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ABSTRACT

INVESTIGATION OF FUNCTIONAL BRAIN
CONNECTIVITY PATTERNS IN TEMPORAL LOBE

EPILEPSY

In this study, functional connectivity using both Pearson and partial correla-

tion coe�cients and inter-subject variability were investigated in resting state func-

tional resonance imaging (rs-fMRI) scans that belong to healthy and temporal lobe

epileptic (TLE) patient populations. The main purpose of this thesis is to reveal the

discrepancies between the healthy population and the patients with TLE in terms of

functional connectivity revealing the temporal dependency among di�erent brain re-

gions. According to inter-subject variability results, TLE population exhibited higher

inter-subject variability in frontoparietal control, default mode, dorsal/ventral atten-

tion, visual, limbic and somatomotor networks in line with the broad seizure onset and

propagation pathway. We mostly found a signi�cantly reduced functional connectivity

in bilateral frontoparietal control, somatomotor, default mode and ventral attention

networks with an implication of dysfunctioning in attention, long/short term memory,

cognitive functioning and consciousness in patients with TLE as a result of 17-network

parcellation. We also found a decreased functional connectivity between/within the

networks of the frontoparietal control, the default mode and the ventral attention im-

plying that these three networks as well show a variability, although to a lesser extent.

This result signi�es these networks are severely deteriorated in patients with TLE. On

the other hand, to compute the direct functional connectivity among di�erent brain

regions, partial correlation coe�cients estimation is used. In doing so, we took advan-

tage of Random Matrix Theory to well approximate the partial correlations, by virtue

of, the inverse covariance matrices. As a result, the bilateral homologous structures in

dorsal/ventral attention, frontoparietal control and default mode networks were also

decreased in patient population con�rming our results using Pearson's corelation coef-

�cients.

Keywords: Resting State fMRI, Functional Connectivity, Temporal Lobe Epilepsy.
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ÖZET

TEMPORAL LOB EP�LEPS� HASTALARINDA
FONKS�YONEL BEY�N BA�LANTISALLIK

ÖRÜNTÜLER�N�N �NCELENMES�

Bu çal�³mada sa§l�kl� bireylerin ve temporal lob epilepsi hastalar�n�n dinlenim

durumu beyin a§lar� aras�ndaki fonksiyonel ba§lant�sall�k Pearson, k�smi ilinti kat-

say�lar� ve ki³iler aras� de§i³kenlik ölçülmü³tür. Bu tezin temel amac� temporal lob

epilepsi hastalar�n�n beyin a§lar�ndaki fonksiyonel ba§lant�sall�§�n sa§l�kl� bireylerden

farkl�l�§�n� ortaya koymakt�r. Ki³iler aras� de§i³kenlik sonuçlar�na göre, temporal lob

epilepsi hastalar� çe³itli nöbet ba³lang�ç oda§�na ve yay�l�m�na uyumlu olarak sa§l�kl�

bireylere oranla frontopariyetal kontrol, ola§an durum, dorsal/ventral dikkat, görsel,

limbik ve somatomotor a§larda daha fazla fonksiyonel ba§lant�sall�k çe³itlili§i göster-

mi³tir. 17-a§ bölütlemesi fonksiyonel ba§lant�sall�k sonuçlar�na göre temporal lob

hastalar�nda ço§unlukla iki tara�� olarak frontopariyetal kontrol, ola§an durum, ventral

dikkat ve somatomotor a§lar�nda dikkat, k�sa-uzun süreli haf�za, bili³ ve bilinç fonksiyon

bozuklu§u ile uyumlu olarak istatistiksel olarak anlaml� bir fonksiyonel ba§lant�sall�k

dü³üklü§ü saptanm�³t�r. Fonksiyonel ba§lant�sall�§�n ço§unlukla azald�§� ve ki³iler aras�

de§i³kenlik fark�n�n görece azald�§� a§lar frontopariyetal kontrol, ola§an durum, ventral

dikkat a§lar� olmu³tur. Bu sonuç, bu üç a§�n temporal lob epilepsi hastalar�nda olu³-

mu³ fonksiyonel ba§lant� bozuklu§una i³aret etmektedir. Di§er yandan farkl� beyin

bölgeleri aras�ndaki do§rudan fonksiyonel ili³kiyi bulmak için k�smi korelasyon kat-

say�s� hesaplanmaktad�r. Bunun için �Rastgele Matris Teorisi� kullan�larak kovaryans

matrisin tersi, dolay�s�yla k�smi korelasyon katsay�lar� hesaplanm�³t�r. Bunun sonu-

cunda hasta populasyonunda dorsal/ventral dikkat, frontopariyetal kontrol ve ola§an

durum a§lar�na ait iki tara�� beyin bölgelerinde fonksiyonel ba§lant�sall�§�n azald�§�

tespit edilmi³ olup, bu bulgular Pearson korelasyon katsay�s� ile elde etti§imiz sonuçlar�

do§rulamaktad�r.

Anahtar Sözcükler: Temporal Lob Epilepsi, Fonksiyonel Ba§lant�sall�k, Dinlenim

Durumu Fonksiyonel Manyetik Rezonans Görüntüleme.
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1. INTRODUCTION

Human brain consists of a large number of anatomical regions which are unique

to each individual. This brings the notion of quantifying the variability in each in-

dividual brain. Hence, investigating the individual di�erences and the brain network

alterations in neurodegenerative diseases have been an important and challenging re-

search area in the �eld of neuroscience. According to a classical theory, the function of

human brain has two di�erent aspects, i.e., functional segregation and functional inte-

gration. Functional segregation states that each brain region is specialized according

to its function, whereas functional integration emphasizes how di�erent brain regions

functionally correlate with each other [1],[2]. To understand the latter, neuroscienti�c

studies explore the functional integration of the human brain via e�ective and func-

tional connectivity [3]. Moreover, the network activity of the brain is assessed by three

di�erent connectivity measures. First of all, the structural connectivity explains the

white matter tracts, the so-called physical connections between brain regions. Secondly,

the correlation of the activities in di�erent brain regions is de�ned by the functional

connectivity. Functional connectivity has been used in intrinsic functional connectivity

and task-based functional connectivity. Speci�cally, task based functional connectivity

can be assessed under two di�erent conditions, when subject performs i) a speci�c task

(visual network while observing pictures) ii) response to the external stimuli. Intrinsic

functional connectivity refers to internal task-free activity of the brain during rest-

ing state [4]. Lastly, the e�ective connectivity measures the cause and e�ect relation

between di�erent regions of the brain (Figure 1.1 and Figure 1.2) [2],[5],[6].

Figure 1.1 Types of Brain Connectivity (Adapted from [7]).



2

Figure 1.2 (A) Functional connectivity of the brain. (B) Co-activations from a meta-

analysis of 148 neuroimaging studies. The nodes (circles) denote regions or networks

for the corresponding anatomical regions, The edges (lines) represent simultaneous

activation between pairs of regions or networks, The size of each circle denotes the

connection strength between networks. C) Representation of the connections in the

anatomical space of the brain (Adapted from [8]).

Functional magnetic resonance imaging (fMRI) is an indirect measure of blood

oxygenated level dependent(BOLD) response [9]. fMRI mainly measures the indirect

BOLD contrast whose mechanism relies on the increase in blood �ow and oxygenation

due to neuronal activity. Due to its high spatial resolution, the activation over the brain

regions can be precisely observed in fMRI which contain large number of voxels de�ned

as cubes with equal size [8],[10]. fMRI data is collected under two main procedures

that are task based and resting state. In the case of task based fMRI, subjects are

instructed to perform a certain task, whereas for resting state fMRI they are informed

not to perform any task during scanning process. For task based fMRI, there is stimulus

locked time series data, whereas for resting state fMRI, there is spontaneous, low

frequency �uctuations (<0.1 Hz) [11],[12]. A sample fMRI and its timing sequences

are depicted in Figure 1.3.
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Figure 1.3 (a) Experimental design for resting state fMRI (b) Experimental design

for task based fMRI, subjects are instructed to perform right hand �nger tapping (c)

To assess functional connectivity in resting state, the seed voxel or region (ROI) in left

precentral gyrus area is chosen, and it is highly correlated with voxel j (d) Whole brain

functional connectivity map according to seed voxel (voxels that are highly correlated

with seed is shown) (Adapted from [13]).

Numerous article have been published recently that try to understand how

the brain activity changes under di�erent physiological and pathological conditions

[14],[15]. Although source localization is critical, with the new advances in the �eld of

computational neuroscience, connectivity studies take a step forward with their ability

to �nd the relations among di�erent regions of the brain. In this regard, investigation

of intrinsic activity in resting state networks requires an examination of functional con-

nectivity which gives an insight about the ongoing brain activity [16],[17],[18]. As an

important contribution, functional connectivity maps illustrate the origins of patho-

logic brain activity in neurodegenerative diseases. Within this context, epilepsy is one

of the common diseases among others such as Alzheimer's, schizophrenia, stroke and

amyotrophic lateral sclerosis. Every one out of 26 people may su�er from an epileptic



4

seizure in his or her lifespan [19]. It is a chronic disease which is caused by the excessive

neuronal activity [20]. Thus, it may result motor, cognitive and sensory impairments

[21]. The disruption not only results in a deterioration in functional networks but it also

causes a high variability in their functional networks in patients with TLE [22],[23],[24].

The correlation coe�cient is one of the most commonly used measures that assesses the

functional connectivity. However, brain regions can be connected in several di�erent

forms. In other words, they may have a direct relation or may have a connection via

a common driving source or may have been interconnected to each other through the

interference of multiple brain regions [25]. Since correlation coe�cient yields marginal

dependency between regions [26], partial correlation coe�cient has been used to com-

pute the direct relation between regions by regressing out the interference of other

regions [26],[27].

The purpose of this study is to investigate the functional connectivity distur-

bances and inter-subject variability of patients with TLE by using their rs-fMRI scans

with both correlation and partial correlation coe�cients. According to our hypothesis,

the patient group shows more variability in frontoparietal control, default mode, so-

matomotor, visual, limbic and attention networks compared to healthy controls which

may also relate to their hypo- or hyper-functional connectivity patterns based on a

widespread cognitive de�cit.

In the following, the literarature review is presented in Chapter 2, the functional

connectivity methodology is given in Chapter 3. In Chapter 4, the �ndings related

to functional connectivity in patients with epilepsy and healthy group is presented.

Finally, the interpretations of the functional connectivity and variability patterns in

epileptic patients as well as in healthy subjects and their future prospects are explained

in Chapter 5.
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2. BACKGROUND AND LITERATURE REVIEW

2.1 Synthesis of the Literature Review

2.1.1 Concept of fMRI

fMRI is a widely used non-invasive technique that does not expose the partici-

pants to any known ionizing radiation [28]. From the physiological perspective, fMRI

measures the indirect BOLD response which is based on the blood �ow and oxygena-

tion. This mechanism relies on hemoglobin and deoxyhemoglobin changes in the blood

�ow. Therefore, hemoglobin is a protein which transmits oxygen (O2) molecules to the

cells. The oxygenated blood carries oxyhemoglobin which is formed when O2 binds to

protein, and if it releases one of its O2, the protein is called as deoxyhemoglobin. By

the increase of synaptic activity in the related region of the brain, there is also an ATP

need that arises from ful�lling this activity. By virtue of this demand, the blood �ow

suddenly increases which leads to high rate of O2 transmission. When O2 increases

in the blood, the deoxyhemoglobin decreases and oxyhemoglobin increases suddenly.

This signal is de�ned as blood oxygenated level dependent (BOLD) response. Since

deoxyhemoglobin is paramagnetic, MRI signal increases with an 2-4% amount due to

the reduction of deoxyhemoglobin [29],[30]. As a result, fMRI utilizes this signal in-

crease to reveal the activity related brain regions [8]. Sample fMRI time series can be

observed in Figure 2.1.
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Figure 2.1 fMRI time series (Adapted from [8]).

2.1.2 Resting State Functional Connectivity in Healthy Subjects and Epilep-

tic Patients through fMRI

Resting state fMRI (Rs-fMRI) reveals the spontaneous low frequency (<0.1 Hz)

�uctuations in the BOLD signal due to neuronal intrinsic activity [13]. The moti-

vation behind studying resting state fMRI is, to deeply understand the brain energy

metabolism, during the spontaneous neural activity [11]. The �rst resting state fMRI

was conducted by [31]. In this study, for the �rst experiment, subjects were instructed

not to do any task including motor, cognitive, attention or language. As a second

experiment, subjects were instructed to perform a bilateral �nger tapping task which

activates the left somatosensory cortex chosen as a seed region. As a result, they showed

the left and right primary motor cortices are highly correlated with each other during

resting state as well as �nger tapping task (Figure 1.3). The results suggest that func-

tionally correlated regions during task based paradigms also correlate during resting

state. To conclude, we can predict task based functional brain maps by interpreting the

neuronal spontaneous activity [11],[31]. On the other hand, there has been a debate on

the reliability of the resting state fMRI, as there are also other low frequency signals

due to cardiac and respiratory oscillations, which make one to think that there might

be a functional correlation between di�erent brain regions arising from such signals.
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There are resting state networks, highly correlated in terms of spontaneous activity

with each other, which are located in totally di�erent brain regions as well as sharing

the same function (as in the case of motor, auditory and visual networks) anatomical

regions [13]. In addition to this, the cardiac (0.6-1.2 Hz) and the respiratory (0.1-0.5

Hz) oscillations typically show di�erent frequency �uctuations than ongoing sponta-

neous activity [32]. Furthermore, spontaneous BOLD �uctuations are also correlated

with the amplitudes of high frequency electrical activity of the brain, such as gamma

frequency band whose range is between 60-100 Hz [11]. Additionally, the theory behind

resting state fMRI is explained in [17], (p.833) "the functional regions active during

rest parallel those regions active during tasks that require subjects to engage in inter-

nally directed mental operations". The relation between RSNs and EEG rhythms are

illustrated in [33] which indicates that BOLD DMN activity has a positive signi�cant

correlation with alpha and beta rhythms of EEG (Figure 2.2). According to their re-

sults, each network has more than one rhythm implying that although the neuronal

oscillation frequencies are di�erent, these neurons are within the same functional sys-

tem.
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Figure 2.2 Resting state networks using EEG and fMRI. (Left) Sagittal, coronal, and

axial spatial maps for DMN (IC1), dorsal attention network (IC2), visual processing

(IC3), auditory-phonological system (IC4), sensorimotor network (IC5), self-referential

(IC6). (Right) Right bar plot indicates the average correlations between EEG rhythms

and the RSN time courses (r>0.2 are signi�cant correlations were signi�cant P< 0.05,

with Bonferroni correction) (Adapted from [33]).

Rs-fMRI consists of several functional networks including the Default Mode

Network (DMN), the Dorsal Attentional Network (DAN), the Control Network (CN),

the Somatomotor Network (SM), the Visual Network (VN), the Auditory Network

(AN) and the Salience Network (SN) (Figure 2.3) [17]. Default mode network is one

of the fundamental subnetwork of resting state networks which is highly correlated

with high level cognitive functions [12],[34]. Default Mode Network refers to the the-

ory of existence of active brain regions at rest. In other words, it is called task free
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functional MRI, since subjects do not perform any task with an eyes closed or open

position. Moreover, the �ndings suggest that there are a highly correlated functional

brain structures including precuneus, posterior cingulate (PCC), lateral temporal cor-

tex, dorsal medial prefrontal cortex (vMPFC), and medial, lateral, inferior parietal

cortices, cerebellum, hippocampal formation, even though the subjects do not perform

any speci�c cognitive task [2],[18],[34],[35]. According to their �ndings, DMN has anti-

correlation with the dorsal attention system which is associated with the information

processing gathered from external sensory pathways. Based on this �nding, it has been

hypothesized that these two networks compete with each other in terms of functional

processing [17]. To be more speci�c, DMN is the dynamic marker for the baseline

of the internal attentional engagement since there is a BOLD signal increase during

cognitive tasks, memory retrieval, episodic memory, environmental observation, dur-

ing remembering, imagination, mind reading (interpretation of other people's thought)

[18],[17],[36]. According to a PET study, it has been shown that the oxygen extraction

fraction is uniform for the DMN. Since the ongoing �uctuations are not speci�c to any

task, the DMN is called the indicator of baseline activity of the brain which is also

present in anesthetized humans [16]. It may be inferred that it is a marker for the

subject's awareness/consciousness. On the other hand, when subjects direct their at-

tention to an external stimuli, the DMN activity reduces [12],[16]. So we can conclude

that the activity of the DMN in the absence of external stimuli is higher than in the

presence of external stimuli [11]. This behaviour changes in the case of other RSNs

such that for the task base case, RSNs show increased correlated activity which they

preserve this connectivity during resting case (though the activity decreases) [16].
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Figure 2.3 Resting state networks (Black indicates the seed region) (Adapted from

[17]).

Epilepsy is a serious neurodegenerative disease which is caused by the abnormal

spontaneous activity of the brain [37]. Its typical symptoms are unregulated move-

ments, unconsciousness, and blank stare due to excessive synchronized brain activity.

Incidence rate of epilepsy is assumed to be about 1 % of the entire world population

[38] and about 30 % of the cases resist to drug therapy [39]. According to recent

reports, in every 1000 deaths, 4 of them are caused by sudden unexplained death in

epilepsy (SUDEP) [19]. Patients who are resistant to antiepileptic drugs (AEDs) have

pharmacoresistant epilepsy [40]. Surgical operation has been noted as the most ef-

fective method for the drug-resistant epileptic patients [41]. Epilepsy has two types

generalized and focal. In focal epilepsy, there is one focal onset, the propagation of the

seizure spreads unilaterally. In generalized idiopathic epilepsy, there may be unifocal

or multifocal onsets whereas the propagation of the seizure expands in bilateral brain

regions [39],[42],[37]. The most common type of temporal lobe epilepsy is the mesial

temporal lobe epilepsy (mTLE) whose seizure onset is thought to locate in hippocam-

pus or parahippocampal focus. The other type is the neocortical TLE whose seizure

initiation originates from lateral temporal lobe neocortex [34].
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Recent EEG-fMRI studies reveal that inter-epileptic discharges (IED) and seizures

have their own network topography [39]. Speci�cally, IEDs are the epileptic biomark-

ers which re�ect the changes due to postsynaptic potentials of the pyramidal neurons

[43]. IEDs are typically observed as sharp waves whose duration is between 70-120

ms [5]. Besides, [5] also emphasizes that the etiology of the seizure is expected to

be diverse across patients or within patients. In support of this, [44] showed that

two di�erent epileptic patients having with a nearly same seizure onset zone, exhib-

ited a unique functional connectivity patterns using intracortical EEG (icEEG). All

these imply that epilepsy is assumed to be a network disease. In other words, it ef-

fects di�erent brain regions by spreading around, so it is crucial to investigate the

functional and structural network of disease to make a focal and correct localization

during the surgical planning [39],[41],[45],[46],[47],[48]. Although there is no consensus

on �gold−standard� for the identi�cation of the SOZ and EZ, according to current

literature icEEG is accepted as gold standard due its high sensitivity and speci�city

in clinical applications [38],[39],[45]. Although, it is accepted as �gold−standard�, it

may sometimes yield incorrect source localization results because of its limited spa-

tial location, especially when the region where the intracranial electrodes are placed

may not register any seizure onset in the case of multifocal epilepsy. According to

a study, in two patients who had a non-lesional focal epilepsy were monitored with

icEEG, one patient's scalp EEG data suggested a frontal lobe epilepsy (FLE), whereas

the icEEG results revealed a temporal lobe epilepsy. Contrary to the other patient's

scalp electrodes which is a multifocal epilepsy, the icEEG results certi�ed a frontal lobe

epilepsy [42]. At this point, the source localization for the epileptogenic zone remains

elusive. To replace the need for icEEG, multimodal neuroimaging techniques should

be validated by the icEEG results. Consequently, this increases the reliability of the

source localization and functional navigation for the surgical planning. Additionally,

the source localization technique for the multimodal imaging takes less hours than

icEEG whose time duration is much more longer [49]. On the other hand, the icEEG

measurements accepted as gold standard, have various complications which may result

in cerebral hemorrhage and infection [50]. In the case of acquiring consistent results

from both MRI and EEG, clinicians do not need to monitor icEEG. Only in the case

where fMRI and EEG results do not con�rm each other, another imaging modality is
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required. Most of the recent studies revealed that especially in mesial temporal lobe

epilepsy (mTLE), the source localization with icEEG is not required, instead of which

non-invasive neuroimaging modalities can be used [49]. This �nding indicates that

non-invasive multimodal neuroimaging techniques can decrease the usage of icEEG.

Therefore, for the epileptic cases it is very convenient and promising to in-

vestigate the epileptogenic network when subject is at rest condition [51],[52]. It is

advantageous to use resting state fMRI since most of the time patients have di�culty

to perform task based experimental protocol. Additionally, it requires longer time to

acquire the task based activation maps. Alternatively, the rs-fMRI is relatively easier

since subjects do not need to perform any speci�c task. Therefore, the resting state

fMRI is a useful technique for the connectivity analysis of the human brain at the stage

of the presurgical planning [52]. In the case of default mode network in epilepsy, it

has been shown that DMN BOLD activity signi�cantly reduces in posterior cingulate,

precuneus, and left and right frontal and parietal lobes [34]. Although the functional

connectivity alteration was observed as an attenuation in DMN, the functional connec-

tivity strengthens over the right middle frontal gyrus [34] (Figure 2.4). The reason why

DMN activity increases is explained as �dynamic diaschisis�. Dynamic diaschisis refers

to an alteration in the brain function, particularly in order to regain the actual func-

tionality of the brain, the healthy regions of the brain makes new connections with each

other, thus it may result in hyperconnectivity [34]. As a result, it has been proposed

that the loss of consciousness and awareness may be associated with the suspension of

the BOLD response due to epileptic seizure [39]. Epilepsy does not only a�ect DMN

but it also has an impact on emotional, sensorimotor, attention, executive motor con-

trol networks of the human brain [34],[46]. The functional connectivity decreases in

dorsal attention, auditory and sensorimotor networks [46].
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Figure 2.4 The connectivity discrepancies of the default mode network (DMN) ac-

tivity between controls and temporal lobe epilepsy. (A) DMN comparison of control

subjects with right and left temporal lobe patients. (B) The main anatomical areas

including precuneus/ posterior cingulate cortex (in red) and medial prefrontal cortex

(in yellow), right (in magenta), and left (green) mesial temporal cortex in DMN where

connectivity decreases/increases through fMRI and di�usion tensor imaging which mea-

sures the reconstruction of the white matter �ber bundles. (C) fMRI maps including

the anatomical regions whose activity decreases during the propagation of interictal

epileptic activity under simultaneous fMRI and EEG monitoring (Adapted from [34]).

According to a DMN study [52], it has been shown that default mode network

may infer the post surgical outcome of the patient in terms of cognitive impairment.

The results reveal that the left temporal lobe epilepsy patients who have higher con-

nectivity between posterior cingulate cortex and left hippocampus (HC) have greater
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memory decline after the resection of the left temporal lobe in the post surgical phase,

whereas if there is a higher connectivity between the PCC and contralateral HC, this

ends up with either no memory decline or less memory decline. To understand the rela-

tion between temporal lobe epilepsy and DMN, [53] investigated DMN using ROI based

partial correlations in epileptic patients through fMRI. Subjects were either right or left

temporal lobe epileptic patients with rare interictal epileptiform discharges. ROI seeds

were chosen as centered on posterior midline (Rsp (retrosplenial cortex)/PCUN (pre-

cuneus)) region (x=0, y=-51, z=32) and the ventromedial pre-frontal cortex (anterior)

(vmPFC; x=3, y=60, z=-1) in the standard MNI space and then these ROIs projected

from MNI space to each subject's individual brain space. Subject-wise partial correla-

tions between seed regions and all the voxels in the brain were calculated. Regardless

of the lateralization, the connectivity between the posterior DMN (Rsp/PCUN) and

the anterior portions (medial frontal) of the DMN signi�cantly decreased bilaterally

(Figure 2.5 and Figure 2.6).

Figure 2.5 Partial correlation activation maps between groups based on posterior

seed region, colour bars represent z-scores (z>2.0, p=0.05), C=control; R=right TLE;

L=left TLE (Adapted from [53]).



15

Figure 2.6 Partial correlation activation maps between groups based on anterior

seed region, colour bars represent z-scores (z>2.0, p=0.05), C=control; R=right TLE;

L=left TLE (Adapted from [53]).

[54] also examined the interregional brain connectivity in temporal lobe epilepsy

patients using partial correlation. Both correlation and partial correlation coe�cients

were computed. According to direct connectivity results, right basal-frontal (RBF) was

a driving source on behalf of others, there was a direct relation between RBF and the

right polar temporal (RPT), RBF and left basal frontal (LBF), whereas RPT and LBF

did not have statistically signi�cant partial correlations. On the other hand, RBF,

LBF and RPT comprised statistically signi�cant connections as a result of marginal

correlation coe�cient computation (Figure 2.7).
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Figure 2.7 Correlations (top) and partial correlations (bottom) that are signi�cantly

di�erent from zero (P<0.05). Colorbar represents the strenght of the functional relation

(Adapted from [54]).

Functional connectivity patterns are susceptible to a high functional variability

due to the individual di�erences in the human brain [55]. The frontoparietal control,

the attentional, the default mode networks showed highly varied functional connectivity

patterns whereas the vision and the sensorimotor networks showed less variance in the

healthy humans according to the 7-resting state networks in [56],[57]. This variability is

stemming from the discrepancies in neuroanatomy and function which are observed in

human cognition and behaviour [57]. The inter-individual di�erences can be observed

in Figure 2.8 and the seven resting-state networks is given in Figure 2.9.
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Figure 2.8 Inter-subject variability in resting-state functional connecitivity of the

healthy brain. The warm colors represent the regions that are higher than the global

mean, cool colors are shown the values lower than the global mean (Adapted from [57]).

Figure 2.9 The seven resting-state networks (Adapted from [56]).

2.1.3 Computational Methods for Functional Brain Connectivity

Functional connectivity is de�ned as the temporally correlated ongoing �uctua-

tions between di�erent brain regions to investigate the brain organization. Therefore,

functional connectivity mainly sheds light on the interactions between di�erent brain

regions by mapping the intrinsic functional brain activity. To that extent, it is one of
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the fundamental techniques in both task based and resting state fMRI. Resting state

fMRI refers to low frequency intrinsic �uctuations while subject is at rest [18]. From the

methodological point of view, by making use of EEG and fMRI modalities, functional

connectivity has been investigated through seed-based connectivity analysis using lin-

ear/nonlinear correlation and partial correlation coe�cients, Independent Component

Analysis (ICA), General Linear Model (GLM), Principal Component Analysis (PCA)

and Clustering Methods [8],[58],[59]. In particular, ICA and seed based methods are

the most commonly applied functional connectivity techniques as well as clustering al-

gorithms [4]. The data processing pipeline for fMRI and EEG-fMRI analysis techniques

is shown in Figure 2.10 and 2.11, respectively.

Figure 2.10 fMRI data processing pipeline (Adapted from [8]).
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Figure 2.11 EEG-fMRI data integration and analysis (Adapted from [60]).

2.1.4 Data-Driven Approaches and Neuroimaging Applications

Seed based connectivity usually illustrates a metric which elucidates the rela-

tion between di�erent brain regions whereas ICA results in providing three di�erent

connectivity metrics including total connectivity, connectivity within networks and

connectivity between networks. Nonetheless, seed based results can be de�ned as

the combination of ICA based connectivity within networks and connectivity between

networks [4]. Independent Component Analysis (ICA) expresses the BOLD response

when there is no a priori knowledge or hypothesis. In other words, ICA is a data-driven

technique to analyze the whole brain data in terms of its functionality without a priori

knowledge about the task which activates the brain. To sum up, ICA decomposes

the data into spatially or temporally independent components by maximizing the non-

gaussianity or minimizing the mutual information among components [18],[46],[59]. In
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general, the types of signals can be grouped into two classes which are of interest

and not of interest. Task-related and function-related signals comprise the signals of

interest. The function-related signals represent the similarities between voxels that

belong to the speci�c domain. The task-related signal which is highly correlated with

the data, represents the waveform of the paradigm. The signals of not interest include

physiology-related, motion related, and scanner-related signals. Physiology-related sig-

nals such as breathing and heart rate arise from the brain ventricles or brain regions

with large blood vessels. On the other hand, motion-related signals such as patient

movement or brain movement may cause large abrupt changes on the data [61]. The

function of the brain basically works on two principles localization and connectionism.

Namely, localization implies each psychomotor function is carried out in a set of brain

areas (region of interest) and these areas may have a connection with each other both

structurally and functionally [62]. As a result, ICA simply separates the observed data

into set of independent variables such that signal observed at a given voxel is modelled

as a sum of the contributions of all the independent components. ICA is solved as

follows:

X = A ∗ S (2.1)

where X is an observed m-dimensional data vector, S is an n-dimensional random

vector (source matrix) whose components are assumed mutually independent, and A

is a constant m× n mixing matrix, both A and S are unknowns to be estimated [63].

This algorithm iteratively determines the mixing unknown matrix S by solving

S = A−1 ∗X (2.2)

until the convergence of independence among components. First of all, the data become

uncorrelated by using prewhitening, afterwards, the mixing matrix A and its inverse

is estimated by maximizing the non-gaussianity or minimizing the mutual information

between components [59].

ICA has been used in many neuroimaging applications including RSNs including DMN.

For instance, [64] applied ICA on resting state fMRI data in healthy participants and

patients with reversible and irreversible coma following cardiac arrest to investigate
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the role of DMN on functional connectivity. According to their hypothesis, the con-

nectivity over DMN is not changed in patients in reversible coma whereas it is altered

in those in patients with irreversible coma. Signi�cant activations regarding DMN in

healthy controls as well as in reversible coma patients are given in Figure 2.12 (A)

and Figure 2.13 respectively, whereas for irreversible comatose patients, there is no sig-

ni�cant result in terms of functional connectivity within DMN (Figure 2.12 (B)). All

these �ndings suggest that the DMN mainly re�ects the brain organization in terms of

consciousness. But it does not purely represent awareness, it may rather be required

for consciousness [64].

Figure 2.12 (A) Default Mode Network including the posterior cingulate cortex

(PCC)/precuneus, bilateral temporoparietal junctions, and medial prefrontal cortex in

control subjects as a result of ICA. (B) Functional connectivity in DMN in irreversible

coma patients. (C) Functional connectivity map in control subjects vs. irreversible

coma patients (Adapted from [64]).

In comparison wtih ICA, the clustering methods still need to select ROIs before the

computation of clusters. Furthermore, ICA considers all of the brain voxels for the

computation of functional connectivity maps [18]. At this point, ICA is advantageous.

However, it has been shown that in results of seed based, clustering and ICA techniques,

there are consistently numerous overlapping regions implying similar brain activations.

For instance, in ICA results, the activations observed in the DMN and the primary
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Figure 2.13 (A) Group functional connectivity map of DMN in reversible coma pa-

tients (gained consciousness) (Adapted from [64]).

motor cortices are also validated by both clustering and seed based methods [13]. As

a second advantage of ICA, the noisy signals can be detected as separate components

of ICA without performing other preprocessing steps. Although ICA has some advan-

tages, it also has some drawbacks. First of all, the number of components should be

pre-de�ned but there is no consensus on selecting them and the results should be visu-

ally inspected by the researcher. As a consequence, this may cause a arbitrary selection

of components since di�erent researchers may select di�erent components as a noisy

and functional networks [18],[65]. One of the most common methods to map the func-

tional connectivity including RSNs is seed-based analysis [32]. To calculate functional

connectivity, mainly two types of seed based techniques are used; ROI based and voxel

based. For seed based analysis, the fundamental measure to compute the synchronous

relations such as correlation, partial correlation or regression among di�erent brain

regions is the covariance matrix [18]. The calculation for the seed based functional

connectivity between voxel 1 and the seed voxel 2 can be de�ned as follows:

CSB(x1, x2) =

∑T
t=1 S(x1, t)S(x2, t)√∑T

t=1 S
2(x1, t)

√∑T
t=2 S

2(x2, t)
(2.3)

where S(x,t) is the demeaned BOLD fMRI signal from voxel x at time t and T is the

number of time points in the experiment [4]. [4] investigated the di�erences and sim-

ilarities between seed based temporal correlation and ICA through various paradigms

including simulations, visual, visua-motor and resting. While performing the compar-

ison, since preprocessing stage is slightly di�erent in seed based and ICA techniques,

they applied di�erent combinations which were seed based connectivity with conven-

tional seed based preprocessing (CSBP), ICA with conventional ICA preprocessing,
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and seed based connectivity with conventional ICA preprocessing. The seed based

connectivity with CSBP asserts similar functional connectivity maps with ICA in com-

parison to seed based connectivity with conventional ICA preprocessing (including

pre-whitening and dimensionality reduction after removing the physiological signals),

since there is an information loss due to dimensionality reduction which is not justi-

�ed as a neuroscienti�c proof of concept. As an important �nding, ICA based sum of

within network connectivities (WNCs) and between network connectivities (BNCs) are

the same as seed based connectivity results. But for the coactivated task based results,

seed based connectivity basically provides information that is speci�c to the experi-

ment, besides, it does not explain the exact relation between instrinsically connected

networks. As opposed to this, ICA decomposes the data into several components which

provide functional information about all distinct networks. They concluded that seed

based correlation was the GLM-based computing whose input was the seed voxel time

course. Therefore, seed based functional connectivity yields a "model" whose input

is directly related to a seed voxel. On the other hand, ICA based functional maps

provides both "states" of the human brain and their temporal dependencies.

Seed based methods are mainly categorized into two that are seed-to-whole

brain connectivity and seed-to-seed functional connectivity. In the case of seed-to-

whole brain connectivity, �rst of all, the seed region is de�ned and the average of all

voxel time series is calculated within that region. Thus, the correlation coe�cients are

computed between this averaged time series and each voxel in the brain image. The

Pearson's correlation between two time series is calculated as follows [66]:

r =
covXY

SXSY

=

∑n
i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(2.4)

where X and Y are brain activity time series, n is the number of time points, and

X̄ and Ȳ are the mean time series, S is the time series standard deviation, covXY is

the covariance. As a �nal step, r-coe�cients are converted into z-scores via Fisher's

transform. In this technique, the challenging part is choosing the seed region, since it is

not only signi�cant in terms of functional connectivity results, but it is also critical for

the explanation of these maps. Regardless of anatomically de�ned or atlas-based seed



24

regions or task-based functionally de�ned regions, seed regions are used to illustrate the

functional connectivity maps. For the anatomically de�ned or atlas-based seed regions,

based on an anatomical region of interest or reference (standardized) atlas, subject-

wise seed region is de�ned. On the other hand, task-based functionally de�ned seed

regions can be identi�ed as a prede�ned volume which takes the Talairach coordinate

of task based activation from previous studies as a center point. ROI-based functional

correlation maps illustrate the interaction between apriori de�ned regions. Besides

these fundamental approaches, an alternative method is the computation of partial

correlation coe�cients which illustrate the direct relation among di�erent brain regions

[18].

Although both ICA and seed based methods have some disadvantages, they

mainly express the brain organization in terms of functional networks [65]. Never-

theless, to perform detailed analysis of functional connectivity, partial correlation co-

e�cients have been calculated among di�erent brain regions. It indicates the direct

functional relation between di�erent anatomical regions by regressing out the e�ect of

other regions. In that extent, [27] explained the data driven measure called the partial

correlation coe�cient in terms of both theoretical and practical aspects. In this study,

the partial correlation coe�cients (also referred as conditional coe�cient) between two

regions i and j denoted by
∏

ij are de�ned as:

∏
ij

= Corr[xi, xj|xR\ij] (2.5)

Set

γ = (γij) = Σ−1 (2.6)

where Σ−1 is the inverse covariance matrix (also called precision matrix) of BOLD time

series data. Given γ, the partial correlations for two distinct regions are computed by:

∏
ij

= −(γij)/
√
γiiγjj (2.7)
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In this study, it has been argued that the partial correlation is closer to e�ective

connectivity than the marginal correlation coe�cient since it provides direct functional

relation maps through the graphical illustrations. Thus, it basically gives an idea about

the plausible connectivity pattern before the computation of e�ective connectivity.

As opposed to other e�ective connectivity matrices (Dynamical Causal Modeling or

Structure Equation Modeling), it does not require a priori input to the model. It is

not possible to �nd directionality without prior information for such model "A->B-

>C" but partial correlation can be converted into e�ective connectivity. By the partial

correlation it should be predicted that A and C do not directly depend on each other,

so the resulting model generated as "A-B-C" instead of "A->B->C". This inference

implies that there cannot be such a model "A->B<-C", since in this collider model,

there will be a negative partial correlation coe�cient between the nodes A and C as

clearly explained in [67], without eliminating "A->B->C", "A<-B<-C", "A<-B->C".

As a practical application, they proposed a bayesian model to predict the true partial

correlation coe�cients about 6 ROIs in [27]. As a result of hand movement task,

there is a high correlation between the two sensorimotor cortices (RSMC and LSMC),

the two supplementary motor areas (RSMA and LSMA), and the two premotor areas

(RPMC and LPMC). According to the results on partial correlation coe�cients, they

have obtained an important �nding regarding the role of premotor cortex over other

structures, that the activity in the sensorimotor cortices and premotor contralateral

to the hand movement were highly correlated compared to those in the ipsilateral

hemisphere. They concluded that partial correlations were more robust than marginal

correlation coe�cients since it eliminated the e�ects of other variables over a large

scale. A detailed information regarding the causal inference of partial and marginal

correlations can be found in Figure 2.14 [67].

As a model free approach, partial correlation does not only reveal the func-

tional connectivity but it is also associated with structural connectivity, namely the

white matter tracks (connected axons) that connects one region to another [68]. In

literature, it has been argued that structural connectivity implies functional connectiv-

ity whereas the reverse case may not happen all the time. When there is a functional

connectivity between di�erent brain regions, they do not have to be necessarily struc-
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Figure 2.14 The comparison between bivariate and partial correlations in prediction

for the causal inference (Adapted from [67]).

turally connected [69]. For instance, although the left and right central primary visual

cortex are functionally correlated, these regions are not structurally connected (�cen-

tral V1 callosal connections are not present in Old World primates�, p.832) [17]. On

the other hand, [13] noted that according to the results of another study, almost all

of the functionally connected resting state regions have also structural connections by

established white matter tracts. As a result, the entire relation of structure to function

still remains unsolved [13].

Functional connectivity studies mainly reveal temporally correlated distinct

brain regions for both task relevant and RSNs. As a fundamental RSN, the DMN

takes a step forward to its ability of being a biomarker for abnormalities of human

brain [36]. For the DMN, the precuneus (Pc/PCC), the so called Heteromodal As-

sociation Areas (HAAs), implying the connection among a large number of advanced

anatomical regions, has been found to be the main hub by the graph theory analysis

[70]. According to [36], as an indicator of the e�ective connectivity, partial correla-

tions were computed through di�erent ROIs during resting state and task based fMRI.

Thus, this method does not require a priori information as well as excluding the bias

to �nd the modulation of di�erent brain relations directly. They explained that since

the pairwise correlation coe�cients did not consider the covariance matrix of whole
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DMN, there was a considerable amount of information loss. To reveal this method-

ological pitfall, they applied partial correlations which were measures for excluding

mutual dependencies from common driving sources of all structures of DMN. They

gathered the fMRI signal ROIs from nine brain regions including precuneus/posterior

cingulate cortex (pC/PCC), left and right inferior parietal lobe (lIPL, rIPL), dorsal

and ventral medial prefrontal cortex (dmPFC, vmPFC), left and right temporal cortex

(lTC, rTC) and left and right medial temporal lobes (lMTL, rMTL). For the �rst level

of analysis, ICA decomposed the fMRI data into 60 components in individual basis.

As a second level, based on these spatial maps the ROIs were chosen and partial and

marginal correlations were computed over the ROIs that were aforementioned at the

group level. As a result of the correlation coe�cient computation, they reported that

all components of DMN were highly correlated with each other at rest. On the other

hand, according to the partial correlation results, as a prominent �nding, Pc/PCC has

been found to be a unique core structure for DMN in terms of having a large number of

direct interactions with other regions except for rMTL. The results revealed that there

was a strong functional connectivity between the pC/PCC and the left inferior parietal

cortex as well as between the dorsal part of the medial prefrontal cortex. As an impor-

tant note, although there was a strong interaction between left and right MTL during

rest, their connectivity decreased with the rest of the DMN. This implied an indepen-

dence from the rest of the regions in DMN. For the results of verbal n-back test, there

was a large scale connectivity reduction within the DMN, though its overall functional

interaction within itself was preserved. From the physiological point of view, being

consistent with the previous literature, the �nding regarding the pC/PCC con�rms

that it is the anatomic region which regulates self-consciousness implying the process

of self-referential mental thoughts during rest. As a supporting evidence from the PET

studies, it has been con�rmed that this region (pC/PCC) has a high metabolic activity

when compared to others. The comparison of correlation with partial correlation in

terms of their coe�cients is given in Figure 2.15.

To investigate the functional relation between di�erent brain regions, covari-

ance, precision or correlation matrix estimation is required to be computed [2],[71].

The conventional method for assessing the functional connectivity is the calculation
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Figure 2.15 The connectivity results of the default mode network (DMN) activity of

healthy subjects during resting state fMRI (blue) and a working memory task (red)

(Adapted from [36]).

of correlation coe�cients. However, the correlation coe�cients also contain the e�ect

of other regions throughout the brain. In order to assess the direct relations within

the brain, partial correlation coe�cient has to be computed. To �nd partial correla-

tions between di�erent brain regions, �rst the inverse of covariance matrix needs to

be calculated. The non-diagonal elements of inverse covariance matrix gives an idea

about the partial correlations, namely if the elements of inverse covariance matrix is

zero, then this implies that partial correlations are also zero inferring that the data

points are conditionally independent from each other [26]. However, if the number of

time points (n) during an fMRI scan is considered, it is relatively low compared with

the number of voxels or ROIs (p) within the brain. The number of pre-selected ROIs

become limited since when p>>n, the sample covariance matrix has a large number

of zero eigenvalues. Thus, it becomes rank de�cient and cannot be inverted because of

the curse of dimensionality [28],[68],[72],[73],[74]. Instead of computing the direct in-
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version, there has been di�erent methods proposed including pseudo-inverse, L-1 norm,

L-2 and L1-2 regularization (called Elastic net regularization), Ledoit−Wolf covariance

regularization and Bayesian approaches [26],[68],[73].

In the case of pseudo-inverse computation of a matrix, the non-zero eigenvalues

of the sample covariance matrix are used. However, as n�p, the di�erence between the

pseudo-inverse and the inverse covariance becomes signi�cant, since smallest non-zero

eigenvalues which are approaching zero, used to construct pseudo-inverse of the sample

covariance matrix. To solve this limitation, [74] examines "Random Matrix Theory"

which con�rms the discrepancy between the inverse and the pseudo-inverse covariance

is a feature of the large population matrices. They state that "The sample covari-

ance eigenvalue density is self-averaging. That is, the eigenvalue density from a single

large-sample covariance matrix is well-approximated by the average eigenvalue density

obtained from an ensemble of such sample covariance matrices" (p.1473). As a result,

rather than computing the pseudo-inverse of all the data set, it is more convenient

to partition it into small data sets and calculate their pseudo-inverse inverses. As an

application of random matrix theory on fMRI data, [28] computed partial correlation

coe�cients between a seed region and each target brain voxel by using pseudoinverse

covariance matrix. Partial correlation coe�cients are computed not only for removing

the global artifacts regarding head movement, cardiac pulsation but also functional

connectivity on resting state fMRI data. As a result, the proposed algorithm outper-

forms the existing methods in terms of high sensitivity, speci�city and accuracy as well

as providing additional strong connections on default mode network and more robust

identi�cation of connectivity with left and right medial temporal lobe regions compared

to the global signal regression method. Random subspace method is advantageous in

terms of providing high accuracy of inverse covariance matrix since the data is divided

into many number of submatrices, the sample-to-feature ratio becomes high as opposed

to original data set. The novel random subspace method for functional connectivity

(RSMFC) algorithm is given in Figure 2.16. Both methods are applied on rs-fMRI data

by selecting the posterior cingulate cortex (PCC) as a seed ROI in order to compute the

whole-brain functional connectivity map. Two uncorrelated data sets are constructed

including bilateral medial prefrontal cortex (mPFC), angular gyrus regions (AG), and
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Figure 2.16 The novel random subspace method for functional connectivity (RSMFC)

algorithm (Adapted from [28]).

medial temporal lobes (MTL) for the �rst and, lateral fronto-parietal regions for the

second. RSMFC algorithm detects the connections as uncorrelated networks, whereas

global signal regression method �nds an anti-correlation between these two networks.

Although the main hubs of the DMN are visible in the results of both algorithms, the

anatomical speci�city of RSMFC is higher than that of the global regression. As a

result, RSMFC is a promising approach to investigate the functional brain maps. For

a non-full-rank matrix A, the pseudo- inverse A+ is given by [74] as:

A+ = (ATA)−1AT (2.8)

where AA+ = I.

The pseudo-inverse, A+ minimizes

∥AA+ − I∥F (2.9)
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where F is the Frobenius norm

∥X∥2F =
∑
ij

XijXji = trXXT (2.10)

The pseudo-inverse of data matrix D can be calculated as follows [74]: For p*n centered

data matrix D which is normalized as,

D = (E1 − µ,E2 − µ,E3 − µ, ...., En − µ) (2.11)

where µ is the sample mean and Eµ, µ = 1, 2, ..., n. The sample covariance matrix Ĉ

is given as

Ĉ = n−1DDT (2.12)

For n < p, the sample covariance C is singular, and so the pseudo-inverse of C denotes

as Ĉ+ which is an estimator of C−1 should be calculated.

Ĉ+ = nD(DTD)−1(DTD)−1DT (2.13)

L1-norm regularization is also used to compute the inverse covariance matrix. It

has several advantages including imposing sparsity and dispensable statistical thresh-

olding while detecting signi�cant relations since insigni�cant connection values are set

to zero. Although it has several advantages, it has some drawbacks. To be more pre-

cise, if the number of observations is less than the number of nodes, the identi�cation

of the number of network connections is limited to the number of observations. Be-

sides, if the correlation coe�cients are high in pairwise manner, L1 can only detect a

sub-network of these connections. Since the spatial correlations between these brain

regions are high and they are near to each other, the L-1 norm becomes insu�cient in

terms of regularization [26]. L1-norm is computed as;

Let S ⪰ 0 be a given empirical covariance matrix, for data drawn from a multivariate

Gaussian distribution. Let the variable X be the estimated inverse covariance matrix.
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The L1-norm regularization solves the maximum likelihood problem as

max
X≻0

log detX − ⟨S,X⟩ − ρ∥X∥1 (2.14)

where ⟨S,X⟩ = trace(SX) is the the scalar product between two symmetric matrices

S and X, X and the term

∥X∥1 :=
∑
X=i,j

|Xij| (2.15)

penalizes nonzero elements of X. Here, ρ > 0 adjusts the degree of the penalty [75]. To

solve this problem, [26] combines L1-norm regularization with L2-norm regularization

which results in column-wise sparsity. By imposing L2 norm regularization that is sum

of squares of weights, the second limitation of L1 norm regularization is thought to

be solved. L1-2 norm regularization is applied in order to estimate the sparse partial

correlations. This algorithm is applied on resting state fMRI data with 90 cortical

and subcortical structures that are obtained from anatomical templates. Elastic net

regularization outperforms L1-norm results in terms of high sensitivity and accuracy.

As a result, the novel �ndings of elastic net result in identifying of a high degree of

inter-hemispheric links between homologous anatomical regions, distinct ventral and

dorsal stream pathways, and a major hub precuneus in the posterior medial cortex.

[68] recently investigates the inverse covariance matrix via Ledoit-Wolf covariance reg-

ularization. Let X ∈ RT∗M be BOLD time-series, where T is number of time points

and N number of regions, the sample covariance matrix is given:

Σ̂ =
1

T
(X − X̄)t(X − X̄) (2.16)

When Σ̂ is not invertable, Ledoit-Wolf covariance regularization solves:

Σ̂ = (1− α)Σ̂ + α∆ (2.17)

where α is a tuning parameter and ∆ is the shrinkage target that makes covariance

invertible. Partial correlations are computed in both eyes closed and eyes open resting
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state conditions by using Ledoit-Wolf covariance regularization. Two di�erent data

sets are generated. For the �rst group 36 ROI are selected including 5 RSNs, for the

second group 236 ROI are detected including 12 RSNs including somatomotor, cingulo-

opercular, auditory, default mode, parietal encoding/retrieval, visual, fronto-parietal

control, salience, subcortical, ventral attention, dorsal attention, and cerebellum net-

works. When full and partial covariance matrices are computed, partial covariance

matrix is a�ected by the homotopic functional connectivity, implying that it provides

some distinct features regarding the brain structure. The full covariance is partially de-

termined by the shared variance of the RSNs which was removed by partial covariance.

As a remarkable highlight, although it has been hypothesized that partial correlations

re�ect structural connectivity, they �nd out that it does not only provide information

on white matter tracks, but it also gives an insight about brain states modulated by

using eyes open and eyes close conditions. There is a dramatic change in the full cor-

relation functional connectivity. However, for a few ROIs' functional connectivity is

changed in the case of partial correlation. As a result, the altered functional connec-

tivity in partial correlation is more focal when compared to full covariance alterations,

provided with a less inter-subject variance.
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3. METHOD

3.1 Methodology

3.1.1 Research Population

A total of nineteen right/left TLE patients (13 Females, 6 Males, age: 28.47±

11.36 years; age range 14−52) were diagnosed according to the International League

Against Epilepsy (ILAE) guidelines. Nineteen healthy subjects (13 Females, 6 Males,

age: 24.89 ± 5.38 years; age range 20−40) were enrolled as gender (p = 1), age (p

= 0.22) and mean signal-to-noise (SNR) (p = 0.86) ratio matched control group af-

ter having signed the informed consent. In order to eliminate the susceptibility due

to motion, the motion parameter (mean relative head displacement) between groups

was compared and no di�erence was detected between the groups (p > 0.05). Each

participant underwent through three separate fMRI sessions after having signed the

informed consent in Xuanwu Hospital of Capital Medical University. All patients were

medicated. None of the subjects had any other neurological or psychiatric disorder.

This study was approved by Xuanwu Hospital of Capital Medical University Ethics

Committees. Demographic information is given in the appendix.

3.1.2 Data Collection

Functional data were acquired using 3T Siemens Scanner with a 32- channel

head coil at Xuanwu Hospital of Capital Medical University. The echo planar imaging

functional was collected as contiguous 124 volumes for each subject (TR = 3000 ms;

TE = 30 ms, FA = 90◦, FOV =64 mm; voxel size = 3 × 3 × 3.48 mm3 ). The anatomic

T1−weighted images were collected with (TR = 1600 ms; FOV = 256 mm, TE=2.15

ms, TI=800 ms, FA=9 ◦; voxel size=1 × 1 × 1 mm3 ). Participants were instructed to

stay awake inside the scanner with their eyes closed.
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3.1.3 Data Analysis

Resting state fMRI data were preprocessed with FSL (https://fsl.fmrib.ox.ac.uk

/fsl/), FreeSurfer (http:// surfer.nmr.mgh.harvard.edu) and SPM (https://www.�l.ion.

ucl.ac.uk/spm/, Wellcome Trust Centre for Neuroimaging, London, England) software.

The �rst 4 volumes were discarded to ensure magnetic stabilization. The resting state

functional images were, slice time corrected, motion-corrected using rigid body trans-

formation of the FSL software and bandpass �ltered (0.01 − 0.08 Hz). As a last step,

the head motion, the averaged ventricular signal, the averaged white matter signal and

global signal regression were all regressed out. For each individual, a surface repre-

sentation of the cortex from the structural image was reconstructed and registered to

a common spherical coordinate system using FreeSurfer. Each individual's functional

image was registered to the structural image based on boundary-based registration

[76]. The functional images were also registered to a common spherical coordinate

system via sampling from the middle of the cortical ribbon in a single interpolation

step [56]. The resting-state BOLD fMRI data represented the entire cortical surface of

each subject with a total of 5124 vertices, 2562 being in each hemisphere. The detailed

description of the preprocessing pipeline is explained in [56].

3.1.3.1 Inter-subject Variability Analysis. To assess the variability de�ned

in Eq. 3.2 and Eq. 3.3 with regard to the epileptic patients and the healthy controls,

a previously published study [57] was replicated. In the �rst phase of the two stage

algorithm, we calculated the intra-subject variability, and in the second phase, the

inter-subject variability from which we regressed out the intra-subject variance. To

calculate the intra-subject variability, the Pearson's correlation coe�cients over all

vertices were computed resulting in a �nal correlation matrix (5124 × 5124). In the

�rst step, by taking each of voxel as a seed, we calculated the mean similarity (Eq.

3.1) and intra-subject variability across sessions (Eq. 3.2, Eq. 3.3). As the �nal step,

we computed the inter-subject variance by regressing out the intra-subject variability

using the general linear model (Eq. 3.4, Eq. 3.5).
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Similarity is de�ned as;

Ri(t) = E[corr(Fi(sp, t), Fi(sq, t))] (3.1)

where Fi(s, t) denotes the ith column in the correlation matrix of session t (t = 1, 2, 3),

subject s (s = 1, 2.., 19) and voxel i (i = 1, 2, ..., 2562) and where p,q = 1, 2, 3....,19; p

̸= q.

Intra-subject Variability:

Ni(s) = 1− E[corr(Fi(s, tm), Fi(s, tn)] (3.2)

where m,n = 1, 2, 3; m ̸= n.

Ni = E[Ni(s)]. (3.3)

Inter-subject variability:

Vi(t) = [1−Ri(t)]− βNi − c (3.4)

Vi = Mean(Vi(t)) (3.5)

3.1.3.2 Seed Based Connectivity Analysis. To validate highly variable and

less varied regions, we selected seeds from both regions in images from patient and

healthy population. As a second step, the functional connectivity map indicating the

seed to whole brain connectivity was computed for each individual. This map was

binarized using a threshold value of 0.2. The binarized maps were averaged resulting

in an estimate of percent of subjects showing a signi�cant connectivity to the seed [77].

3.1.3.3 Bootstrap Validation. In order to determine the statistical signi�cance

of the variability di�erences, we applied bootstrap statistics. We randomly took 10

subjects in one iteration from both healthy and TLE groups and the inter-subject
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variability was calculated after regressing out the intra-subject variance. This method

was repeated 100 times. Finally, a t-test was applied on each voxel vector.

3.1.3.4 17-Network Parcellation Analysis. 17-Network parcellation scheme

was perfomed based on a previously published study [78]. After the extraction of the

fMRI time series data, ROIs were averaged resulting in a total of 61 ROIs for each

hemisphere. The Pearson's correlation was computed between pairs of ROIs within

each hemisphere. To normalize the correlation values, we applied an r-to-z transforma-

tion. As a last step, we performed an unpaired t-test in order to �nd the statistically

signi�cant regions between the healthy controls and the TLE patients. Results were

corrected using the false discover rate (FDR) method [79]. The 17-Network parcella-

tion ROI visualization can be observed in Figures 3.1 and 3.2.

Figure 3.1 The 17-Network parcellation (Adapted from [56]).
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Figure 3.2 The 17-Network parcellation and their corresponding anatomical regions

(Adapted from [80]).

3.1.3.5 ROI-wise Random Subspace Algorithm Analysis. In order to com-

pute the direct relation between di�erent brain regions, we extended the random sub-

space algorithm whose infrastructure was based on the seed to whole brain connectivity

to seed to seed connectivity [28]. To validate the random subspace method, we gen-

erated an fMRI simulation data set based on the two-fold algorithm [81]. In the �rst

step, given the correlation coe�cients, we calculated the covariance matrix, and the

pseudo-inverse of the covariance matrix. Then, we multiplied the inverse matrix with

-1. To normalize the partial correlation coe�cients, we divided each element dividing

by the square root of the respective diagonal elements of the inverse covariance matrix

(Eq. 3.6). Finally, the ground-truth partial correlation coe�cients are between nodes
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i and j;

−(γij)/
√
γiiγjj (3.6)

In the second phase of the algorithm, given the covariance matrix that we generated

from the correlation coe�cients, we obtained n-node time series data. Based on this

covariance matrix, we created an order one autoregressive model (AR(1)) with a pa-

rameter ρ=0.5 which was a su�cient lag for the preprocessed fMRI data [81] as given

in Eq. 3.7:

y(t) = c+ ρ ∗ y(t− 1) + σ ∗ k (3.7)

where c was a constant, σ=1, k is a random number with a normal distribution.

After the generation of time series data, in order to evaluate the performance of the

extended random subspace method for functional connectivity algorithm (E-RSMFC),

we applied di�erent partial correlation algorithms on the simulation data set. As the

�rst solution, partial correlation method was used in Matlab® (MathWorks®, Natick,

MA) environment. As a second method, the implementation inverse covariance (ICOV)

with pseudoinverse solution from [82] was used. First, the covariance matrix of the

generated data set was calculated. The pseudo-inverse of the covariance matrix was

calculated then multiplied by -1. To normalize the partial correlation coe�cients, we

divided each element of multiplied pseudo-inverse covariance matrix by the square root

of the respective diagonal elements of multiplied pseudo-inverse covariance matrix given

in Eq. 3.6 [82]. In the last method, we determined the inverse covariance matrix using

the L1 precision [83]. L1-precision solves the following optimization expression:

max
Λ≻0

log detΛ− trace(Σ̂Λ)− ρ∥Λ∥1 (3.8)

where Λ=Σ−1, and Σ̂ is the empirical covariance matrix, ∥Λ∥1=
∑

ij|Λij| and ρ >0

denotes the penalty (regularization-controlling) parameter [83],[84]. [82] tested the

parameter with di�erent values 5, 10, 20, 50, 100, and 200. According to their �ndings,

they have never been able to obtain best results with the values of 10, 20, 50, and

200, so they used 5 and 100 as the regularization parameter. Consequently, we used 5
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as the regularization parameter for our simulation experiments. Implementation from

[83] was used to �nd the inverse covariance matrix of the given data sets.

The detailed summary of the extended random subspace method for functional

connectivity algorithm (E-RSMFC) is given as follows:

Input: time series data for p ROIs

Output: partial correlation coe�cients for p ROIs

Step 1:

(1) Randomly shu�e the regions by storing the original indices

(2) Take �rst maximum number of p1 ROIs and concatenate them to the end of the

shu�ed matrix whose voxel size is p

(3) To calculate the covariance and inverse covariance matrix, divide this permuted

matrix into sub-matrices such that each submatrix has number of p0 ROIs.

Step 2:

(1) Calculate covariance matrices.

(2) Take the pseudo-inverse of each submatrix.

(3) Compute partial correlation coe�cients for each subset.

(4) Calculate the mean of partial correlation coe�cients that are computed in each

iteration.

(5) Compute steps 1-2 t times till the result converge to a minimum error.

Mainly, two critical tuning parameters need to be adjusted in order to get the

optimum solution of the algorithm. The number of ROIs in each subspace (p0) and

the number of concatenated ROIs (p1). To do so, we iteratively computed partial

correlations starting from 10 node and increased the number of nodes to 50. After 50

nodes trial, we applied the algorithm on data sets having 60, 70, 80, 90, 122 nodes

separately. Thus, to test the algorithm, we created 20 data sets for all nodes. Starting

from 10 node data set, we iteratively tried the algorithm for di�erent subsets by adding

maximum number of nodes to the end of each data set (p1). As a result each subset
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has p0 ROIs in it, and all ROIs appeared in each subset once, Eq. 3.9.

(p+ p1)/2 = p0 (3.9)

As the last step of the partial correlation estimation, we performed statistical analysis

to con�rm the statistical signi�cance of the estimated partial correlation coe�cients

compared to other methods. To do so, we applied F-test on the coe�cient of determi-

nation values. To assess the estimation accuracy of the random subspace algorithm,

for 20 data set, the average normalized mean square error, coe�cient of determination

were calculated for 10, 50, 60, 70, 80, 90, 122 nodes on the simulation data for 120

time points. The normalized mean squared error (NMSE) was computed based on the

following formula:

MSE =
Σn

i=1(Xobs,i −Xmodel,i)
2

n
(3.10)

NMSE =
MSE

Xobs,max −Xobs,min

(3.11)

where Xobs = the values actually observed from the environment that is being modeled,

Xmodel = values predicted by the model [85],[86]. The coe�cient of determination was

calculated as follows [87]:

R2 = 1− SSRES

SSTOT

= 1− Σn
i=1(Yobs,i − Ymodel,i)

2

Σn
i=1(Yobs,i − Yobs)2

(3.12)

where Yobs = the values actually observed from the environment that is being modeled,

Ymodel = values predicted by the model

R2 indicates the �goodness-of-�t � of a model �tted to the data [87]. If the coe�cient

of determination value is close to 1, this implies a good �t to a model.
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4. RESULTS

In this chapter, the inter-subject variability results together with the 17-Network

parcellation results are shown as well as the extended random subspace algorithm and

its application on both the TLE patients and healthy controls fMRI data.

4.1 Inter-subject Variability Results

The inter-subject variability results revealed that the TLE patients showed a

greater variability in the frontoparietal control, the ventral/dorsal attention, the default

mode, the somatomotor, the visual and limbic resting state networks compared to

controls based on the 7-network parcellation [56]. The inter-subject variability map is

given in Figure 4.1. In order to recognize the functional variability di�erence between

healthy controls and patients with temporal lobe epilepsy, we subtracted intra-subject

regressed inter-subject variability map of controls from patients. The di�erence map

together with the clustering validity index is given in Figure 4.2.

Figure 4.1 Intra-subject regressed inter-subject variability results (A) Controls (B)

Patients.
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Figure 4.2 (A) Average inter-subject variability di�erences in resting functional con-

nectivity between patient and healthy populations (TLE > Healthy). Yellow regions

show highly varied, dark blue regions show less varied anatomical regions between two

populations. (B) Average inter-subject variability di�erence quanti�ed based on the

di�erence map (A) and the 7-Network parcellation [56]. FPN indicates frontoparietal

control; DMN default mode; vATN ventral attention; LMB limbic; dATN dorsal at-

tention; Mot sensory-motor and Vis visual networks.

The high and less varied regions were also con�rmed by selecting a highly and

less varied seeds and the seed to whole brain connectivity was computed for both

healthy and patient groups. The results were also in favor of the argument that TLE

patients presented a higher variability when a highly varied seed was to be selected

and less variability when a less varied seed was to be. The results are given in Figures
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4.3 and 4.4.

Figure 4.3 (A) Highly varying seed on the right hemisphere for the (B) TLE popula-

tion and (C) Healthy population.

Figure 4.4 (A) Less varying seed on the right hemisphere for the (B) TLE population

and (C) Healthy population.

The results were further analysed with the bootstraping method in order to
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validate the statistical signi�cance of the di�erence map. According to bootstrap re-

sults based on the intra-subject regressed inter-subject variability, the variability in

frontoparietal, somatomotor, ventral/dorsal attention, default mode, visual and lim-

bic resting state networks was statistically signi�cant between patient population and

healthy controls shown in Figure 4.5 (p<0.05) based on the 7-network parcellation

[56]. Thus, the results con�rmed that the TLE patients showed higher variability on

the same networks with the di�erence map.

(a)

(b)

Figure 4.5 (a) Bootstrap t-test results statistics for -log10 P (b) The di�erence map,

TLE>Healthy.
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4.2 17-Network Parcellation Results

The functional connectivity maps that belong to each group were obtained by

computing the Pearson's correlation matrices using 17-Network parcellation [78]. From

3721 region comparisons, 66 ROIs were found to be statistically signi�cant between

inter-hemispheric ROIs (q < 0.05, FDR-corrected). Thereby, there were substantial

di�erences in functional connectivity patterns between patient and healthy groups.

Hence, functional connectivity mostly decreased in between and within the networks

frontoparietal control, the default mode, the ventral attention, the visual, the somato-

motor, the saliency and the dorsal attention in patient population as shown in the av-

erage Pearson correlation matrices for each group in Figure 4.6. In the TLE patients,

inter-hemispheric functional connectivity results demonstrated a signicant negative in-

crease (FDR-corrected, q < 0.05) in connectivity between the somatomotor cortex and

lateral prefrontal cortex. Statistical results are given in Manhattan plot in Figure 4.7.

The TLE patients also showed signi�cant positively increased functional connectivity

between the left and the right hemisphere pairs of ventral attention and dorsal at-

tention. Additionally, the region-wise statistical results were given in Figure 4.8 and

Figure 4.9.
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(a)

(b)

Figure 4.6 Each grid shows inter-hemispheric functional connectivity correlation ma-

trices for ROIs (based on Pearson correlation(r)) in Controls (A) and Patients (B).

SomMot indicates somatomotor, DorsAttn, dorsal attention, VentAttn, ventral atten-

tion, Sal, saliency, Lim, limbic.



48

Figure 4.7 Manhattan plot for p values between left and right hemisphere between

network functional connectivity di�erences. The y-axis shows the -log10 p values of 3721

between-network regional pairs, and the x-axis shows their corresponding anatomical

positions. The horizontal blue line represents the threshold of p = 8.86 × 10−4 that

corresponds to the false discovery rate (q < 0.05) (Note: Each between network con-

nection is plotted twice to re�ect both regions.).



49

(a) (b)

(c) (d)

Figure 4.8 Region-wise manhattan plot for p values between left and right hemisphere

between network functional connectivity di�erences. The horizontal blue line represents

the threshold of p = 8.86×10−4 that corresponds to the false discovery rate (q < 0.05).



50

(a) (b)

(c) (d)

Figure 4.9 Region-wise manhattan plot for p values between left and right hemisphere

between network functional connectivity di�erences. The horizontal blue line represents

the threshold of p = 8.86×10−4 that corresponds to the false discovery rate (q < 0.05).

The functional relation between dorsal attention, frontoparietal control and de-

fault mode networks can also be observed in Figure 4.10. According to the spring

graph, the network clusters belonging to the patient group represent more dispersed

maps compared to those of the controls with an implication of decreased functional

connectivity patterns in the patient population.
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(a)

(b)

Figure 4.10 Spring-loaded graphs demonstrating the bilateral hemispheric anatomical

regions (a-b), for dorsal attention, default mode and frontoparietal control networks,

(a) Healthy controls (b) TLE (Abbreviations for the anatomical regions from [78] can

be found in Appendix B).
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4.3 ROI-wise Random Subspace Algorithm Results

We iteratively ran the algorithm given in Subsection 3.1.3.5 for all the data

sets so as to �nd the optimal parameters that yielded the minimum error between the

estimated and ground-truth matrices. To validate the algorithm, we �rst applied it on

10-node data set with 120 time points. For this dataset the parameters were selected

as p0 = 10, p1 = 10 ; p0 = 9, p1 = 8 ; p0 = 7, p1 = 4 ; p0 = 8, p1 = 6 ; p0 = 6,

p1 = 2 ; p0 = 5, p1 = 10 ; p0 = 4, p1 = 10. As p0 and p1 values becomes lower,

the estimated partial correlation values diverged from the ground-truth matrices. In

other words, the ANMSE increased and the AR2 values decreased. For the partition

p0 = 10, p1 = 10, the E-RSMFC algorithm is equivalent to the other methods in

performance ANMSE and AR2. Hence, this �nding clearly proves the reliability of

the algorithm implementation. Considering the e�ect of p0 on the inverse covariance

matrix calculation, we found that, as the number of regions inside submatrix decreased,

the correctness of the partial correlations diverged from the the ground-truth matrices

(Figure 4.11). As the data set dimension increased the inverse of covariance matrix

became unstable, implying a divergence from the ground-truth. In order to test this

fact, we also applied the E-RSMFC algorithm on 50, 60, 70, 80, 90 and 122 nodes data

sets with various p0 and p1 values. The error became larger when the number of regions

increased, i.e. when the average normalized mean squared error ≥ 0.01, this algorithm

gives accurate results when dimension is less than 90 for 120 time points. The average

normalized mean square error and the average coe�cient of determination results of

the algorithm is given for the optimal partitions in Figure 4.12.
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(a)

(b)

Figure 4.11 (a) The average normalized mean squared error and (b) The average

coe�cient of determination comparison for di�erent p0 values, p1 = 46 for the 50 node

data set.
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Figure 4.12 The average coe�cient of determination (AR2) and the average normal-

ized mean square error (ANMSE) for the E-RSMFC algorithm.

Iteration number was also another issue to consider while running the algorithm.

Hence, after 50 iterations the algorithm became stable, so in order to ensure stability,

we chose 100 as the maximum iteration number for each data set. The performance

evaluation summary for the optimal algorithm parameters is given in Figure 4.13.
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Figure 4.13 The average normalized mean square error (ANMSE) and the average

coe�cient of determination (AR2) changes according to iteration for the 50 node data

set.

After having the optimal parameters for the E-RSMFC, we compared the E-

RSMFC with pseudoinverse inverse covariance (ICOV-P), Matlab partial correlation

solution (MPC) and L1 shooting algorithm (L1) with the regularization parameter

λ = 5. We chose the regularization parameter λ = 5, since [82] noted the best results

obtained when λ = 5. Results revealed that as the number of number of regions (p)

approach to number of time points (n); E-RSMFC algorithm outperforms the other

three methods by having a lower mean squared error as well as higher mean coe�cient

of determination values. Finally, we used F-test to compare the statistical signi�cance
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of di�erent methods according to their coe�cient of determination values. According

to results, there is no statistical signi�cance in predicting ground-truth covariance

matrices between MPC and E-RSMFC (p=0.49), ICOV-P and E-RSMFC (p=0.49)

and L1 and E-RSMFC (p=0.63) for the 10-node data set. In the case of 50 node

data set, there is statistical signi�cance between E-RSMFC, MPC (p=0.03), ICOV-

P (p=0.03) methods and there is no statistical signi�cance when comparing with L1

(p=0.06) method when estimating the ground truth covariance matrices. For the 60

node data set, according to F test results, there is a statistical signi�cance between

MPC and E-RSMFC (p=0.007), ICOV-P and E-RSMFC (p=0.007) and L1 and E-

RSMFC (p = 1.03 × 10−12) when estimating the ground-truths. As for the 70 node

data set, according to F test results, there is statistical signi�cance between MPC

and E-RSMFC (p=0.03), ICOV-P and E-RSMFC (p=0.03) and L1 and E-RSMFC

(p = 2.08 × 10−14) when estimating ground truth covariance matrices. Lastly, for the

80 node data set, according to F test results, there is a statistical signi�cance between

MPC and E-RSMFC (p = 8.36 × 10−8), ICOV-P and E-RSMFC (p = 8.36 × 10−8)

and L1 and E-RSMFC (p = 0) when estimating the ground truth covariance matrices.

The method comparisons are given in Figure 4.14. To sum up, the random subspace

algorithm outperforms other existing methods in terms of accurately computing the

inverse covariance and partial correlation coe�cients for 50, 60, 70, 80 nodes as well

as showing statistical signi�cance for the 50, 60, 70 and 80 number of nodes with 120

time points.
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(a)

(b)

Figure 4.14 (a) The average normalized mean squared error and (b) The average

coe�cient of determination comparison for di�erent methods, M1: Inverse covariance

(ICOV) with pseudoinverse, M2: Matlab partial correlation solution, M3: L1 Shooting

partial correlation with the regularization parameter λ = 5, M4: Random subspace

algorithm results on 10, 50, 60, 70 and 80 node data sets.

4.4 E-RSMFC Application to Healthy Population and Tem-

poral Lobe Epilepsy Patients' Resting State fMRI Data

We used a 17- network parcellation framework which was previously published

in [78]. Aforementioned in literature, TLE patients exhibited deterioration in dor-
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sal/ventral attention, default mode and frontoparietal control resting state networks

[34],[46],[88],[89],[90]. Thus, we chose 80 ROIs (with the optimal parameters p0 = 76,

p1 = 72) from 122 ROIs including dorsal/ventral attention, default mode and fron-

toparietal control resting state networks. Among 80 ROIs, patients with TLE mostly

showed a decreased functional connectivity using both partial correlation and Pearson

correlation coe�cients. According to partial correlation results, 120 ROIs including the

dorsal/ventral attention, the frontoparietal control, the default mode, had statistically

signi�cant di�erences between healthy population and TLE patients (p<0.05, uncor-

rected). There were no statistically signi�cant results when correction was performed.

However, 45 ROIs including ventral/dorsal attention, frontoparietal control, default

mode, revealed statistically signi�cant results between healthy and patient population

using Pearson correlation (FDR-corrected, p=0.0014). Both Pearson and partial corre-

lation results for bilateral structures are given in Figures 4.15 and 4.16 for healthy and

patient populations. As it is known that homotopic structures are connected with each

other after regressing out the e�ect of other brain regions [68],[91], we only presented

the homologous structures in this framework.
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Figure 4.15 The error bars representing the z-value of the Pearson correlation coef-

�cients for both healthy and patient group (Anatomical region abbreviations can be

seen in Figure 3.2).
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Figure 4.16 The error bars representing the z-value of the partial correlation coef-

�cients for both healthy and patient group (Anatomical region abbreviations can be

seen in Figure 3.2).
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5. DISCUSSION AND CONCLUSION

In this work, we investigated the functional inter-subject variability and con-

nectivity in order to assess the e�ect of temporal lobe epilepsy on resting-state brain

networks by comparing the resting state fMRI scans of TLE patients with those of the

healthy population. To accomplish this framework, we made use of both Pearson's and

partial correlation coe�cients. We have reached several substantial conclusions about

functional inter-subject variability and connectivity. According to our functional inter-

subject variability results, TLE patients exhibit higher variability in the default mode

network in the areas as the PCC/Precuneus, the anterior cingulate (ACC), the me-

dial prefrontal cortex; the frontoparietal control network including the dorsolateral

prefrontal cortex, the orbitofrontal cortex; the dorsal attention network including the

frontal eye �elds, and the ventral attention network including the temporoparietal junc-

tion, the insula, the somatomotor network including the motor region, the visual and

the limbic networks, can be observed from the Figures 4.1 and 4.2. TLE has been shown

to be a prevalent network disease [23],[88],[89],[90]. Hence, there has been no compro-

mise related to the deteriorated networks because of the fact that same patient having

a single clinical expression may show di�erent seizure propagation pathways [92]. Be-

yond this, it has been noted that TLE has a unique functional connectivity patterns

although two di�erent patients may have a similar seizure onset zones on the temporal

region which is shown by the intracranial EEG [44]. Stemming from variable seizure

onset localization and morphological measures in patients, TLE has been considered

as a heterogeneous disease [92],[93],[94],[95]. In summary, at the single subject level,

there is variability in the functional connectivity patterns within the same epileptic pa-

tient population [44],[96]. The seizure onset is thought to be located in hippocampus

or parahippocampal gyrus in TLE [34]. DMN BOLD activity increases in case of an

internal attentional engagement, e.g. remembering past events or envisioning the fu-

ture [97] and the posterior cingulate is one of the core anatomic structure that belongs

to the DMN [35]. Considering this fact, DMN is one of the core disrupted networks

e�ecting the functional connectivity in the TLE patient population [34],[52],[53],[98].
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For instance, [98] have shown a signi�cant functional connectivity di�erence between

the DMN and the executive control network when they compared those TLE patients

having normal (G1) and those having impaired executive functioning (G2) with the

healthy population using the resting state fMRI. The normal G1 and the healthy group

had no signi�cant negative functional connectivity. On the other hand, the G2 had

a signi�cantly enhanced negative correlation with respect to the healthy controls and

the G1. They explained this fact as a decreased interaction between the mPFC (me-

dial prefrontal cortex) and the dlPFC (dorsolateral prefrontal cortex) considering that

these belonged the core hubs of default mode and executive control networks. Besides

that, [99] have found a positively correlated functional connectivity between the dorsal

DMN and executive control network. At this point, it is worth to compare our results

with the afermentioned studies. According to our results, the functional connectivity

between the left mPFC and the right lateral prefrontal cortex (including dlPFC) is

decreased in the TLE patients when compared to the healthy population (p=0.03, un-

corrected). We also found a decrease between bilateral sensorimotor structures which

was also illustrated in the previous studies [46],[88]. According to another study, how-

ever, an increased functional connectivity has been noted in the sensorimotor network

[90]. Besides, [88] reported an increased functional connectivity within primary visual

cortex as well as an attenuation between bilateral MT+ (a higher order visual cortex)

areas of the visual network in bilateral TLE patients. Considering the fact that we

found a high functional variability in the visual cortex, the results in [88] also sup-

port our �ndings. Our inter-subject variability results elucidate a high dissimilarity

within the somatosensory and default mode networks in TLE patients compared to

controls (Figure 4.2). This may pave the way to clarify the equivocal results presented

in some previous studies. Besides these networks, hypo- and hyper-connectivity results

revealed in former studies [23],[46],[89],[100] also support our high variability �ndings

in the frontoparietal control and the ventral/dorsal attention networks. Each patient

may have a di�erent seizure propagation pathway. Therefore, the heterogeneity may be

stemming from the discrepancy of the a�ected networks. In other words, some regions

may be disrupted in some patients, whereas they may stay intact in others [101]. In

our study, we mostly found a decreased functional connectivity between/within the

networks that were less di�erently varied (frontoparietal control, default mode and
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ventral attention) between TLE patients and controls based on the 17-Network parcel-

lation. As a result, this prominent �nding may imply that these networks are severely

deteriorated in patients with TLE.

From a clinical aspect, seizures still occur in 10−40% of the TLE patients in

the postoperative phase [102]. In their study, 36% of the patients MRIs were consid-

ered as normal although they had hippocampal sclerosis on their pathology. Given

this complication, it is noteworhty to clarify the variability in order to de�ne a ro-

bust biomarker related to the disease. Thereby, according to our functional variability

results, less varied seeds between patient and healthy population may be used to iden-

tify a common connectivity structure which discriminates the TLE patients from the

healthy population.

We further explored the functional connectivity between the healthy and pa-

tient populations based on the 17-network parcellation scheme [78]. In the concept of

functional connectivity, a hypoconnectivity refers to a cognitive impairment within or

between networks, whereas a hyperconnectivity may indicate a compensatory mecha-

nism that ful�lls the function loss [89]. In line with the previously published results

[22],[24],[46],[88],[89],[103], our functional connectivity results revealed a signi�cant re-

duction in the patients group including the frontoparietal, the somatomotor, the default

mode, the ventral/dorsal attention, the saliency and the visual network. Although

partial correlation results were not statistically signi�cant when corrected, bilateral

homologous structure results also supported the attenuation in the functional connec-

tivity. This inter-hemispheric connectivity results revealed a disrupted synchronization

between the hemispheres as indicated in the previous research [104].

The frontoparietal control network is functionally associated with the attention,

problem solving, decision making and reasoning including lateral prefrontal cortex,

anterior cingulate cortex, and inferior parietal lobule [105],[106]. It has been hypothe-

sized that it regulates the information that are related to dorsal attention and default

mode networks as well as sustaining the dynamic balance between these networks

[78],[97],[107]. As one of the main regions residing within the frontoparietal control
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network, the Precuneus, connects the default mode and the dorsal attention networks

[107]. The Precuneus is functionally thought to associated with cognitive functioning,

attention, episodic memory, mental imagery (such as motor imagery), consciousness

and self-consciousness [108],[109],[36]. According to a study, there was a reduced func-

tional connectivity between the hippocampus and the precuneus in mTLE patients

[110]. In light of these, the results of our study showed that there was a reduction in

the functional connectivity between the left precuneus and the right posterior cingu-

late, and between the bilateral posterior cingulate in patients with the TLE. According

to a SPECT study, there was an ictal hypoperfusion in the superior frontal gyrus and

the precuneus in 90% of the TLE patients. In another study using video EEG and

SPECT, a focal decrease in cerebral blood �ow (CBF) in the DMN regions such as

the posterior cingulate cortex/precuneus, the inferior parietal lobule, and the medial

frontal/anterior cingulate cortex, as well as in the orbital frontal, and the inferior lat-

eral frontal cortex during complex partial seizures with decreased consciousness was

observed whereas these changes were not existing in patients with preserved conscious-

ness during simple partial seizures [109]. According to another study, the cognitive

impairment of a patient may be estimated from the connectivity between posterior

cingulate cortex (PCC) and left hippocampus. The results reveal that the left tem-

poral lobe epilepsy patients who have higher connectivity between posterior cingulate

cortex and left hippocampus (HC) have greater memory decline after the resection of

left temporal lobe in the post surgical phase, whereas if there is higher connectivity

between the PCC and contralateral HC, this do not cause any memory decline or cause

less memory decline [52]. In our study, as well as a deterioration between precuneus

and posterior cingulate and the bilateral posterior cingulate, there was a disruption

in connectivity between the default mode network and the frontopariatel control/the

ventral attention/the default mode networks implies a certain breakdown in the fron-

toparietal and the default mode networks suggesting an impaired consciousness in the

TLE patients. This �nding was also supported by the inter-subject variability results

which indicated that these networks were determined as less di�erently varied between

patient and healthy population.

Attention network is composed of ventral and dorsal attention. Ventral attention
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(VA) is associated with the bottom up attention mechanism which is driven by a salient

sensory input. Dorsal attention (DA) which is also called a top down attention is related

to a past experience rather than sensory stimuli [111],[112]. According to a study, there

was a reduction in P300 amplitude in temporal and frontal regions with an implication

ventral fronto-temporo-parietal attention system impairment in the TLE patients. It

has been hypothesized that the deterioration in attention network in the TLE patients is

caused by the ventral network′s temporal node. Our results shed light on this argument

that there is a signi�cant decrease between the ventral attention temporal lobe and

the saliency/the default mode/the ventral attention/the frontoparietal control and the

dorsal attention networks.

We have proposed and implemented an extended random subspace algorithm

based on the random matrix theory [74]. As Hoyle [74] stated in their work, we uti-

lized from the computation of the inverse of the small covariance matrices to better

approximate the large covariance matrix, thus partial correlations. Therefore, we have

validated its high accuracy by having a minimal means square error and high coe�-

cient of determination values on the average when compared to MPC, ICOV-P and L1

methods. It has been noted that given number of regions k and number of time points

N, it is suitable to compute partial correlations when N>2k for fMRI connectivity anal-

ysis [113]. We found that when N=120 and k=60,70,80, E-RSMFC gives statistically

signi�cant results in coe�cient of determination compared to all other methods. So

as the number regions converges to 2k, the estimation of partial correlations becomes

unstable due to dimensionality problem. In this context, for our algorithm there are

two parameters that e�ect the accuracy of the algorithm. First one is the number of

regions in each sub-matrix (p0), and the second is the number of regions juxtaposed to

the end of the regions (p1). As a result, although the number of appended regions is

critical to estimate the partial correlation coe�cients with a minimum error rate, the

number of regions within the subgroup should be adjusted according to a k/N ratio. p1

should be the maximum number of nodes that could be appended to the end by keeping

the k/N ratio minimum in each submatrix in order to make a better approximation.

The partial correlations related to the bilateral homologous structures were con-
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�rmed by having strong functional connections as previously stated in [26],[68] for the

healthy population. Since it has been shown that brain has a stronger between homo-

topic functional connectivity compared to that of between heterotopic regions due to

the structural connectivity via corpus callosum (CC) [91]. The bilateral homologous

structures belonging to dorsal attention, ventral attention, frontopariatel control and

default mode networks were found to be attenuated in patient population (p<0.05)

corroborating the previously disrupted networks found using the Pearson's corelation

coe�cient.

Anatomically connected regions are also functionally correlated, in contrary to

the functionally correlated regions which do not necessarily be structurally connected

[69]. It has been hypothesized that partial correlations may also give an idea about the

structural connectivity between regions [68],[114]. According to a previously published

research, there was a reduction in structural connectivity between bilateral posterior

cingulate regions in patients with TLE [115]. We found a decrease in functional connec-

tivity between bilateral posterior cingulate regions using both correlation and partial

correlations (p<0.05). Besides, DeSalvo et al. [116] examined the structural connec-

tivity in the left TLE patients and found that between-module connectivity decreased

in the bilateral lateral frontal, the inferior parietal, the medial orbitofrontal, and the

temporal cortices. In particular, the structural connectivity was decreased in the DMN

assessed by both within and between-module connectivity. This �nding also supports

our results that the decreased functional connectivity within the DMN including the

bilateral temporal cortices in both correlation (FDR-corrected) and partial correlation

results (p<0.05, uncorrected) suggest white and gray matter degeneration in the TLE

patients. Although these results need to be con�rmed with an fMRI/DTI study, we

may infer that the partial corelation has a close relationship with both structure and

function.

A decrease accompanied with a high variance in functional connectivity mainly

among the default mode, the frontoparietal, the ventral attention, the dorsal attention

and the somatomotor networks may play an important role in identifying the disease

pathology in terms of large scale functionally impaired networks. As a result, all these



67

�ndings shed light on the hypothesis that the disrupted large-scale networks are not

only restricted to an impairment in the temporal lobe but also pointing out to some

signi�cant e�ects in other brain regions [110],[116].

5.1 Limitations of the study:

This study has several limitations including the small sample size of patients

with the TLE together with their clinical characteristics. The data from the patients

regarding seizure frequency, epilepsy duration and antiepileptic drugs were unfortu-

nately unavailable. As for the E-RSMFC algorithm, so as the error becomes larger

when the number of regions increases, only when the average normalized mean squared

error>0.01, this algorithm gives accurate results when the dimension is less than 90

for 120 time points.

5.2 Future Work

In future, the e�ect of factors such as seizure frequency, epilepsy duration and

antiepileptic drugs together with laterality and gender may be included as confounding

factors to assess the inter-subject variability and functional connectivity in TLE. In E-

RSMFC, partial correlation estimation may be computed via the L1- and the L2-norm

regularizations or with their combinations in order to have a better approximation.

5.3 List of publications produced from the thesis

1. Investigation of functional variability and connectivity in temporal lobe epilepsy:

A resting state fMRI Study, S. N. Dumlu, A. Ademo§lu, W. Sun, "Neuroscience

Letters, Vol. 733, pp. 135076, 2020.
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APPENDIX A. DEMOGRAPHIC INFORMATION

Table A.1 The demographic data of 19 TLE patients.

Number Gender Age

1 f 47

2 m 38

3 f 26

4 f 26

5 f 25

6 f 23

7 m 20

8 f 14

9 f 19

10 m 25

11 f 27

12 f 52

13 m 25

14 m 48

15 f 21

16 f 16

17 f 31

18 m 41

19 f 17
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Table A.2 The demographic data of 19 healthy controls.

Number Gender Age

1 m 20

2 m 23

3 m 25

4 m 25

5 m 37

6 m 40

7 f 20

8 f 21

9 f 21

10 f 21

11 f 22

12 f 23

13 f 23

14 f 23

15 f 23

16 f 24

17 f 25

18 f 28

19 f 29
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APPENDIX B. ANATOMICAL REGION

ABBREVIATIONS
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