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ABSTRACT

NONLINEAR STATE AND PARAMETER ESTIMATION OF
THE HEMODYNAMIC MODEL USING fMRI BOLD
SIGNAL

The joint estimation of the parameters and the states of the hemodynamic
model from the blood oxygen level dependent (BOLD) signal is a challenging problem.
In the functional magnetic resonance imaging (fMRI) literature, quite interestingly,
many proposed algorithms work only as a filtering method. In the fMRI state es-
timation literature, extended Kalman filter (EKF) is asserted to be not robust and
worse than standard particle filters (PF). We compared EKF with PF and observed
that the contrary is true. We also implemented particle filter that approximates the
proposal function by the extended Kalman filter. We compared Gaussian type approx-
imated estimation techniques like extended Kalman filter (EKF), unscented Kalman
filter (UKF), cubature Kalman filter (CKF) as well as stochastic inference techniques
like standard particle filters (PF) and auxiliary particle filter (APF). Filtering makes
the estimation of the hidden states and the parameters less reliable compared with
the algorithms that use smoothing. We improved the EKF performance by adding
smoother. The joint state and parameter estimation is improved substantially by per-
forming the iterative EKS (IEKS) algorithm. We compared IEKS performance with
the square-root cubature Kalman smoother (SCKS) algorithm. We show that its accu-
racy for the state and the parameter estimation is better and much faster than iterative
SCKS. SCKS was found to be a better estimator than the dynamic expectation max-
imization (DEM), EKF, local linearization filter (LLF) and PF methods. We show in
this thesis that IEKS is a better estimator than iterative SCKS under different process

and measurement noise conditions.

Keywords: Hemodynamic model, particle filter, auxiliary particle filter, extended

Kalman filter, smoother, cubature Kalman filter
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OZET

HEMODINAMIK MODELIN fMRI BOLD SINYALI
KULLANARAK DOGRUSAL OLMAYAN DURUM VE
PARAMETRE TAHMINI

BOLD sinyali kullanarak hemodinamik modelin parametre ve durum tahmini
bagarmasi zor bir problemdir. fonksiyonel Manyetik Rezonans Goriintiilleme (fMRG)
literatiiriinde c¢ogu onerilen algoritmalar yalniz siizgec tipindeki metodlardir. fMRG
literatiiriinde, genigletilmis Kalman siizgecinin (GKS) saglam bir metod olmadig ve
PS’lerden kotii oldugu iddia edilmistir. GKS ile PS’leri kargilagtirdik ve bunun dogru
olmadigini gordiik. Bu tezde ayrica 6zel bir pargacik siizgeci uygulanmigtir. Bu siizgec
¢esidinde 6nerim fonksiyonu, genigletilmis Kalman siizgeciyle (GKS) yaklagtirilmigtir.
Bu tezde fMRG literatiiriinde kullanilan GKS, kokusuz Kalman siizgeci (KKS), kii-
pleme Kalman siizgeci (KKS) ve standart pagacik siizgeci (PS) ve yardimer pargacik
stizgeci (YPS) gibi olasiliksal tahmin metodlarim karsilagtirdik. Siizgegler, diizlegtirici
kullanan algoritmalara goére daha az giivenilirdir. Durum ve parametrelerin beraber
tahmini genellestirilmis Kalman diizlegtiricilerinin tekrarlh kullanimi ile 6nemli bir gek-
ilde geligtirilmigtir. Tekrarli kullanimla hem parametre hem durum tahmini 6énemli
olciide iyilegtirildi. Tekrarhi genellegtirilmis Kalman diizlegtiricisini (TGKS), kare-
kok kiipleme Kalman diizlegtiricisi (KKKKD) algoritmasiyla kargilagtirdik. Hemodi-
namik durum ve parametre tahmininin bu yéntemle daha dogru ve daha hizl oldugunu
gorditk. KKCKS metodu fMRI literatiiriinde dinamik tahmin maksimizasyonu (DTM),
GKS, yerel diizlegtirme siizgeci (YDS) ve PS algoritmalarindan daha iyi bir tahmin
metodu oldugu bulunmustu. Bu c¢alismada TGKS metodunun tekrarli KKCKS’dan
farkli durum ve gozlem giiriiltii sartlarinda daha iyi bir tahmin metodu oldugunu gos-

terdik.

Anahtar Sozciikler: Hemodinamik model, Pargacik siizgeci, genigletilmis Kalman

siizgeci, diizlegtirici, kiipleme Kalman siizgeci
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1. INTRODUCTION

The hemodynamic model describes a nonlinear relationship between the neu-
ronal activity and observed Blood Oxygen Level Dependent (BOLD) signal. This
nonlinear relationship is described by stochastic differential equations |1, 2, 3]. With
most of the imaging techniques, it is impossible to obtain a direct measurement of
the neuronal activity. After the fast neuronal activity, we observe a response in the
hemodynamic variables like cerebral blood flow (CBF), cerebral blood volume (CBV)
and blood deoxyhemoglobin content [4]. But even then we do not directly observe the
hemodynamic variables. In the fMRI technique, we observe the BOLD signal, which is
a nonlinear combination of the blood venus volume and blood deoxyhemoglobin con-
tent [5]. A typical BOLD signal can be seen in the Figure 1.1 Hence it is important
to understand the nature of the hidden hemodynamic states from the observed BOLD

signal.

BOLD Signal vs. time

10 T T
——Real BOLD

8+ -

N A

N
N

BOLD Signal

_10 | | | | |
50 100 150 200 250

time index with At=3.22 sec.

Figure 1.1 Real BOLD signal with the permission of Karl Friston.



In this thesis, we will be dealing with the problem of estimating the hemody-
namic states: blood flow, blood volume, blood deoxyhemoglobin content and hemody-
namic model parameters. Our approach will be based on the hemodynamic nonlinear
dynamical system representation. Given the model, we will estimate the hemodynamic
states and the parameters conditioned on the observed BOLD signal. More precisely,

we will formulate the problem as a discrete-time state-space system:

L1 = f(@, Ik) -+ wg (1.1)

where, f and h are nonlinear functions of the latent hemodynamic state xj at time k.
The state is a vector z; € R*. The BOLD signal at time k is described as y, € R. The
state transition noise wy, is Gaussian with N(0, Q) and the measurement noise vy, is
Gaussian with N'(0, R;). By 6, we describe the set of parameters of the hemodynamic
model. In Chapter 3, we give the details how this discrete time representation is
obtained from the hemodynamic model. Having N observations yi, 4o, -+ ,yn O y1.N
and given the parameters 0, we will find the posterior distribution p(xi.x|y1.n,0) from
which we estimate the posterior mean for the hemodynamic states E(x1.x|y1.n,0). As
a harder problem we also work for unknown hemodynamic parameters. In this case, we
want to estimate the parameters 6* by treating them as slightly varying state variables.
In Chapters 2, 4 and 5, more details are given regarding the mathematical theory of

the state and parameter estimation.

The solution of this problem is also called the hemodynamic model inversion.
The model inversion is a hard mathematical problem known as probabilistic inference.
Most of the time, in practice to be applicable, it requires at least joint estimation of
both latent hemodynamic state variables and parameters also known as system iden-
tification. The reason is that the hemodynamic response is not identical across the
subjects, and even among different regions of the same subject [4, 6, 7]. In this thesis,
we first work the case for the known parameter condition. We compared widely used

methods. We provide a methodological improvement in the probabilistic inference of



the hemodynamic variables for a given neuronal input and system parameters. Subse-
quently, we work on the joint estimation of the hemodynamic model parameters and
state estimation. For that purpose, we provide a simple, fast and an accurate model

inversion technique.

The importance of the hemodynamic model inversion is manyfold for functional
neuroimaging. Assuming that the hemodynamic model correctly describes the true
behavior of the hemodynamic variables, it is surprising that just using the BOLD sig-
nal, we learn many things about the hidden temporal behavior of the cerebral blood
flow, cerebral blood volume and blood de-oxyhemoglobin content. It is also possible
to overcome the limits of temporal resolution of the hemodynamic response by iden-
tifying its inverted components on a finer time scale. From the clinical perspective,
using the BOLD signal and model inversion techniques, we can estimate the system
parameters. We can compare these parameters for both healthy and various diseased
people. One other use is that we can monitor the change of the hemodynamic response
and hemodynamic system parameters with respect to the medicament usage. We may
identify parameter regions for healthy people. Depending on the parameter change
with respect to the medicament usage, we may infer whether the medicament is useful

or not.

1.1 Hemodynamic State Estimation

For the hemodynamic probabilistic inference, several attempts were presented in
the fMRI model inversion literature. In the first attempts at applying the fMRI model
inversion techniques, there was zero process noise in the state transition equations [1].
Friston et al. [1] modeled first the relation between the input and output by Volterra
Kernels. Subsequently, they performed a Bayesian estimation technique to estimate
the parameters [8]. Still, the assumption was zero state noise in the hemodynamic
state equations. Riera et al. [9] utilized a type of extended Kalman filter (EKF).
They introduced process noise in their method for the hemodynamic state equations.

They performed EKF via the discretization method of Jimenez et al. [10]. They



did not, however, use the widely used Euler-Maruyama discretization method. UKF
is performed by Hu et al. [11] for the system identification and state estimation of
hemodynamic variables. Riera et al. [9] and Hu et al. [11] performed these techniques
in a filtering style. Recently, Havlicek et al. [6] performed the square-root cubature
Kalman filter (SCKF) for the hemodynamic state estimation. In this thesis, we also

implemented SCKF, which is the numerical stable form of cubature Kalman filter.

In the fMRI literature, Johnston et al. [5] made direct usage of the particle
filters. Murray and Storkey [12] implemented particle filters by using suboptimal pro-
posal functions with a variety of discretization methods. They performed also particle

smoothers.

For completeness, we also note the work of Friston et al. [13, 14, 15]. The
algorithms they suggested are called dynamic expectation maximization (DEM), vari-
ational filtering (VF) and generalised filtering (GF). DEM, VF and GF are based on
the variational approach. They perform dual estimation of the hemodynamic model.
In these works, Friston et al. modified the variational approach for the dynamical
systems [13, 14, 15]. In the variational approach, the joint probability density of the
parameter set and the state conditioned on the observation sequence are assumed to
be factorized in the parameter and state argument [16]. This assumption introduces
simplicity in the calculation. At the same time, we note that this assumption is the
source of error in the parameter and state estimation. Havlicek et al. [6] used square-
root cubature Kalman smoother (SCKS) as the joint hemodynamic model parameter
and state estimation. Under very low process noise conditions they also estimated the

inputs.

1.2 Contribution

The hemodynamic model inversion is a hard nonlinear estimation problem. In
this thesis, we have two contributions. The first contribution focuses on the model

inversion under the known parameter condition. From the BOLD signal, by using the



functional representation of the hemodynamic model, we perform state estimation. We
provide detailed comparison of the hemodynamic state estimation for Gaussian approx-
imated and particle filter type algorithms under a wide range of process noise, different
input, parameter sets and unkown initial condition. When we study the methods
they make certain approximations. For example EKF, UKF, SCKF and LLF approxi-
mate the conditional probability density function of the state by Gaussian probability
density function (pdf). For nonlinear problems this assumption is not proper and it
introduces error in the state estimation. Particle filter methods are known to work
with better numerical accuracy than Gaussian approximated approaches. However, for
weakly-nonlinear systems particle filter do not benefit much. Particle filter performance
also depends on the proposal functions from which samples are drawn. These samples
aim to approximate the conditional probability density function of the state. Opti-
mal proposal functions are difficult to calculate. In the hemodynamic state estimation
literature, non-optimal proposal functions are used. In this thesis, we will examine
the implementation and performance of an efficient state estimation technique for the
fMRI signals. The method we apply approximates the optimal proposal function by

extended Kalman filter method. The contribution and findings are:

e Contrary to the former claim, Extended Kalman filters estimate the hidden states
better than particle filters under a wide range of noise conditions, different inputs,

parameter sets and unknown initial condition.
e The hemodynamic model is weakly nonlinear system.

e PF-EKF can offer more accurate hemodynamic state estimation than the particle
filter and auxiliary particle filters in most cases by approximating the optimal
proposal by EKF. However, due to weak-nonlinearity of the hemodynamic model,

Gaussian approximated methods are better in performance.

The second contribution we worked was a harder problem. We performed the
joint estimation of the hemodynamic state and parameter estimation from the BOLD

signal using the functional representation of the hemodynamic system. This kind



of estimation is also known as dual estimation. We proposed and implemented the
usage of iterative extended Kalman smoother as the dual estimation. Regarding IEKS,

contribution and findings are:

e The claim that EKF is not a robust model inversion [5] seems not to be valid
for different process and measurement noise levels . We checked the EKF in the
widely used parameter regime [6, 12, 13, 14, 15| and obtained results contrary to

the literature.

e EKF’s hemodynamic state estimation performance is even better than standard

particle filters under a wide range of process and measurement noise conditions.

e EKS is robust and improves EKF especially in the higher hemoydnamic pro-

cess/measurement noise conditions.

e IEKS substantially improves hemodynamic state estimation performance by uti-

lizing the EKS algorithm iteratively.

e TEKS has better hemodynamic state estimation accuracy compared with iterative

SCKS for different process and measurement noise conditions.

e [EKS has better parameter estimation accuracy compared with iterative SCKS
for different hemodynamic model process and measurement noise conditions. The

bias of the parameters is lower.

e [EKS is more than twice faster than iterative SCKS for the joint hemodynamic

model inversion.

e Since SCKS alleged to be a better estimator among the other hemodynamic
model inversion techniques [6], IEKS seems to be the best method among the

hemodynamic model inversion methods.



1.3 Outline

The thesis is structured in the following order. In Chapter 2, we provide the
conceptual overview of the estimation problem from the observed data using the func-
tional representation of the system. In Chapter 3, we give the details of the functional
representation of the hemodynamic model. In Chapter 4, we give the implementa-
tion details of the state estimation using the concepts explained in Chapter 2. This
Chapter focuses on the filtering style of nonlinear state estimation. We compare for
the hemodynamic model Gaussian approximated inferences and particle filter methods
and provide the first methodological improvement called PF-EKF. In Chapter 5, we
work on the joint estimation of the hemodynamic states and parameters. The nonlin-
ear estimation in smoothing style is detailed. Parameter identification method is also
discussed in this Chapter. We give the full details of the second contribution called
IEKS. After presenting the methodological background in Chapter 6, we work out the
PF-EKF method for the hemodynamic model for various process noise conditions. In
Chapter 7, we implement the IEKS method for the hemodynamic model. We first
perform model inversion using the simulated data. Having ground-truth validated the
IEKS method, we also show its application in a rather complicated multi-input real
BOLD signal. Conclusions and further recommendations are given in Chapter 8. The
Appendix A provides the proof of Kalman approach of filtering and smoothing and the
details of the QR decomposition.



2. ESTIMATION TECHNIQUES

In this section, we provide a review of state estimation techniques. We classify
the algorithms under the Gaussian approximated and stochastic inference techniques.
We give at the end of the section the scientific works done in the fMRI model inversion

literature.

2.1 State Estimation

Due to nonlinearity of the system it is difficult to make probabilistic inferences
from the observed data. In this thesis, our aim is to find the state estimation of type
p(Tk|y1.6), which is called filtering and p(zx|y1.n), which is called smoothing. In the
filtering problem, for the time step k we take into account only the observations up to
the time k. From these observations we calculate p(xy|y1.x). When the new observation
arrives, we find the new conditional density p(xgi1|y1.6+1). Filtering disregards the
information contained in the future values of y for the state x at time step k. However,
in the smoothing we take into account all observed sequences. This provides us more
accurate results for the state estimation, but at the cost of additional computation.
Even the smoothing techniques require the calculation of the filtering. For that reason,
we first concentrate on implementing a particular filtering technique to obtain the most

accurate state estimation.

Once we have the expressions for p(zy|yi..) and p(xg|y;.y) we can estimate
the state sequence by taking the expectation of the variable x; with respect to this

probability distribution:

Elzylyix] = /Oﬂkp(l’k\yl:k)dll?k (2.1)

Elzylyin] = /xkp($k|y1;1v)d$k (2.2)



This result is the expected state conditioned on the observation sequence .
and y.n. Since it is impossible to calculate analytic expression for the p(zy|y1.,) and

p(zk|y1.8), various approximation techniques are proposed.

2.2 Gaussian Approximated Inference

We have closed form expression for basic state-space systems that are linear and
have Gaussian shaped noise. For such cases, Kalman filter [17] and smoother algorithms
[18] work optimally. For linear systems, the form of the filtering and smoothing densities

are expressed exactly as Gaussian densities.

p(zxlyix) = N (Zwjw; Prgx) (2.3)

p(@ilyrn) = N (&yw; Prin) (2.4)

Here ), and Iy are the recursive filtered and smoothed state estimates at time k
respectively. Similarly, Py, and Py are the filtered and smoothed state covariances

at time k.

Since we do not have closed form expressions for nonlinear systems, we have
various approximation techniques. For Gaussian approximated methods, we can list
extended Kalman filter (EKF) [19, 20|, local linearization filter (LLF) [9], unscented
Kalman filter (UKF) [21, 22, 23| and cubature Kalman filter (CKF) [24], which is a
specific case of UKF [25]. These methods approximate conditional estimates of the

states as Gaussian density.

p(@elyin) = N (Zjr; Prjr) (2.5)

For the extended Kalman filter algorithm, the state transition and measure-
ment functions are linearized with a first-order Taylor series around the state estimates
[6]. Approximating the nonlinear system with a linear state space form, the standard

Kalman filter is applied. The LLF filter is the same as EKF except, in the prediction
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update of the state, LLF uses the discretization proposed by Jimenez et al. [10]. In
UKF and CKF, Gaussian densities are represented by deterministically chosen points
called sigma points and cubature points for UKF and CKF, respectively [26]|. For pre-
diction and measurement updates of the states, the deterministic points are transferred
from the nonlinear state transition and measurement functions, respectively. The pos-
itive aspect of UKF/CKF is that there is no need for the calculation of the Jacobian

matrix of the state and measurement functions.

Similarly in the smoothing context various smoothing extensions are suggested
for the above filtering methods. For the smoothing methods, they approximate the

conditional estimates of the states again as Gaussian densities.

p(wrlyrn) = N (Tyn; Prn) (2.6)

Extended Kalman smoother [18], uncented Kalman smoother [25] and cubature
Kalman smoother [25] are the smoother extensions of the above filtered versions of
EKF, UKF and CKF. Quite interestingly in the fMRI literature many of the Gaus-
sian approximated filtering methods are not used in smoothing sense except for CKF

Havlicek et al. [6].

2.3 Stochastic Inference

For stochastic inference, there are two broad categories of sampling algorithms:
Markov chain Monte Carlo methods (MCMC) and sequential Monte Carlo (SMC)
methods. Since we will be dealing with dynamical systems, in this thesis, we prefer to
concentrate on SMC methods. We also give a literature survey about SMC methods

used in IMRI at the end of this subsection.

Particle filters are sequential Monte Carlo methods that approximate the con-

ditional density functions by a finite amount of particles and associated weights |27].
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Monte Carlo methods aim to draw samples from complex target density functions 7(x).

As a result, we represent the target function 7(x) with a discrete set of samples [28].

m(x) = % Z d(z — x;) (2.7)

But most of the time, it is impossible to draw samples directly from complex
density functions. The main algorithm to achieve this is called importance sampling,
which lies at the hearth of the particle-type algorithms [28|. Importance sampling is
performed by sampling from a known and easy-to-sample importance function ¢(z).
This necessitates compensating the weight due to discrepancy between the true density
and the importance function. As a result, we have the following practically feasible

form for generating samples:

m(x) = Z wid(x — x;) (2.8)

where w; = 7(x;)/q(x;) and z; generated from ¢(z) [28].

The good point of importance sampling is, if we have a test function ¢, then we

can make the approximation for large-enough N:

[ o@nyis =3 wiolw) 2.9)

This is because bias and variance decreases asymptotically with increasing N

128].

The importance sampling algorithm can be easily modified for gradually increas-
ing space dimensions. This is important, since in dynamical systems with each coming
sequence, our space dimension increases. To handle such situations, the importance

function is chosen so that it can be factorized as

Qet1(T141) = Ge(@1k) Qo1 (Tpg1 |2 1:8) (2.10)
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This expression tells us how to sample for the new dimension x;,,. Having the previous
sample points .5, we just use the expression q(zy41|x1.,) to sample for the new points.

The weights are updated according to [28]:

7T1<:+1(1’1:k+1) (2 11)

Wr1 = Wi
- 7Tk(¢£1:k)¢]k+1($1:k+1’xm)

This algorithm, called Sequential Importance Sampling, has in practice a serious prob-
lem. After some time, only one of the weights of the particles becomes significant.
As a result, practically there is only one sample that represents the conditional pdf
[29]. This is a serious problem. To remedy this, Gordon proposed a resampling step
and used the first working type of sequential Monte Carlo methods [27, 28]. In the
resampling stage, from the unevenly distributed weighted samples, a new set of sam-
ples are obtained. By using this technique, we obtain a more stable approximation for

successful estimation.

The above framework we explained is SMC, which works on a general setting.
We did not specify the form of m;(x1.,). Those were the target densities we tried to

approximate. Particle filter is just a special realization of the above SMC formulation

for mp(21.6) = p(@1k|y1e) [28].

2.4 Variational Approach

Yet another technique employed in fMRI literature is the variational approach.
This is an approximation technique that was first suggested by Feynmann [30]. It was
previously applied in statistical physics under the name of mean field theory [31]. For
joint parameter and state estimation by the variational technique, the parameters and
hidden states are assumed to be factorized. Subsequently, the difficult problem to find

the posterior is approximated as:

p(0, xly) = q(0)q(x) (2.12)
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Assuming such a factorization, then it is found that the individual factors are the
expectations of the joint density p(0, z,y) over other factors [16, 32, 33]. This is done
iteratively until convergence. This principle of variational approach is worked in very
detail for the dynamical systems by Friston et al. in a variety of works [13, 14, 15].
Through these algorithms, Friston et al. were able to determine the inputs, parameters

and hidden states under certain noise conditions.
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3. FRISTON-BUXTON HEMODYNAMIC MODEL

3.1 Functional Representation Overview

We work with the continuous time state space and observation formulation.
Subsequently we will convert the model to the discrete time equivalent form. Hence,

we will describe the system in the most general setting as:

#(t) = g(x(t), 0, u(t)) (3.1)

y(t) = h(x(t), 0, u(t)) (3.2)

Here, g is the nonlinear state transition function, h is the nonlinear measurement
function. Both the functions have arguments as the hemodynamic state z; at time ¢,
parameter set 6 and neuronal input u(¢). Hemodynamic state z; at time ¢ is a four-

dimensional vector z; € R*. The BOLD signal y; at time ¢ is described as y; € R.

Similar to Johnston et al. [5] we will perturb the system with Wiener noise and
discretize the system by the Euler-Maruyama Method and arrive the discrete time form
of the above nonlinear differential equation. We define the discrete time instants as
t=1t, 2 kAt, k=1,2,.... The state variables, input and measured BOLD signals are
discretized by defining zy 1 = z(ty + At), x = x(tg), up = u(ty), yr = y(tr). By using

these definitions we arrive the following nonlinear discrete time state-space model.
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Trr1 = flag, 0, ur) + wy (3.3)
yr = h(zk, 0,ur) + vk (3.4)
where f is:
flzg, 0,ur) = v + Atg(ay, 0, uy) (3.5)
and
wr = N(0,Qy) (3.6)

Here, f is the nonlinear state transition function and h is the nonlinear mea-
surement function. This time, we have the discretized version of the state x; where
the time index is k. The state is a vector x;, € R?. The measured BOLD signal y;, is
from the set y, € R. The state noise wy, is of Gaussian type with N(0, Q). The mea-
surement noise vy, is also Gaussian type with N(0, R). We denote by y1, 42, ,yn
or yi.n the discrete time observation sequence of length N. Given the neuronal input
u1.y and plausible assumptions about the noise and N observations yq,ys, -+ ,yn OrF

Y1.N, We want to estimate xq.y.

3.2 Hemodynamic Model System Representation

In this section, we analyze the hemodynamic model in detail. We describe the
dynamics first without any noise component as in [1]. Subsequently, we log-transform
those state variables that describe actual physical entities like blood flow, blood vessel
volume and deoxyhemoglobin content [34]. We perturb the system with the Wiener
process. The last step is the Euler-Maruyama discretization of the SDE. The selected

size of the discretization step is small enough to maintain the dynamics of the hemo-
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dynamic model as in [5, 9]. The noise statistics are compatible with [6].

We will follow the Buxton-Friston hemodynamic model, which relates the neu-
ronal activity to hemodynamic variables and eventually to the observed Blood Oxygen
Level Dependent (BOLD) signal. The model consists of the neuronal activity u(t), the
blood flow hs, blood vessel volume hz and the deoxyhemoglobin content hy. After the
neuronal activity «(¢), which is usually a rapid signal, a change in the blood flow hs
is observed. After the flow change of the blood, changes in the blood venus volume hs
and deoxyhemoglobin content hy are observed [1, 3, 8, 35]. The relation between the

blood flow hs and neuronal activity u(t) is a second order differential equation [11].

(1) = eu(t) — rha(t) — x(ha(t) — 1) (3.7)
halt) = 7(hs(t) — F(hs(1))) (3.5)
Bult) = {00 B(1a(0) ~ Fia(0) 0] (3.9)
where
F(hs(t)) = hs(t)"/® (3.10)
B(ha(t) = (1= (1 = )"") (3.11)

Here, € is the neuronal efficacy factor, x is a measure for signal decay hy, 7 is
denoted as the transit time, x is a measure for negative feedback of the blood flow ho,

a is Grubb’s exponent and ¢ is the resting oxygen extraction fraction [6].

By introducing an abstract variable vasodilatory signal hy, we work on the four-

dimensional differential equation system.



Table 3.1

Parameter Values of the Hemodynamic State Transition Equations

Parameter Description Value
K Rate of Signal Decay 0.65

T Hemodynamic Transit Time 1.0204
Rate of Flow Dependent Elimination | 0.41
« Grubb’s exponent 0.32
© Resting Oxygen Extraction Fraction | 0.34

Neural Efficiency

0.5

Table 3.2

Parameter Values of the Hemodynamic Observation Equation

Parameter Description Value
Vo Resting Blood Volume Fraction | 0.04
k1 Intravascular Coefficient T
ko Concentration Coefficient 2
ks Extravascular Coefficient 20— 2

17
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ha(t) = eu(t) — khi(t) — x(ha(t) — 1) (3.12)
ho(t) = hy(t) (3.13)
hs(t) = 7(ha(t) — F(hs(t))) (3.14)
_ hy(t)
ha(t) = T(ha(t) E(ha(t)) — F(hz(t))hg(t)) (3.15)
where
F(hs(t)) = hs(t)" (3.16)
Ba(t) = (1= (1 = )" (3.17)

We note that all the hemodynamic variables and the parameters are not directly
observable. What we observe is just the BOLD signal, which is a nonlinear combination
of blood vessel volume h3 and deoxyhemoglobin content h4. The observed BOLD signal

equation is as follows:

) = Vol (1 = ha(8) + ka1 = 1) + Rl = ha(0) (39

Here, £y is the intravascular coefficient, k5 is the concentration coefficient and

ks is the extravascular coefficient respectively and Vj is resting blood volume fraction

3, 36, 37].

In this thesis, we perform model inversion under both known and unknown pa-
rameter condition. For the known parameter case, the parameters for the hemodynamic
model and BOLD signal equation are taken as in Table 6.2 and Table 3.2, which is in

accordance with [6]. Our present focus is on the hidden hemodynamic states induced
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by (known) experimental or neuronal input.

We perform the nonlinear transform z;(t) = log(h;(t)) to the zs,x3 and xy,
which ensures positive values for the hemodynamic states x9,r3 and 4 |6, 14]. Sub-
sequently, we utilize Euler-Maruyama method to obtain the following discrete form of

the nonlinear state-space model.

21 (t+ At) &~ 21() + At(eu(t) — kay(t) — x (€2 — 1)) + VALB (1) (3.19)

Z;SQ) + VAL (1) (3.20)

z2(t) _ x3(t)
(e 63545)(6 Dy 4 VALB (1) (3.21)

T(ezg(t)E(emg(t)) o F(emg(t))ezﬂt))

e73(t)

To(t + At) &~ z5(t) + At(

x3(t + At) =~ z3(t) + At(

z4(t + At) & 24(t) + Al )+ VALB(H)  (3.22)

er4 (t)

Hence we arrived at the final form for the discrete time state-space model:

Yp = h(@, Ik) —+ U (324)

where the state transition function f(6,x;) and the measurement function h(6, z) are
given as follows:

Tpa + At(eu, — kay, — x(e2 — 1))

1(6.24) o ¥ Al ) (3.25)
y Uk) = x x .
s + At(r(e kﬁ@;}fﬁe ’“3)))

T(ewkazE(ewkaz)—F(exkﬁ) eTk,4

53 )
| Tpa + AL i <20)
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Tk,4

(0, zr) = Vo(ki(1 — ™) + ko (1 —

)+ ka(1 — e™:2)) (3.26)

eTk,3

Here, z;,; for i = 1,2, 3,4 are the individual components of the discrete state vector xy.
The noise components wy and vy, are Gaussian densities with N (0, Q) and N (0, Ry),

respectively.

3.3 Neuronal Input and Hemodynamic Responses

In this section, we examine the hemodynamic responses for the basic type neu-
ronal inputs. Neuronal input is modeled as the standard boxcar function. During the
activation time, the boxcar function takes the value 1, whereas in the non-activated
neuronal input the boxcar function takes the value 0. We examine both short time and
long time activated neuronal input. Typical graph is shown in Figure 3.1. We note
that, in our plots, following the style of Friston et al. and Havlicek et al. we plot the

log-transformed hemodynamic variables as in |6, 13, 14, 15].

We simulated the hemodynamic response using the nonlinear state transition
function given in Eq. 3.25 and the measurement function given in Eq. 3.26. The
associated responses of the hemodynamic variables and the BOLD signal are plotted

in Figures 3.2 and 3.3.

For longer activated neurons we observe saturation affect as in [5|. For that pur-
pose, we increased the activation time as can be seen from Figure 3.4. The saturation
affect of the hemodynamic variable and the BOLD signal is shown in Figures 3.5 and
3.6.
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Neuronal Input vs. time
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Figure 3.1 Boxcar neuronal input with short time activation.
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Figure 3.2 Hemodynamic variables for boxcar neuronal input with short time activation.
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BOLD Signal vs. time
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Figure 3.3 BOLD signal for boxcar neuronal input with short time activation.
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Figure 3.4 Boxcar neuronal input with long time activation.
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Hemodynamic Variables vs. time
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Figure 3.5 Hemodynamic variables for boxcar neuronal input with long time activation.

BOLD Signal vs. time
0.08 T T

BOLD Signal

0.06-

0.04+ : : N -

0.02n i

BOLD Signal

-0.02- B

—0.04 i i i i i i i i
0 200 400 600 800 1000 1200 1400 1600 1800

time bin, At=0.1

Figure 3.6 BOLD signal for boxcar neuronal input with long time activation.
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4. NONLINEAR STATE ESTIMATION

In this Chapter, we will see the implementation details of the theory presented
in Chapter 2. As pointed earlier, for nonlinear problems - in most of the cases -, it is
impossible to find an analytical expression for the posteriors p(zx|y1.x) and p(zg|yr.n).

For that purposes, two types of approximation methods are used.

1. Gaussian approximated methods

2. Stochastic type approximation methods

4.1 Gaussian Approximated Inference Methods

In this subsection, first the details of the Kalman filter, extended Kalman fil-
ter and square-root cubature Kalman filter are given. The extended Kalman filter
and cubature Kalman filter algorithms are classified under the Gaussian approximated
inference algorithms. They approximate the filtered state estimate p(xy|yi.,) by Gaus-
sian probability density functions. Since densities are Gaussian, both of the algorithms

iteratively update the mean and covariance of the state estimates.

4.1.1 Kalman Filter

Let us consider that we have the following linear and Gaussian additive state

space representation.

L1 = AIk + wg (41)

Yk = Cop + vy, (4.2)
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Here x; at time k is a n-dimensional vector x; € R™. The measurement signal y; at
time k is l-dimensional vector described as vy, € RY. A is a matrix with A € R™",
C is a matrix with C' € R*". The state noise wy is of Gaussian type with N (0, Qy).
The measurement noise vy, is also Gaussian type with N (0, R;). Our aim is to find
p(zk|y1k). The solution to this problem can be found analytically. This density is a

Gaussian pdf which is expressed as:

p(@klyrn) = N (ks Pegi) (4.3)

The conditional density of z; given the measurements up-to time k is a Gaussian
with mean Iy and covariance Py. The optimum solution for the filter is given
by Kalman filter algorithm. With each new coming observation yx,1, Kalman filter

updates the mean and covariance sequentially.

Kalman Filter Algorithm is composed of the following steps.
-1 = AZp_1p—1 (4.4)

Here Zj_1;— is the predicted state mean at time & — 1 conditioned on the observation
sequence yy.;—1 and Tyx—1 is the predicted state mean at time k. For the predicted state
mean Ty,—1, we just make a predicton before the observation g, arrives. For linear
systems, we just propagate the predicted state mean x;_y;—; by multiplying with the

state transition matrix A.

Similar to mean update, for the prediction update of the state covariance Py,

we perform the following step:
Pyjp—1 = Apkfl\kflAT + Qr—1 (4.5)

Here Pj,_1;,—; is the state covariance prediction at time k — 1 conditioned on the ob-

servation sequence i, %s, ..., Yx_1. With these two steps, we calculate the mean and
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covariance of the predicted state probability density function p(zy|yi.x—1). This den-

sity is also a Gaussian pdf with

p(ze|yre—1) = N (Zkpp—1; Prjp—1) (4.6)

This concludes the prediction step update. Next at time k, we have the new observation
yr. Our aim is to update the condtional density p(zg|y1.x). For that purpose, first we

calculate the so-called innovation vy,.
Ve = Y — Ci‘k\k—l (47)

The logic for the innovation is simple. From the predicted state Zj_;, we calculate
the predicted response. The difference between the real response and the predicted
response is innovation v,. Next we calculate the measurement prediction covariance

S called and the Kalman gain K.

Sy = CPyp—1C" + By (4.8)
K = Py CTS; ! (4.9)

From these three quantities: innovation v, measurement prediction covariance

Sy and Kalman gain K, we estimate the mean of the state Z). according to:

Trje = Thjp—1 + Kivp (4.10)

The next step is to estimate the state covariance Pyx.
Pk = Pepp1 — KipSkK), (4.11)

For the proof of this nontrivial equation, the reader is referred to the Appendix A. We

summarize the Kalman Filter in Algorithm 1.



27

Algorithm 1 Kalman Filter
Initialize:

Initialize the mean estimate Z and covariance estimate Fpjo.
for k=1 to N do

Prediction Step:

-1 = AZp_1p—1

Pyjj—1 = AP AT + Qra

Measurement Step:

Uk = Yk — Ci’k|k—1

Sp = CPys—1C" + Ry,

Ky = Py CTS; !

Ty = Tpp—1 + Kpoy,

Py, = Pijo1 — KipSkKY!

end for

4.1.2 Extended Kalman Filter

For the EKF algorithm, the system is linearized in the estimated state values.
After the linearization step, the standard Kalman filter algorithm is applied, which is
known to operate optimally in linear systems [17]. So the extended Kalman filter is a
kind of approximation technique. It has the further assumption that the filtered and

the predicted states can be approximated by (Gaussian densities:

p(xklyik) = N (Zijk, Pri) (4.12)

P(Tri1|yrn) = N (Zps1jes Prtajr) (4.13)

Here, Zy, and Zy1q are the filtered and the predicted mean values of the
densities, whereas Py, and Py, are the filtered and the predicted covariances of the

states.

Subsequently, the EKF algorithm recursively updates these statistics as follows:
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Prediction update:

Trp—1 = f(Th-1pp—1) (4.14)

Pyje—1 = F(Zr—1jk—1) Peojp—1 F (Er—1jp-1) " + Qi (4.15)

Hence, the state update Zj_; is done by propagating the estimate Zj_jpr_
through the nonlinear state equation. The analytic calculation of the the predicted
covariance Py;_; is not possible most of the time. In order to calculate the predicted
covariance Py ;_1, the state equation is linearized at the estimated state value Z_qx—;.
The Jacobian matrix of f at the state value x is denoted by F' with the component
values evaluated as:

af (xi)
891:]-

Fij(z) = (4.16)

We note that the partial differentiations are implemented by simple first order
Euler numerical approximation. This concludes the prediction step. The next step is

the measurement update. The first step is to calculate the so-called innovation vy,.

Measurement update:
If there is a measurement at the time k, we perform the updates similar to those for the
Kalman filter. In order to calculate the Kalman gain, K}, the measurement function h
is linearized at the predicted state Zyx—; similar to the prediction step. The Jacobian
matrix of h at the state value x is denoted by H with the component values evaluated
as:

()

Hij(w) = ——
J

(4.17)

We evaluate the partial differentiation in the Jacobian matrix with first order Euler
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approximation. Innovation vy, measurement prediction covariance Sy and Kalman gain

K, is calculated as:

.
—
oo

Uk = Yk — h(Tgp—1)

Sk = H(Zxjp—1)Prpp—1 H (Erp—1)" + Ri

,'.p
—_
e

Ky, = Pk\kle(i”Mkfl)TSk_l

=
[
S

.'.Jk
[N}
—t
e N N

—~~ I~ o~

Having the innovation v;, measurement prediction covariance S; and Kalman gain K}

the same update formula as in Kalman filter is applied:

Py = Pop—1 — KpSe K] (4.23)

We summarize the extended Kalman filter in Algorithm 2.

Algorithm 2 Extended Kalman Filter
Initialize:

Initialize the mean estimate Zgp and covariance estimate Fyo.
for k=1 to N do

Prediction Step:

Tppp—1 = [(Te—1jp—1)

Pyi—1 = F(Zr-1k—1) P11 F (Zr—15-1)" + Qi1

Measurement Step:

Uk = Yo — h(Trp-1)

S = H(f?mk—l)Pk|k—1H(92’k|k—1)T + Ry,

Ky = Py1 H(Zypp1) "S5 "

Tpp = Tpp—1 + Kpop,

Pk = Prjp—1 — KpSp K[}

end for

We note that in case there is no measurement available at time k, we leave the
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estimated state 2, and estimated covariance Py, to the same values in the prediction

update step.

Thlk = Tklk—1 (4.24)

Pok = Prjr—1 (4.25)

4.1.3 Square-Root Cubature Kalman Filter

In the literature, it is reported that in some highly nonlinear systems EKF can
diverge [24]. In order to circumvent such problems recently a method called cubature
Kalman filter was suggested [24]. In this technique, the filtered state density p(zx|y1.x)
and predicted state density p(xpi1|y1.r) are again approximated by Gaussian densi-
ties. However these densities are further approximated with deterministically chosen
the so-called cubature points. Using these points, state and measurement updates are
performed very similar to the Kalman Filter algorithm. In the Kalman algorithm, the
covariance matrix is updated in every step. However, the two properties of the covari-
ance matrix, symmetry and positive definiteness, must be preserved [24]|. In nonlinear
problems, there are several reasons which cause these two properties to break down
[29]. This problem results in the divergence of the algorithm. There are various ad-hoc
methods to circumvent this issue. One stable solution is the square-root formulation
[24]. In the square-root formulation, the square root of the error covariance matrix is

updated in every step.

Recently, Havlicek et al. [6] used square-root cubature Kalman filter (SCKF)
with the smoother to make inference of the state, parameter and even input. He re-
ported quite satisfactory results and even better performance than the DEM algorithm
under certain noise conditions. DEM is a variational based approach suggested by
Friston et al. [14] which will not be discussed in this thesis. In the work [6], square-
root cubature Kalman smoother is applied by augmenting parameters with the state.
In this thesis, for comparison purposes, we used SCKF without augmenting the noise

with the state, contrary to the method in [6]. The reason is that we already assume
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correct noise statistics. Moreover, the noise augmentation is not suggested for additive

noises [25].

As we mentioned, cubature Kalman filter assumes the filtered state estimate
p(zk|y1.k) and the predicted state estimate p(xgi1|yix) have the Gaussian type proba-
bility density functions.

p(rlyik) = N (ks Prir) (4.26)

P(Tr1lyre) = N(Zps1jes Posajr) (4.27)

These densities are approximated by utilizing a set of deterministic points called
cubature points [24]. This technique resembles the UKF algorithm. In UKF, these
preselected points are called sigma points [22]. Actually, the cubature points are kind
of sigma points by setting the parameters of UKF to specific values [25|. The square
root of P,_jj,—1 is denoted as Si_qjx—1. We assume at time ¢t = &k — 1 state estimate
Tp_1k—1 and square-root covariance Sj_jr—1 is given. Subsequently, we update the

state 2y, and square-root covariance estimate Sy, using SCKF Algorithm as follows:

Prediction Step:

1) By using Si_1jx—1, the cubature points X ;_1;—1 are found:
Xik—1k—1 = Sk—1jp—1& + Th—1p-1 (4.28)

where & = /n[l,,—1,], & is the i-th column of £ for i = 1,2,--- ,2n and I, is the

n-dimensional identity matrix.

2) Next the cubature points X k—1/k—1 are propagated through the state update

function, f:

:k\kq = f(Xik—1)b—1, Ur—1) (4.29)
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Here u;, stands for the input sequence at time k.
3) From these predicted cubature points, mean of the predicted state estimate ;1

is calculated by the formula:

. 1 ..
Tplk—1 = E ZXi’kpg_l (430)
=1

where m = 2n.

4) For the Square-Root Error covariance Syj_1:

1
_ * _— 7 * —_— - .« .. * — 7
Kile—1 = Jm Xikk-1 = Trik—1 Xg g1 — Thik-1 R R (4.31)

Skje—1 = qr([Xpk—1 Sok-1]) (4.32)

Here Sg k-1 is the square root of the covariance QQx—; and g¢r is the QR decomposition
[6]. S = ¢r(X) results in the lower triangular matrix as used by [6, 24]. For QR
decomposition, please check the Appendix A.3. This concludes the prediction step.

Subsequently, we present the measurement step.

Measurement Update:
When there is a measurement at time k, than the updates are:
1) From the predicted mean Zppk—1 and predicted square-root covariance Sip—1, we

build the new cubature points X; yx—1:
Xi k=1 = Skk—1& + Thjp—1 (4.33)

fori=1,2,---,2n
2) In order to find the innovation, the cubature points X .1 are propagated through

the observation equation:
Zi p—1 = h(Xi kje—1, ur) (4.34)

3) From the propagated cubature points Z; yx—1, mean predicted measurement estimate
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Zjk—1 is calculated:

. 1 &
Rk|k—1 = E E Zi,k|kz—1 (4-35)
i=1

4) Similarly the square root of the innovation covariance matrix S.z kk—1 1 calculated

as follows:

1
2 ﬁ [Zuc\kq = Zklk-1 Zoklk—1 — Zklk—1 " Zmklk—1 — Zklk—1 (4.36)

Sezpeib—1 = qr([Z Srul) (4.37)

Here Sk is the square root of the covariance Rj.

6) In order to evaluate the Kalman gain, the cross covariance Py kjk—1 1s calculated as

follows:
Pp: k-1 = Xk|k—1ZkT|k_1 (4.38)
where
1 -, A A
Xkjh—1 = ﬁ Xiklk—1 = Thlk—1 Xoglk—1 — Thlk—1 " Xmklk—1 — Tklk—1 (4.39)

7) The Kalman gain:

_ =T -1
Kk - P$27k|k*152z,k|k71Szz,k|k71

(4.40)
8) The correction in the predicted estimate Zy|k—1 1s done by using the Kalman gain.

Tp = Trjp—1 + Ki(2k — Zrjp—1) (4.41)

9) For the measurement filtered estimate of the square-root covariance matrix Sk 1s:

Skl = qr([Xpjp—1 — K Zoz jje—1 KiSryi)) (4.42)

For the proof of this last step the reader is referred to [24]. We summarize the square-

root cubature Kalman filter in Algorithm 3.
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Algorithm 3 Square-Root Cubature Kalman Filter
Initialize:

Initialize the mean estimate Zo and square-root covariance estimate Spjo.
for k=1 to N do
Prediction Step:
Xik-1k—1 = Sp—1jk—1& + Tr—1jp—1
where & = \/n[l,,, —1,], & is the i-th column of £ for i =1,2,--- ,2n and I, is the
n-dimensional identity matrix.

Xz'*,k\k—l = f(Xi,k—1|k—17 qu)

*

K1 = \/Lﬁ X pho1 = Thk—1 Xgppon = Tuk—1 0 X gy = Trl—1

Skje—1 = qr([Xkk—1S¢0,k—1]) where Sg ;_1 is the square root of the covariance Q.
Measurement Step:

Xikk—1 = Spp—1& + Trjrp—1

Zz’,k|k71 = h(Xi,k\kq,Uk)

A~ o 1 m
k=1 = 15 Doim1 Ziklk—1

_ 1 A . N
Zilk—1 = vm [Zl,k|k—1 — Zhjk—1 Lokk—1— Zkk—1 " Lmklk—1 — Zk|k—1]

Sz k-1 = qr([Z Sry]) where Sg is the square root of the covariance Ry.
Xifr—1 = \/Lm [Xikmq = Tpp-1 Xgppotr — Thk-1 o X o1 — f%k\kfl}
P k-1 = Xk\k;—1Z;z‘k_1
Ky = szvk‘k_lsz_zj,;f\k—lsz_z%km—l
e = Trpk—1 + Ki(2r — Zijp-1)

Sk|k = QT([ka—l - KkZzz,k|k—1 KkSR,k])

end for
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If there is no measurement available, than

Tk = Tklk—1 (4.43)

Sk|k = Sk|]€,1 (444)

4.2 Stochastic Type Approximation Methods

Since we are dealing with nonlinear dynamical systems we focus here on the
sequential type algorithms. In this section, we see the details of the particle filters and
the method implemented in this thesis called particle filter with EKF approximated

proposal function.

4.2.1 Particle Filter

In the particle filter approach, the conditional density function p(zy_1|y1.x_1) is

approximated by M number of samples 7% | and their weights w}_, as follows:

M
p(r-1|yie—1) = Zw/i_lfs(%kq —Th,) (4.45)
=1

The predicted samples z¢ are drawn using the proposal function q(zy|Tr_1,yx), and
the weights w} are found by the following formula [28]:

; i P(yklor)p(zg|re—1)
wk XX wk_l
Q($k|$k—1, yk)

(4.46)

The ideal choice for the proposal function is q(zx|zr_1,yx) = p(Tk|Tr_1,yx), which is
difficult to calculate. If we choose q(xy|zr—1,yr) = p(zx|zK—_1), we arrive at the standard

particle filter weight update rule:

w, o w,_ 1 p(yk| k) (4.47)

Furthermore, as a last step, we apply resampling to prevent particle collapse.
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Resampling is done by drawing samples from the discrete probability set with the
particles {zi}M, and the probabilities (weights) {wi}¥, |38]. After the resampling,
we set the weights w], = 1/M. We summarize the steps in Algorithm 4.

Algorithm 4 Particle Filter
Initialize:

Draw the particles {z{}M, ~ p(zo)
for k=1 to N do
Prediction Step:

{zi}idy ~ p(aelry_y) (4.48)
Measurement Step:
wy, o< p(yx| ) (4.49)

Resample Step Draw samples from the discrete probability set with the particles
{xi1M and the probabilities (weights) {wi}}, [38]. Set the weights wi = 1/M

end for

4.2.2 Particle Filter with Extended Kalman Filter Proposal Function

The choice of the proposal function ¢ is important. It is difficult to sample from
the optimal choice of ¢q. The closed form calculation is again not possible most of the
time. If we linearize the measurement function, then the proposal function can be

approximated with [38]:

a(znlai, . ye) = N (f (i) + Ki(ye — 9) (R Hj A+ Qiea) ™) (4.50)
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where

Oh(z;)

J
i = h(f(Z_y)) (4.52)
Ky = Qu HY (Hi Qe HYT + Ry,) ™! (4.53)

By choosing q(xg|zr_1,yx) as above, the weight update rule becomes [38|

w?; X w2—1N<f($z—1) + K}i(yk - ?;/12)7 (H;Qk_lH,i’T + Rk)_l) (4-54)

We summarize the PF-EKF in Algorithm 5

Algorithm 5 Particle Filter with EKF Proposal
Initialize:

Draw the particles by using {z{}M, ~ p(z)
for k=1 to N do
Prediction Step:
Draw the particles by using the Eq. 4.50
Measurement Step:
Update the weight by using the Eq. 4.54
Resample Step Draw samples from the discrete probability set with the particles
{xi 1M, and the probabilities (weights) {wi}*, [38]. Set the weights wi = 1/M

end for

We noted that The ideal choice for the proposal function for particle filters is
q(zg|re—1,yr) = p(xk|rp—_1, k). In the fMRI literature, non-optimal proposal functions
are chosen as in |5, 12]. By using EKF approximation to the optimal proposal function,

we improved the state estimation accuracy in most of the cases.
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5. DUAL ESTIMATION - JOINT PARAMETER AND
STATE ESTIMATION

In estimation theory, there are two main categories for the state estimation.
These are the filtering and smoothing. In the filtering of the state estimate, the obser-
vation sequence Y1, ¥s, - ,Yr OF Y14 1S used to find the statistical information about
the states x1, 9, ,xx. We are interested to finding the conditional probability den-
sity function (pdf) p(xy|yi..) for the filtering. Since by the new observation ;1 we
can find the conditional density p(xgi1|y1.6+1), filtering is also known as online estima-
tion, whereas, in the smoothing approach, all the observation sequence including the
future data (yi.n, N > k) are used to find p(zg|y1.y) [18]. Since for every time step
we need the complete observation sequence, this kind of processing is also known as
offline estimation. The use of future data contains information about the past data
and, as a result, improves the state and parameter estimates of the system. The choice
of the state estimation technique also has an important effect on the parameter estima-
tion. Having a more accurate state estimation algorithm also improves the parameter
estimation of the system. In the fMRI model inversion literature, most of the state es-
timation techniques work only in the filtering sense. However, in most hemoydynamic
data analysis cases, the computation is not performed in real time. By using smoothing
techniques, the estimation of both the state and the parameters of the hemodynamic
systems is improved. Trade-off is that incorporating smoothing into existing algorithms

leads to an increased computation time.

We estimate the parameters and the states by using the BOLD signal and the
functional representation of the system. In the joint parameter and state estimation

part, we use the same functional model:

Tpt1 = f(9, f[k) —+ Wi (51)
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where, f and h are nonlinear functions of the state xzj, where k is the time
index. The state in our case is a vector x;, € R*, because there are four hemodynamic
state variables. The observed BOLD signal at time £ is denoted by y, € R, because
the BOLD signal is one dimensional. The state transition noise wy is Gaussian with
N(0,Q4), and the observation noise vy is Gaussian with A(0, R). The set of param-
eters of the model is denoted by 6. Given N observations yi,¥s, - ,yn O Yi.n, OUT

aim is to find the parameter set # and the states x1,xo, -+ , 2N Or Z1.N.

5.1 Iterative Extended Kalman Smoother

[terative extended Kalman smoother is performed by the repeated use of the
extended Kalman filter and smoother algorithm. At each step we first perform ex-
tended Kalman filter as explained in Section 4.1.2. Having the EKF step performed

the smoother is performed as explained in the next section.

5.1.1 Extended Kalman Smoother

By using the EKF algorithm, the state x; is predicted from the observed se-
quence ;.. From the future data, once we have them, a more accurate state estimation
can be accomplished. This is achieved through the EKS algorithm [18]. The EKS al-
gorithm is also easy to implement. The recursion is done by going backward in time.

The recursion step begins from £k = N — 1.

First, the state is predicted as:

Ty = f(Trpp) (5.3)

and the covariance is predicted by the formula

Py = F(ii’k|k)Pk|kF(55k\k)T + Qk (5.4)



40

The Kalman gain J; for the smoother is:
J. = Pk|kF(:)§"k‘k)TPk‘jllk (5.5)

Smoother estimates for the state mean #jx and state covariance Pjn are found by
using the Kalman gain K and the filter estimates of the state mean ), and the state

covariance Py

TN = Tk + Jk(i'k+1|N - 53k+1|k) (5.6)

Py = P + Je(Pegaiy — Prgape) Iy (5.7)

For a nice proof of the algorithm please check the appendix. We summarize the steps

of EKS in Algorithm 6.

Algorithm 6 Extended Kalman Smoother
Initialize:

Perform EKF summarized in Algorithm 2.
for k=N-1to 1 do

Trpre = f(Tag)

Peii = F(@xpw) PepF (Zp) ™ + Qe

Jr = Pk\kF(fklk)TPk_Jrluk

Ten = Trpe + Je(Trpyn — Torajr)

Pun = Py + Je(Pern — Progaje) JE

end for

5.1.2 Parameter Estimation and Iterative EKS

EKF and EKS can also be used to estimate the parameters of the system by
a very simple method. In this approach, the parameters are treated as time-varying

variables with small noise perturbations as in [6, 11]. As a result, the parameter updates
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become:
Or+11 = Ok1 + Wi (5.8)
Okr12 = Ok + w2 (5.9)
(5.10)
0k+1,p = (91{71, + Wi p (5.11)
where 0;,; stands for the i-th parameter at time k, ¢ = 1,2,--- ,p. The new state z,

becomes an extended version of the original state x.

T
Ok
Tak = |Ors (5.12)

O P

For SCKS, Havlicek et al. used the similar technique for parameter estimation
[6]. Since we augmented the parameters to the state, EKS also estimates for the
parameters besides the states. At the end of the EKS algorithm, we obtain an estimate
of the parameter set #. Using the estimates of the parameters # as the new initial
estimate for the parameters, we iterate the EKF and EKS algorithm until convergence

similar to [6].

5.2 Iterative Square-Root Cubature Kalman Filter

Similar to iterative EKS, iterative SCKS performed in this thesis begins with
SCKF algorithm detailed in Chapter 4. Next step is smoother part of SCKS.
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5.2.1 Square-Root Cubature Kalman Smoother

By applying the smoother to the output of the cubature Kalman filter, the state
estimation errors decrease more. This time the recursion goes backward in time. Having
the mean % |y and the square root of the covariance estimate §N|N, the recursion step
begins from £k = N — 1. The steps are as follows:

1) Evaluate the cubature points:
Xk = Sk + Thgk (5.13)

fori=1,2,---,2n.

2) Propagate the cubature points X,y through the state update equation:

Xi,k+1|k = f(Xi,k|kauk) (5-14)

3) From these predicted points Xi k+1Jk, smoothed mean estimate of the state T is

calculated.

. 1 &

Trsilk = — 2; Xi kt1|k (5.15)
4) Square-root error covariance Sk 18

Skt = qr([Xrg1e Sg)) (5.16)
where

1 A A A
Xey1je = Jm Xiprie — T Xogrip — Thope o Xongris — Tepapp|  (5.17)

6) Cross-covariance Dy 1)k is calculated according to the formula:
Dy = Xk|ng+1‘k (5.18)

where

1
Xijk = 7 Xike — Tue Xoge — Tue - Xmgle — fkuf] (5.19)
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7) The Kalman gain Cj:
Cr = DiraeSy 1 e Shi i (5.20)
8) The smoothed mean estimate 2y y:
Tpn = gk + Cr(Teyry — Trgap) (5.21)
9) The smoothed square-root covariance Syy:
Sun = qr([Xipe — CrXprny CrSigain]) (5.22)

The recursion is performed backward in time up-to kK = 1. This concludes the smooth-

ing part.

We summarize the steps of SCKS in Algorithm 7.

Algorithm 7 Square-root Cubature Kalman Smoother
Initialize:

Perform SCKF summarized in Algorithm 3.
for k=N-1to 1 do
Xike = Sk + Tgp for i =1,2,--- 2n.
Xikr1)e = f( Xk, ur)
Ty, = % >y Xikt1lk

Sk+1|k = qr([Xk-i—l“f SQ])

_ 1 A ~ ~
Xptale = vm [Xl,k+1|k — Thgik Xok+ik — Thijk ° Xmktilk — Thtilk

_ T
Dygape = Xklka+1|k

_ 1 . N N
Xk\k - Ym [X17k|k — Tk X2,k\k L) Xm,k|k — Tg|k

=T —1
Cr = Dk+1\k5k+1|k5k+1\k
Ten = Trpe + Cr(Trg1n — Tryije)
Seiv = qr([Xip — CuXigny CrSks1n])

end for
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5.2.2 Parameter Estimation with SCKS

For the estimation of the parameter set 6, the same technique presented in Sec-

tion 5.1.2 is utilized similar to [6]. In the following section, a toy example is considered.

5.3 Toy Example: Linear Case

In this section, we want to show the importance of the smoothing and the usage
of EKS. In the first two subsections we make state estimation by assuming the param-
eter is known. In the first subsection, we visualize the state estimation improvement
by the smoother over the filter. In the second subsection, we perform Monte Carlo
analysis to show the state estimation improvement. In the third subsection, we assume
that the parameter is also unknown. With this condition, we estimate the parameter
by the methods we described in the Sections 5.1.2 and 5.2.2. We perform again Monte
Carlo simulation. We compare the mean and variance of the estimates. We show the
gradual improvement in every iteration. In this section, we work on a linear state space

system. The system representation is as follows:

yr = Cg + vy, (5.24)

The state in our case is a vector z;, € R%. The measurement at time k is denoted by
yr € R. The state transition noise wy is Gaussian with A(0, Q) and the observation

noise vy, is Gaussian with AV(0, Ry). Here the state transition matrix A is also dependent
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Table 5.1
Initial Values and Noise Parameters for Toy Example

Variable Value

Initial State Value X, [11]

Initial State pdf p(X,) | M (1,0.01) for each component

Initial Parameter pdf 6 N(0.8,1/12)
Parameter Noise wy N(0,107°)
State Noise wy, N(0,e73) for each component
Measurement Noise v, N(0,e73)

on the # parameter.

A cos(f)  sin(0) (5.25)
—sin(f) cos(0)

C' matrix is chosen as:

C = [1 1} (5.26)

Initial state conditions, parameter, state and measurement noise figures of the

system are presented in Table 5.1.

5.3.1 Visualization of Smoother Estimation

In this toy example, the true value for the parameter 6 is arbitrarily chosen as
0.8. We generate one simulation from the model. From the observed data we estimate
the state by Kalman Filter (KF) and Kalman Smoother (KS). Note that since the
system is linear, EKF boils down to KF. This is true for EKS and KS, as well.

In order to better understand the performance of the smoother algorithms, we

plot the confidence region of the state estimates of Kalman Filter and Smoother. The
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confidence region for Kalman estimate is an ellipsoid. As a result, for the two dimen-
sional case it is possible to visualize the filter and smoother estimates. We plot the
ellipsoids for both the Kalman Smoother and Filter estimates. The contour graph of

the ellipsoid is expressed as:

(x—2)P Mz —2) =~ (5.27)

where T is the state estimate, P is the covariance of the estimate, v determines the

confidence region contour.

The cholesky decomposition gives us a simple transformation such that the

above equation is transformed into:

U (z - 2)

‘ 2

=7y (5.28)
where P = UTU. The solution for z can be given as:
x =&+ /U  [cos(a) sin(a)] (5.29)

where 0 < o < 271,

Note that U (z — ) is x? distributed with two degrees of freedom. For 99%

confidence region, we choose v according to the formula:
v = chi2inv(0.99, 2) (5.30)

Here chi2inv(Pr,n) is the MATLAB command for the inverse of the x? cumulative
distribution function (cdf) where the first argument (Pr) is the probability value of the

cdf and the second argument (n) is the number of degrees of freedom (in this case 2).

As can be seen in Figure 5.3.1, the ellipsoids for the smoothers are tighter. This

reflects their covariance is narrower for smoothers, which means that the estimation
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EKF/EKS Confidence Region

—EKS
—EKF

X2: Second Dimension
<

NE
[«2)
[oe]
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Xl: First Dimension

Figure 5.1 Kalman Smoother and Filter Confidence Region

of smoothers is more accurate. To further emphasize the accuracy of smoothers, in
Section 5.3.2, we provide Monte Carlo simulation results of the smoother and filter

algorithms, as well.

We note in Figure 5.3.1 most of the ellipsoids have similar shape. This is due
to the fast convergence of the covariance matrix of the state. After a few steps, the
covariance matrix converges. As a result, we have the same ellipsoid shifted just by

the means of the states.

5.3.2 Toy Example Simulation Results for State Estimate for fixed Param-

eter

In this section, we assess the performance of EKF with respect to EKS for
the linear system by running a Monte Carlo analysis. Note that for this fully linear

case, running EKF (or EKS) indeed is the same as running Kalman filter (or Kalman



48

Table 5.2
Monte Carlo State RMS Error for Kalman Filter and Smoother.

Method RMS Error

Kalman Filter 0.3264 + 8.3620x10~*
Kalman Smoother | 0.2444 + 6.4533x10~*

Smoother). We perform 100 Monte Carlo runs. For each run, the Root Mean Square
(RMS) errors for each method is calculated for comparison. The RMS error in a specific

run is defined as

N
1 .
€rms = N kz_; ||xk - xk,true||2 (531)

Here 2 is the result of the state estimation algorithm at time k which corre-
sponds to either the filtered value, 2y, for the EKF case or the smoothed value 2y x

for the EKS case, xj tr4e represents the ground-truth and ||.|| is the Euclidean Norm.

After collecting the RMS state estimation errors for each run as described in
Eq. 7.7, we calculate the sample mean and the sample standard deviation for the RMS

state estimation error across all the runs as shown in Table 5.2.

As we can see from Table 5.2, smoothing clearly improves the state estimation
performance for this known parameter case. In the next subsection, we investigate the

unknown parameter case.
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5.3.3 Toy Example Simulation Results for Parameter Estimation

In this case, we treat the parameter # as unknown. When we augment the
parameter to the state vector, then the resulting system with the augmented state
vector becomes nonlinear. This is because the parameter enters to the system in a
nonlinear fashion. In the previous case study, we observed that smoothing results in
more accurate state estimation than the filtering. Therefore, in the current case study,
we consider only the smoothing algorithms, EKS and SCKS and compare their per-
formances in terms of estimating the unknown parameter . We perform 140 Monte
Carlo runs for the comparison. In each run, the initial estimate, which is selected as the
same value for both of the algorithms, is assumed to be Gaussian distributed around
the true value 0 with a variance of 1/12. Starting from the same initial estimate, both
algorithms are run forward (i.e., filtering) and then backward (i.e., smoothing) which
accounts for one iteration. Then, in the second iteration, we continue in the same
manner, i.e., forward and then backward passes again. We repeate this procedure
for several iterations in each Monte Carlo run as in [6]. The Monte Carlo averaged
estimation results of EKS and SCKS algorithms together with the corresponding per-
formance variation (1-o upper and lower bounds) are shown in Fig. 5.2 with respect

to the number of iterations performed.

As shown in Figure 5.2, on the average, both of the algorithms converged to the
true value of the parameter 6, which is 0.8, very quickly as the number of iterations
increased. The converged values for each of the algorithms together with their corre-
sponding 1-0 bounds are listed in Table 5.3. Note that performance of both algorithms
are the same in terms of the averaged converged value, but SCKS is slightly better

than EKF in terms of the 1-o bound.

After examining performances of the algorithms on this toy example, we apply
them to our realistic problem, namely, system identification and state estimation of the
hemodynamic model. In the next section, we will see the details of the hemodynamic

model.
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Figure 5.2 The convergence of the parameter estimate.

Table 5.3
Monte Carlo Estimate for 6.

Method | True Value Estimated
EKS 0.8 0.8023 + 4.00x10~*
SCKS 0.8 0.8023 4+ 3.97x10~*
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6. SIMULATION RESULTS FOR THE HEMODYNAMIC
MODEL WITH KNOWN PARAMETERS

6.1 Findings and Contribution

We compare different state estimation techniques with the method we imple-
ment. We generate the data from the model and test the state estimation performance
of the methods. We test the validity of our approach on a synthetic data set as gen-
erated from the hemodynamic model. We compare the algorithms under a range of
different noise levels, different inputs, parameter sets and unknown initial condition.
We compare PF-EKF with the standard particle filter (PF), auxiliary particle filter
(APF), extended Kalman filter (EKF) and cubature Kalman filter (SCKS). For the
details of the APF algorithm, the reader is referred to [28].

In the Discussion section, we interpret the results. Findings and contributions

are as follows:

e Contrary to the former notion, Extended Kalman filters estimate the hidden
states better than particle filters under a wide range of noise conditions, different

inputs, parameter sets and unknown initial condition.
e The hemodynamic model is weakly nonlinear system.

e PF-EKF can offer more accurate hemodynamic state estimation than the particle
filter and auxiliary particle filters in most cases by approximating the optimal
proposal by EKF. However, due to weak-nonlinearity of the hemodynamic model,

Gaussian approximated methods are better in performance.

The initial condition, measurement and process noise statistics are listed in

Table 6.1. We did not initiate the state from a known state. We took the initial state



02

Table 6.1
Noise Statistics and Initial Values.
Variable Value
p(Xo) N(0,0.01) for each component
Measurement Noise vy, N(0,0% =e™12)

Scenario 1: wy, N(0,02 = Ate™'6) for each state component
Scenario 2: wy, N(0,02 = Ate™'?) for each state component
Scenario 3: wy, N(0,02 = Ate™8) for each state component

pdf p(Xy) as N(0,0.01). The measurement noise is in accordance with [6, 14]. The
process noise varies in a wide range, which includes the values used in the literature
[6, 14]. In order to compare the performance of the algorithms, we generated simulated
data using Eq. 3.5 to produce 100 runs for each level of noise -( Scenarios 1 to 3 in
Table 6.1). For the simulation, we assumed that for each state update, we have a
corresponding measurement. The input is first taken as in [6] as Gaussian bumps with
different amplitudes centered in the time points (10, 15, 39, 48) as shown in Figure 6.1.
The length of this input signal is 64 seconds. At is taken as 0.1 second as in [5]. A
typical hemodynamic response and simulated BOLD signal obtained from the Gaussian
bump signal is also plotted in Figures 6.2 and 6.3. To test the algorithm performances
with respect to the different inputs we also check the input for the widely used box-car

functions as can be seen in Figure 6.4.
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Figure 6.1 Neuronal Inputs as Gaussian bumps.
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Figure 6.2 Hemodynamic Variables for Gaussian bumped neuronal inputs.
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Figure 6.4 Filtering algorithms are tested for input as boxcar functions.

We tested the model inversion techniques under 3 different parameter sets as



Table 6.2

Parameter Values of the Hemodynamic Model.

%)

Parameter Description Set-1 | Set-2 | Set-3
K Rate of Signal Decay 0.8 0.8 0.65
T Hemodynamic Transit Time 1 1 1.02
Rate of Flow Dependent Elimination | 0.4 0.4 0.41
Grubb’s exponent 0.3 0.3 0.32
% Resting Oxygen Extraction Fraction 0.3 0.3 0.34
€ Neural Efficiency 0.5 0.5 0.5
Vo Resting Blood Volume Fraction 0.02 0.02 0.04
o’ Measurement Variance 0.001 | e™'2 | 12

shown in Table 6.2. The first one uses the parameter set used by Johnston et al.

[5]. They made the assertion that EKF is not robust. In this scenario, they tested

with a rather high measurement noise condition. The second parameter set uses again

their parameter set with moderate level of measurement noise condition which is in

agreement with [6, 14]. For further test the algorithms, we switch to the widely used

parameter set used in [9, 11, 12, 13, 14, 15]. These 3 sets compromise nearly all the

parameter sets used in the hemodynamic model inversion literature.

For each run, Root Mean Square (RMS) errors of the states are found. The

RMS error in a specific run is defined as follows:

where 7 is the state estimation done by the filtering algorithm.

Euclidean Norm, finally xj 4. is the true value for the state.

N
1 . 2
€rms = N Z ka - Ik,true”
k=1

||| is the

We summarize the

results for the first,second and third parameter sets with Gaussian bumps and box-car



Table 6.3
Parameter Set 1, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Gaussian Bump Type Neuronal Input.

o6

Scenario

PF-EKF

PF

APF

EKF

SCKF

Scenario 1

0.0279 £0.0116

0.0283 £0.0114

0.0282 £0.0115

0.0271 £0.0112

0.0271 +£0.0112

Scenario 2

0.0284 £0.0108

0.0284 £0.0110

0.0288 £0.0111

0.0276 £0.0108

0.0276 £0.0108

Scenario 3

0.0530 £0.0080

0.0531 £0.0079

0.0533 £0.0080

0.0513 £0.0076

0.0513 £0.0076

Table 6.4
Parameter Set 1, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Boxcar Type Neuronal Input.

Scenario

PF-EKF

PF

APF

EKF

SCKF

Scenario 1

0.0196 £0.0080

0.0199 £0.0081

0.0200 £0.0081

0.0189 £0.0076

0.0189 £0.0076

Scenario 2

0.0215 £0.0081

0.0217 £0.0081

0.0212 £0.0081

0.0207 £0.0079

0.0207 £0.0079

Scenario 3

0.0495 £0.0051

0.0495 £0.0051

0.0495 £0.0050

0.0478 £0.0049

0.0478 £0.0049

functions in Tables 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 ( Entries of these tables contain the

sample mean +/— sample standard deviation of the RMS state errors for the Monte

Carlo simulations. )

In all process noise conditions, Gaussian approximated methods performed bet-

ter than the other state estimation techniques ( PF-EKF, PF and APF). In the fMRI

literature even 100 particles were alleged to outperform [5]. We set 1000 particles,

which is 10 times more particles than the ones used in Johnston et al. [5]. We begin

with Scenario 1, which has low process noise conditions. This case was used by Havlicek

Table 6.5
Parameter Set 2, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Gaussian Bump Type Neuronal Input.

Scenario

PF-EKF

PF

APF

EKF

SCKF

Scenario 1

0.0206 £0.0086

0.0201 £0.0079

0.0201 £0.0077

0.0175 £0.0058

0.0175 £0.0058

Scenario 2

0.0212 £0.0078

0.0212 £0.0083

0.0213 £0.0081

0.0184 £0.0053

0.0185 £0.0053

Scenario 3

0.0419 £0.0050

0.0421 +£0.0050

0.0420 £0.0051

0.0398 +0.0038

0.0398 £0.0038




Table 6.6
Parameter Set 2, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKFF for Boxcar Type Neuronal Input.

o7

Scenario

PF-EKF

PF

APF

EKF

SCKF

Scenario 1

0.0145 £0.0071

0.0142 £0.0061

0.0145 £0.0061

0.0122 £0.0040

0.0122 £0.0040

Scenario 2

0.0159 £0.0057

0.0158 +0.0053

0.0159 £0.0053

0.0139 £0.0035

0.0139 £0.0034

Scenario 3

0.0397 £0.0031

0.0398 +0.0031

0.0396 £0.0030

0.0379 £0.0025

0.0379 £0.0025

Table 6.7
Parameter Set 3, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Gaussian Bump Type Neuronal Input.

Scenario

PF-EKF

PF

APF

EKF

SCKF

Scenario 1

0.0244 £0.0123

0.0237 £0.0110

0.0242 £0.0098

0.0163 £0.0055

0.0163 £0.0055

Scenario 2

0.0243 £0.0125

0.0251 £0.0115

0.0248 £0.0111

0.0178 £0.0052

0.0178 £0.0052

Scenario 3

0.0426 £0.0076

0.0431 £0.0060

0.0426 £0.0069

0.0393 £0.0038

0.0393 £0.0037

Table 6.8
Parameter Set 3, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Boxcar Type Neuronal Input.

Scenario

PF-EKF

PF

APF

EKF

SCKF

Scenario 1

0.0189 £0.0077

0.0196 £0.0086

0.0190 £0.0076

0.0137 £0.0036

0.0137 £0.0036

Scenario 2

0.0194 £0.0098

0.0186 £0.0080

0.0182 £0.0078

0.0134 £0.0037

0.0134 £0.0036

Scenario 3

0.0391 £0.0037

0.0393 £0.0037

0.0391 £0.0035

0.0366 £0.0026

0.0366 £0.0026
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et al. [6]. We increased step by step the process noise. The last scenario corresponds
to the high process noise condition used by Friston et al. [34]. The computation time
is about 420, 2.25, 2.1, 0.6 and 1.1 seconds for PF-EKF, APF, PF, EKF and SCKF,

respectively.

We want also see the performance of the algorithms by showing the errors at

each time. Errors are calculated according to the Eq. 6.2.

4

er = (tpi— )’ (6.2)

k=1
where 2, ; and xy; are the individual components of the estimated and true state values,

respectively.

We plot the log-error results of the algorithms with respect to time in Figure
6.5. In Figure 6.6 an enlarged version of the individual performances of the algorithms
can be seen. As shown in these figures, Gaussian approximated inference methods are
better than sampling based methods. We also note that all the algorithms recover the
initial high uncertainty of the state by time. Gaussian approximated methods are also

faster in this recovery stage.
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By attacking the hemodynamic model with different noise conditions, inputs,
parameter sets, and unknown initial condition, we showed that the hemodynamic sys-
tem is weakly-nonlinear. We give more details, further insights and important outcomes

of this finding in the Discussion section.

6.2 Discussion

State filtering algorithms are important in order to understand hemodynamic
responses since they are not directly observable. Also, filtering methods form the bases
for more advanced type of estimation problems, including state smoothing, parameter
estimation (system identification) and even input estimation. In this thesis, we applied
different filtering techniques used in the fMRI literature. The main finding in this
Chapter is that the hemodynamic model is a weakly nonlinear system. For nonlinear
hemodynamic models, it is known that sampling based methods can give better results
than Gaussian approximated methods. However, for the case of the hemodynamic
model, we found that the contrary is true. The important point here is in the fMRI
literature EKF was alleged to be poor in performance compared to particle filters. We
show that in this technical note, the contrary is true. This finding is important because
based on that we will suggest an advanced Kalman type algorithm for performing not
only state estimation but also hemodynamic parameter estimation. Particle filter type
algorithms are suitable where there is strong nonlinearity. For weakly nonlinear system
the posterior densities can be well approximated by Gaussian densities. This is indeed
the case for the hemodynamic model. To see this fact, we used the histograms formed
by the particles of the PF method for the 3. parameter set with box-car type input.
We chose 3 randomly points in time and plotted the histograms of the first state for the
times ¢t = 150, 500, 750 in Figures 6.7, 6.8 and 6.9. Those are the typical plots for the
other states. As can be seen from the graphs, they are well Gaussian shaped figures.
Particle Filters work especially good for multi-modal posteriors. However, we observe

that it is not the case for the hemodyamic model.
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Figure 6.7 Posterior p(z150|y1:150) formed from the particles of the 1. hemodynamic state.
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Figure 6.8 Posterior p(xs500|y1.050) formed from the particles of the 1. hemodynamic state.
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Histogram of the 1. State at time t=750 Using the Particles of PF
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Figure 6.9 Posterior p(z750|y1.750) formed from the particles of the 1. hemodynamic state.

SCKF and EKF performed closely. They both approximate the conditional pdf
p(zk|y1.6) as a Gaussian pdf. In the first 4 scenarios we used quite low particle numbers.
For Particle Filter type algorithms, for all scenarios we chose 1000 particles, which are
10 times more than the ones used by Johnston et al. [5]. In regard to SMC methods,
the choice of the proposal function is crucial, because standard particle filters can
work poor in performance since they do not use optimal proposal functions. In many
applications, standard particle filter algorithm proposed by Gordon et al. [27] is used.
The non-optimal choice of the proposal function decreases the performance of the state
estimation. The optimal importance function is ¢ = p(zg|zt_;, yx), which is difficult
to calculate. By using the EKF approximation of the optimal importance function,
improved sample diversity is achieved for most process noise conditions, however the
improvement is not huge. The reason is again weak-nonlinearity. One drawback of
PF-EKF is computational complexity. In the PF-EKF method, for every particle, a
specific Kalman Filter algorithm is run. As a result, PF-EKF is also the most time

consuming algorithm. By utilizing PF-EKF, APF and PF we show the set of particle
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filters do not outperform Gaussian approximated methods due to weakly nonlinearity

of the hemodyanmic model. Clearly, EKF and SCKF were faster than PF-EKF.

In the literature, the UKF method is also used by Hu et al. [11]. However,
the cubature Kalman filter is actually a special case of the Unscented Kalman Filter
[25]. Furthermore, the difference between the PF-EKF and SCKS was clear from the
simulation results. Also in the literature, the local linearization filter (LLF) is used.
LLF is just a special type of EKF that differs only in the discretization step used in
the prediction update [5, 9]. In LL the discretization type is the one proposed by [39].
For the discretization type, we chose the standard Euler-Maruyama method similar to
[5]. The time step was small enough to reveal the dynamics of the system. The time

step At = 0.1 was also smaller in size than the ones used by Havlicek et al. |25].

In this thesis, we did not compare PF-EKF with variational based approaches
like DEM, GF and VF proposed by Friston et al. [13, 14, 15]. Because DEM, GF and
VF perform dual estimation. They perform both hemodynamic parameter estimation
-system identification- and state estimation. In this thesis, we are restricted on the
state estimation. However, we compared our algorithm with the filter part of the SCKS
algorithm implemented by Havlicek et al. |6]. Havlicek et al. compared SCKS with
DEM and concluded that SCKS was a better implementation [6]. PF-EKF was better
in state accuracy compared to SKCF. Since SCKF was Gaussian based approximation
method, we suspected that EKF could also work satisfactorily. Actually first Riera
performed a kind of extended Kalman filter which differs in the prediction update due
to the discretization type they used [9]. However, Johnston [5] later compared EKF,
PF and LLF and concluded that EKF is not stable. We checked this assumption in
the widely used physiologically parameter regime |6, 12, 13, 14, 15] and concluded that
EKF can be a successful candidate for state estimation either. The RMS errors in
state estimation were in close proximity with SCKF suggested by Havlicek et al. [6].
Even the EKF performance always slightly better than SCKF. This was in accordance
with our expectations, since SCKF and EKF have the same basic assumption. They

approximate the conditional pdf p(zx|y:.x) with Gaussian density.
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In the hemodynamic state estimation literature, Murray and Storkey [12] worked
several SMC methods. They checked the particle filters (PF), auxiliary particle filters
(APF) and regularised particle filters (RPF) all of which can be categorized under non-
optimal partical filter methods. They performed smoothing to improve the accuracy.
In this thesis, we did not implement RPF, however we implemented both PF and APF.
In their report, in the smoother context the performance of APF and PF was similar
for Euler-Maruyama discretization. Even APF was slightly worse. In the APF method,
samples are chosen according to the one step ahead measurement data. In some non-
linear estimation problems, this method can improve the RMS error performance [26].
We had comparable results for APF and PF in our simulations. The implementation

of APF is slightly more complex compared to PF.

The proposal type of the PF method used by Johnston et al. [5] was not opti-
mal. In PF, the optimal proposal function p(zy|z,_,, yx) is approximated by p(zg|xi_,).
This makes the steps of the PF very easy to implement. However as we noted before,
using the rather complicated proposal function of PF-EKF, the performance is im-
proved. Johnston et al. used very few particles [5]. With 100 particles, they performed
the state estimation. This is quite unexpected for SMC methods for a nonlinear dy-
namical system with 4-dimensions . However we also note that Johnston et al. added
the random perturbation to the system only in the first dimension [5]. In our imple-
mentation, we added noise perturbation in all components which is in accordance with

6, 13, 14, 15].

As a further note, for multi-input neuronal activations, the hemodynamic model
is only changed in its first equation. Having k number of inputs u;(t) where i =

1,2,---  k, we modify the equation as [15]:

hy(t) = Z eui(t) — khy(t) — x(ho(t) — 1) (6.3)

=1

Here ¢; for ¢« = 1,2,--- ,k are the neuronal efficiency factors corresponding to each
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neuronal input u;(¢). Having an improved version of the filtering algorithm, we plan
to work for more sophisticated smoothing and hemodynamic parameter estimation

problems in future work.
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7. RESULTS FOR THE HEMODYNAMIC MODEL WITH
UNKNOWN PARAMETERS - JOINT STATE AND
PARAMETER ESTIMATION

In this Chapter, we discuss the various aspects of the IEKS method in detail. In
the first section, we work the filter, smoother and iterative smoother parts for state and
parameter estimation using the simulated data. Extensive comparison is made with
respect to the currently best-known hemodynamic model inversion technique called
SCKS [6]. In the subsequent section, more insight is given to the parameters. We
observe the changes in the BOLD signal by changing the parameters in an interval. In
the last section, having ground-truth validated the TEKS method, we turn our focus to
the application of the IEKS method for a rather complicated multi-input driven BOLD
data.

7.1 Contribution: TEKS as an Efficient Hemodynamic Joint

State and Parameter Estimator

In this section, we perform Monte Carlo simulations under five different scenarios
with different process and measurement noise conditions. The ground-truth values
for all the parameters of the hemodynamic model defined in Equations (3.23), (3.25)
are taken as shown in Table 6.2 and 3.2 which is in accordance with [34]. For each
scenario, 100 Monte Carlo runs are performed. In the first set of scenarios 1, 2, and
3, we fix the measurement noise standard deviation to ¢, = ¢~ % as in [6] and change
process noise levels. In scenario 1, the process noise standard deviation is as in [6] (i.e.,
Ow = \/Kte_g). In scenarios 2 and 3, we try more challenging process noise conditions
with 0, = VAte 8 and o,, = VAte . In the second set of scenarios, 3, 4, and 5, we fix
the process noise standard deviation to o, = v/Ate™, which is the value in scenario 3,
and change the measurement noise levels. We increase the measurement noise variance

to 02 = e and 02 = 70 for Scenarios 4 and 5, respectively.
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Table 7.1
Noise Statistics and Initial Values.

Variable Value
Initial State Value X, [0000]
Initial State pdf N(0,0.01) for each component
Initial Parameter pdf N (0446, 1/12) for each component
Parameter Noise wy N(0,107°) for each component
Scenario 1: wy, vy | N(0,02 = Ate%) for each state component, (0,02 = e~12)
Scenario 2: wy, vy | N(0,02 = Ate™'?) for each state component, (0,02 = e~12)

Scenario 3: wy, vy = Ate=®) for each state component, V(0,02 = ¢~12)

>
(3

= Ate=®) for each state component, (0,02 = e 11)
2

= ¢10)

N(0
Scenario 4: wy, vy N0, o
N(0

Scenario 5: wyg, Vg

,02 = Ate™®) for each state component, N (0,

v

A priori information about the states are taken as shown in Table 7.1 similar to

[6]. The state components are all initialized with 0.

In the simulation, for some rare cases, we observed that the second state x5 can
go to —oo. This corresponds to 0 for the original untransformed variable hy. Since the
transformation is of the exponential type, we set a lower limit 25 = —4 (hy = 0.0183)
for each time step at the filtering step of EKS. The same limit is also put for the
other variables. The same thing is also done for PF. PF is even more prone to diverge
these limits. The reason is the following: EKF tracks the mean of the state, which is
expected to be in the stable region. But the PF tries to represent the conditional pdf
p(zk|y1.k), including the extreme conditions also. For that reason, they are more prone

to diverge for those particles. The same limits are also put for SCKS.

7.1.1 Comparison of the Filtering Algorithms

In this section, we want to show that the commonly held view that EKF is
not an appropriate filtering algorithm is not right. Johnston et al. [5| compared EKF
state estimation with particle filter and concluded that PF outperforms EKF', and it is

stated that EKF diverges most of the time, and as a result, it is not robust and poor in
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Table 7.2
RMS State Errors: Sample Mean and Standard Deviation.

Scenario Number EKF PF EKS
Scenario 1 0.0070 = 0.0031 | 0.0075 % 0.0030 | 0.0066 + 0.0029
Scenario 2 0.0095 % 0.0026 | 0.0098 + 0.0026 | 0.0092 =+ 0.0023
Scenario 3 0.0408 + 0.0034 | 0.0411 % 0.0035 | 0.0344 = 0.0028
Scenario 4 0.0433 + 0.0041 | 0.0434 + 0.0042 | 0.0381 + 0.0036
Scenario 5 0.0454 + 0.0051 | 0.0455 + 0.0050 | 0.0423 + 0.0048

performance. We see in this section that, on the contrary, not only state estimation but
also joint estimation of parameter and state is robust and performs better than PF. In
this subsection, we first compare the EKF and PF state estimation and show that EKF
performs better. In Table 7.2, the Monte Carlo results of EKF with PF are compared.
In all scenarios, EKF performs better than PF, and it is robust. The particle number
is chosen as 500, which is fivefold more than the case where the original comparison

was made [5].

7.1.2 Performance Improvement by EKS over EKF

In the fMRI state estimation literature, extended Kalman-type estimation al-
gorithms are only used in the filtering sense [5, 9]. Even the parameter estimation
algorithms which rested on extended Kalman filter algorithms, rely on the filtering
algorithm [9]. In this subsection, assuming that we have known and fixed parameters,
our aim is to estimate the hidden hemodynamic states by using extended Kalman filter
and smoother algorithms. We show the performance improvement in Table 7.2. We
summarize the EKF and EKS state estimation errors in RMS. For high process and

measurement noise conditions, the improvement is more apparent.
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7.1.3 Joint Parameter and State Estimation with Iterative EKS compared

EKS

A priori information about the parameters are taken as shown in Table 7.1
similar to [6]. The state components are all initialized with 0. Note that the initial
values of all the parameters are assumed to be Gaussian distributed around their true
values with a variance of 1/12 as in [6]. In the literature, Riera [9] used extended
Kalman filter with the discretization proposed by Jimenez et al. [10] without any
iteration. This is the standart usage of EKF and EKS. For that reason, in this section
we also compare the EKS state RMS error with IEKS utilized in this thesis. Figure
7.1.3 also shows the importance of the iteration. This figure is a typical representative
for showing the decrease of RMS state error with respect to the iteration number.
The example plot is a particular MC mean estimate for Scenario 2. By increasing
the iteration number, the RMS state errors decrease substantially. Obviously, this
performance shows that iterative EKS outperforms the direct usage of EKS without

iteration.
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Figure 7.1 IEKS and Importance of Iteration.

7.1.4 Joint Parameter and State Estimation with Iterative

We also summarized the Monte Carlo parameter estimation results of the al-
gorithms TEKS and iterative SCKS in Tables 7.3, 7.4, and 7.5. The true value for
the parameters were k = 0.65, 7 = 1.0204 and x = 0.41. In all five different pro-
cess/measurement noise levels, for all parameter values, the accuracy of the estimation
of EKS was better than that of SCKS. Only in one case were they equal. We note that
the bias of the EKS Monte Carlo estimate is less than the bias of the SCKS case. Sim-
ilarly, for the state estimation, the error in RMS is summarized in Table 7.6. Although
the difference was not big, for all cases, IEKS was better than the SCKS method.

For all scenarios, Figures 7.2, 7.3, 7.4, 7.7, 7.8, 7.9, 7.12, 7.13, 7.14, 7.17, 7.18,
7.19, 7.22, 7.23 and 7.24 show the gradual parameter convergence of the algorithms
with respect to the iteration number. Figures 7.5, 7.6, 7.10, 7.11, 7.15, 7.16, 7.20, 7.21,
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Table 7.3
Simulation Results for the Parameter x Estimates.
Scenario | EKS « Estimate | SCKS « Estimate | EKS « Bias | SCKS x Bias
Scenario 1 || 0.6489 + 0.0282 0.6511 % 0.0280 0.0011 0.0011
Scenario 2 | 0.6494 £ 0.0289 0.6517 £+ 0.0288 0.0006 0.0017
Scenario 3 || 0.6545 £ 0.0556 0.6580 % 0.0556 0.0045 0.0080
Scenario 4 || 0.6561 4 0.0627 0.6588 + 0.0630 0.0061 0.0088
Scenario 5 || 0.6560 £ 0.0748 0.6571 4+ 0.0752 0.0060 0.0071
Table 7.4
Simulation Results for the Parameter 7 Estimates.
Scenario | EKS 7 Estimate | SCKS 7 Estimate | EKS 7 Bias | SCKS 7 Bias
Scenario 1 || 1.0219 + 0.0739 1.0282 £ 0.0740 0.0015 0.0078
Scenario 2 | 1.0224 4+ 0.0739 1.0288 £ 0.0740 0.0020 0.0084
Scenario 3 || 1.0372 + 0.1327 1.0460 £ 0.1335 0.0168 0.0256
Scenario 4 | 1.0492 4+ 0.1665 1.0578 £ 0.1679 0.0288 0.0374
Scenario 5 | 1.0721 + 0.2266 1.0791 £ 0.2277 0.0517 0.0587

7.25 and 7.26 visualize the estimation bounds for parameter and state RMS errors.

Furthermore, IEKS was much faster than SCKS. Both algorithms are robust

under different measurement noise conditions. As expected, by increasing the mea-

surement noise, the gradual decrease of the performance of the estimates is observed.

The bias and sample variance estimates are increased by increasing the process and

measurement noise variance.
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Table 7.5
Simulation Results for the Parameter y Estimates.
Scenario | EKS y Estimate | SCKS y Estimate | EKS y Bias | SCKS yx Bias
Scenario 1 || 0.4116 £ 0.0092 0.4131 + 0.0093 0.0016 0.0031
Scenario 2 0.4111 4+ 0.0092 0.4127 4+ 0.0092 0.0011 0.0027
Scenario 3 || 0.4100 £ 0.0164 0.4116 + 0.0165 0.0000 0.0016
Scenario 4 | 0.4112 £ 0.0182 0.4136 + 0.0184 0.0012 0.0036
Scenario 5 0.4124 4+ 0.0219 0.4158 4+ 0.0221 0.0024 0.0058

Table 7.6

RMS State Errors: Sample Mean and Standard Deviation.

Scenario Number

EKS

SCKS

Scenario 1 0.0128 £ 0.0038 | 0.0130% 0.0039
Scenario 2 0.0140 £ 0.0035 | 0.0143£ 0.0036
Scenario 3 0.0374 £ 0.0046 | 0.0376L 0.0047
Scenario 4 0.0418 £ 0.0053 | 0.0420+ 0.0054

Scenario 5

0.0483 £ 0.0071

0.0486+ 0.0074
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Figure 7.18 The convergence of the parameter 7 estimate: Scenario 4.
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Figure 7.19 The convergence of the parameter x estimate: Scenario 4.
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Figure 7.22 The convergence of the parameter s estimate: Scenario 5.
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7.1.5 Discussion

In this thesis, as the second main contribution, we worked on the joint parameter
and state estimation of the hemodynamic nonlinear dynamic system representation. As
pointed earlier, the blood oxygen level dependent (BOLD) signal is a measure for the
localized hemodynamic response, which is observed after neuronal activation [5]. This
response is a nonlinear function of the blood flow and the blood oxygen content [6].
The general shape of the BOLD response can be represented as a mixture of gamma
functions [40]|. Alternatively, the total system representing the hemodynamic response
can be modeled by nonlinear differential equations [1, 2, 3. In the first approach, where
the BOLD signal is represented as the sum of gamma functions, the method called
generalized linear model (GLM) is utilized for analysis of the BOLD signal. However,
we followed in this thesis the second main approach which based on the stochastic
differential modeling of the hemodynamic system. In this approach, people worked on

advanced model inversion techniques instead of GLM [5, 6, 8, 9, 11, 13, 14, 15]. Our
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algorithms are classified under the same category.

The waveforms of the hemodynamic variables change from subject to subject,
even in different times during the day and different regions of the brain [4], [7]. Model
inversion techniques which perform joint parameter and state estimation are capable
to detect these differences by having different estimated parameter sets. The TEKS

method is one of the few model inversion techniques which can be used for that purpose.

In the fMRI model inversion literature, in one of the keystone papers [5], it was
asserted that EKF is not a robust method for state estimation, and its performance was
poor compared with PF. The assertion that EKFE is poorer in performance was repeated
in the fMRI literature in several landmark papers without examining specifically for
the hemodynamic modeling case [6, 14]. In this thesis, we examined EKF for a variety
of noise conditions and concluded that this is not the case. It even performed better
than particle filter. We take fivefold more particles than the study in [5], which makes
that assertion. Standard particle filters were alleged to perform better than the other
hemodynamic state estimation algorithms. In this thesis, we concluded that, on the
contrary, EKF performed better than the other filtering algorithms. The reason is
that standard particle filters use a nonoptimal proposal function, which degrades the
performance. There is still room for particle filters, which may use more sophisticated
proposal functions. The first contribution PF-EKF used this fact and resulted in more
accurate state estimation than PF, APF, EKF and SCKF under known parameter

condition.

In this thesis, the importance of the smoothing for both the hemodynamic state
and the parameter estimation is emphasized. To our knowledge extended Kalman-
type algorithms in the fMRI literature have not been used with smoothing so far [5, 9].
The extended Kalman filter is modified by incorporating the smoother. For fixed
hemodynamic parameters, we checked the state estimation improvement for various
noise conditions. Especially for higher conditions, the improvement was more apparent

compared to SCKS.
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Furthermore, in the standard application of the filtering and smoothing, EKF
and EKS are performed only one time. By iteratively calling EKF and EKS after each
new parameter estimate, we noticed the huge improvement over non-iterative usage.
This improvement is shown in Figure 7.1.3. As a result, EKS is just the special case
of IEKS with just one iteration. Like Havlicek et al. |6] and Hu et al. [11], we treated
the parameters as time-varying variables by adding artificial dynamics. We iterated
the algorithm until the IEKS algorithm converged. The improvement of the parameter
estimation of the hemodynamic model with respect to the iteration number is shown
under a variety of noise conditions in Figures 7.2, 7.3, 7.4, 7.7, 7.8, 7.9, 7.12, 7.13,
7.14, 717, 7.18, 7.19, 7.22, 7.23 and 7.24 . Havlicek et al. compared the iterative
usage of SCKS with DEM and concluded that SCKS is more accurate in their pa-
per [6]. In this report, IEKS is compared with iterative SCKS under different noise
conditions. The first scenario we used has the same noise conditions as in [6]. This
model has a very low process noise covariance. Even in this condition, our method was
more accurate for both the state and the parameter estimation. Overall, both methods
were good. For low process and measurement noise, it is quite reasonable to approx-
imate the densities by Gaussian density, because the system is almost deterministic.
As a result, we expected that EKS and SCKS perform well. However, in nonlinear
systems, even the additive noise is Gaussian; the conditional densities p(xg|y1.,) and
P(Tg+1|y1.x) actually deviate from the Gaussian assumption. The higher the covariances
of the noises, the more severe these conditional densities deviate from the Gaussian
assumption. Although this is the case, for the hemodynamic model, Gaussian approx-
imated approaches worked quite well. We tested the algorithms under five different
process/measurement noise conditions. IEKS was more accurate than iterative SCKS

for both parameter and state estimation for all cases.

Besides the ease of implementation of EKS, it was also much faster than SCKS.

EKS is around 2.3 times faster than SCKS.

In the fMRI model inversion literature, Riera et al. [9] used a kind of extended
Kalman filter where the discretization was not based on the Euler-Maruyama method.

They used the method proposed by Jimenez et al. [10]. Hu et al., on the other hand,
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used the unscented Kalman filter (UKF) [22] for the estimation of the hemodynamic
model states and parameters [11]. Riera et al. [9] and Hu et al. [11]| used these
techniques in a forward pass manner without smoothing. The early attempts in the
fMRI model inversion literature disregarded the state noise. For example, in [1] Friston
et al. models the input and the output relation via Volterra kernels. Later, Friston
used a Bayesian estimation technique [8] to find the posterior of the parameters again
under zero state noise assumption. Later, Friston et al. suggested advanced techniques
based on variational filtering in which he also included the nonzero state noises in
the model [13, 14, 15]. Variational filtering techniques assume factorization of the
parameters and states. Dynamic expectation maximization (DEM) is the most popular
of them. As Havlicek et al. pointed out, DEM also works in the forward pass manner
[6]. Johnston et al. [5] used particle filters, without using any smoothing. However,
Murray and Storkey [12] used particle smoothers. Most recently, Havlicek et al. [6] used
the square-root cubature Kalman smoother (SCKS) and obtained quite a remarkable
success compared with DEM under certain noise conditions. Most of the signal analysis
techniques in the fMRI literature can be regarded as a kind of GGaussian approximated

model inversion technique [6, 9, 11]. IEKS is included in the same category.

So overall, EKF is not an unreliable model inversion method. It is better than
the PF algortihm claimed as the most successful one in [5]. The iterative EKS is
substantially more accurate than the formerly used EKF-type algorithms in the fMRI
model inversion literature. EKS is robust under a wide range of noise conditions.
IEKS is faster and has lower parameter bias and more accurate state estimation than
the SCKS method, which seems to work best among the current fMRI model inversion
methods [6] for all the noise levels we worked. We discuss the features of IEKS more

in the last section when utilizing IEKS for real BOLD data.

7.1.5.1 Parameter Sweep and the BOLD Signal. In this section we want to

observe the changes in the hemodynamic state variables and the BOLD signal with
respect to the parameter changes. We let the parameter values as in Tables 6.2 and

3.2. We sweep the parameters for x in the interval [0.35 1.05], 7 in the interval [0.32
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2.32|, x in the interval [0.21 1.01], € in the interval [0.01 0.51|. Figures 7.27, 7.28, 7.29

and 7.30 the BOLD signal change with respect to the parameters x, 7, x, €, respectively.

BOLD Signal

BOLD Signal vs time
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Figure 7.27 BOLD signal change with respect to x change. « is changed over the interval [0.35;1.05].
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BOLD Signal vs time
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Figure 7.28 BOLD signal change with respect to 7 change. 7 is changed over the interval [0.32;2.32].
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Figure 7.29 BOLD signal change with respect to x change. x is changed over the interval [0.21;1.01].
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Figure 7.30 BOLD signal change with respect to e change. ¢ is changed over the interval [0.01;0.51].

7.2 Real Data and the IEKS method

7.2.1 Background Information: Test Setup and BOLD Data

In this section, we want to show the validity of the IEKS method on a real BOLD
data. This data was also used by Friston et al. to show the practical applicability of
their model inversion methods DEM, VF and GF [13, 14, 15] !

The BOLD data was collected from the motion sensitive area V5. During the
test, the subject was exposed to 5 different conditions. The first one was to allow for
magnetic saturation effects [13, 14, 15]. In the second one called "Fixation", subject
was viewing a fixation point in the screen. In the third one called "Attention", subject

was viewing 250 dots. Those dots were moving radially by 4.7° from the center. At the

!'We thank Professor Karl Friston to give consent us to use BOLD data in our researches.
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Figure 7.31 Real BOLD data is collected from the motion sensitive area V5. The sampling time
TR is 3.22 sec. The first 256 samples were used for model inversion.

same time, the subject was supposed to detect the changes in radial velocity [13, 14, 15].
In the fourth one called "No Attention", the person was just viewing the moving dots.
In the fifth one, the person was supposed to view the stationary points. During the
entire test, the subject was exposed to the fixation and visual stimulus conditions

alternatively.

Friston et al.[13, 14, 15] modeled these five different conditions as a combination
of 3 different neuronal inputs . The first one is visual stimulus, the second one is
motion stimulus and the third one is the attention stimulus represented by w, us and
us, respectively. Each neuronal input is modeled by boxcar functions. For example
for the third condition "Attention", in those time instants uq, us and us have all the
value 1. The reason is that in the "Attention" condition the person is supposed to
view, track the motion and shall attend the changes in radial velocities [13, 14, 15]. In
the "No attention" condition wuy, us and usz are 1, 1 and 0, respectively. The reason
is that in this condition the person views, tracks the motion but there is nothing for

attention. In the fifth condition uq, us and uz are 1, 0 and 0. The reason is that there
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is visual stimulus, but the dots are not moving and there is nothing for the attention.
Similarly, in the "Fixation" condition u;, us and ugz are all 0. One further note is that
Friston et al. [13, 14, 15] have the real BOLD signal with DC value 0 and remove the
DC values from wuy, us and us . As a result, they used the neuronal input sequences

depicted in Figure 7.32 [13, 14, 15].

Neuronal Input vs. time
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Figure 7.32 In this setup, the person was exposed to 3 different neuronal inputs. They are Vision,
Motion and Attention. Those neuronal inputs are modeled as boxcar functions. During the test, the
person was subject to 5 different conditions. Those are Saturation, Fixation, Attention, No Attention
and Motion View. Depending on the condition, for each neuronal input, we have the value of either
1 or 0. Following Friston et al. [13, 14, 15], DC values of the inputs are removed.

7.2.2 Extended Hemodynamic Model for Multi-Input System

Since we have in this setup a rather complicated multi-input system, we extend
the nonlinear hemodynamic system to the following nonlinear differential equation

system.
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Table 7.7
Noise Statistics and Initial Values.

Variable Value
Initial State Value Xg [0000]
Initial State pdf N(0,0.01) for each component
Initial Parameter pdf N(0,1/12) for €y, €3, €3

Initial Parameter pdf | A(0.65,1/12), N'(1.02,1/12),N(0.41,1/12) for &, T, x respectively

Parameter Noise wy N (0, At1078) for each component
Process Noise: wy, N(0,0% = Ate™®) for each state component
Measurement Noise: vy, N(0,02 = e 1?)
hy(t) = eyus(t) + exus(t) + esus(t) — khy(t) — x(ho(t) — 1) (7.1)
ha(t) = 7(ha(t) — F(ha(1))) (7.3)
ha(t)

ha(t) = 7(ha(t) E(ha(t)) — F(hs(t))

Here €1, €2 and €3 are the neuronal efficiency factors for the neuronal inputs
uy, uy and ug respectively. In this setup €, €5 and €3 give information how much the
selected brain region is sensitive to the vision input u;, to motion input us and to

attention input ug, respectively.
In order to have a best estimate for the parameter set 0 = [e1, €9, €3, k, T, x|. We

performed a Monte Carlo simulation and began with different initial parameter sets.

The initial parameter set and noise conditions are chosen according to Table 7.7.

7.2.3 Results: IEKS Model Inversion

In this section, we apply the IEKS method to the BOLD data. We perform

Monte Carlo simulation with 100 runs to estimate the parameters. The initial param-
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eter set 6 = [ey, €9, €3, K, T, x| is chosen according to the prior statistics given in Table
7.7. We iterate until the algorithm converges. The TEKS algorithm converged to 2
values which are global and local optima. We denote the two parameter sets as ¢, and

0.

6, = [0.1024,0.2102,0.0175,0.7285, 0.4981, 0.6460] (7.5)

6, = [0.0329,0.0776,0.0091, 0.6349, 2.2990, 0.2381] (7.6)

When we note the neuronal efficiency factors €1, €5 and €3, we observe close resemblance
of the converged sequences to the ones reported by Friston et al. [13, 14, 15|. Both 6,
and 6; shows the neuronal activation most for e which corresponds for the "Motion"
condition. Somewhat for ¢; which corresponds to the "Vision" condition and almost

nothing for "Attention" condition. The difference is in the strength.

For each simulation and at every iteration, RMS error in the BOLD signal

prediction is evaluated according to the formula.

N
1 N 2
k=1
where y; and vy}, is the real and predicted BOLD signal, respectively.

RMS errors for global optimum value are lower than the ones for local opti-
mum. Furthermore, at every iteration, the global optimum RMS values are improved,
whereas the local optimum RMS errors are getting worse. The parameter estimates
which converge to global optima and local optima are shown in Figures 7.33 and 7.35.

Similarly, the RMS errors in prediction can be seen in Figures 7.34 and 7.36.
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Parameter Estimate vs Iteration Number, Global Optimum Case
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Figure 7.33 The simulations which converge to global optima 6,. Specifically, we estimate the
parameter set 6 = [e1, €2, €3, K, T, x| which converged to the global optima 6.

RMS Error vs Iteration Number, Global Optimum Case
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Figure 7.34 The simulations which converge to global optima. For every iteration, the RMS error
of the prediction is shown. At every step, the RMS errors are decreasing. After around 25 iterations,
the algorithm converges.
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Parameter Estimate vs Iteration Number, Local Optimum Case
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Figure 7.35 The simulations which converge to local optima. Specifically, we estimate the parameter

set 0 = [61,62,
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The simulations which converge to local optima. For every iteration, the RMS error of
is shown. At every step, the RMS errors are increasing. After around 200 iterations,
converges.
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7.2.4 Discussion

The IEKS method converged to the parameter set 6,. When we check to which
input the selected region is most sensitive, then we observe that e is, as expected,
significantly bigger than €¢; and e3. This result is in close agreement with Friston et
al. [13]. They used DEM for model inversion. As here, they have relatively high e,
estimated region. We also visualize the results in Figure 7.37. Almost nothing for €5 for

"Attention" case. We have the similar moderate result for €5 for "Vision" condition.

Global Optimum, Parameter Estimates
0.25 ‘

0.2

0.15

0.1

Neuronal Efficieny Factors

0.05

2
1:Vision, 2: Motion, 3: Attention Inputs

Figure 7.37 The estimated neuronal efficiency factors €1, €5, €3 are shown. These factors are associ-
ated with neuronal inputs "Vision" u;, "Motion" us and "Attention" uz. €5 gives information about
how much the selected brain region is responsive to the motion input. The selected region was the
motion sensitive area V5. The results are very similar to the work of Friston et al. [13].

Interestingly, for the local converged sequence, we have similar estimates to
Friston et al. [15] where they used GF algorithm. Their estimates for the neuronal

efficiency coefficients €y, €5, €3 are in close agreement with the ones for 6;.

One note to our observations is we have multi-modal convergence. In Section

7.1.5.1, we plotted the BOLD response changes with respect to the parameter changes.
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When one begins with an arbitrary set of # value then the first predicted BOLD re-
sponse is quite different from the real one. The amplitude of the response is changed
by either changing € or x value. Assuming the first predicted BOLD response is low in
amplitude, in order to decrease the error, the most reasonable change is either having
higher € or lower y value. This is exactly seen in the difference of the 6, and 60, val-
ues. For the local optima 6;, the low strength in the ¢ parameters are compensated by
the low x value. According to our observation, the methods of Friston et al. [13, 15]

converged either to the local or global optima depending on their initial condition.

DEM, VF and GF of Friston et al. [13, 14, 15] rest on a prior pdf for the
parameters. They impose some predefined pdf with some prior mean and variance
statistics. For that reason, we think that the algorithm may be more dependent on the
initial estimate. For testing this, we also initialized the 6 value to the prior means of
Friston et al. [15] with 6§ = [0,0,0,1.2,2.14,0.31]. With this initial parameter set 6, we

ended as expected to the local optima which is in accordance with GF result.

Now, we turn our focus to the importance of the parameter variance to see more

insight of the IEKS algorithm.

7.2.4.1 Parameter Variance and Convergence. When applying IEKS, we chose

the parameter variance as N'(0, At107®) for each parameter. We should note that we

treat the parameters as artificially varying variables with small enough steps.

Or11 = O 1 + Wi (7.8

Ory12 = Opo + Wi (7.9

9k+l7p = (9]%0 + Wi p (7.11

Having small variance is important. When the algorithm converges, we prefer a rather
fixed value throughout the time index. For the converged parameter sequence, the end

result of the IEKS algorithm looks like in Figure 7.38.
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Figure 7.38 The importance of the parameter variance. Plots are taken from the converged global
optimum 6. We chose the variance small enough (c2 = Ate™®) to ensure fixed value for parameter
estimate throughout the time index. As can be seen from the graph the parameter is a rather fixed
value as desired.

Let us see what happens if we increase the parameter variance. We performed
again Monte Carlo simulation. We chose, in this case, perturbation as N (0, At107%).
Now, there is an interesting fact here. We have only a single optimum. All the param-
eters converge to the same 6 = [0.0055,0.2452,0.0459, 0.7643,0.4735,0.7320]. Figures
7.39 and 7.40 show the convergence of the runs with different initial conditions. One
thing we note is that the convergence speed is increased. In less than 15 iteration

number, the algorithm converged.
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Parameter Estimate vs Iteration Number, Large Parameter Variance
2 \ \ \ \ \ \ \ \ \

05 i i i i i i i i i
0 5 10 15 20 25 30 35 40 45 50

Iteration number

.39 The simulations which converge to global optima 6,. This time, the parameter variance

is increased to 02 = Ate~%. Specifically, we estimate the parameter set 0 = [e1, €2, €3, K, T, X]

RMS Error

RMS Error vs Iteration Number, Large Parameter Variance
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Figure 7.40 The simulations which converge to global optima. This time, the parameter variance
is increased to 02, = Ate 5. For every iteration, the RMS error of the prediction is shown. At every

step, the

RMS errors are decreasing. After around 25 iterations, the algorithm converges.
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We have the following important observation. Having increased parameter vari-
ance seems to force the IEKS method to search in a wider parameter region, which
eased IEKS to escape from the local optima. However, this is at the cost of loosing the
precision. To see this fact, we also plot the parameter estimates with respect to the
time index. Figure 7.41 shows the fluctuation of the parameter estimate around the

global optima.

Parameter Estimate vs time
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Figure 7.41 Importance of the parameter variance. This time, parameter variance increased to
the value At107%. We run the IEKS algorithm until convergence. For the converged 6, we plot the
parameters with respect to the time index. There is only one optima, but we have lost the fixedness
in time. The parameters fluctuate around the global optima point.

Although we solved the parameter identification problem in the former section
completely, in the next subsection we will perform an interesting refinement to the

algorithm.

7.2.4.2 1EKS Switched Parameter Variance. In nonlinear systems, it is quite

often that there exists multi-modal optima. In our case, for low parameter noise, IEKS
converged also to local optima. By performing multiple runs we could identify the

global optimum. We verified that the converged one has also fixed value through the
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time index. One other observation was having high parameter noise enables for the
IEKS method to search in a wider parameter regime. As a result, IEKS could escape
the local optima. However, when IEKS converges then the parameter is not fixed as
desired. It fluctuates around the global optima. At this point, we suggest a very simple
modification to the algorithm. First, begin with the high parameter noise, subsequently
switch to the low parameter noise. We performed this switch at the iteration number

10. As a result, we have a very nice result which is shown in Figure 7.42

Parameter Estimate vs Iteration Number, Global Optimum Case
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Figure 7.42 Convergence of the parameters when applying the switched parameter variance. First,
IEKS begins with the high parameter noise (02, = Ate=6). After the iteration number 10, we have

w
the parameter noise variance as (02, = Ate~®). This way, IEKS converged to the same global optima

as in the low parameter variance case. There is only a single optimum. Furthermore, IEKS converged
faster.

This way, our algorithm converged to the same global optima as in the low
parameter noise condition for all initial conditions. There is no more local optima.
At the switch time, we see the further improvement in the estimation. As a result,
in less than 15 iteration numbers, IEKS method converged to the true global optima

irrespective of the initial condition.
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7.2.4.3 Estimated Hemodynamic Variables. At this point, we will check the

estimated hemodynamic variables at the global optima of the estimated parameter
set. Following Friston et al. and Havlicek et al. [6, 13, 14, 15|, we plot the signal hy
and the log-transformed hemodynamic variables blood flow hs, blood venus volume hg
and blood deoxyhemoglobin content hy . The result is shown in Figure 7.43. During
stimulus instances, an increased blood flow is observed. Subsequently, blood venus
volume is increased. At first, initial dip of deoxyhemoglobin is also observed. Those

results are in agreement with the theory and results of Friston et al. [13, 14, 15].

Estimated Hemodynamic Variables vs time
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Figure 7.43 The estimated hemodynamic variables which converged at the global optima 6,. The
graph is in accordance with the theory and the previous results in the fMRI literature. During stimulus
instances, an increased blood flow is observed. Subsequent the change in the increased blood flow,
blood venus volume is increased and the initial dip of deoxyhemoglobin content is observed.

By using the predicted hemodynamic variables, we calculated the predicted

response and plotted the prediction error in Figure 7.44.
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Real BOLD and Predicted BOLD Signal vs time
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Figure 7.44 The prediction error in the BOLD signal. Here, sampling interval is At = 3.22 sec. The
real BOLD signal is plotted by the blue color, whereas the prediction error is plotted by the red color.
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8. CONCLUSION

In this thesis, we worked on the nonlinear state estimation of the hemodynamic
model using the Friston-Buxton model. We worked for both known and unknown pa-
rameter case. For the known parameter case, we showed that hemodynamic models are
suitable for Extended Kalman filter algorithms. We saw that Gaussian approximated
inference methods were better than particle filter type algorithms for the hemody-
namic state estimation. Standard particle filters use non-optimal proposal function
which degrades the accuracy of the method. We also implemented particle filter with
EKF approximated optimal proposal function (PF-EKF). By using the EKF approxi-
mation of the optimal importance function, improved sample diversity is achieved for
most process noise conditions, however the improvement is not huge. Particle filter
type algorithms like APF, PF, PF-EKF were not better than Gaussian approximated
inference methods. This was the contrary to the former belief that EKF is poor in
performance. We checked this assumption under a wide range of noise conditions,
different inputs, nearly all parameter sets used in the literature and unknown initial
condition. We also checked the histograms of the posteriors of the particle filters and

concluded that the hemodynamic model is weakly nonlinear.

The second part of the thesis was the unknown parameter case. In this thesis,
the iterative extended Kalman smoother method was implemented for the fMRI model
inversion for both hemodynamic state and parameter estimation. Current extended
Kalman-type fMRI model inversion algorithms work only in the filtering sense. By
utilizing smoothers, we noticed improvement for the hemodynamic state estimation
in a wide range of noise conditions. The joint state and parameter estimation of
the hemodynamic model was performed by treating the parameters as time-varying
variables. The joint estimation of the parameters and states was robust by using
the iterative EKS algorithm. The IEKS algorithm was compared with EKS and the
iterative square-root cubature Kalman smoother algorithm for different process and

measurement noise conditions. In all conditions, IEKS outperformed EKS. Especially
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in the higher noise conditions, the improvement was more profound. IEKS was also
more accurate than the iterative SCKS method in terms of lower parameter bias and
lower state RMS error. EKS was also more than twice faster than SCKS. Since SCKS
is known to be the most accurate model inversion technique, the IEKS algorithm is a

powerful and robust alternative to the former fMRI model inversion techniques.

We also tested IEKS for a rather complicated multi-input hemodynamic model.
The dataset we work was used in a variety of works in the fMRI literature [13, 14, 15].
From the real BOLD signal, TEKS successfully estimated hemodynamic variables and
parameters. Those results were in agreement with the literature. In nonlinear esti-
mation problems, there exits quite often multi-modal optimum values. We observed
that former model inversion algorithms stuck in local optima in some cases. We an-
alyzed the TEKS method in depth by studying different parameter variances. By a
small refinement of the algorithm we were able to escape from the local optima either.
The refinement was using different parameter variances in different iteration numbers.
First, by using high parameter variance IEKS method traces in a rather high parameter
regime, in the successive steps the variance is decreased to converge to global optima
and to have rather fixed parameter value throughout the time index. As a result, IEKS

was both successful in theory and application.

8.1 Future Work

The first contribution of the thesis was PF-EKF, which was an improved filtering
method compared to the techniques used in the fMRI literature. We plan to work on
further improving the hemodynamic state estimation by utilizing smoothing techniques.
Smoothing of the hemodynamic variables is not much evaluated in the fMRI literature
compared to the filtering methods. We want to make a thorough analysis of the possible
hemodynamic smoothing techniques. We want to suggest a new implementation like
we did in the filtering problem. For the second contribution, having ground-truth
validated the TEKS method and its application to the real data, we want also work

on the functional near infrared spectroscopy (fNIRS) model inversion. fNIRS and
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fMRI have the same hemodynamic state transition function but differ in measurement
function. For that reason we hope that our method is also applicable for fNIRS systems.
We want also look for the application opportunities of IEKS for Brain Machine Interface

(BMI) and clinical applications.
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APPENDIX A.

A.1 Proof of Kalman Filter

Here, a short sketch of the proof of the Kalman filter is given. We will use two

properties [41].

Property 1:
For a jointly Gaussian pdf given by:

= N( , ) (A.1)

Here pux and py are the means of the individual components of the 2-dimensional

vector . Xx, Yxy, Yyx and Xy are the individual components of the covariance
Y
matrix of the 2-dimensional vector . The conditional statistics of p(X|Y) is given
Y
as follows:
p(X]Y) = N(puxyy, Xxpy) (A.2)

where pxy and Xxy is given by:

pxpy = px + xy Iy (Y — py) (A.3)
Yxy = Zx — Sxv Sy Syx (A.4)
Property 2:
k| k—1 Yiklk—1 Zk|k710T

P(Tr, Y| yr—1) = N( (A.5)

Cijk—1 CXjk—1 Czk\chT +R
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When we apply property 1 for the pdf given in the property 2 we end up with

the conditional Gaussian

p(xk\yk, Zh:k—l) = p(l‘k|y1:k)/\/($k; HE|k> Ek\k) (A-G)
where with the mean and covariance updates:

tge = Hii—1 + Sep-1CT (CSie—1CT + R) ™ (yr — Chiggr—1) (A7)

Yklk = Dkjk—1 — Ek|k—lcT<CZk:|k—1OT + R)_lczmk—l (A.8)

Note that Property 2 is straightforward. In the Kalman filter algorithm, the
expression Sy_1CT (CZy_1CT + R)~! is denoted as Kalman gain.

A.2 Proof of RTS Kalman Smoother

Following Cemgil [41], we again use two properties. Afterwards we will be able
to obtain an expression of xp in terms of xp,1, from which we will easily derive the
update equation of statistics of p(zx|y1.x) in terms of the statistics p(zx11|y1.x). Again
we remind the property for the joint Gaussian pdf’s.

Property 1:
For jointly Gaussian pdf given by:

P(@k|Trin, yix) = N (an; 1 2) (A.10)
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where with the mean and covariance updates:

fxly = px + Sxy Sy (Y — py) (A.11)
Sxy =Zx — Sxy Sy Syx (A.12)

This time we have the property similarly:

Property 2:

Hk|k1 Yk Zk\kAT

| (A.13)
Ap | | AZgpe AL AT +Q

P(Tr, Trg1 Y1) = N(
It is very easy to prove the mean and individual covariance components of property 2.

Now again applying Property 1 for the joint pdf given in the Property 2. We
end up

p(xlziin, yix) = Nz, i1, ) (A.14)

i = pirpe + Siep AT (AT AT + R) ™ (@p1 — Apiggr)
Y= Ykik — Ek|kAT(AZk\kAT + Q)_lAEk\k

= S — Sep AT (AT AT 4+ Q)T AT

= Yk — JLAS gk

We worked on the conditional pdf p(zx|zi1,y1.6) which is a Gaussian density.
For a Gaussian random variable, the mean and covariance are enough to describe its
pdf. From these expressions, our aim is to obtain a relationship between x; and xj;.

This expression is:
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where

e =N(0,%) (A.20)
Jp = S AT (AZ AT + Q)7 (A.21)

Note that it is routine to show that this expression contains the statistics information
which we obtained in Eq. A.14. After obtaining this intermediate step which exhibits
the relation between the random variables x; and xy,; we can derive the smoothed
statistics of these random variables. We project these random variables to the space
generated by the random variables yq, s, ..., yx. Otherwise stated, we take the condi-
tional expectation of the above expression in both sides of equality. We arrive first the

mean statistic.

[kire = Bkl + Tk (b1 — frrak) (A.22)

In order to calculate Xk

Yk = cov(Tg — fig|k)
= cov(Jp(Trs1 — Mrsr i) + €x)
= JiSksrk Sy + Sk — JrASkp
= i + S Zpri g L — szkJrl\kZ];i”kAEMk
= Sk + SeSiernx Sy — TSy

= S + Je(Crrix — She) Iy

which concluded the proof RTS Kalman Smoother.

A.3 QR Decomposition

Let X be any matrix. The QR decomposition of the matrix X7 results in an

orthogonal matrix QQ and upper triangular matrix R such that the following property
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is true [6].
X' =QR (A.29)
For the QR decomposed matrices we have the following remarkable property.

XXT"=R'R (A.30)
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