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ABSTRACT

NONLINEAR STATE AND PARAMETER ESTIMATION OF
THE HEMODYNAMIC MODEL USING fMRI BOLD

SIGNAL

The joint estimation of the parameters and the states of the hemodynamic

model from the blood oxygen level dependent (BOLD) signal is a challenging problem.

In the functional magnetic resonance imaging (fMRI) literature, quite interestingly,

many proposed algorithms work only as a �ltering method. In the fMRI state es-

timation literature, extended Kalman �lter (EKF) is asserted to be not robust and

worse than standard particle �lters (PF). We compared EKF with PF and observed

that the contrary is true. We also implemented particle �lter that approximates the

proposal function by the extended Kalman �lter. We compared Gaussian type approx-

imated estimation techniques like extended Kalman �lter (EKF), unscented Kalman

�lter (UKF), cubature Kalman �lter (CKF) as well as stochastic inference techniques

like standard particle �lters (PF) and auxiliary particle �lter (APF). Filtering makes

the estimation of the hidden states and the parameters less reliable compared with

the algorithms that use smoothing. We improved the EKF performance by adding

smoother. The joint state and parameter estimation is improved substantially by per-

forming the iterative EKS (IEKS) algorithm. We compared IEKS performance with

the square-root cubature Kalman smoother (SCKS) algorithm. We show that its accu-

racy for the state and the parameter estimation is better and much faster than iterative

SCKS. SCKS was found to be a better estimator than the dynamic expectation max-

imization (DEM), EKF, local linearization �lter (LLF) and PF methods. We show in

this thesis that IEKS is a better estimator than iterative SCKS under di�erent process

and measurement noise conditions.

Keywords: Hemodynamic model, particle �lter, auxiliary particle �lter, extended

Kalman �lter, smoother, cubature Kalman �lter
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ÖZET

HEMOD�NAM�K MODEL�N fMRI BOLD S�NYAL�
KULLANARAK DO�RUSAL OLMAYAN DURUM VE

PARAMETRE TAHM�N�

BOLD sinyali kullanarak hemodinamik modelin parametre ve durum tahmini

ba³armas� zor bir problemdir. fonksiyonel Manyetik Rezonans Görüntüleme (fMRG)

literatüründe ço§u önerilen algoritmalar yaln�z süzgeç tipindeki metodlard�r. fMRG

literatüründe, geni³letilmi³ Kalman süzgecinin (GKS) sa§lam bir metod olmad�§� ve

PS'lerden kötü oldu§u iddia edilmi³tir. GKS ile PS'leri kar³�la³t�rd�k ve bunun do§ru

olmad�§�n� gördük. Bu tezde ayr�ca özel bir parçac�k süzgeci uygulanm�³t�r. Bu süzgeç

çe³idinde önerim fonksiyonu, geni³letilmi³ Kalman süzgeciyle (GKS) yakla³t�r�lm�³t�r.

Bu tezde fMRG literatüründe kullan�lan GKS, kokusuz Kalman süzgeci (KKS), kü-

pleme Kalman süzgeci (KKS) ve standart paçac�k süzgeci (PS) ve yard�mc� parçac�k

süzgeci (YPS) gibi olas�l�ksal tahmin metodlar�n� kar³�la³t�rd�k. Süzgeçler, düzle³tirici

kullanan algoritmalara göre daha az güvenilirdir. Durum ve parametrelerin beraber

tahmini genelle³tirilmi³ Kalman düzle³tiricilerinin tekrarl� kullan�m� ile önemli bir ³ek-

ilde geli³tirilmi³tir. Tekrarl� kullan�mla hem parametre hem durum tahmini önemli

ölçüde iyile³tirildi. Tekrarl� genelle³tirilmi³ Kalman düzle³tiricisini (TGKS), kare-

kök küpleme Kalman düzle³tiricisi (KKKKD) algoritmas�yla kar³�la³t�rd�k. Hemodi-

namik durum ve parametre tahmininin bu yöntemle daha do§ru ve daha h�zl� oldu§unu

gördük. KKCKS metodu fMRI literatüründe dinamik tahmin maksimizasyonu (DTM),

GKS, yerel düzle³tirme süzgeci (YDS) ve PS algoritmalar�ndan daha iyi bir tahmin

metodu oldu§u bulunmu³tu. Bu çal�³mada TGKS metodunun tekrarl� KKCKS'dan

farkl� durum ve gözlem gürültü ³artlar�nda daha iyi bir tahmin metodu oldu§unu gös-

terdik.

Anahtar Sözcükler: Hemodinamik model, Parçac�k süzgeci, geni³letilmi³ Kalman

süzgeci, düzle³tirici, küpleme Kalman süzgeci
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1. INTRODUCTION

The hemodynamic model describes a nonlinear relationship between the neu-

ronal activity and observed Blood Oxygen Level Dependent (BOLD) signal. This

nonlinear relationship is described by stochastic di�erential equations [1, 2, 3]. With

most of the imaging techniques, it is impossible to obtain a direct measurement of

the neuronal activity. After the fast neuronal activity, we observe a response in the

hemodynamic variables like cerebral blood �ow (CBF), cerebral blood volume (CBV)

and blood deoxyhemoglobin content [4]. But even then we do not directly observe the

hemodynamic variables. In the fMRI technique, we observe the BOLD signal, which is

a nonlinear combination of the blood venus volume and blood deoxyhemoglobin con-

tent [5]. A typical BOLD signal can be seen in the Figure 1.1 Hence it is important

to understand the nature of the hidden hemodynamic states from the observed BOLD

signal.
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Figure 1.1 Real BOLD signal with the permission of Karl Friston.
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In this thesis, we will be dealing with the problem of estimating the hemody-

namic states: blood �ow, blood volume, blood deoxyhemoglobin content and hemody-

namic model parameters. Our approach will be based on the hemodynamic nonlinear

dynamical system representation. Given the model, we will estimate the hemodynamic

states and the parameters conditioned on the observed BOLD signal. More precisely,

we will formulate the problem as a discrete-time state-space system:

xk+1 = f(θ, xk) + wk (1.1)

yk = h(θ, xk) + vk (1.2)

where, f and h are nonlinear functions of the latent hemodynamic state xk at time k.

The state is a vector xk ∈ R4. The BOLD signal at time k is described as yk ∈ R. The

state transition noise wk is Gaussian with N (0, Qk) and the measurement noise vk is

Gaussian with N (0, Rk). By θ, we describe the set of parameters of the hemodynamic

model. In Chapter 3, we give the details how this discrete time representation is

obtained from the hemodynamic model. Having N observations y1, y2, · · · , yN or y1:N

and given the parameters θ, we will �nd the posterior distribution p(x1:N |y1:N , θ) from

which we estimate the posterior mean for the hemodynamic states E(x1:N |y1:N , θ). As

a harder problem we also work for unknown hemodynamic parameters. In this case, we

want to estimate the parameters θ∗ by treating them as slightly varying state variables.

In Chapters 2, 4 and 5, more details are given regarding the mathematical theory of

the state and parameter estimation.

The solution of this problem is also called the hemodynamic model inversion.

The model inversion is a hard mathematical problem known as probabilistic inference.

Most of the time, in practice to be applicable, it requires at least joint estimation of

both latent hemodynamic state variables and parameters also known as system iden-

ti�cation. The reason is that the hemodynamic response is not identical across the

subjects, and even among di�erent regions of the same subject [4, 6, 7]. In this thesis,

we �rst work the case for the known parameter condition. We compared widely used

methods. We provide a methodological improvement in the probabilistic inference of
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the hemodynamic variables for a given neuronal input and system parameters. Subse-

quently, we work on the joint estimation of the hemodynamic model parameters and

state estimation. For that purpose, we provide a simple, fast and an accurate model

inversion technique.

The importance of the hemodynamic model inversion is manyfold for functional

neuroimaging. Assuming that the hemodynamic model correctly describes the true

behavior of the hemodynamic variables, it is surprising that just using the BOLD sig-

nal, we learn many things about the hidden temporal behavior of the cerebral blood

�ow, cerebral blood volume and blood de-oxyhemoglobin content. It is also possible

to overcome the limits of temporal resolution of the hemodynamic response by iden-

tifying its inverted components on a �ner time scale. From the clinical perspective,

using the BOLD signal and model inversion techniques, we can estimate the system

parameters. We can compare these parameters for both healthy and various diseased

people. One other use is that we can monitor the change of the hemodynamic response

and hemodynamic system parameters with respect to the medicament usage. We may

identify parameter regions for healthy people. Depending on the parameter change

with respect to the medicament usage, we may infer whether the medicament is useful

or not.

1.1 Hemodynamic State Estimation

For the hemodynamic probabilistic inference, several attempts were presented in

the fMRI model inversion literature. In the �rst attempts at applying the fMRI model

inversion techniques, there was zero process noise in the state transition equations [1].

Friston et al. [1] modeled �rst the relation between the input and output by Volterra

Kernels. Subsequently, they performed a Bayesian estimation technique to estimate

the parameters [8]. Still, the assumption was zero state noise in the hemodynamic

state equations. Riera et al. [9] utilized a type of extended Kalman �lter (EKF).

They introduced process noise in their method for the hemodynamic state equations.

They performed EKF via the discretization method of Jimenez et al. [10]. They
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did not, however, use the widely used Euler-Maruyama discretization method. UKF

is performed by Hu et al. [11] for the system identi�cation and state estimation of

hemodynamic variables. Riera et al. [9] and Hu et al. [11] performed these techniques

in a �ltering style. Recently, Havlicek et al. [6] performed the square-root cubature

Kalman �lter (SCKF) for the hemodynamic state estimation. In this thesis, we also

implemented SCKF, which is the numerical stable form of cubature Kalman �lter.

In the fMRI literature, Johnston et al. [5] made direct usage of the particle

�lters. Murray and Storkey [12] implemented particle �lters by using suboptimal pro-

posal functions with a variety of discretization methods. They performed also particle

smoothers.

For completeness, we also note the work of Friston et al. [13, 14, 15]. The

algorithms they suggested are called dynamic expectation maximization (DEM), vari-

ational �ltering (VF) and generalised �ltering (GF). DEM, VF and GF are based on

the variational approach. They perform dual estimation of the hemodynamic model.

In these works, Friston et al. modi�ed the variational approach for the dynamical

systems [13, 14, 15]. In the variational approach, the joint probability density of the

parameter set and the state conditioned on the observation sequence are assumed to

be factorized in the parameter and state argument [16]. This assumption introduces

simplicity in the calculation. At the same time, we note that this assumption is the

source of error in the parameter and state estimation. Havlicek et al. [6] used square-

root cubature Kalman smoother (SCKS) as the joint hemodynamic model parameter

and state estimation. Under very low process noise conditions they also estimated the

inputs.

1.2 Contribution

The hemodynamic model inversion is a hard nonlinear estimation problem. In

this thesis, we have two contributions. The �rst contribution focuses on the model

inversion under the known parameter condition. From the BOLD signal, by using the
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functional representation of the hemodynamic model, we perform state estimation. We

provide detailed comparison of the hemodynamic state estimation for Gaussian approx-

imated and particle �lter type algorithms under a wide range of process noise, di�erent

input, parameter sets and unkown initial condition. When we study the methods

they make certain approximations. For example EKF, UKF, SCKF and LLF approxi-

mate the conditional probability density function of the state by Gaussian probability

density function (pdf). For nonlinear problems this assumption is not proper and it

introduces error in the state estimation. Particle �lter methods are known to work

with better numerical accuracy than Gaussian approximated approaches. However, for

weakly-nonlinear systems particle �lter do not bene�t much. Particle �lter performance

also depends on the proposal functions from which samples are drawn. These samples

aim to approximate the conditional probability density function of the state. Opti-

mal proposal functions are di�cult to calculate. In the hemodynamic state estimation

literature, non-optimal proposal functions are used. In this thesis, we will examine

the implementation and performance of an e�cient state estimation technique for the

fMRI signals. The method we apply approximates the optimal proposal function by

extended Kalman �lter method. The contribution and �ndings are:

• Contrary to the former claim, Extended Kalman �lters estimate the hidden states

better than particle �lters under a wide range of noise conditions, di�erent inputs,

parameter sets and unknown initial condition.

• The hemodynamic model is weakly nonlinear system.

• PF-EKF can o�er more accurate hemodynamic state estimation than the particle

�lter and auxiliary particle �lters in most cases by approximating the optimal

proposal by EKF. However, due to weak-nonlinearity of the hemodynamic model,

Gaussian approximated methods are better in performance.

The second contribution we worked was a harder problem. We performed the

joint estimation of the hemodynamic state and parameter estimation from the BOLD

signal using the functional representation of the hemodynamic system. This kind
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of estimation is also known as dual estimation. We proposed and implemented the

usage of iterative extended Kalman smoother as the dual estimation. Regarding IEKS,

contribution and �ndings are:

• The claim that EKF is not a robust model inversion [5] seems not to be valid

for di�erent process and measurement noise levels . We checked the EKF in the

widely used parameter regime [6, 12, 13, 14, 15] and obtained results contrary to

the literature.

• EKF's hemodynamic state estimation performance is even better than standard

particle �lters under a wide range of process and measurement noise conditions.

• EKS is robust and improves EKF especially in the higher hemoydnamic pro-

cess/measurement noise conditions.

• IEKS substantially improves hemodynamic state estimation performance by uti-

lizing the EKS algorithm iteratively.

• IEKS has better hemodynamic state estimation accuracy compared with iterative

SCKS for di�erent process and measurement noise conditions.

• IEKS has better parameter estimation accuracy compared with iterative SCKS

for di�erent hemodynamic model process and measurement noise conditions. The

bias of the parameters is lower.

• IEKS is more than twice faster than iterative SCKS for the joint hemodynamic

model inversion.

• Since SCKS alleged to be a better estimator among the other hemodynamic

model inversion techniques [6], IEKS seems to be the best method among the

hemodynamic model inversion methods.
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1.3 Outline

The thesis is structured in the following order. In Chapter 2, we provide the

conceptual overview of the estimation problem from the observed data using the func-

tional representation of the system. In Chapter 3, we give the details of the functional

representation of the hemodynamic model. In Chapter 4, we give the implementa-

tion details of the state estimation using the concepts explained in Chapter 2. This

Chapter focuses on the �ltering style of nonlinear state estimation. We compare for

the hemodynamic model Gaussian approximated inferences and particle �lter methods

and provide the �rst methodological improvement called PF-EKF. In Chapter 5, we

work on the joint estimation of the hemodynamic states and parameters. The nonlin-

ear estimation in smoothing style is detailed. Parameter identi�cation method is also

discussed in this Chapter. We give the full details of the second contribution called

IEKS. After presenting the methodological background in Chapter 6, we work out the

PF-EKF method for the hemodynamic model for various process noise conditions. In

Chapter 7, we implement the IEKS method for the hemodynamic model. We �rst

perform model inversion using the simulated data. Having ground-truth validated the

IEKS method, we also show its application in a rather complicated multi-input real

BOLD signal. Conclusions and further recommendations are given in Chapter 8. The

Appendix A provides the proof of Kalman approach of �ltering and smoothing and the

details of the QR decomposition.
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2. ESTIMATION TECHNIQUES

In this section, we provide a review of state estimation techniques. We classify

the algorithms under the Gaussian approximated and stochastic inference techniques.

We give at the end of the section the scienti�c works done in the fMRI model inversion

literature.

2.1 State Estimation

Due to nonlinearity of the system it is di�cult to make probabilistic inferences

from the observed data. In this thesis, our aim is to �nd the state estimation of type

p(xk|y1:k), which is called �ltering and p(xk|y1:N), which is called smoothing. In the

�ltering problem, for the time step k we take into account only the observations up to

the time k. From these observations we calculate p(xk|y1:k). When the new observation

arrives, we �nd the new conditional density p(xk+1|y1:k+1). Filtering disregards the

information contained in the future values of y for the state x at time step k. However,

in the smoothing we take into account all observed sequences. This provides us more

accurate results for the state estimation, but at the cost of additional computation.

Even the smoothing techniques require the calculation of the �ltering. For that reason,

we �rst concentrate on implementing a particular �ltering technique to obtain the most

accurate state estimation.

Once we have the expressions for p(xk|y1:k) and p(xk|y1:N) we can estimate

the state sequence by taking the expectation of the variable xk with respect to this

probability distribution:

E[xk|y1:k] =

∫
xkp(xk|y1:k)dxk (2.1)

E[xk|y1:N ] =

∫
xkp(xk|y1:N)dxk (2.2)
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This result is the expected state conditioned on the observation sequence y1:k

and y1:N . Since it is impossible to calculate analytic expression for the p(xk|y1:k) and

p(xk|y1:N), various approximation techniques are proposed.

2.2 Gaussian Approximated Inference

We have closed form expression for basic state-space systems that are linear and

have Gaussian shaped noise. For such cases, Kalman �lter [17] and smoother algorithms

[18] work optimally. For linear systems, the form of the �ltering and smoothing densities

are expressed exactly as Gaussian densities.

p(xk|y1:k) = N (x̂k|k;Pk|k) (2.3)

p(xk|y1:N) = N (x̂k|N ;Pk|N) (2.4)

Here x̂k|k and x̂k|N are the recursive �ltered and smoothed state estimates at time k

respectively. Similarly, Pk|k and Pk|N are the �ltered and smoothed state covariances

at time k.

Since we do not have closed form expressions for nonlinear systems, we have

various approximation techniques. For Gaussian approximated methods, we can list

extended Kalman �lter (EKF) [19, 20], local linearization �lter (LLF) [9], unscented

Kalman �lter (UKF) [21, 22, 23] and cubature Kalman �lter (CKF) [24], which is a

speci�c case of UKF [25]. These methods approximate conditional estimates of the

states as Gaussian density.

p(xk|y1:k) ≈ N (x̂k|k;Pk|k) (2.5)

For the extended Kalman �lter algorithm, the state transition and measure-

ment functions are linearized with a �rst-order Taylor series around the state estimates

[6]. Approximating the nonlinear system with a linear state space form, the standard

Kalman �lter is applied. The LLF �lter is the same as EKF except, in the prediction
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update of the state, LLF uses the discretization proposed by Jimenez et al. [10]. In

UKF and CKF, Gaussian densities are represented by deterministically chosen points

called sigma points and cubature points for UKF and CKF, respectively [26]. For pre-

diction and measurement updates of the states, the deterministic points are transferred

from the nonlinear state transition and measurement functions, respectively. The pos-

itive aspect of UKF/CKF is that there is no need for the calculation of the Jacobian

matrix of the state and measurement functions.

Similarly in the smoothing context various smoothing extensions are suggested

for the above �ltering methods. For the smoothing methods, they approximate the

conditional estimates of the states again as Gaussian densities.

p(xk|y1:N) ≈ N (x̂k|N ;Pk|N) (2.6)

Extended Kalman smoother [18], uncented Kalman smoother [25] and cubature

Kalman smoother [25] are the smoother extensions of the above �ltered versions of

EKF, UKF and CKF. Quite interestingly in the fMRI literature many of the Gaus-

sian approximated �ltering methods are not used in smoothing sense except for CKF

Havlicek et al. [6].

2.3 Stochastic Inference

For stochastic inference, there are two broad categories of sampling algorithms:

Markov chain Monte Carlo methods (MCMC) and sequential Monte Carlo (SMC)

methods. Since we will be dealing with dynamical systems, in this thesis, we prefer to

concentrate on SMC methods. We also give a literature survey about SMC methods

used in fMRI at the end of this subsection.

Particle �lters are sequential Monte Carlo methods that approximate the con-

ditional density functions by a �nite amount of particles and associated weights [27].
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Monte Carlo methods aim to draw samples from complex target density functions π(x).

As a result, we represent the target function π(x) with a discrete set of samples [28].

π(x) =
1

N

N∑
i=1

δ(x− xi) (2.7)

But most of the time, it is impossible to draw samples directly from complex

density functions. The main algorithm to achieve this is called importance sampling,

which lies at the hearth of the particle-type algorithms [28]. Importance sampling is

performed by sampling from a known and easy-to-sample importance function q(x).

This necessitates compensating the weight due to discrepancy between the true density

and the importance function. As a result, we have the following practically feasible

form for generating samples:

π(x) =
N∑
i=1

wiδ(x− xi) (2.8)

where wi = π(xi)/q(xi) and xi generated from q(x) [28].

The good point of importance sampling is, if we have a test function φ, then we

can make the approximation for large-enough N :

∫
φ(x)π(x)dx ≈

N∑
i=1

wiφ(xi) (2.9)

This is because bias and variance decreases asymptotically with increasing N

[28].

The importance sampling algorithm can be easily modi�ed for gradually increas-

ing space dimensions. This is important, since in dynamical systems with each coming

sequence, our space dimension increases. To handle such situations, the importance

function is chosen so that it can be factorized as

qk+1(x1:k+1) = qk(x1:k)qk+1(xk+1|x1:k) (2.10)
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This expression tells us how to sample for the new dimension xk+1. Having the previous

sample points x1:k, we just use the expression q(xk+1|x1:k) to sample for the new points.

The weights are updated according to [28]:

wk+1 = wk
πk+1(x1:k+1)

πk(x1:k)qk+1(x1:k+1|x1:k)
(2.11)

This algorithm, called Sequential Importance Sampling, has in practice a serious prob-

lem. After some time, only one of the weights of the particles becomes signi�cant.

As a result, practically there is only one sample that represents the conditional pdf

[29]. This is a serious problem. To remedy this, Gordon proposed a resampling step

and used the �rst working type of sequential Monte Carlo methods [27, 28]. In the

resampling stage, from the unevenly distributed weighted samples, a new set of sam-

ples are obtained. By using this technique, we obtain a more stable approximation for

successful estimation.

The above framework we explained is SMC, which works on a general setting.

We did not specify the form of πk(x1:k). Those were the target densities we tried to

approximate. Particle �lter is just a special realization of the above SMC formulation

for πk(x1:k) = p(x1:k|y1:k) [28].

2.4 Variational Approach

Yet another technique employed in fMRI literature is the variational approach.

This is an approximation technique that was �rst suggested by Feynmann [30]. It was

previously applied in statistical physics under the name of mean �eld theory [31]. For

joint parameter and state estimation by the variational technique, the parameters and

hidden states are assumed to be factorized. Subsequently, the di�cult problem to �nd

the posterior is approximated as:

p(θ, x|y) ≈ q(θ)q(x) (2.12)
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Assuming such a factorization, then it is found that the individual factors are the

expectations of the joint density p(θ, x, y) over other factors [16, 32, 33]. This is done

iteratively until convergence. This principle of variational approach is worked in very

detail for the dynamical systems by Friston et al. in a variety of works [13, 14, 15].

Through these algorithms, Friston et al. were able to determine the inputs, parameters

and hidden states under certain noise conditions.
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3. FRISTON-BUXTON HEMODYNAMIC MODEL

3.1 Functional Representation Overview

We work with the continuous time state space and observation formulation.

Subsequently we will convert the model to the discrete time equivalent form. Hence,

we will describe the system in the most general setting as:

ẋ(t) = g(x(t), θ, u(t)) (3.1)

y(t) = h(x(t), θ, u(t)) (3.2)

Here, g is the nonlinear state transition function, h is the nonlinear measurement

function. Both the functions have arguments as the hemodynamic state xt at time t,

parameter set θ and neuronal input u(t). Hemodynamic state xt at time t is a four-

dimensional vector xt ∈ R4. The BOLD signal yt at time t is described as yt ∈ R.

Similar to Johnston et al. [5] we will perturb the system with Wiener noise and

discretize the system by the Euler-Maruyama Method and arrive the discrete time form

of the above nonlinear di�erential equation. We de�ne the discrete time instants as

t = tk , k∆t, k = 1, 2, . . .. The state variables, input and measured BOLD signals are

discretized by de�ning xk+1 = x(tk + ∆t), xk = x(tk), uk = u(tk), yk = y(tk). By using

these de�nitions we arrive the following nonlinear discrete time state-space model.
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xk+1 = f(xk, θ, uk) + wk (3.3)

yk = h(xk, θ, uk) + vk (3.4)

where f is:

f(xk, θ, uk) = xk + ∆tg(xk, θ, uk) (3.5)

and

wk = N (0, Qk) (3.6)

Here, f is the nonlinear state transition function and h is the nonlinear mea-

surement function. This time, we have the discretized version of the state xk where

the time index is k. The state is a vector xk ∈ R4. The measured BOLD signal yk is

from the set yk ∈ R. The state noise wk is of Gaussian type with N (0, Qk). The mea-

surement noise vk is also Gaussian type with N (0, Rk). We denote by y1, y2, · · · , yN
or y1:N the discrete time observation sequence of length N . Given the neuronal input

u1:N and plausible assumptions about the noise and N observations y1, y2, · · · , yN or

y1:N , we want to estimate x1:N .

3.2 Hemodynamic Model System Representation

In this section, we analyze the hemodynamic model in detail. We describe the

dynamics �rst without any noise component as in [1]. Subsequently, we log-transform

those state variables that describe actual physical entities like blood �ow, blood vessel

volume and deoxyhemoglobin content [34]. We perturb the system with the Wiener

process. The last step is the Euler-Maruyama discretization of the SDE. The selected

size of the discretization step is small enough to maintain the dynamics of the hemo-
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dynamic model as in [5, 9]. The noise statistics are compatible with [6].

We will follow the Buxton-Friston hemodynamic model, which relates the neu-

ronal activity to hemodynamic variables and eventually to the observed Blood Oxygen

Level Dependent (BOLD) signal. The model consists of the neuronal activity u(t), the

blood �ow h2, blood vessel volume h3 and the deoxyhemoglobin content h4. After the

neuronal activity u(t), which is usually a rapid signal, a change in the blood �ow h2

is observed. After the �ow change of the blood, changes in the blood venus volume h3

and deoxyhemoglobin content h4 are observed [1, 3, 8, 35]. The relation between the

blood �ow h2 and neuronal activity u(t) is a second order di�erential equation [11].

ḧ2(t) = εu(t)− κḣ2(t)− χ(h2(t)− 1) (3.7)

ḣ3(t) = τ(h2(t)− F (h3(t))) (3.8)

ḣ4(t) = τ(h2(t)E(h2(t))− F (h3(t))
h4(t)

h3(t)
) (3.9)

where

F (h3(t)) = h3(t)
1/α (3.10)

E(h2(t)) =
1

ϕ
(1− (1− ϕ)1/h2(t)) (3.11)

Here, ε is the neuronal e�cacy factor, κ is a measure for signal decay h1, τ is

denoted as the transit time, χ is a measure for negative feedback of the blood �ow h2,

α is Grubb's exponent and ϕ is the resting oxygen extraction fraction [6].

By introducing an abstract variable vasodilatory signal h1, we work on the four-

dimensional di�erential equation system.
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Table 3.1

Parameter Values of the Hemodynamic State Transition Equations

Parameter Description Value

κ Rate of Signal Decay 0.65

τ Hemodynamic Transit Time 1.0204

χ Rate of Flow Dependent Elimination 0.41

α Grubb's exponent 0.32

ϕ Resting Oxygen Extraction Fraction 0.34

ε Neural E�ciency 0.5

Table 3.2

Parameter Values of the Hemodynamic Observation Equation

Parameter Description Value

V0 Resting Blood Volume Fraction 0.04

k1 Intravascular Coe�cient 7ϕ

k2 Concentration Coe�cient 2

k3 Extravascular Coe�cient 2ϕ− 2
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ḣ1(t) = εu(t)− κh1(t)− χ(h2(t)− 1) (3.12)

ḣ2(t) = h1(t) (3.13)

ḣ3(t) = τ(h2(t)− F (h3(t))) (3.14)

ḣ4(t) = τ(h2(t)E(h2(t))− F (h3(t))
h4(t)

h3(t)
) (3.15)

where

F (h3(t)) = h3(t)
1/α (3.16)

E(h2(t)) =
1

ϕ
(1− (1− ϕ)1/h2(t)) (3.17)

We note that all the hemodynamic variables and the parameters are not directly

observable. What we observe is just the BOLD signal, which is a nonlinear combination

of blood vessel volume h3 and deoxyhemoglobin content h4. The observed BOLD signal

equation is as follows:

y(t) = V0(k1(1− h4(t)) + k2(1−
h4(t)

h3(t)
) + k3(1− h3(t))) (3.18)

Here, k1 is the intravascular coe�cient, k2 is the concentration coe�cient and

k3 is the extravascular coe�cient respectively and V0 is resting blood volume fraction

[3, 36, 37].

In this thesis, we perform model inversion under both known and unknown pa-

rameter condition. For the known parameter case, the parameters for the hemodynamic

model and BOLD signal equation are taken as in Table 6.2 and Table 3.2, which is in

accordance with [6]. Our present focus is on the hidden hemodynamic states induced
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by (known) experimental or neuronal input.

We perform the nonlinear transform xi(t) = log(hi(t)) to the x2,x3 and x4,

which ensures positive values for the hemodynamic states x2,x3 and x4 [6, 14]. Sub-

sequently, we utilize Euler-Maruyama method to obtain the following discrete form of

the nonlinear state-space model.

x1(t+ ∆t) ≈ x1(t) + ∆t(εu(t)− κx1(t)− χ(ex2(t) − 1)) +
√

∆tβ1(t) (3.19)

x2(t+ ∆t) ≈ x2(t) + ∆t(
x1(t)

ex2(t)
) +
√

∆tβ2(t) (3.20)

x3(t+ ∆t) ≈ x3(t) + ∆t(
τ(ex2(t) − F (ex3(t)))

ex4(t)
) +
√

∆tβ3(t) (3.21)

x4(t+ ∆t) ≈ x4(t) + ∆t(
τ(ex2(t)E(ex2(t))− F (ex3(t)) e

x4(t)

ex3(t)
)

ex4(t)
) +
√

∆tβ4(t) (3.22)

Hence we arrived at the �nal form for the discrete time state-space model:

xk+1 = f(θ, xk) + wk (3.23)

yk = h(θ, xk) + vk (3.24)

where the state transition function f(θ, xk) and the measurement function h(θ, xk) are

given as follows:

f(θ, xk) =


xk,1 + ∆t(εuk − κxk,1 − χ(exk,2 − 1))

xk,2 + ∆t(
xk,1
e
xk,2 )

xk,3 + ∆t( τ(e
xk,2−F (e

xk,3 ))

e
xk,4 )

xk,4 + ∆t(
τ(e

xk,2E(e
xk,2 )−F (e

xk,3 ) e
xk,4

e
xk,3

)

e
xk,4 )

 (3.25)
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h(θ, xk) = V0(k1(1− exk,4) + k2(1−
exk,4

exk,3
) + k3(1− exk,3)) (3.26)

Here, xk,i for i = 1, 2, 3, 4 are the individual components of the discrete state vector xk.

The noise components wk and vk are Gaussian densities with N (0, Qk) and N (0, Rk),

respectively.

3.3 Neuronal Input and Hemodynamic Responses

In this section, we examine the hemodynamic responses for the basic type neu-

ronal inputs. Neuronal input is modeled as the standard boxcar function. During the

activation time, the boxcar function takes the value 1, whereas in the non-activated

neuronal input the boxcar function takes the value 0. We examine both short time and

long time activated neuronal input. Typical graph is shown in Figure 3.1. We note

that, in our plots, following the style of Friston et al. and Havlicek et al. we plot the

log-transformed hemodynamic variables as in [6, 13, 14, 15].

We simulated the hemodynamic response using the nonlinear state transition

function given in Eq. 3.25 and the measurement function given in Eq. 3.26. The

associated responses of the hemodynamic variables and the BOLD signal are plotted

in Figures 3.2 and 3.3.

For longer activated neurons we observe saturation a�ect as in [5]. For that pur-

pose, we increased the activation time as can be seen from Figure 3.4. The saturation

a�ect of the hemodynamic variable and the BOLD signal is shown in Figures 3.5 and

3.6.
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Figure 3.1 Boxcar neuronal input with short time activation.
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Figure 3.2 Hemodynamic variables for boxcar neuronal input with short time activation.
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Figure 3.3 BOLD signal for boxcar neuronal input with short time activation.
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Figure 3.4 Boxcar neuronal input with long time activation.
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Figure 3.5 Hemodynamic variables for boxcar neuronal input with long time activation.
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Figure 3.6 BOLD signal for boxcar neuronal input with long time activation.
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4. NONLINEAR STATE ESTIMATION

In this Chapter, we will see the implementation details of the theory presented

in Chapter 2. As pointed earlier, for nonlinear problems - in most of the cases -, it is

impossible to �nd an analytical expression for the posteriors p(xk|y1:k) and p(xk|y1:N).

For that purposes, two types of approximation methods are used.

1. Gaussian approximated methods

2. Stochastic type approximation methods

4.1 Gaussian Approximated Inference Methods

In this subsection, �rst the details of the Kalman �lter, extended Kalman �l-

ter and square-root cubature Kalman �lter are given. The extended Kalman �lter

and cubature Kalman �lter algorithms are classi�ed under the Gaussian approximated

inference algorithms. They approximate the �ltered state estimate p(xk|y1:k) by Gaus-

sian probability density functions. Since densities are Gaussian, both of the algorithms

iteratively update the mean and covariance of the state estimates.

4.1.1 Kalman Filter

Let us consider that we have the following linear and Gaussian additive state

space representation.

xk+1 = Axk + wk (4.1)

yk = Cxk + vk (4.2)
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Here xk at time k is a n-dimensional vector xk ∈ Rn. The measurement signal yk at

time k is l-dimensional vector described as yk ∈ Rl. A is a matrix with A ∈ Rnxn.

C is a matrix with C ∈ Rlxn. The state noise wk is of Gaussian type with N (0, Qk).

The measurement noise vk is also Gaussian type with N (0, Rk). Our aim is to �nd

p(xk|y1:k). The solution to this problem can be found analytically. This density is a

Gaussian pdf which is expressed as:

p(xk|y1:k) = N (x̂k|k;Pk|k) (4.3)

The conditional density of xk given the measurements up-to time k is a Gaussian

with mean x̂k|k and covariance Pk|k. The optimum solution for the �lter is given

by Kalman �lter algorithm. With each new coming observation yk+1, Kalman �lter

updates the mean and covariance sequentially.

Kalman Filter Algorithm is composed of the following steps.

x̂k|k−1 = Ax̂k−1|k−1 (4.4)

Here x̂k−1|k−1 is the predicted state mean at time k− 1 conditioned on the observation

sequence y1:k−1 and x̂k|k−1 is the predicted state mean at time k. For the predicted state

mean x̂k|k−1, we just make a predicton before the observation yk arrives. For linear

systems, we just propagate the predicted state mean xk−1|k−1 by multiplying with the

state transition matrix A.

Similar to mean update, for the prediction update of the state covariance Pk|k−1

we perform the following step:

Pk|k−1 = APk−1|k−1A
T +Qk−1 (4.5)

Here Pk−1|k−1 is the state covariance prediction at time k − 1 conditioned on the ob-

servation sequence y1, y2, ..., yk−1. With these two steps, we calculate the mean and
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covariance of the predicted state probability density function p(xk|y1:k−1). This den-

sity is also a Gaussian pdf with

p(xk|y1:k−1) = N (x̂k|k−1;Pk|k−1) (4.6)

This concludes the prediction step update. Next at time k, we have the new observation

yk. Our aim is to update the condtional density p(xk|y1:k). For that purpose, �rst we

calculate the so-called innovation vk.

vk = yk − Cx̂k|k−1 (4.7)

The logic for the innovation is simple. From the predicted state x̂k|k−1, we calculate

the predicted response. The di�erence between the real response and the predicted

response is innovation vk. Next we calculate the measurement prediction covariance

Sk called and the Kalman gain Kk.

Sk = CPk|k−1C
T +Rk (4.8)

Kk = Pk|k−1C
TS−1k (4.9)

From these three quantities: innovation vk, measurement prediction covariance

Sk and Kalman gain Kk, we estimate the mean of the state x̂k|k according to:

x̂k|k = x̂k|k−1 +Kkvk (4.10)

The next step is to estimate the state covariance Pk|k.

Pk|k = Pk|k−1 −KkSkK
T
k (4.11)

For the proof of this nontrivial equation, the reader is referred to the Appendix A. We

summarize the Kalman Filter in Algorithm 1.
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Algorithm 1 Kalman Filter
Initialize:

Initialize the mean estimate x̂0|0 and covariance estimate P0|0.

for k=1 to N do

Prediction Step:

x̂k|k−1 = Ax̂k−1|k−1

Pk|k−1 = APk−1|k−1A
T +Qk−1

Measurement Step:

vk = yk − Cx̂k|k−1
Sk = CPk|k−1C

T +Rk

Kk = Pk|k−1C
TS−1k

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pk|k−1 −KkSkK
T
k

end for

4.1.2 Extended Kalman Filter

For the EKF algorithm, the system is linearized in the estimated state values.

After the linearization step, the standard Kalman �lter algorithm is applied, which is

known to operate optimally in linear systems [17]. So the extended Kalman �lter is a

kind of approximation technique. It has the further assumption that the �ltered and

the predicted states can be approximated by Gaussian densities:

p(xk|y1:k) ≈ N (x̂k|k, Pk|k) (4.12)

p(xk+1|y1:k) ≈ N (x̂k+1|k, Pk+1|k) (4.13)

Here, x̂k|k and x̂k+1|k are the �ltered and the predicted mean values of the

densities, whereas Pk|k and Pk+1|k are the �ltered and the predicted covariances of the

states.

Subsequently, the EKF algorithm recursively updates these statistics as follows:
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Prediction update:

x̂k|k−1 = f(x̂k−1|k−1) (4.14)

Pk|k−1 = F (x̂k−1|k−1)Pk−1|k−1F (x̂k−1|k−1)
T +Qk−1 (4.15)

Hence, the state update x̂k|k−1 is done by propagating the estimate x̂k−1|k−1

through the nonlinear state equation. The analytic calculation of the the predicted

covariance Pk|k−1 is not possible most of the time. In order to calculate the predicted

covariance Pk|k−1, the state equation is linearized at the estimated state value x̂k−1|k−1.

The Jacobian matrix of f at the state value x is denoted by F with the component

values evaluated as:

Fij(x) =
∂f(xi)

∂xj
(4.16)

We note that the partial di�erentiations are implemented by simple �rst order

Euler numerical approximation. This concludes the prediction step. The next step is

the measurement update. The �rst step is to calculate the so-called innovation vk.

Measurement update:

If there is a measurement at the time k, we perform the updates similar to those for the

Kalman �lter. In order to calculate the Kalman gain, Kk, the measurement function h

is linearized at the predicted state x̂k|k−1 similar to the prediction step. The Jacobian

matrix of h at the state value x is denoted by H with the component values evaluated

as:

Hij(x) =
∂h(xi)

∂xj
(4.17)

We evaluate the partial di�erentiation in the Jacobian matrix with �rst order Euler
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approximation. Innovation vk, measurement prediction covariance Sk and Kalman gain

Kk is calculated as:

vk = yk − h(x̂k|k−1) (4.18)

Sk = H(x̂k|k−1)Pk|k−1H(x̂k|k−1)
T +Rk (4.19)

Kk = Pk|k−1H(x̂k|k−1)
TS−1k (4.20)

(4.21)

Having the innovation vk, measurement prediction covariance Sk and Kalman gain Kk

the same update formula as in Kalman �lter is applied:

x̂k|k = x̂k|k−1 +Kkvk (4.22)

Pk|k = Pk|k−1 −KkSkK
T
k (4.23)

We summarize the extended Kalman �lter in Algorithm 2.

Algorithm 2 Extended Kalman Filter
Initialize:

Initialize the mean estimate x̂0|0 and covariance estimate P0|0.

for k=1 to N do

Prediction Step:

x̂k|k−1 = f(x̂k−1|k−1)

Pk|k−1 = F (x̂k−1|k−1)Pk−1|k−1F (x̂k−1|k−1)
T +Qk−1

Measurement Step:

vk = yk − h(x̂k|k−1)

Sk = H(x̂k|k−1)Pk|k−1H(x̂k|k−1)
T +Rk

Kk = Pk|k−1H(x̂k|k−1)
TS−1k

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pk|k−1 −KkSkK
T
k

end for

We note that in case there is no measurement available at time k, we leave the
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estimated state x̂k|k and estimated covariance Pk|k to the same values in the prediction

update step.

x̂k|k = x̂k|k−1 (4.24)

Pk|k = Pk|k−1 (4.25)

4.1.3 Square-Root Cubature Kalman Filter

In the literature, it is reported that in some highly nonlinear systems EKF can

diverge [24]. In order to circumvent such problems recently a method called cubature

Kalman �lter was suggested [24]. In this technique, the �ltered state density p(xk|y1:k)

and predicted state density p(xk+1|y1:k) are again approximated by Gaussian densi-

ties. However these densities are further approximated with deterministically chosen

the so-called cubature points. Using these points, state and measurement updates are

performed very similar to the Kalman Filter algorithm. In the Kalman algorithm, the

covariance matrix is updated in every step. However, the two properties of the covari-

ance matrix, symmetry and positive de�niteness, must be preserved [24]. In nonlinear

problems, there are several reasons which cause these two properties to break down

[29]. This problem results in the divergence of the algorithm. There are various ad-hoc

methods to circumvent this issue. One stable solution is the square-root formulation

[24]. In the square-root formulation, the square root of the error covariance matrix is

updated in every step.

Recently, Havlicek et al. [6] used square-root cubature Kalman �lter (SCKF)

with the smoother to make inference of the state, parameter and even input. He re-

ported quite satisfactory results and even better performance than the DEM algorithm

under certain noise conditions. DEM is a variational based approach suggested by

Friston et al. [14] which will not be discussed in this thesis. In the work [6], square-

root cubature Kalman smoother is applied by augmenting parameters with the state.

In this thesis, for comparison purposes, we used SCKF without augmenting the noise

with the state, contrary to the method in [6]. The reason is that we already assume
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correct noise statistics. Moreover, the noise augmentation is not suggested for additive

noises [25].

As we mentioned, cubature Kalman �lter assumes the �ltered state estimate

p(xk|y1:k) and the predicted state estimate p(xk+1|y1:k) have the Gaussian type proba-

bility density functions.

p(xk|y1:k) = N (x̂k|k, Pk|k) (4.26)

p(xk+1|y1:k) = N (x̂k+1|k, Pk+1|k) (4.27)

These densities are approximated by utilizing a set of deterministic points called

cubature points [24]. This technique resembles the UKF algorithm. In UKF, these

preselected points are called sigma points [22]. Actually, the cubature points are kind

of sigma points by setting the parameters of UKF to speci�c values [25]. The square

root of Pk−1|k−1 is denoted as Sk−1|k−1. We assume at time t = k − 1 state estimate

x̂k−1|k−1 and square-root covariance Sk−1|k−1 is given. Subsequently, we update the

state x̂k|k and square-root covariance estimate Sk|k using SCKF Algorithm as follows:

Prediction Step:

1) By using Sk−1|k−1, the cubature points Xi,k−1|k−1 are found:

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1 (4.28)

where ξ =
√
n[In,−In], ξi is the i-th column of ξ for i = 1, 2, · · · , 2n and In is the

n-dimensional identity matrix.

2) Next the cubature points Xi,k−1|k−1 are propagated through the state update

function, f :

X∗i,k|k−1 = f(Xi,k−1|k−1, uk−1) (4.29)
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Here uk stands for the input sequence at time k.

3) From these predicted cubature points, mean of the predicted state estimate x̂k|k−1

is calculated by the formula:

x̂k|k−1 =
1

m

m∑
i=1

X∗i,k|k−1 (4.30)

where m = 2n.

4) For the Square-Root Error covariance Sk|k−1:

Xk|k−1 =
1√
m

[
X∗1,k|k−1 − x̂k|k−1 X∗2,k|k−1 − x̂k|k−1 · · · X∗m,k|k−1 − x̂k|k−1

]
(4.31)

Sk|k−1 = qr([Xk|k−1 SQ,k−1]) (4.32)

Here SQ,k−1 is the square root of the covariance Qk−1 and qr is the QR decomposition

[6]. S = qr(X) results in the lower triangular matrix as used by [6, 24]. For QR

decomposition, please check the Appendix A.3. This concludes the prediction step.

Subsequently, we present the measurement step.

Measurement Update:

When there is a measurement at time k, than the updates are:

1) From the predicted mean x̂k|k−1 and predicted square-root covariance Sk|k−1, we

build the new cubature points Xi,k|k−1:

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1 (4.33)

for i = 1, 2, · · · , 2n

2) In order to �nd the innovation, the cubature points Xi,k|k−1 are propagated through

the observation equation:

Zi,k|k−1 = h(Xi,k|k−1, uk) (4.34)

3) From the propagated cubature points Zi,k|k−1, mean predicted measurement estimate
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ẑk|k−1 is calculated:

ẑk|k−1 =
1

m

m∑
i=1

Zi,k|k−1 (4.35)

4) Similarly the square root of the innovation covariance matrix Szz,k|k−1 is calculated

as follows:

Zk|k−1 =
1√
m

[
Z1,k|k−1 − ẑk|k−1 Z2,k|k−1 − ẑk|k−1 · · · Zm,k|k−1 − ẑk|k−1

]
(4.36)

Szz,k|k−1 = qr([Z SR,k]) (4.37)

Here SR,k is the square root of the covariance Rk.

6) In order to evaluate the Kalman gain, the cross covariance Pxz,k|k−1 is calculated as

follows:

Pxz,k|k−1 = Xk|k−1Z
T
k|k−1 (4.38)

where

Xk|k−1 =
1√
m

[
X1,k|k−1 − x̂k|k−1 X2,k|k−1 − x̂k|k−1 · · · Xm,k|k−1 − x̂k|k−1

]
(4.39)

7) The Kalman gain:

Kk = Pxz,k|k−1S
−T
zz,k|k−1S

−1
zz,k|k−1 (4.40)

8) The correction in the predicted estimate x̂k|k−1 is done by using the Kalman gain.

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1) (4.41)

9) For the measurement �ltered estimate of the square-root covariance matrix Sk|k is:

Sk|k = qr([Xk|k−1 −KkZzz,k|k−1 KkSR,k]) (4.42)

For the proof of this last step the reader is referred to [24]. We summarize the square-

root cubature Kalman �lter in Algorithm 3.
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Algorithm 3 Square-Root Cubature Kalman Filter
Initialize:

Initialize the mean estimate x̂0|0 and square-root covariance estimate S0|0.

for k=1 to N do

Prediction Step:

Xi,k−1|k−1 = Sk−1|k−1ξi + x̂k−1|k−1

where ξ =
√
n[In,−In], ξi is the i-th column of ξ for i = 1, 2, · · · , 2n and In is the

n-dimensional identity matrix.

X∗i,k|k−1 = f(Xi,k−1|k−1, uk−1)

x̂k|k−1 = 1
m

∑m
i=1X

∗
i,k|k−1 with m = 2n

Xk|k−1 = 1√
m

[
X∗1,k|k−1 − x̂k|k−1 X∗2,k|k−1 − x̂k|k−1 · · · X∗m,k|k−1 − x̂k|k−1

]
Sk|k−1 = qr([Xk|k−1SQ,k−1]) where SQ,k−1 is the square root of the covariance Qk−1.

Measurement Step:

Xi,k|k−1 = Sk|k−1ξi + x̂k|k−1

Zi,k|k−1 = h(Xi,k|k−1, uk)

ẑk|k−1 = 1
m

∑m
i=1 Zi,k|k−1

Zk|k−1 = 1√
m

[
Z1,k|k−1 − ẑk|k−1 Z2,k|k−1 − ẑk|k−1 · · · Zm,k|k−1 − ẑk|k−1

]
Szz,k|k−1 = qr([Z SR,k]) where SR,k is the square root of the covariance Rk.

Xk|k−1 = 1√
m

[
X∗1,k|k−1 − x̂k|k−1 X∗2,k|k−1 − x̂k|k−1 · · · X∗m,k|k−1 − x̂k|k−1

]
Pxz,k|k−1 = Xk|k−1Z

T
k|k−1

Kk = Pxz,k|k−1S
−T
zz,k|k−1S

−1
zz,k|k−1

x̂k|k = x̂k|k−1 +Kk(zk − ẑk|k−1)

Sk|k = qr([Xk|k−1 −KkZzz,k|k−1 KkSR,k])

end for
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If there is no measurement available, than

x̂k|k = x̂k|k−1 (4.43)

Sk|k = Sk|k−1 (4.44)

4.2 Stochastic Type Approximation Methods

Since we are dealing with nonlinear dynamical systems we focus here on the

sequential type algorithms. In this section, we see the details of the particle �lters and

the method implemented in this thesis called particle �lter with EKF approximated

proposal function.

4.2.1 Particle Filter

In the particle �lter approach, the conditional density function p(xk−1|y1:k−1) is

approximated by M number of samples x̃ik−1 and their weights wik−1 as follows:

p(xk−1|y1:k−1) ≈
M∑
i=1

wik−1δ(xk−1 − x̃ik−1) (4.45)

The predicted samples xik are drawn using the proposal function q(xk|xk−1, yk), and

the weights wik are found by the following formula [28]:

wik ∝ wik−1
p(yk|xk)p(xk|xk−1)
q(xk|xk−1, yk)

(4.46)

The ideal choice for the proposal function is q(xk|xk−1, yk) = p(xk|xk−1, yk), which is

di�cult to calculate. If we choose q(xk|xk−1, yk) = p(xk|xk−1), we arrive at the standard

particle �lter weight update rule:

wik ∝ wik−1p(yk|xk) (4.47)

Furthermore, as a last step, we apply resampling to prevent particle collapse.
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Resampling is done by drawing samples from the discrete probability set with the

particles {xik}Mi=1 and the probabilities (weights) {wik}Mi=1 [38]. After the resampling,

we set the weights wik = 1/M . We summarize the steps in Algorithm 4.

Algorithm 4 Particle Filter
Initialize:

Draw the particles {xi0}Mi=1 ∼ p(x0)

for k=1 to N do

Prediction Step:

{xik}Mi=1 ∼ p(xk|xik−1) (4.48)

Measurement Step:

wik ∝ p(yk|xik) (4.49)

Resample Step Draw samples from the discrete probability set with the particles

{xik}Mi=1 and the probabilities (weights) {wik}Mi=1 [38]. Set the weights w
i
k = 1/M

end for

4.2.2 Particle Filter with Extended Kalman Filter Proposal Function

The choice of the proposal function q is important. It is di�cult to sample from

the optimal choice of q. The closed form calculation is again not possible most of the

time. If we linearize the measurement function, then the proposal function can be

approximated with [38]:

q(xk|xik−1, yk) ≈ N (f(xik−1) +Ki
k(yk − ŷik), (H

i,T
k R−1k H i

k +Qk−1)
−1) (4.50)
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where

Hij(x) =
∂h(xi)

∂xj
(4.51)

ŷik = h(f(x̂ik−1)) (4.52)

Kk = Qk−1H
i,T
k (H i

kQk−1H
i,T
k +Rk)

−1 (4.53)

By choosing q(xk|xk−1, yk) as above, the weight update rule becomes [38]

wik ∝ wik−1N (f(xik−1) +Ki
k(yk − ŷik), (H i

kQk−1H
i,T
k +Rk)

−1) (4.54)

We summarize the PF-EKF in Algorithm 5

Algorithm 5 Particle Filter with EKF Proposal
Initialize:

Draw the particles by using {xi0}Mi=1 ∼ p(x0)

for k=1 to N do

Prediction Step:

Draw the particles by using the Eq. 4.50

Measurement Step:

Update the weight by using the Eq. 4.54

Resample Step Draw samples from the discrete probability set with the particles

{xik}Mi=1 and the probabilities (weights) {wik}Mi=1 [38]. Set the weights w
i
k = 1/M

end for

We noted that The ideal choice for the proposal function for particle �lters is

q(xk|xk−1, yk) = p(xk|xk−1, yk). In the fMRI literature, non-optimal proposal functions

are chosen as in [5, 12]. By using EKF approximation to the optimal proposal function,

we improved the state estimation accuracy in most of the cases.
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5. DUAL ESTIMATION - JOINT PARAMETER AND

STATE ESTIMATION

In estimation theory, there are two main categories for the state estimation.

These are the �ltering and smoothing. In the �ltering of the state estimate, the obser-

vation sequence y1, y2, · · · , yk or y1:k is used to �nd the statistical information about

the states x1, x2, · · · , xk. We are interested to �nding the conditional probability den-

sity function (pdf) p(xk|y1:k) for the �ltering. Since by the new observation yk+1 we

can �nd the conditional density p(xk+1|y1:k+1), �ltering is also known as online estima-

tion, whereas, in the smoothing approach, all the observation sequence including the

future data (y1:N , N > k) are used to �nd p(xk|y1:N) [18]. Since for every time step

we need the complete observation sequence, this kind of processing is also known as

o�ine estimation. The use of future data contains information about the past data

and, as a result, improves the state and parameter estimates of the system. The choice

of the state estimation technique also has an important e�ect on the parameter estima-

tion. Having a more accurate state estimation algorithm also improves the parameter

estimation of the system. In the fMRI model inversion literature, most of the state es-

timation techniques work only in the �ltering sense. However, in most hemoydynamic

data analysis cases, the computation is not performed in real time. By using smoothing

techniques, the estimation of both the state and the parameters of the hemodynamic

systems is improved. Trade-o� is that incorporating smoothing into existing algorithms

leads to an increased computation time.

We estimate the parameters and the states by using the BOLD signal and the

functional representation of the system. In the joint parameter and state estimation

part, we use the same functional model:

xk+1 = f(θ, xk) + wk (5.1)

yk = h(θ, xk) + vk (5.2)
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where, f and h are nonlinear functions of the state xk, where k is the time

index. The state in our case is a vector xk ∈ R4, because there are four hemodynamic

state variables. The observed BOLD signal at time k is denoted by yk ∈ R, because

the BOLD signal is one dimensional. The state transition noise wk is Gaussian with

N (0, Qk), and the observation noise vk is Gaussian with N (0, Rk). The set of param-

eters of the model is denoted by θ. Given N observations y1, y2, · · · , yN or y1:N , our

aim is to �nd the parameter set θ and the states x1, x2, · · · , xN or x1:N .

5.1 Iterative Extended Kalman Smoother

Iterative extended Kalman smoother is performed by the repeated use of the

extended Kalman �lter and smoother algorithm. At each step we �rst perform ex-

tended Kalman �lter as explained in Section 4.1.2. Having the EKF step performed

the smoother is performed as explained in the next section.

5.1.1 Extended Kalman Smoother

By using the EKF algorithm, the state xk is predicted from the observed se-

quence y1:k. From the future data, once we have them, a more accurate state estimation

can be accomplished. This is achieved through the EKS algorithm [18]. The EKS al-

gorithm is also easy to implement. The recursion is done by going backward in time.

The recursion step begins from k = N − 1.

First, the state is predicted as:

x̂k+1|k = f(x̂k|k) (5.3)

and the covariance is predicted by the formula

Pk+1|k = F (x̂k|k)Pk|kF (x̂k|k)
T +Qk (5.4)
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The Kalman gain Jk for the smoother is:

Jk = Pk|kF (x̂k|k)
TP−1k+1|k (5.5)

Smoother estimates for the state mean x̂k|N and state covariance Pk|N are found by

using the Kalman gain Kk and the �lter estimates of the state mean x̂k|k and the state

covariance Pk|k:

x̂k|N = x̂k|k + Jk(x̂k+1|N − x̂k+1|k) (5.6)

Pk|N = Pk|k + Jk(Pk+1|N − Pk+1|k)J
T
k (5.7)

For a nice proof of the algorithm please check the appendix. We summarize the steps

of EKS in Algorithm 6.

Algorithm 6 Extended Kalman Smoother
Initialize:

Perform EKF summarized in Algorithm 2.

for k=N-1 to 1 do

x̂k+1|k = f(x̂k|k)

Pk+1|k = F (x̂k|k)Pk|kF (x̂k|k)
T +Qk

Jk = Pk|kF (x̂k|k)
TP−1k+1|k

x̂k|N = x̂k|k + Jk(x̂k+1|N − x̂k+1|k)

Pk|N = Pk|k + Jk(Pk+1|N − Pk+1|k)J
T
k

end for

5.1.2 Parameter Estimation and Iterative EKS

EKF and EKS can also be used to estimate the parameters of the system by

a very simple method. In this approach, the parameters are treated as time-varying

variables with small noise perturbations as in [6, 11]. As a result, the parameter updates
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become:

θk+1,1 = θk,1 + wk,1 (5.8)

θk+1,2 = θk,2 + wk,2 (5.9)

· · · (5.10)

θk+1,p = θk,p + wk,p (5.11)

where θk,i stands for the i-th parameter at time k, i = 1, 2, · · · , p. The new state xa,k

becomes an extended version of the original state xk.

xa,k =



xk

θk,1

θk,2
...

θk,p


(5.12)

For SCKS, Havlicek et al. used the similar technique for parameter estimation

[6]. Since we augmented the parameters to the state, EKS also estimates for the

parameters besides the states. At the end of the EKS algorithm, we obtain an estimate

of the parameter set θ. Using the estimates of the parameters θ as the new initial

estimate for the parameters, we iterate the EKF and EKS algorithm until convergence

similar to [6].

5.2 Iterative Square-Root Cubature Kalman Filter

Similar to iterative EKS, iterative SCKS performed in this thesis begins with

SCKF algorithm detailed in Chapter 4. Next step is smoother part of SCKS.
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5.2.1 Square-Root Cubature Kalman Smoother

By applying the smoother to the output of the cubature Kalman �lter, the state

estimation errors decrease more. This time the recursion goes backward in time. Having

the mean x̂N |N and the square root of the covariance estimate ŜN |N , the recursion step

begins from k = N − 1. The steps are as follows:

1) Evaluate the cubature points:

Xi,k|k = Sk|kξi + x̂k|k (5.13)

for i = 1, 2, · · · , 2n.

2) Propagate the cubature points Xi,k|k through the state update equation:

Xi,k+1|k = f(Xi,k|k, uk) (5.14)

3) From these predicted points Xi,k+1|k, smoothed mean estimate of the state x̂k+1|k is

calculated.

x̂k+1|k =
1

m

m∑
i=1

Xi,k+1|k (5.15)

4) Square-root error covariance Sk+1|k is:

Sk+1|k = qr([Xk+1|k SQ]) (5.16)

where

Xk+1|k =
1√
m

[
X1,k+1|k − x̂k+1|k X2,k+1|k − x̂k+1|k · · · Xm,k+1|k − x̂k+1|k

]
(5.17)

6) Cross-covariance Dk+1|k is calculated according to the formula:

Dk+1|k = Xk|kX
T
k+1|k (5.18)

where

Xk|k =
1√
m

[
X1,k|k − x̂k|k X2,k|k − x̂k|k · · · Xm,k|k − x̂k|k

]
(5.19)
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7) The Kalman gain Ck:

Ck = Dk+1|kS
−T
k+1|kS

−1
k+1|k (5.20)

8) The smoothed mean estimate x̂k|N :

x̂k|N = x̂k|k + Ck(x̂k+1|N − x̂k+1|k) (5.21)

9) The smoothed square-root covariance Sk|N :

Sk|N = qr([Xk|k − CkXk+1|N CkSk+1|N ]) (5.22)

The recursion is performed backward in time up-to k = 1. This concludes the smooth-

ing part.

We summarize the steps of SCKS in Algorithm 7.

Algorithm 7 Square-root Cubature Kalman Smoother
Initialize:

Perform SCKF summarized in Algorithm 3.

for k=N-1 to 1 do

Xi,k|k = Sk|kξi + x̂k|k for i = 1, 2, · · · , 2n.

Xi,k+1|k = f(Xi,k|k, uk)

x̂k+1|k = 1
m

∑m
i=1Xi,k+1|k

Sk+1|k = qr([Xk+1|k SQ])

Xk+1|k = 1√
m

[
X1,k+1|k − x̂k+1|k X2,k+1|k − x̂k+1|k · · · Xm,k+1|k − x̂k+1|k

]
Dk+1|k = Xk|kX

T
k+1|k

Xk|k = 1√
m

[
X1,k|k − x̂k|k X2,k|k − x̂k|k · · · Xm,k|k − x̂k|k

]
Ck = Dk+1|kS

−T
k+1|kS

−1
k+1|k

x̂k|N = x̂k|k + Ck(x̂k+1|N − x̂k+1|k)

Sk|N = qr([Xk|k − CkXk+1|N CkSk+1|N ])

end for
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5.2.2 Parameter Estimation with SCKS

For the estimation of the parameter set θ, the same technique presented in Sec-

tion 5.1.2 is utilized similar to [6]. In the following section, a toy example is considered.

5.3 Toy Example: Linear Case

In this section, we want to show the importance of the smoothing and the usage

of EKS. In the �rst two subsections we make state estimation by assuming the param-

eter is known. In the �rst subsection, we visualize the state estimation improvement

by the smoother over the �lter. In the second subsection, we perform Monte Carlo

analysis to show the state estimation improvement. In the third subsection, we assume

that the parameter is also unknown. With this condition, we estimate the parameter

by the methods we described in the Sections 5.1.2 and 5.2.2. We perform again Monte

Carlo simulation. We compare the mean and variance of the estimates. We show the

gradual improvement in every iteration. In this section, we work on a linear state space

system. The system representation is as follows:

xk+1 = Axk + wk (5.23)

yk = Cxk + vk (5.24)

The state in our case is a vector xk ∈ R2. The measurement at time k is denoted by

yk ∈ R. The state transition noise wk is Gaussian with N (0, Qk) and the observation

noise vk is Gaussian withN (0, Rk). Here the state transition matrix A is also dependent
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Table 5.1

Initial Values and Noise Parameters for Toy Example

Variable Value

Initial State Value X0 [1 1]

Initial State pdf p(X0) N (1, 0.01) for each component

Initial Parameter pdf θ0 N (0.8, 1/12)

Parameter Noise wθ N (0, 10−5)

State Noise wk N (0, e−3) for each component

Measurement Noise vk N (0, e−3)

on the θ parameter.

A =

 cos(θ) sin(θ)

−sin(θ) cos(θ)

 (5.25)

C matrix is chosen as:

C =
[
1 1

]
(5.26)

Initial state conditions, parameter, state and measurement noise �gures of the

system are presented in Table 5.1.

5.3.1 Visualization of Smoother Estimation

In this toy example, the true value for the parameter θ is arbitrarily chosen as

0.8. We generate one simulation from the model. From the observed data we estimate

the state by Kalman Filter (KF) and Kalman Smoother (KS). Note that since the

system is linear, EKF boils down to KF. This is true for EKS and KS, as well.

In order to better understand the performance of the smoother algorithms, we

plot the con�dence region of the state estimates of Kalman Filter and Smoother. The
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con�dence region for Kalman estimate is an ellipsoid. As a result, for the two dimen-

sional case it is possible to visualize the �lter and smoother estimates. We plot the

ellipsoids for both the Kalman Smoother and Filter estimates. The contour graph of

the ellipsoid is expressed as:

(x− x̂)P−1(x− x̂)T = γ (5.27)

where x̂ is the state estimate, P is the covariance of the estimate, γ determines the

con�dence region contour.

The cholesky decomposition gives us a simple transformation such that the

above equation is transformed into:

∥∥U−T (x− x̂)
∥∥2 = γ (5.28)

where P = UTU . The solution for x can be given as:

x = x̂+
√
γUT [cos(α) sin(α)] (5.29)

where 0 ≤ α ≤ 2π.

Note that U−1(x − x̂) is χ2 distributed with two degrees of freedom. For 99%

con�dence region, we choose γ according to the formula:

γ = chi2inv(0.99, 2) (5.30)

Here chi2inv(Pr,n) is the MATLAB command for the inverse of the χ2 cumulative

distribution function (cdf) where the �rst argument (Pr) is the probability value of the

cdf and the second argument (n) is the number of degrees of freedom (in this case 2).

As can be seen in Figure 5.3.1, the ellipsoids for the smoothers are tighter. This

re�ects their covariance is narrower for smoothers, which means that the estimation
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Figure 5.1 Kalman Smoother and Filter Con�dence Region

of smoothers is more accurate. To further emphasize the accuracy of smoothers, in

Section 5.3.2, we provide Monte Carlo simulation results of the smoother and �lter

algorithms, as well.

We note in Figure 5.3.1 most of the ellipsoids have similar shape. This is due

to the fast convergence of the covariance matrix of the state. After a few steps, the

covariance matrix converges. As a result, we have the same ellipsoid shifted just by

the means of the states.

5.3.2 Toy Example Simulation Results for State Estimate for �xed Param-

eter

In this section, we assess the performance of EKF with respect to EKS for

the linear system by running a Monte Carlo analysis. Note that for this fully linear

case, running EKF (or EKS) indeed is the same as running Kalman �lter (or Kalman
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Table 5.2

Monte Carlo State RMS Error for Kalman Filter and Smoother.

Method RMS Error

Kalman Filter 0.3264 ± 8.3620x10−4

Kalman Smoother 0.2444 ± 6.4533x10−4

Smoother). We perform 100 Monte Carlo runs. For each run, the Root Mean Square

(RMS) errors for each method is calculated for comparison. The RMS error in a speci�c

run is de�ned as

erms =

√√√√ 1

N

N∑
k=1

‖x̂k − xk,true‖2 (5.31)

Here x̂k is the result of the state estimation algorithm at time k which corre-

sponds to either the �ltered value, x̂k|k for the EKF case or the smoothed value x̂k|N

for the EKS case, xk,true represents the ground-truth and ‖.‖ is the Euclidean Norm.

After collecting the RMS state estimation errors for each run as described in

Eq. 7.7, we calculate the sample mean and the sample standard deviation for the RMS

state estimation error across all the runs as shown in Table 5.2.

As we can see from Table 5.2, smoothing clearly improves the state estimation

performance for this known parameter case. In the next subsection, we investigate the

unknown parameter case.
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5.3.3 Toy Example Simulation Results for Parameter Estimation

In this case, we treat the parameter θ as unknown. When we augment the

parameter to the state vector, then the resulting system with the augmented state

vector becomes nonlinear. This is because the parameter enters to the system in a

nonlinear fashion. In the previous case study, we observed that smoothing results in

more accurate state estimation than the �ltering. Therefore, in the current case study,

we consider only the smoothing algorithms, EKS and SCKS and compare their per-

formances in terms of estimating the unknown parameter θ. We perform 140 Monte

Carlo runs for the comparison. In each run, the initial estimate, which is selected as the

same value for both of the algorithms, is assumed to be Gaussian distributed around

the true value θ with a variance of 1/12. Starting from the same initial estimate, both

algorithms are run forward (i.e., filtering) and then backward (i.e., smoothing) which

accounts for one iteration. Then, in the second iteration, we continue in the same

manner, i.e., forward and then backward passes again. We repeate this procedure

for several iterations in each Monte Carlo run as in [6]. The Monte Carlo averaged

estimation results of EKS and SCKS algorithms together with the corresponding per-

formance variation (1-σ upper and lower bounds) are shown in Fig. 5.2 with respect

to the number of iterations performed.

As shown in Figure 5.2, on the average, both of the algorithms converged to the

true value of the parameter θ, which is 0.8, very quickly as the number of iterations

increased. The converged values for each of the algorithms together with their corre-

sponding 1-σ bounds are listed in Table 5.3. Note that performance of both algorithms

are the same in terms of the averaged converged value, but SCKS is slightly better

than EKF in terms of the 1-σ bound.

After examining performances of the algorithms on this toy example, we apply

them to our realistic problem, namely, system identi�cation and state estimation of the

hemodynamic model. In the next section, we will see the details of the hemodynamic

model.
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Figure 5.2 The convergence of the parameter estimate.

Table 5.3

Monte Carlo Estimate for θ.

Method True Value Estimated

EKS 0.8 0.8023 ± 4.00x10−4

SCKS 0.8 0.8023 ± 3.97x10−4
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6. SIMULATION RESULTS FOR THE HEMODYNAMIC

MODEL WITH KNOWN PARAMETERS

6.1 Findings and Contribution

We compare di�erent state estimation techniques with the method we imple-

ment. We generate the data from the model and test the state estimation performance

of the methods. We test the validity of our approach on a synthetic data set as gen-

erated from the hemodynamic model. We compare the algorithms under a range of

di�erent noise levels, di�erent inputs, parameter sets and unknown initial condition.

We compare PF-EKF with the standard particle �lter (PF), auxiliary particle �lter

(APF), extended Kalman �lter (EKF) and cubature Kalman �lter (SCKS). For the

details of the APF algorithm, the reader is referred to [28].

In the Discussion section, we interpret the results. Findings and contributions

are as follows:

• Contrary to the former notion, Extended Kalman �lters estimate the hidden

states better than particle �lters under a wide range of noise conditions, di�erent

inputs, parameter sets and unknown initial condition.

• The hemodynamic model is weakly nonlinear system.

• PF-EKF can o�er more accurate hemodynamic state estimation than the particle

�lter and auxiliary particle �lters in most cases by approximating the optimal

proposal by EKF. However, due to weak-nonlinearity of the hemodynamic model,

Gaussian approximated methods are better in performance.

The initial condition, measurement and process noise statistics are listed in

Table 6.1. We did not initiate the state from a known state. We took the initial state
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Table 6.1

Noise Statistics and Initial Values.

Variable Value

p(X0) N (0, 0.01) for each component

Measurement Noise vk N (0, σ2
v = e−12)

Scenario 1: wk N (0, σ2
w = ∆te−16) for each state component

Scenario 2: wk N (0, σ2
w = ∆te−12) for each state component

Scenario 3: wk N (0, σ2
w = ∆te−8) for each state component

pdf p(X0) as N (0, 0.01). The measurement noise is in accordance with [6, 14]. The

process noise varies in a wide range, which includes the values used in the literature

[6, 14]. In order to compare the performance of the algorithms, we generated simulated

data using Eq. 3.5 to produce 100 runs for each level of noise -( Scenarios 1 to 3 in

Table 6.1). For the simulation, we assumed that for each state update, we have a

corresponding measurement. The input is �rst taken as in [6] as Gaussian bumps with

di�erent amplitudes centered in the time points (10, 15, 39, 48) as shown in Figure 6.1.

The length of this input signal is 64 seconds. ∆t is taken as 0.1 second as in [5]. A

typical hemodynamic response and simulated BOLD signal obtained from the Gaussian

bump signal is also plotted in Figures 6.2 and 6.3. To test the algorithm performances

with respect to the di�erent inputs we also check the input for the widely used box-car

functions as can be seen in Figure 6.4.
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Figure 6.1 Neuronal Inputs as Gaussian bumps.
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Figure 6.2 Hemodynamic Variables for Gaussian bumped neuronal inputs.
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Figure 6.3 BOLD Signal for Gaussian bumped neuronal inputs.

0 200 400 600 800 1000 1200 1400
0

0.5

1

1.5

N
eu

ro
na

l I
np

ut
, u

(t
)

time bin, ∆t=0.1

Neuronal Input vs. time

 

 

input

Figure 6.4 Filtering algorithms are tested for input as boxcar functions.

We tested the model inversion techniques under 3 di�erent parameter sets as
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Table 6.2

Parameter Values of the Hemodynamic Model.

Parameter Description Set-1 Set-2 Set-3

κ Rate of Signal Decay 0.8 0.8 0.65

τ Hemodynamic Transit Time 1 1 1.02

χ Rate of Flow Dependent Elimination 0.4 0.4 0.41

α Grubb's exponent 0.3 0.3 0.32

ϕ Resting Oxygen Extraction Fraction 0.3 0.3 0.34

ε Neural E�ciency 0.5 0.5 0.5

V0 Resting Blood Volume Fraction 0.02 0.02 0.04

σ2
v Measurement Variance 0.001 e−12 e−12

shown in Table 6.2. The �rst one uses the parameter set used by Johnston et al.

[5]. They made the assertion that EKF is not robust. In this scenario, they tested

with a rather high measurement noise condition. The second parameter set uses again

their parameter set with moderate level of measurement noise condition which is in

agreement with [6, 14]. For further test the algorithms, we switch to the widely used

parameter set used in [9, 11, 12, 13, 14, 15]. These 3 sets compromise nearly all the

parameter sets used in the hemodynamic model inversion literature.

For each run, Root Mean Square (RMS) errors of the states are found. The

RMS error in a speci�c run is de�ned as follows:

erms =

√√√√ 1

N

N∑
k=1

‖x̂k − xk,true‖2 (6.1)

where x̂k is the state estimation done by the �ltering algorithm. ‖.‖ is the

Euclidean Norm, �nally xk,true is the true value for the state. We summarize the

results for the �rst,second and third parameter sets with Gaussian bumps and box-car
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Table 6.3

Parameter Set 1, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Gaussian Bump Type Neuronal Input.

Scenario PF-EKF PF APF EKF SCKF

Scenario 1 0.0279 ±0.0116 0.0283 ±0.0114 0.0282 ±0.0115 0.0271 ±0.0112 0.0271 ±0.0112

Scenario 2 0.0284 ±0.0108 0.0284 ±0.0110 0.0288 ±0.0111 0.0276 ±0.0108 0.0276 ±0.0108

Scenario 3 0.0530 ±0.0080 0.0531 ±0.0079 0.0533 ±0.0080 0.0513 ±0.0076 0.0513 ±0.0076

Table 6.4

Parameter Set 1, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Boxcar Type Neuronal Input.

Scenario PF-EKF PF APF EKF SCKF

Scenario 1 0.0196 ±0.0080 0.0199 ±0.0081 0.0200 ±0.0081 0.0189 ±0.0076 0.0189 ±0.0076

Scenario 2 0.0215 ±0.0081 0.0217 ±0.0081 0.0212 ±0.0081 0.0207 ±0.0079 0.0207 ±0.0079

Scenario 3 0.0495 ±0.0051 0.0495 ±0.0051 0.0495 ±0.0050 0.0478 ±0.0049 0.0478 ±0.0049

functions in Tables 6.3, 6.4, 6.5, 6.6, 6.7 and 6.8 ( Entries of these tables contain the

sample mean +/− sample standard deviation of the RMS state errors for the Monte

Carlo simulations. )

In all process noise conditions, Gaussian approximated methods performed bet-

ter than the other state estimation techniques ( PF-EKF, PF and APF). In the fMRI

literature even 100 particles were alleged to outperform [5]. We set 1000 particles,

which is 10 times more particles than the ones used in Johnston et al. [5]. We begin

with Scenario 1, which has low process noise conditions. This case was used by Havlicek

Table 6.5

Parameter Set 2, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Gaussian Bump Type Neuronal Input.

Scenario PF-EKF PF APF EKF SCKF

Scenario 1 0.0206 ±0.0086 0.0201 ±0.0079 0.0201 ±0.0077 0.0175 ±0.0058 0.0175 ±0.0058

Scenario 2 0.0212 ±0.0078 0.0212 ±0.0083 0.0213 ±0.0081 0.0184 ±0.0053 0.0185 ±0.0053

Scenario 3 0.0419 ±0.0050 0.0421 ±0.0050 0.0420 ±0.0051 0.0398 ±0.0038 0.0398 ±0.0038
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Table 6.6

Parameter Set 2, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKFF for Boxcar Type Neuronal Input.

Scenario PF-EKF PF APF EKF SCKF

Scenario 1 0.0145 ±0.0071 0.0142 ±0.0061 0.0145 ±0.0061 0.0122 ±0.0040 0.0122 ±0.0040

Scenario 2 0.0159 ±0.0057 0.0158 ±0.0053 0.0159 ±0.0053 0.0139 ±0.0035 0.0139 ±0.0034

Scenario 3 0.0397 ±0.0031 0.0398 ±0.0031 0.0396 ±0.0030 0.0379 ±0.0025 0.0379 ±0.0025

Table 6.7

Parameter Set 3, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Gaussian Bump Type Neuronal Input.

Scenario PF-EKF PF APF EKF SCKF

Scenario 1 0.0244 ±0.0123 0.0237 ±0.0110 0.0242 ±0.0098 0.0163 ±0.0055 0.0163 ±0.0055

Scenario 2 0.0243 ±0.0125 0.0251 ±0.0115 0.0248 ±0.0111 0.0178 ±0.0052 0.0178 ±0.0052

Scenario 3 0.0426 ±0.0076 0.0431 ±0.0060 0.0426 ±0.0069 0.0393 ±0.0038 0.0393 ±0.0037

Table 6.8

Parameter Set 3, Mean and Standard Deviation of the RMS State Errors: PF-EKF, PF, APF, EKF
and SCKF for Boxcar Type Neuronal Input.

Scenario PF-EKF PF APF EKF SCKF

Scenario 1 0.0189 ±0.0077 0.0196 ±0.0086 0.0190 ±0.0076 0.0137 ±0.0036 0.0137 ±0.0036

Scenario 2 0.0194 ±0.0098 0.0186 ±0.0080 0.0182 ±0.0078 0.0134 ±0.0037 0.0134 ±0.0036

Scenario 3 0.0391 ±0.0037 0.0393 ±0.0037 0.0391 ±0.0035 0.0366 ±0.0026 0.0366 ±0.0026
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et al. [6]. We increased step by step the process noise. The last scenario corresponds

to the high process noise condition used by Friston et al. [34]. The computation time

is about 420, 2.25, 2.1, 0.6 and 1.1 seconds for PF-EKF, APF, PF, EKF and SCKF,

respectively.

We want also see the performance of the algorithms by showing the errors at

each time. Errors are calculated according to the Eq. 6.2.

ek =
4∑

k=1

(x̂k,i − xk,i)2 (6.2)

where x̂k,i and xk,i are the individual components of the estimated and true state values,

respectively.

We plot the log-error results of the algorithms with respect to time in Figure

6.5. In Figure 6.6 an enlarged version of the individual performances of the algorithms

can be seen. As shown in these �gures, Gaussian approximated inference methods are

better than sampling based methods. We also note that all the algorithms recover the

initial high uncertainty of the state by time. Gaussian approximated methods are also

faster in this recovery stage.



59

0 100 200 300 400 500 600 700
−12

−11

−10

−9

−8

−7

−6

−5

−4

−3

Lo
g 

E
rr

or
 

time

Log Error vs. time

 

 

SCKF
EKF
PF
PF−EKF
APF

Figure 6.5 Errors of the algorithms at each time for the Parameter Set-3 with Gaussian Bump input
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By attacking the hemodynamic model with di�erent noise conditions, inputs,

parameter sets, and unknown initial condition, we showed that the hemodynamic sys-

tem is weakly-nonlinear. We give more details, further insights and important outcomes

of this �nding in the Discussion section.

6.2 Discussion

State �ltering algorithms are important in order to understand hemodynamic

responses since they are not directly observable. Also, �ltering methods form the bases

for more advanced type of estimation problems, including state smoothing, parameter

estimation (system identi�cation) and even input estimation. In this thesis, we applied

di�erent �ltering techniques used in the fMRI literature. The main �nding in this

Chapter is that the hemodynamic model is a weakly nonlinear system. For nonlinear

hemodynamic models, it is known that sampling based methods can give better results

than Gaussian approximated methods. However, for the case of the hemodynamic

model, we found that the contrary is true. The important point here is in the fMRI

literature EKF was alleged to be poor in performance compared to particle �lters. We

show that in this technical note, the contrary is true. This �nding is important because

based on that we will suggest an advanced Kalman type algorithm for performing not

only state estimation but also hemodynamic parameter estimation. Particle �lter type

algorithms are suitable where there is strong nonlinearity. For weakly nonlinear system

the posterior densities can be well approximated by Gaussian densities. This is indeed

the case for the hemodynamic model. To see this fact, we used the histograms formed

by the particles of the PF method for the 3. parameter set with box-car type input.

We chose 3 randomly points in time and plotted the histograms of the �rst state for the

times t = 150, 500, 750 in Figures 6.7, 6.8 and 6.9. Those are the typical plots for the

other states. As can be seen from the graphs, they are well Gaussian shaped �gures.

Particle Filters work especially good for multi-modal posteriors. However, we observe

that it is not the case for the hemodyamic model.
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Figure 6.7 Posterior p(x150|y1:150) formed from the particles of the 1. hemodynamic state.
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Figure 6.8 Posterior p(x500|y1:050) formed from the particles of the 1. hemodynamic state.
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Figure 6.9 Posterior p(x750|y1:750) formed from the particles of the 1. hemodynamic state.

SCKF and EKF performed closely. They both approximate the conditional pdf

p(xk|y1:k) as a Gaussian pdf. In the �rst 4 scenarios we used quite low particle numbers.

For Particle Filter type algorithms, for all scenarios we chose 1000 particles, which are

10 times more than the ones used by Johnston et al. [5]. In regard to SMC methods,

the choice of the proposal function is crucial, because standard particle �lters can

work poor in performance since they do not use optimal proposal functions. In many

applications, standard particle �lter algorithm proposed by Gordon et al. [27] is used.

The non-optimal choice of the proposal function decreases the performance of the state

estimation. The optimal importance function is q = p(xk|xik−1, yk), which is di�cult

to calculate. By using the EKF approximation of the optimal importance function,

improved sample diversity is achieved for most process noise conditions, however the

improvement is not huge. The reason is again weak-nonlinearity. One drawback of

PF-EKF is computational complexity. In the PF-EKF method, for every particle, a

speci�c Kalman Filter algorithm is run. As a result, PF-EKF is also the most time

consuming algorithm. By utilizing PF-EKF, APF and PF we show the set of particle
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�lters do not outperform Gaussian approximated methods due to weakly nonlinearity

of the hemodyanmic model. Clearly, EKF and SCKF were faster than PF-EKF.

In the literature, the UKF method is also used by Hu et al. [11]. However,

the cubature Kalman �lter is actually a special case of the Unscented Kalman Filter

[25]. Furthermore, the di�erence between the PF-EKF and SCKS was clear from the

simulation results. Also in the literature, the local linearization �lter (LLF) is used.

LLF is just a special type of EKF that di�ers only in the discretization step used in

the prediction update [5, 9]. In LL the discretization type is the one proposed by [39].

For the discretization type, we chose the standard Euler-Maruyama method similar to

[5]. The time step was small enough to reveal the dynamics of the system. The time

step ∆t = 0.1 was also smaller in size than the ones used by Havlicek et al. [25].

In this thesis, we did not compare PF-EKF with variational based approaches

like DEM, GF and VF proposed by Friston et al. [13, 14, 15]. Because DEM, GF and

VF perform dual estimation. They perform both hemodynamic parameter estimation

-system identi�cation- and state estimation. In this thesis, we are restricted on the

state estimation. However, we compared our algorithm with the �lter part of the SCKS

algorithm implemented by Havlicek et al. [6]. Havlicek et al. compared SCKS with

DEM and concluded that SCKS was a better implementation [6]. PF-EKF was better

in state accuracy compared to SKCF. Since SCKF was Gaussian based approximation

method, we suspected that EKF could also work satisfactorily. Actually �rst Riera

performed a kind of extended Kalman �lter which di�ers in the prediction update due

to the discretization type they used [9]. However, Johnston [5] later compared EKF,

PF and LLF and concluded that EKF is not stable. We checked this assumption in

the widely used physiologically parameter regime [6, 12, 13, 14, 15] and concluded that

EKF can be a successful candidate for state estimation either. The RMS errors in

state estimation were in close proximity with SCKF suggested by Havlicek et al. [6].

Even the EKF performance always slightly better than SCKF. This was in accordance

with our expectations, since SCKF and EKF have the same basic assumption. They

approximate the conditional pdf p(xk|y1:k) with Gaussian density.
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In the hemodynamic state estimation literature, Murray and Storkey [12] worked

several SMC methods. They checked the particle �lters (PF), auxiliary particle �lters

(APF) and regularised particle �lters (RPF) all of which can be categorized under non-

optimal partical �lter methods. They performed smoothing to improve the accuracy.

In this thesis, we did not implement RPF, however we implemented both PF and APF.

In their report, in the smoother context the performance of APF and PF was similar

for Euler-Maruyama discretization. Even APF was slightly worse. In the APF method,

samples are chosen according to the one step ahead measurement data. In some non-

linear estimation problems, this method can improve the RMS error performance [26].

We had comparable results for APF and PF in our simulations. The implementation

of APF is slightly more complex compared to PF.

The proposal type of the PF method used by Johnston et al. [5] was not opti-

mal. In PF, the optimal proposal function p(xk|xik−1, yk) is approximated by p(xk|xik−1).

This makes the steps of the PF very easy to implement. However as we noted before,

using the rather complicated proposal function of PF-EKF, the performance is im-

proved. Johnston et al. used very few particles [5]. With 100 particles, they performed

the state estimation. This is quite unexpected for SMC methods for a nonlinear dy-

namical system with 4-dimensions . However we also note that Johnston et al. added

the random perturbation to the system only in the �rst dimension [5]. In our imple-

mentation, we added noise perturbation in all components which is in accordance with

[6, 13, 14, 15].

As a further note, for multi-input neuronal activations, the hemodynamic model

is only changed in its �rst equation. Having k number of inputs ui(t) where i =

1, 2, · · · , k, we modify the equation as [15]:

ḣ1(t) =
k∑
i=1

εiui(t)− κh1(t)− χ(h2(t)− 1) (6.3)

Here εi for i = 1, 2, · · · , k are the neuronal e�ciency factors corresponding to each



65

neuronal input ui(t). Having an improved version of the �ltering algorithm, we plan

to work for more sophisticated smoothing and hemodynamic parameter estimation

problems in future work.
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7. RESULTS FOR THE HEMODYNAMIC MODEL WITH

UNKNOWN PARAMETERS - JOINT STATE AND

PARAMETER ESTIMATION

In this Chapter, we discuss the various aspects of the IEKS method in detail. In

the �rst section, we work the �lter, smoother and iterative smoother parts for state and

parameter estimation using the simulated data. Extensive comparison is made with

respect to the currently best-known hemodynamic model inversion technique called

SCKS [6]. In the subsequent section, more insight is given to the parameters. We

observe the changes in the BOLD signal by changing the parameters in an interval. In

the last section, having ground-truth validated the IEKS method, we turn our focus to

the application of the IEKS method for a rather complicated multi-input driven BOLD

data.

7.1 Contribution: IEKS as an E�cient Hemodynamic Joint

State and Parameter Estimator

In this section, we performMonte Carlo simulations under �ve di�erent scenarios

with di�erent process and measurement noise conditions. The ground-truth values

for all the parameters of the hemodynamic model de�ned in Equations (3.23), (3.25)

are taken as shown in Table 6.2 and 3.2 which is in accordance with [34]. For each

scenario, 100 Monte Carlo runs are performed. In the �rst set of scenarios 1, 2, and

3, we �x the measurement noise standard deviation to σv = e−6 as in [6] and change

process noise levels. In scenario 1, the process noise standard deviation is as in [6] (i.e.,

σw =
√

∆te−8). In scenarios 2 and 3, we try more challenging process noise conditions

with σw =
√

∆te−6 and σw =
√

∆te−4. In the second set of scenarios, 3, 4, and 5, we �x

the process noise standard deviation to σw =
√

∆te−4, which is the value in scenario 3,

and change the measurement noise levels. We increase the measurement noise variance

to σ2
v = e−11 and σ2

v = e−10 for Scenarios 4 and 5, respectively.
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Table 7.1

Noise Statistics and Initial Values.

Variable Value

Initial State Value X0 [0 0 0 0]

Initial State pdf N (0, 0.01) for each component

Initial Parameter pdf N (θtrue, 1/12) for each component

Parameter Noise wθ N (0, 10−5) for each component

Scenario 1: wk, vk N (0, σ2
w = ∆te−16) for each state component, N (0, σ2

v = e−12)

Scenario 2: wk, vk N (0, σ2
w = ∆te−12) for each state component, N (0, σ2

v = e−12)

Scenario 3: wk, vk N (0, σ2
w = ∆te−8) for each state component, N (0, σ2

v = e−12)

Scenario 4: wk, vk N (0, σ2
w = ∆te−8) for each state component, N (0, σ2

v = e−11)

Scenario 5: wk, vk N (0, σ2
w = ∆te−8) for each state component, N (0, σ2

v = e−10)

A priori information about the states are taken as shown in Table 7.1 similar to

[6]. The state components are all initialized with 0.

In the simulation, for some rare cases, we observed that the second state x2 can

go to −∞. This corresponds to 0 for the original untransformed variable h2. Since the

transformation is of the exponential type, we set a lower limit x2 = −4 (h2 = 0.0183)

for each time step at the �ltering step of EKS. The same limit is also put for the

other variables. The same thing is also done for PF. PF is even more prone to diverge

these limits. The reason is the following: EKF tracks the mean of the state, which is

expected to be in the stable region. But the PF tries to represent the conditional pdf

p(xk|y1:k), including the extreme conditions also. For that reason, they are more prone

to diverge for those particles. The same limits are also put for SCKS.

7.1.1 Comparison of the Filtering Algorithms

In this section, we want to show that the commonly held view that EKF is

not an appropriate �ltering algorithm is not right. Johnston et al. [5] compared EKF

state estimation with particle �lter and concluded that PF outperforms EKF, and it is

stated that EKF diverges most of the time, and as a result, it is not robust and poor in
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Table 7.2

RMS State Errors: Sample Mean and Standard Deviation.

Scenario Number EKF PF EKS

Scenario 1 0.0070 ± 0.0031 0.0075 ± 0.0030 0.0066 ± 0.0029

Scenario 2 0.0095 ± 0.0026 0.0098 ± 0.0026 0.0092 ± 0.0023

Scenario 3 0.0408 ± 0.0034 0.0411 ± 0.0035 0.0344 ± 0.0028

Scenario 4 0.0433 ± 0.0041 0.0434 ± 0.0042 0.0381 ± 0.0036

Scenario 5 0.0454 ± 0.0051 0.0455 ± 0.0050 0.0423 ± 0.0048

performance. We see in this section that, on the contrary, not only state estimation but

also joint estimation of parameter and state is robust and performs better than PF. In

this subsection, we �rst compare the EKF and PF state estimation and show that EKF

performs better. In Table 7.2, the Monte Carlo results of EKF with PF are compared.

In all scenarios, EKF performs better than PF, and it is robust. The particle number

is chosen as 500, which is �vefold more than the case where the original comparison

was made [5].

7.1.2 Performance Improvement by EKS over EKF

In the fMRI state estimation literature, extended Kalman-type estimation al-

gorithms are only used in the �ltering sense [5, 9]. Even the parameter estimation

algorithms which rested on extended Kalman �lter algorithms, rely on the �ltering

algorithm [9]. In this subsection, assuming that we have known and �xed parameters,

our aim is to estimate the hidden hemodynamic states by using extended Kalman �lter

and smoother algorithms. We show the performance improvement in Table 7.2. We

summarize the EKF and EKS state estimation errors in RMS. For high process and

measurement noise conditions, the improvement is more apparent.



69

7.1.3 Joint Parameter and State Estimation with Iterative EKS compared

EKS

A priori information about the parameters are taken as shown in Table 7.1

similar to [6]. The state components are all initialized with 0. Note that the initial

values of all the parameters are assumed to be Gaussian distributed around their true

values with a variance of 1/12 as in [6]. In the literature, Riera [9] used extended

Kalman �lter with the discretization proposed by Jimenez et al. [10] without any

iteration. This is the standart usage of EKF and EKS. For that reason, in this section

we also compare the EKS state RMS error with IEKS utilized in this thesis. Figure

7.1.3 also shows the importance of the iteration. This �gure is a typical representative

for showing the decrease of RMS state error with respect to the iteration number.

The example plot is a particular MC mean estimate for Scenario 2. By increasing

the iteration number, the RMS state errors decrease substantially. Obviously, this

performance shows that iterative EKS outperforms the direct usage of EKS without

iteration.
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Figure 7.1 IEKS and Importance of Iteration.

7.1.4 Joint Parameter and State Estimation with Iterative

We also summarized the Monte Carlo parameter estimation results of the al-

gorithms IEKS and iterative SCKS in Tables 7.3, 7.4, and 7.5. The true value for

the parameters were κ = 0.65, τ = 1.0204 and χ = 0.41. In all �ve di�erent pro-

cess/measurement noise levels, for all parameter values, the accuracy of the estimation

of EKS was better than that of SCKS. Only in one case were they equal. We note that

the bias of the EKS Monte Carlo estimate is less than the bias of the SCKS case. Sim-

ilarly, for the state estimation, the error in RMS is summarized in Table 7.6. Although

the di�erence was not big, for all cases, IEKS was better than the SCKS method.

For all scenarios, Figures 7.2, 7.3, 7.4, 7.7, 7.8, 7.9, 7.12, 7.13, 7.14, 7.17, 7.18,

7.19, 7.22, 7.23 and 7.24 show the gradual parameter convergence of the algorithms

with respect to the iteration number. Figures 7.5, 7.6, 7.10, 7.11, 7.15, 7.16, 7.20, 7.21,
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Table 7.3

Simulation Results for the Parameter κ Estimates.

Scenario EKS κ Estimate SCKS κ Estimate EKS κ Bias SCKS κ Bias

Scenario 1 0.6489 ± 0.0282 0.6511 ± 0.0280 0.0011 0.0011

Scenario 2 0.6494 ± 0.0289 0.6517 ± 0.0288 0.0006 0.0017

Scenario 3 0.6545 ± 0.0556 0.6580 ± 0.0556 0.0045 0.0080

Scenario 4 0.6561 ± 0.0627 0.6588 ± 0.0630 0.0061 0.0088

Scenario 5 0.6560 ± 0.0748 0.6571 ± 0.0752 0.0060 0.0071

Table 7.4

Simulation Results for the Parameter τ Estimates.

Scenario EKS τ Estimate SCKS τ Estimate EKS τ Bias SCKS τ Bias

Scenario 1 1.0219 ± 0.0739 1.0282 ± 0.0740 0.0015 0.0078

Scenario 2 1.0224 ± 0.0739 1.0288 ± 0.0740 0.0020 0.0084

Scenario 3 1.0372 ± 0.1327 1.0460 ± 0.1335 0.0168 0.0256

Scenario 4 1.0492 ± 0.1665 1.0578 ± 0.1679 0.0288 0.0374

Scenario 5 1.0721 ± 0.2266 1.0791 ± 0.2277 0.0517 0.0587

7.25 and 7.26 visualize the estimation bounds for parameter and state RMS errors.

Furthermore, IEKS was much faster than SCKS. Both algorithms are robust

under di�erent measurement noise conditions. As expected, by increasing the mea-

surement noise, the gradual decrease of the performance of the estimates is observed.

The bias and sample variance estimates are increased by increasing the process and

measurement noise variance.
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Table 7.5

Simulation Results for the Parameter χ Estimates.

Scenario EKS χ Estimate SCKS χ Estimate EKS χ Bias SCKS χ Bias

Scenario 1 0.4116 ± 0.0092 0.4131 ± 0.0093 0.0016 0.0031

Scenario 2 0.4111 ± 0.0092 0.4127 ± 0.0092 0.0011 0.0027

Scenario 3 0.4100 ± 0.0164 0.4116 ± 0.0165 0.0000 0.0016

Scenario 4 0.4112 ± 0.0182 0.4136 ± 0.0184 0.0012 0.0036

Scenario 5 0.4124 ± 0.0219 0.4158 ± 0.0221 0.0024 0.0058

Table 7.6

RMS State Errors: Sample Mean and Standard Deviation.

Scenario Number EKS SCKS

Scenario 1 0.0128 ± 0.0038 0.0130± 0.0039

Scenario 2 0.0140 ± 0.0035 0.0143± 0.0036

Scenario 3 0.0374 ± 0.0046 0.0376± 0.0047

Scenario 4 0.0418 ± 0.0053 0.0420± 0.0054

Scenario 5 0.0483 ± 0.0071 0.0486± 0.0074
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Figure 7.2 The convergence of the parameter κ estimate: Scenario 1.
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Figure 7.3 The convergence of the parameter τ estimate: Scenario 1.
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Figure 7.4 The convergence of the parameter χ estimate: Scenario 1.
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Figure 7.6 Scenario 1: State Estimation Bounds.
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Figure 7.7 The convergence of the parameter κ estimate: Scenario 2.
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Figure 7.8 The convergence of the parameter τ estimate: Scenario 2.
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Figure 7.9 The convergence of the parameter χ estimate: Scenario 2.
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Figure 7.10 Scenario 2: Parameter Estimate Bounds.
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Figure 7.11 Scenario 2: State Estimation Bounds.
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Figure 7.12 The convergence of the parameter κ estimate: Scenario 3.
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Figure 7.13 The convergence of the parameter τ estimate: Scenario 3.
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Figure 7.14 The convergence of the parameter χ estimate: Scenario 3.
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Figure 7.15 Scenario 3: Parameter Estimate Bounds.
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Figure 7.16 Scenario 3: State Estimation Bounds.
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Figure 7.17 The convergence of the parameter κ estimate: Scenario 4.
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Figure 7.18 The convergence of the parameter τ estimate: Scenario 4.
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Figure 7.19 The convergence of the parameter χ estimate: Scenario 4.
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Figure 7.20 Scenario 4: Parameter Estimate Bounds.
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Figure 7.21 Scenario 4: State Estimation Bounds.
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Figure 7.22 The convergence of the parameter κ estimate: Scenario 5.
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Figure 7.23 The convergence of the parameter τ estimate: Scenario 5.
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Figure 7.24 The convergence of the parameter χ estimates: Scenario 5.
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Figure 7.25 Scenario 5: Parameter Estimate Bounds.
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Figure 7.26 Scenario 5: State Estimation Bounds.

7.1.5 Discussion

In this thesis, as the second main contribution, we worked on the joint parameter

and state estimation of the hemodynamic nonlinear dynamic system representation. As

pointed earlier, the blood oxygen level dependent (BOLD) signal is a measure for the

localized hemodynamic response, which is observed after neuronal activation [5]. This

response is a nonlinear function of the blood �ow and the blood oxygen content [6].

The general shape of the BOLD response can be represented as a mixture of gamma

functions [40]. Alternatively, the total system representing the hemodynamic response

can be modeled by nonlinear di�erential equations [1, 2, 3]. In the �rst approach, where

the BOLD signal is represented as the sum of gamma functions, the method called

generalized linear model (GLM) is utilized for analysis of the BOLD signal. However,

we followed in this thesis the second main approach which based on the stochastic

di�erential modeling of the hemodynamic system. In this approach, people worked on

advanced model inversion techniques instead of GLM [5, 6, 8, 9, 11, 13, 14, 15]. Our
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algorithms are classi�ed under the same category.

The waveforms of the hemodynamic variables change from subject to subject,

even in di�erent times during the day and di�erent regions of the brain [4], [7]. Model

inversion techniques which perform joint parameter and state estimation are capable

to detect these di�erences by having di�erent estimated parameter sets. The IEKS

method is one of the few model inversion techniques which can be used for that purpose.

In the fMRI model inversion literature, in one of the keystone papers [5], it was

asserted that EKF is not a robust method for state estimation, and its performance was

poor compared with PF. The assertion that EKF is poorer in performance was repeated

in the fMRI literature in several landmark papers without examining speci�cally for

the hemodynamic modeling case [6, 14]. In this thesis, we examined EKF for a variety

of noise conditions and concluded that this is not the case. It even performed better

than particle �lter. We take �vefold more particles than the study in [5], which makes

that assertion. Standard particle �lters were alleged to perform better than the other

hemodynamic state estimation algorithms. In this thesis, we concluded that, on the

contrary, EKF performed better than the other �ltering algorithms. The reason is

that standard particle �lters use a nonoptimal proposal function, which degrades the

performance. There is still room for particle �lters, which may use more sophisticated

proposal functions. The �rst contribution PF-EKF used this fact and resulted in more

accurate state estimation than PF, APF, EKF and SCKF under known parameter

condition.

In this thesis, the importance of the smoothing for both the hemodynamic state

and the parameter estimation is emphasized. To our knowledge extended Kalman-

type algorithms in the fMRI literature have not been used with smoothing so far [5, 9].

The extended Kalman �lter is modi�ed by incorporating the smoother. For �xed

hemodynamic parameters, we checked the state estimation improvement for various

noise conditions. Especially for higher conditions, the improvement was more apparent

compared to SCKS.
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Furthermore, in the standard application of the �ltering and smoothing, EKF

and EKS are performed only one time. By iteratively calling EKF and EKS after each

new parameter estimate, we noticed the huge improvement over non-iterative usage.

This improvement is shown in Figure 7.1.3. As a result, EKS is just the special case

of IEKS with just one iteration. Like Havlicek et al. [6] and Hu et al. [11], we treated

the parameters as time-varying variables by adding arti�cial dynamics. We iterated

the algorithm until the IEKS algorithm converged. The improvement of the parameter

estimation of the hemodynamic model with respect to the iteration number is shown

under a variety of noise conditions in Figures 7.2, 7.3, 7.4, 7.7, 7.8, 7.9, 7.12, 7.13,

7.14, 7.17, 7.18, 7.19, 7.22, 7.23 and 7.24 . Havlicek et al. compared the iterative

usage of SCKS with DEM and concluded that SCKS is more accurate in their pa-

per [6]. In this report, IEKS is compared with iterative SCKS under di�erent noise

conditions. The �rst scenario we used has the same noise conditions as in [6]. This

model has a very low process noise covariance. Even in this condition, our method was

more accurate for both the state and the parameter estimation. Overall, both methods

were good. For low process and measurement noise, it is quite reasonable to approx-

imate the densities by Gaussian density, because the system is almost deterministic.

As a result, we expected that EKS and SCKS perform well. However, in nonlinear

systems, even the additive noise is Gaussian; the conditional densities p(xk|y1:k) and

p(xk+1|y1:k) actually deviate from the Gaussian assumption. The higher the covariances

of the noises, the more severe these conditional densities deviate from the Gaussian

assumption. Although this is the case, for the hemodynamic model, Gaussian approx-

imated approaches worked quite well. We tested the algorithms under �ve di�erent

process/measurement noise conditions. IEKS was more accurate than iterative SCKS

for both parameter and state estimation for all cases.

Besides the ease of implementation of EKS, it was also much faster than SCKS.

EKS is around 2.3 times faster than SCKS.

In the fMRI model inversion literature, Riera et al. [9] used a kind of extended

Kalman �lter where the discretization was not based on the Euler-Maruyama method.

They used the method proposed by Jimenez et al. [10]. Hu et al., on the other hand,
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used the unscented Kalman �lter (UKF) [22] for the estimation of the hemodynamic

model states and parameters [11]. Riera et al. [9] and Hu et al. [11] used these

techniques in a forward pass manner without smoothing. The early attempts in the

fMRI model inversion literature disregarded the state noise. For example, in [1] Friston

et al. models the input and the output relation via Volterra kernels. Later, Friston

used a Bayesian estimation technique [8] to �nd the posterior of the parameters again

under zero state noise assumption. Later, Friston et al. suggested advanced techniques

based on variational �ltering in which he also included the nonzero state noises in

the model [13, 14, 15]. Variational �ltering techniques assume factorization of the

parameters and states. Dynamic expectation maximization (DEM) is the most popular

of them. As Havlicek et al. pointed out, DEM also works in the forward pass manner

[6]. Johnston et al. [5] used particle �lters, without using any smoothing. However,

Murray and Storkey [12] used particle smoothers. Most recently, Havlicek et al. [6] used

the square-root cubature Kalman smoother (SCKS) and obtained quite a remarkable

success compared with DEM under certain noise conditions. Most of the signal analysis

techniques in the fMRI literature can be regarded as a kind of Gaussian approximated

model inversion technique [6, 9, 11]. IEKS is included in the same category.

So overall, EKF is not an unreliable model inversion method. It is better than

the PF algortihm claimed as the most successful one in [5]. The iterative EKS is

substantially more accurate than the formerly used EKF-type algorithms in the fMRI

model inversion literature. EKS is robust under a wide range of noise conditions.

IEKS is faster and has lower parameter bias and more accurate state estimation than

the SCKS method, which seems to work best among the current fMRI model inversion

methods [6] for all the noise levels we worked. We discuss the features of IEKS more

in the last section when utilizing IEKS for real BOLD data.

7.1.5.1 Parameter Sweep and the BOLD Signal. In this section we want to

observe the changes in the hemodynamic state variables and the BOLD signal with

respect to the parameter changes. We let the parameter values as in Tables 6.2 and

3.2. We sweep the parameters for κ in the interval [0.35 1.05], τ in the interval [0.32
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2.32], χ in the interval [0.21 1.01], ε in the interval [0.01 0.51]. Figures 7.27, 7.28, 7.29

and 7.30 the BOLD signal change with respect to the parameters κ, τ, χ, ε, respectively.
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Figure 7.27 BOLD signal change with respect to κ change. κ is changed over the interval [0.35;1.05].
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Figure 7.28 BOLD signal change with respect to τ change. τ is changed over the interval [0.32;2.32].
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Figure 7.29 BOLD signal change with respect to χ change. χ is changed over the interval [0.21;1.01].
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Figure 7.30 BOLD signal change with respect to ε change. ε is changed over the interval [0.01;0.51].

7.2 Real Data and the IEKS method

7.2.1 Background Information: Test Setup and BOLD Data

In this section, we want to show the validity of the IEKS method on a real BOLD

data. This data was also used by Friston et al. to show the practical applicability of

their model inversion methods DEM, VF and GF [13, 14, 15] 1

The BOLD data was collected from the motion sensitive area V5. During the

test, the subject was exposed to 5 di�erent conditions. The �rst one was to allow for

magnetic saturation e�ects [13, 14, 15]. In the second one called "Fixation", subject

was viewing a �xation point in the screen. In the third one called "Attention", subject

was viewing 250 dots. Those dots were moving radially by 4.7◦ from the center. At the

1We thank Professor Karl Friston to give consent us to use BOLD data in our researches.
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Figure 7.31 Real BOLD data is collected from the motion sensitive area V5. The sampling time
TR is 3.22 sec. The �rst 256 samples were used for model inversion.

same time, the subject was supposed to detect the changes in radial velocity [13, 14, 15].

In the fourth one called "No Attention", the person was just viewing the moving dots.

In the �fth one, the person was supposed to view the stationary points. During the

entire test, the subject was exposed to the �xation and visual stimulus conditions

alternatively.

Friston et al.[13, 14, 15] modeled these �ve di�erent conditions as a combination

of 3 di�erent neuronal inputs . The �rst one is visual stimulus, the second one is

motion stimulus and the third one is the attention stimulus represented by u1, u2 and

u3, respectively. Each neuronal input is modeled by boxcar functions. For example

for the third condition "Attention", in those time instants u1, u2 and u3 have all the

value 1. The reason is that in the "Attention" condition the person is supposed to

view, track the motion and shall attend the changes in radial velocities [13, 14, 15]. In

the "No attention" condition u1, u2 and u3 are 1, 1 and 0, respectively. The reason

is that in this condition the person views, tracks the motion but there is nothing for

attention. In the �fth condition u1, u2 and u3 are 1, 0 and 0. The reason is that there
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is visual stimulus, but the dots are not moving and there is nothing for the attention.

Similarly, in the "Fixation" condition u1, u2 and u3 are all 0. One further note is that

Friston et al. [13, 14, 15] have the real BOLD signal with DC value 0 and remove the

DC values from u1, u2 and u3 . As a result, they used the neuronal input sequences

depicted in Figure 7.32 [13, 14, 15].

0 1000 2000 3000 4000 5000 6000
−1

−0.5

0

0.5

1

1.5

N
eu

ro
na

l I
np

ut

time bin with ∆t=0.2

Neuronal Input vs. time

 

 

Neuronal Input − Vision
Neuronal Input − Motion
Neuronal Input − Attention

Figure 7.32 In this setup, the person was exposed to 3 di�erent neuronal inputs. They are Vision,
Motion and Attention. Those neuronal inputs are modeled as boxcar functions. During the test, the
person was subject to 5 di�erent conditions. Those are Saturation, Fixation, Attention, No Attention
and Motion View. Depending on the condition, for each neuronal input, we have the value of either
1 or 0. Following Friston et al. [13, 14, 15], DC values of the inputs are removed.

7.2.2 Extended Hemodynamic Model for Multi-Input System

Since we have in this setup a rather complicated multi-input system, we extend

the nonlinear hemodynamic system to the following nonlinear di�erential equation

system.
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Table 7.7

Noise Statistics and Initial Values.

Variable Value

Initial State Value X0 [0 0 0 0]

Initial State pdf N (0, 0.01) for each component

Initial Parameter pdf N (0, 1/12) for ε1, ε2, ε3

Initial Parameter pdf N (0.65, 1/12),N (1.02, 1/12),N (0.41, 1/12) for κ, τ, χ respectively

Parameter Noise wθ N (0,∆t10−8) for each component

Process Noise: wk N (0, σ2
w = ∆te−8) for each state component

Measurement Noise: vk N (0, σ2
v = e−12)

ḣ1(t) = ε1u1(t) + ε2u2(t) + ε3u3(t)− κh1(t)− χ(h2(t)− 1) (7.1)

ḣ2(t) = h1(t) (7.2)

ḣ3(t) = τ(h2(t)− F (h3(t))) (7.3)

ḣ4(t) = τ(h2(t)E(h2(t))− F (h3(t))
h4(t)

h3(t)
) (7.4)

Here ε1, ε2 and ε3 are the neuronal e�ciency factors for the neuronal inputs

u1, u2 and u3 respectively. In this setup ε1, ε2 and ε3 give information how much the

selected brain region is sensitive to the vision input u1, to motion input u2 and to

attention input u3, respectively.

In order to have a best estimate for the parameter set θ = [ε1, ε2, ε3, κ, τ, χ]. We

performed a Monte Carlo simulation and began with di�erent initial parameter sets.

The initial parameter set and noise conditions are chosen according to Table 7.7.

7.2.3 Results: IEKS Model Inversion

In this section, we apply the IEKS method to the BOLD data. We perform

Monte Carlo simulation with 100 runs to estimate the parameters. The initial param-
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eter set θ = [ε1, ε2, ε3, κ, τ, χ] is chosen according to the prior statistics given in Table

7.7. We iterate until the algorithm converges. The IEKS algorithm converged to 2

values which are global and local optima. We denote the two parameter sets as θg and

θl.

θg = [0.1024, 0.2102, 0.0175, 0.7285, 0.4981, 0.6460] (7.5)

θl = [0.0329, 0.0776, 0.0091, 0.6349, 2.2990, 0.2381] (7.6)

When we note the neuronal e�ciency factors ε1, ε2 and ε3, we observe close resemblance

of the converged sequences to the ones reported by Friston et al. [13, 14, 15]. Both θg

and θl shows the neuronal activation most for ε2 which corresponds for the "Motion"

condition. Somewhat for ε1 which corresponds to the "Vision" condition and almost

nothing for "Attention" condition. The di�erence is in the strength.

For each simulation and at every iteration, RMS error in the BOLD signal

prediction is evaluated according to the formula.

erms =

√√√√ 1

N

N∑
k=1

‖ŷk − ypk‖
2 (7.7)

where yk and y
p
k is the real and predicted BOLD signal, respectively.

RMS errors for global optimum value are lower than the ones for local opti-

mum. Furthermore, at every iteration, the global optimum RMS values are improved,

whereas the local optimum RMS errors are getting worse. The parameter estimates

which converge to global optima and local optima are shown in Figures 7.33 and 7.35.

Similarly, the RMS errors in prediction can be seen in Figures 7.34 and 7.36.
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Figure 7.33 The simulations which converge to global optima θg. Speci�cally, we estimate the
parameter set θ = [ε1, ε2, ε3, κ, τ, χ] which converged to the global optima θg.
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Figure 7.34 The simulations which converge to global optima. For every iteration, the RMS error
of the prediction is shown. At every step, the RMS errors are decreasing. After around 25 iterations,
the algorithm converges.
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Figure 7.35 The simulations which converge to local optima. Speci�cally, we estimate the parameter
set θ = [ε1, ε2, ε3, κ, τ, χ] which converged local optima is θl.
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Figure 7.36 The simulations which converge to local optima. For every iteration, the RMS error of
the prediction is shown. At every step, the RMS errors are increasing. After around 200 iterations,
the algorithm converges.
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7.2.4 Discussion

The IEKS method converged to the parameter set θg. When we check to which

input the selected region is most sensitive, then we observe that ε2 is, as expected,

signi�cantly bigger than ε1 and ε3. This result is in close agreement with Friston et

al. [13]. They used DEM for model inversion. As here, they have relatively high ε2

estimated region. We also visualize the results in Figure 7.37. Almost nothing for ε3 for

"Attention" case. We have the similar moderate result for ε2 for "Vision" condition.
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Figure 7.37 The estimated neuronal e�ciency factors ε1, ε2, ε3 are shown. These factors are associ-
ated with neuronal inputs "Vision" u1, "Motion" u2 and "Attention" u3. ε2 gives information about
how much the selected brain region is responsive to the motion input. The selected region was the
motion sensitive area V5. The results are very similar to the work of Friston et al. [13].

Interestingly, for the local converged sequence, we have similar estimates to

Friston et al. [15] where they used GF algorithm. Their estimates for the neuronal

e�ciency coe�cients ε1, ε2, ε3 are in close agreement with the ones for θl.

One note to our observations is we have multi-modal convergence. In Section

7.1.5.1, we plotted the BOLD response changes with respect to the parameter changes.
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When one begins with an arbitrary set of θ value then the �rst predicted BOLD re-

sponse is quite di�erent from the real one. The amplitude of the response is changed

by either changing ε or χ value. Assuming the �rst predicted BOLD response is low in

amplitude, in order to decrease the error, the most reasonable change is either having

higher ε or lower χ value. This is exactly seen in the di�erence of the θg and θl val-

ues. For the local optima θl, the low strength in the ε parameters are compensated by

the low χ value. According to our observation, the methods of Friston et al. [13, 15]

converged either to the local or global optima depending on their initial condition.

DEM, VF and GF of Friston et al. [13, 14, 15] rest on a prior pdf for the

parameters. They impose some prede�ned pdf with some prior mean and variance

statistics. For that reason, we think that the algorithm may be more dependent on the

initial estimate. For testing this, we also initialized the θ value to the prior means of

Friston et al. [15] with θ = [0, 0, 0, 1.2, 2.14, 0.31]. With this initial parameter set θ, we

ended as expected to the local optima which is in accordance with GF result.

Now, we turn our focus to the importance of the parameter variance to see more

insight of the IEKS algorithm.

7.2.4.1 Parameter Variance and Convergence. When applying IEKS, we chose

the parameter variance as N (0,∆t10−8) for each parameter. We should note that we

treat the parameters as arti�cially varying variables with small enough steps.

θk+1,1 = θk,1 + wk,1 (7.8)

θk+1,2 = θk,2 + wk,2 (7.9)

· · · (7.10)

θk+1,p = θk,p + wk,p (7.11)

Having small variance is important. When the algorithm converges, we prefer a rather

�xed value throughout the time index. For the converged parameter sequence, the end

result of the IEKS algorithm looks like in Figure 7.38.
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Figure 7.38 The importance of the parameter variance. Plots are taken from the converged global
optimum θg. We chose the variance small enough (σ2

w = ∆te−8) to ensure �xed value for parameter
estimate throughout the time index. As can be seen from the graph the parameter is a rather �xed
value as desired.

Let us see what happens if we increase the parameter variance. We performed

again Monte Carlo simulation. We chose, in this case, perturbation as N (0,∆t10−6).

Now, there is an interesting fact here. We have only a single optimum. All the param-

eters converge to the same θ = [0.0055, 0.2452, 0.0459, 0.7643, 0.4735, 0.7320]. Figures

7.39 and 7.40 show the convergence of the runs with di�erent initial conditions. One

thing we note is that the convergence speed is increased. In less than 15 iteration

number, the algorithm converged.
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Figure 7.39 The simulations which converge to global optima θg. This time, the parameter variance
is increased to σ2

w = ∆te−6. Speci�cally, we estimate the parameter set θ = [ε1, ε2, ε3, κ, τ, χ]

.
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Figure 7.40 The simulations which converge to global optima. This time, the parameter variance
is increased to σ2

w = ∆te−6. For every iteration, the RMS error of the prediction is shown. At every
step, the RMS errors are decreasing. After around 25 iterations, the algorithm converges.
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We have the following important observation. Having increased parameter vari-

ance seems to force the IEKS method to search in a wider parameter region, which

eased IEKS to escape from the local optima. However, this is at the cost of loosing the

precision. To see this fact, we also plot the parameter estimates with respect to the

time index. Figure 7.41 shows the �uctuation of the parameter estimate around the

global optima.
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Figure 7.41 Importance of the parameter variance. This time, parameter variance increased to
the value ∆t10−6. We run the IEKS algorithm until convergence. For the converged θ, we plot the
parameters with respect to the time index. There is only one optima, but we have lost the �xedness
in time. The parameters �uctuate around the global optima point.

Although we solved the parameter identi�cation problem in the former section

completely, in the next subsection we will perform an interesting re�nement to the

algorithm.

7.2.4.2 IEKS Switched Parameter Variance. In nonlinear systems, it is quite

often that there exists multi-modal optima. In our case, for low parameter noise, IEKS

converged also to local optima. By performing multiple runs we could identify the

global optimum. We veri�ed that the converged one has also �xed value through the
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time index. One other observation was having high parameter noise enables for the

IEKS method to search in a wider parameter regime. As a result, IEKS could escape

the local optima. However, when IEKS converges then the parameter is not �xed as

desired. It �uctuates around the global optima. At this point, we suggest a very simple

modi�cation to the algorithm. First, begin with the high parameter noise, subsequently

switch to the low parameter noise. We performed this switch at the iteration number

10. As a result, we have a very nice result which is shown in Figure 7.42
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Figure 7.42 Convergence of the parameters when applying the switched parameter variance. First,
IEKS begins with the high parameter noise (σ2

w = ∆te−6). After the iteration number 10, we have
the parameter noise variance as (σ2

w = ∆te−8). This way, IEKS converged to the same global optima
as in the low parameter variance case. There is only a single optimum. Furthermore, IEKS converged
faster.

This way, our algorithm converged to the same global optima as in the low

parameter noise condition for all initial conditions. There is no more local optima.

At the switch time, we see the further improvement in the estimation. As a result,

in less than 15 iteration numbers, IEKS method converged to the true global optima

irrespective of the initial condition.
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7.2.4.3 Estimated Hemodynamic Variables. At this point, we will check the

estimated hemodynamic variables at the global optima of the estimated parameter

set. Following Friston et al. and Havlicek et al. [6, 13, 14, 15], we plot the signal h1

and the log-transformed hemodynamic variables blood �ow h2, blood venus volume h3

and blood deoxyhemoglobin content h4 . The result is shown in Figure 7.43. During

stimulus instances, an increased blood �ow is observed. Subsequently, blood venus

volume is increased. At �rst, initial dip of deoxyhemoglobin is also observed. Those

results are in agreement with the theory and results of Friston et al. [13, 14, 15].
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Figure 7.43 The estimated hemodynamic variables which converged at the global optima θg. The
graph is in accordance with the theory and the previous results in the fMRI literature. During stimulus
instances, an increased blood �ow is observed. Subsequent the change in the increased blood �ow,
blood venus volume is increased and the initial dip of deoxyhemoglobin content is observed.

By using the predicted hemodynamic variables, we calculated the predicted

response and plotted the prediction error in Figure 7.44.
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Figure 7.44 The prediction error in the BOLD signal. Here, sampling interval is ∆t = 3.22 sec. The
real BOLD signal is plotted by the blue color, whereas the prediction error is plotted by the red color.
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8. CONCLUSION

In this thesis, we worked on the nonlinear state estimation of the hemodynamic

model using the Friston-Buxton model. We worked for both known and unknown pa-

rameter case. For the known parameter case, we showed that hemodynamic models are

suitable for Extended Kalman �lter algorithms. We saw that Gaussian approximated

inference methods were better than particle �lter type algorithms for the hemody-

namic state estimation. Standard particle �lters use non-optimal proposal function

which degrades the accuracy of the method. We also implemented particle �lter with

EKF approximated optimal proposal function (PF-EKF). By using the EKF approxi-

mation of the optimal importance function, improved sample diversity is achieved for

most process noise conditions, however the improvement is not huge. Particle �lter

type algorithms like APF, PF, PF-EKF were not better than Gaussian approximated

inference methods. This was the contrary to the former belief that EKF is poor in

performance. We checked this assumption under a wide range of noise conditions,

di�erent inputs, nearly all parameter sets used in the literature and unknown initial

condition. We also checked the histograms of the posteriors of the particle �lters and

concluded that the hemodynamic model is weakly nonlinear.

The second part of the thesis was the unknown parameter case. In this thesis,

the iterative extended Kalman smoother method was implemented for the fMRI model

inversion for both hemodynamic state and parameter estimation. Current extended

Kalman-type fMRI model inversion algorithms work only in the �ltering sense. By

utilizing smoothers, we noticed improvement for the hemodynamic state estimation

in a wide range of noise conditions. The joint state and parameter estimation of

the hemodynamic model was performed by treating the parameters as time-varying

variables. The joint estimation of the parameters and states was robust by using

the iterative EKS algorithm. The IEKS algorithm was compared with EKS and the

iterative square-root cubature Kalman smoother algorithm for di�erent process and

measurement noise conditions. In all conditions, IEKS outperformed EKS. Especially
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in the higher noise conditions, the improvement was more profound. IEKS was also

more accurate than the iterative SCKS method in terms of lower parameter bias and

lower state RMS error. EKS was also more than twice faster than SCKS. Since SCKS

is known to be the most accurate model inversion technique, the IEKS algorithm is a

powerful and robust alternative to the former fMRI model inversion techniques.

We also tested IEKS for a rather complicated multi-input hemodynamic model.

The dataset we work was used in a variety of works in the fMRI literature [13, 14, 15].

From the real BOLD signal, IEKS successfully estimated hemodynamic variables and

parameters. Those results were in agreement with the literature. In nonlinear esti-

mation problems, there exits quite often multi-modal optimum values. We observed

that former model inversion algorithms stuck in local optima in some cases. We an-

alyzed the IEKS method in depth by studying di�erent parameter variances. By a

small re�nement of the algorithm we were able to escape from the local optima either.

The re�nement was using di�erent parameter variances in di�erent iteration numbers.

First, by using high parameter variance IEKS method traces in a rather high parameter

regime, in the successive steps the variance is decreased to converge to global optima

and to have rather �xed parameter value throughout the time index. As a result, IEKS

was both successful in theory and application.

8.1 Future Work

The �rst contribution of the thesis was PF-EKF, which was an improved �ltering

method compared to the techniques used in the fMRI literature. We plan to work on

further improving the hemodynamic state estimation by utilizing smoothing techniques.

Smoothing of the hemodynamic variables is not much evaluated in the fMRI literature

compared to the �ltering methods. We want to make a thorough analysis of the possible

hemodynamic smoothing techniques. We want to suggest a new implementation like

we did in the �ltering problem. For the second contribution, having ground-truth

validated the IEKS method and its application to the real data, we want also work

on the functional near infrared spectroscopy (fNIRS) model inversion. fNIRS and
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fMRI have the same hemodynamic state transition function but di�er in measurement

function. For that reason we hope that our method is also applicable for fNIRS systems.

We want also look for the application opportunities of IEKS for Brain Machine Interface

(BMI) and clinical applications.
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APPENDIX A.

A.1 Proof of Kalman Filter

Here, a short sketch of the proof of the Kalman �lter is given. We will use two

properties [41].

Property 1:

For a jointly Gaussian pdf given by:X
Y

 = N (

µX
µY

 ,
 ΣX ΣXY

ΣY X ΣY

) (A.1)

Here µX and µY are the means of the individual components of the 2-dimensional

vector

X
Y

. ΣX , ΣXY , ΣY X and ΣY are the individual components of the covariance

matrix of the 2-dimensional vector

X
Y

. The conditional statistics of p(X|Y ) is given

as follows:

p(X|Y ) = N (µX|Y ,ΣX|Y ) (A.2)

where µX|Y and ΣX|Y is given by:

µX|Y = µX + ΣXY Σ−1Y (Y − µY ) (A.3)

ΣX|Y = ΣX − ΣXY Σ−1Y ΣY X (A.4)

Property 2:

p(xk, yk|y1:k−1) = N (

 µk|k−1

Cµk|k−1

 ,
 Σk|k−1 Σk|k−1C

T

CΣk|k−1 CΣk|k−1C
T +R

) (A.5)
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When we apply property 1 for the pdf given in the property 2 we end up with

the conditional Gaussian

p(xk|yk, y1:k−1) = p(xk|y1:k)N (xk;µk|k; Σk|k) (A.6)

where with the mean and covariance updates:

µk|k = µk|k−1 + Σk|k−1C
T (CΣk|k−1C

T +R)−1(yk − Cµk|k−1) (A.7)

Σk|k = Σk|k−1 − Σk|k−1C
T (CΣk|k−1C

T +R)−1CΣk|k−1 (A.8)

Note that Property 2 is straightforward. In the Kalman �lter algorithm, the

expression Σk|k−1C
T (CΣk|k−1C

T +R)−1 is denoted as Kalman gain.

A.2 Proof of RTS Kalman Smoother

Following Cemgil [41], we again use two properties. Afterwards we will be able

to obtain an expression of xk in terms of xk+1, from which we will easily derive the

update equation of statistics of p(xk|y1:K) in terms of the statistics p(xk+1|y1:K). Again

we remind the property for the joint Gaussian pdf's.

Property 1:

For jointly Gaussian pdf given by:

X
Y

 = N (

µX
µY

 ,
 ΣX ΣXY

ΣY X ΣY

) (A.9)

p(xk|xk+1, y1:k) = N (xk; µ̄; Σ̄) (A.10)
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where with the mean and covariance updates:

µX|Y = µX + ΣXY Σ−1Y (Y − µY ) (A.11)

ΣX|Y = ΣX − ΣXY Σ−1Y ΣY X (A.12)

This time we have the property similarly:

Property 2:

p(xk, xk+1|y1:k) = N (

 µk|k1
Aµk|k

 ,
 Σk|k Σk|kA

T

AΣk|k AΣk|kA
T +Q

) (A.13)

It is very easy to prove the mean and individual covariance components of property 2.

Now again applying Property 1 for the joint pdf given in the Property 2. We

end up

p(xk|xk+1, y1:k) = N (xk, µ̃, Σ̃) (A.14)

µ̃ = µk|k + Σk|kA
T (AΣk|kA

T +R)−1(xk+1 − Aµk|k) (A.15)

Σ̃ = Σk|k − Σk|kA
T (AΣk|kA

T +Q)−1AΣk|k (A.16)

= Σk|k − Σk|kA
T (AΣk|kA

T +Q)−1AΣk|k (A.17)

= Σk|k − JkAΣk|k (A.18)

We worked on the conditional pdf p(xk|xk+1, y1:k) which is a Gaussian density.

For a Gaussian random variable, the mean and covariance are enough to describe its

pdf. From these expressions, our aim is to obtain a relationship between xk and xk+1.

This expression is:

xk = (I − JkA)µk|k + Jkxk+1 + ek (A.19)
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where

ek = N (0, Σ̃) (A.20)

Jk = Σk|kA
T (AΣk|kA

T +Q)−1 (A.21)

Note that it is routine to show that this expression contains the statistics information

which we obtained in Eq. A.14. After obtaining this intermediate step which exhibits

the relation between the random variables xk and xk+1 we can derive the smoothed

statistics of these random variables. We project these random variables to the space

generated by the random variables y1, y2, ..., yK . Otherwise stated, we take the condi-

tional expectation of the above expression in both sides of equality. We arrive �rst the

mean statistic.

µk|K = µk|k + Jk(µk+1|K − µk+1|k) (A.22)

In order to calculate Σk|K

Σk|K = cov(xk − µk|K) (A.23)

= cov(Jk(xk+1 − µk+1|K) + ek) (A.24)

= JkΣk+1|KJ
T
k + Σk|k − JkAΣk|k (A.25)

= Σk|k + JkΣk+1|KJ
T
k − JkΣk+1|kΣ

−1
k+1|kAΣk|k (A.26)

= Σk|k + JkΣk+1|KJ
T
k − JkΣk+1|kJ

T
k (A.27)

= Σk|k + Jk(Σk+1|K − Σk+1|k)J
T
k (A.28)

which concluded the proof RTS Kalman Smoother.

A.3 QR Decomposition

Let X be any matrix. The QR decomposition of the matrix XT results in an

orthogonal matrix Q and upper triangular matrix R such that the following property
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is true [6].

XT = QR (A.29)

For the QR decomposed matrices we have the following remarkable property.

XXT = RTR (A.30)
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