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ABSTRACT

DEVELOPMENT OF SOFTWARE TOOLS FOR IMPROVED
1H MAGNETIC RESONANCE SPECTROSCOPIC IMAGING

Proton magnetic resonance spectroscopic imaging (1H-MRSI) provides a non-

invasive, spatially resolved evaluation of brain metabolism. In the first part of this

study, an open-source data analysis software, which includes modules for visualization

of raw 1H-MRSI data and LCModel outputs, chemical shift correction, tissue fraction

calculation, metabolite map production, and registration onto standard MNI152 brain

atlas while providing automatic spectral quality control, is presented. In the second

part of this study, we investigated metabolic changes of mild cognitive impairment in

Parkinson’s disease (PD-MCI) using 1H-MRSI data. This could be summarized mainly

as ’posterior cortical metabolic changes’ related with cognitive dysfunction. In the last

part of this thesis, the spatial resolution of 1H-MRSI images were increased using

super resolution convolutional neural networks (SRCNN) and enhanced deep residual

networks for single image super-resolution (EDSR) models trained with the anatomical

MR images. Our results indicated that deep learning based super resolution models

would contribute to reconstructing higher resolution 1H-MRSI. This thesis contributed

to the literature in terms of developing Oryx-MRSI, which provides an unprecedented

detailed data analysis pipeline for 1H-MRSI, identifying metabolic correlates of PD-

MCI, which might aid the clinicians for the diagnosis of MCI, and implementing deep

learning based super resolution approaches that might increase the spatial resolution

of 1H-MRSI.

Keywords: Parkinson’s disease, mild cognitive impairment, proton magnetic reso-

nance spectroscopic imaging, super resolution, deep learning, convolutional neural net-

works, open-source software.
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ÖZET

İYİLEŞTİRİLMİŞ 1H MANYETİK REZONANS
SPEKTROSKOPİK GÖRÜNTÜLEME İÇİN YAZILIM

ARAÇLARININ GELİŞTİRİLMESİ

Proton manyetik rezonans spektroskopik görüntüleme (1H-MRSG), beyin me-

tabolizmasının invazif olmayan, uzamsal olarak çözümlenmiş bir değerlendirmesini

sağlar. Bu çalışmanın ilk bölümünde, ham 1H-MRSG verilerinin ve LCModel çık-

tılarının görselleştirilmesi, kimyasal kayma düzeltme, doku fraksiyonu hesaplaması,

metabolit haritası üretimi ve otomatik spektral kalite kontrolü sağlayarak MN152 beyin

atlasına registrasyon yapan açık kaynaklı bir veri analiz yazılımı sunulmaktadır. Bu

çalışmanın ikinci bölümünde, 1H-MRSG verileri kullanarak Parkinson hastalığında hafif

kognitif bozukluğun (PH-HKB) metabolik değişikliklerini araştırdık. Bu bilişsel işlev

bozukluk ile ilgili ’posterior kortikal metabolik değişiklikler’ olarak özetlenebilir. Bu

tezin son bölümünde, 1H-MRSG görüntülerinin uzamsal çözünürlüğü süper çözünür-

lüklü evrişimli sinir ağlarının (SRCNN) ve tek görüntü süper cözünürlük için gelişmiş

derin artık ağların (EDSR) kullanılarak artırıldı. Sonuçlarımız, derin öğrenme tabanlı

süper çözünürlüklü modellerin, daha yüksek çözünürlüklü 1H-MRSG’nin yeniden yapı-

landırılmasına katkıda bulunacağını gösterdi. Bu tez, 1H-MRSG için benzeri görülmemiş

ayrıntılı bir veri analiz hattı sağlayan Oryx-MRSI’ın geliştirilmesi, klinisyenlere HKB

tanısı için yardımcı olabilecek PD-HKB’nin metabolik bağlantılarını tanımlayan ve 1H-

MRSG’nin uzamsal çözünürlüğünü artırabilecek derin öğrenme tabanlı süper çözünür-

lük yaklaşımlarının uygulanması açısından literatüre katkıda bulunmuştur.

Anahtar Sözcükler: Parkinson hastalığı, hafif kognitif bozukluk, proton manyetik

rezonans spektroskopik görüntüleme, süper çözüünürlük, derin öğrenme, konvolüsyonel

sinir ağları, açık kaynak yazılım.
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1. INTRODUCTION

Magnetic resonance imaging (MRI) is a non-invasive technique using non-ionizing

radiation to generate anatomical images of the body. Therefore, it is one of the safest

technologies for the diagnosis and monitoring of several diseases compared to other

imaging modalities like positron emission tomography (PET) and computed tomogra-

phy (CT). MR images are commonly used for diagnosis of many diseases such as mul-

tiple sclerosis, spinal cord disorders, stroke, and tumors [7]. Using MRI, several images

with different contrasts, such as T1-weighted (T1w), T2-weighted (T2w), diffusion ten-

sor imaging (DTI), fluid attenuated inversion recovery (FLAIR), arterial spin labeling

(ASL), and proton magnetic resonance spectroscopic imaging (1H-MRSI), could be gen-

erated. Each MR modality has its own advantages. For instance, T2w FLAIR images

display brain tumor and surrounding edema as a hyperintense region [8]. Additionally,

ASL is one of the main techniques employed for the cerebral blood flow (CBF) mea-

surement in diseases, particularly such as cerebrovascular disease, dementia, and brain

tumors [9]. DTI could reveal white matter tracts in the brain and could be used to

assess the local effects of a tumor on the integrity of the white matter [10]. Moreover,

integration of DTI and functional MRI (fMRI) in new navigation systems provides

topographical characterization and the volumetric assessment of the functional and

anatomical connections of the brain [10].

Unlike other MRI modalites, MRS technique provides invaluable metabolic in-

formation. The creatine (Cr) metabolite levels provide information about the energy

metabolism, and has been reported to be higher in mixed or nonspecific multiple scle-

rosis lesions [11]. N-Acetylaspartate (NAA) is another MR spectroscopic metabolite

that is an indicator of neuronal viability. The NAA peak intensity has been observed

to be smaller in the brain tumor regions than in the normal brain tissue [12]. Also,

lower NAA levels and a lower NAA over creatine (Cr) ratio have been reported in the

literature as possible findings of cognitive impairment secondary to neuronal loss and

dysfunction in Parkinson’s disease (PD) [13], [14], [15], [16], [17]. On the other hand,
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choline (Cho) is a marker of membrane synthesis and degradation, which has been

observed to be higher in brain tumors [12]. Additionally, higher Cho levels and higher

Cho/Cr have been reported in Parkinson’s disease with mild cognitive impairment

(PD-MCI) [14], [15]. Moreover, myo-inositol (mI) has been indicated as a marker of

gliosis, and higher mI levels have been reported in MCI as one of the early biomarkers

for progression [18], [19], [20]. Overall, MRS is a powerful technique that can be used

in clinical diagnosis and disease treatment planning of several diseases including brain

tumors, multiple sclerosis, and neurodegenerative diseases such as PD [21], [22].

PD is the second most common neurodegenerative disorder. A study estimated

the number of patients with PD as 4.7 million in the most populous five countries

in Western Europe in 2005, and it is projected that this number will reach up to 9.3

million by 2030 [23]. PD is currently diagnosed via motor symptoms, including resting

tremor, rigidity, and bradykinesia [24]. Additionally, non-motor symptoms, such as

cognitive impairment, anxiety, depression, apathy, anosmia, autonomic symptoms such

as urinary incontinence, constipation, and sleep disorders, accompany and sometimes

even precede the motor symptoms in PD and have an adverse effect on the quality

of life [25]. MCI has been reported in 18.9 % to 38.2 % of PD patients, depending

on arbitrarily predefined standard deviations of neuropsychological test scores [26].

Moreover, MCI is one of the key risk factors for dementia, and 60 % of PD-MCI patients

eventually develop dementia (PDD) as the last stage of cognitive decline [27], [28], [29].

So, determining objective and sensitive indicators of early PD-MCI has been needed.

As MR spectroscopic data provides metabolic changes in the brain, defining MRS based

biomarkers of PD-MCI has been a key research topic, and might contribute to slowing

down progression to dementia if successful treatments might become available in the

future.

Although 1H-MRSI provides valuable chemical information, it still has some

limitations preventing its wider use in the clinics. In MRS, the relative or absolute

concentrations of tissue metabolites are calculated within a specific anatomical region

of interest (ROI), which is called a spectroscopic voxel. A voxel within the brain might

contain three fundamental tissue components, gray matter (GM), white matter (WM),
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and cerebrospinal fluid (CSF). Tissue contents within a spectroscopic voxel have direct

effects on the MRS data quantification results, such as a voxel having more water

content (more CSF compared to the GM and WM tissue types) would have reduced

peak intensities [30]. Therefore, partial volume effect (PVE) should be taken into

account for a proper MRS quantification.

Either single-voxel or multi-voxel acquisition can be performed for spectroscopy.

Single voxel is located at one volume of interest (VOI), which is more practical in com-

parison to the multi-voxel MRS imaging (MRSI) even though multi-voxel MRSI covers

a larger portion of the brain that might enable better tumor boundary definition for

treatment planning [12]. However, multi-voxel 1H-MRSI is still challenging due to

the chemical shift displacement artifact, which happens due to the frequency differ-

ences between the metabolites. This artifact results in spatial misregistration for all

metabolites except the reference frequency metabolite, which is usually set as NAA.

On the other hand, the location of other metabolites is shifted with different amounts

in three dimensions. Chemical shift displacement is higher for lower radio frequency

(RF) bandwidths [31], [32], [33], [34] and the correction of this is needed to provide

accurate and reliable interpretation of MRSI data.

Another challenge of 1H-MRSI is analyzing it with other MRI modalities. MRS

data is often acquired from a restricted portion of the brain, and the resultant MRS

metabolite maps that could be generated at different frequencies do not cover the whole

brain. Therefore, it is not straightforward to analyze MRS values at different brain

regions like the other MR modalities. One solution to conduct region of interest (ROI)

analysis for MRSI along with other MRI modalities is creating metabolite maps and

overlay them onto anatomic MRI and common brain atlases for data analysis [2].

The quality evaluation of each spectrum is another issue for an accurate in-

terpretation of MRS data. A visual quality evaluation of all voxels of MRSI data is

usually impractical, necessitating the use of automated techniques to exclude poor MR

spectroscopic data for an accurate data quantification [2].
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Another problem of 1H-MRSI is low spatial resolution, which is usually around

ten times lower than the anatomical MR images. The spectral metabolites of interest

are found at much lower concentrations than water in the body, so larger voxel sizes

are used in 1H-MRSI to get a better SNR. Even if SNR is not a concern, increasing

spatial resolution of 1H-MRSI might be desirable, which results in a long scan time.

Another low-cost approach with no scan time or SNR penalty is using post-processing

super resolution techniques that might help with increasing the spatial resolution of
1H-MRSI. The term "super resolution (SR)" describes a technique designed to im-

prove the spatial resolution of images. Many image processing methods have been

developed to increase the spatial resolution of natural images [35], satellite images [36],

and medical imaging [37]. Learning based image super resolution methods use a train-

ing model for determining a mapping between lower and higher resolution images.

The majority of conventional post-processing techniques for super-resolution MRSI

use model-based regularization with anatomical MRI [38], [39], which frequently gen-

erates painfully slow reconstructions. Recently, a few data-driven deep learning-based

image super-resolution methods have been presented and shown promising results for

super-resolving MRSI metabolic maps [40], [41], [42].

The present work endeavors to elucidate some of the current limitations ongoing

with 1H-MRSI. This dissertation has three aims that has been presented chapter by

chapter, which are as follows:

1. to present an open-source user-friendly advanced three-dimensional (3D) 1H-

MRSI data analysis program, called Oryx-MRSI,

2. to use Oryx-MRSI software for the multivoxel 1H-MRSI data analysis of PD

patients to determine metabolic correlates of MCI, and

3. to improve the resolution of 1H-MRSI data using deep learning.
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2. BACKGROUND

This chapter provides basic information about MRI and MRSI followed by a

short introduction of PD. Possible biomarkers that can be helpful to detect PD-MCI

using MRS are also discussed. Lastly, super-resolution with deep learning in MRSI is

discussed.

2.1 Magnetic Resonance Imaging

MRI is a non-invasive imaging technique that can be used safely in the diagnosis

and follow-up of several diseases, which does not use harmful ionizing radiation. As a

consequence, even kids can be scanned with MRI without causing any harm.

An MR system is comprised of six different components. Each component has

its own role to acquire the final MR image. In this system, a magnet produces the

main magnetic field (B0), shim coils provide a homogenous magnetic field, an RF coil

excites and receives the MR signal, a gradient coil is used for spatial localization, and

a computer processes the signal to visualize the final image. Once a patient is within

an MR scanner, protons inside the human body align either parallel or anti-parallel

to the direction of B0, according to basic MRI physics. Protons also precess with a

specific frequency called the Larmor frequency around the axis of the main magnetic

field. Larmor frequency is calculated as shown in Eq. 2.1 [43],

f0 =
γB0

2π
(2.1)

where the gyromagnetic ratio and the external static magnetic field are represented by

γ and B0, respectively.

The energy required to stay parallel or anti-parallel to the external magnetic
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field differ by ∆E and is calculated as [43],

∆E =
γhB0

2π
(2.2)

where h is the Planck constant (6.626x10-34J/sec).

The relative number of spins at the higher energy state relative to the lower

energy state in thermal equilibrium is given in Eq. 2.3 [43], where the number of spins

aligned parallel to B0 (this state is preferred due to the need for lower energy) and the

number of spins aligned anti-parallel to B0 (requires higher energy) are indicated as

Nup, and Ndown, respectively. The Boltzmann’s constant, given as k, is equal to 1.381

x 10-23 J.K-1. Lastly, temperature in Kelvin is represented by T.

Nup

Ndown

= e−
∆E
kT (2.3)

The difference in the number of spins at two alignments creates a net magneti-

zation, M. In order to excite spins resonating at a desired frequency range, an RF pulse

is applied perpendicular to the external magnetic field. As a result, the magnetization

gets rotated away from the B0 direction. As soon as the RF energy is removed, spins

revert back to the equilibrium condition, where M is parallel to B0 while creating a

magnetic flux detectable by the RF coil. The signal that is acquired during this return

is called the "free induction decay (FID)" signal. FID signal is in time domain, which

is then converted into the frequency domain by a Fourier transform (FT). The appli-

cation of multiple RF pulses is necessary to create an MR image. A pulse sequence

is used to control the application of RF pulses along with the gradients, which are

necessary to perform spatial localization. Depending on the order and the timing of

RF and gradient pulses, several MR imaging modalities could be generated, including

T1-weighted, T2-weighted, DTI, FLAIR, ASL and MR spectroscopy using the same

MRI equipment.
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2.2 Magnetic Resonance Spectroscopy

MRS offers spectroscopic details on the metabolic activity taking place in the re-

gion of interest in addition to the grey-scale anatomical picture produced from MRI de-

vice. In other words, MRS utilizes frequency to encode metabolic information, whereas

MRI basically utilizes frequency to encode spatial information. The MR spectroscopic

signal is known as a spectrum. The ability to see metabolites as discrete peaks is

possible after the transfer of FID data into the frequency domain.

2.2.1 Magnetic Resonance Spectroscopic Imaging

Magnetic resonance spectroscopy can be acquired at a single-voxel or multi-

voxel. A single VOI is used in single-voxel MRS method to produce an MR spectrum,

whereas many adjacent volumes are used in multi-voxel MRS method to produce spec-

tra. This method is often preferred to cover a wider area than single-voxel MRS

method.

2.2.1.1 Chemical Shift

The chemical environment, which has the potential to shift the resonant field,

affects the resonant frequency in addition to γ and the external B0 field. This phe-

nomenon, known as chemical shift, results from the mobility of the surrounding elec-

trons shielding the electron from the external magnetic field. Differences in resonant

frequency can be expressed as,

ω = γB0(1− σ) (2.4)

where σ is the chemical shielding constant [43]. As expressed in Eq. 2.4, the
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frequency shift caused by the chemical environment is proportional to B0. The chemical

shifts can be defined in parts per million (ppm) as [43],

δ = 106 ∗ ω − ωref

ωref

(2.5)

where ω and ωref represent the compound frequency and the reference frequency,

respectively. The chemical shift is denoted in ppm instead of Hertz (Hz), because the

frequency then becomes independent of the external magnetic field strength.

When nuclei are particularly near to another nuclei, their magnetic fields in-

teract, causing J-coupling or spin-spin coupling. J-coupling results in changes of the

phase of the MR spectroscopic signal over time. The external magnetic field strength

has no effect on the J-coupling strength, which is measured in Hz.

Some other factors, such as the longitudinal (T1) and transverse (T2) relaxation

times, proton density, and diffusion, that affect the main contrast in MR imaging can

also have an impact on how a spectrum appears. The echo time (TE) is another key

element in spectral appearance. The term "TE" describes the interval of time between

the first RF pulse application and the data acquisition. The repetition time (TR), which

is the time distance between the consecutive blocks in a pulse sequence, also affects the

spectrum. The time interval between the final two 90°RF pulses in a Stimulated Echo

Acquisition (STEAM) sequence is referred to as mixing time (TM) [44].

Even though 1H-MRS is the most widely utilized MRS technique, phosphorus

(31P), carbon (13C), nitrogen (14N), sodium (23Na), and fluorine (19F) MRS could

also be acquired. The majority of clinical MRI scanners are equipped with 1H-MRS

protocols, so additional hardware is not required for 1H-MRS data acquisition while

all other nuclei require special RF coils and multi-nuclei data acquisition packages.
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Figure 2.1 PRESS sequence diagram [1].

2.2.1.2 Data Acquisition

The two most prominent and preferred 1H MR spectroscopy acquisition se-

quences are Point Resolved Spectroscopy (PRESS) and STEAM. PRESS makes use

of three slice-selective RF pulses with flip angles of 90°, 180°, and 180 applied along

with three gradients in all three orthogonal directions. Figure 2.1 shows a schematic

illustration of the PRESS pulse sequence for a single voxel spatial localization.

A 90 RF pulse and a gradient along y axis are applied to excite the spins for the

selection of a slice along the y axis. After a time TE1/2, a 180 RF pulse and another

gradient along the x axis excite the spins to get a column along x and y axes. The

first echo happens at TE1. A second 180 RF pulse and the last gradient along the z

axis are applied to excite the spins at a specific location along the z axis after a time

TE1+TE2/2. The second 180 RF pulse is followed by a delay of TE2/2 before the

second echo occurs, which is then sampled. Finally, the selected voxel’s spectrum is

generated.
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Figure 2.2 STEAM sequence diagram [1].

Three 90 slice selective pulses along the x, y, and z axes are used in the spatial

localization technique known as STEAM. Three 90 RF pulses are employed with TE/2

and TM time delays. The three 90 RF pulses are applied along with the gradients Gx,

Gy, and Gz similar to the PRESS method. The echo is captured TE/2 after the last

RF pulse. From the point where three localizations overlap, a spectrum is obtained.

Figure 2.2 shows a schematic illustration of the STEAM pulse sequence for a single

voxel.

When a higher SNR is required, PRESS is preferred over STEAM. STEAM is

utilized when short TE is preferred and the chemical shift artifact is at its minimum.

TE for STEAM can be as short as 20 ms, whilst TE for PRESS can range from 30 ms

up to high TEs like 288 ms.
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2.2.1.3 Chemical Shift Artefact

As discussed in section 2.2.1.1, the protons are shielded by the electrons causing

frequency changes depending on the shielding factor. When an RF pulse is applied

at a specific frequency range in the presence of a gradient, the spatial position of the

excited slice varies for metabolites with different resonant frequencies. This variation is

related to the difference in the precessional frequencies between metabolite protons and

the applied gradient [43]. Due to their various resonance frequencies, VOI for various

metabolites then gets shifted relative to another metabolite. The shift amount ∆x can

be calculated as [43],

∆x =
∆ω

γGx

(2.6)

where Gx is the gradient strength and ∆x is the frequency difference. Also, the

chemical shift amount can be expressed as [43]:

∆x = Xl ∗
∆ω

BWx

(2.7)

where BWx is the RF excitation pulse bandwidth and Xl is the width of the

total excited spectral region in the given direction. Figure 2.3 shows an example of

chemical shift displacement of water and NAA.

2.2.1.4 MR Spectroscopic Metabolites

Alanina (Ala)
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Figure 2.3 An example of chemical shift displacement of water and NAA.

The level of Ala, an amino acid with a 0.5 mM concentration in normal tissue,

rises in the human brain in malignancies such as gliomas or meningiomas. It possesses

two resonances. The first one is a quartet found at 3.77 ppm and the second one is a

doublet that overlaps the resonances at 1.47 ppm [45].

Aspartate (Asp)

As a neurotransmitter, Aspartate (Asp) is an excitatory amino acid. It can not

cross the blood-brain barrier. Glucose and various precursors make up aspartame. In

the brain, Asp levels range from 1-2 mM. Three doublets of doublets are present on

its spectrum. There is one doublet-of-doublets at 3.89 ppm, and there are two more

doublets-of-doublets at 2.65 ppm and 2.80 ppm [45], [46].

γ-Aminobutyric acid (GABA)

It is an inhibitory neurotransmitter, and the human brain has about 1 mM

GABA. 1.89 ppm, 2.28 ppm, and 3.01 ppm are the places of the three resonances of

GABA. Under particular circumstances, such as a combination of strong magnetic fields

and spectral fitting [45], [47], the detection of GABA levels is achievable. Neuropsy-

chological problems [48], depression [49], [50], epilepsy [51], and panic disorder [52] can

all be accompanied by changes in GABA concentrations.
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Creatine and Phosphocreatine (PCr)

The combined levels of creatine and phosphocrestine (tCr) is the indicator of

energy metabolism. tCr has two singlet resonances, the first one is at 3.03 ppm,

while the second one is at 3.93 ppm. In the human brain, Cr and PCr concentrations

range from 4.0 to 5.5 mM and 4.5 to 6.0 mM, respectively. However, there is a slight

distinction between the white matter and gray matter concentration values. Between

Cr and PCr, there are methyl resonance differences. It is nearly hard to reliably

separate these two metabolites because methyl resonances are very tiny. However, at a

stronger magnetic field (7T or greater), methyl resonances can be substantial enough

for a trustworthy separation of metabolites.

Choline

Cho, phosphorylcholine (PCh), and glycerophosphorylcholine (GPC), together

known as total choline (tCho), is detected as a singlet at 3.2 ppm. Changes in tCho are

closely connected to changes in membrane composition [45]. Cho peak elevation may

be a sign of demyelination, gliosis, ischemia, brain injury, malignancy, or Alzheimer’s

disease. However, a decreasing amount may serve as a biomarker for liver disease and

stroke at its early stages [53], [54], [55].

Glucose (Glc)

There are five hydroxyl groups among the seven protons that make up glucose

(Glc). Glc has two anomers, which coexist in aqueous solutions, with the former having

an equilibrium concentration of 36 % and the latter having a concentration of 64 %.

Glc serves as an energy store [45], [56], [57].

Glutamate (Glu)

Glutamate is an excitatory neurotransmitter that serves as both a precursor and

GABA storage that is an inhibitory neurotransmitter. Additionally, it is crucial for the
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production of proteins, big peptides, and very small metabolites. Since the resonance

groups of Glu are positioned at 2.04 ppm, 2.35 ppm, and 3.74 ppm, they may overlap

with resonances of NAA, Gln, and GABA [45]. Although Glu and Gln levels can not

be distinguished at magnetic field strengths of standard clinical MRI scanners, high

magnetic field strengths of 7T can assist with resolving these metabolites.

Glutamine (Gln)

Glutamine is one of the amino acids and has resonance groups located between

2 and 3.8 ppm with a concentration of 2-4 mM. Low magnetic field strengths make it

impossible to discriminate between Glu and Gln, therefore their peaks are frequently

measured combined and given the name Glx [58].

Glycine (Gly)

It is a neurotransmitter that acts as an inhibitor and is found throughout the

central nervous system. Gly can be transformed into Cr. Gly has a singlet peak at

3.55 ppm. It overlaps with mI, making it challenging to measure the level of glycine

alone [45].

Lactate (Lac)

Lactic acid is the result of anaerobic glycolysis. Regular in vivo MRS is unable to

detect lactate because of its low concentration and overlap with lipid in normal human

brain. Lactate can be seen, though, if its concentration rises as a result of diseases

like tumors, trauma, strokes, and hyperventilation, or with special MR spectral editing

sequences. Lac has a doublet at 1.31 ppm and a quartet at 4.10 ppm [45].

Myo-Inositol (mI)

Myo-inositol is one of the cyclic sugar alcohols that has four resonance groups.

They are a smaller triplet at 3.27 ppm, a triplet at 3.52 ppm, a triplet at 3.61 ppm,
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and a final triplet at 4.05 ppm. mI is a storage form for glucose and plays a critical

role in cell proliferation. By combining short TE with a strong magnetic field, mI can

be easily detected. The peak level of mI are high in demyelination and gliosis [45].

N-Acetylaspartate (NAA) N-Acetylaspartylgluatamate (NAAG)

Reduced levels of this amino acid, which serves as a marker for neuronal density,

are indicative of cell loss in conditions such malignancies [59], [60], stroke [61], [62],

and multiple sclerosis [63], [64]. Additionally, acute metabolic abnormalities, such

hypoxia and ischemia, have been related to reduced NAA levels. The major sin-

glet resonance of N-Acetyl Aspartate is found at about 2.01 ppm, whereas that of

N-Acetylaspartylgluatamate (NAAG) is at 2.04 ppm. In the human brain, NAA con-

centrations range from 7 to 16 mM and NAAG concentrations from 0.6 to 3 mM. Only

a strong magnetic field can separate NAAG, which has multiple peaks that overlap

with those of NAA and glutamate.

Scyllo-Inositol (sI or s-Ins)

Scyllo-inositol (sI) is another cyclic sugar alcohol, which is a kind of abundant

isomer of inositol that comes after mI. The level of sI in the human brain rises in

persistent alcoholism and has a singlet at 3.34 ppm [65], [66].

Taurine (Tau)

An amino acid called Taurine (Tau) plays a part in the osmoregulation and

modulation of neurotransmitter function. Two triplets at 3.25 ppm and 3.42 ppm are

seen in the Tau spectra. It is hard to identify Tau at lower magnetic field strengths,

because it overlaps with mI and Cho [67].



16

2.2.1.5 Software Packages

1H-MRSI has been one of major MRI modalities for the diagnosis, follow-up

and treatment planning of several diseases, including brain tumors and neurological

disorders [68], [69]. Despite the vast amount of information provided by 1H-MRSI, it

is still not widely employed in clinical settings. As a result, there has been a major

effort for improving the clinical utility of 1H-MRSI with recent developments in data

acquisition, processing, and quantitative analysis aspects [70], [71], [72]. Additionally,

several studies employed machine learning techniques to denoise and enhance the MRS

data [73], [74]. As part of these extensive efforts, open-source command-line scripts or

software with user-friendly graphical user interfaces (GUIs) have been released in the

past few years [75], [76], [77], [78], [79], [80], [81], [82], [83], [84], [85], [86], [87], [88], [89].

LCModel is one of the most popular MRS data quantification tools, which estimates

metabolite concentration and metabolite to total creatine ratios for a range of metabo-

lites, including macromolecules and lipids, and it recently became open source [75]. On

the other hand, jMRUI [83] and Tarquin [87] offer customizable GUI-based tools for

spectral visualization and quantification. Metabolite Imaging and Data Analysis Sys-

tem (MIDAS) provides whole-brain MRSI data visualization, processing, and analysis.

Additionally, Osprey is a new open-source MRS data analysis software that currently

supports single-voxel MRS data analysis [77]. Moreover, FSL-MRS is another Python-

based open-source tool that provides data quantification of single-voxel MRS and 2D

MRSI after converting the data into the NIfTI format [76]. More recently, MRspant

has been released, which is an automated R-based MR spectroscopic data analysis tool

for reading, visualizing, and processing MRS data [78]. The available features and

limitations of these software packages are listed in detail in Table 2.1.
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Table 2.1
The features of available software for processing and analyzing MR spectroscopic data.

GUI MRSI Visualization NIfTI-MRS Metabolite Maps Spectra Quality Control Chemical Shift Correction Fraction Calculation Registraion Atlas/voxel-based Statistics

LCModel [75] Yes Yes No No No No No No No

FSL-MRS [76] No Yes Yes Yes No No Yes No No

Osprey [77] Yes No Yes No No No Yes No No

MR Spant [78] No Yes No No No No Yes No No

Gannet [79] No No No No No No Yes No No

OXSA [80] Yes Yes No No No No No No No

Open-source toolbox [81] Yes Yes No Yes Yes No Yes Yes Yes

SIVIC [82] Yes Yes No Yes No No Yes Yes No

JMRUI [83] Yes Yes No No No No No No No

AQSES [84] Yes Yes No No No No No No No

FID-A [85] Yes No No No No No No Yes No

VeSPA [86] Yes No No No No No No No No

Tarquin [87] Yes Yes No Yes Yes No No No No

MIDAS [88] Yes Yes No Yes Yes No Yes Yes Yes

jSIPRO [89] Yes Yes No Yes No No Yes No No
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2.2.1.6 Limitations of MRSI

Although there have been major efforts for improving the clinical utility of 1H-

MRSI with recent developments in data acquisition, processing, and quantitative anal-

ysis aspects [70], [71], [72], 1H-MRSI still has some limitations, including the chemical

shift artifact, partial volume effects, ROI analysis, and low spatial resolution.

There have been some studies to reduce or remove the chemical shift arti-

fact. Some of these methods included fat-suppression techniques, sensitivity encoding

(SENSE), and post processing approaches [31], [33]. However, these techniques require

expertise, which limit their clinical utility. Another approach is estimating the chemical

shift amount and relocating all the metabolite maps considering their corresponding

shift amounts based on the spatial localization parameters, which would result in an

easy post-processing solution.

The analysis of a single voxel MRS is so practical with respect to that of mul-

tivoxel MRS. After single voxel is located at a chosen ROI, the MRS results of par-

ticipants can be analyzed and interpreted for a given ROI. However, multivoxel MRS

localization is almost never the same for different individuals, and group analysis re-

quires registration, which is not straightforward.

In the literature, some studies have released their tools for multivoxel MRSI

analysis. SIVIC [82] is one of them for the visualization and processing of the DICOM

MRS data. It supports different MRS data collected from different MR vendors like

Siemens, GE or Philips. On the other hand, chemical shift correction of the multivoxel

MRS data isn’t supported and the tool doesn’t provide automated spectral quality

check. Up to now, researchers have used visual approach to exclude bad quality spectra

and there is a need for automated approach for objectivity.

Other tools like Java-Based Magnetic Resonance User Interface (jMRUI) [83],

LCModel [75], or Osprey [77] can be used for MRS data quantification, but there is a

need for a tool to further analyze the MRSI data. None of these tools have provided
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automated registration of MRSI data onto common brain atlases like MNI152 brain

atlas [90] considering the chemical shift correction. FMRIB Software Library (FSL) is

an outstanding tool, which can be used for comprehensive analysis of fMRI, MRI and

DTI [91], [92], [93]. Statistical Parametric Mapping (SPM) is a similar tool that enables

all types of brain imaging data analysis [94]. FMRIB’s Linear Image Registration Tool

(FLIRT) could be adapted for MRSI data registration by using a converting matrix

produced during registration of reference MRI images to a common brain atlas. To

achieve registration with these tools, MRSI data should be transferred from spectral

form to metabolite maps overlaid onto reference MRI images.

ROI analysis of MRSI data is another issue that needs addressing. Several

regions of the common brain templates should be extracted and multiplied with the

metabolite maps for regional statistical analysis of MRSI data. As an example, the

brain parcellations defined on MNI152 brain atlas [90] could be used. Schaefer et

al. [95] proposed human brain parcellations based on resting state fMRI (rs-fMRI),

which could be adapted for MRS regional analysis.

2.3 Parkinson’s Disease

PD is one of the progressive neurodegenerative disorders that manifests itself

with motor symtomps, such as stiffness, bradykinesia, and resting tremor. Almost 80

out of 100 PD patients ultimately develop dementia [96]. A-synuclein accumulation in

the form of Lewy bodies (LBs), neuronal loss in the substantia nigra, and deposits of

other amyloidogenic proteins, including frequent amyloid-b and tau, are all examples

of diagnostic neuro-pathology of PD [97]. The diagnosis of PD and the determination

of its stages such as cognitively normal (PD-CN), PD-MCI, or dementia (PDD) are

mainly based on clinical assessment and neuropsychological test measures [98]. The

neuropsychological tests that are used for the diagnosis of Parkinson’s Disease will be

described in section 2.3.1.
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2.3.1 Diagnosis of Parkinson’s Disease

The Unified Parkinson Disease Rating Scale (UPDRS) is a commonly used as-

sessment test for the determination of the severity of PD. It consists of four different

domain assessments: motor manifestations, mental and mood manifestations, and daily

activities like eating, dressing, and turning in bed. Information provided by caregivers

or patients is included in parts 1, 2, and 4 of the UPDRS test. The third section of the

examination looks at the individuals’ motor symptoms. UPDRS is a standardized test

to assess PD progression [99]. However, it is unable to evaluate health-related quality

of life.

In addition to UPDSR, several neuropsychological tests are employed. One of

them is the Addenbrooke’s Cognitive Examination Revised (ACE-R) that evaluates

cognitive abilities such as verbal fluency, language, orientation, and visuospatial skills

[100].

Mini-mental state examination (MMSE) assesses cognitive impairment [101].

MMSE having 30-point questions is a common test used in medical practice to evaluate

mild cognitive impairment and dementia. It consists of straightforward problems and

questions like the location and time of the test, arithmetic problems like the series of

eight, repeating lists of words, basic motor skills, and language comprehension. A high

score denotes higher cognitive abilities.

The Stroop test, often known as the Stroop effect, is a standard neuropsycho-

logical exam that assesses a person’s psychological abilities and attention [102]. This

exam is identifying the color of a word. A word and its written ink are congruent in

the first stage of the Stroop test. A word and its printed ink are not the same in the

second part of the test. Since participants typically read the words without focusing

on the written ink of the words, the latter part of this test is more difficult. They

correct themselves and say the word’s right color when they realize they said the color

incorrectly. As a result, it takes a while to finish the Stroop exam.
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Benton’s Judgment of Line Orientation test (JLO) test provides a flexible way

to examine spatial perception in both research and therapeutic settings [103]. Line

segments in this test are orientated differently, and they need to be matched with a

response card that has longer lines. The total score is determined by counting the right

answers, with age and gender adjustments. Patients are classified as normal, mildly

impaired, or severely impaired based on the test results.

The symbol digit modalities test (SDMT) was developed to assess the level of

patients’ neurological damage. The SDMT can be used to look at the impairment

of neurocognitive abilities, such as motor, speed, attention, and visual scanning [104].

Participants are given a set of symbols to match with a sample set of numbered symbols,

and they have 90 seconds to do so while writing down the numbers that go with each

match. The examination is given in both written and oral form.

The Wisconsin Card Sorting Test (WCST) is a neuropsychological assessment

of the thinking ability and cognitive flexibility [105]. There are two decks of cards, and

each deck has a number of cards with varying colors, sizes and forms. It is believed

that the stimulation card from the first deck of cards will match the second deck of

cards. Each participant is shown a card from the second deck one at a time. As a

consequence, the player is required to match the first deck of cards with the second one

in accordance with rules that wasn’t mentioned to her/him. By formulating his rules

in accordance with the feedback provided following each right response, the participant

must match the cards.

2.4 Super-Resolution with Deep Learning

Deep learning is the new area of machine learning and it could imitate human

brain workings in terms of processing data or creating patterns for decision making.

Neural networks can be thought like the human brain neuron nodes and all of them are

connected to each other like a web. Deep learning is very effective because of its ability

to learn a sequence of non-linear transformations, extract features, and fuse information
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from different modalities. In other words, it is able to learn in supervised, semi-

supervised and unsupervised manners for data representations with specific algorithms

[106], [107], [108]. The main reasons why deep learning has increased in popularity are

improved GPU technology, increased training and testing data sets for deep learning,

and breakthroughs in processing machine learning research.

Compared to hand-engineered domains such as computer vision and audio anal-

ysis, deep learning has outstanding performance. At the same time, deep learning

architectures including deep belief networks, recurrent neural networks, and deep neu-

ral networks have outperformed the state of the art especially in handwriting [109] or

face recognition [110], pattern recognition [111], image classification [112], image super

resolution [113], and social network filtering [106] within the last decade.

There have been many different state-of-the-art image super resolution methods,

such as fast super-resolution convolutional neural network (FSRCNN) [114], photo-

realistic single image super-resolution using a generative adversarial network (SRGAN)

[115], second-order attention network (SAN) for single image super resolution [116],

multi-scale residual network (MSR) for image super-resolution [117], and enhanced

deep residual networks for single image super-resolution (EDSR) [6].

2.5 The Aims of This Thesis

The aims of this thesis were threefold. The first aim (Chapter 3) was to de-

velop an open-source 3D MRSI data analysis software, called Oryx-MRSI, with a user-

friendly GUI to improve upon aforementioned limitations of MRSI data analysis by

reading LCModel outputs as well as raw spectral data and enabling visualization and

metabolite map generation considering the chemical shift correction while providing

automated spectral quality control based on full width at half maximum (FWHM),

SNR, Cramer-Rao lower bounds (CRLB), and fraction of CSF (fCSF). This software

provided registration of metabolite maps onto the MNI152 brain atlas [90] for the cal-

culation of metabolite intensities at multiple brain locations, including the functional
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parcellations of the human cerebral cortex based on rs-fMRI networks [95] or the MNI

structural brain atlas regions. A spreadsheet was also provided to export the mean,

median, and standard deviation (SD) values of the metabolites and metabolite ratios

with or without fCSF correction at the multiple brain regions. The second goal was to

investigate metabolic changes in PD-MCI by using 3D MRSI data of 76 participants (16

healthy controls (HC), 26 PD-CN patients and 34 PD-MCI). This was also an example

of the clinical usage of the developed software, Oryx-MRSI. Metabolic values calcu-

lated using Oryx-MRSI were assessed to define differences between PD-MCI, PD-CN,

and HC at several brain regions. Additionally, calculated metabolic parameters and

NPT scores were statistically compared between groups. Lastly, supervised machine

learning algorithms were applied to classify HC, PD-CN, and PD- MCI groups based

on metabolite levels. The last aim of this thesis was to design a new post-processing

super resolution algorithm based on deep learning that would generate high resolution

spatial MRSI maps.
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3. ORYX-MRSI

This chapter describes Oryx-MRSI, which has been developed as a fully-automated

open source software for 1H-MRSI data analysis.

3.1 Rationale

There are some limitations of 1H-MRSI preventing its wider use in the clinics,

including the spectral quality issues, partial volume effect, chemical shift artifact, and

ROI analysis of the metabolite maps (Detailed information of these limitations are

given in section 2.2.1.6). In this study, a MATLAB-based open-source data analysis

software for three-dimensional 1H-MRSI, called Oryx-MRSI, which includes modules

for visualization of raw 1H-MRSI data and LCModel outputs, chemical shift correction,

tissue fraction calculation, metabolite map production, and registration onto standard

MNI152 brain atlas while providing automatic spectral quality control, is presented.

Oryx-MRSI enables region of interest analysis at brain parcellations defined on MNI152

brain atlas. The contents of this chapter has been published at the IMA Journal [2].

3.2 Methods

Oryx-MRSI was written in MATLAB 2020a (Mathworks Inc., Natick, Mas-

sachusetts) and also has been tested using MATLAB versions 2020a and newer in

Ubuntu 18.04.5 LTS and macOS 11.4 Big Sur. All sub-functions of Oryx-MRSI can be

called as command-line scripts. Oryx-MRSI can be easily used through a user-friendly

GUI. The GUI was developed with the MATLAB App Developer and all the inputs

that are taken from the user are checked and verified to handle possible user errors. A

complete Oryx-MRSI data analysis pipeline includes nine different modules, which are

load data, co-registration, segmentation, FWHM and SNR, spectral quality, metabolite

maps, registration, ROI analysis, and distributions. Before the analysis starts, the user
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is asked to provide some parameters, including the cut-off values of the CRLB, fCSF,

FWHM, and SNR for voxel exclusion criteria, a frequency parameter for the reference

metabolite, RF bandwidth of the sequence for chemical shift correction, and cut-off

value for the probabilistic binary map after registration onto the MNI152 brain atlas.

The results of the analysis are automatically saved in the " spectra" folder after the

execution of each module. The following subsections describe the Oryx-MRSI modules

in detail.

3.2.1 Load Data

This module enables the user to visualize 3D 1H-MRSI data located either in

a raw data file or COORD file generated by LCModel. Currently, Oryx-MRSI sup-

ports 3D 1H-MRSI raw data saved in the SPAR/SDAT format acquired on a Philips

MR scanner and NIfTI-MRS format. For reading the NIfTI-MRS data, an open-source

code available at ’https://github.com/schorschinho/nifti-mrs-matlab’. This github link

for Nifti-MRS-Matlab was adapted. Some examples of 3D 1H-MRSI datasets can be

found in the " /Oryx-MRSI/Dataset" folder under the GitHub repository located at

’https://github.com/Computational-Imaging- LAB/Oryx-MRSI’. Oryx-MRSI also al-

lows the user to load and visualize their own dataset stored as an SPAR or a NIfTI-MRS

file under the " /Oryx-MRSI/Dataset" folder. The necessary steps of the data prepara-

tion before data analysis with Oryx-MRSI are detailed in the documentation available

in the GitHub repository.

The default imaging system for the data order of the raw data and LCModel

outputs are left, posterior, and superior (LPS). Accordingly, the column numbers in-

crease from right to left, and the row numbers increase from the anterior to posterior

directions at a selected slice at the visualization screen. Although several metabolites,

including lipids and macromolecules, are quantified by LCModel, Oryx-MRSI currently

creates metabolite maps for Cr+PCr, Glx, Cho, mI, Lac, and lipids (Lip13a, Lip13b,

Lip13a + Lip13b), in addition to another metabolite, which could be defined on the

main screen in addition to the predefined metabolite maps. The software also allows
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zooming in on a voxel for a closer view, and visualization of the individual metabolites.

3.2.2 Co-registration

Oryx-MRSI supports reading reference structural MR images in NIfTI format.

In this module, first, the position and orientation information of the scanner-space

coordinates of the field of view (FOV) are parsed from an SPAR file, and each voxel’s

size, position, and orientation information are calculated considering their slice, row,

and column numbers. This module uses ’Gannetmask_Philips’ function from Gannet

for co-registration [79] after some necessary modifications for 3D data analysis and

generates binary masks for FOV, volume of interest (VOI), and individual voxels. Oryx-

MRSI asks the user to select one reference metabolite from among H2O, NAA, Cr, Cho,

and Lac/Lip or to set a free frequency parameter, and to specify the RF bandwidths of

the MR system for the excitation and the first and second echo directions in Hz. The

chemical shift correction is applied when the chemical shift correction option is set to

’on,’ and the RF band-widths are provided by the user.

For chemical shift correction, the gradient strengths (T/mm) on the excitation,

and first and second echo directions (dir) are calculated as follows:

GRdir =
−RFdirbw

gamma1H ∗ 10−3 ∗ V OIdir
∗ chemicalshiftsign(dir) (3.1)

where gamma1H is equal to the gyromagnetic ratio in Hz/T, VOI represents the volume

of interest box sizes in mm in the respective directions, chemical shift sign is either

+1 or -1, and positive chemical shift directions are L, P, and S for the LPS imaging

system. The chemical shift amounts in mm in the three respective directions are then

calculated as,

chemshiftdir = −δppm ∗ 10−6 ∗ Resonancefreq

gamma1H ∗ 10−3 ∗GRdir

(3.2)

where δppm is the ppm difference between the shifted and reference metabolites, and

the resonance frequency is in Hz. Cr+PCr (3.03 ppm), Glx (2.25 ppm), Cho (3.2 ppm),
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mI (3.52 ppm), Lac (1.3 ppm), Lip13a (1.3 ppm), Lip13b (1.3 ppm), and Lip13a +

Lip13b (1.3 ppm) metabolite maps and if present a user-defined metabolite map are

estimated. The user can change the default value for the metabolite ppm. The corre-

sponding FOV for these metabolites are shifted in space by their respective chemical

shift amounts. This module ensures that the binary voxel masks are positioned onto

the same coordinate system and co-registered to the reference structural image. The

resultant binary masks are saved in the NIfTI format under the ’ /coreg_binary_mask’

folder.

3.2.3 Segmentation

The segmentation module uses FMRIB’s Software Library (FSL)-Fast tool to

segment the T1w-MRI into CSF, WM, and GM regions. If the anatomical refer-

ence image for 1H-MRSI is T1w-MRI, this module calculates the CSF, WM, and GM

fractions at each voxel of all different binary masks, which are FOV placements of

every metabolite after chemical shift correction. On the other hand, if the anatomi-

cal reference image for 1H-MRSI is T2w-MRI, the T1w-MRI and CSF, WM, and GM

probabilistic maps are first registered to T2w-MRI using FSL-Flirt. Then, the CSF,

WM, and GM fractions are calculated for all voxels of different metabolite masks. The

tissue fraction calculations of the 3D 1H-MRSI are modified from Osprey [77], which

calculates GM, WM, and CSF fractions for a single-voxel MRS data. If the chemical

shift correction is set to "off," the tissue fractions are calculated separately for each

voxel. On the other hand, each metabolite will have a shifted box placement if the

chemical shift correction is set to "on." As a result, the tissue fractions are calculated

separately for each metabolite of individual voxels when the chemical shift correction

is "on."
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3.2.4 CRLB, FWHM, SNR

The CRLB FWHM SNR module reads the LCModel TABLE files of multivoxel
1H-MRSI data to retrieve the CRLB, FWHM, and SNR information for each voxel.

This module also provides sagittal, coronal and axial views of the CRLB, FWHM, and

SNR maps for all the slices.

3.2.5 Spectral Quality Control

This module provides automatic and manual spectral quality control to select

high-quality voxels for the analysis based on the FWHM, SNR, CRLB, and fCSF

thresholds provided by the user. The GUI asks the user to determine the cut-off values

for FWHM, SNR, CRLB, and fCSF to exclude poor-quality spectra. Each metabolite

has a CRLB value provided in TABLE files after LCModel data analysis, indicating

the quantification reliability, which were used to exclude spectra based on CRLB. The

logical operator "or" was used to automatically exclude the poor spectra. Additionally,

the user can manually select the voxels to be included in or excluded from the analysis.

The user could also select individual voxels to see its FWHM, SNR, CRLB, and fCSF

values.

3.2.6 Metabolite Map

LCModel TABLE files are parsed to obtain the concentration values of the

metabolites. These results are positioned onto a 3D MR volume with the same im-

age space and properties as the reference anatomical MRI. The off-center, size, and

angulation along the anterior-posterior (ap), left-right (lr), and cranial-caudal (cc) di-

rections are considered to create several 3D MR spectroscopic maps including both the

concentration and CSF-corrected concentration maps, and their Ins or Cr + PCr ratio

maps.
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CSF correction is necessary to reduce the partial volume effect in multivoxel

MRSI data analysis [30]. The corrected metabolite concentrations are calculated as

follows:

C = C0(
1

1− VCSF

) (3.3)

where C represents the corrected metabolite concentration and C0 the initial

metabolite concentration obtained from the LCModel TABLE files. VCSF is the vol-

ume fraction of the CSF of each voxel calculated at the segmentation module. The

outputs of this module are saved under the ’spectra/nifti’ directory.

3.2.7 Registration

The registration module enables the user to register the reference anatomical

MRI onto the MNI152 brain atlas using the FSL-FLIRT tool to obtain a transformation

matrix, which is then used to register the spectral image volumes, including the binary

mask of the VOI and all the raw and CSF-corrected concentration or ratio maps onto

the atlas. Although the original binary mask of the VOI has all the ones inside and

zeros outside, the pixel intensities have a range of probabilistic values ranging between

0 and 1 after registration. The user is asked to provide an inclusion cut-off value for

probabilistic maps. Thus, only those pixels that exceed this threshold are considered

to be within the VOI and considered for further analysis. The outputs of this module

are saved under the ’ /spectra/nifti/MNI_Regist_Probabilistic’ directory.

3.2.8 ROI Analyze

This module enables the user to evaluate the metabolic maps at functional

parcellations of the human cerebral cortex on rs-fMRI networks or MNI structural
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brain atlas regions and calculates the mean, median, and standard deviation of the

chosen concentration map in these brain regions. If the number of pixels in an ROI

is greater than the exclusion ratio (given on the ROI module page), then that ROI is

included in the analysis of the metabolite of interest, otherwise, it is not. The ROI

Analyze module exports all the results in a Microsoft Excel sheet and a ’.csv’ file.

3.2.9 Distributions

This module shows a box plot of a selected metabolite’s distribution at a selected

region for a visual assessment.

3.2.10 Data Acquisition of Example Datasets

Examples of 3D 1H-MRSI datasets for Oryx-MRSI are available in the ’ /Oryx-

MRSI/Dataset’ folder which is under the GitHub repository. One healthy control

and one patient with Parkinson’s disease were scanned on a 3T clinical MR scanner

(Philips Healthcare, Best, The Netherlands) after obtaining written informed consent.

The study was conducted with the approval of the Institutional Review Board. The

brain MRI protocol included T1w MRI (TR = 8.31 ms, TE = 3.81 ms, flip angle =

8, acquisition matrix = 256 x 256 x 90, FOV = 240 mm x 240 mm, slice thickness

= 1 mm, scan time = 143s), T2w MRI (TR = 10243 ms, TE = 80 ms, flip angle

= 90, acquisition matrix = 128 x 128 x 90, FOV = 240 mm x 240 mm x 180 mm,

slice thickness = 2 mm, scan time = 3.5 min), and a 3D 1H-MRSI acquired using a

PRESS sequence (TR = 1000 ms, TE = 52 ms, 1000 Hz, 1024 points, data acquisi-

tion matrix = 14 x 14 x 3, 588 voxels, FOV = 140 mm x 140 mm x 36 mm, voxel

size = 10 mm x 10 mm x 12 mm, total scan time = 8 min). A T2w MRI was used

as the reference anatomical MR image for 1H-MRSI. The excitation, echo, and echo2

directions were along AP, RL, and FH, respectively. The phase-encoding direction

(RFOV) was along RL. The chemical shift directions were defined during the data

acquisition, which were A, L, and F along AP, LR, and foot-head (FH) for the ex-
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ample datasets, respectively. The reference metabolite was NAA at 2.02 ppm. The

raw 1H-MRSI data were quantified with LCModel using a simulated basis set named

gamma_press_te52_128mhz_627d.basis provided by the LCModel distributor. Later,

brain extracted NIfTI files of T1w MRI, T2w MRI, and the raw data files in SPAR and

SDAT format, LCModel outputs, and the screenshots of the 1H-MRSI data acquisi-

tion were saved under ’ /Oryx-MRSI/Dataset/Patient_Name’ directory. The spectral

datasets given in the GitHub repository were evaluated in detail qualitatively, and the

exclusion criteria for the example dataset were defined as <8, >0.10, >30, and >0.30

for the SNR, FWHM, CRLB, and fCSF values, respectively [118], [119], [120].

MRI brain protocols for Braino GE Phantom trials are given as text files in

the GitHub repository, separately. The Braino GE Phantom was scanned on the same

scanner with four different trials to assess the chemical shift directions (TR/TE =

1000/52 ms, 3D scan mode, transverse orientation). In the first and second trials, the

RFOV was set as RL. The chemical shift directions were defined as A, L, and F along

AP, LR, and FH, respectively. The only difference between the first and second trials

was the plan scan metabolite, which was set as water and NAA, respectively. In the

third and fourth trials, the RFOV was set as AP. The chemical shift directions were A,

R, and H along AP, R, and FH, respectively. The plan scan metabolites of the third

and fourth trials were water and NAA, respectively.

3.3 Results

Figure 3.1 shows the main screen of Oryx-MRSI, where the user can provide

the required parameters of the cut- off values of CRLB, fCSF, FWHM, SNR for voxel

exclusion criteria, RF bandwidth of the sequence for chemical shift correction, and cut-

off value for the probabilistic binary map after registration onto the MNI152 brain atlas.

An example NIfTI-MRS data, which is available at ’https://github.com/wtclarke/fsl-

_mrs’, was successfully loaded and visualized (Figure 3.2).

The dataset named K_01 in the GitHub repository was used for the example
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data analysis. Oryx-MRSI successfully loaded the example dataset and enabled visu-

alization of the 3D 1H-MRSI dataset after reading either the raw data (Figure 3.3) or

the COORD files (Figure 3.4).
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Figure 3.1 The main screen of Oryx-MRSI where the user could provide the required parameters of cut-off values of CRLB, fCSF, FWHM, and SNR for
voxel exclusion criteria, RF bandwidth of the sequence for chemical shift correction, and the cut-off value for the probabilistic binary map after registration
onto the MNI152 brain atlas [2].



34

Figure 3.2 Display of an example NIfTI-MRS data [2].
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Figure 3.3 Visualization of the 3D 1H-MRSI dataset after reading a raw data [2].
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Figure 3.4 Visualization of the 3D 1H-MRSI dataset after reading a COORD file (Blue: Raw spectra, Orange: Fitted spectra) [2].
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Figure 3.5 Left: Zooming in on a voxel for a closer view. Right: Visualization of the individual
metabolite fits [2].

The software also supported zooming in on a voxel for a closer view (Figure 3.5,

left), and visualization of the individual metabolite fits (Figure 3.5, right).

Figures 3.6 and 3.7 show the visualization of the 1H-MRSI data acquired with

the first and second phantom trials, which were conducted with water and NAA as

the plan scan metabolites, respectively. All metabolites were shifted towards the left

direction when water was set as the reference frequency. However, Cho was shifted

towards the right and Lac was shifted towards the left direction when NAA was used

as the reference frequency. The chemical shift amount in the AP direction was less

than in the other directions due to the higher RF pulse bandwidth.
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Figure 3.6 Two slices of the 1H-MRSI data acquired with the first phantom trial, which were conducted with water as the plan scan metabolites [2].
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Figure 3.7 Two slices of the 1H-MRSI data acquired with the second phantom trials, which were conducted with NAA (B) as the plan scan metabolites [2].
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Figure 3.8 The chemical shift directions of the Cr (green) and Lac (red) boxes when NAA (blue)
was set as the reference metabolite on the second phantom trial ((A) RFOV = RL, chemical shift
directions = A, L, F), and fourth phantom trial ((B) RFOV = AP, chemical shift directions = A, R,
H) [2].

Figure 3.8 shows the chemical shift directions of the Cr (green) and Lac (red)

boxes when NAA (blue) was set as the reference metabolite on the second phantom

trial(A, RFOV = RL, chemical shift directions = A, L, F), and fourth phantom trial

(B, RFOV = AP, chemical shift directions = A, R, H). The Lac box was shifted

towards (A, L, F) and (A, L, H) directions, whereas there were shifts towards (P, R,

H) and (P, R, F) for Cr in the second and fourth phantom trials, respectively. All the

calculated chemical shift directions were consistent with those displayed on the Philips

MR scanner console.

Figure 3.9 shows the placements of the different metabolite FOV boxes (green:

Cr+PCr, blue: NAA+NAAG, red: Cho, pink: Glx, brown: mI) after chemical shift

correction (first row). The second row shows the distributions of metabolite to Cr+PCr

ratio maps both estimated by LCModel and after chemical shift correction at the frontal

lobe of the ’K_01’ dataset given at GitHub. If the chemical shift correction option

was off," the metabolite maps were generated based on the LCModel estimations. On

the other hand, the maps were spatially shifted by the corresponding chemical shift

amount, when the chemical shift correction option was ’on.’ Only the voxels at the

intersection of the shifted boxes were compared for the metabolite to Cr + PCr ratio

maps. The mean (±SD) values of the NAA+NAAG, Cho, Glx, and Ins to Cr+PCr

ratios directly estimated by LCModel at the frontal lobe were 0.32 ± 0.08, 1.91 ± 1.15,

1.45± 0.82, and 0.77 ± 0.34, respectively.

On the other hand, the mean (±SD) values of the NAA+NAAG, Cho, Glx, and
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Figure 3.9 The FOV box placements after chemical shift correction (first row). The distributions
(second row), and the correlations (third row) of NAA+NAAG, Cho, Glx, and Ins to Cr+PCr ratios
estimated by LCModel and after chemical shift correction [2].

mI to Cr+PCr ratios at the same region after chemical shift correction were 0.33±0.09,

1.93±1.44, 1.52±1.07, and 1.41±0.74, respectively. Additionally, the third row shows

the correlations of the metabolite to Cr+PCr ratios estimated by LCModel and af-

ter chemical shift correction calculated using a Spearman rank correlation coefficient.

There were positive correlations between NAA+NAAG/Cr+PCr (r = 0.62, p < 0.001),

Cho/Cr+PCr(r=0.52,p<0.001),Glx/Cr+PCr (r = 0.42, p<0.001) and Ins/Cr+PCr (r

= 0.11, p < 0.001) ratios estimated by LCModel directly and their recalculated values

after the chemical shift correction.

Figure 3.10 shows example binary FOV masks of Cr+PCr and Lac placed on an

anatomical T2-weighted MRI, which indicates the importance of taking chemical shift

into account for 1H-MRSI. Figure 3.11 depicts the FOV and a single voxel (in white,

slice = 1, row = 1, and col = 1) out of the 3x14x14 voxels for the NAA+NAAG (blue

box), Cr + PCr (green box), and Lac (red box) metabolites in all three views.
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Figure 3.10 Example binary FOV masks of Cr+PCr and Lac placed on an anatomical T2-weighted MRI [2].
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Figure 3.11 The FOV and a single voxel (in white, slice = 1, row = 1, and col = 1) out of 3 x 14 x
14 voxels for the NAA + NAAG (blue box), Cr + PCr (green box), and Lac (red box) metabolites [2].

Figures show the fCSF, fWM, and fGM maps for the NAA+NAAG box at slice

1 of the example dataset (Figure 3.12) along with the CRLB, FWHM, and SNR maps

(Figure 3.13), and the voxels included in the analysis after the quality check (Figure

3.14).
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Figure 3.12 (The fCSF, fWM, and fGM maps of the NAA+NAAG box at slice 1 of the example dataset [2].



45

Figure 3.13 The CRLB, FWHM and SNR maps at slice 1 of the example dataset [2].
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Figure 3.14 The voxels included in the analysis after the quality check at slice 1 of the example dataset [2].
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An NAA+NAAG concentration map was generated using the metabolite map

module (Figure 3.15). Additionally, this module allows for the visualization of CSF

corrected concentration maps, and metabolite to Ins or Cr+PCr ratio maps. An

NAA+NAAG concentration map after registration onto the MNI152 brain atlas is

shown in Figure 3.16.
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Figure 3.15 An NAA+NAAG concentration map generated using the metabolite map module [2].
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Figure 3.16 The NAA+NAAG concentration map after registration onto the MNI152 brain atlas [2].
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Figure 3.17 shows an example NAA+NAAG concentration map (A), which is

overlaid onto MNI brain atlas (B) at the brain connectivity networks (C).

Figure 3.17.D depicts NAA+NAAG concentration map at the left somatomotor

6th area and its box plot distribution (Figure 3.18). The module results were validated

with Philips MR scanner and LCModel software for load data, Philips MR scanner for

co-registration and chemical shift correction, and Osprey software [77] for segmentation.
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Figure 3.17 An example NAA+NAAG concentration map (A), which is overlaid onto MNI brain
atlas (B) at the brain connectivity networks (C). The NAA+NAAG concentration map located at the
left somatomotor 6th area (D) [2].
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Figure 3.18 An example box plot distribution of NAA+NAAG concentration map [2].
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3.4 Discussion

There have been several multivoxel 1H-MRSI studies that have employed data

analysis pipelines including automatic and manual data quality control, chemical shift

correction, tissue fraction calculation, metabolite map generation and registration onto

common brain atlases, and ROI analysis [81], [121], [122], [123], [124], [88], [125], [126].

However, a standardized data analysis software has not yet been developed that can

execute all these steps for the analysis of 3D 1H-MRSI data. This study presents Oryx-

MRSI, which is an open-source MATLAB-based end-to-end pipeline for complementary

MRSI data analysis after data quantification. The necessary input files for MRSI data

analysis in Oryx-MRSI are raw MRSI data (SPAR - SDAT or NIfTI-MRS format),

the anatomical MR images saved in NIfTI format, and LCModel outputs including

COORD and TABLE files. Oryx-MRSI supports chemical shift and tissue-fraction

corrections and the generation of MNI-registered metabolite maps after considering

several data quality criteria. Importantly, all metabolite map outputs are stored in a

standard medical image file type, NIfTI, which is a common data storage format for

neuroimaging that can easily be visualized using FSLEyes [127], SPM [94], MRICron

[128], or NiBabel [129] in Python. Additionally, Oryx-MRSI generates brain-atlas-

based statistical analysis results.

Many studies have reported the importance of CSF correction after anatomi-

cal image segmentation [30], [130], [131], [132], [133]. While LCModel [75] does not

take into account partial volume effect, Osprey [77], FSL-MRS [76], and MRSpant [78]

provide corrections for it. Similarly, Oryx-MRSI also supports partial volume fraction

calculations and CSF correction. Another important factor in 1H-MRSI data quantifi-

cation is the chemical shift effect [72], [31]. As a result, Oryx-MRSI has a chemical shift

correction module. However, it is important to note that chemical shift correction for-

mula is dependent on the specifics of the spectroscopy sequence. Additionally, although

the PRESS sequence suffers from this artifact, semi-LASER sequences have better lo-

calization performance. Our analysis results revealed that although the metabolite

to Cr+PCr ratios estimated by LCModel directly and their corresponding values af-

ter chemical shift correction were correlated, they had significant differences in their
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values, because LCModel does not consider the chemical shift, while Oryx-MRSI re-

calculates metabolite concentrations to tCr or mI ratios at every voxel after chemical

shift correction.

The production of metabolite maps registered to standardized brain atlases, such

as the MNI152 brain atlas, is required to facilitate group-based statistical analysis [134]

or to analyze spectroscopic data along with other MR images, such as arterial spin

labeling (ASL) MRI. FSL-MRS, Osprey, and MRSpant co-register MRS data onto the

reference anatomical MRI to compute the CSF fraction and correct for it, but they

currently do not support metabolite map generation, registration onto a common brain

atlas, and ROI analysis. On the other hand, Oryx-MRSI has these additional features.

Another requirement for reliable data analysis is automated quality control of

the spectra based on the linewidth, SNR, and accuracy of the peak fits [135]. The CRLB

is commonly employed to assess the quality of the data quantification. However, Kreis

reported that the use of CRLB values to assess the spectral quality might affect the

resultant findings [136]; hence, we enabled Oryx-MRSI to assess the effects of different

CRLB thresholds on data analysis.

This study had some limitations. It is necessary to note that the chemical shift

directions and formulations provided in the Methods section were calculated for a sin-

gle MR vendor, and it is necessary to validate these formulations for different vendors.

Additionally, Oryx-MRSI currently only supports transverse slice orientation and 3D

scan mode. Moreover, LCModel data quantification results are currently needed to

activate FWHM and SNR, spectral quality, metabolite maps, registration, and ROI

analyze sections. Oryx-MRSI could be installed and run only on macOS and Linux,

because FSL does not directly run on Windows operating systems but requires a Win-

dows Subsystem for Linux (WSL). Additionally, Oryx-MRSI currently supports ROI

based analysis, and a voxel-based statistical analysis module will be developed in the

future. Oryx-MRSI will be continuously updated to provide support for different MR

vendors, and possible integration with earlier open-source MRS data analysis tools.
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3.5 Conclusions

Oryx-MRSI is a fully automated open-source software for comprehensive data

analysis of 3D 1H-MRSI that includes specific modules for automated spectral quality

control, metabolite map production, co-registration with anatomical MRI, segmenta-

tion of anatomical MRI for CSF fraction correction, registration onto MNI152 brain

atlas, and ROI analysis. The metabolic map outputs produced by Oryx-MRSI sup-

ports concurrent evaluation of MRSI data along with other MR modalities at brain

parcellations defined on MNI152 brain atlas and could enable group-based statistical

analysis. As a result, Oryx-MRSI might facilitate more common use of 1H-MRSI in

clinical settings.
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4. IDENTIFICATION OF METABOLIC CORRELATES OF

MILD COGNITIVE IMPAIRMENT IN PARKINSON’S

DISEASE USING MAGNETIC RESONANCE

SPECTROSCOPIC IMAGING AND MACHINE LEARNING

This chapter presents a detailed study for the analysis of multi-voxel 1H-MRSI

data in PD patients, and identifies metabolic correlates of mild cognitive impairment

in PD using machine learning.

4.1 Rationale

Multi-voxel 1H-MRSI provides a simultaneous assessment of multiple brain re-

gions and a more comprehensive metabolic profiling of the brain tissue. The main aim

of this study was to identify possible objective metabolic biomarkers of early cognitive

decline in PD using 1H-MRSI assessed at several regions of the intrinsic connectivity

networks (ICNs), which have been suggested for mapping large-scale connectivity net-

works in the human cerebral cortex using rs-fMRI [137]. This study included spectro-

scopic mapping at various ICN parcellations [95] of the human brain after considering

the chemical shift correction and automated spectral quality control based on FWHM,

SNR, CRLB, and CSF fraction. Our secondary aim was to apply supervised machine

learning algorithms to classify HC, PD-CN, and PD-MCI patients based on metabolic

findings. The contents of this chapter has been published at Magma journal [3].
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4.2 Materials and Methods

4.2.1 Subjects

This prospective study was approved by Istanbul University, Istanbul Faculty

of Medicine, Clinical Research Ethics Committee, and written informed consent was

obtained from all participants. Eighty-seven subjects (41 PD-MCI, 27 PD-CN, and 19

HC) were recruited from the patients referred to the Movement Disorders outpatient

clinic at the Behavioral Neurology and Movement Disorders Unit of the Department of

Neurology. HC were most often the partners of the patients or volunteering employees

of the department. Each patient was classified as PD-CN or PD-MCI by experienced

behavioral neurology and movement disorder specialists. PD diagnosis was according

to the UK Brain Bank criteria [138], and PD-MCI diagnosis was according to the

MDS Task Force guidelines (abbreviated assessment) [139]. PD-MCI patients were

defined as those who received a score of <83 from the ACE-R test [140]. Participants

with a history of a major psychiatric or neurological disorder and less than five years

of education were excluded from the study. The remaining 76 subjects (16 HC, 26

PD-CN, and 34 PD-MCI) were matched according to their age, gender, and education.

4.2.2 Neuropsychological Tests and Rating Scales

A screening and neuropsychological test battery, including the Geriatric Depres-

sion Scale (GDS) [141], Movement Disorder Society Unified Parkinson’s Disease Rating

Scale (MDS-UPDRS) [99], MMSE [101], ACE−R [100], Montreal Cognitive Assessment

(MOCA) [142], Stroop task [102], JLO [103], SDMT [104], and WCST [105] were ap-

plied to all participants to screen for depression and general cognition, to quantify the

general PD symptoms, and to assess specifically the cognitive domains of executive

functioning, visual-spatial functions, and attention. The Hoehn & Yahr scale was also

used for staging the severity of PD.
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4.2.3 MR Data Acquisition and Post-Processing

A brain MRI protocol that included T1w MRI acquired with 3D Turbo Field

Echo (TFE) (TR = 8.4 ms, TE = 3.9 ms, flip angle = 8, acquisition matrix = 256 x

256 x 180, Field of view (FOV) = 250 mm x 250 mm, slice thickness = 1 mm, scan time

= 6 minutes), T2w MRI (TR = 10243 ms, TE = 80 ms, flip angle = 90, acquisition

matrix = 128 x 128 x 90, FOV = 240 mm x 240 mm, slice thickness = 2 mm, scan

time = 3.5 minutes) and 1H-MRSI was performed on a 3T clinical MR scanner (Philips

Healthcare, Best, Netherlands). T2w MRI was used for spectroscopic box placement as

the reference image. 3D 1H-MRSI data were acquired using the PRESS sequence in two

consecutive scans by experienced spectroscopists to cover a large portion of the brain

while avoiding shimming difficulties, susceptibility artifacts, and lipid contamination

(TR = 1000 ms, TE = 52 ms, spectral bandwidth=1000 Hz, 1024 points; RF pulse

bandwidths = 4253 Hz and 1269 Hz for the excitation and the two refocusing pulses,

respectively; data acquisition matrix (superior box) = 14 x 14 x 3 and 588 voxels, data

acquisition matrix (inferior box) = 12 x 12 x 3 and 432 voxels, FOV (superior) = 140

mm x 140 mm x 36 mm, FOV (inferior) = 120 mm x 120 mm x 36 mm, voxel size = 10

x 10 x 12 mm, total scan time = 16 min). The water was suppressed by applying two

frequency selective RF pulses followed by spoiler gradients, and second-order shimming

was applied before data acquisition. Spatial saturation bands were also placed around

the PRESS box to suppress lipid at the scalp area.

Raw 1H-MRSI data were exported and analyzed offline. All spectral vox-

els were qualitatively assessed before the data analysis. The LCModel (version 6.3-

1L) [75] was used to automatically fit a simulated basis set to each spectrum to ob-

tain the spectral peak intensities and SD including mI, and four composite peak in-

tensities (total choline (tCho=GPC+PCh), total creatine (tCr=Cr+PCr), total NAA

(tNAA=NAA+NAAG), and Glx. The basis spectra were provided by the LCModel

distributor for our specific PRESS sequence (TE=52 ms) on a Philips 3T MR scanner,

and it was simulated in GAMMA using the chemical shifts and coupling constants de-

fined by Govindaraju et al. [45] and ideal (hard) pulses. Figure 4.1 shows the sagittal

views of 1H-MRSI FOVs (red) and PRESS selected boxes (green) (a), the spectra of
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a selected region (blue) (b), and a single spectrum example along with some of the

LCModel quantification results (pink) (c) for a 66−years−old male PD−MCI patient.

Oryx−MRSI written in MATLAB (The Mathworks Inc., Natick, MA) was used

to process the MRSI data [2], and Figure 4.2 shows the code workflow. First, the

brain extraction tool (BET) [143] of FSL [92] was called within Oryx-MRSI for skull

stripping of the T1w MRI and the reference T2w MRI (Figure 4.2.a). Then, T1w

MR images were segmented to generate CSF, GM, and WM images using FSL (Figure

4.2.b). Afterwards, T1w MRI data were co-registered onto the reference T2w MRI, and

a transformation matrix was generated (Figure 4.2.c shown with *), which was then

used to co-register CSF, GM, and WM images onto the reference images (Figure 4.2.c

shown with **). The orientation and position information of the spectral FOV were

retrieved from the MRSI data header. The location information of each spectroscopic

voxel was then calculated automatically, considering the number of slices, rows, and

columns (Figure 4.2.d). Then, the FOV box was positioned into a 3D grid in accordance

with the location and size of the reference T2w MRI (by considering the off-center re-

gion of interest (ROI), size, and angulation along the ap, lr, and cc directions) to get

binary location masks of metabolites at the same resolution with T2w-MRI (Figure

4.2.e). PRESS MRSI suffers from the chemical shift artifact. Therefore, the chemical

shift misregistration amount was calculated for each metabolite of interest, considering

that the center of the localization pulses was set to NAA frequency, and the binary lo-

cation masks of metabolites were shifted in space by their corresponding chemical shift

amounts [31] using Oryx−MRSI (please refer to the original manuscript for further

details). As an example, the blue box represents the NAA box, the green represents

the Cr box, and the red represents the lipid box after chemical shift correction in

Figure 4.2.f. Afterwards, the volume fractions within each voxel of the binary local-

ization masks were calculated (Figure 4.2.g). The LCModel TABLE files were parsed

using a text reader to obtain the spectral peak intensities, CRLB, SNR, and FWHM

(Figure 4.2.h). Afterwards, a MATLAB structure was created to store all metabolic

information, including the spectral peak intensities, CRLB, SNR, FWHM, location

information, which were later used for metabolic map generation (Figure 4.2.i).
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Figure 4.1 The sagittal views of the 1H-MRSI FOVs (red) and PRESS selected boxes (green) (a),
the spectra of a selected region (blue) (b), and a single spectrum example along with some of the
LCModel quantification results (pink) (c) for a 66-years-old male PD-MCI patient [3].
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Several inclusion criteria considering FWHM, SNR, CRLB, and CSF fraction

thresholds were applied to produce a final inclusion matrix in the spectral PRESS box

area for the automatic spectral quality check. First, only the spectra with FWHM <

0.1 ppm [118] and SNR >8 were included in the analysis [119]. Next, any metabolite

of a given spectrum with a CRLB of more than 30 was excluded [120]. Additionally,

any voxel with a CSF fraction of more than 0.3 was excluded from the analysis [118].

The binary mask in Figure 4.2.j represents an example of the inclusion matrix

for the tNAA concentrations at a given slice. One MRSI voxel represents a 10 x 10 x 12

mm area on the T2w MRI, which encompasses multiple voxels. Metabolic images, like

a tNAA concentration image, were generated, and each voxel value of MRSI data was

placed in a corresponding area in the 3D volumes in accordance with the T2w-MRI

(Figure 4.2.k - left). All resultant metabolite images were 3D volumes and saved in

NIFTI format with a size of 128 x 128 x 90 to match the T2w MRI. Additionally,

corrected metabolic concentration images were generated by taking into account the

partial volume effect (PVE) as, Ccorrected=C0*(1/(1-VCSF)), where VCSF is the

CSF volume fraction within the voxel of interest (Figure 4.2.k - right). Moreover,

metabolite to total creatine or myoinositol ratio images were generated by applying

pixel by pixel division in the 3D metabolite volumes. Figure 4.2.l shows the division

of an example tNAA image (up left) with a tCr image (upper right) and the resultant

tNAA/tCr ratio image (bottom) at their intersection area. Subsequently, the reference

T2w MR image (Figure 4.2.m, up left) was registered into the MNI152 brain atlas

(Figure 4.2.m, upper right) using FMRIB’s Linear Image Registration Tool (FLIRT)

[144] to obtain a transformation matrix, which was subsequently applied to register

the overlaid metabolic images into the MNI152 brain atlas (Figure 4.2.m, down). This

data analysis pipeline was repeated for the second 1H-MRSI scan. Then, a simple

matrix addition was applied to the metabolite images belonging to the first and second

MRSI scans to create combined metabolic images (Figure 4.2.n, up left). Finally, the

metabolic intensities were evaluated at the intersection of the PRESS box with 400

brain parcellations defined on seven rs-fMRI networks [95] (Figure 4.2.n, upper right).

An example region of interest is shown in Figure 4.2.n (down). Only the regions

included in the PRESS box of at least nine participants of each subject group and 40
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participants of all groups were included in the statistical analysis.

As a result, metabolic ratios, including tCho/tCr, tNAA/tCr, mI/tCr, Glx/tCr,

and tNAA/mI, were evaluated at 69 different brain parcellations. Moreover, FSLeyes

was used to match the rs-fMRI brain parcellations to the Harvard-Oxford cortical atlas

to evaluate metabolite intensities at structural regions.

4.2.4 Statistical Analysis

The neuropsychological test scores, disease duration, levodopa drug dosage,

Hoehn & Yahr, and MDS-UPDRS test scores were compared between PD-CN and

PD-MCI groups using the Mann-Whitney U test. Age, education, and metabolite

values were compared between the HC, PD-CN, and PD-MCI groups using a Kruskal-

Wallis test followed by post-hoc Dunn’s test for pairwise multiple comparisons. The

gender distribution was compared between the three groups using a chi-square test.

Additionally, a Spearman rank correlation coefficient test was used to assess the asso-

ciation between the MR spectroscopic values and neuropsychological test scores in all

patients with PD. Bonferroni multiple comparison correction was applied, and p-values

of < 0. 00007 (0.05/[69 regions * 5 metabolite ratios * 2 (original and corrected)]) were

considered as statistically significant for the tests comparing the metabolic indices be-

tween subject groups in different brain parcellations [95]. On the other hand, the

false-positive error was corrected by the total number of neuropsychological tests, and

p-values of < 0.007 (0.05/7) were considered statistically significant when comparing

the neuropsychological test scores between the subject groups. A p-value of < 0.05 was

considered statistically significant for Dunnâs post-hoc test.

Finally, machine learning algorithms, including k-nearest neighbor (KNN), bagged

trees, and fine Gaussian support vector machine (SVM), were employed in MATLAB

Classification Learner for the classification of HC versus PD-CN or PD-MCI and PD-

CN versus PD-MCI using tNAA/tCr, tNAA/mI, tCho/tCr, tCho/mI, Glx/tCr, Glx/

mI, and mI/tCr at the brain parcellations. The class imbalance issue was addressed
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using the Synthetic Minority Over-sampling Technique (SMOTE) approach. The ac-

curacy, sensitivity, and specificity of the classification algorithms were evaluated using

a five-fold cross-validation.
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Figure 4.2 A step by step visualization of the workflow for the 3D MRSI data analysis [3].
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4.3 Results

Table 4.1 shows the demographic details of the participants in this study. The

ratios of male to female patients were 11:5, 16:10, and 24:10 in the HC, PD-CN, and

PD-MCI groups, respectively. Although the PD-MCI and HC groups had fewer females

than males, the gender distribution was not statistically significantly different between

the three groups (p = 0.75). The mean age of subjects was around 60 years, and

it was not significantly different between the three groups (p = 0.16). Although the

mean years of education were slightly lower in the PD-MCI group (8.35 ± 3.63 years),

this difference was not statistically significant between the subject groups (p = 0.08).

Additionally, PD-CN and PD-MCI patients had similar Hoehn Yahr scores (p = 0.40),

disease duration (p = 0.21), and levodopa dosages (p = 0.21). On the other hand, PD-

MCI patients had lower total MDS-UPDRS (p = 0.05) and MDS-UPDRS-III (p =

0.04) scores than PD-CN patients.

There were statistically significant differences between the ACE-R (p < 0.0001),

ACE-R visual (p = 0.0001), MMSE (p < 0.0001), MOCA (p = 0.0003), and SDMT (p

= 0.0002) test scores of the three subject groups (Table 4.2). While the neuropsycho-

logical test scores were similar between HC and PD-CN groups in pairwise comparisons,

PD-MCI patients had lower ACE-R (p < 0.0001 for both HC and PD-CN), ACE-R vi-

sual (p = 0.002 for HC, and p = 0.0009 for PD-CN), MMSE (p = 0.0013 for HC, and p

= 0.01 for PD-CN), MOCA (p = 0.001 for HC, and p = 0.002 for PD-CN), and SDMT

(p = 0.0015 for HC, and p = 0.002 for PD-CN) than both HC and PD-CN patients.

There were no statistically significant differences between the WCST percentage of

perseverative response scores, STROOP interference time, and JLO scores of the three

subject groups. No statistically significant differences were observed between the GM,

WM, and CSF fractions of the subject groups in this study.

PD-CN patients had higher tGlu/tCr ratio (p = 0.003) and corrected tGlu/tCr

ratio (p = 0.003) than HC at a part of ventral attention / salience networks (VAN/SN),

corresponding to the left dorsal anterior cingulate cortex (dACC) (Figure 4.3, red

region) (Table 4.3). Additionally, PD-CN patients had a higher mI/tCr ratio (p =
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Figure 4.3 The superior brain regions with metabolic differences between the three subject groups.
Red: the left dACC, corresponding to VAN/SN, green: the right precentral gyrus, corresponding to
SMN, gold: left precuneus PCC, corresponding to DMN [3].

Figure 4.4 Additional inferior brain regions with metabolic differences between the three subject
groups. Blue: the right retrosplenial cortex, corresponding to DMN, gold: the right precuneus PCC,
corresponding to DMN [3].

0.01) and corrected mI/tCr ratio (p = 0.02) than HC at a part of default mode network

(DMN), corresponding to the left precuneus, occupying a part of the posterior cingulate

cortex (PCC) (Figure 4.3, gold region). PD-MCI patients had lower tNAA/tCr ratio

(p = 0.002) and corrected tNAA/tCr ratio (p = 0.01) in the right precentral gyrus,

corresponding to sensorimotor network (SMN) (Figure 4.3, green region) than PD-CN.

Finally, there were tNAA/mI ratio and corrected tNAA/mI ratio differences between

the three subject groups in the right retrosplenial cortex, corresponding to the DMN

(Figure 4.4, blue region). Post-hoc comparisons indicated that PD-MCI patients had

lower tNAA/mI (p = 0.04) than PD-CN in this area. Moreover, there was a positive

correlation between tNAA/tCr and JLO in the right precuneus, involving the PCC, a

part of DMN (Figure 4.4, gold region) (r = 0.49, p = 0.0004).
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Table 4.1
The demographic details of the participants in this study.

HC PD-CN PD-MCI p
Sex (M:F) 11:05 16:10 24:10 0.75

Age 59.38±6.71 60.85±9.42 63.00±9.34 0.16
Education Years 10.19±3.83 10.42±4.01 8.35±3.63 0.08
Hoehn & Yahr N/A 1.78±0.51 1.90±0.53 0.40

Disease duration, years N/A 5.6±2.97 6.80±3.62 0.21
Levodopa dosage, mg/day N/A 692.27±354.53 818.00±393.18 0.21

MDS-UPDRS-III N/A 24.38±10.60 30.76±12.96 0.09
MDS-UPDRS-Total N/A 45.11±17.18 52.50±21.57 0.13

Table 4.2
The comparison of the neuropsychological test scores of the three subject groups.

Test Subjects Mean±SD p PD-CN, p PD-MCI, p

WCST % of PR
HC 18.52 ± 7.64

0.04
0.99 0.16

PD-CN 18.51 ± 9.02 0.06
PD-MCI 24.39 ± 9.84

ACE-R
HC 92.69 ± 4.32

<0.0001**
0.55 <0.0001*

PD-CN 89.81 ± 3.82 <0.0001*
PD-MCI 76.82 ± 5.74

ACE-R (Visual)
HC 15.62 ± 0.50

0.0001**
0.99 0.002*

PD-CN 15.48 ± 0.82 0.0009*
PD-MCI 14.17 ± 1.46

MMSE
HC 29.88 ± 0.50

<0.0001**
0.13 0.0013*

PD-CN 29.31 ± 0.84 0.01*
PD-MCI 28.15 ± 1.58

MOCA
HC 25.79 Â±2.42

0.0003**
0.93 0.001*

PD-CN 25.10 ± 2.38 0.002
PD-MCI 22.39 ± 2.48

STROOP IT
HC 46.50 ± 17.17

0.02
0.65 0.03

PD-CN 53.77 ± 18.97 0.22
PD-MCI 74.15 ± 42.81

JLO
HC 24.81 ± 2.76

0.08
0.89 0.11

PD-CN 23.69 ± 3.87 0.28
PD-MCI 21.53 ± 5.23

SDMT
HC 35.69 ± 14.48

0.0002**
0.91 0.0015*

PD-CN 31.00 ± 9.15 0.002*
PD-MCI 21.50 ± 9.61

**p <0.007: statistically significant for the Kruskal-Wallis test; and *p<0.05: Dunn’s post-hoc test.
PR: perseverative responses, IT: interference time.
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Table 4.3
The differences of the original and corrected spectroscopic concentrations and the ratio values

between the three subject groups.

Metabolite Metric Network - PL Core Regions Subjects Mean ± SD p PD-CN, p PD-MCI, p

tGlutCr

Ratio

VAN SN - 108 Left dACC

HC 1.12 ± 0.31 0.004 0.003* 0.14
PD-CN 1.25 ± 0.16 0.39
PD-MCI 1.39 ± 0.39

Corrected Ratio
HC 1.12 ± 0.30 0.005 0.003* 0.14

PD-CN 1.26 ± 0.17 0.41
PD-MCI 1.39 ± 0.38

mItCr

Ratio

DMN - 191 Left precuneus & PCC

HC 0.95 ± 0.13 0.009 0.01* 0.63
PD-CN 1.01 ± 0.21 0.11
PD-MCI 1.12 ± 0.24

Corrected Ratio
HC 0.96 ± 0.13 0.02 0.02* 0.75

PD-CN 1.02 ± 0.20 0.12
PD-MCI 1.12 ± 0.25

tNAAtCr

Ratio

SMN - 252 Right precentral gyrus

HC 1.32 ± 0.25 0.004 0.41 0.38
PD-CN 1.44 ± 0.24 0.002*
PD-MCI 1.16 ± 0.15

Corrected Ratio
HC 1.31 ± 0.22 0.02 0.56 0.49

PD-CN 1.40 ± 0.25 0.01*
PD-MCI 1.16 ± 0.17

tNAAmI

Ratio

DMN - 392 Right retrosplenial cortex

HC 1.52 ± 0.36 0.02 0.06 0.99
PD-CN 1.47 ± 0.31 0.04*
PD-MCI 1.22 ± 0.23

Corrected Ratio
HC 1.51 ± 0.36 0.04 0.1 0.99

PD-CN 1.47 ± 0.30 0.08
PD-MCI 1.23 ± 0.25

Table 4.4
The classification accuracy/sensitivity/specificity of HC vs. PD-CN, HC vs. PD-MCI, and PD-CN

vs. PD-MCI using spectroscopic features.

Subjects Model Accuracy Sensitivity Specificity
HC vs PD-CN Bagged Trees 86.5 73.1 84.6
HC vs PD-MCI Bagged Trees 86.4 72.7 81.8

PD-CN vs PD-MCI Fine Gaussian SVM 77.3 63.6 69.7
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The classification algorithms resulted in an overall accuracy of 86.5 % (sensitivity

= 73.1 % and specificity = 84.6 %) for classifying HC and PD-CN groups based on

metabolic intensities using bagged trees (Table 4.4). On the other hand, HC and PD-

MCI groups were successfully classified using bagged trees with an accuracy of 86.4

% (sensitivity = 72.7 % and specificity = 81.8 %). Finally, the classification accuracy

of PD-CN versus PD-MCI was 77.3 % (sensitivity= 63.6 % and specificity = 69.7 %)

using a fine gaussian SVM.

4.4 Discussion

This study investigated differences in metabolite levels between HC, PD-CN,

and PD-MCI at various functional connectivity network parcellations and explored the

associations between the metabolic markers and neuropsychological test scores. Our

3D 1H-MRSI data acquisition region covered a large portion of the cerebrum without

the need for precise manual region selection. We generated 3D metabolite images af-

ter taking into account CSF partial volume effects and several quality control checks

and registered them into the MNI152 brain atlas to enable consistent ROI analysis

in multiple subjects. Moreover, this atlas-based registration and analysis approach

enabled us to evaluate various metabolites at several brain parcellations defined on

the MNI152 atlas. This study suggested that multi-voxel 1H-MRSI could be employed

to reveal changes in brain metabolism in PD-MCI, especially in the regions that are

parts of DMN, VAN/SN, and SMN. We can summarize our findings mainly as ’pos-

terior metabolic changes’ in PD patients, compared to HC subjects. In studies using

ASL-MRI, a ’posterior cortical hypoperfusion’ pattern was established as indicative of

cognitive impairment in PD [145], [146], [98]. Therefore, ’posterior cortical’ changes

at post-Rolandic structures in cognitive impairment might be a multimodal imaging

finding.

Previous studies have identified several possible metabolic biomarkers of cogni-

tive decline in PD at a few brain areas [13], [14], [15], [16], [17], [147]. Guan et al. [147]

reported significantly lower NAA/Cr ratios in the cortical areas, such as prefrontal cor-
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tex, cuneus, hippocampus, as well as subcortical structures, such as substantia nigra,

globus pallidus, and dorsal thalamus in PD patients than in HCs using single-voxel 1H-

MRS. Another study reported lower NAA/Cr ratios in the occipital lobe and higher

Cho/Cr ratios at the PCC in PD-MCI patients than in HC [13]. Similarly, Summerfield

et al. [16] reported reduced NAA levels in the occipital lobes of PDD patients. More-

over, Camicioli et al. [14] reported lower NAA/Cr ratios in the PCC of non-demented

PD patients than in HC. On the other hand, although lower NAA/Cr and higher

Cho/Cr ratios were observed in the PCC of PDD patients than that of HCs in an-

other study, these differences were not statistically significant after correcting for age,

sex, and MDS-UPDRS III scores [148]. Another study assessed metabolic differences

in PDD, PD-MCI, and PD-CN and reported a significant reduction in NAA levels in

the right dorsolateral prefrontal cortex in PD-MCI and in the left hippocampus in

PDD [17].

Several MRI studies have reported possible imaging biomarkers of cognitive

impairment in ICNs, including VAN, DMN, VN, and SMN. Although Yeo et al. [137]

reported that VAN region was likely an aggregate of multiple networks variably referred

to as the SN [149] and cingulo-opercular networks (CON) [150], dissimilar functions

had been assigned to these networks. VAN responds to sudden salient stimuli [151],

whereas SN selects the stimuli that deserve attention [152]. On the other hand, CON

takes a role in error-processing and inhibitory control [153]. A study reported that PD

patients with impulse control deficits had decreased perfusion and reduced brain activ-

ity at regions including the prefrontal-striatal loops and ACC, which was interpreted

as a response inhibition impairment, a function that is implicated for CON [154]. Our

findings indicated a higher tGlu/tCr ratio in the left dACC of the VAN/SN/CON,

which might result in glutamate toxicity possibly leading to deficiencies in proper

response to stimuli and inhibitory control. DMN, comprising the precuneus, PCC,

medial frontal cortex, and bilateral temporoparietal junction, involves internal modes

of cognition and is linked to attention, working memory, and memory recall [155]. The

failure of DMN to deactivate at the appropriate moments is linked to poor attention

performance [156]. Proper deactivation of DMN could be associated with better task

performance, which might manifest itself as higher tNAA [157], which is a marker
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of neuronal viability, and lower mI [158], an indicator of less gliosis or inflammation.

Additionally, another study reported higher mI as a classic hallmark of Alzheimer’s

disease MCI (AD-MCI), focusing mainly on the pathophysiology [159]. Similarly, our

findings indicated that PD-CN patients had higher mI/tCr than HC, while PD-MCI

patients had decreased tNAA/mI at a part of the DMN. The alterations in mI/tCr

and tNAA/mI levels might suggest neuronal loss and gliosis, resulting in a parallel

decline in DMN connectivity. On the other hand, SMN is a large-scale brain network

that comprises primary somatosensory (postcentral gyrus), primary motor (precentral

gyrus) cortices, and supplementary motor area (SMA). When executing and coordi-

nating motor activities, such as finger tapping, the SMN is engaged, suggesting that

the network prepares the brain for motor activity. rs-fMRI studies reported lower func-

tional connectivity at the SMN of PD-MCI patients [160], [161]. We have previously

reported that PD-MCI had decreased perfusion in the left precentral gyrus at the SMN

than HC using ASL-MRI [98]. Our results are consistent with the previous findings

and revealed lower tNAA/tCr in PD-MCI than PD-CN at a part of the SMN corre-

sponding to the right precentral gyrus, which might suggest neuronal loss at this area.

In addition, our results revealed a positive correlation between tNAA/tCr and JLO in

the right precuneus and PCC of DMN, which might indicate a relationship between

metabolic abnormalities and visuospatial deficits detectable by JLO in PD-MCI.

There is no single machine learning algorithm that would work best for every

classification problem [162]. As a result, the performances of numerous machine learn-

ing algorithms were evaluated in this work. PD-MCI and PD-CN were successfully

differentiated from HC based on the spectroscopic differences within the DMN, SMN,

and VAN/SN/CON regions using machine learning algorithms. On the other hand,

the classification of PD-MCI and PD-CN had a lower accuracy, possibly due to their

more similar metabolic signatures altered by Parkinson’s disease.

The current study had some limitations. The 1H-MRSI data acquisition volume

of interest was manually selected for each subject, which necessitated post-processing

registration. Also, the full brain coverage was not possible due to the limitations of

the clinical MRSI data acquisition sequence used in this study. As a result, the brain



72

regions outside of the spectral FOV coverage could not be assessed and the reported

metabolic results are restricted to the available brain parcellations within the spec-

tral FOV. Moreover, registration of 1H-MRSI data of our subject population, with a

mean age of 60 years, into the MNI152, a normalized brain atlas based on healthy

and young subjects, might have resulted in slight regional shifts between subjects. So,

future studies will use age-matched brain atlases for more accurate registration [163].

Additionally, an automated single MRS voxel placement based on the MNI brain atlas

during data acquisition has been recently proposed [164], which might be adapted to

3D 1H-MRSI to improve the prescription consistency between the subjects. Bonfer-

roni multiple comparison correction was applied in this study considering original and

corrected metabolite ratios and brain regions. Therefore, p-values of < 0. 00007 were

considered as statistically significant, which was quite strict. Although our approach

was rather rigorous to prevent false positives, it might have reduced the power of the

tests to detect some true statistically significant differences. Moreover, we employed

PRESS to acquire the 1H-MRSI data, which is known to suffer from the chemical shift

artifact more than the semi-LASER sequence that minimizes chemical shift displace-

ment errors. On the other hand, this work included the calculation and correction of

the chemical shift error using the Oryx-MRSI software tool. Additionally, we did not

have unsuppressed water or metabolite relaxation times available for all our datasets

for absolute metabolite quantification. Our study had a limited number of subjects

and future studies with larger sample sizes and longer follow-up durations are required

to validate the biomarkers of PD-MCI. Additionally, a future study including PD-

dementia patients might help to clarify the metabolite changes along the cognitive

impairment stages. An integrated analysis of 1H-MRSI data with other multimodal-

ity MR images after registration into a common brain template would increase our

understanding of the mechanisms of cognitive impairment in PD.

In conclusion, this study has shown that multivoxel 1H-MRSI provides objective

metabolic findings of mild cognitive impairment in PD. Specifically, PD-MCI patients

had lower tNAA/tCr and tNAA/mI levels at the posterior cortical regions, affecting

mainly the functions of DMN and SMN.
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5. SUPER-RESOLUTION FOR MRSI

5.1 Rationale

1H-MRSI in addition to standard anotomical MR images, like T1w MRI, T2w

MRI, and FLAIR MRI, helps in better defining disease characteristics by providing

metabolic information of the tissue. 1H-MRSI detects a number of metabolites present

in the tissue in relatively much lower concentrations than water. As a result, higher

voxel sizes are employed for 1H-MRSI to increase SNR. 1H-MRS images typically have

a spatial resolution that is 10 times lower than anatomical MR images. It is possible

to increase the spatial resolution of 1H-MRSI, but it would require a long scan time

unless data under-sampling strategies are employed [165]. An alternative approach

that would result in higher spatial resolution 1H-MRSI without a cost of scan time is

advanced post-processing methods. In this study, we propose to increase the spatial

resolution of 1H-MRSI using Super-Resolution Convolution Neural Network (SRCNN).

For this purpose, we present an SRCNN pipeline for post-processing 1H-MRSI images

using the anatomical information present in T1w, T2w and FLAIR MRI. Additionally,

one of the recent super resolution for single image methods, enhanced deep super-

resolution network (EDSR), has been applied to create super resolved anatomical and

metabolic images. Some of the contents of this chapter have been published at the

Communications in Computer and Information Science book series [4].

5.2 Materials and Methods

5.2.1 MR Data Acquisition and Preprocessing for SRCNN

Three healthy subjects (age=51.33 ± 5.03 years; 1F/2M), who provided written

informed consent before the data acquisition, were included in this study. The imaging

experiments were performed on a 3T clinical MR scanner (Philips Medical Systems,
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Best, Holland) with a 32-channel head coil. For each subject, MRI data acquisition

frames were aligned parallel to the anterior commissure - posterior commissure line.

For anatomical scans, a T1w MRI (TR/TE=8.3/3.8 ms, FOV=250 x 250 x 180 mm,

voxel size=1 x 1 x 1 mm), T2w MRI (TR/TE=10243/80 ms, 90 flip angle, FOV= 240

x 240 x 180 mm, voxel size=2 x 2 x 2 mm), and FLAIR MRI (TR/TE=4800/1650 ms,

FOV= 250 x 250 x 180 mm, voxel size=1 x 1 x 3 mm) were obtained. Afterwards, three

dimensional 1H-MRSI data was acquired by using PRESS sequence (TR/TE=1000/52

ms, FOV=140 x 140 x 36 mm, voxel size= 10 x 10 x 12 mm, 14 x 14 x 3 voxels, scan

time=8 min). T2w MRI was used as the reference image for defining 1H-MRSI ROI,

which covered a 110 x 110 x 36 mm region.

Raw 1H-MRSI data were exported out and the spectra were quantified by

using the LCModel program [75]. Metabolite concentrations including tNAA were

quantified for each voxel. Oryx-MRSI was used to combine the metabolite concen-

trations of each voxel into a single tNAA map for each slice. T1w and FLAIR

MRI were rigidly registered to reference T2w MRI using FSL-FLIRT to align all

anatomical scans (Figure 5.1). Additionally, a fused MRI was formed by placing

T1w, T2w, and FLAIR MRI into three distinct channels of an RGB image using the

https://sourceforge.net/projects/bric1936/MCMxxxVI-RGBExplorer tool.

The spatial resolution of tNAA maps were upscaled by a factor of five along the

in-plane dimensions using nearest neighbor interpolation to match the T2w MR image

resolution. T1w, T2w, FLAIR, and Fused MR image regions that corresponded to the

region of interest of tNAA maps were extracted (Figure 5.2). Each spectral slice was 12

mm thick, and it contained six 2 mm thick anatomical MR images. Our 1H-MRSI data

was composed of three slices. As a result, we obtained 18 images for each anatomical

MR imaging modality for each subject, resulting in a total of 54 slices for all of the

three subjects.
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Figure 5.1 A schematic of MR image registration and fusion of T1w, T2w, and FLAIR MRI [4].

Figure 5.2 A schematic pipeline of ROI extraction and training of anatomical MRI [4].
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Figure 5.3 High and low resolution data acquisition of MRSI.

5.2.2 MR Data Acquisition and Preprocessing for EDSR

MR spectroscopic imaging data were acquired from 10 volunteers and GE Braino

phantom at 3T and 7T clinical MR scanners for the super-resolution of MRSI study.

During the covid pandemic and due to the busy schedule of the hospitals, the data

acquisition was started on March 21, 2021, and the last data acquisition was completed

on March 5, 2022. Some MRSI scans were not usable due to the poor data quality,

high noise and low metabolite concentration definition, and as a result, only four MRSI

datasets could be analyzed. An example high and low MRSI data acquisition matrix

is shown in Figure 5.3.

5.2.3 CNN Implementation

Caffe [166] was installed as a deep learning framework for SRCNN to train

super-resolution models. SRCNN structure shown in Figure 5.4 included three convo-

lutional layers, which performed patch extraction and representation, non-linear map-

ping and reconstruction [5]. At the first layer, the image was convolved with a set of

filters followed by an application of Rectified Linear Unit (ReLU, max(0, x)) on filter

responses [167]. For the first layer, a kernel size of 3 x 9 x 9 was used for each convo-

lution, and 64 feature maps were produced as the output. The second layer mapped

the 64-dimensional features of each patch onto a 32-dimensional feature space of the
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Figure 5.4 SRCNN network structure [5].

high resolution image. The final layer served the purpose of combining the overlapping

high-resolution patches to produce the final high resolution image. The kernel sizes

of the second and the third layers were 1 x 1 and 5 x 5, respectively. The weight

filler type was set as Gaussian, base learning rate was set as 0.0001, and the learning

policy was fixed. A Euclidean loss function was employed. As per the training/testing

strategy from [168], the extracted regions of the structural MR images and Fused MRI

were downsampled and fed into the SRCNN to train four separate models (Figure 5.2).

Thirty-nine MR images were used for training the SRCNN framework, and fifteen MR

images were used for testing purposes for each model. Afterwards, tNAA maps were

used as the testing dataset, and the four distinct models trained on different structural

MR images or Fused MRI were employed in SRCNN to upscale the spatial resolution of

tNAA maps by a factor of three. SRCNN was run three times with 10,000, 100,000, or

1,000,000 iterations for each model to determine the number of necessary iterations for

reconstructing a high quality super resolution tNAA map. The results of the SRCNN

were compared with bicubic interpolation.

5.2.4 EDSR Implementation

EDSR [6] structure used in this study is shown in Figure 5.5. It consists

of SRResNet and modified residual blocks and uses scaling layers to ensure consis-

tency. Unlike SRResNet, it eliminates useless modules to make the network architec-

ture simpler. Additionally, batch normalization was skipped, which helped to save

almost 40 % memory usage. In this study, EDSR technique [6] was adopted us-
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Figure 5.5 EDSR network structure [6].

Figure 5.6 The pipeline for the low and high resolution MRSI data to get super resolved MRSI.

ing Keras API. EDSR Pre-trained model was downloaded for transfer learning (Link:

https://github.com/krasserm/super-resolution). Then, the weights of the first few lay-

ers of the network were freezed, and for hyper parameter fine-tuning, different opti-

mizers, loss functions, and learning rates were used to apply it for super resolved MRI.

The final optimized parameters for learning rate, optimizer, loss function, and metric

were set as 0.1, Adam, SSIM, and mean absolute error. The pipeline for the low and

high resolution MRSI data to get super resolved MRSI data is shown in Figure 5.6.

5.2.5 Image Quality Evaluation Metrics

Peak signal to noise ratio (PSNR), and root mean square error (RMSE) were

used as evaluation metrics of accuracy on all experiments in our study. The tNAA
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Table 5.1
The mean PSNR and RMSE of anatomical MRI and Fused MRI datasets.

T1w MRI T2w MRI FLAIR MRI Fused MRI

Method # Iteration PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

Bicubic SR - 25.11 14.14 25.11 14.14 27.23 11.09 31.56 6.73

SRCNN 10000 25.21 13.98 24.81 14.64 27.52 10.71 30.67 7.46

SRCNN 100000 25.86 12.98 25.92 12.89 28.13 9.99 32.11 6.32

SRCNN 1000000 25.85 13 26.1 12.63 27.77 10.42 32.36 6.2

map that was upsampled by nearest neighbor interpolation was used as the reference

image for comparison purposes.

5.3 Results of SRCNN

SRCNN was first applied to increase the spatial resolution of anatomical and

fused MRI by using the corresponding MRI for both training and test datasets. Figure

5.7 displays our SRCNN results for increasing the spatial resolution of anatomical MRI.

SRCNN resulted in less blurry and more detailed MRI than bicubic interpolation for

all anatomical and Fused MRI. Gyri and sulci were better resolved in high resolution

images obtained by SRCNN for all anatomical MRI. SRCNN resulted in a higher

mean PSNR than bicubic interpolation for all anatomical and fused MRI after 10,000

iterations (Table 5.1). When T2w or Fused MRI were used as SRCNN training datasets,

10,000 iterations was not sufficient to outperform bicubic interpolation in terms of

RMSE. Highest mean PSNR and lowest RMSE values were obtained when SRCNN

was trained with 100,000 iterations for T1w and FLAIR MRI, and 1,000,000 iterations

for T2w and Fused MRI.

Four distinct training models obtained by using SRCNN algorithm on different

anatomical or Fused MRI were applied to increase the spatial resolution of tNAA maps.

Table 5.2 displays the PSNR and RMSE values when bicubic interpolation or SRCNN

with varying number of iterations were employed for super-resolution 1H-MRSI. T1w

MRI model did not result in a higher PSNR or lower RMSE than bicubic interpolation
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Table 5.2
The mean PSNR and RMSE results of SRCNN for super-resolution MRSI based on different

anatomical MRI training models.

T1w MRI T2w MRI FLAIR MRI Fused MRI

Method # Iteration PSNR RMSE PSNR RMSE PSNR RMSE PSNR RMSE

Bicubic SR - 27.01 11.37 27.01 11.37 27.01 11.37 27.01 11.37

SRCNN 10000 26 12.77 23.47 17.09 27.05 11.32 24.01 16.06

SRCNN 100000 26.69 11.79 27.88 10.28 27.58 10.64 27.77 10.41

SRCNN 1000000 25.94 12.86 26.08 12.65 26.29 12.35 28.17 9.95

for any of the iteration levels. Fused MRI model with 1,000,000 iterations resulted in

the highest PSNR and lowest RMSE. Figure 5.8 shows our SRCNN results for increasing

tNAA map spatial resolution.

5.4 Results of EDSR

Firstly, pre-trained model was applied to the MR images without further training

(Figure 5.9). The PSNR value was calculated as 24.085. Secondly, transfer learning was

applied by freezing top layers of the EDSR model. Figure 5.10 shows the ground truth

(Gold) image, low resolution image (LR MRI), and super resolved image (SR MRI)

obtained with the pretrained model, and SR MRI obtained with transfer learning. The

PSNR value of transfer learning was calculated as 24.177, which was higher than SR

MRI obtained with only pretrained model.

Thirdly, transfer learning was applied again with fine tuning (Figure 5.11).

Learning rate was set to 0.01 and loss function was changed from mean absolute error

(MAE) to mean square error (MSE). The PSNR result of SR MRI obtained with trans-

fer learning and fine tuning (24.197) was higher than that of SR MRI with pretrained

model (24.085), and SR MRI with only transfer learning by freezing the top layers

(24.177).

Figure 5.12 shows the NAA metabolite maps produced from the acquired low

and high resolution MRSI data. Low resolution images were upscaled by using bicubic
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Figure 5.7 Example SRCNN results for increasing the spatial resolution of anatomical MRI using
10,000, 100,000, and 1,000,000 iterations [4].
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Figure 5.8 SRCNN results of an example tNAA map upscaled by using T1w, T2w, FLAIR, and
Fused MRI filter models with 10,000, 100,000, and 1,000,000 iterations [4].
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Figure 5.9 Example result of EDSR algorithm using pretrained model for MRI images.

Figure 5.10 Example result of EDSR algorithm using transfer learning based on only freezing the
top layers of the model for MRI images.

interpolation. Super resolved NAA image was generated using EDSR model. SSIM

and PSNR values of the NAA, Cho, and Cr images generated by bicubic interpolation

and EDSR are given at Table 5.3. Figure 5.13 shows some of the spectra acquired with

HR MRSI and that of SR MRSI generated via EDSR.

5.5 Discussion

In this study, we have presented a novel application of SRCNN deep learning

method for increasing the spatial resolution of 1H-MRSI based on the anatomical image

Figure 5.11 Example result of EDSR algorithm using transfer learning based on both freezing the
top layers of the model and training with fine-tuning for MRI images.
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Figure 5.12 Example result of EDSR algorithm using transfer learning based on both freezing the
top layers of the model and training with fine-tuning for NAA images.

Figure 5.13 Example spectra visualization of HR and SR MRSI at the selected voxels.
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Table 5.3
Metric results of super resolved NAA, Cho, and Cr images generated via bicubic interpolation and

EDSR network.

Metric Method NAA Cho Cr

SSIM
Bicubic 0.293 0.290 0.291

SR w/EDSR 0.372 0.367 0.364

PSNR
Bicubic 13.697 13.754 13.757

SR w/EDSR 14.016 14.057 14.032

definition of T1w, T2w, FLAIR, and Fused MRI. One of the main limitations of this

study is the use of a single MR spectral frequency point that corresponds to a tNAA

map as an example spectral image instead of all the MR spectral points. Our results

could be similarly applied to increase the spatial resolution of other metabolite maps

that could be obtained by 1H-MRSI, or a better approach would be the application

of the SRCNN models for increasing the spatial resolution of the whole MR spectral

array. The proposed approach may contribute to the clinical utility of 1H-MRSI, e.g.

better radiotherapy treatment planning based on higher resolution 1H-MRSI.

Additional EDSR technique was also adopted as a novel method for getting super

resolved MR images. Transfer learning was successfully done with different parameter

setups considering only transfer learning with pretrained model, freezing the top layers

of the model, and with fine-tuning. Training with fine-tuning resulted in higher PSNR

value compared to the other setups. The pre-trained model acquired from anatomical

MR images was also applied to NAA, Cho, and Cr images after hyperparameter tuning.

This super resolution study had some limitations. The training was only done with

anatomical MR images and the application of this method to MR spectroscopic images

couldn’t be fully accomplished due to the lack of enough many high and low resolved

MR spectroscopic imaging data. However, this pipeline will be further optimized and

applied once we acquire more low and high resolution MRSI data for training.
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6. SUMMARY

This thesis has focused on developing software tools for improved 1H-MRSI. The

goals of this dissertation were to develop an open-source user-friendly 3D MRSI data

analysis program, called Oryx-MRSI, to use the Oryx-MRSI software for the multivoxel
1H-MRSI data analysis of PD-MCI patients to define metabolic correlates of MCI, and

to improve the resolution of MRSI data using deep learning based super resolution

algorithms.

This thesis firstly focused on the open-source software development practices to

create a sustainable product and get user feedback with an overarching goal of reaching

many users. Oryx-MRSI asks for some parameters before the data analysis, including

RF bandwidth of the system for chemical shift correction, cut-off values for voxel exclu-

sion criteria based on FWHM, SNR and CRLB, and cut-off value for the probabilistic

binary map after the registration onto MNI152 brain atlas. Oryx-MRSI has nine differ-

ent modules. Load data is the first one and this module reads the raw 1H-MRSI data,

and a skull stripped T1-weighted or T2-weighted MRI, and allows for a visualization

of the spectra. Co-registration module enables chemical shift correction for users. If

chemical shift correction is ’on’, then the chemical shift misregistration amount is cal-

culated for each metabolite according to the RF pulse bandwidths for each direction

provided on the Main Page. Then, shifted metabolite maps are generated considering

the MR image space data order and the respective location. Segmentation module cal-

culates the WM, GM and CSF fractions in each voxel for every metabolite, which vary

due to chemical shift misregistration. CRLB, FWHM, SNR module reads LCModel

.table files to get CRLB, FWHM, and SNR values of each voxel to create and visu-

alize multivoxel CRLB, FWHM, SNR maps. Spectral quality module displays voxels

included in the 1H-MRSI data analysis for each metabolite after the FWHM, SNR,

CRLB, and fCSF exclusion criteria defined on the Main Page are applied. Metabo-

lite maps reads the LCModel .table files and they are parsed using a text reader and

each metabolite result is positioned into a 3D grid in accordance with the MR im-
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age space data to create several maps, which are the concentration, CSF corrected

concentration, and concentration or CSF corrected concentration to mI and tCr ratio

maps. Registration module registers the reference anatomical MRI onto MNI152 brain

atlas to obtain a transformation matrix. Then, this transformation matrix is used to

register the PRESS box and all the concentration or ratio maps that were previously

co-registered to the anatomical MRI onto the MNI152 brain atlas. ROI Analysis is a

new feature not provided by former MRSI data analysis tools. The metabolic maps

can be evaluated at brain parcellations defined on MNI anatomical atlas and rs-fMRI

networks to define a mean, median and SD value of the concentration map of interest

at these brain regions. Distributions module displays a box plot showing the distribu-

tion of a chosen metabolite at a selected location for a better visual evaluation. This

software contributes to the open-source community and makes MRSI data analysis

easier. Additionally, sharing the software on GitHub allows for reaching more users for

feedback while keeping the software sustainable.

This thesis also consisted of the first clinical application of Oryx-MRSI in which

we investigated the metabolic biomarkers of MCI in PD in comparison to PD-CN and

HC. Supervised machine learning algorithms were applied to classify HC, PD-CN, and

PD-MCI groups based on metabolite levels, and the HC and PD-MCI patients were suc-

cessfully classified with over 80% accuracy using bagged trees. As a result of this study,
1H-MRSI revealed metabolic changes in the default mode, ventral attention/salience,

and sensorimotor networks of PD-MCI patients, which could be summarized mainly

as ’posterior cortical metabolic changes’ related with cognitive dysfunction. The main

contribution of this study was defining early metabolic changes of the cognitive dys-

function in Parkinson’s disease using Oryx-MRSI, which might aid clinicians with the

diagnosis of MCI.

This thesis also focused on deep learning based techniques to improve the spatial

resolution of 1H-MRSI. The application of SRCNN for increasing the spatial resolution

of 1H-MRSI was presented first. Our results indicated that SRCNN would contribute to

reconstructing higher resolution 1H-MRSI. Additionally, more recent EDSR algorithm

was applied to increase the resolution of MRI and MRSI images via transfer learning.
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The preliminary results completed with only 4 MRSI data showed higher PSNR and

SSIM values for super resolved NAA, Cho, and Cr images generated via EDSR com-

pared to the images upscaled by using bicubic interpolation. The spectral visualization

revealed that the spectral pattern was preserved after the EDSR application.

This research had some limitations. The chemical shift directions and formula-

tions for Oryx-MRSI must be validated for use with different MR vendors, because they

were computed for a single MR vendor. Additionally, Oryx-MRSI currently only sup-

ports transverse slice orientation and 3D scan mode. Since FSL cannot run natively

on Windows operating systems, only macOS and Linux are supported for running

Oryx-MRSI. In the second study, the 1H-MRSI data was acquired using PRESS se-

quence, which is known to be more susceptible to the chemical shift artifact than the

semi-LASER sequence. Additionally, registration of 1H-MRSI data was done using

the MNI152 brain atlas, which is based on healthy and young subjects. However, our

subject population had a mean age of 60 years, and registration into the MNI152 atlas

might have resulted in slight regional shifts between subjects. In the last section of

this thesis, training based on both SRCNN and EDSR techniques were only completed

with anatomical MR images and the application of this method to the whole MR spec-

troscopic data couldn’t be fully accomplished due to the limited number of available

high and low resolved MR spectroscopic imaging data.

As a future work for Oryx-MRSI, a voxel-based statistical analysis module will

be developed in addition to the ROI analysis. Oryx-MRSI will be continuously updated

to provide support for different MR vendors, and possible integration with earlier open-

source MRS data analysis tools. Additionally, a future study including PD dementia

patients might help to elucidate the metabolite changes along the cognitive decline con-

tinuum. Moreover, an integrated analysis of 1H-MRSI data with other multimodality

MR images after registration into an age matched brain template would possibly result

in a better definition of the metabolic markers of cognitive impairment in PD. Lastly,

further work could increase the number of input channels (e.g. adding other structural

MR sequences or diffusion parametric maps to the 3-channel [T1W, T2W, FLAIR]

input array that was evaluated here) to investigate the optimal input configuration
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for increasing the spatial resolution of 1H-MRSI. Additional studies will be conducted

to investigate the use of other deep learning methods, like SRGAN and MSR, to in-

crease the spatial resolution of 1H-MRSI and these pipelines will be applied on a high

number of real low and high resolution MRSI data. The results of this dissertation

can be utilized for improved and unified 1H-MRSI data analysis along with other MRI

modalities, and might also help with higher spatial resolution metabolic imaging to

better define the metabolic changes that occur in the brain with diseases such as the

Parkinson’s disease.
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