| ∠41•<br>240  |          | IBOOND=IB                                                                            |
| 240.         |          |                                                                                      |
| 268.         | 1300     |                                                                                      |
| 251.         | 300      |                                                                                      |
| 252.         | 000      |                                                                                      |
| 253.         | 400      |                                                                                      |
| 254.         |          |                                                                                      |
| 255.         |          | $TP(1) = SR_2F * T(2) + ((SR_2 * TH(2) + oMSR_2 * TN(1) ) / OPSR_2)$                 |
| 256.         |          | (=DABS((TP(1) + T(1))/TP(1))                                                         |
| 257.         |          | IF(Q .GT. ZERO)NTR=2                                                                 |
| 258.         | 1301     | DO 301 I=2. IBOUND                                                                   |
| 259.         |          | FIM = (2, D, 00 + FLOAT(I-1) - 1, D, 00) / FLOAT(I-1)                                |
| 260.         |          | FIP=(2,D,00*FLOAT(I-1)+1,D,00)/FLOAT(I-1)                                            |
| 261.         |          | $TP(I)=B*(FIP*T(I+1)+F_TM*TP(I-1))+(GJ(L,I,J)/OPSR)$                                 |
| 262.         |          | Q=DABS((TP(I)-T(I))/Tp(I))                                                           |
| 263.         |          | IF(Q .GT. ZERO)NTR=2                                                                 |
| 264.         | 301      | CONTINUE                                                                             |
| 265.         |          | NB=IB+1                                                                              |
| 266.         |          | $FIM = (2 \cdot D \ 00 + FLOAT (NB-1) - 1 \cdot D \ 0_0) / FLOAT (NB-1)$             |
| 267.         |          | $FIP=(2.0 00*FLOAT(NB-1)+1.0 0_0)/FLOAT(NB-1)$                                       |
| 268.         |          |                                                                                      |
| 269.         |          | C2=B*F1P*GRA05*2+D UU                                                                |
| 270.         |          | C324.0 00*8*15(15)+8*F15*6R03*2.0 00*00+(G3(N63;NB)0)/058/                           |
| 2/10         | 200      |                                                                                      |
| 272+         | 399      |                                                                                      |
| 270.         |          | IF (11 BOUN - 23,1700 10 BUU                                                         |
| 275-         | 200      | FORMAT(1),17HAFTER 3Ut IN CALC)                                                      |
| 276.         | . 200    |                                                                                      |
| 277.         |          | RETURN                                                                               |
| 278.         | 600      | TP(NB)=FF                                                                            |
| 279.         |          | $OMP = (w(J) + (2,D) + (0*GAM_{\Delta}*i)Z*A*(FF*X)))/(1,D) + (0+2,D) + (0*GAMA*DZ)$ |
| 280          |          | Q=DABS((OMP-OM)/OMP)                                                                 |
| 281.         |          | IF(Q .GT. ZERO)NTR=2                                                                 |
| 282.         | 500      | IF(NTR ,EQ. 1)GO TO 501                                                              |
| 283.         | -        | OM=OMP                                                                               |
| 284.         |          | IBPP=IB+1                                                                            |
| 285.         |          | NTRY=NTRY+1                                                                          |
| 286.         |          | 1F(NTRY. LT. 100)GO 10 1304                                                          |
| 287.         |          | WRITE(6,202)NTKY+J,NGJ                                                               |

| 288.<br>289.<br>290. | 202           | FORMAT(1X,13HNTRY EXCEEDED,16,12H IN CALC**J=,16,4HNGJ=,12)<br>ICALC=0<br>Definat |
|----------------------|---------------|-----------------------------------------------------------------------------------|
| 201                  | 1300          |                                                                                   |
| 2910                 | 1004          | DO 304 ITI IBPP                                                                   |
| <92 +                | 204           |                                                                                   |
| 293.                 |               | GO TO 400                                                                         |
| 294.                 | 501           | CONTINUE                                                                          |
| 295.                 |               | W(J+1)=OMP                                                                        |
| 296.                 |               | CALL DE(TA(OMP), (D, T, D))                                                       |
| 297.                 |               |                                                                                   |
| 208                  |               |                                                                                   |
| 200                  |               | TOTOL T - FE (ND)                                                                 |
| <b>4</b> 97.         |               |                                                                                   |
| 300.                 |               | RETORN                                                                            |
| 201.                 |               |                                                                                   |
| 302.                 | VLOU'         | IS DELTA                                                                          |
| 303.                 |               | SUBROUTINE DELTA(WF,J.DZ,DEL)                                                     |
| 304.                 | С             |                                                                                   |
| 305.                 | С             | DUVAR AKTST STVI TABAWAST KALTNI IGINI HESAPLAYAN ALT PROGRAM                     |
| 306.                 | ċ             |                                                                                   |
| 307.                 | -             |                                                                                   |
| 308-                 |               |                                                                                   |
| 300                  |               | COMMON/PROW/DENT/ISC/SORFIJOAMA/SCAMDA/VOID/AUGIAA///POVA                         |
| 309.                 |               | COMMON/BLAST/F1/STRH                                                              |
| 510.                 |               | DOUBLE PRECISION DENVISCISURET, GAMAISLAMDA, VOID, ALAA, GHIFO, X                 |
| 311.                 |               | DOUBLE PRECISION FI,S, PYE, AREA, WB, DIR1, DTR2, REY, DP, RAT, F, D1, D2, DEL    |
| 312.                 |               | 1, DDT, DEA, WF, GG, VISA, RH, SF                                                 |
| 3 <u>1</u> 3.        | •             | N=0                                                                               |
| 314.                 |               | SF=S*.3048D 00                                                                    |
| 315.                 |               | GG=DSQRT(G)                                                                       |
| 316.                 |               | DEA=DEN/16.0185D 00                                                               |
| 317.                 |               | 0TR1=1 · D=03                                                                     |
| 318.                 |               | PYE=3 1415926535898                                                               |
| 319.                 |               | VISA=VISC# 671969                                                                 |
| 320                  | 400           | ADEA = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0                                      |
| 301                  | 400           |                                                                                   |
| 300                  |               | ND=W #F [E*(AA**2/*F04]DA/(F1434) 00*3(DD 03*A(CA)                                |
| 322.                 |               | $D_{L} = 0 \cdot D = 0 (0 + (1 \cdot D = 0) - (0 \cdot 1)) / (-1 + 2^{-})$        |
| 323.                 |               | RET-UP*WB/(VISA)                                                                  |
| 324.                 |               | RA1=2.73.                                                                         |
| 325.                 |               | F=7.9D=02/(REY**.25)                                                              |
| 326.                 |               | D1=REY*DSQRT(F)                                                                   |
| 327.                 |               | D2=3.15D+01*((VISC*.671969*D1/(GG*DEA))**RAT)                                     |
| 328.                 |               | DTR2=D2                                                                           |
| 329.                 |               | DDT=DABS((DTR1+DTR2)/DTR1)                                                        |
| 330.                 |               | N=N+1                                                                             |
| 331.                 |               | IF(DDT .LE. 1.D-06)60 TO 401                                                      |
| 332.                 |               | DTR1=DTR2                                                                         |
| 333.                 | •             | TELT NE. 1401) 60 TO 400                                                          |
| 334.                 |               | WRITE (6.101)N.DTR2.DUT.WB.REY.E.D1.D2.DTR1.AREA                                  |
| 325.                 |               | 60 10 400                                                                         |
| 376.                 | 401           |                                                                                   |
| 3300                 | 401           |                                                                                   |
| 370                  |               |                                                                                   |
| 3300                 | 100           | $\pi \kappa_1 r_1 (\sigma_1 (\sigma_1) \sigma_2)$                                 |
| 239.                 | 100           | FORMAT(777771111 ROM DELTA)                                                       |
| 340.                 |               | WRITE (6,101) G. GGIDLA, DEN, VISA, WE, AATEO, VISC, VOID, DEPPYEDEL              |
| 341.                 | 101           | FORMAT()                                                                          |
| 342.                 | 402           | CONTINUE                                                                          |
| 343.                 |               | RETURN                                                                            |
| 344。                 |               | END                                                                               |
| 345.                 | <b>∆FOR</b> ₽ | IN .GJ                                                                            |
| 346.                 |               | DOUBLE PRECISION FUNCTION GJ(L, i, J)                                             |
| 347.                 | с             | · · · · · · ·                                                                     |
| 348                  | č             | DJ FONKSTYONUNU HESAPLAYAN ALT PROGRAM                                            |
| 349.                 | č             |                                                                                   |

| 350.  | ø   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7.1   |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 351.  |     |        | COMMON/PROW/DEN, VISCISURFT, GAMA, SLAMDA, VOID, AIG, AATHFOIX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 352.  |     |        | COMMON/CONST/SR+SR2+OPSR+B+OMSR+SR04+OPSR2+OMSR2+SR2F+GRAOS+GROS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 353,  |     |        | COMMON/F1 1/FB(2010) + W/2010) + DFL (2010) + F(30) + FN(30)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 354.  |     |        | DOUBLE PRECISION F.FB. DEL .W.G.AA.H .FO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 365   |     |        | DOUBLE TRUCTOTION STATE OPERATION OF STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE OF A STATE O |
| 3338  |     |        | DODELE PRECISION 3KISR2IOPSKIBIOMSKISRO4IOPSK2IOMSKEISKEI IGKAOSI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 350.  |     | 1      | LGROS A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ა57.  |     |        | DOUBLE PRECISION FN, FIM, FIP, DEN, VISC, SURFT, GAMA, SLAMDA, VOID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 358.  |     |        | IF(L-1)400,401,401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 359.  | С   |        | FOULATION 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 360.  | •   | 400    | C = COM(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T) = CPO(T)   |
| 3/1   |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 361.  |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 362.  |     | 399    | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 363.  | С   |        | EQUATION 79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 364.  |     | 401    | $G_J = SRO4 * FIP * FN(I+1) + OMSR * FN(I) + SRO4 * FIM * FN(I-1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 365.  |     | -      | RETIRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 366   |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7.7   |     | -00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 361.  | Δ!  | OK I   | IN • FBOUND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 368.  |     |        | SUBROUTINE FBOUND(C1+C2+C3+X+F+TF+IFBOUN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 369.  | С   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 370.  | С   |        | STNTRDAKT E DEGERINT HESAPLAYAN ALT PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 371.  | č   |        | STUTUDOUT C STORIGUE MANAGEMENT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 7-0   | C   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 372.  |     |        | COMMONTEDRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 373.  |     |        | DOUBLE PRECISION C1+C2+C3+ F,F1+F2+E1+E2+TF+EE+ZERO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 374.  |     | 399    | ZER0=1.0-08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 375.  |     |        | NTRY=0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 376 . |     | 405    | FI-TF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 397   |     | 100    | 1 1-11<br>E1#072 01.E1=00#/E1##V.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3//•  |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 378.  |     |        | F2=1F*1.05D 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 379.  |     | 400    | E2=C3=C1+F2=C2+(F2++X)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 380.  |     |        | EE=DABS((F2-F1)/F2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 361.  |     |        | TE(EE_(1T, 7ER0)G0_TO_401                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 302   |     |        | $[-\Gamma_1 - (\Gamma_0 - \Gamma_1) + (\Gamma_1 - (\Gamma_0 - \Gamma_1))]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3820  |     |        | F=FI=(1/2#FI)/*/+I/(CC*FI)/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 383.  |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 384.  |     |        | F1=F2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 385.  |     |        | F2=F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 386.  |     |        | NTRY=NTRy+1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 307.  |     |        | IF(F2) + GF = 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0 + 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 300   |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 380.  |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 284*  |     |        | 1F=(C3/C2)**RECX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 390.  |     |        | 60 10 405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 391.  |     | 403    | IF(NTRY _LT. 200)GO TO 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 392.  |     |        | WRITE(6,200)NTRY/EE/F2/F1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 393.  |     | 200    | FORMAT(11, 23HNTRY IN FROUND EXCEEDED, 16:3(2X, D15.8))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 304   |     | -00    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 394.  |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 395.  |     | 11.0.4 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 396.  |     | 401    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 397.  |     |        | 1FBOUN=1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 398.  |     |        | RETURN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 309   |     |        | END                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 400   |     | -00.   | TN PROP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 400.  | _Δ; | -vrv   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 401.  | ~   |        | SUBROUTINE FRUITLEFFYSFACO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 402.  | C   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 403.  | С   |        | MODELE GORE SIVI AKIS PARAMETRELEKINI HESAPLAYAN ALT PROGRAM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 404.  | С   |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 405.  | -   |        | COMMON/PROW/DEN, VISC, SURFT, GAMA, SLAMDA, VOID, A, G, AA, H, FO, X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 404   |     |        | DOUBLE PRECISION TEMP. SPACK. DEN. VISC. SURET. GAMA. SLAMDA. VOID.A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|       |     |        | DOUBLE DECISION 6.4 A H EO.ED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 40/.  |     |        | DUDDEL FREUIDION OFANTIFOFFU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 408.  |     |        | STUMPA=5"210-034020k1(2hark)+20kLi/(404+1.0 05)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 409.  |     |        | FD =FO*DEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 410.  |     |        | IF(SURFT .GT. 5.0D 01)GO TO 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 411.  |     |        | GAMA=(3.D 00*AA/2.D 00)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|       |     |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| 412.    |             | X=1.73                                                             |
|---------|-------------|--------------------------------------------------------------------|
| 413.    |             | xx=1x                                                              |
| 414.    |             | A=2.D 00*5.41D-05/(AA*(FD**XX))                                    |
| 415.    |             | GO TO 401                                                          |
| 416.    | 400         | GAMA=(4.2D 00*AA/2.D 00)                                           |
| 417.    | / -         | X=7.64F-01                                                         |
| 418.    |             |                                                                    |
| 419.    |             | $A=2$ , $D_{A=2}$ , $D_{2D=0}$ ( $AA_{+}(=D_{++}YY)$ )             |
| 450.    | 401         |                                                                    |
| 421.    | 401         |                                                                    |
| 4.22.   | AFON.       |                                                                    |
| 403.    | 7. OU.      |                                                                    |
| 4200    | , c         | SOBROUTINE PETRITIRIE, RIGINCIE, INDITOTALI                        |
| 425.    | č           | AKTS HT2, INTEGRALLED-NUM KONTOOL ALT DOCCAMT                      |
| 4200    | č           | AKIS HIZI INTEORACLENTININ KONTROL ALT PROGRAMI                    |
| 4200    | C           |                                                                    |
| 427.    |             | DIMENSION $FR(10) = (10) + R(10) + X(40) + F(40)$                  |
| 420.    |             | COMMON/FL2/PYE/DR/DZ/RIJ/NF/C/NR                                   |
| 429.    |             |                                                                    |
| 430.    |             | DOUBLE PRECISION F,FB,W,DEL,FR,E,FYE,DR,DZ,RIJ                     |
| 431.    |             | DOUBLE PRECISION ERROR TOTAL FN                                    |
| 432.    |             | 1001=1                                                             |
| 433.    |             |                                                                    |
| 434.    |             | IBENK                                                              |
| 435.    | 400         | NPOINT=(NR/NCYL)+1                                                 |
| 436.    |             | NP1=IB+1-(NPOINT-1)*(NCYL-1)                                       |
| 437.    | •           | IF(NP1 .GE. 4 .AND.NPOINT .GE. 4)60 10 399                         |
| 438.    |             | WRITE (6,200) J, NP1, NP0TNT                                       |
| 439.    | 200         | FORMAT(1X,37HINTEGRATION CANNOT BE PERFORMED FORJ=+14,22HPOINTS ON |
| 440.    |             | I OUTER SHELL=,12,23HPOINTS ON INNER SHELLS=,12)                   |
| 441.    |             | 1ND=0                                                              |
| 442.    |             | RETURN                                                             |
| 443.    | С           | GENERATING RADII TO DELIMIT SECTIONS                               |
| 444.    | 399         | R(1)=0.                                                            |
| 445.    | · · · · · · | NCYLP=NCYL+1                                                       |
| 446.    | 1300        | D0 300 I=2,NCYLP                                                   |
| 447.    | - 300       | R(I)=R(I-1)+DR*FLOAT(POINT-1)                                      |
| 448.    |             | 1A=1                                                               |
| 449.    |             | NBEFOR=1                                                           |
| 450.    | 1302        | D0 302 M=1:NCYL                                                    |
| 451.    |             | NP=NPOINT                                                          |
| 452.    | 1303        | DO 303 N=1+NP                                                      |
| 453.    |             | NN=NBEFOR-1+N                                                      |
| 454.    |             | X(N)=DR*FLOAT(NN-1)                                                |
| 455.    | 303         | $FF(N) = FN(NN) + X(N) + 2 \cdot D = 00 + PYE$                     |
| 456.    |             | NBEFOR=NBEFOR+NP-1                                                 |
| 457.    |             | CALL CUBINT(X,FF+NP+IA+NP+RESULT+ERROR+IND)                        |
| 458.    |             | IF(IND = EQ. 1)GO TO 4D2                                           |
| 459.    | 401         | WRITE (6,201) J                                                    |
| 460.    | 201         | FORMAT(1X;42HCUBINT RETURNED WITHOUT INTEGRATION FOR J=+I4)        |
| 461.    |             | RETURN                                                             |
| 462.    | 402         | FR(M)=RESULT                                                       |
| 463.    | 302         | E(M)=ERROR                                                         |
| 464.    |             | FR (NCYL)=FR (NCYL)+W (J) *PYE                                     |
| 465.    |             | 18P=18+1                                                           |
| 466.    | 1304        | DO 304 N=1,IBP                                                     |
| 467 .   |             | X(N) = DR * F LOAT(N-1)                                            |
| 468     | 304         | FF(N)=FN(N) *X(N)*2.0 00*PYE                                       |
| 469.    | 404         | CALL CUBINT (X+FF+IBP+TA+IBP+RESULT+ERROR+IND)                     |
| 470.    | .0.         | 1F(IND +FQ, 1)GO TO 403                                            |
| 471.    |             | WRITE (6, 202) J                                                   |
| 472.    | 202         | FORMAT(1x,42HCUBINT RETURNED WITHOUT INTEGRATION FOR JEVI4.5HTOTAL |
| 473.    | -0-         |                                                                    |
| - / 5 • | •           | • 7                                                                |

| 474. |        | RETURN                                                            |
|------|--------|-------------------------------------------------------------------|
| 475. | 403    | TOTAL=RESULT+W(J)*PYE                                             |
| 476. |        |                                                                   |
| 477. |        | RETURN                                                            |
| 478. |        | END                                                               |
| 479. | AFOR . | IN CURINT                                                         |
| 480. |        | SUBROUTINE CUBINT(Y.F.N.TA.TB.RESULT.FRRORIND)                    |
| 481. | C      |                                                                   |
| 482. | č      | INTEGRASYON ALT PROGRAMT (DAVIS VE RABINOWITZ: 1975)              |
| 483. | č      | THE HEALTH ALL HOUSE IN THE TANK IN THE TANK IN THE TANK          |
| 484. | -      | DIMENSION X(N) F(N)                                               |
| 485. |        | DOUBLE PRECISION X.F. DESULT ERROR S.C.RI. R2, R3, R4, D1 (D2, D3 |
| 486. |        | DOUBLE PRECISION H1+H2+H3+H4+7H+76+212+23+75+710+760+72+2120      |
| 487. |        | TND=0                                                             |
| 488. |        | IF (NoLTou OR, IAOLTOIOR, IBOGTON) RETURN                         |
| 489. |        | IND=1                                                             |
| 490. |        | ZH=•50 00                                                         |
| 491. |        | 26=6.D 00                                                         |
| 492. |        | 712=1.20 01                                                       |
| 493. |        | ∠3=3•D 00                                                         |
| 494. |        | 25=5•D 00                                                         |
| 495. |        | Z10=1-D 01                                                        |
| 496. |        | Z60=6.D 01                                                        |
| 497. |        | Z2=2.D 00                                                         |
| 498. |        | 2120=1.20 02                                                      |
| 499. |        | IF(IA .EQ. IB)RETURN                                              |
| 500. |        | ERROR=0.D 00                                                      |
| 501. |        | RESULT=0.D 00                                                     |
| 502. |        | IF(IA .LT. IB) GO TO 2                                            |
| 503. |        | IND=-1                                                            |
| 504. |        | IT=IB                                                             |
| 505. |        | IB=IA                                                             |
| 506. |        | IA=IT                                                             |
| 507. | 2      | S=0.0 00                                                          |
| 508. |        | C=0.D 00                                                          |
| 509. |        | R4=0•D 00                                                         |
| 510. |        | J=N∞2                                                             |
| 511. |        | IF(IA .LT. N-1 .OR. N .ÉQ. 4)J=MAX0(3,IA)                         |
| 512. |        | К=4                                                               |
| 513. |        | IF( IB .GT. 2 .OR. N .EQ. 4)K=MINO(N.IB+2)-1                      |
| 514. |        | DO 1 I=J,K                                                        |
| 515. |        | IF(I .GT. J)GO TO 5                                               |
| 516. |        | H2=X(J-1)-X(J-2)                                                  |
| 517. |        | D3=(F(J-1)-F(J-2))/H2                                             |
| 518. |        | $H_3 = X(J) - X(J - 1)$                                           |
| 519. |        | $U_1 = (F(J) - F(J-1))/H_3$                                       |
| 520. |        | H1=H2+H3                                                          |
| 521. |        | D2=(D1-D3)/H1                                                     |
| 522. |        | H4=X(J+1)=X(J)                                                    |
| 523. |        | $R_1 = (F(J_{+1}) - F(J)) / H_4$                                  |
| 524. |        | $R_{2}=(R_{1}-D_{1})/(H_{4}+H_{3})$                               |
| 525. |        | H1=H1+H4                                                          |
| 526. |        | R3=(R2=D2)/H1                                                     |
| 527. |        | IF(IA .GT. 1) 60 TO 3                                             |
| 528. |        | RESULT=H2*(F(1)+H2*(2++D3+H2*(D2/26*(H2+H3+H3)*R3/2+2)))          |
| 529. |        | S=+H2**3*(H2*(Z3*H2+Z5*H4)+Z1()*H3*H1)/Z60                        |
| 530. |        | 60 10 8                                                           |
| 531. | 5      | H4=X(1+1)+X(1)                                                    |
| 532. |        | K1=\F(1+1)=F(1/)/D4                                               |
| 533. |        |                                                                   |
| 534. |        | N2=1N1=017784 (                                                   |
| 5350 |        | 1/4-1/7+1/2                                                       |

| 536.      | R3=(R2-D2)/R4                   | . · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 537.      | R4=(R3=D3)/(R4+H1)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 538.      | 8 IF(I.GT.IB .OR. I.LE.TA)GO TO | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 539.      | RESULT=RESULT+H3*((F(T)+F(I-1   | )) *ZH=H3*H3*(D2+R2+(H2=H4)*R3)/Z12)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 540.      | C=H3**3*(Z2*H3*H3+Z5*(H3*(H4*)  | 12)+Z2*H2*H4))/Z120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 541.      | ERROR=ERROR+(C+S)*R4            | <ul> <li>A state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the sta</li></ul> |
| 542.      | IF(I .EQ. J)GO TO 14            | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 543.      | S=C                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 544.      | GO TO 15                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 545.      | 14 S=S+C+C                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 546.      | G0 T0 15                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 547.      | 11 FRROR-FRPOR+R4*S             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 548.      | 15 IF(I   T K)GO TO 20          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 549.      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 550.      | DECHT = DECHT T HAT E AN T AT T | 01+H4*(00276+(H3+U3+H4)+03/712))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 561.      |                                 | 10. 75+H2)+710+H3+(H2+H3+H3+H3+H4))/760                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 552.      | 22 15/18 Cr NL 1 50000000015#1  | 4442041274210411041124104114777200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 563       |                                 | (4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 564.      | 20 10 1                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 555.      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 556.      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 557       | 01-01                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 559       | 00-83                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5:0       |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 559.      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 560 .     |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 501.      | IFTIND LOG INCTORN              | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5020      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 5630      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3644      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 565.      | RESULT=-RESULT                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 565.      | ERROR                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 567.      | IND=1                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 568.      | RETURN                          | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 569.      | END                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 570.      | AFORIAN SMAXO                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 571.      | FUNCTION MAXU(LIM)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 572.      | IF(L ,GT, M/MAXUEL              | · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 573.      | IFIL .LI. MIMAXU=M              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 574.      | RETURN                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 575.      | END                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 576.      | AFORPIN SMINU                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 577.      | FUNCTION MIND(L,M)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 578.      | IF(L .GT, M)MINO=M              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 579.      | IF(L .LT. M)MINO=L              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 580.      | RETURN                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 581.      | EN()                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 582.      | 2X01                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| END DATA. |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ΔFIN      |                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

#### REFERANSLAR

- {1} Ateşmen,K.M., "The Dispersion of Matter in Turbulent Shear Flow", Int. J. Heat Mass Transfer, 14, 2146, (1971).
- {2} Atesmen,K.M., Baldwin,L.V., ve Haberstroh,R.D., "The Dispersion of Matter in Turbulent Pipe Flows", J. Basic Engineering (Trans. A.S.M.E.), 461, (Dec. 1971).
- {3} Bird,R.B., Stewart,W.E., ve Lightfoot,E.N., "Transport Phenomena", John Wiley and Sons, New York, (1960).
- [4] Boyadziev,L., Beschkov,V., ve Kyuchoukov,G., "On the PDE-Model of a Closed End Chemical Reactor", Chem.Eng.Sci., 30, 437, (1975).
- {5} Carnahan,B., Luther,M.A., ve Wilkes,J.O., "Applied Numerical Methods", John Wiley & Sons, Inc., New York, (1969), Sayfa 446.
- [6] Choi, C.Y., ve Perlmutter, D.D., "A Unified Treatment of the Inlet Boundary Condition for Dispersive Flow Models", Chem.Eng.Sci., 31, 250, (1976).
- {7} Cihla,Z., ve Schmidt,O., Collection of Czech. Chemical Comm., 23, 569, (1958).
- {8} Clements, W.C., ve Blalock, K.E., "Comparison of Method of Moments and Method of Least-Squares in Analyzing Tracer Injection-Response Data from Fluid Systems", Chem.Eng.Sci., 27, 2311, (1972).
- {9} Danckwerts, P.V., "Continuous Flow Systems; Distribution of Residence Times", Chem.Eng.Sci., 2, 1, (1953).
- {10} Davis, P.J., ve Rabinowitz, P., "Methods of Numerical Integration", Academic Press, New York, (1975).
- {11} Denbigh,K.G., ve Turner,J.C.R., "Chemical Reactor Theory", 2nd Ed., Cambridge University Press, Cambridge, (1971), sayfa 90.
- {12} Dharwadkar,A., ve Sylvester,N.D., "Liquid-Solid Mass Transfer in Trickle Beds", A.I. Ch.E. Jour,. 23, 376, (1977).
- {13} Dutkai,E., ve Ruckenstein,E., "Liquid Distribution in Packed Columns", Chem, Eng. Sci., 23, 1365, (1968).
- {14} Eroğlu,1., "Residence Time Distribution in the Liquid Phase for Trickle Flow in a Packed Column", Y.Lisans Tezi. O.D.T.U., (1973).
- {15} Finlayson, B.A., "The Method of Weighted Residuals and Variational Principles", Academic Press, New York, (1972).
- {16} Glasser,D., Katz,S., ve Shinnar,R., "The Measurement and Interpretation of Contact Time Distributions for Catalytic Reactor Characterization", Ind.Eng.Chem.Fundam., 12, 165, (1973).
- {17} Hald,A., "Statistical Theory with Engineering Applications", John Wiley and Sons, New York, (1952).
- {18} Hartman, M., ve Coughlin, R.W., "Oxidation of SO2 in a Trickle-Bed Reactor Packed with Carbon", Chem. Eng.Sci., 27, 867, (1972).
- {19} Haynes,H.W., "The Determination of Effective Diffusivity by Gas Chromatography", Chem.Eng.Sci., 30, 955, (1975).
- {20} Himmelblau,D.M., ve Bischoff,K.B., "Process Analysis and Simulation", John Wiley and Sons, New York, (1968).
- {21} Hoftyzer,P.J., "Liquid Distribution in a Column with Dumped Packing", Trans. Instn. Chem. Engrs., 42, T109, (1964).
- {22} Hoogendoorn,C.J., ve Lips,J., "Axial Mixing of Liquid in Gas-Liquid Flow Through Packed Beds", Canad. J. Ch.E., 43, 125, (1965).
- {23} INTERNATIONAL MATHEMATICAL AND STATISTICAL LIBRA-RIES, INC., UNIVAC VERSION.
- {24} Jameson,G.J., "A Model for Liquid Distribution in Packed Columns and Trickle Bed Reactors", Trans. Instn. Chem. Engrs., 44, T190, (1966).

- {25} Kayihan,F., ve Sandall,O.L., "Gas Absorption with First Order Reaction in Turbulent Liquid Films", A.I.Ch.E. Jour., 20, 402, (1974).
- {26} Keenan, J.M., ve Keyes, F.G., "Thermodynamic Properties of Steam", John Wiley and Sons, New York, (1962).
- {27} Klinkenberg,A., "Moments of Residence Time Distributions for Cascades of Mixed Vessels with Backmixing", Chem. Eng. Sci., 23, 1975, (1968).
- {28} Kramers,H., ve Alberda,G., "Frequency Response Analysis of Continuous Flow Systems", Chem.Eng.-Sci., 2, 173, (1953).
- {29} Lapidus,L., "Flow Distribution and Diffusion in Fixed-Bed Two-Phase Flow Reactors", Ind.Eng.Chem., 49, 1000,(1957).
- {30} Le Nobel,J.W., ve Choufoer,J.M., "Development in Treating Processes for the Petroleum Industry", Fifth World Petroleum Congress Proc., Section III, Paper 18, Fifth World Petroleum Congress Inc., New York (1959).
- {31} Levec,J., ve Smith,J.M., "Oxidation of Acetic Acid Solutions in a Trickle Bed Reactor", A.I.Ch.E. Jour., 22, 159, (1976).
- { 32} Levenspiel, 0., "Comparison of the Tank-in-Series and the Dispersion Models for Non-Ideal Flow of Fluid", Chem.Eng.Sci., 17, 576, (1962).
- {33} Levenspiel,0., "Chemical Reaction Engineering", J.Wiley and Sons, Inc., New York, (1962).
- {34} Levenspiel, 0., ve Smith, W.K., "Notes on the Diffusion Type Model for the Longitudinal Mixing of Fluids in Flow", Chem.Eng. Sci., 6, 227, (1957).
  - {35} Lister,A., "Engineering Design and Development of Desulfurizer Reactors", 3rd European Symposium on Chem.Reaction Engineering, 225 (1964).
  - { 36 } Mears, D.E., "The Role of Axial Dispersion in Trickle Flow Laboratory Reactors", Chem. Eng. Sci., 26, 1361, 1971.

- {37} Mitchell,A.R., "Computational Methods in Partial Differential Equations", John Wiley and Sons, New York, (1969).
- {38} Miyauchi,T., ve Kikuchi,T., "Axial Dispersion in Packed Beds", Chem. Eng. Sci., 30, 343, (1975).
- {39} Moore,W.J., "Physical Chemistry", p.732, Prentice Hall, Englewood Cliffs, New Jersey, (1962).
- {40} Onda,K., Takeuchi,H., Maeda,Y., Takeuchi,N., "Liquid Distribution in a Packed Column", Chem. Eng.Sci., 28, 1677, (1973).
- {41} Paraskos, J.A., Frayer, J.A., ve Shah, Y.T., "Effect of Incomplete Catalyst Wetting and Backmixing During Hydroprocessing in Trickle Bed Reactors", Ind. Eng. Chem., Process Des. Dev., 14, 315, (1975).
- {42} Perry,R.H., ve Chilton,C.H., "Chemical Engineers' Handbook ", 5th Ed., Mc Graw Hill, New York, (1973), sayfa 5-57.
- {43} Porter,K.E., "Liquid Flow in Packed Columns", Trans, Instn. Chem. Engrs., 46, T69, (1968).
- {44} Porter,K.E., ve Jones,M.C., "A Theoretical Prediction of Liquid Distribution in a Packed Column with Wall Effect", Trans. Instn. Chem. Engrs., 41, 240, (1963).
- {45} Rao,V.G., ve Varma,Y.B.G., "A Model for the Residence Time Distribution of Liquid Phase in Trickle Beds", A.I.Ch.E. Jour., 22, 612, (1976).
- {46} Rothfeld,L.B., ve Ralph,J.L., "Equivalence of Pulse and Step Residence Time Measurements in a Trickle-Phase Bed", A.I.Ch.E. Jour., 9, 852, (1963).
- {47} Salvadori,M.G., ve Baron,M.L., "Numerical Methods in Engineering", Prentice Hall, Englewood Cliffs, New Jersey, (1961).
- {48} Satterfield,C.N., "Mass Transfer in Heterogeneous Catalysis", M.I.T. Press, Cambridge, Massachusetts, (1970).

- {49} Satterfield,C.N., "Trickle Bed Reactors", A.I.Ch.E. Jour., 21, 209, (1975)
- {50} Satterfield,C.N., ve 0zel,A., "Direct Solid Catalyzed Reaction of a Vapor in an Apparently Completely Wetted Trickle Bed Reactor", A.I.Ch.E. Jour., 19, 1259, (1973).
- [51] Satterfield, C.N., Pelossof, A.A., ve Sherwood, T.K., "Mass Transfer Limitations in a Trickle Bed Reactor", A.I.Ch.E. Jour., 15, 226, (1969).
- {52} Satterfield,C.N., ve Way,P.F., "The Role of the Liquid Phase in the Performance of a Trickle Bed Reactor", A.I.Ch.E. Jour., 18, 305, (1972).
- {53} Schiesser,W.E., ve Lapidus,L., "Further Studies of Fluid Flow and Mass Transfer in Trickle Beds", A.I.Ch.E. Jour., 7, 163, (1961)
- {54} Schuit,G.C.A., ve Gates,B.C., "Chemistry and Engineering of Catalytic Hydrodesulfurization", A.I. Ch.E. Jour., 19, 417, (1973).
- {55} Schwartz,J.G., Weger,E., ve Dudukovic,M.P., "Liquid Holdup and Dispersion in Trickle Bed Reactors", A.I.Ch.E. Jour., 22, 953, (1976).
- {56} Shah,Y.T., ve Paraskos,J.A., "Intraparticle Diffusion Effects in Residue Hydrodesulfurization", Ind. Eng. Chem., Process Des.Dev., 14, 368, (1975).
- {57} Sherwood,T.K., Pigford,R.L., ve Wilke,C.R., "Mass Transfer", (2nd Edn.), Mc Graw-Hill Book Co., New York, (1975).
- {58} Shinnar,R., Naor,P., ve Katz,S., "Interpretation and Evaluation of Multiple Tracer Experiments", Chem. Eng. Sci., 27, 1627, (1972)
- {59} Shulman,H.L., Ullrich,C.F., and Wells,N., "Performance of Packed Columns", A.I.Ch.E. Jour., 1, 247, (1955).
- {60} Smith,G.D., "Numerical Solutions of Partial Differential Equations", Oxford University Press, London, (1965).

- {61} Smith,J.M., "Chemical Engineering Kinetics", 2nd Edition, Mc Graw-Hill Book Company, New York, 1970; bak: Bölüm 6.
- {62} Spalding,D.B., "A Note on Mean Residence-Times in Steady Flows of Arbitrary Complexity", Chem.Eng. Sci., 9, 74, (1958).
- {63} Standart,G., "The Thermodynamic Significance of the Danckwerts' Boundary Condition", Chem.Eng. Sci., 23, 645, (1968)
- {64} Stewart, W.E., ve Sorensen, J.P., "Transient Reactor Analysis by Orthogonal Collocation", Proceedings Chem. Rxn. Engr. Symposium, Preprint B8-75, Amsterdam, (1972).
- {65} Sylvester, N.D., Kulkarni, A.A., ve Carberry, J.J., "Slurry and Trickle-Bed Reactor Effectiveness", Canad. J.Ch.E., <u>53</u>, 313, (1975).
- {66} Sylvester, N.D., ve Pitayagulsarn, P., "Mass Transfer for Two-Phase Cocurrent Downflow in a Packed Bed", Ind.Eng.Chem., Process Des. Dev., 14, 421, (1975).
- {67} Uchida,S., ve Fujita,S., "Packed Towers with Liquor Circulation", Jour.Soc.Chem. Ind., Japan, <u>41</u>, 275B, (1938).
- {68} van Deemter,J.J., "Trickle Hydrodesulfurization-A Case History", 3rd European Symposium on Chemical Reaction Engineering, 215, (1964).
- {69} van der Laan, E.Th., "Notes on the Diffusion-Type Model for the Longitudinal Mixing in Flow", Chem. Eng. Sci, 7, 187, (1958).
- {70} van de Vusse, J.G., "Residence Times and Distribution of Residence Times in Dispersed Flow Systems", Chem.Eng.Sci., 10, 229, (1958).
  - {71} van Swaaij,W.P.M., "Residence Time Distributions in Raschig Ring Columns at Trickle Flow", Ph.D. Thesis, Eindhoven, (1967).
  - {72} van Swaaij,W.P.M., Charpentier,J.C., ve Villermaux, J., "Residence Time Distribution in the Liquid Phase of Trickle Flow in Packed Columns", Chem.Eng. Sci., 24, 1083, (1969)

- {73} Villadsen,J., "Selected Approximation Methods for Chemical Engineering Problems", Inst. for Kemiteknik, Numerikal Inst., Danmarks Tekniske Hojskole, (1970).
- {74} Villermaux, J., ve van Swaaij, W.P.M., "Modèle Représentatif de la Distribution des Temps de Séjour dans un Réacteur Semi-infini à Dispersion Axiale Avec Zones Stagnantes", Chem.Eng.Sci., 24, 1097, (1969).
- {75} Wehner, J.F., ve Wilhelm, R.H., "Boundary Conditions of Flow Reactor", Chem.Eng.Sci., 6, 89, (1956).
- {76} YITZHAKI,D., ve AMARONI,C., "Hydrodesulfurization of Gas Oil, Reaction Rates in Narrow Boiling Fractions", A.I.Ch.E. Jour., 23, 342, (1977).
- {77} Referans 42, sayfa 5-52.
- $\{78\}$  Referans 42, sayfa 5-53,
- {79} Cansever,A., Master Tezi, Boğaziçi Universitesi, 1976.