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ABSTRACT 

ARTIFICIAL NEURAL NETWORK FOR GAIT DISORDER 
CLASSIFICATION 

 
 

Developments in motion analysis systems are distinctive in last decades. Those systems 

became very important tools for diagnosis of various gait disorders. They evolved so much that 

clinicians nowadays dare to use them in critical decisions. Thanks to advances in computer and 

motion capture technology, several biomechanical joint trajectories of human gait are 

available. Examining all parameters is wearisome and time consuming. Recent inclinations are 

towards facilitation of neural networks in similar cases. An Artificial Neural Network could be 

trained and considered as a decision support system for gait analysis.  

In this study a neural network is trained for classification of four different gait patterns. 

Supervised learning method and Error Back-Propagation Algorithms are deployed for the 

training of the Multilayer Perceptron. Matlab programming language was exploited for writing 

the code of the algorithm. Overall 150 subjects were used in this thesis. Their age range was 

between six and twelve years. Samples are collected for normal gait, Right Hemiplegia, Left 

Hemiplegia and Diplegia from Istanbul University Istanbul Medical Faculty Motion 

Analysis Laboratory.  

Attained classification success for distinguishing normal and for three different 

abnormal gaits was on average 77%. Further increase in success was achieved after the 

implementation of cross validation and early stopping methods, reaching at 85%. 

For the classification of normal and abnormal gaits into two groups a better 

classification success rate was achieved, up to 96%. 

There is still space to build upon the current research for further progress. This neural 

classifier could help clinician to support his/her decisions. 

 

Keywords: Motion analysis, Neural network, Decision support. 

 

 

 



 

  v 

ÖZET 

YAPAY SİNİR AĞI ARACILIĞIYLA YÜRÜME BOZUKLUĞU 
SINIFLANDIRILMASI 

 
 

Son zamanlar hareket analiz sistemlerinde kayda değer gelişmeler gözlenmiştir. İşbu 

sistemler çeşitli yürüme bozuklukların teşhislerinde önemli araç haline gelmiştir. Gelişmeler 

klinisyenleri kritik kararları almakta cesaretlendirmektedir. Bilgisayar ve Hareket kaydı 

teknolojilerindeki ilerlemeler sayesinde yürümede çeşitli biyomekanik eklem eğrisi elde 

edilebilmektedir. Elde edilen tüm parametrelerin incelenmesi yorucu ve zaman isteyen bir 

işlemdir. Son zamanlar Sinir Ağları benzer hususlarda kullanılmaya eğilimindedir. Yapay Sinir 

Ağı eğitilebilir ve Yürüme Analizi için Karar destek sistemi olarak düşünülebilir.  

Bu çalışmada sinir ağı dört farklı yürüme şeklini sınıflandırmak için eğitilmiştir. 

Denetimli öğrenme metodu ve Hata Geri Yayınım algoritması Çok Katmalı Algılayıcıları 

eğitilmesi için kullanılmıştır. Algoritma Matlab programlama dili ile uygulama haline 

getirilmiştir. Bu tezde Normal Yürüme, Sağ Hemiparezi, Sol Hemiparezi ve Spastic Diparezi 

verileri 6 ve 12 yaşlarında toplam 150 kişiden alınmıştır. Çalışmalar İstanbul Üniversitesi 

İstanbul Tıp Fakültesi Hareket Analizi Laboratuarında yürütülmüştür. 

Normal ve üç farklı anormal yürüme şekillerini ayırt etmede ortalama % 77 

sınıflandırma başarısı elde edilmiştir. Çapraz onaylama ve eğitimi erken durdurma metoduyla 

daha yüksek başarım elde edilmiş ve % 85’e ulaşmıştır.  

Normal ve anormal yürüme şekillerinin iki gruba sınıflandırılmasında % 96’ya varan 

daha yüksek başarıma ulaşılmıştır. 

Mevcut araştırmada yapılan ilerlemelere rağmen daha öte gelişmeler için çalışmaların 

devam edilebilir. Sinir Ağı sınıflandırıcısı klinisyenlerin kararlarına destek olarak yarar 

sağlayabilir.  

 

Anahtar Kelimeler: Hareket analizi, Sinirsel ağı, Karar destek. 
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1. INTRODUCTION 

Human motion analysis is a broad field with various applications and methods. It is used 

today for both clinical and research applications. It generally interprets biomechanics of 

human from the observations. Gait analysis is the part of the Human Motion analysis, which 

concentrates on Lower Extremity.  

First observations on human motion started at ancient times. Interest over the function of 

movement continued for centuries. The seeds of the scientific observation rooted with the 

work of W. Weber and E. Weber (1836) brothers. They introduced the research of the 

mechanics of human walking. E. Marey (1867) had begun investigating the external motion 

and movement of bodies by using the photography techniques. E. Muybridge (1880s) began to 

use cameras to record motion during gait. W. Braune and O. Fisher (1895) added 

mathematical techniques to calculate the velocities, accelerations and forces during the 

biomechanics of gait. R. Schwartz (1933) found new methods by constructing the 

electrobasograph, which enable to measure the ground reactive forces directly [1].  

Over the next decades, new invention technology allowed the development of the 

modern motion analysis laboratory. Recent advances in biomedical technology now allow 

accurate analysis of many specific gait characteristics such as joint angles, angular velocities 

and angular accelerations (kinematic analysis); ground reaction forces, joint forces, moments 

and powers (kinetic analysis); and electromyography (EMG).  

Gait analysis is used as an important aid for decision making in different pathological 

cases. The aim of this project is classifying various walking conditions of collected data by the 

help of an artificial neural network. There are many types of pathological gaits that are due to 

some physical malfunction. Some are; short leg limp, antalgic limp, unstable hip limp - 

trendelenburg gait, stiff hip gait, stiff knee gait, gluteus maximus weakness, quadriceps 

weakness, muscle weakness - calcaneus gait, muscle weakness - drop foot gait, muscle 

spasticity or incoordination - cerebral palsy, hysterical gait, proprioceptive disturbances - 

ataxic gait. In this project we will be interested with cerebral palsy because, cerebral palsy is 
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the major field of clinical interest among several other cases and also gait analysis has played 

a significant role in the development of surgical treatment of children with cerebral palsy and 

proved to be useful in the study of walking abnormalities. 

Technology supporting human motion analysis has advanced dramatically. The issue of 

its clinical value is related to the length of time it takes to do an interpretation which effects 

cost and the quality of the interpretation. Techniques from artificial intelligence such as neural 

networks and knowledge-based systems can help overcome these limitations. The objective of 

this study is to classify gait disorders by means of neural networks. 

Motion analysis becomes very important tool for diagnosis of various motion disorders. 

Recent advances in those systems dare clinicians to use it as decision aid as well. However, 

examination of outputs of those systems is costly with respect of time and labor. Neural 

network has potential to overcome it, yet it could be used as decision support.    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



                                                                                                                                        
3 

  

2. THEORETICAL BACKGROUND 

2.1 Motion Analysis 

Locomotion is the action with which the entire body moves through aerial (in air), 

aquatic or ashore. Gait Analysis system is simply a measurement system which allows us to 

monitor and analyze the human locomotion. The results of gait analysis have been shown to be 

useful in determining the best way of treatment in patients. It is also valuable after surgery to 

learn whether the problem has been corrected and how motion is now affecting the dynamics 

of walking. Through gait analysis, kinematic and kinetic data are obtained and analyzed to 

provide information that describes the gait characteristics. Identification of gait abnormalities 

visually is difficult so, a gait evaluation consists of a number of tests performed during each 

visit [2]. 

2.1.1 Motion  

Since walking involves cyclical movement patterns at multiple joints, it is important to 

measure these kinematic patterns as a basis for interpreting other gait data (EMG, force, stride 

characteristics). The kinematic measurements (which also include limb segment velocities and 

accelerations) are necessary for the determination of joint moments and forces (kinetics).  

Two basic types of motion measurement systems are in use today: electrogoniometers 

and video motion systems. It is more convenient to use later one because of its flexibility. 

Although other techniques exist such as hand digitized film, strobe light photography, and 

electromagnetic, they have been replaced by newer technologies.    

2.1.1.1 Electrogoniometers 

Electrogoniometers are electro-mechanical devices that span a joint to be measured, 

with attachments to the proximal and distal limb segments. In Figure 2.1 a Penny & Giles 

strain gauge electrogoniometer applied at the knee. The strain gauge in the small spring 
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measures the angle between the plastic endblocks that are attached to the leg with double-

sided adhesive tape [1]. These devices provide an output voltage proportional to the angular 

change between the two attachment surfaces. They operate on the assumption that the 

attachment surfaces move with (track) the midline of the limb segment onto which they are 

attached, and thereby, measure the actual angular change at the joint.  

 

Figure 2.1 A Penny & Giles strain gauge electrogoniometer [1]. 

The two major advantages of these devices are low cost and ease of use. As is the case 

with all gait instrumentation, care must be exercised in applying them to the individual. The 

tracking assumption is reasonable for lean individuals, but the more "fleshy" and/or muscular 

the person being tested, the less likely the true angular change will be recorded due to skin and 

muscle movement. When considering these devices for gait, their accuracy should be carefully 

evaluated by testing them on individuals of various statures. The person should move through 

a known range of motion (i.e., 90°) while the goniometer output is being recorded. This will 

give a general idea of the kinds of errors the clinician might encounter. 

2.1.1.2 Video Motion 

Video systems utilize one or more video cameras to track bright markers placed at 

various locations on the person being tested. The markers are either infrared (IR) light-

emitting diodes (LEDs) for active marker systems or solid shapes covered with retroreflective 

tape for passive marker systems. The systems keep track of the horizontal and vertical 

coordinates of each marker from each camera. In three-dimensional (3D) systems, the 

computer software computes 3D coordinates for each marker based upon the 2D data from 

two or more cameras and the known location of all cameras. In practice, more than two 
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cameras are needed, as markers become obscured from camera views because of arm swings, 

walking aids, and/or patient rotation.  

If only one camera is used (2D), the assumption is that all motion is occurring in a 

plane perpendicular to the camera axis. This is seldom the case and any marker movement 

outside this plane will be distorted. As a result, 2D systems are not recommended for gait.  

Active marker systems have LED markers that are pulsed sequentially, so the system 

automatically knows (by virtue of the pulse timing) the identification of each marker. Marker 

tracking is not a problem, since the system can maintain the identification of markers 

temporarily lost from view or with crossed trajectories. Merging of markers cannot occur with 

these systems, so the markers can be placed close together. In Figure 2.2, CODA mpx30 

active, light-emitting diode (LED) motion markers placed on the foot of a subject. The 

sequentially strobed markers enable them to be placed close together without merging in the 

cameras. Each battery pack provides the power for two markers and houses circuitry to receive 

an infrared (IR) strobe signal. Photograph is courtesy of Charnwood Dynamics and is used 

with permission [1]. These systems have the disadvantage of requiring that more equipment be 

placed on the user. A battery pack, pulsing circuitry, and the LEDs and cables must be 

attached to and carried by the user. For long duration tests, heat generated by the LEDs might 

be a problem. 

 

Figure 2.2 Light-emitting diode (LED) motion markers [1].  
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Passive marker systems have the advantage of using lightweight reflective markers 

without the need for electrical cables or batteries on the user. IR LEDs around each camera 

lens send out pulses of IR radiation that are reflected back into the lens from the markers. 

Passive marker system is shown in Figure 2.3. A subject walking with lightweight reflective 

(passive) motion markers positioned for a unilateral gait test [3]. Note the ring of IR LEDs 

around the camera lens. There are markers in right bottom of Figure 2.3, which have different 

heights [4]. IR filters are used on the camera lenses and system thresholds are set to pick up 

the bright markers while less bright objects in the background are suppressed. Because of their 

passive nature, each marker trajectory must be identified with a marker label and tracked 

throughout the test. When markers are lost from view or their trajectories cross, they can lose 

their proper identification. Sophisticated tracking software exists that does a good job; 

however, user intervention is sometimes required. Potential merging of markers in various 

camera views places limitations on how close together markers may be placed with these 

systems.  

 

Figure 2.3 Passive marker system [3,4].                      

 

All of the systems provide the capability of acquiring at least 16 channels of analog 

data simultaneously with the motion data. Most compute temporal gait parameters measured 

from bilateral motion data if footswitches are not used. Most gait motion data are collected at 



                                                                                                                                        
7 

  

a frame rate of 50 or 60 Hz. The camera's field of view limits the number of strides available. 

Unlike footswitch systems, however, step length can be obtained from motion data. 

2.1.2 Force 

Gait is the result of muscle action exerting forces on the skeletal limb segments to 

produce motion and hence locomotion. It is not possible to measure these internal muscular 

forces. However, we can learn a lot about joint loading by measuring external forces.  

2.1.1.3 Force Plates 

A force plate measures the ground reaction forces exerted by a person as he or she 

steps on it during gait. There is illustration of exerted force in Figure 2.4. These devices 

consist of a top plate (mounted level with the surrounding floor) separated from a bottom 

frame by force transducers near each corner. Any force exerted on the top surface is 

transmitted through the force transducers. Force plates enable one to measure not only the 

vertical and shear forces, but also the "center of pressure" during gait.  

 

Figure 2.4 Measured force and moment components. 
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Two types of force plates are commercially available: piezoelectric and strain gauge. 

For clinical gait applications, the type probably makes very little difference. Piezoelectric 

force plates utilize quartz transducers, which generate an electric charge when stressed. They 

do not require a power supply to excite the transducers however, special charge amplifiers and 

low noise coaxial cables are required to convert the charge to a voltage proportional to the 

applied load. The transducers are calibrated at the factory and no recalibration is necessary. In 

general, piezoelectric force plates are more sensitive and have a greater force range than strain 

gauge types. They do have some slow drift, which requires resetting of the charge amplifiers 

just prior to data acquisition. Strain gauge force plates utilize strain gauges to measure the 

stress in specially machined aluminum transducer bodies (load cells) when a load is applied. 

They do not require the special cabling and charge amplifiers of the piezoelectric type 

however, they do require excitation of the strain gauge bridge circuit.  

2.1.3 Electromyography 

EMG is a very valuable tool in clinical gait analysis, as it can give the clinician an 

accurate representation of what the muscles are doing to contribute to the gait deviations 

observed and measured by the other instrumentation (i.e., motion, footswitches). Many 

surgical decisions are made based on the EMG records; therefore, it is extremely important to 

have instrumentation and techniques that provide high quality EMG signals. Surface 

electrodes have gained widespread use due to their ease of application and because skin 

penetration is not required. However, deep muscles can be reliably obtained only with 

intramuscular wire electrodes, since "cross talk" from more superficial muscles will render a 

surface EMG useless.  

2.1.1.4 EMG Analysis Systems 

Much can be learned about a person's gait by a trained clinician viewing the raw gait 

EMG record; however, computerized analysis systems can provide valuable assistance and 

make the task less tedious and time consuming. One should keep in mind, however, that 

computers can only work with the instructions given and the data provided. With patient data, 

strides can be irregular, and if the software utilizes footswitches to define the gait cycle, 
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problems can occur. For example, a scuff of the foot during swing may appear to the computer 

analysis software as another stance period. How the software handles these problems is very 

important. There is no substitute for a trained clinician viewing the raw record to make sure 

the computer analysis makes sense. 

2.1.1.5 Wire EMG Electrodes 

EMG Paired Hook Wire Electrodes are made of insulated nickel alloy wire. The two 

wires are bent approximately 180° where they exit the tip of a hypodermic needle. The bent 

end of one wire is 5-mm long and the other 2 mm. Both have 2 mm at the end stripped of 

insulation. They are available in 25 gauge, 50-mm long and 27 gauge, and 30-mm long 

needles. In the Figure 2.5 hypodermic needle being removed from intramuscular wire EMG 

electrode following insertion in the muscle. Note the loop of wire, which allows the wire to 

move as the muscle contracts [5]. 

 

Figure 2.5 Hypodermic needle [5].  

 
2.1.1.6 Surface EMG Electrodes 

Surface electrodes come in two basic types: passive and active.  

Passive electrodes are of the "Beckman silver/silver chloride" type and come as 

individual electrodes, so that a pair can be spaced over the muscle as desired. They are 

available in various sizes ranging from about 7 mm to 20 mm in diameter. Conductive 

electrode gel is required with these electrodes, as well as double-sided tape washers (collars), 

for attachment to the skin.  

  Active electrodes have become quite popular, as they provide signal amplification at 

the electrode site. A Delsys active surface EMG electrode placed over the quadriceps muscle 
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of a subject, show in Figure 2.6 [5]. This reduces the electrical "noise," which can be picked 

up by passive electrode lead wires. A number of electrodes are available, all having high 

impedance differential amplifier inputs with high common mode rejection ratios.  

 

Figure 2.6 Active surface EMG electrode [5]. 

  

2.1.1.7 EMG Acquisition Systems 

EMG data acquisition systems come in two types: cable and wireless. Cable systems 

eliminate the need for a battery on the wearer (power can be obtained through the cable) and 

signals are free from any radio frequency (RF) interference or dropout. In the figure below, 

Figure 2.7 Motion Lab’s EMG system illustrated: Motion Lab Systems EMG Amplifier and  

 

Figure 2.7  Motion Lab Systems EMG Amplifier and data acquisition system [2].  
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data acquisition system 3 mm dia wire cable Optional FO cable 10 EMG 2 FSws 20 to 2.3K 

Bandwidth Highpass (20 to 170) Lowpass (5, 10, 40, 150, 300, 600, 1.3K, 2.5K) [2]. The 

disadvantage is the need for a cable connecting the wearer to the instrumentation.  

Wireless systems are either radio telemetry or data loggers. Telemetry systems 

eliminate the cable, but suffer from problems with signal dropout and RF interference. In the 

figure Figure 2.8 FM telemetry device of BTS is shown with 8 Channel, 2 Foot-Switchs, 5kHz  

Bandwidth Highpass adjustable to 1, 5, 10kHz and Lowpass adjustable to 600, 400, 200, 100 

Hz. properties [4]. They also require the use of a body-worn battery. Data loggers eliminate 

the cable and RF problems, but require a body-worn battery and are limited in the amount of 

data that can be acquired before being downloaded to the computer.  

 

Figure 2.8  BTS FM Tele-metry (diversity receiver) [4]. 

2.1.4 Theory of Motion Analysis 

It should be pointed out that just because a system computes the 3D coordinates of 

each marker, it does not mean, a priori, that 3D kinematics will be produced. To obtain true 

3D motions, each body segment must be defined by at least three markers (which create a 
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plane passing through the segment), joint centers must be defined, and Euler angles computed. 

Knee and ankle joint centers are either determined from width measurements or medial 

markers used only during a calibration ("quiet standing") test. 

Link segment model is an idealization of a non-rigid body onto a rigid frame. In this 

model each segment of the body is defined using 3 marked points: at two nodes apart and in 

the middle of the limb. These markers should form a plane on the limb and the lengths in 

between. Those planes are used to determine: 

• The center of rotation of each joint, 

• The linear and rotational position of each limb 

2.1.1.8 Kinematics 

Kinematic variables describe the movement, independent of the forces that cause the 

movement. They include linear displacements, d, speed, s, and velocities, v, and accelerations, 

a, and also angular displacement, Θ , velocities, ω , and accelerations, α [7]. 

Movement or motion indicates a joint action, the relative angular movement of the 

limbs on the distal and proximal sides of the joint [7]. By identifying the plane of motion in 

which direction the action takes place, motions are defined by flexion and extension occurring 

when movement around the transversal axes, movement around anteroposterior axes is 

identified by abduction (moving out from the body) and adduction (toward the body), 

movement around the longitudinal axes is called rotation, internal and external. 

To describe the kinematics of a segment a coordinate reference system is used. Each 

segment can be set with an origin and a principal axis, which is usually defined along the long 

axis of the segment. Three dimensional imaging systems are used to detect kinematic data 

from a subject in a motion analysis. Three types of coordinate systems are used to derive the 

kinematics, the global reference system (GRS) which remains fixed in space, a technical 

reference system which is derived from the subject's reflective markers, and an anatomical 

reference system (ARS) which is attached to each body segment [6]. 

A moving segment's translation and rotation, are described by the segment's ARS 

position and orientation relative to the GRS. In two dimensional translation of a point, a, in the 

ARS, (xi,yi), relative to the GRS, (Xi, Yi), can be written as [7]: 
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Where s is denoting sine and c cosine of an angle (θ ). 

A rigid body moving in a three dimensional system, has a possibility of translations 

and rotations. This implies a 3 × 3 transformation matrix, [φ ]. A common angular system used 

to define the angular orientation in space is the Euler system of angles. A specific definition of 

Euler angles will describe in which sequence the rotations take place [7]. Euler's convention 

contains 12 different sequences of rotations [8]. 

An axis system denoted by x, y, z will be transformed into a system denoted by 

x''',y''',z''' in a chosen sequence. The Cardan system, x−y−z, which is common in 

biomechanics, describes the sequence order of axes to rotate about (Equations 2.2 and 2.3) [7]. 

The first rotation, 1θ , is about the x axis to get x',y',z'; the second rotation, 2θ , is about the 

new y' to get x", y", z"; and the last rotation, 3θ , is about z" to get to x''',y''',z'''. 

An assumed point in the original x, y, z axis system with coordinates x0, y0, z0, will 

have coordinates x1,x1, x1 in the x',y',z' axis system, based on rotation 1θ . The second rotation 

2θ  will provide coordinates x2,y2,z2 in the axis system x",y",z", and the final rotation 3θ  will 

provide the point the coordinates x3, y3, z3 in the axis system x''',y''',z'''. These rotation can 

be written: 
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where (c1, s1), (c2, s2) and (c3, s3) denote (cos 1θ , sin 1θ ), (cos 2θ , sin 2θ ), and (cos 3θ , sin 3θ )  

respectively. 

The transformation of the point from the axis system x, y, z to x''',y''',z''' can then be 

written [8]: 
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2.1.1.9 Kinetics 

Kinetics deals with the forces associated with a movement. Internal forces come from 

muscle activity, tendons and ligaments, and joint contact forces and external forces comes 

from ground reaction forces, segment weight, or applied loading on the musculoskeletal 

system [7]. Knowledge of the muscle forces is important for understanding the causes of 

movement. Kinetic quantities are evaluated from kinematics, anthropometric data and external 

forces, such as the ground reaction force, GRFf ,  [7]. 

Newton's second law of motion (Equation 2.4) together with the Euler dynamic 

equation (Equation 2.5), make up the basis for the mathematical model of the limbs called 

link-segment modelling using inverse dynamics, where reaction forces, R, and muscle 

moments, M, are calculated [7,9]: 

                                amR ⋅=     (2.4) 

                               α⋅= IM     (2.5) 

where m is the mass of the object, a is the linear acceleration, I, is the mass 

moment of inertia and α  is the angular acceleration of the object. 

Link-segment modelling and free body diagram of the foot- and shank segment, showing 

moments of inertia, iI , masses, im , reaction forces, yiR  and xiR , joint moments, iM , i = 1,2,3. 

Moment and forces are calculated via inverse dynamics (Equations 2.6 and 2.7). The link-

segment model is broken down at the joints into segments which are treated separately as rigid 

bodies, creating a free-body diagram (Figure 2.9(a)) [10]. In accordance to Newton's third law, 

there is an equal and opposite force acting at each joint, and moment and forces can be 

evaluated at any joint with a known external loading or reaction force. Modeling the limb in 

this way carries the assumptions that (1) each segment has a fixed mass located at its center of 

mass (in the center of gravity) (2) the location of each segment's center of mass (COM) 
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remains fixed (3) joints are considered without translations (4) mass moment of inertia of 

each segment is constant and (5) the length of each segment is constant during movement [7]. 

 

 (a) Link Segment (b) Foot Segment (c) Shank Segment 
 

Figure 2.9 Link-segment modelling and free body diagram. 

 

The method of inverse dynamics is usually employed in gait analysis to compute the 

net joint moments, net joint powers and intersegmental forces. Evaluation starts at the foot 

segment (Figure 2.9(b)) with the ankle joint forces and moment (Equations 2.6 and 2.7) [10]. 

Establishing the forces in the y direction and the moment about the ankle, iM : 

∑ −+=⋅= mgRfamR yiGRFyiyiiyi     (2.6) 

∑ +=⋅= yiyiGRFGRFyiii dRdfIM α     (2.7) 

where GRFd  describe the moment arm of the ground reaction force GRFyf  to the ankle joint and 

yd  the moment arm to the reaction force 1yR  to the ankle joint. The carry weight mg is located 

at the center of mass (COM), moment of inertia, I, is evaluated from anthropometric tables. 

Linear and angular acceleration, a and α , are obtained from kinematic data. From this point 

the knee joint moment and forces can be evaluated by applying equal and opposite reaction 

force on the shank segment (Figure 2.9(c)) [10]. 
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2.2 Gait Abnormalities 

Walking or gait abnormalities are unusual and uncontrollable problems with walking. 

Many different types of gait abnormalities are produced unconsciously. Most, of them are due 

to some physical defect [14]. 

2.2.1 Normal Walking 

Normal Walking Requires: good locomotor generator, two legs with the same length 

and joints should not be stiff. 

2.2.2 Cerebral Palsy 

Cerebral palsy (CP) is a group of disorders characterized by loss of movement or loss 

of other nerve functions. "Cerebral" refers to the brain, and "palsy" is a disorder of movement 

or posture. These disorders are caused by injuries to the cerebrum (the largest portion of the 

brain) that occur before, at, or within 5 years of birth [15]. 

Cerebral palsy is the term for a range of non-progressive syndromes of posture and motor 

impairment that results of an insult to the developing central nervous system. It is the most 

common cause of severe physical disability in childhood. The worldwide prevalence and 

incidence of the disorder are not clearly known. The overall reported prevalence in children 

aged 3-10 years is 2.4 per 1000 children, with variability in the reported rates in girls and boys. 

During the past 20 years, there have been increases in the incidence and prevalence of cerebral 

palsy [22]. 

Cerebral palsy is characterized by an inability to fully control muscles, movement, and 

posture. Depending on the extent of brain involvement, it can range from mild to severe. A 

person with cerebral palsy may also have problems with vision, speech, nutrition, feeding, and 

hearing; and may experience seizures, developmental delay, and learning disabilities. 

However, many people with cerebral palsy lead healthy productive lives. 
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Today doctors classify cerebral palsy in to four broad categories as; 

•  Spastic, 

•  Dyskinetic (Athetoid), 

•  Ataxic, 

•  Mixed Cerebral Palsy. 

Spastic CP is the most common form and affects the body’s ability to relax muscles, 

causing tightness and difficulties in movement. It may affect a single limb; one side of the 

body (spastic hemiplegia), both legs (spastic diplegia) and both arms and legs (spastic 

quadriplegia). Athetoid cerebral palsy affects the ability to control muscles, leading to 

involuntary and uncontrolled movements in the affected muscles. Children with Ataxic CP 

have a disturbed sense of balance and depth perception, characterized by tremors or shaky 

movements. Each case of cerebral palsy affects a child differently, and some have more than 

one form of CP (Mixed cerebral palsy). 

Spastic cerebral palsy includes about 50% of cases. Dyskinetic (athetoid) cerebral 

palsy affects about 20%. It involves development of abnormal movements (twisting, jerking, 

or other movements). Ataxic cerebral palsy involves tremors, unsteady gait, loss of 

coordination, and abnormal movements. It affects about 10%. The remaining 20% are 

classified as mixed, with any combination of the above [15]. 

Cerebral classified according to the part of the body affected in Figure 2.10: 

•  Hemiplegia: affecting one side of the body; 

•  Diplegia: affecting the legs more than the arms; 

•  Triplegia: affecting three extremities; 

•  Asymmetric diplegia: affecting one side of the body more than the other side; 

•  Quadriplegia: affecting all four extremities; 

•  Total: affecting all extremities and multiple other body systems; 
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In our thesis we will try to identify hemiplegia, loss of muscle control on one side of the 

body which has been caused by damage to the opposite side of the brain, and diplegia, all four 

limbs affected but lower limbs more affected than upper limbs. 

 

Figure 2.10 Classification of Cerebral Palsy according to the effected part of the body. 

 

2.3 Neural Networks 

2.3.1 Basics Of Neuronal Morphology 

An average brain contains ~100 billion neurons, each of which has 1000–10 000 

connections with other neurons. Neurons consist of a cell body which includes nucleus that 

controls the cell activity, many fine treads, dendrites, that carry information into the cell, and 

one longer thread known as the axon which carries the signal away, Figure 2.11.  

Impulses pass along the axon to the synapse, the junction between one neuron and the 

next and signals are passed from one to the next in an all-or-none fashion. Neurons are 

organized in a fully connected network and act like messenger in receiving and sending 

impulses. The result is an intelligent brain capable of learning, prediction and recognition. 
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Figure 2.11 Biological neuron: a biological computing processing element. 

 

Nature has developed a very complex neuronal morphology in biological species. 

Biological neurons, over one hundred billion in number, in the central nervous systems (CNS) 

of humans play a very important role in the various complex sensory, control, affective, and 

cognitive aspects of information processing and decision making. In neuronal information 

processing, there are a variety of complex mathematical operations and mapping functions that 

act in synergism in a parallel cascade structure forming a complex pattern of neuronal layers 

evolving into a sort of pyramidal pattern. The information flows from one neuronal layer to 

another in the forward direction with continuous feedback, and it evolves into a dynamic 

pyramidal structure. The structure is pyramidal in the sense of the extraction and convergence 

of information at each point in the forward direction. A study of biological neuronal 

morphology provides not only a clue but also a challenge in the design of a realistic cognitive 

computing machine — an intelligent processor. 

From the neurobiological as well as the neuralmathematical point of view, we identify 

two key neuronal elements in a biological neuron: the synapse and the soma. These two 

elements are responsible for providing neuronal attributes such as learning adaptation 

knowledge (storage or memory of past experience), aggregation, and nonlinear mapping 

operations on neuronal information. In Figure 2.12 biological neural network is illustrated. 
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Figure 2.12 Biological neural network. 

 

A neuron is an information-processing unit that is fundamental to the operation of a 

neural network. The block diagram in Figure 2.13 shows the model of a neuron, which forms 

the basis for designing (artificial) neural networks [11].  

Here we identify three basic elements of the neuronal model: 

1. A set of synapses or connecting links, each of which is characterized by a weight 

or strength of its own. Specifically, a signal jx  at the input of synapse j 

connected to neuron k is multiplied by the synaptic weight kjw . It is important to 

make a note of the manner in which the subscripts of the synaptic weight kjw  are 

written. The first subscript refers to the neuron in question and the second 

subscript refers to the input end of the synapse to which the weight refers. Unlike 

a synapse in the brain, the synaptic weight of an artificial neuron may lie in a 

range that includes negative as well as positive values. 

2. An adder for summing the input signals, weighted by the respective synapses of 

the neuron; the operations described here constitute a linear combiner. 

3. An activation function for limiting the amplitude of the output of a neuron. The 

activation function is also referred to as a squashing function in that it squashes 

(limits) the permissible amplitude range of the output signal to some finite value. 

Typically, the normalized amplitude range of the output of a neuron is written as 

the closed unit interval [0,1] or alternatively [-1,1]. 
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Figure 2.13 Artificial neuron: an artificial computing processing element. 

 

The neuronal model of Figure 2.13 also includes an externally applied bias, denoted by 

kb . The bias kb  has the effect of increasing or lowering the net input of the activation func-

tion, depending on whether it is positive or negative, respectively [12]. 

In mathematical terms, we may describe a neuron k by writing the following pair of 

equations: 

∑
=

=
m

j

jkjk xwu
2

     (3.1) 

and 

( )kkk buy +=ϕ     (3.2) 

where 1x , 2x , ... , mx  are the input signals; 1kw , 2kw , ... , kmw  are the synaptic weights 

of neuron k; 
ku  is the linear combiner output due to the input signals; 

kb  is the bias; ( )•ϕ  is 

the activation function; and ky  is the output signal of the neuron. The use of bias kb  has the 

effect of applying an affine transformation to the output 
ku  of the linear combiner in the 

model of Figure 2.13,  
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as shown by 

kkk buv +=    (3.3) 

In particular, depending on whether the bias kb  is positive or negative, the relationship 

between the induced local field or activation potential 
kv  of neuron k and the linear combiner 

output ku  is modified  

2.3.2 Network Architectures 

The manner in which the neurons of a neural network are structured is intimately 

linked with the learning algorithm used to train the network. We may therefore speak of 

learning algorithms (rules) used in the design of neural networks as being structured. The 

classification of learning algorithms is considered in the next chapter, and the development of 

different learning algorithms is taken up in subsequent chapters of the book. In this section we 

focus our attention on network architectures (structures). 

In general, we may identify three fundamentally different classes of network 

architectures. 

2.1.1.10 Single-Layer Feedforward Networks 

In a layered neural network the neurons are organized in the form of layers. In the sim-

plest form of a layered network, we have an input layer of source nodes that projects onto an 

output layer of neurons (computation nodes), but not vice versa. In other words, this network 

is strictly a. feedforward or acyclic type [12]. It is illustrated in Figure 2.14 for the case of four 

nodes in both the input and output layers. Such a network is called a single-layer network, 

with the designation "single-layer" referring to the output layer of computation nodes 

(neurons). We do not count the input layer of source nodes because no computation is 

performed there. 
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Figure 2.14 Feedforward or acyclic network with a single layer of neurons [12]. 

 
2.1.1.11 Multilayer Feedforward Networks 

The second class of a feedforward neural network distinguishes itself by the presence 

of one or more hidden layers, whose computation nodes are correspondingly called hidden 

neurons or hidden units. The function of hidden neurons is to intervene between the external 

input and the network output in some useful manner. By adding one or more hidden layers, the 

network is enabled to extract higher-order statistics. In a rather loose sense the network 

acquires a global perspective despite its local connectivity due to the extra set of synaptic 

connections and the extra dimension of neural interactions [13]. The ability of hidden neurons 

to extract higher-order statistics is particularly valuable when the size of the input layer is 

large [12]. 

The source nodes in the input layer of the network supply respective elements of the 

activation pattern (input vector), which constitute the input signals applied to the neurons 

(computation nodes) in the second layer (i.e., the first hidden layer). The output signals of the 

second layer are used as inputs to the third layer, and so on for the rest of the network. 

Typically the neurons in each layer of the network have as their inputs the output signals of 

the preceding layer only. The set of output signals of the neurons in the output (final) layer of 

the network constitutes the overall response of the network to the activation pattern supplied 
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Figure 2.15 Feedforward network with one hidden and one output layer [12]. 

 

by the source nodes in the input (first) layer. The architectural graph in Figure 2.15 illustrates 

the layout of a multilayer feedforward neural network for the case of a single hidden layer. For 

brevity the network in Figure 2.15 is referred to as a 10-4-2 network because it has 10 source 

nodes, 4 hidden neurons, and 2 output neurons [12]. Notation 10-4-2 refers to network design.  

The neural network in Figure 2.15 is fully connected in the sense that every node in 

each layer of the network is connected to every other node in the adjacent forward layer. If, 

however, some of the communication links (synaptic connections) are missing from the 

network, we say that the network is partially connected. 

2.1.1.12 Recurrent Networks 

A recurrent neural network distinguishes itself from a feedforward neural network in 

that it has at least one feedback loop. For example, a recurrent network may consist of a single 

layer of neurons with each neuron feeding its output signal back to the inputs of all the other 

neurons, as illustrated in the architectural graph in Figure 2.16 In the structure depicted in this 

figure there are no self-feedback loops in the network; self-feedback refers to a situation where 

the output of a neuron is fed back into its own input. The recurrent network illustrated in 

Figure 2.16 also has no hidden neurons. Recurrent networks with hidden neurons are also 

possible.  
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Figure 2.16 Recurrent network with no self-feedback loops and no hidden neurons [12]. 

 

Moreover, the feedback loops involve the use of particular branches composed of unit-

delay elements (denoted by 
1−z ), which result in a nonlinear dynamical behavior, assuming 

that the neural network contains nonlinear units.  

2.3.3 NN Models and Learning Algorithm 

There are many different types of NNs, some of which are more popular than others. 

When neural networks are used for data analysis, it is important to distinguish between ANN 

models (the network’s arrangement) and NN algorithms (computations that eventually 

produce the network outputs). Once a network has been structured for a particular application, 

that network is ready to be trained [18]. There are two approaches to training, supervised and 

unsupervised. 
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2.1.1.13 Networks with Unsupervised Learning 

In unsupervised training, the network is provided with inputs but not with desired 

outputs. The system itself must then decide what features it will use to group the input data. 

This is often referred to as self-organization or adaptation. The self-organizing behavior may 

involve competition between neurons, co-operation or both. Neurons are organized into 

groups of layers. In competitive learning, neurons are grouped in such a way so that when one 

neuron responds more strongly to a particular input it suppresses or inhibits the output of the 

other neurons in the group. In co-operative learning the neurons within each group work 

together to reinforce their output. The training task is to group together patterns that are 

similar in some way, extract features of the independent variables and come up with its own 

classifications for inputs. NNs consider the data they are given, discover some of the 

properties of the data set and learn to reflect these properties in their output. The goal is to 

construct feature variables from which the observed variables, both input and output variables, 

can be predicted. Feature- extracting networks can be regarded as principal component 

analyses (PCA). They are used as an alternative to classical PCA for data reduction purposes, 

to transform the data set into a new space with retained information in data set but with a 

reduced number of variables (dimensionality). The goal is to construct a network that will map 

the entire training data (both inputs and outputs variables) at once. 

2.1.1.14 Supervised Learning 

The goal in supervised learning is to predict one or more target values from one or 

more input variables. Supervised learning is a form of regression that relies on example pairs 

of data: inputs and outputs of the training set. 

This type of network is a system of fully interconnected neurons organized in layers, 

the input layer, the output layer, and the hidden layers between them. The input layer neurons 

receive data from a data file. The output neurons provide ANN’s response to the input data. 

Hidden neurons communicate only with other neurons. They are part of the large internal 

pattern that determines a solution to the problem. Theory says that most functions can be 

approximated using a single hidden layer. 

The information that is passed from one processing element to another is contained 

within a set of weights. Some of the interconnections are strengthened and some are 
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weakened, so that a neural network will output a more correct answer. The most commonly 

used learning algorithm is back propagation of error. The error in prediction is fed backwards 

through the network to adjust the weights and minimize the error, thus preventing the same 

error from happening again. This process is continued with multiple training sets until the 

error is minimized across many sets. This results in the mapping of inputs to outputs via an 

abstract hidden layer. 

The number of neurons in the hidden layer influences the number of connections. 

During training phase inputs are adjusted (transformed) by the connection weights. Therefore, 

the number of connections has a significant effect on the network performance. Too few 

hidden neurons will hinder the learning process and too many will depress prediction abilities 

through over training. By increasing the number of the hidden neurons the NN more closely 

follows the topology of the training data set. However, exceeding an optimum number results 

in tracing the training pattern too closely. 

When the NN produces the desired output, (i.e. is trained to a satisfactory level) the 

weighted links between the units are saved. These weights are then used as an analytical tool 

to predict results for a new set of input data. This is a recall or prediction phase when network 

works only by forward propagation of data and there is no backward propagation of error. The 

output of a forward propagation is the predicted model for the validation data. 

Pattern association is usually supervised learning. NNs compete well with statistical 

methods in pattern recognition, especially when the systems contain high level of noise and 

variation. 

2.3.4 Learning Rule 

There are many different learning rules but the most often used is the Delta rule or 

Backpropagation rule. A neural network is trained to map a set of input data by iterative 

adjustment of the weights. The use of the weighted links is essential to the ANN’s recognizing 

abilities. Information from inputs is fed forward through the network to optimize the weights 

between neurons. Optimization of the weights is made by backward propagation of the error 
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during training or learning phase. The ANN reads the input and output values in the training 

data set and changes the value of the weighted links to reduce the difference between the 

predicted and target values. The error in prediction is minimized across many training cycles 

until network reaches specified level of accuracy. 

As mentioned before, there are two approaches to training, supervised and 

unsupervised. The most often used NN is a fully connected, supervised network with back 

propagation learning rule. In this study, Multilayer Back-Propogated NN is used. 

2.3.5  Multilayer Back-Propogation NN and Algorithm 

Multilayer perceptrons have been applied successfully to solve some difficult and 

diverse problems by training them in a supervised manner with a highly popular algorithm 

known as the error back-propagation algorithm. This algorithm is based on the error-

correction learning rule. 

Basically, error back-propagation learning consists of two passes through the different 

layers of the network: a forward pass and a backward pass. In the forward pass, an activity 

pattern (input vector) is applied to the sensory nodes of the network, and its effect propagates 

through the network layer by layer. Finally, a set of outputs is produced as the actual response 

of the network. During the forward pass the synaptic weights of the networks are all fixed. 

During the backward pass, on the other hand, the synaptic weights are all adjusted in 

accordance with an error-correction rule.  

 

Figure 2.17 Signal flows in a multilayer perceptron[12]. 
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Specifically, the actual response of the network is subtracted from a desired (target) 

response to produce an error signal. This error signal is then propagated backward through the 

network, against the direction of synaptic connections—hence the name "error back-

propagation" [16]. Figure 2.17 above is illustration of the directions of two basic signal flows 

in a multilayer perceptron: forward propagation of function signals and back-propagation of 

error signals. 

The synaptic weights are adjusted to make the actual response of the network move 

closer to the desired response in a statistical sense. The learning process performed with the 

algorithm is called back-propagation learning. 

 

 
Figure 2.18 Block Diagrom of MLPBP NN.  
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We define layer index as ‘k’. The net input to the i th unit on the k th layer is k

is . 

Output unit at the k th layer is k

io , where )( k

i

k

i sfo = . Function )(•f  is smooth and nonlinear 

(i.e sigmoid). Weight associated with the connection between i th unit of k th layer and the j th 

unit of (k+1) th layer is defined as k

ijw . We ssume model with n inputs and m outputs hence 

we have a desired signal vector at the output defined as transpose of t = [t1, t2... tm]. MLP 

generates an input-output map for weights. Notation η  is learning rate and δ  is local 

gradient. 

2.1.1.15 Activation Function 

The computation of  δ  for each neuron of the multilayer perceptron requires 

knowledge of the derivative of the activation function associated with that neuron. For this 

derivative to exist, we require the function )(•f  to be continuous. In basic terms, 

differentiability is the only requirement that an activation function has to satisfy.     

An example of a continuously differentiable nonlinear activation function commonly 

used in multilayer perceptrons is sigmoidal nonlinearity; two forms are described: 

1. Logistic Function. This form of sigmoidal nonlinearity in its general form is 

defined by 

))(exp(1

1
))((

nav
nv

−+
=ϕ    a > 0  and  ∞<<∞− )(nv   (4.3) 
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Figure 2.19 Logistic Function [12]. 

 

2. Hyperbolic tangent function. Another commonly used form of sigmoidal non-

linearity is the hyperbolic tangent function, which in its most general form is 

defined by 

))(tanh())(( nbvanv =ϕ , (a,b) > 0  (4.4) 

 

 

Figure 2.20 Hyperbolic Tangent Function [12]. 
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2.1.1.16 Rate of Learning 

The back-propagation algorithm provides an "approximation" to the trajectory in 

weight space computed by the method of steepest descent. The smaller we make the learning-

rate parameter η , the smaller the changes to the synaptic weights in the network will be from 

one iteration to the next, and the smoother will be the trajectory in weight space. This 

improvement, however, is attained at the cost of a slower rate of learning. If, on the other 

hand, we make the learning-rate parameter η  too large in order to speed up the rate of 

learning, the resulting large changes in the synaptic weights assume such a form that the 

network may become unstable (i.e., oscillatory). [12]. 

2.1.1.17 Momentum Term 

A simple method of increasing the rate of learning yet avoiding the danger of 

instability is to modify the delta rule by including a momentum term: 

ijijij oηδωαω +∆=∆      (4.5) 

The inclusion of momentum in the back-propagation algorithm has a stabilizing effect 

in directions that oscillate in sign. The incorporation of momentum in the back-propagation 

algorithm represents a minor modification to the weight update, yet it may have some 

beneficial effects on the learning behavior of the algorithm. The momentum term may also 

have the benefit of preventing the learning process from terminating in a shallow local 

minimum on the error surface. 
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3. MATERIALS AND METHODS  

The objective of this study is to design and train Neural Network that classifies four 

different gait patterns. Architectural design of it is accomplished according to the problem 

inclination. Training of the Neural Network required huge amount of samples of gait patterns. 

For this purpose, motion analysis system [4] with six TV cameras sensitive at infrared range 

was used for the data acquisition. Studies are performed at Istanbul University Istanbul 

Medical Faculty, Istanbul, Turkey. We have recorded subjects who are able to walk and have 

proper anthropometrics that motion systems could evaluate.  

3.1 Procedures and Data Acquisition 

First of all, some information from subject is taken. 

• Subject’s Personal information 

Personal information is necessary to create personal database of the individual. Those 

are name, surname, middle name, birthday, phone number, gender and patient code. Date of 

acquisition performed assigned automatically. Subject’s data can be searched or called 

according to those information.   

• Physical Evaluation 

The subjects were evaluated to take baseline measurements, which are active and 

passive joint ranges of movement before and after the treatment.  Joint angle was measured by 

using a goniometer and the muscle force was evaluated using the gross motor test by a 

therapist. Those evaluations compared with report of Locomotion Analysis System for 

measurement consistency. 

• Subject’ Anatomic measurements 



                                                                                                                                        
34 

  

Subject is asked to take of his/her clothes. Some anthropometric measurements are 

taken, Those are weight, height, pelvis width, pelvis height, knee diameter, ankle diameter and 

total leg length. Antropometric measurements are indispensable for post processing procedure. 

Namely, they are used to create joint segment model and calculation of both kinetics and 

kinematics. 

• Marker set up. 

Retroreflective markers were placed onto the segments and joints according to Davis 

protocol, see Figure 3.1. Markers were attached to the bilateral lower extremities with 

stickers and elastic tapes on the following anatomic locations: cervical 7, sacrum, 

trochanter major, fibula head, anterior superior iliac, lateral malleolus, base of the heel, 

lateral aspect of midthigh, midcalf, fifth foot metatars, lateral femoral condyle, 

acromioclavular joint The detailed marker positions are given in Appendix A. 

 

Figure 3.1 Davis model based marker setup in Motion Analysis Laboratory [4]. 
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• Standing Record for rigid body Davis model 

22 retro reflective markers are placed on the specified point of the subject. A static 

calibration data was collected before the walking trials with bilateral heel markers set to 

define the angular and special offset.  Subject faced to the positive direction of the walking 

mile on the Force plate 1 which is the nearest to the reference frame of the Lab.  

• Tracking of the standing trial  

Tracklab program is used for labeling of the markers immediately after steady trial 

acquisition. Although it is sophisticated tracking software and does a good job user 

intervention is sometimes required. In the Figure 3.2 below checking markers continuity 

within specified period of time is performed.  

 

Figure 3.2 Tracking of the acquired standing trial. 

 

• Processing of tracked data for standing trial 
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Since steady (standing) trial is acquired once it is very important that tracked data has 

no problem. Therefore data processing is accomplished shortly after tracking. In that step data 

filtering and interpolation are performed if they are necessary. Some critical parameters 

visualized by means of kinematic visualization property of program. Visualized parameters are 

bilateral angle of ankles and knees. Those are compared with angles that measured previously 

at the physical evaluation of the subject.  

• Record of walking trials 

After processing data it is beneficial to check bar markers alignment since most of the 

case hands of the subject may strike to those rigid bars. Before walking trial acquisition the 

heel alignment markers were removed.  Direction of the movement must be appointed. 

Figure 3.3 is the snapshot of walking trial Acquisition in Istanbul University Istanbul Medical 

Faculty Motion Analysis Laboratory. Several trials are taken from each subject. During trial 

acquisition video are recorded to digital video camera. Those real video capture are compared 

with report of Motion Analysis System. 

 

Figure 3.3 Recording of walking trial in Motion Analysis Laboratory.  

 

• Tracking and processing of walking data 
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All markers should be placed at their right positions throughout walking period within 

the volume. Note that in the Figure 3.4 at right side, model window there are heel markers 

missed. Those markers removed since heel strike leads to motion artifact. They are changed to 

virtual markers in walking trials.  Steps are same as procedures done in standing trail except 

more then one trial is considered. 

 

Figure 3.4 Tracking of the acquired walking trial. 

 

• Elaboration of the acquired data  

At the bottom left of Figure 3.5, step markers are placed for each left/right heel strike 

and toe off. This is necessary for defining the gait phases of subject.  Elaboration of the post-

processed data was necessary to define phases of the gait pattern. It is defined by marker 

placements at the time frames, which are placed at the moment of heel strike and toe off for 

both left and right foot. Physician who has good experience on step marker assignments 

should perform this procedure. It is necessary since all of the outputs are strictly dependent to 

the correctness of the assignment. 

• Printing and exporting report of the subject to ASCII data 
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It is necessary that report taken should be in numerical data form for feeding Neural 

Network. Both form of the output is taken numerical data for simulation and print out for 

comparison of consistency with physical evaluation of the subject. 

 

 

Figure 3.5 Elaboration of the processed walking trial. 

3.2 Data Collection and Preprocessing 

In this thesis our aim is to categorize the walking gait to normal and pathological, plus 

to classify later one if possible. Classifications are: normal gait, Right Hemiplegia, Left 

Hemiplegia and Spastic Diplegia. 187 of subjects were Spastic Diplegia, 58 of subjects were 

Right Hemiplegia, and 48 of subjects were Left Hemiplegia. Additionally, we have recorded 

78 ‘healthy’ subjects. General characteristics of the selected subject illustrated as in tabular 

form below at Table 3.1. 
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Table 3.1 Characteristics of Selected Subjects (Age 3 –70 ). 

AGE 

GAIT CATEGORY 

Mean±S.D Range 

GENDER 

Female / Male 

NUMBER OF 

CASES 

AVAILABLE 

Normal 23±12 6-60 30 / 48 177 

Right Hemiplegia 15±13 5-58 22 / 36 200 

Left Hemiplegia 19±18 4-70 19 / 26 142 

Spastic Diplegia 13±5 3-23 60 / 127 226 

 

Motion analysis trials were acquired more then once for each subject. Namely there are 

more then one cases for each subject. In the stage of processing of data Gait Eliclinic has 

algorithm that filters and interpolates saved data by Tracklab program. Kinematic trajectories 

were examined during trial elaboration stage. A little of the cases were ruined because of the 

damaged calibration, or have too much missing frames. Those trials with too much lost frames 

and calibration problem were abandoned. Report and ASCII of the elaborated trials obtained. 

Reported kinematic trajectories (kinematic graphs) were compared with physical evaluation 

measurements. Specifically, ankle and knee angles were taken into consideration. Irrelevant 

cases were removed. Finally, we were left with 177 normal walking, 226 Spastic Diplegia, 200 

Right Hemiplegia and 142 Left Hemiplegia trials. Report and ASCII export of trials contains 

both kinematic and kinetic trajectories of subject.  Since kinematics was used in this project, 

kinetic data were also abandoned. Within those kinematic outputs five pair of them were 

chosen. Those were chosen with supervision of medical exports of Motion Analysis 

Laboratory. Feature vectors are constructed from five pairs of kinematic trajectories, which is 

illustrated at Table 3.3. They are combined in consecutive order.  

Acquired data revised again according to the age groups and motion analysis data 

consistency with video of the subject. Confinement of age between 6-12 left us with 24 
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Normal, 40 Right Hemiplegia, 31 Left Hemiplegia and 55 Spastic Diplegia subjects. For 

details of subjects see Table 3.2. 

Table 3.2 General Characteristics of Subjects (Age 6 - 12). 

AGE 

GAIT CATEGORY 

Mean±S.D Range 

GENDER 

Female / Male 

NUMBER OF 

CASES 

AVAILABLE 

Normal 9.8±2 6-12 12 / 12 110 

Right Hemiplegia 8.8±1.8 6-12 19 / 21 134 

Left Hemiplegia 8.7±2.2 6-12 13 / 18 114 

Spastic Diplegia 9.3±1.8 6-12 25 / 55 160 

 

After age confinement we left 150 subjects out of 371 recorded ones. Video 

consistency performed by comparing report of them with corresponding captured videos. 

Finally, we have extracted 518 useful trials after those procedures. We had 110 trials for 

Normal, 134 trials for Right Hemiplegia, 114 trials for Left Hemiplegia and 160 trials for 

Spastic Diplegia. Feature vectors constructed from bilateral kinematic trajectories explained in 

Table 3.3 for each case (trial). 

Table 3.3 Gait Trajectories Utilized fot Classification. 

Right-Ankle Dorsi-Plantarflex Left-Ankle Dorsi-Plantarflex 

Right-Hip Flex-Extension Left-Hip Flex-Extension 

Right-Knee Flex-Extension Left-Knee Flex-Extension 

Right-Pelvic Rotation Left-Pelvic Rotation 

Right-Pelvic Tilt Left-Pelvic Tilt 
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Ten trajectories (five pair of kineatic ouput) are combined consecutively to form the 

feature vector Those ten trajectories are Ankle Dorsi-Plantar Flexion pair, Hip Flexion-

Extension pair, Knee Flexion-Extension pair, Pelvic Rotation pair and Pelvic Tilt pair. 

Figure 3.6 is one of those pairs as a graphical form that is generated report by BTS Elit 

program. Each of those curves contains 100 sample points. Thus obtained feature vectors have 

total of 1000 elements.  Plot of the average graph for each classification group is available in 

Appendix B. Vertical axis is angle of knee flexion-extension in degree and horizontal axis is 

percent of the gait cycle. Graph in the Figure below contains bilateral output and normal curve 

for comparison. Curves in blue, red and black correspond to right side, left side and normal 

values of knee flexion extension in degrees. Shaded area around normal curve is deviation 

range of the normal patterns.  

 

 
Figure 3.6 Knee Flex-Ext Graph, Sample Report. 

 

Velocity and speed of the each subject may differ. In order to cope with that 

incompetence gait cycle is accepted as a standard instead of time, Figure 3.7.  One complete 

period of walking is normalized to 100%. The gait cycle begins when one foot contacts the 

ground and ends when that foot contacts the ground again. Thus, each cycle begins at an 

initial contact with a stance phase and proceeds through a swing phase until the cycle 

ends with the limbs next to initial contact. The stance phase accounts for approximately 

60 percent and the swing phase for approximately 40 percent of a single gait cycle. In the 
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Figure 3.7, it is shown that Gait cycle starts from toe off of the left leg and completes period 

with the same leg. 

 

 

Figure 3.7 Gait cycle [7]. 

 

3.3 Neural Network Selection and Design 

As the nature of the perceptron it is impossible to classify nonlinear inputs. However it 

is proven that linearly separable problems could be solved (i.e. OR problem). It has very 

simple algorithm and low computation cost but it could not be used in this project since 

complexity of the problem.  

Secondly, we have unsupervised learning method that could be possibly used to this 

project. In unsupervised learning model there is no guiding still network with both inputs and 

outputs, no feedback from environment to dictate what these outputs should be. Architecture 

of the model is simple. Difference comes from learning rules. Most networks have one layer. 

Unsupervised learning needs data redundancy and it is prone to noise.  

Finally, we have supervised learning model with multi-layer back-propagation 

algorithm. Although the greater power of multi-layer networks was realized long ago, it was 
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recently shown that how to make them learn a particular function [17].  It is successful to 

solve difficult and diverse problems and able to compensate noise.  

Our goal in this study is to train Network and obtain reasonable results. We chose 

multilayer back propagation network since distinguishing four different groups is difficult 

problem and data used may have noise.    Our success would be evaluated according to the 

results obtained in previous researches. 

3.3.1 Simulating Back Propagation Multilayer Network 

In this network model, the input units are fan-out processors only. That is, the units in 

the input layer perform no data conversion on the network input pattern. They simply act to 

hold the components of the input vector within the network structure. Thus, the training 

process begins when an externally provided input pattern is applied to the input layer of units 

[11,19]. Forward signal propagation then occurs according to the following sequence of 

activities: 

1. Locate the first processing unit in the layer immediately above the current layer. 

2. Set the current input total to zero. 

3. Compute the product of the first input connection weight and the output from the 

transmitting unit. 

4. Add that product to the cumulative total. 

5. Repeat steps 3 and 4 for each input connection. 

6. Compute the output value for this unit by applying the output function         

    f(x)= 1/(1 + exp(x)), where x - input total. 

7. Repeat steps 2 through 6 for each unit in this layer. 

8. Repeat steps 1 through 7 for each layer in the network. 
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Once an output value has been calculated for every unit in the network, the values 

computed for the units in the output layer are compared to the desired output pattern, element 

by element. At each output unit, an error value is calculated. These error terms are then fed 

back to all other units in the network structure through the following sequence of steps: 

1. Locate the first processing unit in the layer immediately below the output layer. 

2. Set the current error total to zero. 

3. Compute the product of the first output connection weight and the error provided by 

the unit in the upper layer. 

4. Add that product to the cumulative error. 

5. Repeat steps 3 and 4 for each output connection. 

6. Multiply the cumulative error by o, where o is the output value of the hidden layer 

unit produced during the feed forward operation. 

7. Repeat steps 2 through 6 for each unit on this layer. 

8. Repeat steps 1 through 7 for each layer. 

9. Locate the first processing unit in the layer above the input layer. 

10. Compute the weight change value for the first input connection to this unit by adding 

a fraction of the cumulative error at this unit to the input value to this unit. 

11. Modify the weight change term by adding a momentum term equal to a fraction of 

the weight change value from the previous iteration. 

12. Save the new weight change value as the old weight change value for this 

connection. 

13. Change the connection weight by adding the new connection weight change 

14. Repeat steps 10 through 13 for each input connection to this unit. 

15. Repeat steps 10 through 14 for each unit in this layer. 

16. Repeat steps 10 through 15 for each layer in the network. 
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3.3.2 Structure of the Simulated MLPBP and Input Data 

Using algorithm in previous section and formulation of MLPBP in section 4.3.2 

MATLAB code is written. Code saved in mlpbp.m file, as a standard MATLAB m file. 

Program trains a multilayer network by using back-propagation algorithm.  

 

 

Figure 3.8  Neural Network Architecture. 

 

Designed Neural Network has M many inputs. In the Figure 3.8 each input denoted by 

x1, x2, x3,…,xM. Since each kinematic trajectory collected has 100 sample points, subscript M 

is the multiple of 100. Thus each sample point of gait parameter is entered as an input. Input 

layer (Input node) has M = feature dimension. So entered file should have matrix M many 

input. Each sample point of the feature pattern fed to the network entered as an input.  

Hidden layer/s. Defined hidden layer could be one or more then one, as well. Each 

time when program executed it asks number of hidden layer which means user could define 

the number of hidden layers in Network.  Additionally, number of neurons supposed to be 

entered for each layer.  
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Output layer N = output dimension. Program defines number of the neurons to be 

deployed at the output layer. It is equal to the number of output and number of categories to be 

classified. 

Designed ANN is very flexible. Most of the parameters can be specified by user:  

number of total layers, number of units in each layer, learning rate, momentum, error 

threshold, maximum number of epochs, number of iterations to stop when there is no 

improvement etc. 

Parameters expected to enter: 

• Number of output = N 

• Number of total layers including output layer = L 

• Number of neurons in each layers L1, L2,…Li 

• Steepness parameter = lambda (For transfer function)  

• Learning rate = alpha (or eta in literature) 

• Momentum constant = mom 

• Error threshold = Et 

• Maximum number of epoch to run 

• Training Samples = Kr 

• Number of epoch between convergence check 

• Maximum number of iterations if no improvement 

• Number of iteration to be plotted for Error  

All of the synaptic weights are initialized to very small random numbers. A sigmoid is 

chosen as the nonlinear function. Program runs training up to maximum epoch defined by 

user. It terminates the process in case of no improvements detected in the error. Additionally, 

it stops training when minimum defined error (Error threshold) attained. So there is three 

criteria of termination: Maximum Epoch, No progress in Error and achievement of minimum 

Error. Data entered to network should be ASCII file. Trainig file and Test file should be 
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entered separately. Files contain matrix data, which is shown in Figure3.9. Matrix contains K 

many feature vectors. There is M many inputs and N many target output in each feature 

vector. M correspond to the number of sample point extracted from ten kinematic trajectory. 

Target output that is last N many element of the feature vector consists of zeroes and one. The 

element that equals to one defines to which group it belongs. User defines Kr many feature 

vectors that would be used for training network out of entered K many samples. For estimation 

feature vector is picked randomly at each iteration from dataset with Kr many feature vectors. 

This procedure known as shuffling of the patterns and it is perfomed for better performance. 

Two different codes are written Mlpbp.m and Mlpbp_cv.m. Programs expect as an 

input data in ASCII file. Two different data sets Training and Test file should be entered.  

Second code needs Cross-Validation as well as Training and Test data file.  

 

Figure 3.9 Data Structure of Input File. 

3.4 Data Implementation 

3.4.1 Neural Network Performance Verification with XOR 

We know that single-layer perceptron cannot classify input patterns that are not 

linearly separable. However, nonlinearly separable patterns are of common occurrence. For 

example, this situation arises in the Exclusive OR (XOR) problem, which may be viewed as a 

special case of a more general problem, namely that of classifying points in the unit 
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hypercube. Each point in the hypercube is either in class 0 or class 1. However, in the special 

case of the XOR problem, we need consider only the four corners of the unit square that 

correspond to the input patterns A (0,0), B (0,1), C (1,0), and D (1,1). Input patterns and Truth 

Table for XOR function illustrated in tabulated form at Table 3.1.   

 

Table 3.4 Truth Table of XOR function. 

PATTERN INPUT X1 INPUT X2 OUTPUT 
A 0 0 0 
B 0 1 1 
C 1 0 1 
D 1 1 0 

 

Therefore XOR problem is implemented to check whether designed neural network could 

adapt to solve the problem. In the Figure 3.10 below it is obvious that there is no line that 

could separate two different class of output. Classes are not linearly separable. 

 

 
Figure 3.10 Geometrical Representation of XOR function. 

 

Since written MATLAB code accepts as inputs ASCII file in the matrix form, two set 

of files generated for training and test. Matrices contain three column vectors first corresponds 

to input X1, second to input X2 and third to target output. Raw of the matrices are pattern 

samples, which consist of element of X1, X2 and target output. 
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Figure 3.11 Train and Test matrices. 

 

In the Figure 3.11 above first logic array is train input which is 4x3 matrix file and 

second one is test input, which is 4x3 matrix file. Note that third column is target output.  

3.4.2 Network Training with Single Gait Parameter 

In order to take reliable improvements, datasets applied with reduced dimensions. The 

more distinct differences are observed at Ankle Dorsi-Plantar Flexion graph, see Appendix B. 

In the sense of medical properties, it contains very important information. This kinematic data 

is chosen with advices of medical specialists.  

Unilateral ankle trajectory is deployed for training the network in the first trial. It is 

trained to classify Normal and Diplegia. Entered input set contains sample points of one side 

of the Ankle Dorsi-Plantar Felxion. Therefore input dimension is equal to 100. Network 

design has one hidden layer and one output layer. Hidden layer contains 100 neurons and 

output layer has 2 neurons.  

Secondly, code is executed to train network with 200 input nodes (200 inputs), 200 

hidden neurons and 2 outputs. Sample points of Right and Left Ankle Dorsi-Plantar Felxion 

are fed. That is bilateral ankle trajectories are used for classifications. First program executed 

to categorize Right Hemiplegia and Left Hemiplegia. Then Normal and Spastic Diplegia 

classification are performed with the same network design but with increased number of 

sample patterns and smaller learning rate. Numbers of samples for the first execution were 64 

Right Hemiplegia and 64 Left Hemiplegia. On the other hand later execution has 64 Normal 

and 192 Spastic Diplegia sample patterns. Learning rate entered were 0.02 and 0.002 

respectively. 
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Three different gait condition Normal, Spastic Diplegia and Right Hemiplegia were 

tried to classify. Bilateral ankle trajectories are used for training again. Because of the fact that 

number of categories has been changed network’s output neuron number changed from 2 to 3. 

All other network characteristics remained same 200 input dimension 200 hidden layer 

neurons and 0.002 learning rate.   

To show that pairs of feature vectors (Ankle Dorsi-Flexion Angle for Right and Left) 

are not sufficient, network was trained for classification of four different gait patterns, which 

are Normal, Right Hemiplegia, Left Hemiplegia and Spastic Diplegia. It is performed though 

insufficiency of features was emerged in previous execution at classification of three different 

conditions. In that simulation all network parameters remained the same except for the output 

neuron that changed from 3 to 4.  

3.4.3  Network Training with Additional Gait Parameters 

New files are created for training and test datasets. In addition to data pairs of Right 

and Left Ankle Dorsi-Plantar Flexion nine other feature trajectories are added. Those are: 

Right-Left Hip Flex-Extension, Right-Left Knee Flex-Extension, Right-Left Pelvic Rotation 

and Right-Left Pelvic Tilt. Created file implemented to the ANN for classification of four 

different groups. 

Program executed for training network with new data set. Architecture of it remained 

the same but learning constant assigned as 0.005. Owing to the obtained results, architecture 

of the network is decided to modify. Heuristics for making network perform implied that sharp 

convergence of the amount of neurons in consecutive layers leads to low success in 

categorization. This time three hidden layers selected. Network architecture has following 

design 1000 inputs at input node, 1000 neurons in the first hidden layer, 80 neurons in the 

second hidden layer, 8 neurons in the last hidden layer and four output neurons. As shown in 

the previous chapters this could be notated as follow: 1000-1000-80-8-4. Learning rate was 

0.002. Another simulation with different network design 1000-1000-200-10 performed to 

investigate progress in network performance. All other parameters kept the same. 
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3.4.4 Effect of Learning Rate 

  Several simulations are accomplished with different learning constants. Which has 

incredible impact to both convergence and network performance. Both our past experience 

and literature approve that it has optimal range. Some of those simulations are added to 

manifest learning constant effect. Network design is 1000-1000-80-8-4 which give better 

results then other tried ones. ANN program executed five times with different learning 

constants; 0.2, 0.02, 0.002, 0.0002 and 0.00002. 

3.4.5 ANN Training with Confined Data  

Neural network is fed with dataset that collected from the subjects who are confined to 

6 to 12 ages. Network fixed to the 1000-1000-80-8-4 architectural design. Learning constant is 

0.002.  

Next, age and sex parameter of the subjects added to the feature vector. Since extra 

two parameters added dimension of the input feature vector changed to 1002. Thus network 

architecture is as follows: 1002-1002-80-8-4 To check consistence of the network results 

several execution is needed with different dataset. Pool of data is created that contains feature 

vectors. Matlab program code is written that generates training and test file. It picks a feature 

vector randomly and generates two different files. Each feature vector is selected only once, 

namely generated files are completely different.  

Program is ran 9 times to generate 9 different input file sets. All of the files are applied 

to the ANN. The most logical reference point in data analysis is the mean, notated as x , the 

typical value for a set of data. Mean of confusion matrix and classification success calculated. 

The variance of the results are calculated as:  

1

)(
2

2

−
=
∑ −

n

xx
σ     (4.1) 

where n is the number of trials performed, or total number of x values. 
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Standard deviation, σ , is simply square root of the variance.  

3.4.6 Generalization test of ANN 

Generalization test is tests of the NN’s ability to classify samples correctly which are 

never seen before.  In back-propagation learning, we typically start with a training sample and 

use the back-propagation algorithm to compute the synaptic weights of a multilayer perceptron 

by loading (encoding) as many of the training examples as possible into the network. The aim 

is that the neural network so designed will generalize. A network is said to generalize well 

when the input-output mapping computed by the network is correct (or nearly so) for test data 

never used in creating or training the network; the term "generalization" is borrowed from 

psychology [12]. 

A neural network that is designed to generalize well will produce a correct input-

output mapping even when the input is slightly different from the examples used to train the 

network. When, however, a neural network learns too many input-output examples, the 

network may end up memorizing the training data. It may do so by finding a feature (due to 

noise, for example) that is present in the training data but not true of the underlying function 

that is to be modeled. Such a phenomenon is referred to as overfitting or overtraining. When 

the network is overtrained, it loses the ability to generalize between similar input-output 

patterns. 

3.4.7 Cross Validation 

The hope is that the network becomes well trained so that it learns enough about the 

past to generalize to the future. From such a perspective the learning process amounts to a 

choice of network parameterization for this data set. More specifically, we may view the 

network selection problem as choosing, within a set of candidate model structure 

(parameterizations), the “best” one according certain criterion.  

Data pool collected is partitioned into three disjoint subsets: 
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• Training set 

• Validation set 

• Test set 

Since we have design of large neural network, cross-validation should be deployed to 

have a good generalization. The motivation here is to validate the model on a data set different 

from the one used for parameter estimation and test.  

Dataset is partitioned into 0.5, 0.25 and 0.25 ratios to generate estimation, cross-

validation and test files. So 75 percent of the whole data is used for network training 

meanwhile 25 percent of it used to validate training progress. Remained 25 percent of data 

used to test final trained ANN. “Best” network design and learning rate attained are used. 

Matlab code is modified to deploy cross-validation and trace its error propagation. Since rate 

of the partitioned data is different, plotting total error of training and validation is meaningless. 

Therefore mean squared error is plotted instead of total error so that one could compare error 

curves.  

3.4.8 Early Stopping Method 

A multiplayer perceptron trained with the back-propagation algorithm learns in stages, 

moving from the realization of fairly simple to more complex mapping functions as the 

training session progresses. A typical situation the mean-squared error decreases with an 

increasing number of epochs during training: it starts off at a large value, decreases rapidly, 

and then continues to decrease slowly as the network makes its way to a local minimum on the 

error surface. With good generalization as the goal, it is very difficult to figure out when it is 

best to stop. It is possible for the network to end up overfitting the training data if the training 

session is not stopped at the right point. 
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Figure 3.12 The Early-stopping rule based on cross-validation [12]. 

 

Figure 3.12, above, conceptualizes forms of two learning curves: one pertaining to 

measurements on the estimation subset and the other pertaining to the validation subset. 

Network simulated and training terminated by means of Early Stopping Method of Training.  

3.4.9 Classification of Normal and Gait Disorders 

Finally, a network is trained with revised data to distinguish Healthy gait pattern and 

Pathological one. It should be noted that Right Hemiplegia, Left Hemiplegia and Diplegia 

feature vectors used as pathological gait patterns. Classification of “Healthy” and Pathological 

is accomplished. Neural Network architecture remained the same except output layer neuron 

number. Since we have only two groups to classify, number of neurons at output layer is 2. 
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4. RESULTS 

 Average of feature vectors are plotted for each gait groups such that one would have 

an idea about their trajectories.  

Normal

-20

0

20

40

60

80

1

3
0

5
9

8
8

1
1
7

1
4
6

1
7
5

2
0
4

2
3
3

2
6
2

2
9
1

3
2
0

3
4
9

3
7
8

4
0
7

4
3
6

4
6
5

4
9
4

Gait Cycle

D
e
g
re
e

 

Figure 4.1 Average graph of normal sample patterns 

 

Average graph of all ‘healthy’ subjects is depicted in Figure 4.1. Note that both curves 

for the right and for the left side are aligned. They almost fall on top of each other. Blue curve 

corresponds to the trajectories of the right and red one to the trajectories of the left side. 
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Figure 4.2 Average graph of Right Hemiplegia sample patterns 
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Average graph of all Right Hemiplegia subjects do not align for the right and the left 

sides. The result is as expected since one side of the body is affected more than other in 

Hemiplegia patients. Right limbs are more affected in Right Hemiplegia patients. In Figure 4.2 

blue trajectory corresponds to the average of feature vectors of the right side and red one to the 

left side. 

Left Hemiparezi
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Figure 4.3 Average graph of Left Hemiplegia sample patterns 

 

Here we have previous scenario again in Figure 4.3; average graph of kinematics data 

of Left Hemiplegia disorders do not align for right and left side. Which is not symmetric due 

to their unilateral affected limbs. Blue and red curves correspond to the average of the feature 

vectors of the right and left side respectively. 
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Figure 4.4 Average graph of Spastic Diplegia sample patterns 
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Average graph of Diplegic subjects have most curves aligned except for pelvic 

rotation. Graph in Figure 4.4 approves the fact that reviewed at section 4.2. All limbs are 

affected but lower extremity is affected more then upper ones. 

4.1 Results of Implemented XOR problem 

It is almost a standard procedure to apply XOR as a test of nonlinear problem solving 

capability of a Neural Network. 

 

Table 4.1 Confusion Matrix and Classification Achievement for XOR problem. 

 TRAINING TEST 
            Estimated 
Real 

First Group Second Group First Group Second Group 

First Group 
 

2 0 2 0 

Second Group 
 

0 2 0 2 

Clasification 
Success in % 

100 100 

 

Table 4.1 is tabulated form of the obtained training results. There are confusion 

matrices, plus achieved classification rate in percentage for both training and test datasets. 

Two by two table in light green color is the confusion matrix for the training.  

Table in dark color is the confusion matrix for the test. Cells under them correspond to 

the success attained for them. After that we always imply to one of those tables when we use 

confusion matrix term. Columns of the matrix contain number of feature vectors that estimated 

as a corresponding group. Rows of the matrix imply to the number of samples that is really 

belongs to that group.   

From the Table 4.1, it is obvious that both training and test classifications are 

successful. 
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Figure 4.5 Total Training Error vs.  # of epochs for the XOR problem. 

 

Total error curve also converged to the threshold value, which was 0.01 in Figure 4.5. 

We know that ANN designed could classify nonlinear problems. Now we can implement our 

dataset to the program.  

4.2 Results Network Implementation with Single Gait Parameter 

It is proven that ANN could classify nonlinear problems. In order to take reliable 

improvements, datasets applied with reduced dimensions.  

Table 4.2 Confusion Matrix and Classification Success for Normal and Spastic Diplegia. 

 TRAINING TEST 
            Estimated 
Real 

Normal Diplegia Normal Diplegia 

Normal 
 

50 0 42 8 

Diplegia 
 

0 50 6 44 

Clasification 
Success in % 

100 86 
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Figure 4.6 TTE vs. # of epochs for classification of Normal and Spastic Diplegia. 

 

Classification success for the training and test are 100% and 86%, respectively. 

Diagonal elements of confusion matrix are the number of correct classified sets. First element 

of the confusion matrix corresponds to Normal and last element of the confusion matrix 

corresponds to Spastic Diplegia. Namely, 42 samples of normal set out of 50 and 44 samples 

of Spastic Diplegia out of 50 were sorted correctly.     

Secondly, Right Hemiplegia and Left Hemiplegia data sets were applied to the ANN to 

observe whether network was able to distinguish between those similar characteristic 

disorders.   

 

Table 4.3 Confusion Matrix and Classification Success for Right and Left Hemiplegia. 

 TRAINING TEST 
            Estimated 
Real 

Right Hemiplegia Left Hemiplegia Right Hemiplegia Left Hemiplegia 

Right Hemiplegia 
 

64 0 52 12 

Left Hemiplegia 
 

0 64 22 42 

Clasification 
Success in % 

100 73.4 
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Figure 4.7 TTE vs # of epochs for classification of Right and Left Hemiplegia. 

 

Table 4.3 is the result for training and test data of Right and Left Hemiplegia. First 

element of the confusion matrix corresponds to Right Hemiplegia and the last one to Left 

Hemiplegia.  

Simulation is repeated for the first simulation. Gait types are Normal and Diplegia.  

Now we have data set of Ankle Dorsi-Plantar Flexion with both sides included.  

 

Table 4.4 Simulation results for Normal and Spastic Diplegia with η =0.02. 

 TRAINING TEST 
            Estimated 
Real 

Normal Diplegia Normal Diplegia 

Normal 
 

64 0 44 20 

Diplegia 
 

0 192 9 183 

Clasification 
Success in % 

100 88.7 

 

There are 64 feature vector samples for normal and 192 feature vector samples for 

Diplegia. All of the training samples are estimated correctly. However 44 samples of normal 

gait and remained samples estimated as Diplegia. 9 samples of Diplegia confused as normal 

gait. Comparison of first and current simulation show that increasing number of samples and 

decreasing learning rate leads to increase in success of classification from 73.4% to 88.7% 
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Figure 4.8 TTE vs. # of epochs for classification of Normal and Diplegia with η =0.02. 

 

We again deploy one pair of feature vector of kinematic data, which is Ankle Dorsi-

Plantar Flexion. Up to now it was successful to classify two groups. Would it be enough for 

classification of more than two groups? In order to get the answer further simulation was 

indispensable. Therefore three different types of gait (Normal, Spastic Diplegia and Right 

Hemiplegia) are applied to Network.  

 

Table 4.5 Simulation results for Normal and Spastic Diplegia and Right  Hemiplegia. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal Diplegia 
Right 
Hemiplegia 

Normal Diplegia 
Right 
Hemiplegia 

Normal 
 

64 0 0 51 7 6 

Diplegia 
 

0 64 0 3 37 24 

Right 
Hemiplegia 0 0 64 6 15 43 

Clasification 
Success in % 100 68.2 

 
 

All of the samples in training set classified correctly. On the other hand percentage of 

success is decreased in test since pair of feature vector provided does not carry adequate 

information for good classification. 



                                                                                                                                        
62 

  

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 0 

10 

20 

30 

40 

50 

60 

70 

80 

Training Error (epoch size = 192) 

Epoch 

E
rr
o
r 

 

Figure 4.9 TTE vs. # of epochs for classification of Normal, Diplegia and Right  Hemiplegia. 

 

To show inefficiency of pairs of feature vectors which are Right and Left Ankle Dorsi-

Plantar Flexion, another simulation is done. Inputs of four different groups are entered to 

check classification success. Those are Normal, Spastic Diplegia, Right and Left Hemiplegia 

respectively. 

Table 4.6 Simulation results for 4 different gait conditions. 

 TRAINING TEST 

       Estimated 
 
Real 

Normal Diplegia 
Right 
Hemiplegia 

Left 
Hemiplegia 

Normal Diplegia 
Right 
Hemiplegia 

Left 
Hemiplegia 

Normal 
 

64 0 0 0 44 9 8 3 

Diplegia 
 

0 64 0 0 1 18 26 19 

Right 
Hemiplegia 0 0 64 0 5 10 35 14 

Left 
Hemiplegia 

0 0 0 64 12 10 17 25 

Clasification 
Success in % 100 47.7 

 

As expected, classification is rapidly decreased to 47.7%, which is the worst 

simulation result ever taken. Hypothesis of insufficient feature vector is proven. 
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Figure 4.10 TTE for classification of 4 different gait types with Ankle pattern pair. 

 

Simulations so far show that classification success of more then two groups is not 

adequate using only pair of Ankle trajectories. As the number of categorization increases need 

of additional feature is increased. We concluded that other pairs of feature vectors should be 

utilized for good performance of Network.  

4.3 Results of Classification with Additional Gait Parameters 

Added gait parameter pairs are following; Right-Left Ankle Dorsi-Plantar Flexion, 

Right-Left Hip Flex-Extension, Right-Left Knee Flex-Extension, Right-Left Pelvic Rotation 

and Right-Left Pelvic Tilt. Created file implemented to the ANN for classification of four 

different groups.  

Despite of that training does not completed successfully, attained results for test is 

better then previous simulation. It is shown that training success is remained at 67.8 % and 

attained test result is 56.8% at Table 4.7.  Only 2 actual sample of normal gait is correctly 

estimated which may be consequence of incomplete process of training.  
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Table 4.7 Confussion Matrix and Classification Success for 4 different gait type. 

 TRAINING TEST 

       Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

2 18 53 27 1 17 47 35 

Right 
Hemiplegia 0 87 4 9 0 66 10 26 

Left 
Hemiplegia 

0 7 89 4 0 10 77 13 

Diplegia 
 

0 3 4 93 0 7 10 83 

Clasification 
Success in % 67.8 56.8 

 

 

 
Figure 4.11 TTE for classification of four gait types with all collected data. 

 

Increasing feature of the inputs increased performance of the ANN in the previous 

simulation. However result is far from being a good success. Sharp convergence of the amount 

of neurons in ANN may lead to low success in categorization. Thus network architecture is 

modified from 1000-1000-4 to 1000-1000-80-8-4. Program executed for training the Neural 

Network with modified architecture. 
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Table 4.8 Confussion Matrix and Classification Success for 4 different gait type. 

 TRAINING TEST 

       Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

64 0 0 0 58 0 3 3 

Right 
Hemiplegia 0 64 0 0 1 54 7 2 

Left 
Hemiplegia 

0 0 64 0 3 17 43 1 

Diplegia 
 

0 0 0 64 1 23 14 26 

Clasification 
Success in % 100 70.7 
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Figure 4.12 TTE for classification of Normal, Diplegia, Right and Left Hemiplegia. 

 

Results obtained were great. We have 100 percentage of correct estimation in training 

samples. Rate of successful classification is very good. It is 32.2 % more for training and 13.9 

% more for test than previous results. Looking at diagonal elements of confusion matrix of 

test, we conclude that the number of correctly estimated samples increase at great amount, see 

Table 4.8   

Architectural design is modified for further improvements.  
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Table 4.9 Confussion Matrix and Classification Success for 4 different gait type. 

 TRAINING TEST 

       Estimated 

Real Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

64 0 0 0 57 0 6 1 

Right 
Hemiplegia 0 64 0 0 0 50 7 7 

Left 
Hemiplegia 

0 0 64 0 17 11 32 4 

Diplegia 
 

0 0 0 64 18 5 4 37 

Clasification 
Success in % 100 68.8 
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Figure 4.13 TTE of classification with 1000 – 1000 – 200 – 20  ANN design.  

 

From the results above, it is obvious that there is optimum amount of numbers of 

neurons that should be used in ANN. Nonetheless; all of the parameters are remained the same 

except for the amount of neurons at the hidden layers, classification success of the trained 

network decreased. 
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4.4 Effect of Learning Rate constant 

 Several simulations are accomplished with different learning constants: 0.2, 0.02, 

0.0002 and 0.00002. Some of those simulations are accomplished  to manifest learning 

constant effect. Our best result obtained when learning rate η  is equal to 0.002.   

 

Table 4.10 Confusion Matrix and Classification Success for 4 different gait type 

  TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

0 51 0 4 0 26 0 1 

Right 
Hemiplegia 0 45 0 22 0 15 0 18 

Left 
Hemiplegia 

0 22 0 35 0 10 0 18 

Diplegia 
 

0 0 0 80 0 0 0 40 

Clasification 
Success in % 48.3 43 

 
 
 

0 500 1000 1500 2000 2500
95

100

105

110

115

120

125

130
Training Error (epoch size = 128)

Epoch

E
rr
o
r

 

Figure 4.14 Total Training Error for classification with η =0.2. 
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Outcomes of the simulation above are inadequate. Even all iterations are not performed 

and training terminated since no improvement is achieved for 1001 consecutive checks. It 

shows that learning rate chosen is large to obtain desired outcome. It is meaningful that error 

in the Figure 4.14 oscillates; supposed reason of it may be local minima.   

Learning rate now set to η = 0.02. All input parameters are the same: neural 

architecture, maximum number of epoch and momentum.  

 

Table 4.11 Simulation results for Network Training with Learning Rate η =0.02. 

 TRAINING TEST 

       Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

64 0 0 0 44 1 9 10 

Right 
Hemiplegia 0 63 0 1 0 53 10 1 

Left 
Hemiplegia 

0 2 62 0 10 7 45 2 

Diplegia 
 

0 1 2 61 14 10 7 33 

Clasification 
Success in % 97.7 68.4 
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Figure 4.15 Total Training Error for classification with η =0.02. 
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From the figure above it is obvious that total Error of the simulation when η  = 0.02 

has too much fluctuations. And total Error does not lower then 10 units. 

Learning rate is now set to η = 0.0002, which is smaller than estimated optimal 

learning rate.  

Table 4.12 Simulation results for 4 Different Gait Type. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

63 0 0 1 57 0 7 0 

Right 
Hemiplegia 1 54 5 4 1 48 12 3 

Left 
Hemiplegia 

5 8 50 1 29 4 26 5 

Diplegia 
 

6 24 8 26 16 29 9 10 

Clasification 
Success in % 75.4 55.1 

 

 

 

Figure 4.16 Total Training Error for classification with η =0.0002. 

 

Expected scenarios are in Table 4.12 and in Figure 4.16. Although network has smooth 

progress, it has difficulty to converge at the same number of iterations.    
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Learning rate is now set to η = 0.00002, which is too small. It is exaggerated to show 

explicitly effect of the η  to the simulation. All other input parameters are the same. 

Table 4.13 Simulation results for 4 Gait Type with Learning Rate 0.00002. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

23 0 0 32 10 0 0 17 

Right 
Hemiplegia 25 0 0 42 11 0 0 22 

Left 
Hemiplegia 

12 0 0 45 5 0 0 23 

Diplegia 
 

6 0 0 74 3 0 0 37 

Clasification 
Success in % 37.5 36.7 
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Figure 4.17 Total Training Error for classification with η =0.00002. 

 

We had simulation that converges too slowly. It is obvious that total error does not get 

lower than 95, which was 65 at 4000’th iteration in previous one. It shows that small learning 

rate parameter results in slower convergence and it is a waste of time and resources. 

In order to confirm our best result, simulation is repeated for learning rate η  = 0.002 

with all other parameters remaining the same.  
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Table 4.14 Confussion Matrix and Classification Success. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

64 0 0 0 55 0 6 3 

Right 
Hemiplegia 0 64 0 0 0 42 7 15 

Left 
Hemiplegia 

0 0 64 0 12 1 40 11 

Diplegia 
 

0 0 0 64 10 4 5 45 

Clasification 
Success % 100 71.1 
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Figure 4.18 Total Training Error for classification with η =0.002. 

 

Results are very consistent with outcome of previous best simulation, which was 

0.002. Classification for previous one was 70.7% and for the current one is 71.1%. We 

conclude that learning rate close to one helps network to converge fast as it is obvious from 

simulations of that section. On the other hand small learning rate leads to smooth training and 

enables network to obtain “deeper” minima. One should be careful to choose learning constant 

that balances networks’ performance and speed.  
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4.5 Implementation of Revised Data 

 

Network simulation repeated with the “best” parameters obtained. Three hidden layers 

deployed with 1000 neurons for first layer, 80 neurons for second hidden layer, and 8 neurons 

for third hidden layer. Learning rate is chosen 0.002.  ANN is fed with new data.  

 
 
 

Table 4.15 Simulation results for Normal, Diplegia, Right  and Left Hemiplegia. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

55 0 0 0 52 2 1 0 

Right 
Hemiplegia 0 67 0 0 6 52 0 9 

Left 
Hemiplegia 

0 0 57 0 12 4 31 10 

Diplegia 
 

0 0 0 80 0 6 5 69 

Clasification 
Success in % 100 78.8 
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Figure 4.19 Total Error for classification after data revision. 
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Significant improvements are obtained. Approximately 7% of increase obtained in 

classification. Next, Sex and Age parameters are added to the input data. It shows that first 

rule of thumb is to have good data. 

 

Table 4.16 Simulation Results with Sex and Age Parameters Included. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

55 0 0 0 46 7 2 0 

Right 
Hemiplegia 0 67 0 0 4 54 5 4 

Left 
Hemiplegia 

0 0 57 0 13 2 39 3 

Diplegia 
 

0 0 0 80 0 9 7 64 

Clasification 
Success in % 100 78.4 
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Figure 4.20 Total Error for classification with Sex and Age parameters. 

 

 Including Sex and Age parameters does not change the results significantly.  
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Simulation reliability is next issue supposed to be accomplished. Simulation is ran 9 

times with 9 different input file sets. Results of applied files are available at Appendix C. 

Mean of results calculated both for confusion matrix and classification success demonstrated 

at Table 4.17. 

 

Table 4.17 Average of nine simulation results. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

55 0 0 0 46 7 2 0 

Right 
Hemiplegia 0 67 0 0 4 54 5 4 

Left 
Hemiplegia 

0 0 57 0 13 2 39 3 

Diplegia 
 

0 0 0 80 0 9 7 64 

Clasification 
Success in % 100 77.6 

 

Classification results are  [  76.8 78.4  78.4  79.5  79.2  78.4  76.1  74.1  78  ] 

Mean of results x  = 77.6  

The variance is calculated according to the formulation that mentioned in the subsection 3.3.7, 

2σ = 2.9.   

Standard deviation is square root of the variance σ =  1.7. 

So obtained Results does not vary to much meaning they are consistent. 

4.5.1 Results of Training with Cross Validation Data Set. 

Finally we decided to modify our network for better generalization ability. According to 

the explained method in subsection 3.4.1 network modified and data generated to implement 

Cross-Validation . 
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Table 4.18 Simulation results with Cross Validation. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

55 0 0 0 22 1 4 0 

Right 
Hemiplegia 0 67 0 0 0 25 2 6 

Left 
Hemiplegia 

0 0 57 0 2 3 18 5 

Diplegia 
 

0 0 0 80 0 2 1 37 

Clasification 
Success in % 100 79.7 
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Figure 4.21 MSE of Training and Validation Data Sets. 

 

In figure 4.20 above there are plotted Mean Squared Error curves for Cross Validation 

data set and Estimation data set. It is obvious from picture that as training proceeds Estimation 

Error asymptotically converges to small value. However Cross-Validation Error does not 
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decrease after a while. That implies to no improvements in generalization ability of the 

network even Error curve increases after that point.    

4.5.2 Results of Early Stopped Training  

 Heuristically, now our NN should attain better result. All of parameters of the ANN are 

the same only simulation would be stopped by early stopping rule. According to Mean squared 

error of our simulation we chose stopping point as 1800. Table 4.19 shows result of the NN 

with same inputs fed and Early Stopping Epoch is 1800. 

 

Table 4.19 Confusion Matrix and Classification Success After Early Stop of Training. 

 TRAINING TEST 

      Estimated 
 
Real 

Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia Normal 
Right 
Hemiplegia 

Left 
Hemiplegia 

Diplegia 

Normal 
 

55 0 0 0 21 2 4 0 

Right 
Hemiplegia 0 67 0 0 0 27 0 6 

Left 
Hemiplegia 

0 0 57 0 0 2 24 2 

Diplegia 
 

0 0 0 80 0 1 2 37 

Clasification 
Success in % 100 85.2 
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Figure 4.22 MSE of training  and validation  data sets with Early Stopped Method. 

 

Results show that early stopping of iteration indeed has effect on our success. 5.5 % of 

increase is reached. As we mentioned before, we have 30 times more weight synapses then the 

number of sample inputs. Thus, early stopping method greatly affects our generalization 

ability of ANN.  

4.5.3 Simulation of Network for Classification of Healthy and Pathological Gait 

Data pool of the sample pattern is modified such that dimension of target output is 

appointed 2 instead of 4. One should note that Right Hemiplegia, Left Hemiplegia and 

Diplegia samples are implied as pathological gait pattern. Classification of “Healthy” and 

“Pathological” is accomplished. Neural Network architecture remained the same except for the 

output layer neuron number. Since we have only two groups to classify, number of neurons at 

output layer allocated is 2. 

 

 



                                                                                                                                        
78 

  

Table 4.20 Simulation results of classification for Right and Left Hemiplegia. 

 TRAINING TEST 
                Estimated 
Real 

Healthy Pathological Healthy Patological 

Healthy 
 

55 0 23 4 

Patological 
 

0 204 1 100 

Clasification 
Success in % 

100 96.1 

 

Training Error (epoch size = 259) 

E
rr
or

 

Epoch 
 

Figure 4.23 MSE of training and validation sets for 2 different gait types. 

 

Our ANN performed really well to categorize distinct gait patterns. 96% of correct 

classification is achieved. This could be improved by means of Early stopping method.  
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5. DISCUSSION AND CONCLUSION 

The aim of this project is to train Artificial Neural Network for classification of the 

four different gait patterns. Those are “Healthy”, Right Hemiplegia, Left Hemiplegia and 

Diplegia. Quest of the “best” learning constant and modifications done to architecture 

improved classification ability of it. Revision of data implemented shows that source impurity 

decreases network performance.  Results of our study give rise to the future prospectus of 

ANN. There are still spaces to refinement of the network.  

When carefully investigating average graphs of gait samples, one could be aware of 

asymmetric curves of the Left and Right sides. It is not prominent in both normal and diplegia 

but they are distinct in Right and Left Hemiplegia.  

Early studies of simulation with ankle parameter show that it is impossible to 

categorize gait disorders after a while. We need more features that distinguish gait groups 

from each other. Five kinematical pair of data collected is used to improve classification 

success.  

Network fed with more feature parameters performs better then with single parameter. 

When we compare four classifications done with only Ankle Dorsi-Plantar Flexion angle, 

there is remarkable increase in correct estimation. Although training attained 100% success, 

test outcomes were worse which was 47.7%. When we include all of the gait parameters, 

which we were collected for input matrix files, the results of correct classification are 

increased to 56.8%. Success is greater then previous one even though training was not 100% 

successful. Training results accomplished 67.8%, most probably algorithm stuck at either local 

minima or at plateau of the error surface (cost function). Another possible scenario is that 

Network design is not proper to perform further distinctions. Sharp convergence of the hidden 

layer’s neuron number from 1000 to 4 may lead to low classification. Discussion over that 

problem leads us to change network architecture at the hidden layer. Thus number of hidden 

layers increased from one to three.  1000 neurons for first layer, 80 neurons for second layer 

and 8 neurons for third layer were assigned. Results obtained were incredible 14% of increase 
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obtained in test results, plus complete convergence of training samples. Further architecture 

modifications are implemented but there were no significant improvements observed.  

Neural architecture of the network kept as 1000 input node, 1000 neurons in first 

hidden layer, 80 neurons in second hidden layer, 8 neurons in third hidden layer and 4 neuron 

in output layer. Our performed experiments with different learning rate show that selected 

learning rate has optimum value, as it is stated in literature too. The smaller the learning rate 

parameter, the smaller the changes to the synaptic weights in the network will be from one 

iteration to the next, and the smoother will be the trajectory in weight space, however 

improvement is attained at cost of slower rate of learning. Additionally, making learning 

constant too large in order to speed up the rate of learning, results in large changes in the 

synaptic weights in such a form that the network may become unstable. Results of training of 

our ANN code approved that the best value of learning constant should be selected carefully 

for better performing Network. Network simulated for several learning constants, which are 

0.2, 0.02, 0.002, 0.0002, and 0.00002. The best performance obtained when learning constant 

is equal to 0.002, and classification success was 70%. 

Several trials of training of Network resulted in average 70% and no further 

improvements obtained. Thanks to my supervisors, we conclude that data selected has very 

wide range of ages, as it illustrated at the Table 3.1. Clinicians approved that great variations 

are observed in the gait patterns of various age groups. Thus specific age group is chosen for 

training of Network. Age group with greatest amount of gait data is chosen, which were 

between 6 and 12 years old. We had 150 subjects left out of 371 subjects after age 

confinement. Additionally, each subject’s data were checked for video consistency with 

motion analysis data. Implementation of revised data may result in vast improvements in 

network training. Test of the network attained 78.4% of correct classification. In order to 

verify results, program executed 9 times with 9 different input file sets. Average of obtained 

results were 77.6 ± 1.7 success and range between 76.8-78.4. 

Neural Network cross-validated by applying data set which was never seen before by 

network. The training session is stopped periodically (i.e., every so many epochs), and the 

network is tested on the validation subset after each period of training. More specifically, the 

periodic estimation-followed-by-validation process proceeds. It is observed that Mean Squared 
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Error curve of the validation data set decreased at the same time with training sample. At 

specific point error of the validation does not decrease, it even starts to increase. To keep 

generalization ability of NN training is terminated by means of early stopping method of  

 

Table 5.1 Neural Network Classification Studies. 

AUTHOR NETWORK TYPE CATEGORIES BEST RESULT 

Holzreiter and 

Köhle [20] 

Feedforward 

(one hidden layer) 

(1) Able-bodied gait 

(2) Pathological gait 

Close to 95% 

Barton and Lees 

[21] 

 

Feedforward 

(two hidden layers) 

 

(1) Normal walking 

(2) Leg length difference  

      20 mm thick sole 

(3) Exagerated lymphoedema  

3.5 kg mass difference 

 

83.3% 

Lafuente et al. [18] 

 

Feedforward 

(one hidden layer) 

 

(1) healthy 

(2) ankle arthrosis 

(3) knee arthrosis 

(4) hip arthrosis 

 

80% 

This study Feedforward 

(three hidden layers) 

 

(1) Normal 

(2) Right Hemiplegia 

(3) Left Hemiplegia 

(4) Diplegia 

85.2% 
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training. Training is terminated at 1800th epoch. 85.2 % of correct classification is obtained. 

We conclude that overtraining of our network decreases generalization ability. Early stopping 

of training increases NN performance in average by 4%.  

Implemented ANN network show us how successful we were in our project. It is found 

out in literature that 80% of pattern classification is average. Those studies are shown in Table 

5.1. 

Holzreiter and Köhle achieved up to 95 % correctly classified samples. Which is great 

success when we compare it with other studies. They used coefficients of Fourier-

transformation of Ground Reaction Force to classify Normal and Pathological pattern. In our 

study we used kinematic parameters and simulated designed network to classify two different 

gait conditions. As a result we achieved up to 96 % correctly classified samples that also show 

great consistency. 

Barton and Lees work on three different gait patterns, which are simulation of clinical 

patient by means of attached 3.5 kg mass or 20 mm thick sole. In our study we used normal 

subjects and patients with real gait disorders: Right Hemiplegia, Left Hemiplegia and 

Diplegia. We achieved better results despite using 4 groups of subjects and real sample 

patterns without exaggeration.  

Lafunte et al, on average 87 % of the control subjects were correctly classified, 

whereas only 73% the arthrosis patients were detected. Lafunte et al used kinetic data as 

opposed to kinematic data that was used in our study. Among these researches this one has the 

same number of classification groups as in our study. In spite of this fact in our research we 

achieved more accurate results. 

Researches previously done proved that Artificial Neural Network is better classifier 

then statistical one [18]. It provides help to medical experts in decision support. Cost of the 

diagnosis is decreased by means of fast classification.  

In this project we tried to categorize the walking conditions by the help of an artificial 

neural networks using kinematic data. Neural networks were trained to distinguish four gait 

patterns, which were normal walking, Right Hemiplegia, Left Hemiplegia and Diplegia. 



                                                                                                                                        
83 

  

Subsequent to training the NNs could recognize unknown gait patterns at a correct assignment 

percentage of 82.8%.  

As number of classification groups increase success of ANN decreases. There were 

obtained results close to 95% success, however it was categorization only of Normal gait and 

Pathological gait groups. Implementation of the same problem to our NN concluded to 96% of 

correct categorization. 

This study could help clinicians with different data classification and takes into 

account all details, which arise after motion analysis is performed. It is natural that a clinician 

considers only vital gait parameters and hardly evaluates all information due to insufficient 

time and resources. This neural classifier enables clinicians to base his/her judgment on all 

available data. 

It could be beneficial to refine acquired data in order to raise the success of 

implementation. Aggregation is achieved through three normalization steps. Firstly mean of 

the data is removed. Afterwards obtained results are decorelated and finally covariance of the 

data is equalized.  

Complexity of neural networks is directly related with the number of synaptic weights. 

As the input nodes increase (input dimension) corresponding weight number increases. This 

issue passes in literature as curse of dimensionality. Large quantity of sample patterns is 

indispensable for the convergence of synaptic weights of network. However it is hardly 

possible to attain so many data in the real world as required for training. Thus principal 

component analysis is deployed to reduce input dimension. 

The results and studies made in literature encourage using ANN as decision support. 

Such a system could be linked to the kinematic analysis system, providing prompt evaluation 

of gait. As a result it is worth investigating for further increase of success of the classification. 
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