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ABSTRACT

REVEALING GENE INTERACTIONS USING BAYESIAN
NETWORKS

High throughput biological data (HTBD) targeting understanding of biochem-

ical interactions in the cell can best be analyzed, and explained within the context of

networks and pathways. Such data generally represents stochastic nonlinear relations

embedded in noise. Bayesian Network (BN) theory provides a framework to analyze

the data regarding gene regulation measurements, as this framework naturally handles

the aforementioned obstacles.

In this dissertation, we provide a two faceted approach to the applications of BNs

to HTBD. In the �rst facet, a novel method is provided, which models known biological

pathways as BNs, and uses given HTBD to �nd pathways that best explain underlying

interactions. During this process, biological pathways are converted to directed acyclic

graphs, and a score measuring �tness of the observed HTBD to a given network is

calculated. Statistical signi�cance of these scores is assessed by "randomization via

bootstrapping", and relevant pathways are identi�ed with a certainty that can be used

as a comparative measure. Simulations using synthetic and real data demonstrated

robustness of the proposed approach, called Bayesian Pathway Analysis (BPA). BPA

provides improvement over existing similar approaches by not considering genes in a

pathway simply as a list, but incorporating to its model the topology via which genes

in a given pathway interact with each other. Although network learning techniques

are very useful to reveal the underlying biological phenomena with the help of HTBD,

these techniques do not always perform well. This is due to the problems created by

the small number of samples, inconvenient initial choice for the network structures,

noise inherent in the data, and the complexity of the networks. To improve their

performance, the learning techniques can be supported by prior biological knowledge,

which are already veri�ed by experimental assays.



v

In the second facet explored in this dissertation, we established a global approach

to integrate known biological information to Bayesian learning in order to reveal gene

interactions. The proposed framework makes use of external biological knowledge to

predict if two given genes interact with each other. To this end, prior knowledge about

interaction of two genes is utilized by generating a Bayesian Network Prior (BNP)

model, using existing external biological knowledge. External knowledge types to be

utilized were obtained from interaction databases such as BioGrid and Reactome, and

consist of protein-protein, protein-DNA/RNA, and gene interactions. The resulting

model is incorporated into greedy search algorithm for learning networks from HTBD,

and interacting genes are represented in the form of a network. In this process of net-

work generation, the BNP model deducing gene interactions from external knowledge

are used to calculate the probability of candidate networks to enhance the structure

learning task. Simulations on both synthetic and real data sets showed that the pro-

posed framework can successfully enhance identi�cation of the true network, and be

used in predicting gene interactions.

Keywords: Bayesian Networks, Gene Networks, Gene Interaction, Microarray, Data

Integration, Pathway Analysis, Probabilistic Graphical Models
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ÖZET

GEN ETK�LE��MLER�N�N BAYEZYEN A�LAR �LE
ORTAYA ÇIKARILMASI

Hücre içindeki biyokimyasal etkile³imlerin anla³�lmas�n� hede�eyen yüksek ç�k-

t�l� biyolojik veriler, en iyi a§ ve patikalar ba§lam�nda analiz edilebilir ve aç�klan-

abilir. Bu veri, genelde gürültü içine gömülü lineer olmayan stokastik ili³kileri temsil

eder. Bayezyen A§ teorisi, gen düzenleme ölçümleriyle ilgili verileri analiz etmek için

bir çat� sa§lar. Çünkü bu çat� bahsi geçen engelleri do§al olarak ele al�r. Bu tezde,

altta yatan biyolojik etkile³imleri en iyi aç�klayan patikalar� bulmak için, bilinen biy-

olojk patikalar� Bayezyen a§lar olarak modelleyen ve verilen bir mikrodizi deneyinin

sonuçlar�n� yans�tan yeni bir yöntem verilmi³tir. Bu i³lem s�ras�nda, biyolojik patikalar,

yönlü çevrimsiz gra�ara dönü³türülür ve gözlenmi³ mikrodizi verisinin verilen bir a§a

ne kadar uydu§unu ölçen bir skor hesaplan�r. Bu skorlar�n istatistiksel önemi, "önyük-

leme ile rasgelele³tirme yöntemi" ile de§erlendirilir ve uygun patikalar, kar³�la³t�rma

ölçüsü olarak kullan�labilecek bir kesinlik ile tespit edilir. Sentetik ve gerçek veri kul-

lan�lan simülasyonlar, Bayezyen Patika Analizi (BPA) olarak adland�r�lan bu öner-

ilen yöntemin sa§laml�§�n� göstermi³tir. Önerilen yöntem, var olan benzer yöntemlere

göre geli³me sa§lam�³t�r. Çünkü, bir patikada bulunan genler basitçe bir liste ³eklinde

dü³ünülmez ve verilen bir patikadaki hangi genlerin birbiriyle etkile³ti§inin topolojisi

modelle birle³tirilir.

A§ ö§renme teknikleri, altta yatan biyolojik olaylar� mikrodizi deneyleri yard�m�yla

ortaya ç�karmaya çok yararl� olmas�na ra§men, bu a§lar gerçek biyolojik patikalara

çok uzak olabilir. Bunun sebebi, veri içinde genler için az say�da örnek olmas�ndan

dolay� ve uygun olmayan ba³lang�ç a§ yap�s� seçiminden kaynaklanan problemlerdir.

Ö§renme teknikleri, önceden deneysel testlerle do§rulanm�³ öncül biyolojik bilgi ile

desteklenmelidir. Bilinen genler ve düzenleyici patikalar hakk�ndaki bilgilerin kullan�l-

mas�, statik ve dinamik Bayezyen a§lar�n ö§renilmesinin do§ruluk ve performans�na

en ileri zemini sa§layabilir. Ama, bilindi§i kadar�yla, gen etkile³im a§lar�nda her tip
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bilgi kayna§�ndan gelen harici öncül bilginin kullan�lmas�na yönelik genel bir kurulu

metodoloji bulunmamaktad�r.

Bu tezin amaçlar�nda biri, gen etkile³imlerinin ortaya ç�kar�lmas� için hem statik

hem de dinamik Bayezyen a§ ö§renme i³lemine, bilinen biyolojik bilgileri entegre et-

mek için global bir yakla³�m�n kurulmas�d�r. Harici biyolojik verilerden faydalanarak

iki genin birbiriyle etkile³ip etkile³medi§ini tahmin etmek için bir çat� önerilmi³tir.

Buna yönelik olarak, bilinen biyolojik veriyi, gen etkile³imlerinin ortaya ç�kar�lmas�nda

kullanabilmek ad�na, var olan biyolojik verilerden Bayezyen a§ üretilmi³tir. Kullan�lan

harici veri tipleri, protein-protein, protein-DNA/RNA ve gen etkile³imlerinden olu³-

makta olup, BioGrid ve Reactome gibi etkile³im veritabanlar�ndan elde edilmi³tir. �lk

olarak, bilinen gen etkile³imlerini kullanarak parametre ö§renme yöntemi kullan�larak,

verilecek iki genin etkile³ip etkile³medi§ini tahmin edecek Öncül Bayezyen A§ (ÖBA)

modeli in³a edilmi³tir. Elde edilen model, yüksek ç�kt�l� biyolojik veriden a§ ö§renme

için greedy arama algoritmas�na entegre edilir ve etkile³en genler bir a§ formunda

sunulur. Bu a§ üretimi i³leminde, harici biyolojik veriden etkile³en genleri bulan Öncül

Bayezyen A§ (ÖBA), yap� ö§renme görevinde aday a§lar�n olas�l�§�n� hesaplamak için

kullan�l�r. Hem sentetik hem gerçek veri setleri ile yap�lan simülasyonlar göstermi³tir

ki önerilen çat�, gerçek a§lar�n belirlenmesini ba³ar�l� bir ³ekilde geli³tirebilir ve gen

etkile³imlerinin tahmin edilmesinde kullan�labilir.

Anahtar Sözcükler: Bayezyen A§lar, Gen A§lar�, Gen Etkile³imi, Mikrodizi, Veri

Bütünle³tirme, Patika Analizi, Olas�l�ksal Grafsal Modelleme
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1. INTRODUCTION

1.1 Motivation

In order to understand the function of a cell or of higher units of biological or-

ganization, the roles of genes and their interactions should be described. In a systems

biology perspective, it is useful to treat them as systems of interacting elements, which

needs the following information: the identity of the genes that constitute the underly-

ing system; the dynamic behavior of these genes (i.e., how their abundance or activity

changes over time in various conditions); and the interactions among these components

[1]. It is known that each cell in a biological organism contains the same genes, but

only a fraction of genes are expressed at a given time. Many diseases result from the

deregulated interactions of genes. Therefore, in order to develop new treatments for

diseases such as discovering new drugs, it is important to understand the mechanism

that determines which genes are expressed, when these genes are expressed, the se-

quence of their expression and the level of their individual expression. Also, a better

comprehension of the roles performed by genes in cellular functions and processes can

be best illustrated in the form of gene networks, such as pathways.

1.2 The Problem Statement

Gene network inference/learning problem is de�ned as follows; how to uncover

underlying gene network using probabilistic and machine learning techniques and inte-

gration of HTBD (e.g. gene expression microarray data) with prior biological knowl-

edge. Construction and revelation of the gene networks is useful for answering what

genomic functions are performed by interacting genes, how do these genes perform

their functions, and when these genes are expressed. The inference process of gene

interactions from the microarray expression data is non-trivial and remains as one of

the most challenging tasks of systems biology.
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The learning process is highly challenging due to the complexity in �nding pos-

sible network structures from data in which the number of observed variables (e.g.

genes) is higher as opposed to the low number of observations (samples). Problem re-

lated to this is that the computational complexity to estimate the real network among

a vast number of probable network structures for a dataset containing thousands of

genes overwhelms current computational capabilities. This led to research on com-

putational techniques that are necessary to estimate a gene network which contains

multiple variables, parameters and constraints. Because of the complexity of gene

interaction networks in addition to sparse and noisy nature of experimental data, ma-

chine learning and statistical methods may lead to poor reconstruction accuracy of the

underlying network, and therefore it is advantageous to make network inferences using

prior biological knowledge.

The inference of gene interaction networks from HTBD is an important and

challenging task in systems biology. Several machine learning and statistical methods

have been proposed for the problem [2], and BN models have gained popularity for the

task of inferring gene networks [3]. Most BN structure learning algorithms are based

on heuristic search techniques utilizing maximum likelihood or marginal likelihood be-

cause of the infeasible computational complexity. However, structure learning with the

likelihood approximation may lead to a false model not only because of the heuris-

tic nature of the algorithm, but also because of the assumption that each candidate

graph has the same probability. Informative priors generated from existing biologi-

cal information can improve learning to get better models to describe the underlying

gene interactions. In several studies, the use of prior biological knowledge of the gene

interaction network in conjunction with gene expression data has been suggested to

improve the �delity of network reconstruction. Hartemink et al. [4] incorporated ge-

nomic location data to guide the Bayesian network model inference. Tamada et al. [5]

proposed a method which iteratively detects consensus motifs based on the structure

of the estimated network model, and then evaluates the network using the result of the

motif detection until the inferred network becomes stable. Imoto et al. [6] proposed a

framework for inferring gene networks using prior biological knowledge in addition to

gene expression data. To do this, they introduced an energy function, where each edge
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in the network was assigned an energy value, and assumed that the probability of the

network depends on the Gibbs distribution. Werhli et al.[7] extended this approach to

integrate multiple sources of prior knowledge into dynamic Bayesian network (DBN)

learning via MCMC sampling. Murkherjee et al. [8] proposed a scheme to incorpo-

rate known network features including edges, classes of edges, degree distributions, and

sparsity into gene network reconstruction within a Bayesian learning framework with

MCMC sampling. However, these studies were limited in the use of external biological

knowledge by incorporating only certain features, such as network topology or bind-

ing sites in promoter regions. Furthermore, in the aforementioned approaches, manual

curation and/or manual incorporation of the external knowledge are employed.

In brief, how to reveal dynamics of biological phenomena by building or inferring

gene networks from experimental data has become prominent, and this dissertation is

aimed to solve this problem.

1.3 Aims of the Study

High throughput biological data (HTBD) is generated in a variety of ways in-

cluding through deep sequencing and microarrays. This data can provide a snapshot

of regulatory processes in the cell. This is a signi�cant change from the traditional

molecular biology approach of focusing on single molecules and reactions. The priority

is now more data-driven and more computationally intensive, and there is great need

to �nd methods that can handle the massive data in a global manner and that can an-

alyze data originating from large systems. Arguably, the most popular HTBD type is

microarrays, where identi�cation of di�erentially expressed genes between two groups

of samples initially relied on individual gene analysis (IGA). An alternative approach,

called pathway analysis, functional enrichment analysis, or gene set analysis [9], which

focuses on directly determining prede�ned gene sets or classes that are signi�cantly reg-

ulated, has received a great deal of attention. Gene set analysis (GSA) methods score

groups of genes, and can identify genes that exhibit subtle changes at an individual

level, but show concordant enrichment within a set [10].
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In particular, Bayesian network (BN) models have gained popularity for the

task of learning biological networks and pathways from microarray gene expression

data [3, 11]. In gene network modeling studies using BNs, nodes generally represent

the expression level of a gene, and edges represent the relationship between genes. BN

models capture both linear and nonlinear interactions between sets of random variables,

and handle stochastic events in a probabilistic framework accounting for noise. This

results in the emphasis of only the strong relations in the observed data. BNs are,

therefore, viable candidates for modeling gene regulation systems where stochastic

e�ects and large amounts of noise are expected. Furthermore, BNs are able to focus on

local interactions where each node is directly a�ected by a relatively small number of

nodes, and interactions de�ned by a BN can be related to causal inference [3]. These

properties are similarly observed in biological networks, justifying the use of BNs in

exploring pathways in the setting of gene interaction networks using HTBD.

One of the aims of this dissertation is to develop a new algorithm of path-

way analysis, which uses a graph theoretic approach and BN theory to model biolog-

ical pathways, and evaluate whether a pathway successfully describes the underlying

HTBD by scoring the �tness of the network [12]. Previously described GSEA [10]

or Gene Ontology [13] based methods do not take into account the connectiveness of

the analyzed gene lists. There have been methods proposed to take into account the

GO graph topology [14], overlap between GO categories in the GO hierarchy [15], or

modeling interactions between GO categories [16] in assessing the signi�cance of en-

richment of a GO term based on experimental data. However, none of these methods

take into account the network or structure de�ning the relation between the genes in

each category.

Our simulations using synthetic data demonstrated robustness of the Bayesian

Pathway Analysis (BPA) approach. We tested the proposed method on human mi-

croarray data regarding Renal Cell Carcinoma (RCC) and compared our results with

gene set enrichment analysis. BPA was able to �nd broader and more speci�c pathways

related to RCC.
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In addition to the experimental gene expression data, a range of other data

types can be used as prior knowledge to enhance the reconstruction of gene networks.

Due to technological advances in sequencing, microarray, proteomics and related �elds,

biological and clinical data have been produced at an enormous rate. A list of 1380

biological databases in categories such as nucleotide, RNA, protein sequence, pathway,

organelle, proteomic has been reported [17].

BNs have a number of features which make them attractive candidates for com-

bining prior knowledge and data, dealing with uncertainty, avoiding over�tting a model

to training data, and learning from incomplete datasets. BNs handle stochastic events

in a probabilistic framework accounting for noise, which results in emphasizing only

the strong relations in the observed data. Furthermore, BNs are able to focus on local

interactions where each node is directly a�ected by a relatively small number of nodes

[3], and interactions de�ned by a BN can be related to causal inference [18].

The aforementioned properties are similarly observed in biological networks, jus-

tifying the use of BNs in exploring pathways in the setting of gene interaction networks

using gene expression data. Learning algorithms for both the structure and parameters

of BNs have been developed [19]. Most of the research on BNs has focused on directed

acyclic graphs (DAGs) and static systems with discrete variables, and/or linear Gaus-

sian models. Friedman et al. used BNs to generate a causal model of the yeast cell

cycle data, using either a model with discretized expression levels (e.g. Boolean, or un-

derexpressed/normal/overexpressed), or a linear Gaussian model [3]. The latter treats

the expression level of a gene as being normally distributed around a mean which is a

linear sum of inputs. Therefore, rather than the true causal relationships, the results

may represent co-regulation of genes. Friedman et al. [20] introduced a method to sam-

ple network structures from the posterior distribution with the Markov chain Monte

Carlo (MCMC) model. Most BN structure learning algorithms are based on heuristic

search techniques utilizing maximum likelihood or marginal likelihood because of the

infeasible computational complexity. However, structure learning with likelihood ap-

proximation may lead to a false model. Informative structure priors generated from

existing biological information can improve the learning process to get better models
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that describe the underlying gene interactions.

One of the aim of this dissertation is to develop a framework that incorporates

multiple sources of prior knowledge, regardless of its type, into BN learning. The

meaning of prior knowledge in our context is the enumeration of pairwise interactions

of genes from biological information sources, and is the use of this information in BN

modeling of gene expression domain.

External knowledge types utilized were obtained from interaction databases such

as BioGrid and Reactome and consisted of protein-protein, protein-DNA/RNA, and

gene interactions. First, a Bayesian Network Prior (BNP) model was created to predict

if two genes interact by employing parameter learning using known gene interactions.

The resulting model was incorporated into the greedy search heuristic learning algo-

rithms to learn networks from HTBD, and interacting genes were represented in the

form of a gene network. In this process of network generation, the BN model deducing

gene interactions from external knowledge were used to calculate the probability of

candidate networks to enhance the structure learning task. Our simulations on both

synthetic and real data sets showed that the proposed framework can successfully en-

hance identi�cation of the true network, and be used in building biologically plausible

networks.

1.4 Overview of the Dissertation

Chapter 1 includes the motivationsi, the problem statement, the aims of the

study and the overview of the dissertation.

Chapter 2 presents background information on Computational Systems Biology.

First, the rationale for systems biology is presented. Its basic principles are explained,

including de�nition, tasks, and objectives of systems biology, computational systems

biology techniques and its impact on current genomic studies. This chapter includes

a short background on fundamentals of molecular biology, consisting of description
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of DNA, RNA, proteins and their processing. Microarray technology is explained.

Chapter 2 gives de�nition, applications and types of gene networks, and computational

models in Systems Biology to model gene networks including co-expression networks,

Gaussian graphical models, dependency networks, and Bayesian networks.

Chapter 3 describes the theory of Bayesian Networks. A short mathematical

basics of the theory is given, and many aspects and concepts of Bayesian networks are

explained including static and dynamic Bayesian networks, local probability distribu-

tion, conditional independence, and Markov equivalence. This chapter includes detailed

description of score based structure learning of Bayesian networks, as this dissertation

is mainly based on learning structure of gene networks, using Bayesian network models.

Scoring schemes are presented, and model search and selection methods including a

short description of search heuristics are explained.

Chapter 4 includes details of the Bayesian Pathway Analysis method, proposed

in this dissertation for the �rst time, that models biological pathways as Bayesian

networks, and identi�es pathways that best explain given high throughput biological

data by scoring �tness of each network. Overall methodology and results are given in

detail.

Chapter 5 presents a framework to incorporate multiple sources of prior knowl-

edge, regardless of its type, into Bayesian network learning to rigorously harness, and

use the existing wide range of biological information. This chapter starts with the de-

scription of the complete methodology including the proposed Bayesian Network Prior

model, a novel structure prior function, and the description of integration of these

improvements into the Bayesian network structure learning algorithms. This chapter

includes simulations and the results of the proposed algorithm, and models on both

synthetic and real data in the context of Bayesian networks.

Chapter 6 includes discussion, conclusions and advancements in revealing gene

networks, based on the novel methods proposed in this dissertation.
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2. COMPUTATIONAL SYSTEMS BIOLOGY

2.1 Basic Principles

Living organisms are complex and heterogeneous biological systems built on the

structural and functional units called cells. A living organism may be composed of a

single cell, as in unicellular organisms, or many cells, as in multi-cellular organisms.

The cell is accepted to be the smallest functional unit of life. A biological system such

as mammalians has several levels of organization: At the lowest level, an organism is,

chemically, composed mostly of the elements carbon, hydrogen, oxygen, and nitrogen.

These elements are combined into organic compounds such as carbohydrates, lipids

(fats and oils), DNA, RNA, proteins, nucleic acids, and vitamins. Biological compounds

form organelles in a cell. Cells are organized into tissues. Tissues are arranged to form

organs, which are grouped to form an organism.

The study of biological systems cannot be limited to simply listing organizational

levels and their parts (such as proteins, genes, cells, etc.). Although an exhaustive list of

all the parts of a system may give a vague impression, it does not necessarily help one to

understand how the system functions. Biological systems are dynamic and their parts

operate vastly on di�erent temporal scales, from microseconds to years, and spatial

scales, from nanometers to meters. This complexity makes it extremely challenging

to understand how even the simplest organism functions. However, a holistic view of

biological systems can demonstrate how these parts are assembled together, and how

they interact with each other and with the surrounding environment. In other words,

a system-level understanding is required. This is the objective of Systems Biology.

Systems Biology has gained prominence in recent years due to several advance-

ments: biological knowledge with the prospect of utilization in biotechnology and health

care has been improved; high-throughput experimental techniques for making measure-

ments of the biological quantities have become widely available; classical mathematical
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modeling of biological processes has been an active �eld of research; computer power for

simulation of complex systems has improved tremendously; storage and retrieval capa-

bility in large databases and data mining techniques have been developed; Internet has

become the medium for the widespread availability of multiple sources of knowledge.

Process of a systems biology approach means investigating the components of

cellular networks and their interactions, applying experimental high-throughput and

whole-genome techniques, and integrating computational and theoretical methods with

experimental e�orts to understand the underlying biological phenomena.

Figure 2.1 Process of Systems Biology.

Computational Systems Biology attempts to undertake the task of integration

of genomics, proteomics, and actually all the emerging "omic" disciplines, with the

aim of understanding biological systems. The genome is the full complement of genetic

information. Biological systems contain two main types of programmatic information:

genes which encode the proteins through the intermediary of RNA, and regulatory

networks which specify how these genes are expressed in time and space. People have

introduced other "omes" in analogy to the genome: the transcriptome is the entirety

of RNA transcripts which are produced by a cell; the proteome is the full complement

of proteins; the metabolome is the full complement of metabolites, small molecules

involved in metabolism; the interactome is the complete set of molecular interactions.
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The microarray technology and more recently the high-throughput sequencing tech-

nology makes it possible to measure the entire expressed transcriptome in a tissue or

cell culture. The mass spectrometry and the NMR technology allows high-throughput

quanti�cation of metabolites. These technologies provide us with the opportunity to

examine the cell, and allow us to develop and compare Systems Biology models of

cellular function.

Many aspects of Systems Biology are relevant to Computer Science. Compu-

tational Systems Biology is the application of formal (i.e. mathematical or computa-

tional) modeling to help understand biological function, dynamics, and interactions.

Computational Systems Biology models link di�erent components of the system, and

are therefore often based on networks. The biological function emerges from the col-

lective behavior of components linked by networks. By building models and studying

their properties, we can gain important insights into some fundamental biological pro-

cesses. Numerical computation is required to accurately simulate models, and statis-

tical machine learning is useful in learning model parameters and scoring alternative

models[21].

2.2 Molecular Biology Background

Amajor breakthrough in Life Sciences is the sequencing of the genomes of several

species, including the �rst draft of the human genome in 2000 [22]. The genome is the

entirety of an organism's hereditary information, and it carries the instructions for

making the proteins, and other molecules that cells are built from. The genome de�nes

the structure and function of the cell. It includes both the coding sequences of the

DNA (deoxyribonucleic acid) and the non-coding sequences of the DNA.

Complexity of a cell with respect to its structure and function are mainly em-

bodied in and regulated by three biological sequences: DNA, RNA (ribonucleic acid)

and protein. DNA is the hereditary material in multicellular organisms such as human

[23]. Most DNA is contained within chromosomes in the cell nucleus, which is called
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nuclear DNA, but a small amount of DNA can also be found in the mitochondria,

which is called mitochondrial DNA.

DNA is a long sequential molecule which is made up of a chain of four types of

chemical bases: adenine (A), guanine (G), cytosine (C), and thymine (T). DNA bases

pair up with each other, A with T and C with G, to form units called base pairs. Each

base is also attached to a sugar molecule and a phosphate molecule. Together, a base,

sugar, and phosphate are called a nucleotide. Nucleotides are arranged in two long

strands that form a spiral called a double helix. DNA is the carrier of genes and other

regulatory information. DNA has a direction such that the information contained in

a sequence on one strand �ows from one end (called the 5' end) to the other (3' end).

This direction is reversed on the opposite strand. Genetic information can be encoded

on both strands.

Genes are segments of the DNA sequence that encode the instructions for making

a gene product (protein or RNA) through a process called gene expression. Genes

contain regulatory coding sequences that either increases or decreases its transcription

rate. In eukaryotes, coding sequences (exons) are interlaced with non-coding sequences

(introns). The DNA is a template for making ribonucleic acids(RNAs) through a

process called transcription. The RNA copies the genetic information of a gene by

transcription [24]. RNA is a molecule formed from a chain of bases similar to DNA

except that the base T is replaced by U (Uracil). Unlike DNA, RNA molecules are

formed from a single strand which folds in on itself to form a complex structure.

When an RNA molecule is transcribed from DNA, it is synthesized as a chain of bases

complementary to the DNA sequence template (A→U, T→A, G→C and C→G).

In some cases, the RNA molecule itself is the �nal gene product, after some

modi�cations, but more often the RNA is an intermediate for a protein product. The

functions of genes are implemented via proteins which are linear polymers composed

of 20 di�erent types of amino acids. Proteins play a central role in virtually all aspects

of cell structure and function. The sequence and function of a protein is de�ned by the

sequence of a corresponding gene in nature, while the expression strength, place, and
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time of the protein are regulated by a set of other genes.

Enzymes are proteins which catalyze chemical reactions. Proteins called tran-

scription factors bind with DNA to regulate the transcription of genes. Other proteins

are the component parts of large complexes which act as molecular machines.

The genetic information between genes and proteins are linked by mRNA (mes-

senger Ribonucleic Acid). Protein-coding genes are transcribed to form the messenger

RNA (mRNA). The mRNA is transported out of the cell nucleus into the cytoplasm

of the cell. In the cytoplasm, the mRNA is bound by ribosomes which read the mRNA

in triplet codons (nucleotide sequence) during translation. Transfer RNA (tRNA) is

brought into the ribosome-mRNA complex, and matches the codon in the mRNA to

the anti-codon in the tRNA, hence adding the correct amino acid in the sequence en-

coded by the gene. The mapping from nucleotide triplets to amino acids is known as

the genetic code. The amino acids are linked into a growing peptide chain, and begin

to fold into the correct formation. The folding continues until the protein chains are

released from the ribosome as a mature protein.

Another important process is the DNA replication where the DNA copies itself

(replicates) when cells divide so that each daughter cell has a copy of the same DNA

as the parent.

2.3 Gene Expression and Regulation

Gene expression is the process by which information from a gene is used in the

synthesis of a functional gene product. Gene expression (activity) is the most funda-

mental level at which the genotype gives rise to the phenotype. The genetic code stored

in the DNA is interpreted by gene expression, and the properties of the expression give

rise to the organism's phenotype such as shape and color. Such phenotypes are often

expressed by the synthesis of proteins that control the organism's shape, or that act

as enzymes catalyzing speci�c metabolic pathways characterizing the organism.
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Nearly every cell in a multi-cellular organism contains its complete genome.

However, expression (activity) of genes in cells with di�erent function within a multi-

cellular organism is normally not the same. The function and di�erentiation of a cell

could be explained by the expression levels of the genes. The expression level of a gene

in a cell at a certain point in time is the amount of transcribed RNA encoded by the

gene at that time point.

There are a wide range of mechanisms that are used by cells to increase or

decrease the production of speci�c gene products (protein or RNA), and this process

is called gene regulation. The expression of a gene is controlled by other genes. Gene

expression is regulated both temporally and spatially [25]. The temporal expression of

a gene refers to the process that a gene expresses, or is regulated, at the appropriate

time, and keeps itself silent, otherwise. A gene has di�erent expression patterns at

di�erent times. For example, the expression patterns of the zebra�sh globin genes are

di�erent at di�erent stages of the development [26]. There is also the spatial control

of gene expression. Although cells from the same organism have identical genomes,

cells in di�erent parts of an organism may have di�erent gene expression patterns due

to the various functions they ful�ll. Therefore, the regulation of gene expression is an

essential part of life. There are two types of regulations: up-regulation, and down-

regulation. Up-regulation is a process that occurs within a cell triggered by a signal

originating internal or external to the cell, which results in increased expression of one

or more genes and the resultant proteins encoded by those genes. On the converse,

down-regulation is a process resulting in decreased gene and corresponding protein

expression.

2.4 Microarrays

Monitoring the expression levels of all the genes in the genome of an organism

can be done by microarrays. By using DNA microarrays, researchers are now able

to measure the abundance of thousands of mRNA targets simultaneously [27, 28],

providing a genomic viewpoint of gene expression. The amount of mRNA can be used
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to understand about the activity of certain genes in certain circumstances. Although

less precise than traditional low-throughput methods such as Northern blot and real-

time PCR, the information gained from measuring the expression of thousands of genes

simultaneously is considered signi�cant, particularly in exploratory phases of research.

More recently, high-throughput next generation sequencing is replacing microarrays as

the method of choice for mRNA quanti�cation and many other applications.

Microarray technology is based on DNA hybridization in which a DNA strand

binds to its unique complementary strand. A set of known sequences called probes are

�xed to a solid surface, and are placed in interaction with a set of �uorescently tagged

unknown sequences called targets. Most microarray types use probes consisting of

single-stranded DNA sequences, either derived from mRNAs via reverse transcription,

or synthesized based on known mRNA sequences. After hybridization, the �uorescently

lit spots indicate the identity of the targets, and the intensity of the �uorescence signal

is in correlation with the quantitative amount of each target. Typically, green is used

to label the reference samples, representing the baseline level of expression, and red is

used to label the target sample in which the cells were treated with some condition

of interest. Due to biological variation and a multi-step experimental protocol, these

data are very noisy.

A genome wide measurement of transcription is called an expression pro�le, and

provides us with a complete list of genes whose transcription levels are a�ected by the

condition. From a biological viewpoint, what is measured is how the gene expression of

each gene changes to perform complex coordinated tasks in adaptation to a changing

environment.

The microarray technology propelled functional genomics, a discipline that strives

to identify the role of genes in cellular processes, into the spotlight because it allowed

functional analysis of genome-wide di�erential RNA expression between di�erent sam-

ples, states, and cell types to gain insights into molecular mechanisms that regulate

cell fate, development, and disease progression. Microarray data is used to generate a

pro�le of gene expression, which serves as a determinant of protein levels, and therefore
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cellular function between biological samples. A single experiment can provide infor-

mation on the expression of thousands of genes, virtually the entire human genome,

to compare expression patterns between any two states. Microarray experiments can

indicate which genes are up or down regulated between samples from normal and dis-

eased tissue, or two samples in absence and presence or a certain stimuli. It is easy

to see why this technology might be appealing for understanding complex biological

systems as well as drug discovery, disease diagnosis, and novel gene identi�cation.

Figure 2.2 An image of a microarray. Each spot represents a di�erent gene.

There are two common microarray platforms for investigating gene expression:

complementary DNA (cDNA) [27] and oligonucleotide microarrays [28]. These plat-

forms di�er in experimental protocols, lengths of probes, and number of tissues mea-

sured per array implying challenges in the integration and comparison of data sets from

di�erent platforms.

The oligonucleotides are synthesized directly onto the surface using a combi-

nation of semiconductor-based photolithography and light-directed chemical synthesis.

One of the main proponents of oligonucleotide arrays approach is A�ymetrix, whose

GeneChip arrays consist of small glass plates with thousands of oligonucleotide DNA

probes, which are short stretches of nucleotides, 25-mers in A�ymetrix' case, attached
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to their surface. Very large numbers of mRNAs can be probed at the same time. How-

ever, manufacturing and reading the chips require expensive equipment. Current chips

have over 650,000 di�erent probes, with several probes and controls for each mRNA.

cDNA Microarrays provides a simpler solution to mRNA measurement. The

microarrays are glass slides on which full-length cDNAs have been deposited by high-

speed robotic printing. They are cheaper to manufacture and easy to read, but require

handling a large number of cDNAs, which makes them less scalable.

Microarray measurements are carried out as di�erential hybridizations to min-

imize errors that originate from cDNA spotting variability. mRNA samples from two

di�erent sources, such as control and drug-treated cases, labeled with two di�erent

�uorescent dyes, are passed over the array at the same time. The �uorescence signal

from each mRNA population is evaluated independently, and then used to calculate

the expression ratio.

There are two main types of gene expression microarray data: static and time

series microarray data. In static expression experiments, a snapshot of the expression of

genes in di�erent samples is measured while in the time series expression experiments,

a temporal process is measured.

The scans of a microarray have to be transformed into values representing the

gene expression rates in order to make quantitative analysis possible. The scans usually

contain a lot of noise, and specialized image processing methods are used to reduce

this. Background estimation and �nding the optimal spot regions are a few examples.

The resulting intensity values are transformed into well distributed gene expression

values, by logarithmic (log2) transformation for example, making statistical analysis

easier. The data has to be normalized to correct for systematical di�erences between

the conditions in which the microarrays are hybridized. The result is a data matrix rep-

resenting the relative gene expression values associating each gene (row) and condition

(column).
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2.5 Gene Networks

The complexity of a living cell is due to the cooperative activity of many genes

and their products. This activity is often coordinated by the organization of the genome

into regulatory modules, or sets of co-regulated genes that share a common function

[29]. Cells collect vast amounts of information about the environment, process the

information, and make complex decisions about how to respond and direct new phe-

notypes. The functions that enable these sophisticated behaviors are programmed by

networks, and assemblies of interacting genes and proteins. The global gene expres-

sion pattern is therefore the result of the collective behavior of individual regulatory

pathways. Thus, understanding a gene network as a whole is essential, and learning

gene networks is an important central topic in the post genomic research [30, 31]. A

widely used method to represent gene regulation is to draw network diagrams where

genes connect to other genes as if they directly a�ect each other. Such gene networks

are phenomenological models because they do not represent explicitly the proteins and

metabolites that mediate those interactions. A gene network is then a projection of

the whole biochemical network onto a space where the only observables are gene tran-

scripts (mRNA), but where the in�uence of the remaining biochemical system is felt

implicitly [32].

In systems biology, gene networks are of considerable interest. In general, a

gene network is a graph in which vertices correspond to genes or gene products, and

edges correspond to molecular interactions. Hence, a gene network represents a map

of causal molecular interactions which in turn may allow us to elucidate the organ-

ism's observable characteristics. The interactions between genes and gene products

can be represented as gene networks, or more particularly as transcriptional regula-

tory, signaling, metabolic, or protein networks. Networks in systems biology serve

several purposes: they are capable of representing complex interrelations among genes

or other components of a biological system; networks form a mathematical represen-

tation, which can be interpreted as a model; a network represents a data structure

that can be utilized in data analysis to extract biological information by application of

computational and statistical methods.
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There are several applications and advantages to studying gene networks [32, 30]

as follows. Gene networks provide a large-scale, coarse-grained view of the physiological

state of an organism at the mRNA level. Gene networks describe a large number

of interactions in a succinct way. They also present the dynamic properties of the

gene regulatory system. It is an important step to uncover the complete biochemical

network of the cell. Knowledge about gene networks might provide valuable clues

for the therapeutics of complex diseases. As most phenotypes are the result of the

collective response of a group of genes, gene networks help explain how complex traits

arise, and which groups of genes are responsible for them. Gene networks are well

suited for comparative genomics. Comparing gene networks from di�erent genomes

helps with the understanding of evolution.

A protein synthesized from a gene can serve as a transcription factor (TF) for

another gene, as an enzyme catalyzing a metabolic reaction, or as a component of a

signal transduction pathway. Apart from DNA transcription regulation, gene expres-

sion may be controlled during RNA processing and transport, RNA translation, and

the post-translational modi�cation of proteins. Therefore, gene regulatory networks

(GRNs) involve interactions between DNA, RNA, proteins and other molecules. A

comprehensive way to understand this complexity may consist of using functional as-

sociation network (FAN) models. In these networks, the edges of the corresponding

graph do not represent chemical interactions, but functional in�uences of one gene on

the other. Speci�cally, networks for DNA transcription regulation via TFs are called

Transcriptional regulatory (TR) networks. They are directed graphs, and vertices may

correspond either to transcription units together with their protein products or to the

regulated genes. Edges in these networks represent the TR interactions imposed by

transcription factors (TFs).

In order to understand the function of a cell's metabolism, a special kind of

a biological network can be de�ned from a collection of biochemical reactions. Such

networks are called metabolic networks. A metabolic network consists of nodes corre-

sponding either to enzymes or metabolites, and an edge indicates that the two nodes

are found in the same biochemical reaction.
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Protein-Protein Interaction (PPI) Networks, also called protein networks, repre-

sent the binding among proteins by, for example, forming complexes. The �rst approach

to obtain such networks was based on two-hybrid studies. Recently, high-throughput

technologies using a�nity puri�cation techniques followed by mass spectrometry have

been employed to infer genome-scale protein interactions. They are undirected net-

works.

2.6 Gene Network Learning Techniques

The success of genome sequencing projects has led to the identi�cation of almost

all the genes responsible for the biological complexity of several organisms. The next

important task is to assign a function to each of these genes. Genes and gene products

do not work in isolation; rather, they are connected in highly structured networks of in-

formation �ow through the cell. The learning of such gene networks from scratch using

computational and statistical methods, and experimental data has been an important

research topic.

The biological meaning of a network component depends on the type of data

analyzed. Mostly, the network components are genes, since the primary data for infer-

ence is microarray data, and the network is a gene regulatory network. However, the

methods are general, and can also be applied to protein data. In probabilistic models,

we treat each component of the network as a random variable. The dataset consists

of measurements that represent realizations of the random variables. Network compo-

nents are identi�ed with nodes in a graph. The goal is to �nd an edge set representing

the dependency structure of the network components. We call the graph G = (V,E)

the structure of the cellular network. Depending on the model, G can be directed or

undirected, cyclic or acyclic. If the graph has directed edges and no cycles, G is called

a directed acyclic graph (DAG).

Biological processes result from the concerted action of interacting molecules.

This general observation suggests a simple idea, which has already motivated the �rst
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Figure 2.3 Structure of a graph. A graph is made up of vertices or nodes and lines called edges that
connect them.

approaches to clustering expression pro�les, and is still widely used in functional ge-

nomics: if two genes show similar expression pro�les, they are likely to follow the same

regulatory regime. Namely, co-expression suggests co-regulation. Co-expression net-

works are constructed by computing a similarity score for each pair of genes. If the

similarity score is above a certain threshold, the gene pair gets connected in the graph,

if not, it remains unconnected. Several similarity measures have been proposed, the

most simple of which is correlation.

Stuart et al. [33] suggest that networks of co-expressed genes provide a widely

applicable framework to elucidate gene function on a global scale. They identi�ed

pairs of genes that are co-expressed over 3000 DNA microarrays from humans, �ies,

worms, and yeast and found over 22,000 such co-expression relationships, each of which

has been conserved across evolution. They argue that such conservation implies that

genes are functionally related. Many of these relationships provide strong evidence for

the involvement of new genes in core biological functions such as the cell cycle and

protein expression. They experimentally con�rmed the predictions implied by some of

these links, and identi�ed cell proliferation functions for several genes. By assembling

these links into a gene-co-expression network, they found several components that

were animal-speci�c as well as interrelationships between newly evolved and ancient

modules.

Even high similarity of gene expression tells us little about the underlying bi-
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ological mechanisms. Co-expression networks include regulatory relationships, but we

cannot distinguish direct dependencies from indirect ones based on the similarity of ex-

pression patterns. To this end, use of Gaussian Graphical Models (GGM) is proposed.

A GGM is an undirected graph on vertices. Each vertex (i.e. node) corresponds with

a random variable. The edge set of a GGM is de�ned by non-zero partial correlations.

To estimate a GGM from data, we need to know which elements of the precision

matrix are zero. Precision matrix shows correlation after correcting for the in�uence

of all other genes. Full conditional relationships can only be accurately estimated if

the number of samples is relatively large compared to the number of variables (num-

ber of genes). However, the number of genes to be analyzed almost always exceeds

the number of distinct expression measurements in genomic applications of graphical

models. Therefore, one must either improve the estimators of partial correlations, or

resort to a simpler model. The basic idea in all of these approaches is that biological

data are high-dimensional but sparse in the sense that only a small number of genes

will regulate one speci�c gene of interest.

Full conditional independence models are closely related to a class of graphical

models called dependency networks [34]. Dependency networks are built using sparse

regression models to regress each gene onto the remaining genes. The genes, which

predict the state of a certain gene, are connected to it by directed edges in the graph.

In general, dependency networks may be inconsistent, i.e. the local regression models

may not consistently specify a joint distribution over all genes. Thus, the resulting

model is only an approximation of the true full conditional model. Still, dependency

networks are widely used because of their �exibility and the computational advantage

compared to structure learning in full conditional independence models.

Bayesian Networks model each variable with a conditional probability function

dependent on a subset of other variables. Their stochastic nature makes them excellent

candidates for modeling gene regulation systems where stochastic e�ects and data

sets with large amounts of noise are expected. The logical next step is to ask for

independencies of all orders. In the resulting graph, two vertices are connected if
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no subset of the other variables can explain the correlation. This includes testing

marginal, �rst order, and full conditional independencies. The graph encoding the

above independence statements for all pairs of nodes is still undirected. It can be shown

that knowing independences of all orders gives an even higher resolved representation

of the correlation structure. The collection of independence statements already implies

directions of some of the edges in the graph [35, 36]. The resulting directed probabilistic

model is called a Bayesian network.
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3. THEORY of BAYESIAN NETWORKS

A Bayesian Network (BN) is a compact graphical representation of the joint

probability distribution over a set of random variables. The graph, G, of a BN consists

of a set of N nodes (variables), X1, ..., XN , and a set of directed edges between these

nodes. If there is a directed edge pointing from node Xi to node Xj, symbolically

Xi → Xj, then Xi is called a parent (node) of Xj, and Xj is called a child (node) of

Xi. The graph structure of a static Bayesian network is de�ned to be a directed acyclic

graph (DAG), that is, a directed graph in which no node can be its own descendant.

Bayesian networks are the representation of conditional independency assumptions

among variables, using directed graphs. In a Bayesian network context, the DAG is

named as the structure, and the values in the conditional probability distributions are

called the parameters. A directed graph consists of nodes, each representing a random

variable, and directed edges representing dependencies among the variables (nodes).

More generally, for random variables X1, ..., XN , the directed graph, G, implies a set

of conditional independency relations. Conditional on the graph, the distributional

form of the joint probability distribution, P (X1, ..., XN |G), has to be chosen such that

these stochastic independencies, encoded in the graph topology, G, are conserved in the

probabilistic model. The probabilistic model has to be chosen such that an observed

sample of realizations of the variables, X1, ..., XN , can be explained best by graphs that

encode the true independencies among the variables.

Following the Bayes' theorem, the posterior probability of a graph, G, given the

data, D, is de�ned as follows:

P (G|D) =
P (D|G)P (G)

P (D)
(3.1)

where P (D|G) is the marginal likelihood, and P (G) is the prior probability of the graph,

G. The posterior probability, P (G|D), quanti�es how much a graph is explained by the

observed data, D. The probability P (D) in Eq. 3.1 serves as a normalization constant
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that the expression P (D) does not depend on the graph, and is de�ned as follows

P (D) =
∑
G∗

P (D|G∗)P (G∗) (3.2)

where the sum is over all valid directed graphs.

This de�nition of P (D) ensures that Eq. 3.1 is a probability distribution over

graphs; in particular Eq. 3.2 ensures the normalization:

∑
G∗

P (G∗|D) = 1 (3.3)

The marginal likelihood, P (D|G), quanti�es how likely the observed data are condi-

tional on the graph, G. Assuming that the true independencies among the variables

are actually inferable from the data, D, high marginal likelihoods can only be reached

by those graphs that imply, or approximate these true relationships. The graph prior

distribution, P (G), is used as a weighting factor for each graph. These weights do not

depend on the data, D, and can be used to include external knowledge, which may

be available from previous studies or other external sources. The greater the product

of the marginal likelihood, P (D|G), and the graph prior probability, P (G), the more

plausible (likely) is the graph, G, from a Bayesian perspective.

Recalling that P (D) is a normalization constant, it can be seen from Eq. 3.1

that the posterior probability of a graph, P (G|D), is proportional to the marginal

likelihood, P (D|G), times the graph prior distribution, P (G):

P (G|D) ∝ P (D|G)P (G) (3.4)

The graph prior distribution, P (G), can be used to incorporate biological prior knowl-

edge, or in the absence of real prior knowledge about the regulatory network, G, a

uniform distribution may be assumed for P (G).

If the data set consists of independent realizations of the variables, static Bayesian

network methodology is applied, and all valid graphs have to be directed and acyclic.
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If the variables have been measured over time, dynamic Bayesian network (DBN)

methodology is required, and all directed graphs are valid, independently of whether

they are acyclic or not.

3.1 Static Bayesian Network

A static Bayesian network is a graphical representation of the independency

structure between the components of a random vector X, where X = (X1, ..., XN),

and n is the number of network components. The individual random variables are

associated with the vertices (i.e. nodes) of a directed acyclic graph (DAG) G, which

describes the dependency structure. Each node is described by a local probability

distribution and the joint distribution P(X) over all nodes X1, ..., Xn factors as

P (X) =
∏
i

P (Xi|Pa(Xi), θi) (3.5)

where θi denotes the parameterization of the local distribution, and Pa(Xi) is the

vector of parent states denoting the activity levels of a gene's regulators. The DAG

structure implies an ordering of the variables known as the Markov condition that a

node is conditionally independent of all its non-descendants given its parents. The

factorization of the joint distribution is the key property of Bayesian networks.

3.2 Local Probability Distributions

Bayesian network models di�er with respect to assumptions about the local

probability distributions P (Xi|Pa(Xi), θi) attached to each node v ∈ V . There are two

types of parametric local probability distributions used in practice, which are multino-

mial distributions for discrete nodes and Gaussian distributions (normal distributions)

for continuous nodes. A discrete node with discrete parents follows a multinomial

distribution parameterized by a set of probability vectors, one for each parent con�g-

uration. A continuous node with continuous parents follows a Gaussian distribution,
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where the mean is a linear combination of parent states.

3.3 Conditional Independence in Directed Graphs

The way to read o� the independence statements from Bayesian networks is

given by the de�nition of d-separation [35]. The three archetypical situations of d-

separation (chain, fork, and collider) can be seen in Figure 3.1. In a chain X → Y →

Z, the middle node Y blocks the information �ow between X and Z and thus it holds

that X is conditionally independent of Z given Y (X ⊥ Z | Y). In a fork, where X and

Z are both regulated by Y, knowing the state of the regulator renders the regulatees

conditionally independent and thus again X ⊥ Z | Y. The last case is more surprising:

if X and Z are independent regulators with a common target Y, then the state of Y

gives us information about X and Z. For example, imagine that Y is only expressed

if only one of its regulators is active, then seeing Y expressed and X active implies Z

being inactive. Thus, in the collider X→ Y← Z the middle node Y unblocks the path

between X and Z and thus X 6⊥ Z | Y.

Figure 3.1 Conditional independence in directed graphs.

3.4 Markov Equivalence

Many Bayesian networks may encode the same conditional independencies, and

they are called Markov equivalent. The set of all DAGs can be partitioned into Markov

equivalence classes. Each class can be represented by a PDAG (partially directed
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acyclic graph) called an essential graph or pattern. That is, all equivalent networks

share the same underlying graph skeleton but may di�er in the direction of edges that

are not part of a collider (also called a v-structure) [37]. Markov equivalence poses a

theoretical limit on structure learning from data: even with in�nitely many samples,

we cannot resolve the structures in an equivalence class. In biological terms this means

that even if we �nd two genes to be related it may not be clear which one is the

regulator and which one is the regulatee.

3.5 Dynamic Bayesian Networks

Di�erent from static Bayesian networks, Dynamic Bayesian networks are used

to model temporal relationships among variables. Namely, a Bayesian network only

represents the probabilistic relationships among a set of variables at some point in time.

It does not represent how the value of some variable may be related to its value, and

the values of other variables at previous points in time. In many problems, however,

the ability to model temporal relationships is very important. More formally, Dynamic

Bayesian networks (DBNs) can be applied if the random vector, X = (X1, ..., XN)T

with T time slices and N number of nodes, has been measured over time,. All interac-

tions between nodes are then subject to a time delay, τ , where τ is called the order of

the DBN model. An edge from Xj to Xn, symbolically Xj → Xn, in a �rst order DBN,

τ = 1, indicates that the realization of Xn at time point t is conditionally dependent

on the realization of Xj at time point t− 1.

As for static Bayesian networks πn denotes the parent set of Xn(n = 1, ..., N),

and there is a one-to-one mapping between the graph, G, and the system of parent sets,

π1, ..., πN . Because of the time delay, τ , of interactions, DBNs are based on a bipartite

graph structure between two time steps t and t+ 1(t = 2, ...,m) so that the acyclicity

constraint, which is fundamental for the factorization in static Bayesian networks, is

guaranteed to be satis�ed. An example of The bipartite graph structure of DBNs is

illustrated graphically in Figure 3.2, where the prior and transition network are shown.

It can be seen that while the prior network is simply a general Bayesian network, the
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Figure 3.2 The bipartite graph structure of DBNs.

transition network has a slightly di�erent structure to it. In this, there are two layers

of nodes, and arcs from the �rst layer only go to the second. In addition, no arcs go

from the second layer to the �rst. For the purposes of performing inference, or simply

reasoning about them, DBNs can be expanded out into a single network.

Murphy et al. [38] provide an overview of di�erent DBN variants and their learn-

ing algorithms, and how these relate to various gene expression models. In particular,

they point out the similarity of learning DBNs with discrete variables and unknown

structure, to Boolean network reverse engineering algorithms such as REVEAL [39].

3.6 Score Based Structure Learning

There are two very di�erent approaches to structure learning: constraint-based,

and search-and-score. In the constraint-based approach, we start with a fully connected

graph, and remove edges if certain conditional independencies are measured in the data.

This has the disadvantage that repeated independence tests lose statistical power [40].

In the more popular search-and-score approach, we perform a search through

the space of possible DAGs, and either return a point estimate, the best DAG found, or

return a set of the models found, an approximation to the Bayesian posterior. Learn-

ing the structure of a Bayesian network can be considered a speci�c example of the
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general problem of selecting a probabilistic model that explains a given set of data. In

computational systems biology applications, the network structure is mostly learnt by

score based techniques [35, 36]. In the following, we review the maximum likelihood

scores and the Bayesian scores that evaluate the model �t to data. Once the score is

de�ned, model selection is posed as an optimization problem over the discrete space of

possible model structures. Additional topics include avoiding over�tting and encoding

prior information.

3.6.1 Maximum Likelihood

A straightforward idea for model selection is to choose the DAG G, which allows

the best �t to the data D. The best �t for a given DAG G is determined by maximizing

the likelihoodP (D|G, θ) as a function of θ, the parameters of the local probability

distributions. A score for DAG G is then given by

scoreML(G) = max
θ
P (D|G, θ) (3.6)

Unfortunately, the likelihood is not an appropriate score to decide between models since

it tends to over�t the data. Richer models with more edges will have a better likelihood

than simpler ones, since the additional parameters allow a better �t to the data. A

standard solution to this problem is to penalize the maximum likelihood (ML) score

according to the model complexity. An often used example of this general strategy is

scoring with the Bayesian information criterion.

3.6.2 Bayesian Information Criterion (BIC)

The BIC score [41] is a regularized maximum likelihood estimate, which con-

trols over�tting by penalizing the maximal likelihood of the model with respect to the

number of model parameters. It is de�ned as

scoreBIC(G) = max
θ
P (D|G, θ)− d

2
logN (3.7)
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where d is the number of parameters and the factor logN scales the penalty with

respect to the likelihood. The BIC score can also be used to learn Bayesian networks

with missing values or hidden variables. The likelihood has then to be maximized via

the Expectation-Maximization (EM) algorithm.

3.6.3 Bayesian Scores

In most cases a full Bayesian approach is preferred over ML or BIC. In Bayesian

structure learning we evaluate the posterior probability of the model topology G given

the data D as:

scoreBayes(G) = P (G|D) =
P (D|G)P (G)

P (D)
(3.8)

The denominator P (D) is an average of data likelihoods over all possible models. This

normalizing constant is the same for all models, and thus we do not need compute it

to decide between competing models. The two main terms to consider in the Bayesian

score are the prior over model structures, P (G), and the marginal likelihood P (D|G).

3.6.4 Marginal Likelihood

The marginal likelihood P (D|G) is the key component of Bayesian scoring met-

rics. It equals the full model likelihood averaged over parameters of local probability

distributions (LPD), that is, ∫
Θ

P (D|G, θ)P (θ|G)dΘ (3.9)

Marginalization is the reason why the LPD parameters θ do not enter the de�nition of

the posterior above; they have been integrated out. It is important to note that the

LPD parameters were not maximized as it would be done in a maximum likelihood

estimate or in a BIC score. Averaging instead of maximizing prevents the Bayesian

score from over�tting. Computation of the marginal likelihood depends on the choice
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of local probability distributions and local priors in the Bayesian network model. To

compute the marginal likelihood analytically, the prior P (θ|G) must �t to the likelihood

P (D|G, θ). Statistically, this �t is called "conjugacy". A prior distribution is called

conjugate to a likelihood, if the posterior is of the same distributional form as the prior

[42]. If no conjugate prior is available, the marginal likelihood has to be approximated.

The marginal likelihood for discrete Bayesian networks was �rst computed by

Cooper et al. [43], and is further discussed by Heckerman et al. [44]. The conjugate

prior for the multinomial distribution is the Dirichlet prior [42]. Assuming indepen-

dence of the prior for each node and each parent con�guration, the score decomposes

into independent contributions for each family of nodes. Corresponding results exist for

Gaussian networks using a Normal-Wishart prior [45]. The marginal likelihood again

decomposes into node-wise contributions. Conjugate analysis and analytic results are

possible using normal-gamma priors for each leaf node [46, 47].

For a given BN model, the probability of observing data is [19]:

P (D|G) =
N∏
i=1

qi∏
j=1

Γ(Nij)

Γ(Nij +Mij)

ri∏
k=1

Γ(aijk + sijk)

Γ(aijk)
(3.10)

where N is the number of nodes, qi is the number of di�erent states of node's parents,

and ri is the set of values a node can take on. Nij is the sum of corresponding Dirichlet

distribution hyper-parameters aijk. Mij is the number of times that the parents of node

i take on con�guration j in the dataset. Of these Mij cases, sijk is the total number of

times in the sample that node i is observed to have value k when its parents take on

con�guration j. The equation above is used as a score metric and named the Bayesian

Scoring Criterion (BSC) [44].

Given the gamma function Γ(x) =
∫∞

0
tx−1e−x dt = (x−1)! note that Γ(x+1)

Γ(x)
= x.

The beta density function(ρ) with parameters a, b ∈ <+ and N = a+ b is de�ned as

ρ(f) =
Γ(N)

Γ(a)Γ(b)
fa−1(1− f)b−1, 0 ≤ f ≤ 1 (3.11)

We refer to this function as β(f ; a, b), and a random variable F with this density
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function is said to have a beta distribution. One can show that∫ 1

0

fa(1− f)bdf =
Γ(a+ 1)Γ(b+ 1)

Γ(a+ b+ 2)
(3.12)

which yields E[β(f ; a, b)] = a
N
. Suppose F has a beta distribution β(f ; a, b), and X

is a random variable with two values (1 and 2) such that P (X = 1|f) = f , then

P (X = 1) = E[f ] = a
N
. In a BN setting (without loss of generality, consider a binary

BN), we view F as the "driving function" for node X, assign a prior set of parameters

(a, b) for X and update the count for a and b, if there is some observed data.

Figure 3.3 Single node binary Bayesian Network.

Consider the single node binary BN in Figure 3.3. Let's consider X = 1 to be

heads and X = 2 to be tails. If initially say, a = b = 3, then we say probability of

observing a heads is 3/6 = 1/2. Assume we use a biased coin, and one now observe

data d = 11112211111 with 9 number of 1s and 2 number of 2s. Then the distribution

function is updated as a = 3 + 9 = 12, and b = 3 + 2 = 5 and we say the probability of

observing a heads is 12/17. If one has a valid reason to bias the initial con�guration

of a and b, this can be re�ected in the prior distribution de�nition. For the above

example, one could choose a larger value for a compared to b, initially.

Now consider binomial data d = (x1, x2, ..., xM) with parameter F following

β(f ; a, b) and N = a + b. Assume we have s number of 1s and t number of 2s in d.

One now can calculate P (d) =
∫ 1

0
P (d|f)ρ(f)d(f) and

P (d) =
Γ(N)

Γ(N +M)

Γ(a+ s)Γ(b+ t)

Γ(a)Γ(b)
(3.13)

For example, let a = b = 1 and assume we observe d = (1, 2), i.e. one heads and one
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tails. Then

P (d) =
Γ(2)

Γ(2 + 2)

Γ(1 + 1)Γ(1 + 1)

Γ(1)Γ(1)
=

1

6
(3.14)

Note that if a random variable X2 in a BN has a parent X1, then we would have

two "driving functions" for X2, one for each instance of X1 (whether X1 is 1 or 2).

Similarly, if a node in a BN has 2 parents, we would have four beta functions, one for

each con�guration of the values the node's parents assumes (11, 12, 21, 22), and so on.

Figure 3.4 Driving functions of various parent con�gurations of BNs.

3.6.5 Bayesian Dirichlet Equivalent (BDe) Score

Bayesian Dirichlet equivalent (BDe) scoring scheme uses Dirichlet functions

driving each node, which is a generalization of the beta distribution. Based on the

de�nitions listed here, �rst, let's review the BDe score de�nition: Hyper-parameters

aijk in Eq. 3.10 of BSC can be determined using the equivalent sample size method

(i.e. sum of the initial Dirichlet parameters used at each node have the same total), in

which case the score is called the Bayesian Dirichlet Equivalent (BDe) [19].

Parameters used in Eq. 3.10 are best explained by an example. Consider the

BN in Figure 3.5, where nodes can take on values 1, 2, or 3 and follow Dirichlet

distributions.

Note that X3 has two parents and since each node can take on 3 values, X3's

parents can take on 9 (3x3) di�erent con�gurations. Following equivalent sample size

method, sum of the initial Dirichlet hyper-parameters, aijk, driving each node has the
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Figure 3.5 Con�guration of a BN with nodes which take on values 1, 2, or 3.

same total, 27. Hence,

a111 = a112 = a113 = a211 = a212 = a213 = 3 , and

a311 = a312 = a313 = 1(X3's parents take on con�guration1, i.e.X1 = 1, X2 = 1)

a321 = a322 = a323 = 1(X3's parents take on con�guration2, i.e.X1 = 1, X2 = 2)

a331 = a332 = a333 = 1(X3's parents take on con�guration3, i.e.X1 = 1, X2 = 3)

a341 = a342 = a343 = 1(X3's parents take on con�guration4, i.e.X1 = 2, X2 = 1)

a351 = a352 = a353 = 1(X3's parents take on con�guration5, i.e.X1 = 2, X2 = 2)

a361 = a362 = a363 = 1(X3's parents take on con�guration6, i.e.X1 = 2, X2 = 3)

a371 = a372 = a373 = 1(X3's parents take on con�guration7, i.e.X1 = 3, X2 = 1)

a381 = a382 = a383 = 1(X3's parents take on con�guration8, i.e.X1 = 3, X2 = 2)

a391 = a392 = a393 = 1(X3's parents take on con�guration9, i.e.X1 = 3, X2 = 3)

Now, let's consider a sample input data and focus on node 3:
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Observation X1 X2 X3

1 3 1 2

2 3 1 1

3 1 2 1

4 2 1 3

5 2 2 1

6 1 3 2

7 1 3 3

8 3 3 2

9 3 2 3

10 2 3 1

Note thatN31 = N32 = N33 = N34 = N35 = N36 = N37 = N38 = N39 = 3

Considering observed data,

M31 = 0,M32 = 1,M33 = 2,M34 = 1,M35 = 1,M36 = 1,M37 = 2,M38 = 1,M39 = 1

That is, for example, M37 = 2 means 3rd node's (X3's ) parents assumed con�guration

7 (X1 = 3, X2 = 1) in 2 instances. Now breaking these Mij cases into sijk's for node 3,

we have:

s311 = 0s312 = 0s313 = 0

s321 = 1s322 = 0s323 = 0

s331 = 0s332 = 1s333 = 1

s341 = 0s342 = 0s343 = 1

s351 = 1s352 = 0s353 = 0

s361 = 1s362 = 0s363 = 0

s371 = 1s372 = 1s373 = 0

s381 = 0s382 = 0s383 = 1

s391 = 0s392 = 1s393 = 0
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That is, for example, 7th row in this table means when X3's parents assumed

con�guration 7, X3 assumed the value "1" and "2" once (s371 = 1, s372 = 1), and the

value "3" zero times (s373 = 0).

3.6.6 Model Selection and Assessment

To search for the DAG with the highest score is mathematically trivial: compute

the score for every possible DAG and choose the one that achieves the highest value.

What makes exhaustive search computationally infeasible in almost all applications is

the huge number of DAGs. The number of DAGs on n edges is

G(n) =
n∑
k=1

(−1)k+1

(
n

k

)
2k(n−k)G(n− k) (3.15)

where n is the number of nodes [48]. The number of DAGs increases super-exponentially;

the �rst few values are shown below:

n G(n)

1 1

2 3

3 25

4 543

5 29,281

6 3,781,503

7 1.1 x 109

8 7.8 x 1011

9 1.2 x 1015

The exhaustive search approach to structure learning is a method to enumerate

all possible DAGs, and score each one. In practice, one can't enumerate all possible

DAGs for N > 5 with the current computational power, but one can evaluate any

reasonably-sized set of hypotheses in this way. Therefore, we must use heuristic strate-

gies to �nd high-scoring Bayesian networks, without enumerating all possible DAGs.
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3.6.7 De�ning the Search Space

First, we need to decide how to describe the models of interest. This de�nes

the model space, in which we search for models describing the data well. To apply

search heuristics, we have to equip the search space with a neighborhood relation, that

is, operators to move from one point of the search space to the next one. The most

simple search space results from de�ning a neighborhood relation on the DAGs. Two

DAGs are neighbors if they di�er by one edge, which is either missing in one of them

or directed the other way round. Madigan et al. [49] and Chickering et al. [47] restrict

the search space to Markov equivalence classes of DAGs, which uniquely describes a

joint distribution. Thus, no time is lost in evaluating DAG models that are equivalent

anyway. Friedman et al.[20] search over orders of nodes rather than over network

structures. They argue that the space of orders is smaller and more regular than the

space of structures, and has a much smoother posterior landscape.

3.6.8 Search Heuristics

Score based algorithms assign a score to each candidate Bayesian network, and

try to maximize it with some heuristic search algorithm. Greedy search algorithms

are a common choice, but almost any kind of search procedure can be used. Score

based algorithms on the other hand are simply applications of various general purpose

heuristic search algorithms, such as hill climbing, TABU search, simulated annealing

and various genetic algorithms. Most of the search algorithms can be applied to all

search spaces, even though they are usually applied to DAGs. They return a single best

network. A simple and fast, but still powerful method is the hill-climbing algorithm.

First, a point in the search space is chosen to start from, e.g. a random graph or

the empty graph. The posterior probability for all graphs in the neighborhood of

the current graph are computed, and the graph with highest score is selected. This

iteration is repeated until no graph in the neighborhood has a larger score than the

current graph. This procedure �nds a local maximum of the Bayesian scoring metric.

Various other optimization techniques, such as iterated hill-climbing try to overcome
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this problem. Iterated hill climbing makes local search until a model with a local

maximum score is found. The structure is randomly perturbed, and the process is

repeat for some manageable number of iterations. The K2-algorithm [43] is a variant of

the greedy search, which assumes that the order of nodes is known. Several approaches

have been suggested to speed up the model search. The sparse candidate algorithm

[50] restricts the number of possible parents for each node by searching for pairs of

nodes which are correlated. The optimal reinsertion algorithm, introduced by Moore

and Wong [51] is a search-and-score algorithm that works as follows: at each step, a

target node is chosen; all edges entering or leaving the target are deleted; the optimal

combination of in-edges and out-edges is found; the node is re-inserted with these

edges. The optimal reinsertion may be combined with the sparse candidate method.

Pena et al. [52] propose an algorithm in which Bayesian networks grow starting from

a target gene of interest. Parents and children of the given target genes are iteratively

added to the Bayesian network. The algorithm stops after a prede�ned number of

steps and thus, intuitively, highlights the surrounding area of the seed gene without

having to compute the complete Bayesian network over all genes. Friedman [53, 54]

introduces the structural EM algorithm to learn Bayesian networks in the presence of

missing values or hidden variables. It is an extension of the Expectation- Maximization

(EM) algorithm that performs structure search inside the EM procedure, and shows

improvements in terms of speed and accuracy.
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4. BAYESIAN PATHWAY ANALYSIS

Most current approaches to high throughput biological data (HTBD) analysis

either perform individual gene/protein analysis or, gene/protein set enrichment analysis

for a list of biologically relevant molecules. Bayesian Networks (BNs) capture linear

and nonlinear interactions, handle stochastic events accounting for noise, and focus

on local interactions, which can be related to causal inference. Here we describe for

the �rst time an algorithm, called Bayesian Pathway Analysis (BPA), that models

biological pathways as BNs, and identi�es pathways that best explain given HTBD by

scoring �tness of each network.

The proposed method (BPA) considers the topology via which genes interact

with each other when analyzing a group of genes [12]. Using pathway information from

global databases, we model each biological pathway as a BN after merging repeating

entries and, if necessary, solving for cyclicity while preserving the dependencies en-

tailed by the original pathway. We consider the resulting BN, which is a graphical

representation of gene interactions rendered by the given pathway, with non-informal,

uniform belief priors. We quantify the degree to which observed experimental data �ts

this BN using Bayesian Dirichlet equivalent (BDe) score calculation where the BN is

updated with input data during score calculation. We assess statistical signi�cance for

the score of each pathway by testing it against data sets generated by applying ran-

domization via bootstrapping. Results are evaluated in forms of nominal p-values and

False Discovery Rate (FDR) values correcting for multiple hypotheses testing. Overall

work�ow used in BPA is depicted in Figure 4.1.

Renal Cell Carcinoma (RCC) is the sixth leading cause of cancer deaths in the

United States and has no established biomarker for early detection or follow-up [55, 56].

Most common histological subtypes of RCC are clear-cell RCC (cRCC) and papil-

lary RCC (pRCC) generally related to de�ciencies in von Hippel-Lindau, rapamycin

complex 1 kinase (mTOR) and fumarate hydratase [57]. Treatment for metastatic
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Figure 4.1 Layout of the BPA approach.

RCC includes rather unspeci�c application of cytokine therapies (e.g. interferon-alfa,

interleukin-2) and more targeted use of receptor tyrosine kinase inhibitors (Sorafenib

and Sunitinib), mTOR inhibitors (Everolimus and Temsirolimus), and monoclonal anti

VEGF antibody therapy with Bevacizumab [57, 56]. These therapies o�er acceptable

response rates (30-40%) but are not bene�cial in overall survival. Therefore a more

detailed analysis of molecular pathways underlying RCC is essential. In previous stud-

ies, transcriptional pro�ling of various RCC subtypes were analyzed, and a predictive

proteomic signature that distinguishes between interleukin-2 therapy responders and

non-responders were obtained [58, 55]. Others have also used gene expression and pro-

teomic approaches to gain insight into the molecular pathways governing RCC [59]-[60].

In addition to cRCC and pRCC, we used BPA to analyze the rare RCC subtype chro-

mophobe RCC (chRCC) and other renal malignancies such as transitional cell cancers

of the renal pelvis (TCC) and Wilms' tumors (WT) or benign renal tumors such as

oncocytomas (OC).
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4.1 Pathway Information Retrieval

Biochemical network data of pathways were retrieved from KEGG [61], NCI/Nature

Pathway Interaction Database [62], Reactome [63], and HumanCyc [64] representing

molecular interaction and reaction networks for metabolism, genetic information pro-

cessing, environmental information processing, cellular processes, and diseases.

4.2 Construction of Directed Acyclic Graphs

A BN is a compact graphical representation of the joint probability distribution

over a set of random variables in the form of a DAG where nodes represent random vari-

ables. The DAG encodes assertions of conditional independence, which are generally

represented as a set of conditional probability tables (CPTs).

When modeling pathways as BNs, we �rst merge repeating entries, for example

Smad2/3 is present at several locations in the KEGG TGFβ pathway, see Figure 4.2, as

a single node in the DAG while conserving edge relations. Cyclic paths are eliminated

using Spirtes' method [65]. In this procedure, graph representation of structural equa-

tion models (SEM) are converted to collapsed acyclic graphs such that d-separations

in the collapsed graph entails the same independency relations de�ned by the model

[35]. Cyclegroups (set of all cycles sharing at least one node) are found using Tarjan's

algorithm [66]. For a given BN, all d-separations are conditional independencies, and

every conditional independency implied by the BN is identi�ed by d-separations [19].

Therefore, our way of solving cyclicity preserves distributional features explained by

the pathway after it has been converted to a DAG.
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4.3 Microarray Data Preprocessing and Discretization

BPA assumes normalized data as input. First, IDs used in the array plat-

form corresponding to a given node in the pathway representation are pooled, and

one representative signal value per node is calculated using the one-step Tukey's bi-

weight algorithm [67]. Currently, BPA addresses experimental designs consisting of two

groups of samples (e.g. cancer vs. normal) though generalization of this framework to

Figure 4.2 Construction of directed acyclic graphs. (A) TGF-β Signaling Pathway as retrieved
from the KEGG database. (B) DAG produced from TGF-β pathway map retrieved from the KEGG
database. Each node is identi�ed by gene symbol (e.g. DCN for Decorin).
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multiple groups is straightforward. For a given BN (converted from a pathway), we

obtain observed fold changes for genes in this BN (pathway) by pairwise comparisons

of samples in each group. This approach provides a distribution of fold change values

and a reasonable data set size used to score each BN. Let SG1 and SG2 represent two

groups of samples in the data set with C1 and C2 samples in each group, respectively.

Let gi1j and gi2k be the expression values of the ith node in the pathway in jth and

kth samples in the sample groups SG1 and SG2, respectively, where 1 ≤ j ≤ C1 and

1 ≤ k ≤ C2. Let Xi, 1 ≤ i ≤ N , represent the random variable for the ith node in a

BN with N nodes. An ordered set of observations, O, for the data set is obtained by

pairwise comparison of all samples in sample groups SG1 and SG2. The lth element

of O, ol, corresponds to comparison of jth and kth samples in the sample groups SG1

and SG2 such that l = (j − 1)xC2 + k, where 1 ≤ j ≤ C1 and 1 ≤ k ≤ C2. Thus

the cardinality of O is C1xC2. Each ol is a vector with dimension equaling the number

of nodes in the pathway, N, such that the ith element of ol, oli, equals gi2k/gi1j, where

j and k are related to l as described above. The data matrix D, with elements dli is

obtained from O such that dli equals 1 if oli < 0.5 or oli > 2 (i.e. a gene is dysregulated)

and 2 otherwise. To this end, we have converted each pathway into a BN, where nodes

of the BN represent nodes in the pathway, and node random variables are identi�ed

by discretized FC values. Nodes of BNs are assumed to follow Dirichlet distribution,

and are initialized using the equivalent sample size method for prior beliefs [19]. The

matrix D, which consists of N columns and C1xC2 rows, is sequentially evaluated row

by row, where each row is used to update the Dirichlet distribution parameters used at

the nodes of BN. Upon conclusion of evaluation ofD, the score for the BN is calculated.

4.4 Bayesian Score Metric

Following discretization, the nodes in the BN model represent discrete random

variables with a multinomial distribution. We use Bayesian Dirichlet equivalent (BDe)

scoring scheme, which uses Dirichlet functions driving each node, which is a general-

ization of the beta distribution. The Dirichlet distribution is chosen as the conjugate

prior of the multinomial distribution. Details of the Bayesian Dirichlet equivalent
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(BDe) scoring scheme can be found in Chapter 2.

4.5 Estimation of Score Signi�cance by Randomization via Boot-

strapping

At this point, we have BNs converted from pathways, a data matrix D for each

BN representing observed, discretized fold change values for genes (nodes) represented

in the BN, and BDe score calculated for the BN using the observed D matrix. We

assess statistical signi�cance of the BDe score, Sn, calculated for nth BN by using

randomization via bootstrapping. We use a data generating process, and estimate a

distribution of the score S given the null hypothesis that the scores are result of pure

chance. For a one-tailed test with a rejection region in the upper tail, the bootstrap

p-value for Sn, P (Sn), is estimated by the proportion of randomized samples that yield

a score greater than Sn. If we have R randomized data sets, then

P (Sn) =
1

R

R∑
k=1

I(Sk > Sn) (4.1)

where I is the indicator function yielding 1 if the Bayesian score is better than the

original network score and 0 otherwise, and Sk is the score of the BN using kth ran-

domized data set. As R goes to in�nity, the estimated p-value will tend to the ideal

p-value, and the error in estimation will be kept minimal [68, 69].

The process for generating the randomized samples is as follows: Suppose

dataset D is composed of M cases for a total of N genes and can be considered as

an MxN matrix where lth row dl = [dl1, dl2, ..., dlN ], 1 ≤ l ≤M , and dli is the value of

the ith node (gene) in the lth instance of input data. For each node Xi, we sample with

replacement M instances from the ith column, [d1i, d2i, ..., dMi]
T , of the original data

matrix D, and obtain the newly formed column of the bootstrapped data matrix Dk.

The BDe score for this new data matrix is calculated, and the whole process is repeated

B times. The approach we adopt here has previously been described, and applied to

phylogeny reconstruction using molecular sequences [70, 68]. Bootstrap alone, which
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is generally used to establish con�dence, would not be �tting to assess signi�cance in

the current setting. Therefore, we provide randomization via bootstrapping, which

provides an approximation of the null distribution. When scoring a BN, the rows of

D, which hold information re�ecting the dependency relation between nodes of BN,

are considered sequentially in order to update the parameters of each node on the BN.

We randomize rows of D by changing the structure of columns of D via sampling with

replacement each column of D separately. Querying each pathway database that holds

few hundreds of networks generates a multiple hypothesis testing problem (utilized

KEGG database contributes over 200 pathways). We address this issue by calculating

FDR using the Benjamini-Hochberg procedure applied on p-values calculated for each

pathway [71].

The overall complexity of the BPA is O(N2 + E2 + RC2G) where N is the

number of nodes, E is the number of edges, G is the number of genes, C is the number

of samples, and R is the number of bootstrap data sets. Modeling of pathways as

DAGs is quadratic in N and E for Spirtes' algorithm and linear in N and E for

Tarjan's algorithm. Data discretization is quadratic in C and linear in G. BDe score

calculation is O(RN2G). Modeling pathways as DAGs is done o� line, which does not

lead to the computational time of a single analysis.

4.6 Creation of Simulated BNs

We created synthetic BNs for testing. Two of them are the well known Alarm

and Asia BNs. The Alarm BN is designed to identify anesthesia problems with 37

nodes of 2, 3, or 4 states [72], and the 8 node binary Asia BN is designed to calculate

the probability of a patient having tuberculosis [73]. In order to create synthetic BNs,

we �rst calculated following parameters of for pathways listed in the KEGG database

[61]:

These numbers represented the properties of typical biological networks. We

then created 8 synthetic BNs (in addition to widely used Asia and Alarm BNs) following
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Mean Std. Dev.

# of Nodes 24.292 21.466

# of Edges 25.307 34.148

Max Degree 5.714 6.189

Average Degree 2.058 2.211

Density 0.180 0.264

parametric distribution found in KEGG. Synthetic BNs have (avg. ± st. dev.) 25.38 ±

13.87 nodes, 24.38 ± 13.87 links, and 1.93 ± 0.08 average degree re�ecting a spectrum

of typical biological networks.

4.7 Identi�cation of Data Fitting to Network

We tested our method to assign signi�cance to BDe scores on 8 synthetic binary

BNs of di�erent sizes and the well known Alarm and Asia BNs. For each BN, we

used two data sets to calculate BDe scores and their signi�cance: one that follows the

underlying CPT and one that does not. For a given BN, we randomly �xed Dirichlet

hyper-parameters for each node and generated data that follow this CPT using the

Bayes Net Toolbox (BNT) for Matlab [40]. CPTs calculated from this data are con-

sidered ideal as they are based on data following the �xed CPT for a given BN. For

inconsistent CPTs, we chose Dirichlet hyper-parameters to be equal for each node, and

obtained data using BNT. Therefore, the underlying CPTs calculated from this ran-

domly generated data are considered to be the nonideal CPT as they are not based on

data re�ecting dependency structure implied by the given BN. We used data sets with a

size of 1000, the bootstrap test count was chosen to be 2000, and an equivalent sample

size of 1 for Dirichlet hyper-parameters was used during BDe score calculation. The

results summarized in Table 4.1 show that when the data following underlying CPTs

are used, p-values indicate strong signi�cance, and are very close to zero (p< 5x10−4).

Conversely, when data generated using CPTs not consistent with independencies en-

tailed by the BNs are used, p-values are severely deteriorated. Therefore, datasets

produced from inconsistent CPTs are quickly detected by BPA.
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Figure 4.3 Graphs of simulated BNs.

4.8 Sample Size

In real life microarray experiments, the number of samples rarely exceeds 100

due to technical and �nancial limitations rendering limited number of observations to

assess change in expression of a given gene. In order to see the e�ect of this limitation

on BPA, we tested BNs in Table 4.1 with varying sizes of data sets (using CPTs that

follow underlying BN structure: data set size 20-200, and CPTs that are non-ideal for
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Table 4.1

Scores and p-values of scores for synthetic, Alarm, and Asia BNs.

Data following CPT Data inconsistent with CPT

BN Name # of nodes Score p-value Score p-value

Alarm 37 -9,955 < 5x10−4 -22,600 0.56

Asia 8 -2,221 < 5x10−4 -2,926 0.54

BN1 19 -9,344 < 5x10−4 -10,213 0.62

BN2 8 -3,569 < 5x10−4 -3,874 0.54

BN3 21 -10,844 < 5x10−4 -12,763 0.55

BN4 36 -20,074 < 5x10−4 -21,746 0.59

BN5 18 -9,607 < 5x10−4 -10,245 0.50

BN6 29 -15,859 < 5x10−4 -17,122 0.64

BN7 19 -9,804 < 5x10−4 -10,996 0.65

BN8 53 -29,937 < 5x10−4 -32,262 0.67

the underlying BN structure: data set size 20-300) and calculated the signi�cance of

corresponding BDe scores. Results are shown in Figure 4.4. For each data set size

50 runs have been performed. The average p-value of the runs, each obtained using

1000 bootstrapped samples, and associated standard errors are shown in Figure 4.2.

In case of ideal CPTs, p-values start to get lower after a small increase in the sample

size with highest attainable signi�cance (p<10−3) at sizes larger than 140. This is a

dataset size that can be generated by the proposed method in an experimental setting

where one has 12 samples in each of the two groups (BPA would generate 12x12 = 144

observations for each BN. In case of non-ideal CPTs, p-values remain high regardless of

the data set size (see also Table 4.1). These results suggest that BPA can successfully

be used with datasets commonly seen in real experimental settings.

4.9 Change in Pathway Structure

Biological pathways may be incomplete as some of the nodes and/or edges for a

given cascade of events may not have been identi�ed yet. In order to test for the e�ect
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of missing edges and nodes on the signi�cance of BDe scores calculated by BPA, we

systematically removed all possible k edge combinations, 1 ≤ k ≤ 5, for BNs listed in

Table 4.1. For each k, we calculated the average p-value obtained by removing di�erent

combinations using a data set size of 140 (following the underlying CPT) with 1000

bootstraps. We repeated the same procedure by removing all combinations of nodes.

Results are shown in Figure 4.5. In both cases, all BNs maintain signi�cant results

despite removal of up to 5 edges and/or nodes, except for BN2 (8 nodes, 7 edges), BN5

(18 nodes, 17 edges), and Asia BN (8 nodes, 8 edges), which have smallest number

of nodes and edges among the 10 synthetic networks. Note that the e�ect of node

removal is more severe as when a node is removed so are all the edges connected to

Figure 4.4 BPA performance with ideal and non-ideal CPTs for BNs listed in Table 4.1: (A) data
follow underlying CPTs (B) data do not follow underlying CPTs. In each case average p-values of 50
runs have been calculated. Data set sizes are 20-200 in (A), 20-300 in (B) to depict better resolution,
plateau, and real life settings, respectively.
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it. Robustness to node/edge removal is possibly due to the factorized scoring metric

and the BNs ability to focus on local interactions where each node is directly a�ected

by a relatively small number of parent nodes and interactions. The synthetic networks

tested follow average node/edge distribution in typical biological pathways and the

removal of up to 5 nodes/edges is likely to be very high compared to pathway error

instances seen in real biological pathways, which makes application of BPA for pathway

analysis possible.

Figure 4.5 BPA performance with changing in network structure for BNs listed in Table 4.1: (A)
progressive removal of edges in BNs (B) progressive removal of nodes in BNs In each case average
p-values of 50 runs have been calculated. Data set sizes are 140 in (A) and (B) to depict better
resolution, plateau, and real life settings, respectively.
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4.10 Application to Synthetic Data Sets

We �rst looked at whether our method of solving cyclicty could create large

cliques and inversely a�ect the BPA's overall performance. We generated 20 synthetic

directed graphs containing cyclic paths following a SEM [74] using TETRAD IV [75].

The corresponding acylic collapsed versions of synthetic cyclic graphs show about 2.7-

2.8 times the increase in number of nodes, number of edges, max degree, average degree,

and density of the networks, on average. The BPA was run on a 1000 size data set with

1000 bootstraps, and resulted in signi�cant p-values (lowest attainable) in all cases

when we generated data that follow SEMs. These results suggest that our method

of handling cyclicity may generate large cliques, however, the BPA is not adversely

a�ected by the proposed method of generating DAGs from biological pathways (for

details see [12]).

We then compared performance of the BPA with GSEA v2 [76] and a model-

based approach, GlobalTest [77] using Bioconductor v2.7, GlobalTest v5.4.0 package

on synthetic data sets approximating real microarray data. We generated synthetic

transcriptional regulatory networks, and produced simulated gene expression data with

noise using SynTReN v1.12 [78]. We created 60 synthetic networks (58/60 have cycles)

with sizes ranging from 2 to 200. Details of the networks' parameters are included

in the [12]. We randomly selected 25 out of 60 pathways to be active and SynTReN

generated corresponding expression data sets for 20 test and 20 normal samples with

2249 synthetic genes adding a 4% noise level. For all three methods, we used 1,000

bootstraps, and chose a nominal p-value and FDR cut-o� values of 0.05 and 0.25,

respectively. We assessed accuracy (if a network -or corresponding gene set- is correctly

called active/inactive) of the three algorithms for 10 simulated data sets, and provide

the results in Table 4.2.

BPA was tested for fold change (FC) cut-o� values (CO) of 2 and 3, and dis-

cretization levels of 2 (i.e. if a gene's FC is above CO or below 1/CO, that is i.e. a

gene is dysregulated, we insert a 1 in the observation data matrix D, otherwise we

insert a 2) and 3 (i.e. we insert a 1, 2, or 3 in the observation data matrix D, if a
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Table 4.2

Average ± std. dev. of fraction of pathways accurately called active or inactive by BPA, GSEA and
GlobalTest (GT).

BPA 2 Level BPA 3 Level GSEA GT

FC 2 FC 3 FC 2 FC 3

0.825 0.838 0.825 0.838 0.583 0.400

± 0.047 ± 0.042 ± 0.047 ± 0.042 ± 0.001 ± 0.024

gene's FC is above CO, below 1/CO, between CO and 1/CO -inclusive-, respectively).

These results suggest that BPA outperforms both GSEA and GlobalTest, and there is

no signi�cant change in using two or three levels of discretization in BPA with a slight

improvement in performance when a fold change cut-o� of 3 is used. We used 2-level

discretization with a FC cut-o� of 2 when applying BPA to real data sets. A 2-level

discretization seems more natural as we do not keep activator/repressor information

when modeling biological pathways as DAGs, and an FC cut-o� of 2 allows BPA to

capture subtle changes.

4.11 Application to Real RCC Data Set

We applied BPA on real RCC data sets in order to identify the underlying

molecular mechanisms of the disease (Table 4.3). In each experiment, every cancer

subtype was individually compared to the normal samples generating 16 data sets

in total. BNs corresponding to biological pathways are scored using BDe with an

equivalent sample size of 1 for Dirichlet hyper-parameters, and a selected subset of

those that remain signi�cant after 1000 bootstraps are shown in Table 4.4. CPU times

for BPA is 30 ± 10 mins. (avg ± std. dev.) for the 16 analyzed datasets, where the

time given is for the complete analysis of a single data set. Running times range from

17 to 57 minutes. Analysis was performed on an Intel Core 2 Duo CPU E6550 2.33 Ghz

processor with Windows XP 32 bit OS. We also analyzed the 16 data sets using GSEA

and GlobalTest. In all three methods, the p-value and FDR cut-o� values were chosen
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to be 0.05 and 0.25, respectively. In order to avoid the problem of pathway alignment

that would arise if multiple pathway sources were used, we limited our analysis to the

KEGG pathway database for this exemplary case. In case of GSEA and GlobalTest,

we used MSigDB v2.5 (group CP under C2). The complete list of signi�cant pathways

for each method and a comparative analysis are included in the [12].

Table 4.3

Data sets used in BPA analysis of malignancies in kidney.

Data set name Number and types of samples GEO #

Lenburg et al. 17 (8 N, 9 cRCC) GSE 781

Jones et al. 2 (23 N, 32 cRCC, 11 pRCC, 6

chRCC, 12 OC, 8 TCC)

GSE 15641

Furge et al. and

Yang et al.

47 (12 N, 35 pRCC) GSE 7023 and GSE 2748

Gumz et al. 20 (10 N 10 cRCC) GSE 6344

Kort et al. 79 (12 N, 10 cRCC, 17 pRCC, 6

chRCC, 7 OC, 27 WT)

GSE 11024

Koeman et al. 32 (12 N, 10 chRCC, 10 OC) GSE 8271

Wang et al. 22 (12 N, 10 cRCC) GSE 14762

Most of the pathways deemed signi�cant by BPA agree with those found in

literature using genomic and proteomic approaches. For example arginine and pro-

line metabolism, citrate cycle (TCA cycle), purine metabolism, fatty acid metabolism,

pyruvate metabolism, glycolysis/gluconeogenesis, valine, leucine and isoleucine degra-

dation pathways have been shown to be important in RCC analyzed using a proteomic

approach [79]. On the other hand, signi�cant pathways found in di�erent subtypes

show notable agreement among data sets analyzed. Using BPA, we found 25 pathways

signi�cant in at least half of the data sets; this number was only 9 for GSEA (see also

[12]). In BPA, on average 10.6 data sets were found signi�cant by each of 25 pathways

(for a total data set occurrence of 265), while GSEA's average was 9.3 signi�cant data

sets per pathway (for a total data set occurrence of 84). When we considered path-
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ways deemed signi�cant for at least one data set, we found 129 pathways discovered

by BPA yielding 571 data set occurrences in total and 121 pathways discovered by

GSEA resulting in 390 data set occurrences. BPA was able to �nd 63% of pathways

discovered by GSEA. Overall, these results indicate that BPA found a greater pathway

base related and speci�c to RCC as compared to GSEA. We believe this enhancement

in performance is due to the ability of BPA to take into account connectedness of genes

that make up a pathway whereas in GSEA analysis such genes are only considered as

a list, and no topological information is incorporated into the analysis. GlobalTest

results indicated 199 signi�cant pathways (out of 206) for 2974 data set occurrences

yielding 14.95 average data sets (out of 16) deemed signi�cant for each pathway. We

include complete results of GlobalTest in [12] as pathway selection with this method

showed little speci�city ( 97% of tested pathways found signi�cant for 90% of the data

sets). Similar behavior for GlobalTest have been observed previously by other studies

potentially due to distributional assumptions (that regression coe�cients for the genes

come from the same normal distribution) and errors in empirical covariance estimates

made by this approach leading to high false positive rates especially in cases with

small sample sizes [80, 81]. Furthermore, GlobalTest loses signi�cant power when a

given gene list contains correlated genes, which holds true for genes in a given pathway

[82].

Out of 12 pathways shown in Table 4.4 that were shown to be related to RCC

using an experimental proteomic approach, BPA found 117 data set occurrences for

which these pathways were signi�cant ( 61% of possible 12x16 = 192 data set occur-

rences) while GSEA could only identify 50 ( 26%) dataset occurrences.

BPA was also able to yield high consensus among pathways found signi�cant for

a given RCC subtype. In Figure 4.6, we show the overlap of pathways found signi�cant

for cRCC subtype in four di�erent data sets. More than 70% of pathways found in four

data sets are shared by at least two data sets, while eight pathways were common to

all. Among these eight pathways, six of them (except for nicotine and folate pathways)

have been shown to be activated in RCC based on a proteomic approach [79].



55

Figure 4.6 Venn diagram depicting pathways shared by BPA analysis of Jones, Lenburg, Gumz, and
Wang cRCC data sets. Eight pathways at the intersection of all four analyses are indicated.

Results summarized in Table 4.4 put forth molecular mechanisms that are not

only subtype speci�c but also commonly seen in di�erent RCC tumors. The complex-

ity/relevance of some of these pathways can be exempli�ed by the activation of the

insulin signaling pathway through the activation of the insulin growth factor receptor-

1 that activates the PI3K/Akt signaling pathway. PI3Ks catalyze the conversion of

phosphatidylinositol bisphosphate (PIP) 2 to PIP 3 (inositol phosphate metabolism).

PIP 3 acts as a second messenger to activate Akt. Akt mediates the activation of

mTOR that is responsible for its e�ects on cell growth. In addition to activating the

PI3K/Akt/mTOR pathway, IGFR-1 also activates the Ras/MAPK/Raf/MEK/ERK

mitogenic signaling pathway (MAPK signaling pathway). Subsequently this leads to

an activation of the cell cycle transition through stimulation of cyclin D1 (Cell cycle)

and to increased cell proliferation. These prominent cellular pathways have been the

objective for most of the targeted therapies now used in metastatic RCC. mTOR in-

hibitors act on PI3K/Akt/mTOR pathway leading to inhibition of protein synthesis

and cell cycle arrest, while some receptor tyrosine kinase inhibitors (Sorafenib) also

a�ect Raf, blocking the MAPK mitogenic signaling pathway. In addition, both ap-

proaches inhibit angiogenesis which has a strong impact in RCC tumorigenesis and
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progression. Interestingly, further studies are underway analyzing possible composite

or sequential therapies blocking these pathways for the identi�cation of the optimal

therapeutic approach. However, di�erent targets within other pathways described here

may lead to additional successful results, and should be explored further. According

to our analysis one of these novel pathways could be the glyoxylate and dicarboxylate

metabolism, which has been associated with lung cancer but not with RCC [83]. In-

deed, metabolism related pathways have been shown to play a role in RCC progression,

and would therefore be reasonable targets for further in depth analysis and in vitro

testing.
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Table 4.4

Selected signi�cantly regulated pathways (p<0.05, FDR<0.25; *: BPA, �: GSEA). Boldface
pathways are shown to be important in RCC using an experimental proteomic approach. (c: cRCC;

p: pRCC; ch: chRCC; O: OC; T: TCC; W: WT)

Pathway/DataSet Lenburg Jones Yang Gumz Kort Koeman Wang

Alanine and aspartate

metabolism

c§ c∗§ p∗ ch∗ O∗ T§ p∗ c∗ W∗ c∗§

Arachidonic acid

metabolism

c§ c∗ p∗ ch∗§ O∗ T∗ p∗ O∗ W∗§ O∗ c∗

Arginine and proline

metabolism

c∗§ c∗ p∗§ ch∗ O∗

T∗§
p∗ c∗ p∗ W§ c∗§

Cell cycle c∗§ p∗ ch∗ O∗

T∗§
p∗ p∗ W∗§ O∗ c∗§

Citrate cycle (TCA cycle) c∗§ c∗§ ch∗ O∗ T∗ c∗ O∗ W∗ O∗ c∗

Drug metabolism -

cytochrome P450

c∗ p∗ ch∗ O∗ T∗ W∗

ECMreceptor interaction c∗ p∗ ch∗ T∗ p∗ p∗ W∗ c∗

Fatty acid metabolism c∗§ c∗§ p∗§ ch∗ O∗

T∗§
p∗§ c∗§ c∗p∗§O∗ W∗ ch∗ O∗ c∗§

Focal adhesion c∗ p∗ ch∗ O T∗ p∗ p∗ W∗ O∗ c∗

Galactose metabolism c∗ ch∗ W∗ c∗

Glutamate metabolism c§ c∗§ p∗§ch∗ O∗

T∗
p∗ p∗ W∗ ch∗ c∗

Glycolysis / Gluconeogen-

esis

c∗§ c∗§ p∗ ch∗ O∗ T∗ p∗ c∗§ c∗ p∗O∗W∗§ ch∗ O∗ c∗

Glycosphingolipid biosyn-

thesis

c∗ ch∗ O∗ T∗ p∗ W∗ O∗ c∗

Inositol phosphate

metabolism

c∗§ p∗§ch∗ O∗

T∗
c§

Insulin signaling pathway c∗ p∗§ ch∗ O∗ T∗ W∗ c∗

MAPK signaling pathway c∗ p∗§ ch∗ T∗ W∗ c∗

Metab. of xenobiotics by

cyt. P450

c§ c§ p∗ ch∗§ O§ c§ c∗ O§ W∗§ O§ c∗§

Natural killer cell medi-

ated cytotox.

c∗§ p∗ ch∗ T∗ p∗ p∗ W∗ c∗§

Nicotinate and nicoti-

namide met.

c∗§ c∗ p∗ ch∗§ O∗ T∗ c∗ W∗§ ch∗ c∗

Nitrogen metabolism c§ c∗§ p∗§ ch∗ O∗

T∗§
p∗ c§ p∗ W∗§ c∗§

One carbon pool by folate c∗§ c∗ p∗ ch∗ O∗§ T∗ p∗ c∗ p∗ W∗ c∗

p53 signaling pathway c§ ch∗ p§ W§ c§

Pentose phosphate path-

way

c∗ p∗ ch∗ O∗ T∗ p∗ p∗ W∗ c∗

Propanoate metabolism c§ c∗§ p§ ch∗ T§ c§ W∗§ c§

Purine metabolism c∗ c∗ p∗ ch∗ O∗ T∗ p∗ c∗ c∗p∗ch∗O∗W∗ ch∗ O∗ c∗

Pyruvate metabolism c∗§ c∗§ ch∗ O∗ T∗§ p∗ ch∗ O∗ W∗§ ch∗ O∗ c∗

Pyrimidine metabolism c∗ p∗ ch∗ O∗ T∗ p∗ p∗ W∗§ c∗

Retinol metabolism c∗ c∗ p∗ ch∗ O∗ T∗ p∗ p∗ W∗§ ch∗ O∗ c∗

Urea cycle metabolism of

amino g.

c∗§ c∗§ p§ ch∗§ O§

T∗§
p§ p§ ch§ W∗ O§ c§

Valine leucine and

isoleucine degr.

c∗§ c∗§ p∗§ ch∗ O∗

T∗§
p∗ c∗§ c∗p∗ch∗O∗W∗§ ch∗ O∗ c∗§
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5. LEARNING GENE INTERACTION NETWORKS USING

EXTERNAL BIOLOGICAL KNOWLEDGE

We present a framework to incorporate multiple sources of prior knowledge, re-

gardless of its type, into Bayesian network learning. The meaning of prior knowledge

in our context is the enumeration of pairwise interactions of genes from biological in-

formation sources and the use of this information in Bayesian Network modeling. The

proposed method is fully automatic, and does not use likelihood approximations when

�nding the optimal network that explains observed experimental data. We propose a

novel framework that uses BN infrastructure itself to incorporate external biological

knowledge, when learning networks. This infrastructure yields gene interaction infor-

mation for pairs of genes, which can be used as informative priors in structure learning.

We use this prior information to calculate the probability of a candidate graph G, and

optimize the true model in the network learning process.

5.1 Methodology

Our methodology is depicted in Figure 5.1. A BN model for prior knowledge

(called as BNP) is developed, using biological database information, to make inferences

about interactions between gene pairs. The model is instantiated each time with the

given gene expression correlation input to infer whether the gene pair is related or

not, represented by a prediction value between 0 and 1. A prior knowledge matrix is

populated with prediction values of all combinations of gene pairs. Using a proposed

energy formula and informative prior formula, the prior knowledge is utilized in learning

network structure with the greedy search algorithm.
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Figure 5.1 Layout of prior knowledge incorporation for gene networks

5.2 Scoring Function for Bayesian Network Models

The task of network inference (i.e. structure learning) is to make inferences

regarding the graph G (i.e. DAG) that best explains the data. According to the Bayes'

theorem, the posterior probability of the DAG G:

P (G|D) =
P (D|G)P (G)

P (D)
(5.1)

where P (D|G) is the marginal likelihood of data, P (D) is the probability of the data,

P (G) is the structure prior (or network prior) probability of the graph (DAG) G over

all possible graphs, and P (G|D) is the posterior probability of DAG G. Assuming a

constant value for P (D) = c is reasonable as D is observed. Use of uniform (�at)

priors is common that P (G)s are assumed equal for lack of prior knowledge on Gs.

The impact of the structure prior P (G) is in penalizing over complex models. Ignoring

the contribution of P (G) may cause failure in di�erentiating between DAGs that are

in the same Markov Equivalence set, in which several DAGs may support the same

conditional probability distribution.
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For discrete BNs, most of the learning tasks are performed by calculating P (D|G)

with Bayesian Dirichlet Equivalent (BDe) scoring function and by assuming uniform

(�at) prior structure for all possible candidate DAGs [44]. The posterior probability of

graph given the multinomial data is expressed as

P (G|D) = ScoreBDe ∼= P (D|G) (5.2)

5.3 Network Learning Using Greedy Search with Informative

Structure Priors

When the number of nodes N is not small, to �nd the best DAG by exhaustively

considering all DAGs is computationally unfeasible as the number of DAGs increases

super-exponentially in N . One way to handle this is to use a heuristic algorithm to

search for G that maximizes P (G|D). We chose the greedy search algorithm for its

simplicity and integrated within it the score function that uses our informative structure

model. The algorithm proceeds as follows. We start with an initial DAG, usually a

DAG with no edges. At each step of the search, of all those DAGs in the neighborhood

of our current DAG, we greedily choose the one that maximizes P (G|D), which uses

prior knowledge formula to calculate structure priors. We halt when no operation

increases this score.

5.4 Previous Work on Informative Structure Priors

The use of uninformative �at structure priors may lead to a false model which

is unable to describe the real network. In reality, the true parameter that needs to

be optimized is P (G|D). It is hypothesized that in case of learning gene interaction

networks from high throughput biological data, P (G|D) can be calculated using a

model for P (G).
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Heckerman et al. has proposed a model of informative priors as follows [44]:

P (G) = cκδ (5.3)

where c is a constant, κ is an integer which has to be pre-de�ned, δ is the symmetrical

di�erence between prior knowledge matrixB and the adjacency matrix of the candidate

graph G. The symmetrical di�erence of the two sets is the union (∪) of the two sets,

minus (
. . .) their intersection (∩) and would be expressed as the following:

δ =
N∑
i

∣∣∣∣πBi ∪ πGi . . . πBi ∩ πGi
∣∣∣∣ (5.4)

where πi is the parent set of node i, and N is the number of nodes.

Imoto et al. proposed to use Gibbs distribution for modeling of the structure

priors of networks [6] as the following :

P (G) = Z−1e−βE(G) (5.5)

and

Z =
∑
G∈ρ

e−βE(G) (5.6)

where β is a hypermarameter, E is the energy function, Z is the partition function,

and ρ is the set of all possible network structures. The computation of Z is intractable

because it requires the sum over all possible networks, where the number of networks

increases super-exponentially with the number of nodes. They describe U ij as the

interaction energy of the edge from gene i to gene j and assumes U ij to be categorized

into I values, H1, ..., HI based on prior biological knowledge. For example, if one knows

gene i regulates gene j, we set U ij = H1. However, if it is not known whether gene

i regulates gene j or not, it is assigned that U ij = H2 and 0 < H1 < H2. The total

energy of the network G would then be de�ned as

E(G) =
∑
i,j∈G

Uij (5.7)
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They used Bayesian Network and Nonparametric Regression Criterion (BNRC) scor-

ing method to learn structures in addition to an optimization algorithm to estimate

structure, structure prior, and its parameters β, H1, and H2.

5.5 A Novel Model for Informative Structure Priors

In the calculation of informative structure priors, we propose a method that

borrows ideas from both Imoto's and Heckerman's approaches [6, 44]. However, pro-

posed method does not use categorized prior knowledge, but assigns probabilities to

each candidate edge.

Let B be the prior information matrix, where B(i, j) = P (Xij), the probability

of gene i and j interact based on external knowledge. Let AG denote the adjacency

matrix of the candidate graph G. We de�ne the matrix U such that U (i, j) = 1 −

[B(i, j)AG(i, j)], the element by element multiplication of B and AG. Note that if

there exists no edge from i to j in G, U (i, j) = 1; and if there is an edge from i to j

in G, U (i, j) is inversely proportional to our prior belief on the existence of the edge.

The total energy of G is de�ned as:

E(G) =
∑
i,j

Uij/N
2 (5.8)

where N is the number of nodes in G. We note that using categorical values for U ij

does not re�ect the continuous case of having di�erent probabilities for the presence

of an edge between two nodes. U ij can be de�ned without setting hard probability

cuto�s (i.e. true or false edge) for the existence of an edge. Therefore, we prefer to

assign values from previously evaluated prior probabilities P (Xij) to the matrix B

representing prior knowledge.

Informative structure prior is formulated as follows:

P (G) = C.e−βE(G) (5.9)
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where C is a scaling constant. C may be assigned the total sum of all P (G) calculated

for each candidate DAG structure during the structure learning task. P (G) is bounded

by E(G) since E(G) has a scaling factor (N2) as its denominator. The hyperparameter

β is a �xed value used to scale P (G). The hyperparameter β can be marginalized out

from the equation in the interval of [βL, βH ] as follows:

P (G) = C.
1

βH − βL

∫ βH

βL

eβE(G)dβ (5.10)

For further use, the integral is calculated for a range of E(G) and stored in a lookup

table.

Ignoring the constant C, which does not a�ect relative comparison during scor-

ing of graphs in structure learning, the posterior probability of graph given data with

informative structure priors becomes:

P (G) = C.
1

βH − βL

∫ βH

βL

eβE(G)dβ ∗ ScoreBDe(G,D) (5.11)

5.6 Sensitivity Analysis of Prior Parameters

We tested the sensitivity of the proposed method to the hyperparameter β

for a range of ∆β values of [βL, βH ] from 0.1 to 20 by performing receiver operating

characteristic (ROC) curve analysis. The area under the curve (AUC) of top DAGs were

calculated using posterior probability P (G|D) with informative priors, and marginal

likelihood P (D|G) scores with �at priors for the Sprinkler BN shown in Figure 5.3.

For each ∆β value, the scoring is repeated by generating new data sizes of 10, 20, 50,

and 100. We plot the mean AUC values obtained versus the parameter interval values

as shown in Figure 5.2. For ∆β of 1 and greater, there is a slight change in the mean

AUCs as expected because the hyperparameter β is averaged out in the prior formula.
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Figure 5.2 Sensitivity analysis of prior parameters on Sprinkler BN

5.7 Test on Prior Formula With Simulated Data

We tested the incorporation of P (G) on the ubiquitous Sprinkler BN shown in

Figure 5.3. Sprinkler BN is a binary network that shows CPTs for the events of the

weather being cloudy, raining, grass being wet and the sprinkler being on.

We generated data that follows the model for a data set size of 100 and 1000,

and randomly selected a DAG to represent prior knowledge seen in Figure 5.3. We

performed scoring each of the 543 possible 4-node DAGs in a brute force approach

without using a heuristic search algorithm. We calculated P (D|G) according to Eq.

5.1 and P (G|D) according to Eq. 5.2 with �xed P (D) (i.e. data is given). P (G) is

calculated according to the proposed method in Eq. 5.10. Logarithm of the respective

probabilities (scores) are shown in Table 5.1 for data set sizes of 1000 and 100.

We show top 10 DAGs with the highest P (G|D) scores and make two observa-

tions: the true DAG, which had the DAG # 504, comes out at the top when P (G|D)
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Figure 5.3 Sprinkler BN with corresponding CPTs and exemplary prior knowledge.

is considered although the log likelihood of this DAG, P (D|G), is not the highest.

Maximizing the log likelihood over�ts, and results in ranking other DAGs at top.

By incorporating P (G), we may di�erentiate between DAGs in the same Markov

Equivalence Class (e.g. DAGs #504, 491, and 503 OR DAGs #506 and 518) using

P (G|D) although these DAGs render the same P (D|G) scores.

We then generated 100 random 5-node BNs along with their CPTs. Data sets

of size 100 were generated with BNT and both likelihood, and proposed scores were

calculated for the DAGs. In applying the proposed approach, we distorted the prior

matrix so that it did not always represent the true adjacency matrix. For a given DAG,

we changed the real edge probabilities in the prior matrix with a �xed value between

0.7 and 1.0. This value was randomly chosen for each DAG. If no edge was present in

the true DAG, this was re�ected with a probability value of 0 in the prior knowledge

matrix. Again a brute force method was used in that all 29,281 possible 5-node DAGs

were created, and scored using both methods. In Figure 5.4, we show the percent rank

of the true DAG for both methods with changing distortion levels. Percent rank is

calculated as (Rank of the true DAG's score/Number of all DAGs)*100%. In all the
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Table 5.1

Top 10 DAGs using data that follows CPTs described by the Sprinkler BN.

Data Set Size = 1000 Data Set Size = 100

DAG # P(D|G) P(G|D) DAG # P(D|G) P(G|D)

504 -1952.83 -2018.97 504 -215.242 -222.532

491 -1952.83 -2082.79 491 -215.242 -229.566

503 -1952.83 -2082.79 503 -215.242 -229.566

506 -1949.39 -2091.12 502 -222.226 -229.608

518 -1949.39 -2092.23 506 -214.584 -233.28

533 -1964.02 -2096.06 518 -214.584 -233.75

430 -2057.4 -2127.08 431 -219.48 -234.086

432 -1995.77 -2129.95 505 -219.48 -234.086

502 -2063.72 -2132.27 430 -227.136 -234.829

431 -2021.04 -2155.53 484 -222.226 -236.864

simulations, the proposed method ranked the true DAG higher than it was ranked

using marginal likelihood scoring.

5.8 In-depth Study on Informative Structure Prior Function

We further analyzed the performance of the posterior probability scoring with

informative priors against likelihood scoring with �at priors on the 4-node Sprinkler

network and a randomly selected 5-node network (Figure 5.7) in detail. In the appli-

cation of the proposed method, we distorted the prior knowledge matrix by assigning

the same probability values, a, to the edges and the same probability values, b, to the

entries with no edges using all combinations for a and b in the range [0,1] using 0.1

increments. The generated data set sizes were 10, 20, 50, and 100 and the process was

repeated 10 times for each pair of (a, b) and for each data set size. The percent ranks

of top DAGs achieved using posterior probability P (G|D) with informative prior and
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Figure 5.4 Comparison of P (G|D) with informative prior function and P (D|G) scoring on Random
5-Node BNs using a data size of 50.

likelihood P (D|G) scores are shown in Figure 5.5. We also calculated the area under

the ROC curve (AUC) values as seen in Figure 5.6. Y-axis represents probability values

in the range of [0-1], and assigned to non-existing edges. X-axis represents probability

values in the range of [0-1], and assigned to true edges in the graph. Note that heat

maps of likelihood scoring do not encode probability ranges. Each heatmap is com-

posed of percent ranks of 1210 repeats. Each color in the pixel encodes the average

value of the percent ranks achieved for 10 generated data sets. Lower left quadrant

represents prior knowledge that the true edge probability is in the range of [0.6-1], and

the false edge probability is in the range of [0-0.4]. In this region, the overall mean

percent rank of the posterior probability scores was about 3.51 for data size of 10, 2.51

for data size of 20, and 1.91 for data size of 50, whereas the likelihood scoring yielded

15.25 mean percent rank for data size of 10 and 5.39 for data size of 20, 1.05 for data

size of 50. The upper right quadrant represents the region where all existing edges

are set to probability values in the range of [0-0.4], and each non-existing edge are

given probability values in the range of [0.6-1]. The results indicate that the incorrect

prior knowledge is punished by the proposed informative prior model, even for small

datasets. As the data size increased, both posterior probability score rankings and

likelihood rankings resulted in high values.
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Figure 5.5 The heatmap to show rankings for learnt BNs for Sprinkler network according to posterior
probability P (G|D) with informative priors and likelihood P (D|G) scores.

In the lower left quadrant, the overall mean AUC of the posterior probability

scoring was about 0.71 for data size of 10, 0.75 for data size of 20, and 0.79 for data size

of 50, whereas the likelihood scoring yielded 0.14 mean AUC for data size of 10, 0.6 for

data size of 20, and 0.75 for data size of 50. As the data size increased, AUCs for both

scoring models increased as expected. In the lower left quadrant, the overall mean AUC

of the posterior probability scoring was over 80%. If the true edges are indicated in

the prior matrix with high accuracy, then the proposed method performs quite well in

�nding the DAG under investigation. For example, in the Sprinkler BN, when the true

edges are correctly represented with a 1 in the prior matrix, AUC remains at 100% even

the false edge probabilities are as high as 0.9. For a �xed true edge probability of 0.9,

the average AUC is around 92% when the false edge probability ranges from 0 to 0.9.

These results indicate that incorrect prior knowledge is punished by our informative

prior model severely, and the proposed system is more robust to false positives than it

is to false negatives in the prior matrix. On the other hand, we rarely �nd high AUC

values for the likelihood scoring compared to the performance of the proposed method
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in the lower left quadrant.

Figure 5.6 The heatmap to show mean AUC for learnt BNs for Sprinkler network according to
posterior probability P (G|D) with informative priors and likelihood P (D|G) scores.

We also showed that a 5-node BN network with randomly assigned CPTs can

be better approximated by using prior knowledge. The selected DAG structure and

randomly generated CPTs are shown in Figure 5.7.

The overall mean ranking of the posterior probability scoring in the lower left

quadrant (correct edge probability in the range of [0.6-1] and incorrect edge probability

in the range of [0-0.4]) was about 0.375 for data size of 10, 0.24 for data size of 20, 0.22

for data size of 50, and 0.19 for data size of 100, whereas likelihood scoring yielded

24.63 mean ranking for data size of 10 and 10.84 for data size of 20, 4.67 for data size

of 50, 2.28 for data size of 100.

These results indicate that as the network size grows, the likelihood score does

not yield good results even for large data sizes as the search space increases super-

exponentially. For a 4-node BN (like the Sprinkler BN), there are 543 possible DAGs



70

Figure 5.7 Randomly selected 5-node BN with randomly generated CPTs.

whereas for a 5-node BN there are 29,281 possible DAGs. For example, a data size of

50 for the 4-node network yields better mean AUC (i.e. 0.79) than that of the 5-node

network (i.e. 0.5).

As seen in Figure 5.9, posterior probability scoring with the incorporation of

prior knowledge yields higher AUCs. In the lower left quadrant, the overall mean AUC

of the posterior probability scoring was about 0.64 for data size of 10, 0.65 for data

size of 20, 0.64 for data size of 50, and 0.6635 for data size of 100, whereas likelihood

scoring yielded 0.55 mean AUC for data size of 10, 0.57 for data size of 20, 0.50 for

data size of 50 and 0.64 for data size of 100. As the data size increased, AUCs for both

scoring models increased as expected. Nevertheless, the posterior probability scoring

model for data size of 100 was able reach to 0.75 mean AUC to �nd the true graph

structure for correct edge probability and extreme [0-0.9] incorrect edge probability

range where the likelihood scoring had 0.64 mean AUC.
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Figure 5.8 The heatmap to show rankings for learnt BNs for 5-node network according to posterior
probability P (G|D) with informative priors and likelihood P (D|G) scores.

5.9 Prior Knowledge Inference Model

In this work, we present a model where existing external knowledge is used to

determine a BN that can be utilized to deduce if any two genes interact with each

other. Our goal is to use as much existing information as possible, in an intelligent

way, to come up with a gene interaction network, which can further be used to identify

the underlying interactome given high throughput biological data.

Previously, Troyanskaya et al. [84] proposed a Bayesian Framework for combin-

ing various data sources for gene function prediction. In this method a Naive Bayesian

model was constructed. The parameters (CPTs) of the model were determined by

experts. Then, a separate network was instantiated for each gene pair by initializing

bottom level nodes with evidence. After that, the probability of functional relationship
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Figure 5.9 The heatmap to show mean AUC for learnt BNs for learnt BNs for 5-node network
according to posterior probability P (G|D) with informative priors and likelihood P (D|G) scores.

between two genes was updated. The model is designed for functional prediction, not

for gene interaction network learning.

Here, we describe a novel prior knowledge inference model that automatically

learns parameters of the nodes used in a 20-node BN that predicts if two genes in-

teract using external biological knowledge. To this end, pairwise gene relations for

Homo Sapiens for di�erent experimental methods have been extracted from pathway

databases, a set of microarray experiments and a protein interaction database.

5.9.1 Data Preparation

Microarray co-expression relations were obtained using data from two di�erent

sources:
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1-) The �rst dataset aims to provide a gene atlas for the human genes, and

examines 79 normal human tissues with 158 samples [85]. Probe cell intensity (CEL)

[85] �les were acquired from the NCBI GEO database (GSE 1133). The platform used

for this experiment is A�ymetrix Human Genome U133A Array.

2-) The second dataset came from the Reference Database for Gene Expression

Analysis (RefExA) that represents 70 normal human tissue samples (http://www.lsbm.org)

run on the A�ymetrix Human Genome U133A and U133B Arrays.

Using A�ymetrix Expression Console v1.1, normalized gene expressios (at probe

set level) signals were obtained using the MAS5 method. Probes which had absence

call in all samples were omitted from further analysis. Pairwise correlations among

probes were calculated using centered Pearson correlations. Data corresponding to a

correlation value greater than 0.98 were used. A total of 71,617 gene relations were

obtained.

KEGG [86], NCI/NATURE [62], Reactome [63] databases were utilized to ob-

tain the interaction information based on biological pathways. 3,258 pairwise gene

relations that exist in at least two of the three pathway databases were used for further

analysis. Finally, 35,600 non-redundant pairwise gene interactions were obtained from

the BioGrid database [87]. These interactions were based on 17 evidence types that

are observed in di�erent experimental assays.

In the end, we obtained 60,950 pair wise gene interactions by merging all three

sources. In Table 5.2, we list the evidence types with descriptions. Approximately,

10,000 of these interactions were based on more than one type of evidence. A Gene

Interaction (GI) node is appended to this evidence matrix (where rows represent gene

pairs and columns represent evidence types) with a "true" value, if there were at least

two evidence types implying interaction. BNP was built by learning both structure

and parameters using greedy hill climbing.
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5.9.2 Model Creation

The BNP model was trained, and tested by using a 5-fold cross validation ap-

proach, using the "bnlearn" R package [88]. In this approach, labeled dataset is ran-

domized, and 80% of the data is used to train the model, and the remaining 20% of

the data is used to test the model. Success rate of the model with respect to the data

labels (positive and negative class) is calculated as classi�cation error, which is the

percentage of non-matching real and predicted values of the GI node. This procedure

was repeated 5 times and the average error values were calculated. The goal of this

exercise was to see if the proposed BNP model could identify gene interactions deduced

from existing external knowledge.

The value of the GI node was inferred with the given evidences in the test data.

For each pair in the test data, BNP was instantiated with the corresponding evidence

vector, using the Loopy Belief Propagation inference algorithm [89]. If the inference

value was greater than 0.5, as the GI node was taken to be 'true' (positive class);

otherwise the GI node was set as 'false' (negative class). At the end of the 5-fold

cross-validation, BNP rendered a classi�cation error of 0.105 ± 0.003. In other words,

BNP exhibits an accuracy of around 90%, when estimating if two genes interact given

external biological knowledge.

Following the cross-validation, the BNP model was learnt using the complete

evidence data. The strength of the probabilistic relationships expressed by the edges of

BNP was measured using Friedman et al.'s bootstrap method [50] with 1000 repeats.

We used model averaging to build a Consensus DAG for BNP, containing only the

signi�cant edges with a signi�cance threshold of 0.413. The threshold for signi�cant

edges was determined using the method of Nagarajan et al.[90]. The Consensus DAG

for BNP is shown in Figure 5.10.

Using BNP, one can now calculate the P (G) for a given DAG. To this end,

given a candidate DAG based on a HTBD, we can score the �tness of this DAG using

P (G|D), the true model, instead of P (D|G), by incorporating P (G).
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Figure 5.10 Consensus DAG of BNP.

5.10 Greedy Search Using Informative Priors

Informative prior formula evaluated in the previous sections was integrated into

the greedy search algorithm to learn Bayesian networks. A set of DAGs were generated

from KEGG pathways, using random CPTs �tting to the DAGs. Data of size 50 were

generated, �tting to each BN. The cyclic pathways were converted to DAGs, using the

method described in Chapter 4. The input pathways and their graph properties are
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listed in Table 5.3.

The original DAGs implied from the pathways were used to obtain distorted

prior matrices. In this case, distortion was introduced by adding Gaussian noise to

the true DAG's adjacency matrix AT to obtain the prior matrix B . The distortion

rate was calculated using d = Fro(AT − B)/Fro(AT ), where Fro(.) represents the

Frobenius norm [91]. The distortion rate was set to be in the [0.0 - 0.3] range, and

this range was covered in 0.05 increments rendering 7 discrete rates. For each pathway

and distortion rate, the synthetic data generation, distortion, and structure learning

(both using the proposed method based on information priors and the likelihood based

standard methods) steps were repeated �ve times. In Figure 5.11, we represent the

average AUC values as a function of the introduced distortion rates. For all iterations,

learnt DAGs with informative priors had higher AUCs (between 0.9 and 1) compared

to the AUCs (between 0.5 and 0.6) for DAGs learnt with �at priors. The proposed

method showed less variation in its performance measure compared to the standard

methods. As the distortion level was increased, the di�erence between the mean AUC

of DAGs learnt with informative prior and �at prior had a tendency to decrease.

Figure 5.11 Overall AUC Plot for Several KEGG Pathways.

We used the same 23 KEGG pathways used in the previous step to generate

simulated gene expression data. SynTReN v1.12 was used to generate the signal levels
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for the genes in each of the 23 pathways with 10 control and 10 test samples and 10%

background noise [78]. The input data for structure learning was obtained as described

in Chapter 4. Brie�y, columns represent genes in the pathway and rows represent

observations. Each row (observation) is obtained by the fold change values of the genes

between one pair of control and test samples. The input matrix, which consists of 100

observations in this case and re�ects the distribution of fold change values between the

two class of samples, was discretized into 3-levels using k-means clustering [92]. The

inferred DAGs using prior knowledge (proposed method), and uninformative uniform

prior (�at prior, standard methods) were compared to the original pathway structures

using AUC values. This process was repeated 5 times for each pathway.

Figure 5.12 Comparison of AUC with informative prior vs. AUC with �at prior for KEGG pathway
inference using synthetic high throughput data.

When the proposed method was employed, the BNP was instantiated for each

gene pair in the given pathway to obtain the GI probability for the pair. These values

made up the prior information matrix, B . During the instantiation, the evidence vector

used composed of existing evidence information for the gene pair in the databases,

and the microarray correlation value calculated by the input gene expression data.

This exempli�es the utility of the proposed method in which one can build interaction

networks based on di�erent evidence types originating from the performed experimental

data. The BNP work�ow then collates this observed information with the distilled
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structure obtained from external knowledge bases to infer the GI probability for a pair

of genes. The results for the AUC values between predicted and true DAGs for the 23

KEGG pathways using simulated gene expression data are shown in Figure 5.12. The

proposed method dramatically surpassed classical structure learning methods where

the AUC values for the DAGs found using the proposed method, on average, were

30% higher. Please note that "Ca�eine metabolism" pathway gave rise to the same

AUCs. This is probably BNP could not �nd enough evidence. The average AUC value

for the proposed method was 86%. The improvement introduced by BNP shows the

value of correctly incorporating existing external knowledge as reverse engineering gene

interaction networks from noisy gene expression data is a di�cult task.

5.11 Pathway Inference with Real Biological Data

We tested the proposed method using real gene expression data obtained from

Renal Cell Cancer (RCC) and Normal samples as deposited in NCBI's GEO database

with accession numbers GSE 11024 [93] and GSE 8271 [94]. Input data was obtained

as described previously [12] and in Chapter 4. Brie�y, MAS 5.0 normalized data was

used and IDs in the array platform that correspond to a given node in a given pathway

were pooled, and summarized as one representative signal value using one-step Tukey's

biweight algorithm [67]. Observation matrix to be used in the structure learning pro-

cess for a given pathway was obtained as explained in the previous subsection. We

attempted at �nding seven KEGG pathways shown to be important in RCC [12] using

the expression values of the genes in these pathways from the two real RCC microarray

data sets. The AUC values for the predicted and true pathways using the proposed

method and likelihood scoring based methods are shown in Figure 5.13. In all seven

cases, the proposed method found the underlying KEGG pathway with greater accu-

racy. The average AUC values for the proposed and existing methods were 89% and

57%, respectively.

The graph rendered from the KEGG database and the inferred DAG for "Gly-

cosaminoglycan degradation" pathway with 19 nodes is seen in Figure 5.14
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Figure 5.13 Comparison of AUC with informative prior vs. AUC with �at prior for pathway inference
using real high-throughput biological data.

Figure 5.14 "Glycosaminoglycan degradation" Pathway. The green links are matching links between
the KEGG pathway and the learnt DAG. Red dotted links are missing in the learnt DAG but exists
in the KEGG pathway. Blue dotted links are inserted links that exist in the learnt DAG; the real
pathway does not have these links.
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Table 5.2

Evidence types used in building the Bayesian Network Prior (BNP).

Evidence Type Description

A�nity Capture-MS An interaction is inferred when a "bait" protein is a�nity captured from cell

extracts by either polyclonal antibody or epitope tag and the associated inter-

action partner is identi�ed by mass spectrometric methods.

Biochemical Activity An interaction is inferred from the biochemical e�ect of one protein upon an-

other, for example, GTP-GDP exchange activity or phosphorylation of a sub-

strate by a kinase. The "bait" protein executes the activity on the substrate

"hit" protein.

Reconstituted Complex An interaction is detected between puri�ed proteins in vitro.

Pathway An interaction is observed in at least two of the following three pathway

databases: KEGG, NCI/NATURE, and Reactome.

Far Western An interaction is detected between a protein immobilized on a membrane and

a puri�ed protein probe.

Co-puri�cation An interaction is inferred from the identi�cation of two or more protein subunits

in a puri�ed protein complex, as obtained by classical biochemical fractionation

or a�nity puri�cation and one or more additional fractionation steps.

Two-hybrid / TF Binding Site Lo-

calization

Bait protein expressed as a DNA binding domain (DBD) fusion and prey ex-

pressed as a transcriptional activation domain (TAD) fusion and interaction

measured by reporter gene activation.

Phenotypic Suppression A genetic interaction is inferred when mutation or over expression of one gene

results in suppression of any phenotype (other than lethality/growth defect)

associated with mutation or over expression of another gene.

FRET An interaction is inferred when close proximity of interaction partners is de-

tected by �uorescence resonance energy transfer between pairs of �uorophore-

labeled molecules, such as occurs between CFP (donor) and YFP (acceptor)

fusion proteins.

A�nity Capture-Western An interaction is inferred when a bait protein a�nity captured from cell ex-

tracts by either polyclonal antibody or epitope tag and the associated interac-

tion partner identi�ed by Western blot with a speci�c polyclonal antibody or

second epitope tag. This category is also used if an interacting protein is vi-

sualized directly by dye stain or radioactivity. Note that this di�ers from any

co-puri�cation experiment involving a�nity capture in that the co-puri�cation

experiment involves at least one extra puri�cation step to get rid of potential

contaminating proteins.

Co-localization An interaction is inferred from co-localization of two proteins in the cell, in-

cluding co-dependent association of proteins with promoter DNA in chromatin

immunoprecipitation experiments.

Protein-peptide An interaction is detected between a protein and a peptide derived from an

interaction partner. This includes phage display experiments.

Co-crystal Structure Interaction directly demonstrated at the atomic level by X-ray crystallography.

Also used for NMR or Electron Microscopy (EM) structures. If a structure is

demonstrated between 3 or more proteins, one is chosen as the bait and binary

interactions are recorded between that protein and the others.

A�nity Capture-Luminescence An interaction is inferred when a bait protein, tagged with luciferase, is enzy-

matically detected in immunoprecipitates of the prey protein as light emission.

The prey protein is a�nity captured from cell extracts by either polyclonal an-

tibody or epitope tag.

Synthetic Growth Defect A genetic interaction is inferred when mutations in separate genes, each of which

alone causes a minimal phenotype, result in a signi�cant growth defect under a

given condition when combined in the same cell.

Phenotypic Enhancement A genetic interaction is inferred when mutation or overexpression of one gene

results in enhancement of any phenotype (other than lethality/growth defect)

associated with mutation or over expression of another gene.

Co-fractionation Interaction inferred from the presence of two or more protein subunits in a par-

tially puri�ed protein preparation. If co-fractionation is demonstrated between

3 or more proteins, one is chosen as the bait and binary interactions are recorded

between that protein and the others.

Synthetic Rescue A genetic interaction is inferred when mutations or deletions of one gene rescues

the lethality or growth defect of a strain mutated or deleted for another gene.

Microarray Correlation An interaction is inferred if the centered Pearson' s correlation is over 0.98.
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Table 5.3

Several KEGG pathways and their graph properties.

Pathway size (nodes) order (edges) density max degree average degree

D-Glutamine and D-glutamate

metabolism

4 5 0.833333 3 2.5

Type I diabetes mellitus 5 3 0.3 2 1.2

Allograft rejection 7 4 0.190476 2 1.142857

Aminoacyl-tRNA biosynthesis 7 5 0.238095 3 1.428571

Autoimmune thyroid disease 7 4 0.190476 2 1.142857

Ca�eine metabolism 7 6 0.285714 6 1.714286

Proximal tubule bicarbonate reclama-

tion

7 6 0.285714 2 1.714286

Lysosome 8 7 0.25 7 1.75

Mineral absorption 8 6 0.214286 5 1.5

Regulation of autophagy 8 6 0.214286 5 1.5

Sulfur relay system 8 8 0.285714 5 2

Fat digestion and absorption 9 16 0.444444 5 3.555556

Taurine and hypotaurine metabolism 9 18 0.5 6 4

Malaria 11 7 0.127273 3 1.272727

Arrhythmogenic right ventricular car-

diomyopathy (ARVC)

12 10 0.151515 4 1.666667

Dorso-ventral axis formation 12 14 0.212121 5 2.333333

Folate biosynthesis 13 11 0.141026 5 1.692308

Glycosphingolipid biosynthesis - globo

series

13 66 0.846154 11 10.15385

Sulfur metabolism 13 24 0.307692 12 3.692308

Systemic lupus erythematosus 14 30 0.32967 8 4.285714

Glyoxylate and dicarboxylate

metabolism

15 21 0.2 5 2.8

Primary bile acid biosynthesis 16 53 0.441667 13 6.625

Pantothenate and CoA biosynthesis 17 39 0.286765 8 4.588235
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6. CONCLUSIONS

In this dissertation, we �rst describe a method that models biological pathways

as BNs, and determines the �tness of given microarray data using the BDe score. The

proposed method overcomes representation, mapping, data discretization, and cyclicity

problems that arise in modeling pathways as BNs. We have chosen multinomial BNs

with Dirichlet priors because 1) their posterior can be e�ciently calculated in closed

form; 2) they capture nonlinear interactions; 3) they render a plain model requiring

less parameter adjustment. Moreover, algorithms scoring multinomial BNs have low

time complexity. Alternative models such as linear Gaussian models, Gaussian process

networks, or regression models are usually preferred in the task of structure learning.

Linear Gaussian models and regression models in BN setting can only detect linear

dependencies between child and parent variables. In Gaussian process BN models,

Gaussian process priors are used as parametric families to model nonlinear relations.

However, the problem then becomes one of selecting the best �tting covariance function

and the number of its hyper-parameters in Gaussian process modeling, which requires

various approximations and assumptions that may not be suitable in HTBD settings

[95].

RCC represents a spectrum of genetically diverse epithelial tumors with a com-

mon derivation from the renal tubular epithelium and a variable clinical course. Ap-

proximately 30% of cases present with metastatic disease at initial diagnosis and 30%

of initially organ con�ned cases develop metastases during later follow up. Since there

are no reliable biomarkers available, patient management remains problematic despite

improving understanding of the underlying molecular mechanisms. In particular, treat-

ment of advanced RCC still poses a great challenge, as RCC is resistant to chemo- and

radiation therapy and cytokine-based therapies o�er only low clinical response rates

with considerable toxicity. The advent of targeted therapy has brought exciting thera-

peutic options with promising clinical results, although the clinical bene�t with respect

to overall survival is only marginal. However, high-throughput technologies that an-
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alyze the entire genome and proteome promise to elucidate the heterogeneity of this

disease, and eventually enable a patient-tailored, individualized treatment. In contrast

to the analysis of single genes, gene pathways enable us to see the context of complex

interactions and to understand the biologic relevance of their expression. The plethora

of pathways presented in this dissertation mirror complex biologic processes in kidney

tumors and is often closely intertwined.

Overall, it is believed that the proposed approach, BPA, provides a unique per-

spective that merges Bayesian Network theory and HTBD analysis. Most BN models

employed on HTBD use time series experimental designs in order to increase the size

of the observed data. We have overcome this bottleneck, and provide a tool that can

be used with most common experimental settings interpreting the results within the

context of known biological pathways. Moreover, existing BN approaches on HTBD

generally focus on building networks from input data, which makes these approaches

applicable on a few dozens of genes due to the complexity of structure learning al-

gorithms. Given the fact that high-throughput platforms generate data for tens of

thousands of genes, the proposed approach makes use of relevant experimental infor-

mation, and is applied to the complete data set within the context of known biological

pathways. Our simulations on synthetic and real data sets show that BPA is able to

successfully �nd molecular mechanisms that best describe underlying HTBD.

In this dissertation, we also developed a framework to incorporate multiple

sources of prior knowledge, regardless of its type, into Bayesian network learning. In

several studies the use of prior biological knowledge of the gene interaction network in

conjunction with gene expression data has been suggested to improve the �delity of

network reconstruction. However, existing methods fail to rigorously harness and use

the existing wide range of biological information.

A Bayesian Network Prior (BNP) model for assessing prior biological knowledge

is developed, using biological database information, to make inferences about interac-

tions between gene pairs. The model is instantiated each time with the given gene

expression correlation input to infer whether the gene pair is related or not, repre-
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sented by a prediction value between 0 and 1. A prior knowledge matrix is populated

with prediction values for all combinations of gene pairs. Using a proposed energy and

informative prior function, the prior knowledge is utilized in learning network structure

with the Greedy Search algorithm in the BN framework. The goal on these applica-

tions were to construct gene networks from gene expression data and a list of genes of

interest. We tested the sensitivity our prior model to its parameters. We analyzed the

performance of the posterior probability scoring with informative priors against scoring

with �at priors. Our BNP model incorporating selective evidence types rendered an

accuracy of over 90% when estimating if two genes interact given external biological

knowledge. This informative prior formula is integrated into the greedy search algo-

rithm to learn Bayesian networks. It was shown that the proposed method was able to

infer real pathways with high area under the curve (AUC) values, using both synthetic

and real gene expression data.

6.1 Future Recommendations

The Bayesian Pathway Analysis described in this dissertation handles static

gene expression data that is composed of two conditions. It could be useful to gen-

eralize it to handle multiple conditions. Another direction would be to extend the

Bayesian Pathway Analysis to analyze time series gene expression data using DBNs.

Additionally, during the study, it was observed that discretization step of the method

is important and a�ects the strength and robustness of the approach. Therefore, it is

necessary to research on optimal discretization techniques to be applied to the Bayesian

Pathway Analysis.

In this dissertation, the integration of prior knowledge into Bayesian structure

learning was accomplished via the Bayesian Network Prior and informative structure

prior P(G) models. However, it is necessary to generalize the approach to include

time series data. Therefore, further research is needed to investigate DBN learning

algorithms such as REVEAL [39], and integrate BNP and P(G) methodology described

in this dissertation into DBN to reveal biologically plausible gene networks derived from
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time series data.

Bayesian structure learning algorithms and the improved algorithms described

in this dissertation have certain limitations in terms of the size of the network to

apply to. Any biological pathway may not work alone but function as a part of large

atlas. Therefore, inferring large gene networks (atlas) from data would be an important

research topic.
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