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ABSTRACT

PSYCHOPHYSICAL EVALUATION OF A SENSORY
FEEDBACK SYSTEM FOR PROSTHETIC HANDS

In this study, a vibrotactile sensory feedback system was designed and tested in

accordance with the discrete event-driven sensory feedback control paradigm. Novel ap-

proaches were applied in terms of data processing and psychophysical characterization.

As the �rst part, the sensing and signal processing system was designed. Therefore,

a robotic hand was equipped with force and bend sensors by mimicking receptors in

human hand. The sensor data was recorded during a cylindrical grasping task, and

classi�ed for object type and movement phase. Among three machine learning al-

gorithms (k-Nearest Neighbour, Multinomial Logistic Regression and Support Vector

Machines), highest classi�cation accuracy was obtained with k-nearest neighbor clas-

si�er and the results were promising for the subsequent work. In the second part,

the sensory feedback system was designed using two vibrotactile actuators and a user-

speci�c calibration method was presented. The actuators were placed on the upper

arms of 10 able-bodied participants. A psychophysical characterization procedure was

applied to determine the stimulation amplitudes for each participant speci�cally. Then,

same-di�erent discrimination and pattern recognition experiments were conducted to

evaluate the discrimination and closed-set identi�cation of stimuli with varying pa-

rameters. Finally, discrete-event driven feedback experiments were run by mapping

the parameters of the stimuli to the discrete events related to class labels representing

object/movement type. According to the results, the psychophysical characterization

procedure was reliable. On the other hand, the performance in the complex tasks was

not a�ected by the psychophysical variations across participants. Experimental results

showed that the system can be used to provide object-type and movement-type related

information in daily use of prosthetic devices.

Keywords: Somatosensory, feedback, neuroprosthesis, discrete events, machine learn-

ing, vibrotactile, psychophysics.
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ÖZET

EL PROTEZLER�NDE KULLANILAB�LECEK B�R
DUYUSAL GER� BESLEME S�STEM�N�N PS�KOF�Z�KSEL

AÇIDAN �NCELENMES�

Bu çal�³mada, ayr�k olaya dayal� duyusal geribesleme kontrol yakla³�m�na uy-

gun ³ekilde bir titre³im uyaranl� duyusal geri besleme sistemi tasarland� ve test edildi.

Veri i³leme ve psiko�ziksel karakterizasyon konusunda özgün yakla³�mlar uyguland�. �lk

k�s�mda, alg�lama ve i³aret i³leme sistemi tasarland�. Bu sebeple, bir robotik el insan

elindeki reseptörleri taklit ederek kuvvet ve bükülme sensörleri ile donat�ld�. Silindirik

kavrama hareketi s�ras�nda sensör verisi kaydedildi ve nesne tipi ile hareket tipi için

s�n��and�r�ld�. Üç makine ö§renmesi algoritmas� aras�ndan (k-En Yak�n Kom³u, Çok-

s�n��� Lojistik Regresyon, Destek Vektör Makineleri), en yüksek do§ruluk k-en yak�n

kom³u s�n��ay�c�s� ile elde edildi ve sonuçlar sonraki çal�³ma için umut vericiydi. �kinci

k�s�mda, iki titre³im uyaranl� eyleyici kullan�larak duyusal geri besleme sistemi tasar-

land� ve kullan�c�ya özel bir kalibrasyon yöntemi sunuldu. Eyleyiciler 10 sa§l�kl� kat�l�m-

c�n�n üst kollar�na yerle³tirildi. Her kat�l�mc� için uyaran genliklerini özel olarak belir-

lemek için bir psiko�ziksel karakterizasyon protokolü uyguland�. Daha sonra, de§i³en

parametrelere sahip uyaran�n ay�rt edilmesi ve kapal�-set içerisinden tan�nmas� için

ayn�-farkl� ay�rt etme ve örüntü tan�ma deneyleri gerçekle³tirildi. Son olarak, uyaran-

lar�n parametreleri nesne/hareket tipini temsil eden s�n�f etiketleriyle ili³kili olaylarla

e³le³tirilerek ayr�k olaya dayal� geri besleme deneyleri gerçekle³tirildi. Sonuçlara göre,

uygulanan psiko�ziksel karakterizasyon prosedürü güvenilirdi. Di§er bir yandan, kar-

ma³�k görevlerdeki performans kat�l�mc�lar aras�ndaki psiko�ziksel farkl�l�klardan etk-

ilenmedi. Deneysel sonuçlar gösterdi ki bu sistem protezlerin günlük kullan�m�nda obje

tipi ve hareket tipine ili³kin bilgi sa§lamak için kullan�labilir.

Anahtar Sözcükler: Beden duyusu, geri besleme, nöroprotez, ayr�k olaylar, makine

ö§renmesi, titre³im uyaranl�, psiko�zik.
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1. INTRODUCTION

1.1 Motivation and aim

Upper limb amputation causes signi�cant impairment in sensory and motor

functions which may be partially retrieved by using a prosthetic device. The traditional

prosthetic designs (body-powered or myoelectric) focused on providing motor functions,

however lack of somatosensory feedback causes di�culties in the control of the device

because the user rely on mostly visual cues [1]. This increases cognitive load and

may result in rejection of the prosthesis at one point [2]. As a matter of fact, despite

the improved capabilities of myoelectric prostheses (multiple degrees of freedom), body-

powered prostheses (one degree of freedom) are still preferred by amputees due to some

natural feedback that is provided by transmitted reaction forces during movement [3].

Sensory feedback is also known to reduce the phantom limb pain causing discomfort for

the amputees [4]. The lost sensory function of the hand may be partially compensated

by a sensory feedback system integrated to the prosthetic device. By this way, in

addition to the better control of the device, it can be felt as a part of body [5�10].

Despite the accepted importance and necessity, there is not a commercially avail-

able prosthetic hand with an improved sensory feedback system. To my knowledge,

"Vincent Evolution 2 Hand" (Vincent Systems, Germany) is the only commercially

available prosthetic hand with sensory feedback [11]. However, the detailed speci�ca-

tions on the feedback mechanism of that prosthesis is not reported in detail. On the

other hand, numerous prosthetic hands with improved mechanical properties and em-

bedded sensors were developed in laboratory [12�16] and there is an ongoing research

in this area.

Our motivation for this PhD work is to design a sensory feedback system by

adopting a biologically inspired approach in terms of sensing and signal processing

mechanisms. To that end, we �rst placed force and bend sensors on a robotic hand
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to mimic the behavior of receptors in human hand. We recorded sensor data during

periodical �exion and extension movements in the form of cylindrical grasping of two

objects with varying sti�ness. We classi�ed the sensor data using machine learning al-

gorithms to extract the required information on object and movement type just as the

brain does. Next, we designed the stimulation system by getting inspired from the dis-

crete event-driven sensory feedback control (DESC) policy. Therefore, we applied the

object type and movement phase related feedback as time-discrete vibrotactile stimuli

mapped to the critical hypothetical transition events of the robotic hand. Considering

the change in human psychophysical measures such as detection and discrimination

thresholds, we performed a user-speci�c psychophysical characterization procedure to

�nd the vibration amplitudes. Finally,we tested the system through a set of discrimi-

nation and closed-set identi�cation experiments.

1.2 Literature

1.2.1 Sensory feedback in prosthetics

Sensory substitution is a technique using which a lost sensory information is

regained through a di�erent sensory channel or di�erent modality [17]. In case of

hand amputation, tactile and proprioceptive information can be substituted through

auditory [18] or somatosensory [19] system. The regained sensation may be sensed as

more natural if it is somatotopically- or modality-matched to lost sensory information.

In somatotopical matching, the substitution signal is perceived to be applied on the

same location as in the natural interaction with the environment. In modality-matched

stimulation, the neural pathway of the lost sensation is stimulated [1].

The sensory feedback studies can be grouped depending on the stimulation

method (i.e. invasive and non-invasive stimulation) and the conveyed information.

Invasive stimulation is done by stimulating the neural tissue directly in peripheral or

central nervous system [9, 20�26], requiring surgery to place the electrodes. On the

other hand in non-invasive stimulation, a skin surface is stimulated by electrotactile,
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vibrotactile or mechanotactile (slow or static indentation) stimulation [27�37]. Non-

invasive methods have the advantage of not requiring surgery, therefore, preferable by

the amputees. Detailed information on the invasive and non-invasive sensory feedback

methods can be found in [1, 38, 39].

Electrotactile stimulation directly stimulates the a�erent nerve endings in the

dermis by current pulses, resulting more natural sensation compared to other methods.

Stimulation electrodes are simple, light and has no moving parts. However, it may

cause pain if the pain threshold is exceeded. This limits the current range to be used

and decreases the sensitivity of the system. Additionally, human tactile perception

thresholds vary depending on electrode location and the physical properties of the area

below the electrode (such as moisture and impedance). Therefore, the system should be

re-calibrated each time the electrodes are placed. Stimulation signal may also interfere

with EMG signals used for control of the prosthesis. There are studies o�ering solution

for interference but it requires extra signal processing e�ort [40]. 'Mechanotactile'

stimulation refers to converting the sensory feedback signals to static indentations

of the skin instead of higher-frequency mechanical vibrations, and typically it gives

the best non-invasive performance since it is modality matched [32]. However, that

approach requires bulky indenters or motors, and therefore, usually not preferred over

small vibrotactile actuators which are easily implemented and which consume less

power [39]. Additionally, there is only one parameter that can be modulated to transmit

information.

Vibrotactile stimulation is applied as mechanical vibrations on the skin. Vibra-

tion frequency is generally around 250 Hz in order to activate Pacinian channel which

is known to be more sensitive to high-frequency vibration. Vibrotactile stimulation

is painless and the stimulation signal does not result interference with EMG signals.

There are numerous vibrotactile feedback studies in the literature, varying in the type

of stimulation, conveyed information and used apparatus. Since it is also the feedback

method used in this study, a brief summary of the previous studies on vibrotactile

sensory substitution/feedback in neuroprostheses is given in Table 1.1.
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Table 1.1
A list of vibrotactile sensory feedback studies in the literature.

Authors/Year Input Feedback type Equipment

Patterson and Katz/1992

[41]

Grasp force Vibrotactile and

mechanotactile

Myoelectric hand

Poveda/2002 [42] Grasp force Vibrotactile Myoelectric hand

Pylatiuk et al./2006 [43] Grasp force Vibrotactile Myoelectric hand

Chattarjee et al./2008 [44] Grasp force Vibrotactile Myoelectric hand

Cipriani et al./2008 [45] Grasp force Vibrotactile Myoelectric hand

Witteveen et al./2012 [46] Hand opening Vibrotactile and

electrotactile

Virtual hand

Antfolk et al./2013 [32] Finger force (passive) Vibration and

pressure

Myoelectric hand

Rombokas et al./2013 [47] Contact force Vibrotactile Virtual environment

Cipriani et al./2014 [48] Discrete events Vibrotactile Robotic hand

Witteveen et al./2014 [34] Hand opening and

grasping force

Vibrotactile Virtual hand

Clemente et al./2016 [35] Discrete events Vibrotactile Prosthetic hand

Markovic et al./2018 [49] Contact, force level

and prosthesis state

Vibrotactile Myoelectric hand

Aboseria et al./2018 [37] Grip force (cont.)

and slip (discrete)

Vibrotactile Robotic hand

Pena et al. /2019 [50] Grasp force and hand

aperture

Vibrotactile Myoelectric hand

Engels et al. /2019 [51] Discrete events Vibrotactile Prosthetic hand

Vibrotactile feedback was also used with some state-of-the-art myoelectric pros-

theses and its e�ciency was investigated. In Markovic et al. (2018), a novel vibrotactile

stimulation system was presented [49]. The system transmits multiple variables (con-

tact, prosthesis state and level of grasping force), creating di�erent tactile patterns

by intensity and spatial modulation. They placed eight C3 tactors on the forearm.

The information from sensors of Michelangelo hand was processed in real time and the

corresponding vibrotactile patterns were generated. Number of pulses, the activated
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tactor and the vibration intensity were the adjusted parameters. They tested the e�ec-

tiveness of the system on six amputee participants by the box and blocks task, the cups

relocation task, the block turn task, and the clothespin relocation task. The task com-

pletion time and number of retries were used as performance metrics. They concluded

that improvement due to feedback was task-dependent. The participants bene�ted

from feedback during complex tasks (block turn, clothespin and cups relocation), and

the performance remained almost same during simple tasks (box and blocks). Train-

ing had also a task-dependent e�ect on subject performance. According to subjective

questionnaire, the feedback was considered as helpful during daily life activities.

In Pena et al. (2019), two di�erent vibrotactile sensory substitution systems

were tested [50]. In the �rst con�guration, the burst width of a single vibrotactile

actuator was modulated proportional to the grasp force or hand aperture. In the

second con�guration, the signal level was transmitted by activating �ve actuators in a

spatial order. The experiments were conducted with able-bodied participants by using

a ProHand myoelectric prosthesis with built in force and hand aperture sensors. The

experiments were run with and without active myoelectric control of the participant.

There was no di�erence between two stimulation con�gurations when the myoelectric

control was absent. On the other hand, 5-actuator con�guration was better than single-

actuator con�guration when the myoelectric control was included.

In order to provide multi-modality sensory information, some methods were also

presented in the literature. Choi et al. (2017) used mixed modality stimulation method,

in which the superposition of two stimulation pulse trains with di�erent frequencies

were applied [52]. D'Alonzo et al. (2014) presented a hybrid method which uses

vibrotactile and electrotactile stimulation to decode two di�erent modalities [53]. In

both of studies, it was shown that the system can be used to provide multi-channel

sensory information.

In noninvasive stimulation methods, the stimulation signal is often generated

and applied continuously by modulating amplitude, frequency or pulse width propor-

tional to change of a sensor output [31,44]. This increases signal processing load of the
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system and cognitive load of the user. As an alternative, time-discrete feedback was

tested and seemed to be promising in some studies [35,37,48,54]. This idea is based on a

neuroscienti�c theory called Discrete Event-Driven Sensory Feedback Control (DESC)

policy [55�57]. DESC policy posits that, object manipulation mostly relies on a series

of events corresponding to sub-goals of a task. The brain combines the sensory signals

from these events to regulate the motor control. It means that, the sensory feedback

systems can be designed to transmit time-discrete signals rather than continuous stim-

ulation, and the same task can be facilitated. Thus, both the signal processing load

of the system and the attentional demands from the user may be decreased. It was

shown that intermittent stimulation also prevents adaptation to sensory feedback [58].

Cipriani et al. (2014) used the DESC approach for non-invasive sensory feedback

for the �rst time [48]. Critical discrete events (contact, lift o�, release etc.) were de�ned

for a grasp and lift task. The user controlled an apparatus to perform the task. Short-

lasting mechanical vibrations were applied to user's �ngers at the beginning of the

events. It was shown that users could use discrete sensory feedback for control of a

prosthetic hand. In a subsequent study, Clemente et al. (2016) designed an apparatus

(DESC Glove) with sensorized thimbles [35]. Contact and release events were detected

and short-duration mechanical vibrations were applied on the arm. They tested the

device in a virtual eggs test with upper limb amputees. According to the experimental

results, the sensory feedback improved subject performance. Barone et al. (2017)

designed a prosthetic digit with embedded force sensor and vibration motor by using

the same approach, and tested with a user with partial hand amputation [54]. It was

shown that the device provided easier control of a prosthesis.

In a recent study, Aboseria et al. (2018) compared the e�ects of discrete slip

feedback, continuous force feedback and vision on control of a robotic hand [37]. Both

feedback methods had a positive e�ect on subject performance compared to the vision

alone. It was also shown that discrete slip feedback is su�cient to prevent object

slippage with no need of learning.

In terms of the information conveyed to the user, grasp force [36], hand aper-
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ture/position [34], object slippage [37, 59], EMG signal [60, 61] and acceleration sig-

nal [62, 63] feedback were used in the previous studies. Among these, the grasp force

and/or hand position are used more frequent since these parameters are of high im-

portance for object manipulation. Without sensory feedback, a user needs to control

the robotic hand movements by visual cues during grasping. This results in an in-

crease of cognitive load. Additionally, the motor response may not be fast enough and

synchronized to grasp the object securely after observing contact.

1.2.2 Object recognition & machine learning in prosthetics

The object/grasp recognition studies in the literature are mostly related to

robotic applications, not focused on prosthetics [64�68]. Additionally, mostly force

information was used from robotic grippers with force sensors and sensorized robotic

hands [64,66]. However, combining tactile and proprioceptive information, as in object

recognition by humans, is a more convenient approach to determine sti�ness. Schmitz

et al. (2014) used a robotic hand with embedded tactile and joint angle sensors for

recognition of various objects in di�erent orientations [65]. Higher accuracy was ob-

tained when multimodal information was used.

Object recognition in robotic applications has been generally performed follow-

ing an exploratory procedure [67, 69, 70]. However, real-time contact information is

needed for precise object manipulation during usage of a prosthesis. In Chitta et al.

(2010) , the state of liquid containers could be discriminated (open, closed, �lled level)

with 94% accuracy before the object was lifted and without exploratory procedures,

by using tactile and joint angle information from a mobile manipulator [68]. In Spiers

et al. (2016), the same approach was used and promising results were obtained [66].

Edwards et al. (2016) used real-time machine learning for control of a my-

oelectric prosthesis [71]. They compared the prosthesis control performance during

non-adaptive and adaptive control (with real time prediction of joint motion) proce-

dures. They combined sensor data from the hand and the EMG signal from the user
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to predict the joint activation order. They tested the system with an able-bodied

and an amputee participant in a simple repetitive switching sequence task. They also

conducted a more di�cult task (box and blocks) with three able bodied participants.

Both tasks were implemented with and without adaptive control. The mean completion

time and number of switches required to complete the event were used as performance

measures. The results showed a decrease in number of switches when adaptive control

was implemented. They concluded that real-time prediction learning can improve the

control of prosthesis and decrease the cognitive load while using a prosthetic hand.

Parker et al. (2019) presented the �rst study implementing machine learning to

provide feedback to the user [72]. They used a custom-designed robotic arm, controlled

by a joystick. The information provided by the servo motors was used as input to

the feedback system consisting of four tactors. The tactors were placed on di�erent

body locations (shoulder, elbow, wrist and hand). Five subjects participated in the

experiments. The robotic arm was moved in one direction (back and forth) and the

participant was asked to move it from wall to wall of a box without creating excessive

load on servos. The task was repeated for no feedback, reactive feedback (vibration

when current load exceeds a threshold) and predictive feedback (electrical load was

predicted by the system) conditions. According to the results, average load on the

motors decreased with feedback and was lowest in predictive feedback condition. These

results proved that machine learning can be used in feedback systems designed for

prosthetic devices.

1.2.3 Psychophysics in prosthetics literature

Psychophysical procedures were previously used in the sensory feedback liter-

ature to test the system performance after design or compare the e�ects of various

stimulation methods or parameters [63, 73�78]. For example in Geng et al. (2011),

e�ects of di�erent stimulation patterns on perception threshold were compared in an

electrotactile stimulation system [74]. In Murray et al. (2003), psychophysical char-

acterization and testbed validation of a vibrotactile glove was performed [73]. The
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system contained miniature voice coils in order to transmit continuous force informa-

tion to the user. Through the psychophysical experiments, e�ects of frequency and

amplitude of the feedback signal and e�ects of amplitude and frequency modulation on

people's sensitivity were investigated. Similarly in a recent study, psychophysical prin-

ciples were used to compare the sensitivities of lower and upper arm to mechanotactile

sensation [77].

Geng et al. (2018) investigated the feasibility of an electrotactile stimulation

system through some psychometric measures [75]. Similarly in Dong et al. (2020), the

changes in psychophysical measurements were investigated and compared for subder-

mal and surface electrotactile stimulation [78]. Aziziaghdam et al. (2017) designed a

tactor to provide real-time contact feedback and performed psychophysical evaluation

of the apparatus [63]. Using well-known psychophysical procedures (absolute thresh-

old, just-noticeable di�erence and magnitude estimation measurements), they tested

the usability of the system in object hardness recognition. Wilke et al. (2019) com-

pared the e�ciencies of visual and auditory feedback from a prosthetic device with

vibrotactile feedback through psychometric characterization [76]. To our knowledge,

psychophysical procedures were not used previously in order to �nd user-speci�c stim-

ulation amplitudes for a sensory feedback system.

1.3 Novelty and Contribution

In this PhD study, we designed a vibrotactile sensory feedback system by apply-

ing novel approaches in terms of signal processing and stimulation procedure. First of

all, we implemented a biologically inspired sensorization and signal processing method

by using high number of sensors and machine learning algorithms. Machine learning

methods are mostly used for object recognition in robotic applications in order to im-

prove the object manipulation performance. To my knowledge, machine learning was

used in only one study for providing feedback to the user [72]. In that study, the elec-

trical load of a robotic limb was predicted by a learner. The predictions were fed back

to the user to give information on the possible interactions of the limb. We, on the
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other hand, used machine learning to directly classify sensor data [79] and generate the

appropriate feedback signal [80]. From this aspect, our study is the �rst implementa-

tion of machine learning to apply time-discrete feedback signals for easier control of a

prosthesis.

In the previous DESC based vibrotactile feedback studies [35,48,54], the vibra-

tion parameters were adjusted once to a perceivable level and kept constant for di�erent

events. However it is known that the psychophysical measures such as detection and

discrimination thresholds vary across participants [81�84] and magnitude scaling is

subjective [85,86]. These measures are also highly a�ected by multiple factors [87�91].

Therefore, using the same stimulation parameters would not provide the best solution,

instead, user speci�c calibration is required. In our study, the stimulus amplitudes

were calculated relative to the detection thresholds, as a result of user-speci�c psy-

chophysical characterization procedure. To our knowledge, such a detailed procedure

using well established psychophysical methods was not presented previously in sensory

feedback literature. We also increased the amount of information transferred to the

user, by changing both frequency and magnitude of the vibration for representation of

discrete events. Thus, we could convey object-type and movement-type related signals

together. We also tested a new actuator type with good linearity over a wide frequency

range. The methods and procedures presented in this thesis may be inspiring for the

new somatosensory feedback studies.

1.4 Outline

In this chapter, the motivation and aim to start this study was explained and

a summary of the related studies in the literature was given. Then, the novelty and

contributions of the study were summarized. In Chapter 2, the methods and results

of the �rst part of this study were explained, including robotic hand and sensor modi-

�cations, placement of sensors on the robotic hand, processing of the sensor data and

classi�cation of object type and movement type. In Chapter 3, the design of sensory

feedback procedure using vibrotactile actuators, psychophysical procedures for select-



11

ing the participant-speci�c stimulation parameters and experimental procedures for

testing the system were presented. Finally in Chapter 4, a general conclusion was

made with the limitations of the study and future directions. Detailed classi�cation

results, psychophysical characterization of the participants and individual participant

performances in the experiments can be found in the appendices.
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2. SENSORS AND SIGNAL PROCESSING

2.1 Background

2.1.1 Hand anatomy & mechanoreceptors

Human hand has a complex structure in accordance with its functions and

capabilities. It has 27 bones which are grouped as carpals, metacarpals and phalanges

[92,93]. Metacarpals connect the �nger bones to the wrist. The bones of the �ngers are

called as phalanges. Each long �nger has three phalanges (distal, middle and proximal)

while the thumb has two (distal and proximal). The joints between metacarpals and

proximal phalanges are called as metacarpophalangeal joint (MP or MCP). Similarly,

the joints between the phalanges are named as distal interphalangeal (DIP, between

distal and middle phalanges) and proximal interphalangeal (PIP, between middle and

proximal phalanges) joints. The joint connecting phalanges of the thumb is called as

interphalangeal joint (IP). Figure 2.1(a) shows the anatomy of the hand with bones

and joints. The bones with the connected muscle groups and nerves, provide the motor

functions of the hand [94].

The hand also has sensory functions which are mediated by various receptors and

a�erent nerves. Human somatosensory system consists of three subsystems namely in-

teroception, proprioception, and exteroception [95]. Among these, proprioception and

exteroception helps motor control by providing information related to the body and

environment. Proprioception refers to the mechanism on posture and body movements,

containing specialized structures such as receptors in muscles, joints and skin. Exte-

roception comprises contact, pressure, vibration, motion, stroking, pain and thermal

sensations [95]. Hand is the major tool of exteroceptive and proprioceptive system.

Our palms are covered with glabrous skin which has four types of mechanoreceptors

namely Pacinian corpuscles, Merkel disc receptors, Meissner corpuscles and Ru�ni

endings (Figure2.1(b)). In order to design a prosthetic device to replace the functions
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of the lost hand, the anatomy and biomechanics of the human hand should be con-

sidered. Additionally, sensory functions of the hand should be mimicked by proper

sensor integration, similar to the receptors in the hand. More detailed information

on human somatosensory system and physiological properties of mechanoreceptors is

given in Section 3.1.

Distal phalanx

Middle phalanx

Proximal phalanx

Metacarpals

Carpals (wrist bones)

Ulna

Radius

Distal interphalangeal 

   joint (DIP)

Proximal interphalangeal

    joint (PIP)

Metacarpophalangeal 

  joint (MCP)

Interphalangeal

  joint (IP)

(a)

Ruffini endings Pacinian corpuscles

Merkel cells Meissner corpuscles

(b)

Figure 2.1 Hand anatomy and mechanoreceptors. a) Bones and joints of human hand (Modi�ed
from [96]). b) Types and distribution of mechanoreceptors (Modi�ed from [97]).

2.1.2 Machine learning methods

Machine learning is a set of methods to generate models that can make predic-

tions from a given dataset. It is widely used in marketing, robotics, speech recognition

and medicine. The machine learning methods can be grouped as regression and clas-

si�cation algorithms. Regression models can be used only for numerical data, and

the output is continuous. However in classi�cation algorithms the data can be either

numerical or categorical and the output is discrete [98�100].
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Classi�cation algorithms are mainly divided into three subgroups namely su-

pervised learning methods, unsupervised learning methods and reinforcement learning

methods. Supervised methods can be used if the training dataset is labeled (real classes

are known). A model is generated based on the features of the training data, which

has di�erences across di�erent classes. In unsupervised learning the data is not la-

beled and those methods are based on clustering the dataset into groups according

to the similarities of features. Reinforcement learning is in between supervised and

unsupervised learning. The class labels are not included directly in model generation

however the model is reinforced by reward and punishment based on the correct class

labels. Classi�cation algorithms can also be categorized as parametric/non-parametric

methods. Parametric methods are based on the assumption that the data follows a

distribution which can be summarized by a �xed number of parameters. However in

non-parametric methods, no assumption is made for the distribution of the data [100].

The commonly used classi�cation algorithms include decision trees, support vec-

tor machines, naive bayes, k-nearest neighbour, linear regression, logisctic regression.

I will explain the methods used in this study brie�y in the following subsections. Since

the theory and mathematics behind these methods are out of the scope of this study,

such details are not given here.

2.1.2.1 k-nearest neighbour. k nearest neighbour (kNN) is a non-parametric,

supervised classi�cation method based on similarities between samples in a dataset.

The training data (labeled data) is stored as a look-up table. In order to classify a

new sample, the distance between the sample and all data points in training dataset

are calculated and k nearest neighbours are selected. The class which is the most

frequent in these k neighbours is assigned as the class of the new sample (Figure

2.2). Euclidian, Minkowski, Mahalanobis and Hamming distances are mostly used

as distance metric. The distance metric with the parameter 'k' are e�ective on the

classi�cation performance [98�100].
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Figure 2.2 Representation of k-nearest neighbour algorithm. Blue and red circles represent two
di�erent classes, black square represents new sample. For k=3, k=5 and k=7 nearest neighbours
(samples in dashed circles) the new sample is assigned to red, blue and red classes respectively.

2.1.2.2 Multinomial logistic regression. Despite its name, logistic regression is

a regression based parametric classi�cation algorithm. In this method, the probability

of belonging to a class is de�ned as a logistic (sigmoid) function (Figure 2.3). By

calculating the probabilities of belonging di�erent classes and selecting the maximum

probability, a decision boundary is generated. The term 'multinomial' is added for the

special case of logistic regression (MLR) which is used for multiclass (more than two

outcomes) problems [98�100].

Figure 2.3 Logistics function for one-dimensional (left) and two-dimensional(right) feature spaces.
y-axis shows the probability of belonging to a class [100].
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2.1.2.3 Support vector machines. Support vector machines (SVM) is a non-

parametric supervised learning algorithm widely used in machine learning applications.

This method is based on de�ning a seperating boundary in the data space such that the

distances of closest data points (support vectors) from all classes to that boundary are

maximized (Figure 2.4). For higher dimensional data, kernel functions can be used to

�nd linear seperators between di�erent classes. The classi�cation performance depend

on the kernel function, its parameters and the regularization parameter (C) [98�100].

Figure 2.4 Representation of support vector machines classi�cation. Filled and empty circles repre-
sent two di�erent classes. On the left, various seperating lines are shown. On the right, the seperating
boundary calculated by SVM algorithm is drawn. The samples closest to the boundary (surrounded
with circles) are called as support vectors [100].

2.2 Material and Methods

The work presented here is in review as: �. Karaku³, A. Atasoy, E. Kaplano§lu,

M. Özkan, B. Güçlü "Classi�cation of somatosensory information from a robotic hand",

Frontiers in Neuroscience.

Some �gures were also published in: �. Karaku³, H. �ahin, A. Atasoy, E. Ka-

plano§lu, M. Özkan, B. Güçlü (2018) "Evaluation of sensory feedback from a robotic

hand: A preliminary study", EuroHaptics 2018, in Haptics: Science, Technology and

Applications, pp. 452-463, Springer, Pisa / Italy, June 2018.
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2.2.1 Robotic hand

The underactuated robotic hand ("Bo§aziçi Hand") used in this study (3D

graphical view: Figure 2.5(a)) was designed and produced at Robotic Laboratory,

Institute of Biomedical Engineering, Bo§aziçi University. It is dimensionally similar to

a human hand (with condyloid joint structures unlike most commercial products) [101].

Long �ngers are formed by three phalanges; each �nger has three degrees of freedom

(DOF) and one degree of mobility (DOM) which is �exion/extension. The thumb has

two phalanges, two DOFs and two DOMs (including abduction/adduction).

(a) (b)

Figure 2.5 3D graphical view of the a) "Bo§aziçi Hand" [79] b) index �nger.

For this study, we modi�ed the hand without changing its mechanical proper-

ties. The original hand was controlled by DC motors and shape-memory-alloy (SMA)

actuators. DC motors were replaced with six servo motors (Goteck, GS-9025MG):

one for each �nger, one additional for thumb abduction/adduction. The motors were

commanded by using Arduino Mega. Each �nger is actuated through a single tendon



18

system. A nylon thread is attached between the tip of the �nger's distal phalanx and

the motor shaft. When the motor is activated, the nylon thread wraps around the shaft

and the tension �exes the �nger. An elastic thread passing through the joint extends

the �nger to its initial position when the motor is deactivated.

We also modi�ed the �nger design for easy integration of sensors (Figure 2.5(b)).

Sliding sockets were added on the dorsal surfaces of the �ngers to mount the bend

sensors. Additionally, �at surfaces were made on the phalanges for proper integration

of force sensors.

2.2.2 Sensor characterization and signal conditioning

It is well known that sensory inputs for contact/grasp force and joint/hand posi-

tion are of primary importance for object manipulation. The function of the mechanore-

ceptors which mediate these inputs may be mimicked by using a combination of force

and bend sensors, respectively. Although the current engineering technology includes

a wide range of options [102], requirements speci�c to prosthetic applications limit the

choices. That is to say, the sensors should be light, thin, easy to mount, low-powered,

and very importantly, able to accommodate large deformations. As such, piezoresis-

tive sensors were preferred in this study (Figure 2.6(a)) which are commonly used in

rehabilitation and robotic applications [103�105].

We used bend sensors (FlexSensor, SpectraSymbol) to measure joint angles.

They are made of resistive carbon elements which are close to each other when the

sensor is straight, with total resistance of 15 kΩ. When a bend sensor is �exed, the

carbon elements are separated wider apart, so the resistance increases to 50 kΩ at 90

degrees.We modi�ed the bend sensors to �t the desired joint lengths (Figure 2.6(b)).

After they were trimmed, the continuity of the electrical traces was ensured by coating

the cut end with conductive glue (Nickel Print) [79, 106]. A separate bend sensor was

prepared for each joint.
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(a)

(b) (c)

Figure 2.6 a) Force and bend sensors used in the study. b) Bend sensors were cut and the electrical
traces were modi�ed for adjusting length to each particular joint. c) Dome-shaped silicon rubber was
glued on force sensors for improved contact with objects [79].

For measuring tactile contact and grasping, piezoresistive force sensors (FSR400-

Short, Interlink Electronics) were used [107,108]. These sensors consist of two �exible

layers which are normally separated, resulting in a very high resistance (�MΩs) without

force. One of the layers has interdigitating electrodes while the other has a conductive

material. When the two layers get closer with applied force, the resistance decreases,

e.g. to 3-5 kΩ under 1 kgf. Since these sensors have planar active sensing areas which

are not suitable for forces applied from di�erent angles, we modi�ed them by gluing

a dome-shaped silicon rubber piece on each (Figure 2.6(c)). This also distributed the

applied force more homogeneously over the active area [79,108] and reduced the e�ect

of the exact contact point on the grasped object.

Multi-channel op-amp circuits were constructed (LM324, a separate interface

circuit for each sensor) to convert the resistance changes in sensor outputs to voltage

changes (Figure 2.7). At the �rst stage of each channel, there is a voltage divider.
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Because of the reversed direction of change, the force sensors are connected as pull-up

resistors (Figure 2.7(a)), but the bend sensors are pull-down resistors (Figure 2.7(b))

Next, there is a gain adjustable ampli�er stage in order to use the full span of the data

acquisition card for all sensors with varying sensitivity ranges. Finally, a second-order

Butterworth low-pass �lter (fc=10 Hz) is used at unity gain. An additional o�set

adjustment stage is included for bend sensors (Figure 2.7(b)) to set the initial sensor

output as zero. The initial values of force sensors were always zero due to their very

high nominal resistances.

V
of

(a)

V
ob

(b)

Figure 2.7 Interface ciurcuits for the a) force sensors and the b) bend sensors. Component symbols
with subscripts refer to values after adjusting the multi-turn trimpots [79].
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The outputs of the interface circuits can be given as in Eq. 2.1 and Eq. 2.2,

respectively for the force and bend sensors:

V0f =
R1

R1b

Vs (2.1)

V0b = (1 +
R5 +R3a

R3b +R4

)Vs − (
R5 +R3a

R3b +R4

)Vp (2.2)

where V0f and V0b are the circuit outputs, Vs is the output of voltage divider, Vp is

the output of o�set adjustment stage and subscripts refer to resistance values after

adjusting the multi-turn trimpots.

The sensors were calibrated according to the outputs of the interface circuits

in Figure 2.7 (see Section 2.3.1 for the calibration curves). A digital precision balance

was used for the calibration of force sensors (Figure 2.8). The sensor was �xed on the

scale and the force was changed gradually using a micromanipulator. The gain of the

interface circuit was adjusted to span the calibration range (up to 0.5 kgf). The lower

limit of the calibration range was determined by the sensor threshold below which it

did not respond. The calibration was done both for loading and unloading cycles.

(a) (b)

Figure 2.8 Force sensor calibration setup a) Side view b)Top view.
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Since the behavior of bend sensors depend on the bending radius and �exion

position on the piezoresistive carbon elements, their calibration was performed on the

robotic hand. This ensured that the calibration was valid during the operation of

the device. First, when the sensors were straight, the sensor outputs were set to zero

by o�set adjustment. Then, the gain was adjusted to span the bending range of the

corresponding joint. The servo motor position of each �nger was changed gradually and

the sensor outputs were recorded by using a goniometer for both loading and unloading

cycles.

2.2.3 Grasping experiment and data acquisition

We equipped all �ngers of the robotic hand with sensors (Figure 2.9 and Figure

2.10). Bend sensors were placed on all metacarpophalangeal (MCP), proximal inter-

phalangeal (PIP) and distal interphalangeal (DIP) joints on the dorsal side. One end

of each bend sensor is �xed, while the other end can slide in a socket during movement.

On the ventral side of the hand, we placed force sensors on all distal phalanges; addi-

tional sensors were placed on the proximal phalanges of index and middle �ngers, and

on the metacarpal heads of the long �ngers. We could not use data from some sensors

for classi�cation due to technical limitations discussed in Section 2.4 (gray symbols in

Figure 2.9).

Human hand can perform complex grasp patterns; however, most of them are

not included in prosthetic hand designs. Some �nger or hand postures are impossible

to attain because of rigid mechanical limitations. Additionally, complexity of hand

postures increases signal processing and cognitive load. Nevertheless, some critical

grasp types are su�cient to securely grasp and manipulate objects during activities of

daily living [109]. Since we used an underactuated prosthetic hand (fewer actuators

than DOFs) with sti� joint mechanisms, precision grasps could not be implemented.

Therefore, we had it perform the cylindrical grasp [110] during the experiment. Since

our main aim was to apply data-driven classi�cation from highly variable sensor data,

the limitations of the robotic hand could be tolerated. As a matter of fact, this study
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demonstrates how such limitations may be overcome with the data-driven approach for

SF.

Figure 2.9 Sensor names and locations. 14 bend sensors (left) and 11 force sensors (right) were placed
on the dorsal and ventral sides of the robotic hand, respectively. Data from only 11 bend sensors and
4 force sensors were used for classi�cation analyses (black symbols). Data from the remaining sensors
(gray symbols) could not be used due to technical limitations in this study.

Figure 2.10 Simple underactuated robotic hand with o�-the-shelf force and bend sensors.

Two same-sized cylindrical objects (diameter: 9 cm, length: 12 cm) di�ering
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in sti�ness (hard vs. soft object) were made for the experiment by 3D printing (Z-

ABS, Zortrax) (Figure 2.11(a)). To produce the deformable soft object, a smaller

diameter (4.5 cm) cylinder and a mold were printed. The outer surface of the smaller

sti� cylinder was coated with silicon rubber (Eco�ex 00-10, Smooth On) such that the

overall diameters of both hard and soft objects were identical. During the grasping

experiment, each object was stabilized by a rod screwed along the cylindrical axis, and

this axis was parallel to the ground (Figure 2.11(b)).

The target motor position of each �nger was set to 180 degrees (upper limit of

the motor), and the robotic hand was programmed to perform periodical �exion and

extension in the form of cylindrical grasps (Figure 2.11(b)). During this movement,

data from all sensors were collected from the outputs of the multi-channel interface

circuits as shown in Figure 2.7 by using a data acquisition card (USB-6259, National

Instruments) at a sampling frequency of 1 kHz. Each movement cycle (�exion +

extension) lasted approximately 6 seconds. The overall data included 80 cycles (35

cycles each for hard and soft objects, 10 cycles without any object). The movement of

the robotic hand was also captured on video by 2 cameras (frame rates: 25 and 30 Hz)

for classi�cation analyses.

(a) (b)

Figure 2.11 a) Cylindrical objects (hard vs soft) used in the experiment. b) The robotic hand
performing cyclindrical grasp on the soft deformable object.
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2.2.4 Data processing and classi�cation

The experimental sensor data was analyzed in MATLAB (Release 2017b, The

MathWorks, Inc.) by following the procedure blocks given in Figure 2.12. It was

initially low-pass �ltered (second-order Butterworth, fc = 10 Hz). The �ltered data

was used to estimate the joint angles and contact forces using the calibration equations

presented in Section 2.3. Then, the �rst and second derivatives of the �ltered data

were calculated. The �ltered estimates and their derivatives were segmented into non-

overlapping windows (i.e. length of the window was adjusted to be equal to one video

frame used for labeling: 40 or 33 data points depending on the camera) and time-

averaged within each window. Thus, each �nal point was matched with a single video

frame. These time-averaged values formed the feature matrices for each �nger.

Figure 2.12 Data processing procedure blocks. Feedback unit will be explained in Chapter 3.

Three types of classi�cations were performed: object type classi�cation with 3

classes, movement type classi�cation with 5 classes and a combined type classi�cation

with 13 classes. In order to label the data, video frames were analyzed manually. As

explained schematically in Figure 2.13, important event times (ti) were recorded. The

frames for the intervals between the events were labeled considering the object type

and movement phase. The labels were as the following: 1) Stationary in air, 2) Flexion
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in air, 3) Extension in air, 4) Contact to soft object, 5) Flexion in soft object, 6)

Stationary in soft object, 7) Extension in soft object, 8) Release from soft object, 9)

Contact to hard object, 10) Flexion in hard object, 11) Stationary in hard object, 12)

Extension in hard object, 13) Release from hard object. These labels were directly

used as classes for combined type classi�cation. The class de�nitions for object type

classi�cation were derived by merging the labels in Figure 2.13 into three classes such as

no object (1,2,3), soft object (4,5,6,7,8), and hard object (9,10,11,12,13). Similarly, the

class de�nitions for movement type classi�cation were de�ned as stationary (1,6,11),

�exion (2,5,10), contact (4,9), release (8,13), and extension (3,7,12).

Figure 2.13 Class labeling procedure. Each number refers to one class in the combined type
classi�cation. Event times are shown with ti and dashed lines where applicable for the given condition
(no object, soft object, hard object). See text for the special cases and exceptions. Video frames for
the intervals between the events were labeled (1 to 13) as de�ned in the text.
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In Figure 2.13, event times are also indicated by dashed lines if they are valid

for the given object condition. For example, since there is no contact in the no-object

condition, all the frames between t2 and t4 were labeled as �exion in air (label 2), and

a dashed line is not shown for t3. On the other hand, it was di�cult to assess the

exact contact/release times for the object conditions. Since machine learning requires

multiple data points with those labels, t3 and t8 are shown with two dashed lines (as an

interval instead of discrete events) for the soft- and hard-object conditions. Another

complication occured with the end/beginning of movement events (t4 and t7) within

the hard object. This object is not deformable; therefore, these events are not valid and

not shown by dashed lines in the hard-object condition (Figure 2.13). Nevertheless, the

robotic hand structure still moves internally when the motors are on, so the relevant

video frames were tagged with the labels 10 and 12.

The labeled data was normalized and randomly divided into training and test

data sets with a ratio of 7:3 respectively. For each �nger, the dimensions of the data

used in classi�cation are given in Table 2.1. We implemented three commonly used

machine learning algorithms by built-in MATLAB functions: Multinomial Logistic Re-

gression (MLR), k-Nearest Neighbour Classi�er (kNN) and Support Vector Machines

(SVM) [98]. For kNN and SVM, hyperparameters were also tuned to select the best

model by applying 5-fold cross-validation. For this purpose, the number of neighbours

and the distance metric of kNN classi�er were varied. For SVM classi�cation with

radial basis kernel function, C (penalty for misclassi�cation) and sigma (related to

spread of kernel) parameters were tuned. After hyperparameter tuning, three classi�-

cation algorithms were run for each �nger and each classi�cation type separately (45

classi�cations in total).
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Table 2.1
Dimensions of classi�cation data.

Finger Sensors involved Number of features Training set Test set

Thumb MCP 3 10831 4642

Index �nger MCP, PIP, Proximal 9 10831 4642

Middle �nger MCP, PIP, DIP, Distal 12 10831 4642

Ring �nger MCP, PIP, DIP, Distal, Palmar 15 9019 3865

Little �nger MCP, PIP 6 9019 3865

2.3 Results

2.3.1 Sensor characterization

The sensors were calibrated by using the voltage outputs from the multi-channel

interface circuits as described in Section 2.2.2. The calibration data of loading and

unloading cycles (15 and 50 data points on average for each bend and force sensor,

respectively) were �t by di�erent equations for the two sensor types, and then the

curve �ts were averaged to obtain the overall calibration curve for each sensor (Figure

2.14 and Figure 2.15). Three-parameter power functions (Eq. 2.3) were �tted to the

force sensor data:

y = axb + c (2.3)

where x is force and y is circuit output.

Since the resistance of the bend sensor depends on both the bending radius and

the �exion position, the average calibration curves of the bend sensors are very di�erent

from each other. Various simple functions were tested, and eventually two-parameter

power functions (Eq. 2.4) were �tted to the bend sensor data:

y = axb (2.4)
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where x is bending angle and y is circuit output.

Parameter �ts and the goodness of �t values (R2) are given in Table 2.2. It can

be seen that bend sensors yielded somewhat lower R2 values, because sensor behavior

was highly variable across the sample. On the other hand, there was a closer match

between the individual force sensors. It is important to note that Eq. 2.3 and Eq.

2.4, and the �tted parameters are only valid within the calibration ranges given in

Table 2.2. Because of the robotic hand conformation, zero degrees were not exactly

attainable during the experiment below. On the other hand, force sensors had detection

thresholds, and the minimum force reading obtained by inverting Eq. 2.3 was this

threshold value.

Table 2.2
Parameters of calibration equations.1

Sensor type Sensor name a b c R2 Range

Bend sensors

Thumb-MCP 0.03 1.29 - 0.957 11-60

Index-MCP 0.01 1.44 - 0.929 26-90

Index-PIP 0.49 0.56 - 0.966 6-70

Middle-MCP 0.01 1.40 - 0.995 21-100

Middle-PIP 0.01 1.41 - 0.978 26-60

Middle-DIP 0.33 0.63 - 0.954 6-55

Ring-MCP 0.32 0.69 - 0.988 26-105

Ring-PIP 0.66 0.48 - 0.902 26-60

Ring-DIP 0.15 0.90 - 0.992 1-75

Little-MCP 0.97 0.50 - 0.829 11-80

Little-PIP 0.21 0.90 - 0.970 6-40

Force sensors

Index-proximal -175.81 -0.83 8.74 0.983 31-500

Middle-distal -59.06 -0.54 9.62 0.994 31.4-500

Ring-distal -601.36 -1.11 8.08 1.000 45.5-500

Ring-palmar -55.34 -0.57 9.11 0.999 22.5-506.5

1The units in the range values are degrees and gram-force for bend and force sensors respectively.
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(a)

(b)

Figure 2.14 a) Average calibration curves of the bend sensors. b) Calibration data (1 load-
ing/unloading cycle) and the average curve of an example bend sensor.
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(a)

(b)

Figure 2.15 a)Average calibration curves of the force sensors in gram-force. b) Calibration data (3
loading/unloading cycles) and the average curve of an example force sensor in gram-force.
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2.3.2 Cylindrical grasping data

Figure 2.16 shows experimental data from example bend and force sensors and

their derivatives with respect to time during cylindrical grasping experiment. The

angle and force estimates were obtained by �ltering data and applying the calibration

equations. Then, �rst and second derivatives were calculated as depicted in Figure

2.12. Based on object conditions (no object, soft object, hard object), the plots show

appreciable di�erences. The bend sensor signals lower angles upon contact with objects

as expected. Interestingly, this condition also results lower latency �uctuations in the

time derivatives during extension, which implies that it takes more time for the robotic

hand to decouple from the objects. The di�erences between the hard and soft objects

are more discernable in the force sensor data. Although contact with both the hard

and the soft object produced similar force readings, the time derivatives of the force

were much higher for the hard object as opposed to the soft one.

The maximum forces recorded during the experiment are around 0.1 kgf, but

these values do not indicate the grasp strength exactly due to ine�cient coupling with

the objects (see Section 2.4). It is also important to note that since the objects were

secured with rods (Figure 2.11), there was no weight bearing on the force sensors. We

observed that some bend sensor readings were out of calibration ranges during grasping

due to changes in sensor behavior resulting from the underactuated mechanism of the

hand (see Section 2.4). Therefore, we extrapolated the data on the calibration curve up

to an acceptable limit (125 degrees). Any data points still out of range were considered

unde�ned and not included in classi�cation analyses. Since data were sampled at 1

kHz, there were su�cient amount of samples to obtain the time averages, i.e. features

in Figure 2.12.
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(a)

(b)

Figure 2.16 Examples of a) bend sensor and b) force sensor (in gram-force units) outputs and their
derivatives with respect to time during cylindrical grasping.

As explained in Section 2.2.4, features were labeled according to Figure 2.13

for classi�cation algorithms. For example, angle and force data from example sensors
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are plotted in Figure 2.17 with color codes representing the labels. This data set

was obtained during the grasping experiment with the soft object. Since labeling was

performed manually by frame-by-frame video inspection, we can assume labeling errors

were minimal.

Figure 2.17 Labeled data from example bend and force sensors (in gram-force units) obtained during
the grasping experiment with the soft object. Plots are color coded in sequential order according to
the labels explained in Section 2.2.4 and Figure 2.13.

2.3.3 Classi�cation results

Detailed classi�cation results are presented in Table 2.3 and Table 2.4. For each

classi�cation type, 10 pairs of training/test data were generated randomly from the

same dataset and the time and accuracy results were averaged. For all �ngers and

classi�cation types, best results were obtained with kNN and SVM classi�ers. Results

with lowest accuracy were obtained with the MLR model. The prediction times are

short for all of the methods and may be considered to be appropriate for real-time im-

plementation. However, the SVM algorithm takes much longer time to train compared

to the kNN algorithm. In terms of classi�cation type, best results were achieved for ob-

ject type classi�cation. Although thumb and little �nger do not have force sensors, the

objects were classi�ed accurately using kNN and SVM classi�ers based on data from
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bend sensors.When the classi�cation accuracies are averaged across all the �ngers, kNN

classi�er gave the highest results (0.983, 0.752, 0.751 for object type, movement type,

and combined type classi�cation respectively). Average accuracies from SVM were

slightly lower. The accuracies averaged accross �ngers are given in Table 2.5

Table 2.3
Classi�cation results for thumb and index �nger.

Finger Classif. Method Hyperparameters Train.

time (s)

Train.

acc.

Classif.

time (s)

Classif.

acc.

MLR - 3.299 0.891 2.027E-07 0.892

Obj. kNN Dist=City. k=7 0.020 0.963 5.981E-06 0.949

type SVM C=10 Sigma=0.022 4.790 0.960 5.080E-05 0.950

MLR - 12.323 0.457 3.021E-07 0.457

Thumb Mov. kNN Dist=Euc. k=14 0.024 0.688 7.497E-06 0.598

type SVM C=2.154 Sigma=0.005 43.481 0.692 5.115E-04 0.590

MLR - 84.734 0.479 7.622E-07 0.477

Comb. kNN Dist=Mink. k=19 0.036 0.675 9.585E-06 0.600

type SVM C=215.443 Sigma=0.022 187.924 0.654 3.997E-04 0.608

MLR - 16.623 0.852 3.159E-07 0.826

Obj. kNN Dist=Corr. k=1 0.018 1.000 1.638E-04 0.990

type SVM C=1000 Sigma=0.464 10.671 0.995 1.528E-05 0.993

MLR - 25.629 0.568 3.391E-07 0.563

Index Mov. kNN Dist=City. k=7 0.028 0.892 4.986E-05 0.799

�nger type SVM C=215.443 Sigma=0.100 110.049 0.849 1.465E-04 0.778

MLR - 238.511 0.664 6.604E-07 0.654

Comb. kNN Dist=City. k=5 0.034 0.899 7.111E-05 0.792

type SVM C=1000 Sigma=0.100 47.854 0.866 2.518E-04 0.781
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Table 2.4
Classi�cation results for middle, ring and little �ngers.

Finger Classif. Method Hyperparameters Train.

time (s)

Train.

acc.

Classif.

time (s)

Classif.

acc.

MLR - 15.202 0.981 1.206E-06 0.977

Obj. kNN Dist=City. k=55 0.020 0.992 1.676E-04 0.991

type SVM C=46.416 Sigma=0.464 2.906 0.995 8.618E-06 0.992

MLR - 35.421 0.567 3.690E-07 0.569

Middle Mov. kNN Dist=City. k=3 0.014 0.950 1.636E-04 0.777

�nger type SVM C=1000 Sigma=0.100 124.342 0.881 1.107E-04 0.788

MLR - 360.035 0.727 6.782E-07 0.722

Comb. kNN Dist=City. k=1 0.019 1.000 1.213E-04 0.769

type SVM C=1000 Sigma=0.100 29.986 0.883 2.537E-04 0.788

MLR - 14.153 0.986 2.912E-07 0.984

Obj. kNN Dist=City. k=5 0.009 0.995 1.650E-04 0.994

type SVM C=1000 Sigma=2.154 2.623 0.996 3.894E-06 0.994

MLR - 54.586 0.723 3.545E-07 0.719

Ring Mov. kNN Dist=City. k=1 0.012 1.000 1.595E-04 0.833

�nger type SVM C=1000 Sigma=0.100 58.525 0.963 1.403E-04 0.792

MLR - 377.268 0.778 8.989E-07 0.778

Comb. kNN Dist=City. k=5 0.017 0.944 1.459E-04 0.846

type SVM C=215.443 Sigma=0.100 10.001 0.945 5.604E-04 0.796

MLR - 2.909 0.743 2.507E-07 0.740

Obj. kNN Dist=Euc. k=4 0.023 0.993 8.735E-06 0.989

type SVM C=46.416 Sigma=0.100 1.552 0.997 7.259E-06 0.991

MLR - 14.884 0.499 3.792E-07 0.496

Little Mov. kNN Dist=Cityblock k=5 0.025 0.871 1.271E-05 0.754

�nger type SVM C=215.443 Sigma=0.022 71.192 0.869 2.965E-04 0.730

MLR - 118.983 0.571 8.417E-07 0.569

Comb. kNN Dist=City. k=3 0.026 0.897 1.164E-05 0.748

type SVM C=1000 Sigma=0.100 32.710 0.812 1.331E-04 0.759
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Table 2.5
Finger average of classi�cation accuracy.

Type of classi�cation Classi�cation methods Accuracy

Object type

MLR 0.884

kNN 0.983

SVM 0.984

Movement type

MLR 0.561

kNN 0.752

SVM 0.736

Combined type

MLR 0.640

kNN 0.751

SVM 0.747

Best classi�cation results were obtained from data of the ring �nger by using

kNN classi�ers. In Figure 2.18(a), the confusion matrix of object type classi�cation is

given. It is seen that the misclassi�cation rate is extremely low, because data from two

functional force sensors were included for this �nger. Table 2.6 lists the recall, preci-

sion, and F1 score values for each class. They are all very high for object-type classes.

Classi�cation for movement type yielded lower accuracy, and similarly lower recall,

precision, and F1 score. The confusion matrix (Figure 2.18(b)) shows that some sta-

tionary labels were misclassi�ed as �exion or extension. Similarly, some �exion labels

were misclassi�ed as stationary or extension, and some extension labels were misclas-

si�ed as stationary or �exion. Since same angle values can be labeled as stationary,

�exion, and extension, time derivatives were probably critical here to cause some con-

fusion. On the other hand, contacts and releases were misclassi�ed with �exion and

extension respectively. This may be expected, because some �exion continues with

contact, and some extension precedes release. Combined type classi�cation yielded a

slightly higher accuracy than the movement type classi�cation, and its recall, preci-

sion, and F1 score values were of mixed performance based on a given class. In general,

they were still high except the stationary in soft object and stationary in hard object

classes, which were confused with �exion/extension in the corresponding object types
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(Figure 2.18(c)). The labels for these two classes were di�cult to assess as explained

above (see Figure 2.13). The confusion matrices and detailed performance scores for

all �ngers are given in Appendix A.

(a) (b)

(c)

Figure 2.18 Confusion matrices of a) object type, b) movement type, and c) combined type kNN
classi�cation of sensor data from the ring �nger. Counts are given as numbers in cells. Color code
indicates a given count normalized by total instances of the target class.
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Table 2.6
Classi�cation results of kNN classi�er for ring �nger.

Type of classi�cation Class(Labels) Recall Precision F1 Score

Object type

No (1,2,3) 0.989 0.992 0.991

So (4,5,6,7,8) 0.996 0.996 0.996

Ho (9,10,11,12,13) 0.996 0.993 0.994

Movement type

Stat (1,6,11) 0.730 0.735 0.732

Fl (2,5,10) 0.860 0.870 0.865

Con (4,9) 0.871 0.902 0.886

Rel (8,13) 0.849 0.837 0.843

Ex (3,7,12) 0.855 0.841 0.848

Combined type

Stat-no (1) 0.981 0.944 0.962

Fl-no (2) 0.937 0.974 0.955

Ex-no (3) 0.955 0.974 0.964

Con-so (4) 0.891 0.930 0.910

Fl-so (5) 0.846 0.846 0.846

Stat-so (6) 0.273 0.353 0.308

Ex-so (7) 0.855 0.809 0.831

Rel-so (8) 0.904 0.892 0.898

Con-ho (9) 0.893 0.914 0.903

Fl-ho (10) 0.826 0.823 0.824

Stat-ho (11) 0.218 0.306 0.255

Ex-ho (12) 0.854 0.800 0.826

Rel-ho (13) 0.886 0.870 0.878

2.4 Discussion

2.4.1 General conclusions

In the current study, we aimed to understand the �ow of information from highly

variable sensor data, which can be further used to provide SF from a simple prosthetic

hand. Although advanced robotic designs usually have integrated sensors which are
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speci�c to the device, and therefore, require considerable engineering investments to

achieve accuracy and precision [13,111,112], biological sensors (i.e. mechanoreceptors)

generate highly variable neural outputs [113�115]. The interplay of skin/muscle me-

chanics, mechanoreceptor anatomy/physiology, and central processing produces a very

complex sensory system, quite unlike the engineering systems which have a determin-

istic design philosophy. However, with the help of several receptor types, redundancy,

and population coding, the brain can extract the required information in any natural

setting and can adapt remarkably by plasticity and learning. We adopted a similar bi-

ologically inspired approach with inexpensive, o�-the-shelf force and bend sensors with

highly variable mechanoelectric characteristics. Although individual sensor calibration

was made meticulously, it is concluded that precise calibration of such sensors in prac-

tical applications may not be feasible because of unpredictable coupling with objects.

Therefore, we used machine learning algorithms for data-driven classi�cation. By using

the robotic hand, we collected sensor data during cylindrical grasp movements. The

hand performed periodic �exion and extension in three conditions: no object, soft ob-

ject, and hard object. After hardware and software pre-processing, features obtained

from �ltered data and its �rst and second derivatives were used for o�ine classi�-

cation of object type (no object, soft object and hard object) and movement phase

(stationary, �exion, extension, contact, and release) by supervised machine learning

algorithms (Multinomial Logistic Regression, k-Nearest Neighbor Classi�er and Sup-

port Vector Machines). O�ine classi�cation performance was moderately high and it

forms a valuable basis for our subsequent studies on real-time SF. The classes found

via models set up through machine learning can be readily applied to determine the

events in the DESC policy. DESC policy is very promising in that respect, and can

prevent some bottlenecks in signal and cognitive processing.

Di�erently from the majority of object/grasp recognition studies in the litera-

ture, we included proprioceptive information in conjunction with force to classify object

sti�ness. Since we aim to use the system for prosthetics applications, we classi�ed the

object and movement type without any exploratory procedures as mostly used in the

literature. Although the current study only used one grasp type, the results are promis-

ing. kNN algorithm achieved over 99% accuracy for object type with 9 ms training
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time and 0.2 ms classi�cation time.

2.4.2 Limitations

The simplicity of the robotic hand used in this study does not allow especially the

precision grasp types. Since �ngers do not have �exible joints and abduction/adduction

DOF, object manipulation was very limited. The �exion/extension of the phalanges

occur in conjunction with each other due to the underactuated design. This introduced

some unpredictability regarding the exact values of the joint angles even in the same

grasp type used in the experiment.

The piezoresistive sensors were inexpensive and yielded highly variable calibra-

tion curves across the tested sample. Furthermore, we observed that the behavior

of some sensors changed due to repetitive use, probably due to worn out polymeric

materials; these were not included in the study as depicted in Figure 2.9. Because

of the hand mechanism, bending radius and �exion position also varied in the bend

sensors. Force sensors yielded more consistent results, but their detection thresholds

caused di�culty during operation. Coupling with the objects were not very reliable in

particular, and this sometimes prevented stable readings from force sensors. Threshold

also dependent on loading/unloading cycle and force direction (we tried to reduce that

with the dome design in Figure 2.6(c)). In summary, the sensorized robotic hand used

in this study provided a highly variable data set not amenable to analysis by a classical

engineering approach (one that can be applied to strain gauges, for instance), but quite

similar to biological mechanoreceptor outputs. This gave us the motivation to adopt a

data-driven approach with good success.

Although we present results from a meticulous calibration procedure (by hard-

ware and software), it may not be feasible to perform such a procedure in practical

application of similar sensors because of the limitations discussed above. Instead, a

cruder calibration may be adequate. Even though some voltage readings were mapped

to out-of-range calibration values, and therefore discarded from further analyses, the
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machine learning algoritms were able to cope with this issue because of the abundance

of time samples (each at 1 ms). Given the highly variable sensor data, retraining the

algorithms by adaptive calibration in well-de�ned daily tasks may be all that is needed.

As a matter of fact, the kNN method, which gave the best results in this article, re-

quires relatively large memory space, because the training data set needs to be stored.

Therefore, for real-time applications, stored calibration/training sensor data sets may

be periodically updated.

2.4.3 Future improvements

If the joint mechanics and the actuator mechanism of the presented robotic

hand are improved, some of the limitations may be solved and a more natural grasping

pattern may be formed. This is especially important for coupling with objects and

manipulating them, in other words, regarding the motor aspect. However, the point

we strove to make in this article is that, even though better sensor data would be

available with an advanced hand and sensor design, machine learning algorithms would

be still invaluable for processing data for SF. The current design may be speci�cally

improved by adding sensors for tendon forces (similar to muscle receptors) to overcome

the threshold issue of polymer-based piezoresistive force sensors. By designing �exible

joints, the hand conformation would be improved, and the number of contact points

would increase, and hence more sensor data would be available. Using an array of

sensors would be helpful to measure forces from various directions.

So far, additional transition requirements and physical rules (e.g. contact can-

not precede �exion or stationary phases) were not included in the classi�cation. The

classi�cation models were only trained by static labels, so the results may be considered

as a "worst-case" scenario. Even so, the accuracy results were high. During real-time

implementation of the system, the transition requirements will be included to decrease

the classi�cation time of the acquired data. This method may also decrease the mis-

classi�cation rate in movement-type classi�cation. For this purpose, a decision tree

may be used before the main classi�cation method.
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3. PSYCHOPHYSICAL CHARACTERIZATION AND

VIBROTACTILE FEEDBACK

3.1 Background

3.1.1 Human somatosensory system

Human somatosensory system consists of three subsystems namely interocep-

tion, proprioception, and exteroception. Interoception is related to organ systems and

functions to regulate internal state of the body. The other two subsystems helps motor

control by providing information related to the body and environment. Propriocep-

tion refers to the mechanism on posture and body movements, containing specialized

structures such as receptors in muscles, joints and skin. Exteroception comprises con-

tact, pressure, vibration, motion, stroking, pain and thermal sensations [95]. Table 3.1

summarizes receptor types for each submodality of somatosensory system.

Table 3.1
Classi�cation of somatosensory receptors (Reproduced from [95]).

Modality Stimulus Receptor class Receptor cells

Touch Skin deformation and

motion

Mechanoreceptor Skin

Proprioception Muscle length, muscle

force, and joint angle

Mechanoreceptor Muscle spindles and

joint capsules

Pain Noxious stimuli

(thermal, mechanical,

and chemical stimuli)

Thermoreceptor,

mechanoreceptor,

and chemoreceptor

All tissues except

central nervous system

Itch Histamine Chemoreceptor Skin

Visceral

(not painful)

Wide range (thermal,

mechanical, and

chemical stimuli)

Thermoreceptor,

mechanoreceptor,

and chemoreceptor

Gastrointestinal tract,

urinary bladder,

and lungs



44

In order to obtain information related to touch and proprioception, the physical

energy is transformed to electrical energy by mechanoreceptors distributed throughout

the body and transferred to the central nervous system through innervating �bers.

The type and density of the mechanoreceptors are depend on the skin type. Human

glabrous skin contains four types of mechanoreceptors which are Pacinian Corpuscles,

Meissner's Corpuscles, Merkel disk receptors and Ru�ni endings [116]. The hairy skin

includes three of these mechanoreceptors except the Meissner corpuscles whose function

is ful�lled by hair follicles (Figure 3.1). Field receptors, hair-guard receptors, hair-down

receptors and C mechanoreceptors are the other types of mechanoreceptors found in

hairy skin. The mechanoreceptors are also found in muscles and skeletal structures

to transmit information on posture and body movements. These are muscle spindle

primary and secondary, golgi tendon organ, joint capsule receptors and strech-sensitive

free endings [95].

Figure 3.1 Skin anatomy and mechanoreceptors [117].

Each of the four (three in hairy skin) types of mechanoreceptors mediating

the touch has di�erent physiological properties and is sensitive to a di�erent range of

phsyical energy (Figure 3.2). Merkel cells and Ru�ni endings are categorized as slowly

adapting (SA) and innervated by slowly adapting type 1 (SA1) and slowly adapting
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type 2 (SA2) �bers respectively. They keep �ring during steady pressure. Meissner

corpusles and Pacinian corpuscles are called as rapidly adapting (RA) and innervated

by rapidly adapting type 1 (RA1) and rapidly adapting type 2 (RA2) �bers respectively.

They are sensitive to changes in mechanical stimuli and do not respond during steady

pressure. The receptive �elds and distribution densities are also di�er for the four types

of mechanoreceptors [95,116,118].

Figure 3.2 Physiological properties of mechanoreceptors [95].

The electrical energy generated by the mechanorepectors are coded as spike

trains by the nerves. The information from thousands of mechanoreceptors are inte-

grated through somatosensory pathways starting from peripheral nerves and reaching

to central nervous system (Figure 3.3) [117].



46

Figure 3.3 The dorsal column-medial lemniscal pathway [117].

3.1.2 Psychophysics & tactile perception

Psychophysics refers to the science of relating the properties of the physical

energy to the responses of the central nervous system. Psychophysical studies began

with the experimental studies of Ernst Weber, Gustav Feschner, Hermann Helmholtz

and Wilhelm Wundt in the 19th century [95].

The detection threshold is de�ned as the lowest stimulus intensity which pro-

duces a sensation. In tactile psychophysics, the tactile detection thresholds are mea-

sured as the minimum detectable mechanical displacements. The discrimination thresh-

old is de�ned as the minimum detectable change of stimulus intensity, also named as

di�erence limen (DL) or just-noticeable di�erence (JND). Actually, this term is not

only limited to intensity, can also be used for other stimulation parameters (frequency,
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duration, number of pulses etc.). The relationship between the di�erence limen and

the stimulus intensity is de�ned by Weber's law which states that the size of di�erence

limen is a constant fraction of stimulus intensity [85].

Since biological systems are not �xed, the thresholds can not be de�ned us-

ing never/always approach. During repeated presentation of the same stimulus, the

subject will detect it in some trials and will not detect it in the others. Thus, the

measurement of threshold is a statistical procedure. A series of stimuli with varying

intensities are presented to the subject randomly, and the probability of correct de-

tection is calculated for each stimulus intensity. By �tting a sigmoid function to the

data points, a psychometric function is obtained as in Figure 3.4 [85]. The threshold

is generally de�ned as the stimulus intensity with 0.5 probability of correct detection.

Despite that, in tactile psychophysics (also in this study), mostly stimulus intensity

yielding 75% probability of correct detection is assumed as threshold depending on the

task.

Figure 3.4 Psychometric function [85].

Well-established and standardized methods are used to measure human tactile

thresholds which are method of constant stimuli, method of limits, method of adjust-
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ment or staircase methods [85, 95]. These can be applied either through yes/no task

or forced choice tasks. In yes/no task, the stimulus is presented and the participant

is asked whether she/he could detect the stimulus. In forced choice tasks, the partic-

ipant is required to choose one of multiple options. In this study, we used method of

constant stimuli and staircase method in a two-interval forced-choice task. According

to the task, the stimulus is presented in one of two visually-cued time intervals and

the participant is asked to choose the interval in which the stimulus was detected. For

method of constant stimuli, the stimulus intensities are prede�ned and applied ram-

domly. For staircase method, the stimulus intensity is started at a detectable level and

changed following a tracking algorithm. We used modi�ed three-down one-up rule in

which the stimulus level is decreased one step after three not necessarily consecutive

correct responses and increased one step after one incorrect response [119].

Threshold measurements provide information on the minimum physical energy

required to produce a sensation, however they do not measure the sensation magnitude.

In order to relate the parameters of physical energy with sensation level, psychophysical

magnitude functions are produced by using scaling methods [85]. In this work, we used

magnitude estimation method for subjective scaling of the sensation strength. In this

method, participants are required to assign numbers to the sensation magnitude with

an ordinal scaling. The responses are averaged and a magnitude estimate is obtained

for each sensation level. The relationship between stimulus intensities and magnitude

estimates are generally represented by a power law.

Psychophysics of vibrotactile stimulation has been studied in great detail pre-

viously and it was discovered that the thresholds and sensation strength are a�ected

by a lot of factors [87�91] and depend on stimulation parameters [116,120�125]. First

of all, the vibrotactile detection thresholds are frequency dependent for both glabrous

(Figure 3.5(a)) and hairy skin (Figure 3.5(b)) and follows an U-shaped curve with the

highest sensitivity at around 250 Hz [126�128]. However it is required to note that

the frequency dependency is only for large contactor areas. For the small contactor

sizes the vibrotactile thresholds remain same at higher frequencies as shown in Fig-

ure 3.5. The thresholds are also higher in the hairy skin compared to the glabrous
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skin [89,129�131].

(a)

(b)

Figure 3.5 Frequency sensitivity of a) glabrous skin [132] b)hairy skin.(open circles and solid line:
0.008 cm2 contactor size, solid line only: 2.9 cm2 contactor size. Remaining curves shows results from
other studies) [130].
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(a) (b)

(c)

Figure 3.6 E�ect of a)contactor size (glabrous skin) [132] b)stimulus duration (glabrous skin) [132]
c)static indentation depth (left:glabrous skin, right:hairy skin) [133] on vibrotactile detection thresh-
olds.

The vibrotactile thresholds are also a�ected by the size of contactor used for

stimulation [120]. As it can be seen in Figure 3.6(a), the thresholds decrease with

increased contactor size due to the spatial summation property of the tactile channels

[126, 128, 134]. Figure 3.6(b) shows the e�ect of stimulus duration on vibrotactile
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thresholds. As the stimulus duration increases, the threshold decreases because of the

temporal summation property of the tactile channels [128, 135]. Static indentation

depth of the contactor also has an e�ect on the thresholds. It can be seen in Figure

3.6(c) that the tactile thresholds decrease with increased static indentation both for

glabrous and hairy skin.

For the applications with more than one stimulus simultaneosly or successively,

the tactile sensitivity is also a�ected by the temporal gap between two successive

stimuli, masking e�ects and spatial distance between the stimulation sites [136�140].

3.2 Material and Methods

The work presented here has been published as:

�. Karaku³, B. Güçlü, "Psychophysical principles of discrete event-driven vibrotactile

feedback for prostheses", Somatosensory and Motor Research. Published online: 25

May 2020, DOI: 10.1080/08990220.2020.1769055.

3.2.1 Participants

Ten able-bodied adults (5 male, 5 female, age range: 24-33, mean: 26.9 years,

all but one right-handed) participated in the study (S1-10). None of them had der-

matological, neurological or psychiatric disorder that could a�ect experimental results.

The experimental procedures were approved by the Institutional Review Board for Re-

search with Human Subjects of Bo§aziçi University and written consents were given

by the participants. All participants performed the psychophysical characterization

and same-di�erent task. S4 did not attend the vibrotactile pattern recognition task.

Discrete-event driven feedback experiments were conducted with seven participants

(except S1, S4, S5).
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3.2.2 Vibrotactile actuators and instrumentation

Electromagnetic recoil-based vibrotactile actuators (Haptuator Mark-IIC; Tac-

tile Labs Inc., Montreal, Canada) with the characteristics given in (Figure 3.7) were

used to apply vibrotactile stimuli. Two actuators were used on upper arms and custom

made mounts were produced from a rubber foam to place the actuators perpendicularly

to the skin (Figure 3.8(a)). Our preliminary experiments showed that it is di�cult to

maintain stimulus control at submicrometer level by using the actuator casing as a

contactor; therefore, small plastic probes (diameter: 2 mm) were glued to the moving

armature of the actuators for stimulation of the skin. The actuators were placed on

lateral surfaces of the participant's upper arms by straps (Figure 3.8(b)).

Figure 3.7 Characteristics of vibrotactile actuator.
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(a)

(b)

Figure 3.8 a)Actuators on the mounting strap. b)Actuators on participant's arm.

A custom-made audio power ampli�er was designed and used to drive the actua-

tors. Actuators were calibrated using a photonic sensor (MTI-2100; MTI Instruments,

Albany, NY, USA) at 80 Hz and 180 Hz prior to the experiments. The calibration

curves are given in Figure 3.9.
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(a) (b)

(c) (d)

Figure 3.9 Actuator calibration curves. a) Haptuator-1 at 80 Hz b) Haptuator-1 at 180 Hz c)
Haptuator-2 at 80 Hz d) Haptuator-2 at 180 Hz.

The experimental procedures were programmed in MATLAB (Release 2008, The

MathWorks Inc.) and run on a desktop computer. The necessary images/icons were

presented on the computer screen and the particiapant responses were obtained by the

computer keyboard. The stimulus waveform was generated by a data acquisition card

(NI USB-6259, National Instruments, Austin, Texas, USA). During the experiments,

white noise was applied through headphones in order to mask the sound resulted from

the actuators (named Haptuator-1 and -2 from now on).

3.2.3 Vibrotactile stimuli and the representation of discrete events

The vibrotactile stimuli were generated with a sampling frequency of 5 kHz at

16-bit resolution. The vibrotactile stimuli were sinusoidal displacements at 80 Hz and
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180 Hz, generated as cosine-squared bursts with 50 ms rise and fall times. The stimulus

duration was 0.5 s (measured between half power points) and the waveform was not

changed during whole procedure. The stimulation frequencies (f1, f2) were chosen as 80

Hz and 180 Hz considering the actuator speci�cations given in actuator device datasheet

and the frequency discrimination thresholds in the human hairy skin [141]. Stimulation

magnitudes (a1 and a2) were determined for each subject speci�cally through a set of

psychophysical experiments

As it was explained in Chapter 2, we classi�ed the sensor data for object-type (no

object, soft object and hard object) and movement-type (stationary, �exion, extension,

contact and release) previously [79]. For the work presented in this chapter, those

classes were mapped to stimulus parameters (Table 3.2) regarding discrete hypothetical

prosthesis events.

Table 3.2
Representation of discrete events.

Event (code) Magnitude Frequency

Soft object/Low force (AL) a1 f1

Haptuator-1 Soft object/High force (CL) a2 f1

(object-type/force Hard object/Low force (BL) a1 f2

related feedback) Hard object/High force (DL) a2 f2

No force (O) - -

Flexion/No object (AR) a1 f1

Haptuator-2 Flexion/In object (CR) a2 f1

(movement-type Extension/No object (BR) a1 f2

related feedback) Extension/In object (DR) a2 f2

Stationary (O) - -

Haptuator-1 (for the left upper arm) was assigned to signal object-type and

force-related discrete events. At the sinusoidal frequency of f1, the magnitude of a1

represented manipulating a soft object with low force, whereas a2 represented manipu-

lating a soft object with high force. At the sinusoidal frequency of f2, similar represen-
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tations of magnitude were used for manipulating a hard object. If Haptuator-1 was not

actuated, this represented no contact force for a hypothetical prosthesis. On the other

hand, Haptuator-2 (for the right upper arm) was assigned to signal movement-type

discrete events. Sinusoidal frequency of f1 and f2 represented �exion and extension,

respectively. Magnitudes of a1 and a2 represented movement in air (no object) and

in object, respectively. If Haptuator-2 was not actuated, this signalled a stationary

hypothetical prosthesis. It is important to note that Haptuator-1 and -2 were actuated

sequentially in the �nal experiment. Although Haptuator-1 can imply object manip-

ulation by itself, it was not actuated continuously, because the discrete events refer

to transitions between states (see below). Therefore, manipulation with objects was

also signalled with Haptuator-2 by using the parameter a2 to reduce cognitive load.

Contact and release events were represented implicitly by using the low-force events

signalled by Haptuator-1.

3.2.4 Psychophysical characterization of participants

As it was stated previously, the psychophysical measures vary across partici-

pants (e.g. 10-15 dB in absolute and masked detection thresholds) [81,82] and sensa-

tion magnitudes are subjective [85,86]. Thus, it is important to calibrate a non-invasive

vibrotactile feedback system for each user, and possibly before each use if the device

is re-attached. In this study, we designed a psychophysical characterization proce-

dure which was performed for each participant prior to the experiments. The overall

characterization and experimental procedure is given in Figure 3.10.
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Figure 3.10 Psychophysical characterization and experimental procedures.

3.2.4.1 Absolute detection thresholds . Absolute detection thresholds were

measured for each vibrotactile frequency (f1 = 80 Hz and f2 = 180 Hz) and each

site/actuator (Haptuator-1 and Haptuator-2) in a two-interval forced-choice task by

using the adaptive tracking method [91, 142]. Two time intervals (2 s) were cued to

the participant by red and green squares shown on the computer screen. The stimulus

was presented in either red-cued or green-cued interval and the participant was asked

to select the interval in which the stimulus was detected. The participant responded in

the yellow-cued interval by pressing the corresponding keys on the keyboard. If the re-

sponse was correct, the yellow square blinked. The stimulus intensity in each trial was

determined following an adaptive tracking algorithm with modi�ed three-down one-up

rule [119]. According to the rule, the stimulus intensity was decreased one step after

three correct responses (not needed to be consecutive), and increased one step after

one incorrect response. The experiment was started with a clearly sensible stimulus

intensity and step size was 5 dB at the beginning. It was changed to 1 dB after the

�rst incorrect response (reversal). The algorithm stopped automatically if the stimulus

level was in the range of ± 1 dB for the last 20 trials. The threshold was recorded by
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choosing the middle value in this range. This resulted a 75% detection threshold [119].

The threshold measurement was repeated two times and the results were averaged.

The timing diagram of the two interval forced choice task is given in Figure 3.11.

Figure 3.11 Stimulus timing diagram of two-interval forced-choice task.

3.2.4.2 Psychometric functions. Psychometric functions [85] were obtained to

understand the level at which the vibrotactile stimuli become detectable with probabil-

ity ∼1. Using the absolute thresholds measured in the previous experiment, a stimulus

intensity range was determined. Five stimulus levels were selected (one at detection

threshold from adaptive tracking, one below threshold and three above threshold) and

presented with method of constant stimuli in a two interval forced choice task. The

timing diagram was the same as explained in the previous step (Figure 3.11). However

the stimulus intensity in each trial was chosen randomly as one of the �ve selected

levels. 40 repetitions were applied randomly for each stimulus level.

The probability of correct detection was calculated for each stimulus level and

a sigmoid function was �tted to experimental data (Eq. 3.1). From the obtained

psychometric function, the saturation level was calculated (the stimulus amplitude

yielding detection probability of 0.99).

p(c) = (0.5 +
0.5

1 + e−(A−α)/β ) (3.1)

In Eq. 3.1, p is the probability of detection and A is the stimulus amplitude. α
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is the amplitude at which p = 0.75, i.e. the threshold derived from the psychometric

function. The slope at this amplitude is 1/(4β).

3.2.4.3 Subjective magnitude estimates. It was discovered from the results of

the previous psychophysical studies [85] that, the perceived stimulus magnitude is sub-

jective. The growth of sensation as a function of stimulus amplitude can reproducibly

be measured in a given participant, and is typically described as a power law [86]. Dif-

ferent stimulus frequencies and stimulation sites may result in di�erent power laws [80].

In order to obtain power laws for each participant, magnitude estimation experiments

were performed as a part of psychophsical characterization procedure.

Four stimulus amplitudes which were above saturation level were selected. Each

level was applied randomly 25 times with the timing given in Figure 3.12 and the par-

ticipant was asked to assign a positive number to the sensation magnitude. The range

of positive numbers was not limited,and use of decimals and fractions were allowed.

The responses were averaged for each stimulus level and divided by the grand average

of responses to all trials. Thus, a normalized magnitude estimate was obtained for each

stimulus intensity. To �t a power function, a straight line was �tted to the logarithm

(base 10) of normalized magnitude estimates as a function of sensation level (SL: dB

above the threshold from psychometric function). The experiment was conducted for

each vibrotactile frequency and stimulation site separately.

Figure 3.12 Stimulus timing diagram of magnitude estimation task.
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3.2.4.4 Equal magnitude levels. A magnitude equalization procedure was ap-

plied to achieve vibrotactile feedback e�ect independent of participant's psychophysical

and biomechanical (due to actuator-skin coupling) properties. It was aimed to create

approximately the same sensation magnitude at a given stimulus amplitude regardless

of vibrotactile frequency and stimulation site.

We selected two magnitude levels on the y-axes of four power functions (f1

and f2 of Haptuator-1 and -2) obtained from each participant. Those levels were

separated as much as possible, considering the psychophysical and actuator limits. The

corresponding eight sensation levels were converted to stimulus amplitudes, relative to

the thresholds from psychometric functions. These amplitudes were applied as a1 and

a2 at each stimulus condition. In other words, a1 referred to a di�erent amplitude

for each frequency-site pair, but it always produced approximately the same sensation

magnitude. Similarly, a2 referred to di�erent amplitudes, but approximately the same

sensation magnitude at each condition; and was larger than that of a1.

3.2.4.5 Re-calibration of the psychophysical model: . Ideally, the stimulus

amplitudes should be re-adjusted after re-attachment of the device due to the changes in

tactile sensitivity and contact conditions. It is not practical because of the considerable

time and e�ort spent for psychophysical characterization procedure. Since the model

(the SL values yielding equal magnitude levels at di�erent stimulus conditions) is set

relative to the absolute detection thresholds and assumed to be constant, re-calibration

step can be done just by a quick absolute threshold measurement. The stimulus ampli-

tudes can be re-calculated using the model SLs, referencing to the measured threshold.

This procedure was applied at the beginning of the following experiments for each

participant.
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3.2.5 Same-di�erent discrimination experiments

Subsequent to psychophysical characterization, same-di�erent experiments were

conducted to test if the stimuli used were discriminable in magnitude and frequency

dimensions. Prior to the experiments, a localization test was run to validate that all

signals were perceivable. All stimulus types were presented randomly to either right

or left arm and the participant was asked to tell the site of stimulation. The same

di�erent experiments were performed for simultaneous (Figure 3.13(a)) and successive

stimulation (Figure 3.13(b), interstimulus interval: 300 ms) of the arms.

(a)

(b)

Figure 3.13 Stimulus timing diagram of the same di�erent discrimination task. a) Simultaneous
stimulation b) Successive stimulation.
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For magnitude discrimination task, the frequencies of the two stimuli at each

trial were the same, while the magnitudes were di�erent (a1 and a2). Oppositely, in

frequency discrimination task the stimulation magnitudes were the same in each trial,

but the frequencies were di�erent (f1 and f2). The participant decided if the two

stimuli were the same or di�erent regarding the target parameter. Same-stimuli trials

and catch trials (i.e. single-site stimulation trials) were also included. Participants

responded by pressing keys (S: same, D: di�erent, X: single-site). Each simultaneous

or successive stimulation experiment included 200 trials ( 80 same and 80 di�erent trials

with 20 repetitions of each pair, 40 catch trials with 5 repetitions of each stimulus type).

3.2.6 Vibrotactile pattern recognition experiments

The vibrotactile feedback procedure explained previously (Table 3.2) is applied

as short-lasting stimulus at the beginning of each discrete event. Thus, the recognition

of di�erent stimulus patterns is needed in the �nal part of the study. In order to

set a psychophysical baseline for the recognition rate of stimulus patterns, a set of

experiments were conducted without including information on discrete events. First,

the participants were trained to match each vibrotactile stimulus type with a visual

representation (a sine wave with corresponding magnitude and frequency cue). The

images were displayed on the computer screen simultaneously with the stimuli. We

generated the test patterns considering the possible consecutive discrete-events (Table

3.2) and grouped into four:

(i) One-pattern stimulation: only one site was stimulated

(ii) Two-pattern, same-site stimulation: the same arm was stimulated successively

(iii) Two-pattern, right-�rst stimulation: both sites were stimulated successively with

the right arm �rst

(iv) Two-pattern, left-�rst stimulation: both sites were stimulated successively with

the left arm �rst
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Figure 3.14 Stimulus timing diagram of vibrotactile pattern recognition task.

The successive stimuli were presented with an interstimulus interval of 300 ms

(Figure 3.14) and the participant was required to select the vibrotactile pattern from

a list of images. Images of some patterns were given in Figure 3.15. The actuators

were represented with di�erent colors (Haptuator-1: red, Haptuator-2: blue). The

magnitude (a1 or a2) and frequency (f1 or f2) of the stimulus were shown through a

sine-wave representation.

Figure 3.15 Images representing eight of vibrotactile patterns for di�erent stimulation types.

Catch trials were also included to prevent some patterns being easily recogniz-

able (e.g. being the only pattern with low amplitude and low frequency in the list).

The catch trials were only presented in the image list and not used as stimuli during

the experiment. The experiments included 400 trials (80, 100, 120, 100 trials for Group

i, Group ii, Group iii and Group iv respectively, 10 repetitions for each pattern) and

was completed in one session ( 2.5 hours with breaks) for each participant.
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3.2.7 Discrete event-driven feedback experiments

Discrete event-driven feedback experiments were conducted to test if the pat-

terns were recognizable when the discrete events in Table 3.2 were also included rather

than only representative images of vibrotactile patterns.

Figure 3.16 Full movement cycle of the robotic hand showing the almost all possible transitions
between events.

In Figure 3.16, almost all possible transitions (discrete events) between states

in a cylindrical grasping movement are shown. In the experiments, the transition to a

state was represented by a picture on the computer screen (Figure 3.17). The partic-

ipants were informed about the pictures before the experiment and trained to match

the vibrotactile stimuli with those pictures. For the testing, 14 sequences consisting

two or three consecutive discrete events were selected. The vibrotactile patterns were

presented with 300 ms interstimulus intervals (Figure 3.18) and the participant was

required to select the sequence from a list of pictures. The experiment included 140

trials (10 repetitions for each sequence) and lasted 2.5 hours with breaks.
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Figure 3.17 Pictures representing discrete events.

Figure 3.18 Stimulus timing diagram of discrete event-driven feedback experiment.
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3.2.8 Statistical analyses

Experimental data were analyzed in MATLAB and SPSS (Ver. 25, IBM, Ar-

monk, NY, USA). Absolute detection thresholds in dB were converted to micrometer

units. The di�erences in means of thresholds were analyzed with repeated measures

ANOVA using stimulus frequency (80 Hz vs. 180 Hz), stimulus site (left vs. right

arm), and measurement session (four adaptive tracking measurements and one method

of constant stimuli measurement) as within-subject factors. Additionally, multifacto-

rial e�ects on α and β parameters of the psychometric functions were studied using

repeated measures ANOVA with stimulus frequency and site as within-subject fac-

tors. The slopes and intercepts of power functions for the magnitude estimates were

analyzed similarly based on the same factors. The accuracies in the same-di�erent dis-

crimination experiments were also tested in a multifactorial model based on repeated

measures ANOVA. Here, the comparison parameter (magnitude vs. frequency), pre-

sentation method (simultaneous vs. successive), and trial type (same vs. di�erent)

were set as within-subject factors. Separate one-way ANOVAs were performed for the

class-averaged recall, precision, and F1 scores of the classi�cation results in the pattern

recognition experiments. These performance scores were calculated as the following for

a class C:

Recall =
true class C responses

all responses given to actual C
(3.2)

Precision =
true class C responses

all responses given as C
(3.3)

F1 score = 2 × Precision×Recall

Precision+Recall
(3.4)

The factor in these experiments was the type of stimulation (one pattern, two-pattern

same-site, two- pattern right-�rst, two-pattern left-�rst). Additionally, proportions

of correct responses in the confusion matrices were compared to chance level by the

z-test with Bonferroni correction. For the confusion matrices, the homogeneity of

the proportion of predicted classes was assessed by the chi-squared test. Although
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not necessarily pointing to the correct class, rejection of the null hypothesis in this

test implies that the predicted class proportions change for each target class. This

is equivalent to some dependence between target and predicted classes. Results from

the discrete-event driven feedback experiments were analyzed with methods similar to

those used for the pattern recognition experiments. Classi�cation performance metrics

from those two types of experiments were also compared by using Wilcoxon signed

rank test. Additionally, the relationship between di�erences of magnitude estimates

(i.e. those corresponding to a1 and a2) and performance metrics was studied across the

participants by using Pearson correlation.

3.3 Results

3.3.1 Psychophysical characterization

Psychophysical characterization and experimental procedures required measure-

ment of absolute detection thresholds with two methods at di�erent days. Figure 3.19

shows the thresholds of all participants for each vibrotactile frequency and stimulation

site. The �rst and second bars represent the thresholds from adaptive tracking and

psychometric function respectively. The remaining three bars are thresholds measured

for the re-calibration procedure by using adaptive tracking. The y-axes are plotted in

dB referenced to 1 µm.

For statistical analyses, the absolute thresholds in dB were converted to microm-

eters and averaged across seven participants who performed all experiments (Table 3.3).

The di�erences in means of thresholds were tested with repeated measures ANOVA.

None of the factors (frequency, site and measurement type) had a signi�cant e�ect on

thresholds. No interactions were also found between within-subject factors. The lack

of e�ect of site and measurement type shows that the psychophysical characterization

and re-calibration approaches are reliable. The similarity of thresholds for di�erent

frequencies is also consistent with the literature for the small contactor sizes [129].
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Figure 3.19 Absolute threshold measurements and important stimulus levels of psychophysical
characterization.
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Table 3.3
Average absolute detection thresholds of the participants who attended to all procedures.

Haptuator-1 Haptuator-2

80 Hz 180 Hz 80 Hz 180 Hz

Adaptive tracking-1
Mean 8.766 7.150 6.379 9.045

Std. Error 1.592 1.019 1.040 1.777

Method of constant stimuli
Mean 8.490 8.645 10.450 9.764

Std. Error 1.585 1.261 1.713 1.708

Adaptive tracking-2
Mean 7.351 6.806 7.413 7.980

Std. Error 1.080 1.277 1.163 1.499

Adaptive tracking-3
Mean 8.804 6.906 8.697 7.121

Std. Error 1.673 1.246 1.407 1.583

Adaptive tracking-4
Mean 5.924 6.344 8.798 7.755

Std. Error 1.429 1.344 0.730 1.105

The parameters of psychometric curves are given in Table 3.4 for all participants.

R2 values indicate that the �ts were very good for all conditions and participants. The

parameter α corresponds to the 0.75 probability of correct detection (threshold) and

β is related to the slope of the curve. For Haptuator-1, the mean alpha values are 8.9

± 1.1 µm and 9.0 ± 1.1 µm for 80 Hz and 180 Hz, respectively. They are 10.6 ± 1.4

µm and 12.2 ± 1.9 µm for Haptuator-2 at 80 Hz and 180 Hz, respectively. From the

mean beta values, the slopes (1/(4β) are calculated as 0.21 µm−1 and 0.18 µm−1 at

80 Hz and 180 Hz respectively for Haptuator-1. For Haptuator-2, they are 0.21 µm−1

and 0.13 µm−1 at 80 Hz and 180 Hz respectively. The di�erences in means of α and

β parameters were tested by using repeated measures ANOVA. The e�ects of neither

frequency nor site on the parameters was signi�cant. There was also no interaction

between stimulation site and frequency.
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Table 3.4
Parameters of psychometric functions for all participants.

Participant
Haptuator 1 - 80 Hz Haptuator 1 - 180 Hz

α β R2 α β R2

S1 9.405 2.850 0.955 6.510 0.125 0.978

S2 4.387 1.294 0.994 9.015 2.989 0.948

S3 14.825 0.232 0.975 6.086 1.033 0.958

S4 12.012 0.389 0.982 13.827 3.092 0.984

S5 8.300 1.470 1.000 8.769 1.847 0.997

S6 8.464 2.557 0.995 4.901 0.104 0.947

S7 5.968 0.122 0.954 13.609 1.192 0.988

S8 7.314 1.349 0.997 9.299 1.733 0.960

S9 4.874 0.090 0.938 5.446 1.267 0.997

S10 13.756 1.727 1.000 12.224 0.255 0.998

Mean 8.930 1.208 8.969 1.364

Std. Error 1.139 0.315 1.050 0.341

Participant
Haptuator 2 - 80 Hz Haptuator 2 - 180 Hz

α β R2 α β R2

S1 14.754 0.263 0.981 19.500 2.569 0.918

S2 2.545 0.050 0.974 10.123 1.752 0.996

S3 15.203 0.296 0.987 10.718 2.706 0.994

S4 11.928 2.368 0.994 22.303 2.216 0.996

S5 8.615 2.745 0.996 12.505 0.990 0.997

S6 6.294 0.117 0.981 4.718 1.150 0.988

S7 13.455 0.184 0.954 11.084 2.004 0.997

S8 13.275 2.088 0.929 18.034 2.086 0.998

S9 13.456 0.234 0.990 6.996 1.225 0.979

S10 6.679 3.292 0.999 5.905 1.978 1.000

Mean 10.620 1.164 12.189 1.868

Std. Error 1.360 0.409 1.885 0.186

Example psychometric functions for one participant (S1) are given in Figure

3.20. Filled circles are data points from the experiments, and solid lines represent the

�tted sigmoid functions. The thresholds (0.75 probability of detection) are marked with
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empty circles. The stimulus amplitudes with 0.99 probability of detection (saturation)

were calculated from the psychometric functions (represented by empty squares) to

select higher levels in the subsequent experiments. The psychometric functions of all

participants can be seen in Appendix B.
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Figure 3.20 Psychometric functions for S1. a) Haptuator 1 - 80Hz b) Haptuator 1 - 180Hz c)
Haptuator 2 - 80Hz d) Haptuator 2 - 180Hz.

Four stimulus levels were selected (�lled circles in Figure 3.19) above saturation

to be used in magnitude estimation experiment. For deriving the power functions for

magnitude estimation, the stimulus levels (A) were referred to the threshold (Ath) of

each participant, i.e. as sensation level (SL in dB: 20 log10(A/Ath)). Power functions

at logarithmic x- and y-axes result in straight lines. Table 3.5 shows the linear �ts to

base-10 logarithm of normalized magnitude estimates as a function of SL with high R2
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values. Considering power functions of the form M = k(A/Ath)
γ in which M is the

normalized magnitude estimate, γ is the exponent, and k is a coe�cient, the slopes

and intercepts listed in Table 3.5 refer to γ/20 and log10(k), respectively. As such,

the mean exponents for the growth of magnitude are 1.88 ± 0.28 and 1.24 ± 0.18

for Haptuator-1 at 80 Hz and 180 Hz, respectively. For Haptuator-2, they are 1.54 ±

0.16 and 1.18 ± 0.14 respectively at 80 Hz and 180 Hz. On the other hand, negative

intercepts imply k < 1.

The di�erences in slope and intercept of the �ts were analyzed using repeated

measures ANOVA. There was a signi�cant e�ect of frequency on slope of the �ts

(F(1,9)=23.584 ,p=0.001). The exponent is lower for the higher frequency and the

growth of subjective magnitude is slower. The e�ect of stimulation site on the in-

tercept of the �ts was signi�cant (F(1,9)=6.077, p=0.036), with slightly less negative

intercepts resulted from Haptuator-2. No interactions were found between factors for

both parameters. Magnitude estimation �ts for one participant (S1) are given in Figure

3.21. Empty squares represent magnitude estimation data and the solid lines are �tted

lines. Filled circles show the saturation levels calculated from psychometric functions.

The �ts for all participants are given in Appendix B.

Figure 3.21 Magnitude estimation �ts for S1.
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Table 3.5
Parameters of magnitude estimation �ts for all participants.

Participant
Haptuator 1-80 Hz Haptuator 1-180 Hz

Slope Intercept R2 Slope Intercept R2

S1 0.061 -0.842 0.993 0.036 -0.746 0.982

S2 0.073 -1.356 0.995 0.073 -1.514 0.987

S3 0.142 -1.526 0.983 0.076 -1.796 0.988

S4 0.130 -1.567 0.952 0.071 -1.284 0.991

S5 0.117 -1.739 0.994 0.103 -2.213 0.993

S6 0.078 -1.141 0.961 0.035 -0.823 0.983

S7 0.047 -0.691 0.996 0.033 -0.522 0.983

S8 0.074 -1.107 0.987 0.051 -1.000 0.997

S9 0.049 -0.782 0.989 0.035 -0.833 0.991

S10 0.174 -2.092 0.986 0.105 -1.896 0.991

Mean 0.094 -1.284 0.062 -1.263

Std. Error 0.014 0.144 0.009 0.180

Participant
Haptuator 2-80 Hz Haptuator 2-180 Hz

Slope Intercept R2 Slope Intercept R2

S1 0.057 -0.579 0.999 0.040 -0.535 0.982

S2 0.062 -1.411 0.977 0.076 -1.524 0.997

S3 0.111 -1.228 0.993 0.092 -1.843 0.993

S4 0.097 -1.250 0.989 0.061 -0.740 0.974

S5 0.105 -1.641 0.995 0.078 -1.373 0.990

S6 0.041 -0.535 0.949 0.032 -0.825 0.916

S7 0.050 -0.534 0.991 0.032 -0.576 0.993

S8 0.069 -0.809 0.988 0.049 -0.679 0.968

S9 0.067 -0.733 0.986 0.041 -0.879 1.000

S10 0.113 -2.030 0.933 0.091 -2.363 0.982

Mean 0.077 -1.075 0.059 -1.134

Std. Error 0.008 0.164 0.007 0.195

For the magnitude equalization, two magnitude estimate levels (LME1, LME2;

cyan horizontal lines in Figure 3.21) were selected which were crossing all lines. Since

the magnitude estimation range was di�erent for the participants, the resulting magni-
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tude estimate gap (equals to LME2-LME1) varied across participants. The correspond-

ing eight sensation levels (referenced to absolute detection thresholds) were calculated

for each participant as given in Table 3.6, establishing a psychophysical model.

Table 3.6
Models obtained from pyschophysical characterization procedure (LME: Logarithm of magnitude

estimate, SL: Sensation level, ME Gap: di�erence of magnitude estimates).

Participant LME1 LME2
ME

Gap

Haptuator 1-80 Hz Haptuator 1-180 Hz

SL1 SL2 SL1 SL2

S1 -0.21 0.16 0.37 10.442 16.559 14.904 25.190

S2 -0.60 0.12 0.72 10.328 16.884 12.486 19.043

S3 -0.70 0.10 0.80 5.834 11.836 14.507 25.758

S4 -0.30 0.23 0.53 9.757 13.840 13.848 21.309

S5 -0.60 0.30 0.90 8.878 17.427 14.679 24.380

S6 -0.10 0.20 0.30 13.436 17.307 20.628 29.189

S7 -0.18 0.18 0.36 10.966 18.698 10.256 21.066

S8 -0.25 0.20 0.45 11.636 17.742 14.634 23.419

S9 -0.30 0.20 0.50 9.945 20.254 15.118 29.315

S10 -0.60 -0.01 0.59 8.568 11.957 12.358 17.983

Participant ME1 ME2
ME

Gap

Haptuator 2-80 Hz Haptuator 2-180 Hz

SL1 SL2 SL1 SL2

S1 -0.21 0.16 0.37 6.463 12.941 8.125 17.384

S2 -0.60 0.12 0.72 13.055 20.784 12.131 18.431

S3 -0.70 0.10 0.80 4.757 12.412 12.386 21.595

S4 -0.30 0.23 0.53 9.826 15.309 7.239 15.953

S5 -0.60 0.30 0.90 8.938 18.433 8.599 21.384

S6 -0.10 0.20 0.30 10.560 17.835 22.852 32.314

S7 -0.18 0.18 0.36 7.092 14.297 12.330 23.531

S8 -0.25 0.20 0.45 8.147 14.705 8.769 17.974

S9 -0.30 0.20 0.50 6.431 13.863 14.204 26.461

S10 -0.60 -0.01 0.59 12.656 17.877 19.474 25.992

The model parameters (SLs) were assumed to stay constant throughout experi-

mental procedures. The SLs corresponding to LME1 and LME2 were used to calculate
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low (a1) and high (a2) amplitudes of vibrotactile stimuli respectively, referenced to the

absolute detection threshold from the re-calibration measurement at the beginning of

each session. The displacements corresponding to those amplitude levels at the initial

psychophysical characterization are shown with �lled diamonds in Figure 3.19.

3.3.2 Magnitude and frequency discrimination

We calculated the accuracies of same-only trials, di�erent-only trials and all

trials from participant responses for same-di�erent discrimination task (Figure 3.22).

The average accuracies of simultaneous stimulation were 63.7 ± 5.3% and 56.4 ± 2.7%

for magnitude and frequency discrimination respectively. For successive stimulation,

the accuracy was 66.6 ± 2.6% for magnitude discrimination and 57.3 ± 2.3% for fre-

quency discrimination. Although the magnitudes were calibrated for each participant

speci�cally and the frequency di�erence was higher than the discrimination threshold,

the participant performance is moderate. The average accuracies for same-only and

di�erent only trials are also given in Table 3.7.

Table 3.7
Average accuracies for all conditions of same-di�erent discrimination experiments.

Simultaneous stimulation Successive stimulation

"S"

Accuracy

"D"

Accuracy

"S-D"

Accuracy

"S"

Accuracy

"D"

Accuracy

"S-D"

Accuracy

Magnitude

discrimination

Mean 0.610 0.668 0.637 0.598 0.735 0.666

Std. Error 0.059 0.073 0.053 0.039 0.046 0.026

Frequency

discrimination

Mean 0.581 0.544 0.564 0.623 0.523 0.573

Std. Error 0.047 0.036 0.027 0.036 0.034 0.023



76

Figure 3.22 Results of same-di�erent discrimination experiments.

The di�erences in means of accuracies were tested by using repeated measures

ANOVA. Within subject factors were chosen as comparison parameter (magnitude

or frequency), presentation method (simultaneous or successive) and trial type (same

or di�erent). Magnitude discrimination accuracies were signi�cantly higher than fre-

quency discrimination accuracies (F(1,9)=8.198, p=0.019). An interaction of compari-

son parameter and presentation method was also found (F(1,9)=18.221, p=0.002) im-

plying that the di�erence between magnitude and frequency discrimination was higher

with successive stimulation. The responses from all trials were pooled and the e�ects of

comparison parameter and stimulation method on the mean accuracies were analyzed

by using repeated measures ANOVA. There was a signi�cant e�ect of parameter on

mean accuracies (F(1,9)=8.567, p=0.017).

We also studied the correlation between magnitude estimate gap and each of

the discrimination accuracies in Table 3.7. There was a signi�cant positive correlation

between magnitude estimate gap and magnitude discrimination accuracies of pooled
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trials for both simultaneous (r=0.658, p=0.039) and successive (r=0.862, p=0.001)

stimulation. This indicates that as the magnitude estimate gap increases, magnitude

discrimination accuracy increases. A signi�cant correlation was also found between

magnitude estimate gap and the magnitude discrimination accuracy of simultaneous

stimulation experiment (r=0.797, p=0.006). It means that the participants with wider

magnitude estimate gaps could perceive the same-magnitude stimuli more accurately

than the others.

3.3.3 Vibrotactile pattern recognition

The data from all participants were pooled and the confusion matrices were

obtained as given in Figure 3.23 for the vibrotactile pattern recognition experiments.

In the confusion matrices, the stimuli with di�erent magnitude and frequency combi-

nations are represented by letters (see �gure caption for explanation). The stimulation

sites are also represented by R (right) and L (left). Rows and columns correspond to

actual pattern and participant response respectively.

In one-pattern stimulation, patterns mostly with one common parameter were

confused with each other. In two-pattern stimulation, it is hard to make a generaliza-

tion on confused patterns. The class-averaged performance metrics (recalls, precisions

and F1 scores) have the same trend (Table 3.8). The F1 score is 0.71 for one-pattern

stimulation while they are 0.67, 0.46 and 0.47 for same-site, right-�rst and left-�rst

stimulation respectively. The individual performance of participants for all tasks are

given in Figure 3.24.

The correct responses given to each pattern were compared with the chance level

by using z-test. For all stimulation types and all patterns, the proportions of correct

responses were statistically signi�cantly above the chance level (all p's<0.001). Results

of the independence test showed that there was signi�cant dependence (all p's<0.001)

between actual patterns and participants' responses.
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Figure 3.23 Confusion matrices for vibrotactile pattern recognition experiments. a) one-cell stim-
ulation b) two-cells stimulation-same arms b) two-cells stimulation, di�erent arms, right arm �rst d)
two-cells stimulation, di�erent arms, left arm �rst (A: low frequency-low amplitude, B: high frequency-
low amplitude, C: low frequency-high amplitude, D: high frequency-high amplitude, L and R represents
left and right arms).

The performance scores for all stimulation types and all participants are given in

Figure 3.24. The di�erences in participant performance scores for di�erent stimulation

types (Table 3.8) were tested using one-way ANOVA. There was a signi�cant e�ect of

stimulation type (site and order of stimulation) on recall (F(3,24)=21.726, p=0.002),

precision (F(3,24)=20.465, p=0.002), and F1 score (F(3,24)=22.103, p=0.002). We also

performed correlation analyses and found no signi�cant correlation between magnitude

estimate gap and averaged performance scores. This shows that the e�ect of di�erences

between participants becomes less important while performing a complex task.
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Figure 3.24 Performance scores of all participants for all stimulation types in vibrotactile pattern
recognition experiments.

Table 3.8
Average results of vibrotactile pattern recognition experiments.

One-

pattern

Two-pattern,

same-site

Two-pattern,

right-�rst

Two-pattern,

left-�rst

Recall
Mean 0.714 0.682 0.470 0.489

Std. Error 0.045 0.066 0.081 0.061

Precision
Mean 0.744 0.697 0.501 0.534

Std. Error 0.043 0.063 0.080 0.064

F1 Score
Mean 0.708 0.666 0.457 0.474

Std. Error 0.046 0.069 0.082 0.060
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3.3.4 Discrete event-driven feedback

The data from all participants were pooled and the confusion matrix was ob-

tained as given in Figure 3.25. The number codes represent sequences which were

generated by mapping the vibrotactile patterns to the discrete events given in Table

3.2. The rows and columns correspond to actual sequences and participant responses

respectively.

Figure 3.25 Confusion matrix for discrete event-driven feedback experiments (A: low frequency-low
amplitude, B: high frequency-low amplitude, C: low frequency-high amplitude, D: high frequency-high
amplitude, L and R represents left and right arms).
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It can be seen from the confusion matrices that mostly patterns in the neighbor-

ing cells of the actual sequence were confused. These cells have patterns in common, as

seen from the sequence list in Figure 3.25. The correct responses to all sequences were

signi�cantly above the chance level (all p's<0.002). Additionally, results of indepen-

dence analysis showed that there was signi�cant dependence between actual sequence

and participant responses (p<0.001). The individual confusion matrices and sequence-

based performance scores are given in Appendix C.

Figure 3.26 Performance scores of discrete event-driven feedback experiments.

The performance scores in discrete event-driven feedback experiments are given

in Figure 3.26 for all participants. These were compared with the performance scores in

vibrotactile pattern recognition experiments. For this, the scores from all stimulation

types in pattern recognition experiment were averaged (recall: 0.54 ± 0.07, precision:

0.57 ± 0.07, F1 score: 0.53 ± 0.07). For the discrete event-driven experiment, the

class-averages of performance scores (Figure 3.26) were calculated and then averaged

across participants (recall: 0.42 ± 0.04, precision: 0.43 ± 0.04, F1 score: 0.41 ± 0.04).

The average scores are also given in Figure 3.27. The di�erences in means were tested

using the Wilcoxon signed-rank test and no signi�cant di�erence was found between

two methods. We also studied the correlation between magnitude estimate gap and

performance scores and could not found any signi�cant correlation.
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Figure 3.27 Averaged performance scores for vibrotactile pattern recognition and discrete event-
driven feedback experiments.

3.4 Discussion

3.4.1 General conclusions

In this study, psychophysical principles of DESC-based vibrotactile feedback was

studied in able-bodied participants. Discrete-events observed during the movement of

a robotic hand were mapped to the vibrotactile patterns. Since psychophysical mea-

sures are subjective and a�ected by a lot of factors, a step-by-step psychophysical

characterization was performed before the experiments. Thus, an individual model

was established for each participants, and stimulation amplitudes in the experiments

were determined according to this model. Additionally, the psychophysical characteri-

zation procedure provided balanced magnitude sensation for di�erent frequencies and

stimulation sites.

Same-di�erent discrimination experiments were conducted for magnitude and

frequency. Magnitude discrimination was better than frequency discrimination the per-

formance scores were correlated with the model di�erences. Next, vibrotactile pattern
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recognition experiments were done and moderate recall/precision rates were obtained.

Finally, the discrete event-driven feedback experiments were performed by using the

novel mapping procedure which includes both object-type and movement-type related

information. The identi�cation rates were similar to the pattern recognition experi-

ments. When the identi�cation of a full sequence is considered, the recall rate is around

0.5. However, if selecting 2 discrete events in a 3-event sequence is calculated, the ac-

curacy becomes 68%. Similarly, selecting at least 1 correct event from 2- and 3-event

sequences resulted an accuracy of 85%. These results show that DESC- based feedback

is well founded based on psychophysical criteria.

3.4.2 Previous studies with DESC policy

In the sensory feedback literature, DESC policy was mostly used for vibrotactile

feedback [35, 37, 48, 54]. In these studies, the transitions between critical events were

presented to the user by a vibrotactile stimulus with short duration. The vibration

intensity, frequency and duration were kept constant for di�erent events and adjusted

manually to a perceivable level. In our study, the amount of information transmitted

to the user was increased by using two vibrotactile actuators and using two settings

for both frequency and magnitude of the vibration. Thus, both object-type/force and

movement-type signals were presented to the participant. By psychophysical charac-

terization, the sensation magnitudes were balanced for di�erent conditions and the

amplitudes were selected for each participant speci�cally. Our study also di�ers by

the type and placement of the vibrotactile actuators compared to other studies in the

literature. We preferred to use Haptuator device which has good linearity over a wide

frequency range. We placed the actuators on di�erent arms to increase the discrim-

inability of the feedback signals.
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3.4.3 Technical limitations

The sensory feedback system used in this study was considered mostly for up-

per limb amputees. As a �rst prototype, we mounted the actuators on foam rubber

perpendicularly and attached to the upper arm by straps. When the motor applied ver-

tical displacement, the skin may also have reacted in reverse direction and could have

damped some of the displacements. This can be partially compensated by mounting

the actuator on a more rigid structure, such as a prosthesis socket.

Another observation during the experiments was the variation of thresholds

across sessions. This was due to mainly two factors: expected psychophysical varia-

tion as reported in the literature and variation due to re-attaching of the actuators.

We placed the actuators approximately on the same site by measuring the arm cir-

cumference and proximodistal distance at the beginning of each session. However,

small location and static indentation shifts could not be prevented entirely. In order

to decrease the e�ects of these small shifts, we applied a re-calibration procedure by

calculating the amplitudes with respect to the thresholds measured at the beginning

of the sessions.

In this study, Haptuator devices were preferred as the vibrotactile actuators

since they are small, light and can reproduce sinusoidal waveforms with varying am-

plitude and frequency. However, these actuators were not produced for prosthetic

applications. Due to the recoil e�ect, they generate vibrations on the casing, which is

how they are mostly used for. The vibrations on the casing cause complex stimuli due

to boundary conditions when directly attached to the skin.

Since focused stimulus at submicrometer level was needed for our study, we

mounted them with their long axes perpendicular to the skin, by glueing small plastic

probes to their armatures. In some cases, we had to repeat this procedure due the

breakage of the probes during use. A more reproducible solution would be achieved if

a contactor probe is designed by the manufacturer.
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3.4.4 Psychophysical issues

The absolute threshold results in the current study were compatible with the

previously reported values in the literature for hairy skin [129], despite all technical

limitations discussed above. Vibrotactile detection and discrimination thresholds are

frequency dependent. In Verrillo (1966), the detection thresholds were shown to de-

crease from 80 Hz to 180 Hz , but only for relatively larger contactor areas [129]. The

contactor area in our study was approximately 0.03 cm2; at such small sizes, the spa-

tial summation e�ect of the Pacinian channel is negligible and the sensitivity does not

follow a U-shaped trend as a function of frequency [81, 134]. As such, we did not �nd

a signi�cant di�erence between results at 80 Hz and 180 Hz.

We considered the possible e�ect of the magnitude estimate gap on the par-

ticipant performance after psychophysical characterization. A correlation was found

for magnitude discrimination, implying better discrimination accuracy for larger gaps.

However, there was no signi�cant correlation for vibrotactile pattern recognition and

discrete event-driven feedback experiments. This states that the psychophysical model

di�erences did not a�ect the performance in more complex tasks which is a promising

result for the applicability of the presented methods for prosthesis use.

In brief, the lack of correlation shows that regardless of the psychophysical

model variation across users, the performance baseline would be expected to be as

reported in the current study. The improvement from this baseline would be more

dependent on the cognitive estimation of the sequence of events during actual use, and

not determined by psychophysical factors. One can argue that during a long sequence

of events, understanding the vibrotactile feedback may also increase the cognitive load

and decrease performance. On the contrary, this is the reason why DESC policy is

indeed useful, and why we used only a few events for identi�cation. The user is not

required, and does not probably need in practical use, to follow a long list of events per

se. Control decisions can be made after the feedback to only a few events. Additionally,

we observed that the performance did not deteriorate from the pattern recognition task

to the DESC-based task, which shows implicitly that going from 2 to 3 patterns was
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well handled, with the caveat that pattern recognition task did not have any prosthetic

meaning.

3.4.5 Future directions and practical use

The results of the current study show that both object/force and movement

information can be provided sequentially with moderate identi�cation rates. The next

step would be the use of presented approach and methods in a real prosthesis. We

based this study on the o�ine classi�cation of sensor data from a robotic hand [79].

The subsequent studies will be on real-time classi�cation and generation of vibrotactile

patterns, which are currently within progress in our laboratory. There have been studies

in the literature which investigated the usability of various feedback systems with real

prosthetic hands [25, 26, 49, 50]. Although the stimulation modality (invasive vs non-

invasive) and its method (continuous vs discrete) di�er in those, some comparisons can

be made prior to the real-time implementation of our method in a real prosthesis.

In Markovic et al. (2018), a novel vibrotactile stimulation system was tested

using a Michelangelo hand prosthesis (Otto Bock Healthcare GmbH,Vienna, AT.) [49].

Similar to our study, the system transmitted multiple variables such as contact (by ac-

tivating all tactors), prosthesis state (by spatial modulation) and level of grasping force

(by spatial and amplitude modulation) through multiple actuators. For the complex

daily-use tasks, the user performance showed an improvement with feedback. On the

other hand, in D'Anna et al. (2019), position information was applied simultaneously

with tactile feedback through intraneural stimulation for two amputees using the IH2

Azzurra hand (Prensilia, Italy) [26]. The results of functional tests (object size and

compliance identi�cation) showed that both the tactile and position information can

be processed simultaneously. Similar results were obtained by Schiefer et al. (2018)

with peripheral nerve stimulation for tactile and proprioceptive feedback information,

regarding object size and compliance [25]. Our results are in line with these studies

such that multimodal information can be conveyed to the somatosensory system by

arti�cial feedback in (neuro-)prostheses, but possibly better in the discrete mode. In
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Pena et al.'s study [50], it was indeed found that continuous modulation of the burst

width proportional to the grasp force or hand aperture in one actuator yielded results

worse than the sequential actuation of �ve coin-type tactors as the stimulus level in-

creased. Based on these reported results in the literature, we presume that the system

and methods presented here is promising to be used with a real prosthesis. After an

initial psychophysical characterization, the system should be easily re-calibrated by

measuring the absolute detection thresholds using an simple embedded system. It is

also expected that, the repetitive use of the system during daily life in conjunction with

visual, and possibly auditory, cues will heighten the cognitive awareness with learning

and increase the embodiment of the prosthesis [143]. We also think that, stimulation

of both arms will not be a cognitive burden for the user. In daily use, the user is not

always required to detect the events as a sequence. Some object-type information may

be obtained implicitly through the actuator signaling movement-type information.

Lastly, the methods and results of the current work may have implications for

other tactile feedback applications not related with prostheses including rehabilita-

tion [144,145], assistive technologies [146], teleoperation [147,148], gaming and virtual

reality [149�151]. We think that the e�ciency of those systems may be increased

with user-speci�c psychophysical characterization and discrete event-driven feedback

as described here.
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4. CONCLUSION

4.1 Overall summary

In this study, a DESC-based vibrotactile sensory feedback system was presented

including some novel methods in terms of signal processing and feedback method. First,

high number of force and bend sensors were placed on a robotic hand. In contrast to

deterministic approaches, machine learning methods were used to classify sensor data.

This approach is very similar to biological systems with variable neural outputs and

central processing capable of extracting information from a big amount of data. By this

method, object type/force and movement type/position information could be extracted

from highly variable sensor outputs. The classi�cation results were promising to be

used in the future studies on real time sensory feedback.

Next, a non-invasive feedback system was designed using two recoil based vi-

brotactile actuators. The actuators were placed on the upper arms of able-bodied

participants. The stimulation procedure was based on the DESC policy and class la-

bels from the previous study. The information �ow was increased by transmitting both

force and position information. A novel step-by-step psychophysical characterization

procedure was presented for user-speci�c calibration of the system. Using the vibrotac-

tile stimuli with two participant speci�c stimulation magnitudes and two frequencies,

discrimination and recognition experiments were conducted. Finally, the stimuli were

mapped to the discrete transition events from a hypothetical prosthesis (related to class

labels) and discrete event-driven feedback experiments were performed. Although the

participant performance scores were moderate, it represents a baseline for the expec-

tations from such systems. Therefore, it can be concluded that the proposed system

and methods can be incorporated into prosthetic devices to provide sensory feedback.
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4.2 Limitations

The robotic hand used in this study is not a prosthesis and was not controlled

by a user, instead it was pre-programmed for speci�c grasp types. However, due to

mechanical limitations of the hand and the varying behavior of the sensors, it was not

possible to implement all grasp types. Thus, we focused on the cylindrical grasping

which provided more stable sensor output compared to the others. By using a real

prosthesis with embedded force and position sensors may provide better classi�cation

results.

In terms of vibrotactile feedback system, the main limitation was the placement

of actuators on the arm. They were mounted on foam rubber perpendicularly and at-

tached on the arm using strap. Thus, some actuator-skin decoupling problems occured,

resulting in variations of psychophysical measures. An easy re-calibration procedure

was implemented to compensate these variations. The placement of actuators on a

prosthesis socket may solve this problem and the static indentation may be adjusted

through mechanisms inserted into socket. Thus, stimulus recognition and discrimina-

tion performance may be increased which are known to be e�ected from these factors.

4.3 Future work

In this study, we did not use a prosthetic hand with real-time control of a

human user. The future studies will be on implementing the same methods using a

real prosthetic hand with embedded sensors. Additionally, the classi�cation of sensor

data and generation of vibrotactile stimuli will be performed real-time. We believe

that the proposed methods will be helpful for object manipulation during daily use of

a prosthesis, due to cognitive awareness and learning e�ects with repetitive use.
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APPENDIX A. CLASSIFICATION RESULTS

(a) (b)

(c)

Figure A.1 Confusion matrices of a) object type, b) movement type, and c) combined type kNN
classi�cation of sensor data from the thumb. Counts are given as numbers in cells. Color code indicates
a given count normalized by total instances of the target class.
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Table A.1
Classi�cation results of kNN classi�er for thumb.

Type of classi�cation Class(Labels) Recall Precision F1 Score

Object type

No (1,2,3) 0.854 0.909 0.881

So (4,5,6,7,8) 0.985 0.994 0.990

Ho (9,10,11,12,13) 0.960 0.924 0.942

Movement type

Stat (1,6,11) 0.628 0.818 0.710

Fl (2,5,10) 0.573 0.526 0.549

Con (4,9) 0.584 0.802 0.676

Rel (8,13) 0.701 0.781 0.739

Ex (3,7,12) 0.595 0.542 0.568

Combined type

Stat-no (1) 0.845 0.869 0.857

Fl-no (2) 0.764 0.887 0.821

Ex-no (3) 0.750 0.909 0.822

Con-so (4) 0.540 0.773 0.636

Fl-so (5) 0.581 0.549 0.564

Stat-so (6) 0.013 0.182 0.024

Ex-so (7) 0.631 0.554 0.590

Rel-so (8) 0.727 0.851 0.784

Con-ho (9) 0.557 0.723 0.630

Fl-ho (10) 0.536 0.488 0.510

Stat-ho (11) 0.006 0.143 0.012

Ex-ho (12) 0.607 0.514 0.557

Rel-ho (13) 0.623 0.702 0.660
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(a) (b)

(c)

Figure A.2 Confusion matrices of a) object type, b) movement type, and c) combined type kNN
classi�cation of sensor data from the index �nger. Counts are given as numbers in cells. Color code
indicates a given count normalized by total instances of the target class.
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Table A.2
Classi�cation results of kNN classi�er for index �nger.

Type of classi�cation Class(Labels) Recall Precision F1 Score

Object type

No (1,2,3) 0.986 0.984 0.985

So (4,5,6,7,8) 0.993 0.991 0.992

Ho (9,10,11,12,13) 0.990 0.994 0.992

Movement type

Stat (1,6,11) 0.735 0.799 0.765

Fl (2,5,10) 0.832 0.792 0.811

Con (4,9) 0.767 0.872 0.816

Rel (8,13) 0.806 0.813 0.809

Ex (3,7,12) 0.807 0.800 0.803

Combined type

Stat-no (1) 0.980 0.951 0.965

Fl-no (2) 0.934 0.940 0.937

Ex-no (3) 0.887 0.938 0.912

Con-so (4) 0.750 0.750 0.750

Fl-so (5) 0.824 0.775 0.799

Stat-so (6) 0.204 0.302 0.243

Ex-so (7) 0.819 0.792 0.805

Rel-so (8) 0.879 0.866 0.872

Con-ho (9) 0.701 0.887 0.783

Fl-ho (10) 0.792 0.718 0.753

Stat-ho (11) 0.153 0.216 0.179

Ex-ho (12) 0.734 0.762 0.748

Rel-ho (13) 0.703 0.750 0.726
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(a) (b)

(c)

Figure A.3 Confusion matrices of a) object type, b) movement type, and c) combined type kNN
classi�cation of sensor data from the middle �nger. Counts are given as numbers in cells. Color code
indicates a given count normalized by total instances of the target class.
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Table A.3
Classi�cation results of kNN classi�er for middle �nger.

Type of classi�cation Class(Labels) Recall Precision F1 Score

Object type

No (1,2,3) 0.988 0.985 0.986

So (4,5,6,7,8) 0.993 0.991 0.992

Ho (9,10,11,12,13) 0.990 0.995 0.992

Movement type

Stat (1,6,11) 0.732 0.711 0.721

Fl (2,5,10) 0.816 0.786 0.801

Con (4,9) 0.852 0.906 0.878

Rel (8,13) 0.847 0.881 0.864

Ex (3,7,12) 0.753 0.789 0.771

Combined type

Stat-no (1) 0.973 0.960 0.966

Fl-no (2) 0.937 0.940 0.938

Ex-no (3) 0.904 0.923 0.913

Con-so (4) 0.794 0.857 0.824

Fl-so (5) 0.755 0.737 0.746

Stat-so (6) 0.217 0.218 0.217

Ex-so (7) 0.730 0.742 0.736

Rel-so (8) 0.864 0.891 0.877

Con-ho (9) 0.806 0.831 0.818

Fl-ho (10) 0.815 0.732 0.771

Stat-ho (11) 0.197 0.190 0.194

Ex-ho (12) 0.693 0.777 0.733

Rel-ho (13) 0.828 0.815 0.822
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(a) (b)

(c)

Figure A.4 Confusion matrices of a) object type, b) movement type, and c) combined type kNN
classi�cation of sensor data from the ring �nger. Counts are given as numbers in cells. Color code
indicates a given count normalized by total instances of the target class.
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Table A.4
Classi�cation results of kNN Classi�er for ring �nger.

Type of classi�cation Class(Labels) Recall Precision F1 Score

Object type

No (1,2,3) 0.989 0.992 0.991

So (4,5,6,7,8) 0.996 0.996 0.996

Ho (9,10,11,12,13) 0.996 0.993 0.994

Movement type

Stat (1,6,11) 0.730 0.735 0.732

Fl (2,5,10) 0.860 0.870 0.865

Con (4,9) 0.871 0.902 0.886

Rel (8,13) 0.849 0.837 0.843

Ex (3,7,12) 0.855 0.841 0.848

Combined type

Stat-no (1) 0.981 0.944 0.962

Fl-no (2) 0.937 0.974 0.955

Ex-no (3) 0.955 0.974 0.964

Con-so (4) 0.891 0.930 0.910

Fl-so (5) 0.846 0.846 0.846

Stat-so (6) 0.273 0.353 0.308

Ex-so (7) 0.855 0.809 0.831

Rel-so (8) 0.904 0.892 0.898

Con-ho (9) 0.893 0.914 0.903

Fl-ho (10) 0.826 0.823 0.824

Stat-ho (11) 0.218 0.306 0.255

Ex-ho (12) 0.854 0.800 0.826

Rel-ho (13) 0.886 0.870 0.878
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(a) (b)

(c)

Figure A.5 Confusion matrices of a) object type, b) movement type, and c) combined type kNN
classi�cation of sensor data from the little �nger. Counts are given as numbers in cells. Color code
indicates a given count normalized by total instances of the target class.
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Table A.5
Classi�cation results of kNN classi�er for little �nger.

Type of classi�cation Class(Labels) Recall Precision F1 Score

Object type

No (1,2,3) 0.978 0.984 0.981

So (4,5,6,7,8) 0.996 0.993 0.994

Ho (9,10,11,12,13) 0.991 0.989 0.990

Movement type

Stat (1,6,11) 0.694 0.678 0.686

Fl (2,5,10) 0.792 0.759 0.775

Con (4,9) 0.732 0.901 0.808

Rel (8,13) 0.720 0.895 0.798

Ex (3,7,12) 0.752 0.772 0.762

Combined type

Stat-no (1) 0.908 0.852 0.879

Fl-no (2) 0.835 0.878 0.856

Ex-no (3) 0.779 0.863 0.819

Con-so (4) 0.818 0.900 0.857

Fl-so (5) 0.759 0.693 0.724

Stat-so (6) 0.136 0.189 0.159

Ex-so (7) 0.727 0.727 0.727

Rel-so (8) 0.855 0.922 0.887

Con-ho (9) 0.724 0.875 0.792

Fl-ho (10) 0.797 0.716 0.754

Stat-ho (11) 0.244 0.288 0.264

Ex-ho (12) 0.748 0.768 0.758

Rel-ho (13) 0.608 0.838 0.705
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APPENDIX B. PSYCHOPHYSICAL

CHARACTERIZATION OF PARTICIPANTS
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Figure B.1 Psychometric curves for S1.
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Figure B.2 Equal loudness curves for S1.
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Figure B.3 Psychometric curves for S2.
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Figure B.4 Equal loudness curves for S2.
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Figure B.5 Psychometric curves for S3.
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Figure B.6 Equal loudness curves for S3.
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Figure B.7 Psychometric curves for S4.
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Figure B.8 Equal loudness curves for S4.
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Figure B.10 Equal loudness curves for S5.
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Figure B.12 Equal loudness curves for S6
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Figure B.13 Psychometric curves for S7.
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Figure B.14 Equal loudness curves for S7.
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Figure B.15 Psychometric curves for S8.
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Figure B.16 Equal loudness curves for S8.
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Figure B.17 Psychometric curves for S9.
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Figure B.18 Equal loudness curves for S9.
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Figure B.19 Psychometric curves for S10.
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Figure B.20 Equal loudness curves for S10.
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APPENDIX C. INDIVIDUAL SUBJECT PERFORMANCE

IN DISCRETE EVENT-DRIVEN FEEDBACK

EXPERIMENTS

Table C.1
List of sequences used in discrete event-driven feedback experiments.

No Sequence Stimuli

1 Flexion in air- Extension in air AR-BR

2 Extension in air- Flexion in air BR-AR

3 Flexion in air- Contact to soft object AR-AL

4 Flexion in air- Contact to hard object AR-BL

5 Flexion in air- Contact to soft object-Release from soft object AR-AL-BR

6 Flexion in air- Contact to hard object-Release from hard object AR-BL-BR

7 Flexion in air- Contact to soft object- Flexion in soft object AR-AL-CR

8 Flexion in air- Contact to hard object- Flexion in hard object AR-BL-CR

9 Contact to soft object- Flexion in soft object- Force increases in soft object AL-CR-CL

10 Contact to hard object- Flexion in hard object- Force increases in hard object BL-CR-DL

11 Contact to soft object- Flexion in soft object- Stationary in soft object AL-CR-AL

12 Contact to hard object- Flexion in hard object- Stationary in hard object BL-CR-BL

13 Contact to soft object- Flexion in soft object- Extension in soft object AL-CR-DR

14 Contact to hard object- Flexion in hard object- Extension in hard object BL-CR-DR



112

S2

Figure C.1 Confusion matrix for S2's responses in discrete event driven feedback experiment.

Table C.2
Performance scores for S2's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.80 0.67 0.73

2 0.50 0.63 0.56

3 0.80 0.89 0.84

4 1.00 0.71 0.83

5 0.60 0.50 0.55

6 0.30 0.27 0.29

7 0.20 0.25 0.22

8 0.30 0.25 0.27

9 0.40 0.50 0.44

10 0.70 0.78 0.74

11 0.70 0.70 0.70

12 0.80 0.67 0.73

13 0.20 0.33 0.25

14 0.70 0.78 0.74
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S3

Figure C.2 Confusion matrix for S3's responses in discrete event driven feedback experiment.

Table C.3
Performance scores for S3's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.20 0.50 0.29

2 0.22 0.22 0.22

3 0.10 0.08 0.09

4 0.56 0.36 0.43

5 0.10 0.11 0.11

6 0.00 0.00 0.00

7 0.33 0.33 0.33

8 0.40 0.31 0.35

9 0.90 0.75 0.82

10 0.70 0.70 0.70

11 0.50 0.45 0.48

12 0.40 0.44 0.42

13 0.00 0.00 0.00

14 0.80 0.57 0.67
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S6

Figure C.3 Confusion matrix for S6's responses in discrete event driven feedback experiment.

Table C.4
Performance scores for S6's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.80 0.89 0.84

2 1.00 0.83 0.91

3 0.80 0.67 0.73

4 0.50 0.83 0.63

5 0.30 0.30 0.30

6 0.30 0.27 0.29

7 0.50 0.29 0.37

8 0.20 0.29 0.24

9 0.40 0.44 0.42

10 0.50 1.00 0.67

11 0.60 0.35 0.44

12 0.20 0.29 0.24

13 0.40 0.36 0.38

14 0.30 0.43 0.35
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S7

Figure C.4 Confusion matrix for S7's responses in discrete event driven feedback experiment.

Table C.5
Performance scores for S7's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.90 0.90 0.90

2 0.80 0.89 0.84

3 0.20 0.20 0.20

4 0.30 0.27 0.29

5 0.10 0.07 0.08

6 0.00 0.00 0.00

7 0.20 0.18 0.19

8 0.30 0.30 0.30

9 0.60 0.55 0.57

10 0.40 0.44 0.42

11 0.90 0.60 0.72

12 0.20 0.67 0.31

13 0.60 0.50 0.55

14 0.40 0.44 0.42
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S8

Figure C.5 Confusion matrix for S8's responses in discrete event driven feedback experiment.

Table C.6
Performance scores for S8's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.70 0.58 0.64

2 0.70 0.54 0.61

3 0.40 0.29 0.33

4 0.50 0.36 0.42

5 0.50 0.29 0.37

6 0.00 0.00 0.00

7 0.30 0.43 0.35

8 0.10 0.09 0.10

9 0.00 0.00 0.00

10 0.30 0.27 0.29

11 0.11 0.08 0.09

12 0.10 0.33 0.15

13 0.00 0.00 0.00

14 0.10 0.33 0.15



117

S9

Figure C.6 Confusion matrix for S9's responses in discrete event driven feedback experiment.

Table C.7
Performance scores for S9's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.70 0.78 0.74

2 0.60 0.67 0.63

3 0.20 0.67 0.31

4 0.50 0.83 0.63

5 0.00 0.00 0.00

6 0.30 0.27 0.29

7 0.50 0.36 0.42

8 0.30 0.30 0.30

9 0.90 0.82 0.86

10 1.00 0.83 0.91

11 0.90 0.53 0.67

12 0.50 0.50 0.50

13 0.40 0.36 0.38

14 0.20 0.20 0.20
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S10

Figure C.7 Confusion matrix for S10's responses in discrete event driven feedback experiment.

Table C.8
Performance scores for S10's responses in discrete event-driven feedback experiment.

Sequence no Recall Precision F1 Score

1 0.70 0.88 0.78

2 0.90 0.69 0.78

3 0.60 0.55 0.57

4 0.50 0.63 0.56

5 0.40 0.31 0.35

6 0.30 0.23 0.26

7 0.30 0.50 0.38

8 0.20 0.33 0.25

9 0.10 0.09 0.10

10 0.50 0.38 0.43

11 0.20 0.33 0.25

12 0.00 0.00 0.00

13 0.20 0.17 0.18

14 0.00 0.00 0.00



119
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Journal articles

• Y�ld�z, M. Z., I. Toker, F. B. Özkan, and B. Güçlü, "E�ects of passive and

active movement on vibrotactile detection thresholds of the pacinian channel

and forward masking," Somatosensory and Motor Research, Vol. 32, no. 4,

pp. 262-272, 2015.

• Karaku³, I., B. Güçlü, "Psychophysical principles of discrete event-driven

vibrotactile feedback for prostheses," Somatosensory and Motor Research. In

Press, DOI: 10.1080/08990220.2020.1769055, Published online: 25 May 2020.

• Karaku³, I. A. Atasoy, E. Kaplano§lu, M. Özkan, B. Güçlü, "Classi�cation
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of a bend sensor for neuroprosthetic applications," in Proceedings of Electric

Electronics, Computer Science, Biomedical Engineerings' Meeting (EBBT),

(Istanbul, Turkey), April 2017.
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