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ABSTRACT  

COMPUTER ASSISTED BONE AGE ASSESSMENT 

Bone age assessment based on the radiological examination of the left hand and wrist 

is a procedure frequently performed to evaluate the growth of pediatric patients.  In this 

thesis we examined studies conducted on the skeletal age analysis and we developed a 

computerized system for automatic bone age analysis.  Firstly we examined two different 

clinical methods; The Greulich and Pyle method and the Tanner and Whitehouse (TW2) 

method.  We chose the TW2 method to develop a computerized bone age system because it 

is more suitable for the computer analysis than the Greulich and Pyle method.  We 

developed the web-based TW2 skeletal age calculation software. We then introduced steps 

that are necessary to transform this manual clinical method into a fully automated system. 

We explained preprocessing methods that are needed to make a radiograph fit for analysis 

and steps to find regions of interest and assign them TW2 stages. 

Finally we developed a computer program that assigns TW2 stages to a certain 

region of interest (the middle phalanx of the third finger) in the left hand.  In this method 

we trained all TW2 stage groups for middle phalanx of the third finger and produced mean 

images for each TW2 stage. These mean images are used to determine the TW2 stage of 

queried image. We use the correlation between a mean image and a target image as an 

indicator of which stage should be assigned to the target. 

Our results show that 70 % of all test images of the middle phalanx of the third finger 

have been assigned the correct TW2 stage by our method.  We believe that the same 

method could be used to assign TW2 stages to other regions of interest in the hand. 

 Keywords: Computerized Bone age assessment, Web-based Tanner and Whitehouse 
method, Active Shape Model. 
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ÖZET 

BÝLGÝSAYAR ÝLE OTOMATÝK KEMÝK YAªI TAYÝNÝ 

Kemik yaºý tayini sol el-bilek radiograflarýnýn incelenmesi esasýna dayanýr ve 

pediatrik hastalýklarýn incelenmesinde sýklýkla kullanýlýr.  Bu tezde kemik yaºý tayini ile 

alakalý yapýlan çalýºmalar ve bilgisayar ile otomatik kemik yaºý tayini için gerekli olan 

adýmlar incelendi. Ýlk olarak Greulich&Pyle ve Tanner&Whitehouse (TW2) klinik 

uygulamalarý incelendi ve TW2 uygulamasýnýn bilgisayar ile analiz için daha uygun olduðu 

görüldü.  Daha sonra web tabanlý manüel TW2 iskelet yaºý tayini yapabilen bir uygulama 

hazýrlandý. Manüel klinik uygulamadan yola çýkarak bilgisayar ile tam olarak otomatik 

kemik yaºý tayini uygulamasý için gerekli olan adýmlar incelendi.  Görüntü iºleme öncesi 

gerekli ön analiz yöntemleri incelendi ve belirli ilgi alanlarýna TW2 safhasýný atamak için 

gerekli olan adýmlar açýklandý.  

Tam olarak otomatik çalýºarak kemik yaºý tayini yapabilen bir yazýlýmýn tasarýmý 

yapýldý. Bu yazýlým ile sol elin üçüncü parmaðýnýn orta boðumuna uygun düºen TW2 

safhasý atanabilmektedir.  Bu yazýlýmda her bir TW2 safhasý için model grafiler eðitildi ve 

dijital atlas için ortalama görüntüler oluºturuldu. Bu görüntüler ile sorgulanan radiografýn 

TW2 seviyesi bulundu.  Sorgulanan grafi için en iyi uyuºan ortalama görüntü ile uygun 

TW2 safhasý belirlenmiº oldu.  

 Deney sonuçlarý kullanýlan yöntem ile tüm grafilerin % 70 inde, üçüncü parmaðýnýn 

orta boðumuna uygun düºen TW2 safhasý doðru olarak hesaplanabilinmiºtir.  Kemik yaºýný 

tayini için gerekli olan diðer kemiklerde de bu yöntemin kullanýlabileceðini 

düºünmekteyiz. 

Anahtar Sözcükler: Bilgisayar ile Kemik Yaºý Tayini, Web-tabanlý TW2 

uygulamasý, Aktif ªekilleme Modeli. 
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1.    AUTOMATING SKELETAL AGE ASSESSMENT 

1.1  Background and Motivation 

Developing of the computerized bone age assessment system will be useful for the 

pediatric radiology. It is performed about 600-1000 times per year in the ªiºli Etfal 

Education and Research Hospital.  It is not only a time consuming procedure but it is also 

depend on the experience of the physician.  The aim of this project is to improve efficiency 

and objectivity of the bone age assessment by automating the process.   

1.2  Uses of Skeletal Age Assessment 

The bone age or skeletal age assessment is a commonly used procedure for pediatric 

patients to evaluate their growth disorder, examine their growth disorder, determine their 

growth potential, and monitor therapy effect of growth.  The growth potential of an 

individual depends largely on the progression of ossification within the epiphysis.  Bone 

age is a measurement of the epiphyseal center development.  It is an important procedure 

in the diagnosis and management of endocrine disorders, diagnostic evaluation of 

metabolic and growth abnormalities, deceleration of maturation in a variety of syndromes, 

malformations, and bone dysplasias.  A simple method frequently used in bone age 

assessment is atlas matching by a radiological examination of a left hand and wrist 

radiograph against a reference set of atlas patterns of normal standards.  Although the hand 

and wrist does not contribute to the height of an individual, the radiograph of this part of 

the body has been proven valuable and is commonly used in assessment of bone age. [1].  

After determination of skeletal age, we can compare the results with chronological age.  A 

big difference between these two variables shows an atypical skeletal development of 

patient.  This procedure is often used in the diagnosis and management of endocrine 

disorders.  Generally it can indicate rate of growth of a patient.  Bone age assessment is 

also used in forensic medicine in such conditions when there is a need to confirm 

chronological age of a criminal. 
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1.3  Objectives 

There are two main objectives of this thesis.  The first one is to develop a web based 

bone age assessment system with the Tanner and Whitehouse method.  We can use this 

system in the clinical practice and for educational purposes.  The second objective of this 

thesis is to automate assigning of the TW2 stages to a certain region of interest. 

1.4  Outline of the Thesis 

Chapter 1 introduces the subject and gives outline of this thesis work. Clinical 

methods of bone age assessment are discussed in Chapter 2.  In Chapter 3 we will examine 

steps that are necessary for the fully automated bone age assessment system.  In chapter 

four previous studies are summarized.  First part of that chapter is on the segmentation of 

the hand and ROIs of the hand.  In the second part we examine assigning the appropriate 

TW2 stages to a ROI.  In chapter five details of the hand analysis system is examined.  

Finally we focused on assigning of the TW2 stage to the middle phalanx of third finger.  

Conclusions and future work can be found in this chapter.   
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2.   CLINICAL METHODS OF BONE AGE ASSESSMENT 

2.1  Introduction 

In this chapter Clinical practice for the bone age assessment will be examined so that 

we can choose the most appropriate clinical method for the computerized bone age 

assessment system. 

2.2  Skeletal Age 

Skeletal age, a measure of skeletal development of a child, is determined by using 

standard data that includes measurement of skeletal developments of healthy children.  

Numerous Roentgen methods have been proposed to assess the bone age according to 

criteria such as the time of appearance, size and differentiation of the ossification centers.  

Most commonly used methods are Greulich and Pyle method (G&P), and Tanner and 

Whitehouse (TW2) method.   

2.3  Bone Age Assessment Methods 

Greulich and Pyle method (G&P) and Tanner and Whitehouse (TW2) use atlas 

matching methods for manual determination of skeletal age.  G&P method is easier and 

faster to use compare to TW2 method.  However TW2 method is more reliable.   

Both methods rely on radiographs taken from the left hand.  Prior to detailed 

examination of the two methods it is useful to know a little about the anatomy of the hand 

in order to understand some of the terms used.  Figure 2.1 and 2.2 show the most important 

bones for skeletal age determination in the hand.  In Figure 2.1 we see a schematic 

representation of the bones of the hand.  Figure 2.2 shows an actual hand radiograph.  The 

most important hand bones are those of the fingers, the proximal, middle and distal 

phalanges.  The thumb has only proximal and distal phalanges.  Next there are the carpal 

bones, Capitate, Hamate, Triquetral, Lunate, Scaphoid, Trapezium and Trapezoid.  In the 

middle we see the five metacarpals. 
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Figure 2.1 Anatomy of left hand. 
 

 Ossification centers are located between the phalanges of developing children.  

Because the radiograph in Figure 2.2 is of an adult subject they can not be seen.  In Figure 

2.3 an example of the situation in the developing children so it can be seen.  We can clearly 

see three parts, the metaphysis, the epiphysis and the diaphysis.  We call that structure as 

an Epiphyseal-Metaphyseal Region of Interest (EMROI).  This structure changes during 

the development of the skeleton.  The epiphysis becomes steadily wider and eventually 

fuses with the metaphysis. 
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Figure 2.2  Radiograph of Left Hand. 
 

  
2.3.1  The Greulich and Pyle Method 

First studies on the human growth and development started in 1929 at the Western 

Reverse University School of Medicine in Ohio.  A Large number of children of different 

ages were used in these studies.  Left shoulder, elbow, hand, hip and knee radiographs 

were taken for examination.  In the first postnatal year an examination was conducted 

every three months, from twelve months to five years they were examined each 6 months 

and annually thereafter.  In total the study ran from 1931 until 1942.In 1937 �Atlas of 

Skeletal Maturation of Hand� was publisher by Todd.  [2] 
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The Greulich-Pyle has been used extensively by orthopedists and was used by Green 

and Anderson in compiling their data for growth remaining in children nearing skeletal 

maturity.  Since the Moseley straight line graph was based on the Green-Anderson data, 

the Greulich-Pyle system is correlated with that graph also.  The two methods do not give 

equivalent bone ages.  The Tanner-Whitehouse with computer assistance may be more 

reproducible, but it is more cumbersome to use.  For the present, the Greulich-Pyle method 

is still standard for the orthopedic use, even though it was derived more than a half century 

ago on an exclusively white upper-middle class population. 

Assessment steps: 

 Assess one bone at a time 

 Locate the Atlas plate that most closely resembles the X-Ray bone 

 Interpolate between Atlas plates. 

 Assess a second time. 

 Average the two twenty-eight assessments. 

In the Greulich and Pyle method twenty-eight bones are compared against (normal) 

the reference atlas.  All the bones in the hand and wrist are examined and average of the 

assessments gives us the bone age of patient. 

 
 

Figure 2.3 The ossification centers on finger. 
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Development stages of each bone are described in the atlas in Figure 2.4.  The 

descriptions in the figure are more a general guideline to the development of each bone in 

the hand rather than an instruction on how to rate a bone.  Most institutions are using a 

more rapid modified version of the original atlas, which is also potentially less accurate.  

This version is described below. 

The atlas is divided into two parts, one for the male patients and one for the female 

patients because females develop quicker than males.  Each part contains standard 

radiographic images of the left hand of children ordered by the chronological age. 

 

Figure 2.4 Example of the descriptions of the skeletal development found in the Greulich and Pyle atlas. 

To measure skeletal age of a patient first of all, the radiograph of the patient is 

compared with the image in the atlas that is match with the chronological age of the 

patient.  Next, one should compare it with the adjacent images representing both younger 

and older children.  There are some maturity indicators when comparing the radiograph of 

the patient against an image in the atlas.  These features can vary with the race, age and sex 

of the child.  In the younger children the presence or absence of the certain carpal or 

epiphyseal ossification centers are often pointers for the physician about the skeletal age of 
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a child.  In older children the shape of the epiphyses and the amount of fusion with the 

metaphysis is a good indicator for the skeletal age, carpal ossification centers did not differ 

at that time.  Once the atlas image that most resembles the radiograph is found, the 

physician should conduct a more detailed examination of the individual bones and 

epiphyses.  So we can find the skeletal age when the matching radiograph has been found. 

2.3.2  The Tanner and Whitehouse (TW2) Method: 

Tanner and Whitehouse knew about the Greulich and Pyle atlas and the way in 

which it was used.  They noticed several aspects of the method that they felt needed to be 

improved.  According to them the subjectivity of the matching process was an obvious 

weakness of the G&P method.  Physicians generally look at the whole radiograph at once 

and then compare it with an image in the atlas.  Often a specific radiograph does not match 

any of the images in the atlas exactly, and little guidance is given on how to balance out 

the discrepancies that arise from one bone being more or less advanced than its match in 

the atlas.   

The scale used for expressing the maturity was another aspect of the G&P method 

TW2 didn�t like.  Each standard radiograph in the atlas has the age of the child from whom 

it was taken associated with it.  Therefore maturity is measured on an age scale.  It could 

even be seen as the predicted age, because the matching process gives the most likely 

chronological age of the child being matched, as judged from the radiograph.  This most 

likely age is then said to be the skeletal age.  Tanner and Whitehouse deemed that a new, 

more sophisticated system was needed which would not make use of an age scale for 

maturity measurements.  In their view a maturity scale should be defined in a manner 

which does not directly relate to age.  This would allow them to produce a set of  �maturity 

standards� of any given population by studying the relationship between maturity and age. 

To build standard atlas radiographs of up to 12 years old, healthy children were used 

in the period of six mounts.  Changes in the shape and density markings of each bone were 

recorded in standard atlas.  After this the different stages were identified, these stages had 

to be universally present in all individuals.   
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Table 2.1  
Skeletal Age Evaluation Sheet 

 

                      

    Skeletal Age Evaluation Sheet     

             

  Subject:      Birthday: __/__/____ Date: __/__/____ 

             

  Assessment Location  1st Read        2nd Read        Average     

             

  1. Capitate              

  2. Hamate               

  3. Triquentral              

  4. Lunate               

  5. Schaphoid               

  6. Trapezium               

  7. Trapezoid               

  8. Distal Radius               

  9. Distal Ulna              

  10.Metacarpal I              

  11.Metacarpal II              

  12.Metacarpal III              

  13.Metacarpal IV              

  14.Metacarpal V              

  15.Proximal Phalange I              

  16.Proximal Phalange II              

  17.Proximal Phalange III             

  18.Proximal Phalange IV              

  19.Proximal Phalange V              

  20.Middle Phalange I              

  21.Middle Phalange II               

  22.Middle Phalange IV               

  23.Middle Phalange V              

  24.Distal Phalange I              

  25.Distal Phalange II               

  26.Distal Phalange III              

  27.Distal Phalange IV               

  28.Distal Phalange V              

             

  Total              
             

  SKELETAL AGE = Total divided by 28  =          
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Features that were only present in the bones of particular subjects were excluded, 

also absolute size was always ignored.  The exact number of stages for each bone was 

chosen so that differences between consecutive stages were neither so small as to cause 

confusion and rating error, nor so large that significant information was lost. 

 
 
Figure 2.5 This is an example of the images are used to find the stage (B through I) of a given ROI (in this 
case the middle phalanx of the third finger) in the hand.  When the stage is known the ROI can be scored.  
The development of the epiphysis is clearly shown.  In our software project our first aim will be to find the 
stage of middle phalanx of the third finger in the hand. 
 

 A score had to be assigned to each bone in the hand for each stage.  Many of the 

bones in the hand and wrist are giving approximately the same information about maturity.  

This is especially true for the bones in the fingers.  Therefore it is not desirable to just take 

an average of all the scores in a hand since this would give the nineteen finger bones 

together a much greater importance than the seven carpals or the radius and the ulna.  A 

system of weighted scores was developed in order to correct for this.  Also, the scores of 

boys and girls are different because girls mature faster than boys.  Especially in older 

children the carpal bones do not provide any useful information about the skeletal maturity.  

To allow the exclusion of the carpals or the specific examination of them, three separate 

scoring systems were developed:  

 TW2 20-bone 
 RUS 
 Carpal 
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 The first system is the most extensive one featuring 20 bones of the hand.  These 

bones include bones of the wrist, the carpal bones, and bones of the thumb and the third 

and fifth fingers.  The second system named RUS (Radius, Ulna and Short finger bones) 

contains the same bones as the first one except for the carpals.  Finally the third system 

contains only the carpal bones.  Using the TW2 method is relatively straightforward; first 

one chooses a suitable scoring system (TW2, RUS or carpal).  A suitable scoring system is 

mostly determined by the calendar age of the patient. 

 Next one looks up the bones in the radiograph that are associated with that 

particular system.  Those particular bones are then compared to a series (see Figure 2.5) of 

reference images in the TW2 book.  These reference images each represent one 

developmental stage (B-I) and are backed up by textual descriptions.  In these descriptions 

of a stage, important changes in the bones are described.  Also, the descriptions often 

contain requirements that a bone must meet in order to be classified a certain stage. 

 The reference image that most resembles the bone from the radiograph is chosen.  

Of course the bone must also meet the requirements in the description.  The stage 

corresponding to a reference image is assigned to the bone.  When the stage of a certain 

bone is known the score associated with that particular bone and stage can be looked up.  

After all the required bones have been analyzed and all the needed scores have been 

gathered, the total score is determined by adding all the separate scores.  The total score is 

linked to a certain skeletal age via a conversion table (see Table5.1). 
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3.   COMPUTERIZED BONE AGE ANALYSIS 

3.1   Introduction 

In the previous chapter we reviewed two commonly used bone age analysis method.  

The most appropriate clinical method should be chosen to build an effective computerized 

bone age assessment system.  After choosing the method, we will be able to analyze the 

problem further and suggest steps that will lead to a full automatic bone age assessment 

system. 

3.2   Choosing the Most Suitable Clinical Method 

 The clinical method that we will choose is very important. So we have to examine 

the clinical methods that would be most appropriate from a computer vision point of view. 

 The Greulich and Pyle method depends on a global overview of the entire hand 

radiograph.  In this method every bone in the hand needs to be compared to the bones in 

the atlas image.  But some bones in the hand are harder to find than others so it became a 

disadvantage when we tried to automate because of the limited information in some of the 

bones in the hand.  A method in which it would be possible to just examine certain well 

defined areas in the hand is preferred.    

 The Tanner and Whitehouse method has a modular structure.  In this method we do 

not compare a general overview of the hand so it is easier to use, from a computer vision 

point of view.  All the ROI of bones in the hand has a specific score so we can do a number 

of local image analyses (of the ROI) and combine their outcomes into a global skeletal age 

score.  The Tanner and Whitehouse method has different scoring systems so the method is 

more flexible and adapts easily to a variety of circumstances.  Negative aspects of this 

method are: It is slower and harder to use than other methods.  This can be solved with 

computer analysis.  To sum up the Tanner and Whitehouse method is the most suitable 

method for this project. 
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3.3   Image Processing Steps In Detail 

Now that we have chosen a clinical method to underlay our approach we are able to 

formulate a step by step plan.  Each of these steps must be solved to attain our final goal of 

fully automatic bone age assessment system. 

First of all, we should normalize radiographs before we start any other image 

processing step.  All images have to be in the same condition.  There are several 

characteristics of radiographs that can be vary such as; position of hand should be aligned 

for each image markers and labels should be removed from image. 

In pre-processing steps we should remove markers and labels and find hand position.  

After finding hand position we should find the ROIs in image.  All ROIs in the TW2 

method should be found.   

After finding ROIs we can assign a TW2 stage for each one of the ROI. There are 

two type of region of interest.  First is EMROI, epiphyseal � metaphyseal ROI, that is the 

ROI between phalanges of fingers, thumb and above the metacarpals.  Second type is 

CROI, carpal ROIs, which are the ROI of wrist bones.  To calculate bone age all the ROIs 

have to be assigned to a TW2 stage.  And each of these two types of ROIs needs different 

approach. 

  

Figure 3.1 Steps of fully automated bone age analysis system. 
 

Below is a list of steps that we are planed in order to develop a fully automated hand 

analyzing system.   

 Pre-Processing: 

 Correct orientation of hand on the radiograph 

 Find (the contour) position of hand in the radiograph 

Radiograph Preprocessing EMROI 
extraction 

Classification 
of EMROI 

B
  C

  D
  E

  F  G
  H

  I 
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ROI extraction: 

 Find EMROIs and CROIs  using the hand�s contour  

 Find features useful in assigning a TW2 stage to the EMROI and CROI 

Practical Usage: 

 Build a complete software framework for fully automatic hand analysis. 

 Handle missing data because of incomplete analysis.   

In this thesis we will focus on assigning a TW 2 stage to the extracted ROI and we 

will build a software framework for the hand analysis.  And we have done some other 

researches for other steps to contribute future works. 

3.3.1  The Orientation of Hand 

Position of hand on the radiograph could not be on valid orientation.  For 

initialization of image processing orientation of hand should be in standard 

(anterioposterior, up-right, left-hand wrist) position.  When conventional X-ray units were 

used, some times to fit on the film hand photographed in a diagonal orientation.  With the 

new digital X-ray machines laboratory worker usually already corrects the orientation of 

the hand before the radiograph is printed to film.  Maas [3] developed a system, which 

automatically corrects the orientation of the hand and clips out any unexposed borders 

from the radiograph. 

3.3.2  The Position of Hand and Radiograph 

After correction of orientation we should locate the hand in a given radiograph.  

Simple threshold will not work in most cases because the background of a radiograph is 

never a uniform gray value but there is always a gradient.  This is caused by the heel effect 

(see Behiels [4]).  Moreover sometimes there are various markers and labels that are on the 

radiographs, these markers show patient data and are of no use for the automatic analysis 

of the radiograph.  Another feature commonly found in radiographs is white borders 

caused by blocking of the radiation by the collimator.  It is important to remove the 

aforementioned artifacts because they can interfere with the automatic and even the manual 

hand analysis.  Maas [3] is researching whether Active Shape Models can be used to 
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segment the hand from the background.  He uses the following technique: a training set of 

already segmented hand radiographs (trained by segmenting with hand) is used to teach the 

ASM algorithm to automatically segment hand contours from a radiograph.  Then the area 

outside the hand contour is made a constant, uniform color (black) thereby removing all 

artifacts outside of the hand. 

3.3.3  Finding CROI and EMROI 

In TW2 method we have to find specific ROIs to assign a maturity stage.  There are 

two groups of ROIs; EMROI and CROI.  So we have to use two different approaches for 

them.   CROI only provides valid information up to the age of 9 years in girls and 12 years 

in boys after that age some changes on the carpal bones can not be seem they overlap by 

the time.  Therefore we decided not to find and analyze the CROI in this thesis.  The TW2 

method can be split into three separate types of analysis: 

 Full TW2 analysis (20 ROI are examined) 

 RUS analysis (13 ROI are examined, no carpal bones are involved) 

 Carpal analysis (only the carpal bones are examined) 

We use the second type of analysis, which avoids having to analyze the carpal bones.  

What we are left with is the analysis of the bones shown in Figure 3.2.  These bones can be 

grouped into three classes, one containing the radius and the ulna (1 and 2), one containing 

the EMROI of the thumb (3, 6 and 11), and finally the rest of the EMROI in the fingers 

themselves (4, 5, 7, 8, 9, 10, 12 and 13). 

Each of these groups will require a different approach in finding and analyzing them.  

Most of the studies that have been done by other groups focus on the bones in the fingers 

but not in the thumb.  Because the thumb does not usually have the same orientation as the 

rest of the fingers and because the thumb is lying on its side its position and rotation are 

not as well defined as those of the rest of the fingers. 

3.3.4  Feature Extraction from the CROI and EMROI 

The anatomy of a typical ROI can be seen in Figure 2.3.  We will focus on epiphysis 

and the metaphysis that are the most important indicators of the stage (and skeletal 

maturity) of a ROI.  In the early stages the size and shape of the epiphysis is the most 
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important indicator.  In later stages the amount of fusion between the metaphysis and 

epiphysis is more important. 

 

 

 

1.  Ulna 
2.  Radius 
3.  First metacarpal 
4.  Proximal phalanx of the thumb 
5.  Distal phalanx of the thumb 
6.  Third metacarpal 
7.  Proximal phalanx of the third finger 
8.  Middle phalanx of the third finger 
9.   Distal phalanx of the third finger 
10. Fifth metacarpal 
11. Proximal phalanx of the fifth finger 
12. Middle phalanx of the fifth finger 
13. Distal phalanx of the fifth finger 

 

 

 

 

 

 

 
 
Figure 3.2 All ROIs those are included in the RUS analysis.  On the left the names of each ROI in the image 
are shown. 

 Since these two situations are quite different from each other it might be useful to 

know in advance what stage we can expect to find in the radiograph.  In our case we can 

use the calendar age that is recorded when the radiographs are taken. 

TW2 atlas has a textual description of each stage which indicates what the most 

important measures are for a certain stage.  For example: 
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Table 3.1 Some of the TW2 stage explanation examples. 
 
 

Stage D: The maximum diameter of the 
epiphysis is half or more the width of the 
metaphysis.  
In this stage the width of the epiphysis in 
relation to the width of the metaphysic is 
the most important measure. 

Stage E: The central portion of 
the proximal border has 
thickened and grown towards the 
end of the adjacent phalanx, 
shaping to its trochlear surface. 

 

Stage E follows stage D, this means that everything that indicates stage D (the width 

of the epiphysis is half or more the width of the metaphysis) must also hold for stage E.  

The striking thing here is that to determine whether an EMROI 18 is stage D one has to 

measure the width of the epiphysis and metaphysis while to find a stage E EMROI one has 

to look at the shape of the epiphysis.  This alternation between size and shape measures is 

typical in the TW2 method.  This means that we cannot just measure the sizes of some of 

the objects in the EMROI and determine a stage from there.  However, we could use these 

measures as an indicator of the stage and use some other method to check the shape of the 

epiphysis.  Our approach to this problem is detailed in Chapter 6. 
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4.   PREVIOUS WORK 

4.1  Introduction 

Previous studies will be discussed in this chapter.  There are two parts in this chapter; 

first part on segmentation.  The second is on assigning TW2 stages to ROIs. 

4.2  Segmentation of the Hand 

Most of the studies are about locating EMROI in the fingers.  There are not many 

studies on locating thumb bones.  Because finding and analyzing EMROI in finger is the 

easiest part of bone age assessment.   

A semi automatic bone age assessment system was developed by Micheal [5] around 

1989, this system was named HANDX.  The author claims that the system was able to 

automatically segment the bones in a hand radiograph but large scale tests were not done.  

Firstly preprocessing steps applied to images to normalize the image gray scale so that the 

later segmentation step will be more robust.  The program first segments the entire hand 

from the background using a threshold operation.  After this a model-based method is used 

to find the bones in the hand.  This method uses knowledge of the relative positions of the 

bones in the hand with respect to each other and to the contour of the hand to find the 

approximate position of a bone.  Then its contour is given by an adaptive contour.   

Another method developed by Pietka [6] is about to find the third finger and measure 

the lengths of the distal, middle and proximal phalanx.  To find PROI, the ROI which 

contains all the phalanges and epiphyses, a number of steps are needed: First the lower 

boundary of the PROI is detected by scanning a horizontal line over the hand image to 

search for the soft tissue between the first index finger and the thumb.  The upper boundary 

is a horizontal line at the tip of the third finger.  After this two vertical lines are scanned 

from the middle of the hand to both the left and the right boundary of the hand.  Each of 

the lines stop on the last pixel belonging to the hand, now the upper, lower, left and right 

boundary of the PROI have been defined.  To segment the bones and epiphyses from the 

PROI it is first turned into a gradient image using two Sobel kernels.  The result is 

thresholded using an empirically determined value to find the edges of the bones and 
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epiphyses.  The concentration of pixel values at the end of a phalanx is up to 50% higher 

than in the central part.  Once a window has been determined that contains the epiphysis, a 

horizontal line is scanned over the window.  The location of the smallest intersection with 

the segmented finger is marked as the line that separates the phalanges.  In this fashion the 

borders between the third distal, middle and proximal phalanges are marked.  These can 

now be measured.  This method was tested on 50 pediatric hand CR (computed 

radiography) images and the results were compared to the measurements of an independent 

radiologist.  The mean difference between these two measurements was 0.02mm with a 

mean standard error of 0.08mm.  One year later this updated method was published by 

Pietka [7].  In this method the author attempts to determine the ratio between the width of 

the metaphysis and the width of the epiphysis.  These measurements play a role in 

determining the stage of an EMROI.  Finding the epiphysis and metaphysis happens in the 

same way as in Pietka [6].  After these two objects are found, their width is measured.  The 

width is detected by calculating the derivative along a perpendicular line to the phalangeal 

axis.  Maxima in this function indicate the borders of the epi- and metaphysis.  The author 

reports that in a test with 80 hand CR images, accurate measurements of the width of the 

metaphysis and epiphysis were found in 83% of the cases. 

Efford [8] presents an analysis method that is driven, where possible, by knowledge 

of the hand/wrist anatomy.  First the contour of the hand is segmented from the 

background manually.  Regions of interest like the fingers are detected using curvature 

analysis of the contour of the segmented hand.  Places in which the curvature is high mark 

the top of the fingers and the location of the inter-digital web.  By fitting a polynomial 

through the inter-digital web locations (the inter-digital web is the piece of skin connecting 

two fingers at their base) each of the fingers can be isolated.  When the fingers have been 

isolated the phalangeal axis of the finger is determined which can, when lengthened, give 

an indication of the location of the metacarpeal centers.  Using these metacarpeal centers, 

the author test a number of deformable models to edge-detect the metacarpals.  These 

include snakes, parametric Fourier models and active shape models.  The author suggests 

using an expert system to automate skeletal age assessment, the written criteria found in 

the TW2 method should be translated into rules for the expert system.  Measurements 

needed by the expert system could then be obtained directly from the parameters of the 

deformable models used in the segmentation.  This system is not worked out in detail.   



 20 

 

Manos [9] developed a segmentation method for the bones in the wrist using region 

growing and merging.  The technique that is used is basically a bottom up approach.  This 

means that the results of each stage of processing yield the data for the next.  The method 

can be subdivided into several stages: 

 Preprocessing stage 

 Region growing stage 

 Region merging stage 

 Region merging by fusion of edge and region information 

 Region labeling 

In the preprocessing stage a Canny edge detector is used to find edges in the image.  

After these had been found the original image was smoothed with an edge-preserving 

smoothing filter.  In the first region growing stage simple regions are formed by an 

algorithm that includes neighboring pixels in a region if their grey level difference is less 

than an empirically determined value.  The resulting regions are then merged using a 

technique which is based on combining three merging scores representing region 

similarity, size and connectivity into a global merge score.  The technique basically 

encourages regions with the same grey level characteristics to merge, larger regions are 

preferred over small ones while regions with little common boundary are discouraged to 

merge.  The next stage involves comparing the edges found by the previous steps to region 

information from a separately edge-detected (from the preprocessing stage) image.  Only 

the edges that are approximately the same in both images are kept.  Only 15-20% of the 

edges that the first stage yielded are now left.  The final stage involves the labeling of the 

remaining stages.  Each region is labeled either they were �bone� or �background�.  

Labeling is performed through the application of a set of heuristic rules which are mainly 

based on the grey level characteristics of radiographs.  Limited success in a test of 20 

radiographs is reported by the author but no numerical data is presented. 

Morris [10] presents an algorithm which uses domain knowledge in combination 

with a local statistical enhancement process.  Because the difference in grey levels between 

bone and non-bone pixels is not consistent throughout the image simple threshold on the 

original image will not work.  To alleviate this problem a statistical enhancement process 
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is deployed.  The most important result of this process is that the grey level of bone regions 

throughout the image becomes approximately the same.  In the statistically enhanced 

image the five fingers are found by examining the peaks of a histogram taken over a 

horizontal line through the center of gravity of the hand.  The five highest peaks represent 

the location of the four fingers and the thumb.  Next domain knowledge of the anatomy of 

the hand is used to find the regions where the phalanges should approximately be.  Once 

these regions have been found the edges of the phalanges in them are enhanced using a 

Sobel operator.  To ensure a closed contour a line following algorithm is used on the edge 

enhanced phalanges.  The author tested the algorithm on six x-rays of hands of children in 

different age groups and shows a test on the radiograph of a young child. 

Mahmoodi [11] describes a method to find the edges and location of the phalanges 

using Active Shape Models.  To determine appropriate starting points for the ASM 

algorithm first the entire hand is segmented from the background.  This is done using a 

valley seeking algorithm to determine an appropriate intensity threshold from the image 

histogram.  Next the fingers are found by calculating the Euclidian distance between a 

point in the wrist and every point on the hand contour.  This produces a hand contour 

signature in which the maxima represent the finger tips and the minima the finger bases.  

Using knowledge of the hand anatomy, seed points are determined for the phalanges in the 

fingers.  The seed points are used to position ASM in the image and these find the contours 

of the phalanges.  An algorithm for the identification of joint space and phalanx margin 

locations on hand radiographs is presented by Duryea [12].  This algorithm was not 

specifically designed for use in determining the skeletal age; instead it is focused on 

measuring the distances between the phalanges.  Measuring this distance can help in the 

diagnosis of Rheumatoid arthritis.  However, the ROI in the fingers are the same for both 

applications.  The first step is the manual creation of a mask image marking the location of 

non anatomical structures like labels.  All radiographs were manually turned so that the 

fingers were pointing to the right and the wrist was on the left side of the image.  The 

algorithm employs a multiple resolution approach so for each radiograph a set of 4 lower 

resolution images were produced.  First a rough outline of the hand is determined by an 

edge detection routine.  Proceeding along the outline of the hand groups of pixels forming 

vertical lines are tested as potential fingertips.  From these the five best candidates are 

selected.  The finger locations are then found by moving in the negative x direction 
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following the path of the largest signal starting at each fingertip.  This produces an array of 

points along the finger; these are then fitted to a straight line using the least squares 

method.  The gray value profile along this line shows three peaks which mark the space 

between the phalanges.  The author claims a 100% success rate in identifying the digits (54 

out of 54 images) and a 99% success rate in determining the joint space locations.  

However, a number of images were excluded from the test.  These included images of 

hands wearing rings or digits being touched by other objects in the image (e.g.: Label or 

collimator edge). 

Vogelsang [13] presents an algorithm that can automatically find the ROI in a hand 

radiograph using Active Shape Models (see section 6.2.4).  First a Canny edge detector is 

used to detect the edges of the bones and of the hand.  Using the detected edges of the 

bones starting positions for the ASM are determined.  Each bone in the hand has a specific 

ASM specially trained to detect its shape.  Next, these ASM determine the exact positions 

and shapes of the bones.  Results are not presented in the article.   

A method to extract the EMROI from a hand radiograph is presented by Pietka [14].  

Before the actual extraction of the EMROI takes place, the hand radiograph is first 

preprocessed.  The orientation of the image is corrected so that the hand is always in a 

standard position.  Then the background is removed from the image so only the hand 

remains.  The analysis starts by extraction of the phalangeal tip.  Once the tips are found 

the phalangeal axis is determined by moving downwards through the middle of the 

phalanges (middle determined by distance to edges of phalanges to left and right).  To 

smooth the resulting line a median filter is used and then a third-order polynomial is fitted 

to it.  The derivative of the pixel values along the central axis can be analyzed and extreme 

values of the derivative indicate the locations of the EMROI.  The author used 200 clinical 

hand radiographs in a test; in 4% of radiographs the phalangeal tip was not detected.  The 

gap between the epiphysis and metaphysis was not detected in 4% of all cases (24 out of 

588). 
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4.3  Analysis of the EMROI 

There has been less research on the determination of the skeletal age once the 

EMROI have been found.  Again all the presented research is ordered by date of 

publication. 

In 1991 Pietka [6] presents a simple method to determine the skeletal age using the 

length of several phalanges.  First the phalanges are segmented using an edge detection 

algorithm.  After this, the lengths of the distal, middle and proximal phalanges are 

measured.  These lengths are looked up in the phalangeal bone length table by Garn [15].  

The approximate skeletal age can be read from this table.  The conclusion of the author is 

that the standard phalangeal length table can only be used to give a rough estimation of the 

skeletal age.  The mean difference with the actual skeletal age is 1.5 years.  One of the 

original authors of the TW2 method has also been working on automatically assigning 

TW2 scores to bones in the hand.   

Tanner [16] presents an automatic system for skeletal age assessment called CASAS. 

The system uses a high-resolution monochrome video camera which captures the 

radiographic hand images that are put on a specially adapted light box.  The user sees a 

stage analysis template on the screen and has to try to fit a bone to the template using the 

zoom feature of the camera and by moving the radiograph.  Each stage of each RUS-TW2 

ROI (see section 2.3.2) has its own template.  These templates don�t influence the 

computer rating but are used for placing the ROI in a consistent orientation and position.  

The digital analysis is done by representing the changes in density from point to point in 

the part of the radiograph that is displayed by a Fourier transformation.  A Fourier series of 

64 degrees is fitted to each horizontal line of the shown radiograph, and there is 64 such 

lines one above the other vertically.  The shown radiograph is represented by 

64x64/4=1024 image coefficients, though most of the information is contained in a smaller 

(manageable) subset.  The average of several reference images of a certain stage can be 

used to make an average stage image.  Using the Fourier coefficients, a new image of a 

stage can be classified.  This is done by comparing the coefficients of the image with the 

average coefficients characterizing each successive stage and choosing the stage with the 

minimal average deviation of coefficient values.  The results presented by the author show 

that the CASAS system rates radiographs with a high repeatability and less then one 
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percent reversal (reversal occurs when the analysis of the same patient later produces a 

lower skeletal age).  However, several drawbacks are also noted by the author.  The system 

is sensitive to ill-positioned hands and it prefers X-rays with superior definition.  The 

program rejects between 5% and 10% of all ratings due to poor matching of the 

coefficients.  A number of later studies further evaluated the program.   

A study by Albanese [17] indicates that assessment of a radiograph is still operator 

dependent because the operator has to decide to keep or reject a result supplied by the 

system.  Misclassification was also at an unacceptable level for some bones like the radius 

and the ulna according to the author.   

Tanner [18] also noted the high misclassification of the radius and ulna (15% were 

rejected).  An evaluation study by Teunenbroek [19] concludes that although the variability 

of the TW2 ratings produced by CASAS is low, the variability of the results when 

expressed in skeletal age seem considerable.  They therefore recommend skipping the 

skeletal age conversion step and just use the TW2 maturity score. 

Pietka [20] presents a classification algorithm that uses a fuzzy classifier to assign a 

bone age to the PROI (Phalangeal ROI) in the second, third and fourth finger.  The features 

used by the classifier are automatically extracted from a hand radiograph.  There are three 

types of features that are used in the analysis.  The first feature is the length of the distal, 

middle and proximal phalanges.  The second feature is the ratio between the diameters of 

the epi and metaphysis.  The third feature is the amount of fusion between the epi and 

metaphysis.  A fuzzy classifier is then used.  After defining a membership function, 

features are processed yielding a matrix which maps the features to a year of age within a 

predefined range.  The grades of membership are defined as membership function values in 

the interval [0, 1].  A classification rule based on a max-sum operator is used to process the 

matrix assessing the skeletal age.  The results presented by the author show that a correct 

extraction of epiphyseal diameter / metaphyseal diameter ratios and phalangeal length has 

been obtained in 90% percent of all 1080 test cases.   

In the later stages of skeletal development the size and shape of the epiphysis 

becomes less important.  The amount of fusion between the epiphysis and metaphysis 

becomes the more important measure of skeletal age (see also section 3.4.4).  In order to 

evaluate the amount of fusion Pietka [21] introduces the idea of using a wavelet 
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decomposition analysis as a quantitative measure to estimate the amount of fusion.  Four 

levels of fusion are distinguished: no fusion, early fusion, advanced fusion and fusion 

completed.  The author claims a successful rating of the fusion in 83% of all 90 test cases.  

Evaluation of the actual amount of fusion has been done by visual inspection.  The method 

is sensitive to under and overexposure of radiographs, if these are thrown out in a 

preprocessing step the accuracy of the analysis increases to 90%.   

In [12] Gross presents the results of a study that indicate simple neural networks 

could assist radiologists in the assessment of skeletal age.  A database of 521 hand 

radiographs and a total of four features that were calculated from seven measurements 

were used to train the network.  The measurements included the widths of several 

epiphyses of the proximal phalanx and the lengths of those phalanxes.  Also the length of 

the second metacarpal was included.  The parameters were then derived from 4 ratios 

between several of the linear measurements.  All measurements were obtained by hand.  

The parameters were used to train the neural network.  The author claims that the results 

produced by the neural network can be compared with those of an experienced radiologist 

who uses a standard pediatric skeletal atlas (Greulich and Pyle [2]).   

Marques da Silva [28] presents a method to determine a digital signature for skeletal 

maturity.  The end goal of the presented research is to determine a signature of the 

physiological process of skeletal maturity in terms of events that can be used to objectively 

assess bone age.  The first step in the method determines the longitudinal axis of the 

middle finger (LAMF).  A scale space technique is used to find the LAMF.  When the 

image is viewed at an appropriate scale the LAMF is visible as a ridge in the image 

intensity landscape.  In the next step the intensity transitions along the LAMF are 

examined using a gradient operator at a certain scale.  The author claims that this can show 

the presence of the epiphysis and in the later TW2 stages the amount of fusion between epi 

and metaphysis.  By using the distance between the peaks and valleys in the intensity 

profile the gaps between the phalanges and the lengths of the phalanges can be measured.  

The author uses the ratio between the length of the proximal phalanx and the length of the 

gap between this phalanx and the metacarpal as an indicator of skeletal maturity.  Some 

preliminary results are presented. 
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4.4  Discussion 

Much of the studies that have been done into finding the EMROI in the hand has 

focused on smart thresholding techniques (e.g.: Micheals [5], Mahmoudi [11], Pietka [6] 

and Morris [10]) to find the outline of the hand.  Once the outline has been found a variety 

of techniques can be used to find the EMROI.  However, this thresholding step is not 

trivial and some researchers skip it altogether and revert to a manual threshold operation 

such as Efford [8].  The problem with using a thresholding operating on a radiograph is 

that it is almost never successful for the entire radiograph.  Heel effect causes a gradient 

over the entire radiograph.  The effect itself is caused by the fact that not all X-rays emitted 

from the X-ray tube are perpendicular to the target.  The non perpendicular X-rays must 

travel a larger distance through the target (see Farr [23] and Behiels [24]).  Because of this 

the grey value for a certain substance like bone or flesh is not constant over the entire 

radiograph.  This makes segmentation using thresholding very difficult and less robust.   

Another approach is to detect the fingertips of the hand and use these as starting 

points for the segmentation of the fingers and the phalanges (Duryea [12] and Pietka [14]).  

Although both authors report excellent results one still is more or less dependent on a well 

defined border both left and right of the phalanges or finger in order to be able to segment 

it.  Also these methods can be sensitive to disturbances in the background of the radiograph 

like labels or markers. 

The advantage of using some type of deformable model and ASM in particular is that 

it is less sensitive to local disturbances in the contour of the object.  It manages to segment 

an object even when part of the contour is not well defined because the model �knows� the 

shape of an object from a training set.  Some research has been done using these types of 

models (e.g.:  Mahmoudi [11], Vogels [13] and Efford [8]).  Extensive evaluations have 

not been performed but indications are positive.  The research into actually assigning a 

certain skeletal development stage or score to an EMROI can be subdivided into two 

approaches.  One approach is to find measurements, for example the width or length of 

certain bones, and relate these measurements to a certain skeletal age.  Then one can train a 

classifier and use it to assign the measurements of new cases to a certain skeletal age or 

TW2 score (e.g.:  Pietka [6] [20] and Gross [22]).  A disadvantage of this method is that at 

a certain point in the skeletal development, structures like epiphyses tend to gradually 
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disappear because they fuse with the metaphysis.  Epiphyses are often used in these 

measurement based techniques because their width supplies a lot of information about the 

skeletal development (until fusion starts).  So most of these methods only yield accurate 

results until fusion starts. 

Another approach is to use some kind of similarity measure for the general 

appearance of an EMROI.  And use this measure to compare a new instance of an EMROI 

with a set of averages of each TW2 or skeletal development stage.  Tanner [16] 

demonstrated this with their CASAS system which represents the changes in density from 

point to point of the part of the radiograph containing the EMROI by a Fourier 

transformation in two dimensions.  Of each TW2 stage the average representation is 

known.  Tanner uses these average representations to compare with new images of 

EMROI.  The results of this system presented by the author are good, but evaluation 

studies showed some problems.  The largest problem with the CASAS system was that a 

human operator was still involved in the process.  This operator had to align each EMROI 

with a template and if this was not done correctly it had a large impact on the quality of the 

classification.  Because of the precise alignment the analyses still took a lot of time and the 

operator still needed to know the TW2 system well enough to recognize wrong 

classifications by the system. 
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5.   WEB BASED HAND ANALYSIS SOFTWARE 

5.1  Introduction 

Our first aim is to develop a manual bone age assessment system to overcome 

complicated calculations because TW2 method has so many complex score calculations.  

We built a web based manual skeletal maturity test web site working with the TW2 clinical 

method.  The second part of our project was to develop the core of the automatic bone age 

assessment system by using active shape model.  So with this software we could compare 

different tw2 stages by using interfaces of the Mathlab 7.0.  In this project we focus on 

assigning TW2 score to the middle phalanx of third finger.  Because of time limitation we 

exclude the entire hand bones that are necessary for calculation of the bone age.  In this 

chapter we will discuss about important features of fully automatic bone age assessment 

software. 

5.2  User Requirements 

 When writing software we have to consider end-user�s [physicians, (medical) 

students and researchers] usage.  Important software requirements are listed below: 

 Software should not consume time of the user and should work with little 

human interaction. 

 The skeletal age software should contain the complete TW2 method. 

 Analysis results should be recorded for future reviews. 

 Fully automatic bone age assessment software should contain analysis of the 

all the bones in TW2 method. 

 Results should be in a standard format and show all steps of the analysis. 

 The interface should be user friendly. 

Reducing computation time is very important for practical usage.  The final goal 

would be eliminate all human input to improve speed and accuracy over the manual 

methods.  Software can be used for education, research and for calculation of bone age of 

the pediatric patients.  Results should be in the standard format so it could be available in 

these environments.  
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Moreover software should analyze all bones in the hand and should include the 

carpal bone analysis.  Result of analysis should include details of the image processing 

steps. The physician then can verify each one of the step if needed.  

5.3  Design and User Interface 

In this project we first designed a web site for manual determination of bone age with 

the TW2 method.  In this web site we showed 20 bones of the hand at 7 or 8 stages.  

Explanations of stages can be read when the mouse is scrolled over the images. (Figure 

5.1) Every one of the bone for both sex has different individual score and sum of them give 

us bone maturity score.  Boys and Girls have different maturity scale.  Maturity score can 

be found from Table 5.1.  Bone age of the patient can be calculated with the maturity 

score.   Bone age=1+Maturity sore/10 

 

  

 

 

 

 

 

 

 

 

Figure 5.1  User chooses appropriate stage for each bone. 
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Figure 5.2  Web-Based manual TW2 skeletal age calculation.  After choosing stages for each bone tw2 stage 
calculated. 
 
 
Table 5.1   User chooses one stage for each one of the bones that correspond one individual maturity score 
for each one of them.  With the sum of the individual maturity scores we can define the maturity score from 
two different scales one for male and one for female. 

 
Individual bone maturity score 

 

 

 

 

 

 

 

 

bone stage sex score 
radius B M 15 
radius B F 17 
radius C M 17 
radius C F 19 
radius D M 21 
radius D F 25 
radius E M 27 
radius E F 33 
radius F M 48 
radius F F 54 
radius G M 77 
radius G F 85 
radius H M 96 
radius H F 99 
radius I M 106 
radius I F 106 
ulna B M 22 
ulna B F 22 
� � �            � 

Maturity score 
      girls            boys 
0 131  0 114 
1 136  1 116 
2 140  2 119 
3 146  3 123 
4 152  4 126 
5 159  5 129 
6 165  6 133 
7 172  7 136 
8 179  8 139 
9 186  9 142 
� �  � � 

150 1000  170 1000 
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Second part of our project was developing the automatic bone age analysis software.  

For this purpose we use ASM framework and we add some modules to assign TW2 stage 

to the certain region of interest. Programming of this framework was done by the Ghassan 

Hamarneh from Chalmers University of Technology.    

Software has two important stages.  First we train images that are in the same TW2 

stage for each bone by using landmarks which mark certain physical properties of the 

bone.  Then training sets are saved for future comparison with query image.  The second 

part is the analysis engine.  In this part trained images are compared with the query image.  

Details will be introduced in the chapter 6. 

 To begin analysis first some of the image sets for which we know the TW2 stage 

should be trained.  During the training stage user enter some parameters: 

Table 5.2  Initialization parameters to begin shape training. 
 

 

 Enter Contours Ending Points.  (Last entry is no of landmarks, ex.  [8 16 27]) 

 Enter The number of training set images (2,3,4,..) 

 Enter Percentage of explained variance (0-1): 

 Enter Number of points along training profile above landmark (1,2,3,...) 

 Enter Number of points along training profile below landmark (1,2,3,...) 

 

 

Then the user selects training landmarks. (Figure 5.3) Same physical locations should 

be selected in every training image.  Then software aligns training sets.  And we record 

training results for future analysis.  Training procedure should be done for every one of the 

bone and every one of the TW2 stage.  

After preparing that training sets we can search the image.  To begin we need initial 

parameters (see Figure 5.4).  In future initialization would be done automatically.  With 

initial parameters the trained image should be in the same location with the query image.  

We can scale, rotate and translate trained image to see whether it is fit to the queried image 

or not.   



 32 

 

 

 

 

 

 

.   

 

 
 
 
 
 
 

Figure 5.3  User selects landmarks by clicking with mouse and clear by pressing space key 

Number of above and below points for search can be defined.  And we can choose 

maximum loop number and multi resolution number (max 2) for different images.  After 

initial parameters are satisfactory for the user, search process can be started. (Figure 5.4)   

In the search process software try all trained TW2 stages until queried image is 

converged with the most closed stage.  This procedure should be repeated for the every 

region of interest.  Each bone of the hand will have one individual maturity score and 

summation of that give us maturity score.  So we can calculate the bone age from maturity 

score.  
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5.4  Performance and Experimental Results: 

Two criteria should be tested in our software, the accuracy in comparison to the 

manual TW2 method and difference in speed when using the software.  In current software 

we do not examine speed tests because steps such as automatic stage determination and 

initialization of training sets have not been implemented yet.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4  Initialization parameters to begin shape search in an image. 
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Figure 5.5  Shape search process in different levels. 

 

5.4.1  The Experiment 

We tested the performance of web-based TW2 scoring system.  Five radiographs 

have been chosen so that they represent different stages in the skeletal development.  

Experiments were done by rating each radiograph according to the complete TW2 method. 

In this way for each radiograph twenty bones were examined.  

Table 5.3 performance tests of web based bone age assessment system  
 

Patient No 
Bone age with Manuel 

method 
Web-based TW2 Bone age 

calculation 

11 11,6 11,1 

13 8,5 8,0 

15 9,5 9,9 

4 7,8 7,2 

6 4,8 4,4 

 Tanner [16] states that the manual method shows a 30% or more between-observer 

difference rate. On average 33.8% of the bones rated by an observer were rated differently 
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by another observer. This number is comparable to the 30% when using the manual 

method and therefore we can conclude that at least in this aspect our program performs 

approximately the same as the manual method.  

5.4.2  Future Developments of Application 

Second objective of this project is to develop software for fully automatic bone age 

assessment.  In this chapter we will discuss new beneficial functions for the future 

development.  

There are several projects where the software can be deployed.  In hospitals results of 

the examinations can be stored in a database so it will be easy to analyze and access.  

Another possibility would be educational use.  The program provides a lot of information 

for each stage of the TW2 method.   

One of the most important features which still need to be implemented is the ability 

to automatically assign a stage to an ROI.  While the program is still semi automatic it 

would be beneficial if the system could locate the ROI in the hand automatically.  Manual 

selection of the ROI takes some time and effort for the user.  In the current situation the 

user needs to locate each ROI in the hand. 

At the moment, it is only possible to rate an ROI as one of the eight TW2 stages.  

This is quite limiting and it is basically a remnant from the manual TW2 method.  It should 

become possible to rate the ROI on a continuous scale instead of the current discrete one.   

As a result of our work we developed software frame work for the analysis of hand 

radiographs.  Software can successfully calculate bone age but some of the time saving 

features for the software need to be implemented: 

Preprocessing 

 Locate the ROI in the hand automatically 

 Locate the initialization of the search  automatically 

 Access results from the database 
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6.   AUTOMATIC ASSIGNMENT OF A TW2 STAGE TO THE 

MIDDLE PHALANX OF THE THIRD FINGER 

6.1  Introduction 

To build the kernel of the fully automatic bone age assessment it is very important to 

develop software which automatically assigns stages to EMROI.  In this chapter we will 

analyze how to assign TW2 stages to the middle phalanx of the third finger by using the 

Active Shape model.  I will restrict myself to just the middle phalange of the third finger 

because of time restrictions and its clear characterization in almost all of our test 

radiographs.  The method should be applicable to other EMROI. 

The first section of the chapter is about deformable models; Active Shape Models 

(see section 6.2.1) in particular.  The second part of the chapter contains the outline of our 

automatic method.   

6.2  Method: Deformable Models 

In recent years the model-based approach towards image interpretation named 

deformable models has proven very successful.  This is especially true for images which 

contain objects with large variability like the EMROI we are studying.  Among the earliest 

and most well known deformable models is the Active Contour Model, also known as 

Snakes.  Snakes are model-based methods for localization and tracking of the image 

features.   

 

 

 

 

 

Figure 6.1 Active Contour Model-snake: a) Initial snake position (doted) interactively defined near the true 
contour.  b), c): Iteration steps of the snake energy minimization; the snake is pulled toward the true contour.    
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Snakes can be matched to an image contour by energy minimization.  The energy of 

the snake depends on its shape and location within the image.  From a given starting point 

it deforms itself to conform to the nearest salient contour [25].  In order to improve the 

specificity of deformable models many attempts at adding a priori knowledge into them 

have been carried out.  A more general approach called Active Shape Models (ASM) that 

still preserved specificity was proposed by Cootes [26].  ASM are statistical models of the 

shapes of objects which iteratively deform to fit to an example of the object in a new 

image.  The shapes are constrained by a statistical shape model (see section 6.2.1) to vary 

only in ways seen in a training set of labeled examples. 

In addition to the shape model, we require models of the image appearance around 

each point in the model.  The simplest is to assume the points lie on edges in the image.  

More complex models can be built to represent the statistical variation of the gradient 

along profiles through the points, normal to the boundary curve at that point.  In this work 

we used active shape model for assigning TW2 stages to EMROI.   

6.2.1  Statistical Shape Models 

One important aspect of ASM is the statistical model of shape which is used to 

represent objects in images.  The shape of an object is represented by a set of n points, 

which may be in any dimension but we will focus on the two dimensional case (points in a 

two dimensional space).  Shape is usually defined as that quality of a configuration of 

points that is invariant under some transformation.  In two and three dimensions usually 

the Similarity transformation is considered.  Translation, rotation and scaling don�t change 

the shape of an object.  Statistical shape models allow both analysis of new shapes and 

synthesis of shapes that are similar to those in a training set.  Manual segmentation yields 

the training set.  Next, the variations in shape of the object over the training set are 

analyzed, and then a model can be built which can mimic these variations. 

Statistical shape models are a very broad subject.  Here we will briefly review only 

those parts of the statistical shape model theory that relate directly to the project.  These 

parts are the choice of landmarks for training the shape model, Procrustes analysis and 

some of the theory behind ASMs.  For further information I refer to Cootes [26]. 
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6.2.2  Landmarks 

When we want to define the shape of an object in an image we use landmarks to 

delineate its contour.  The best positions for these points are locations which can 

consistently be found from one image to the next.  As an example consider, Figure 6.1 in 

which you can see a choice of landmarks for the segmentation of the hand from a 

radiograph.  Each landmark has been placed so as to be easily locatable in all images.  We 

call these landmarks fixed points.  In two dimensions, fixed points should be placed at 

clear corners of object boundaries or easily located biological landmarks. 

 

Figure 6.2 Landmarks choose for training sets which easily locatable in all images.  Landmarks have been 
placed in a position of high curvature in the shape which is easily found across the training images.  The dots 
are fixed points; the points between the dots are points on the contour of the hand indicated during manual 
segmentation. 
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In a two dimensional image we can represent the n points, {(xi, yi)}, that make up a 

shape as a 2n element vector, x, where each of the aligned training shapes gave rise to a 

vector describing the n boundary points: 

T

niniiiiii yxyxyxx ),...,,(
1,1,1,1,0,0, 


 

  i=1,...,N
  

 ( 6.1 ) 

Given s training examples, we generate s of these vectors xj. 

6.2.3  Modeling Shape Variation 

We now have a set of shapes, x these forms a distribution of vectors in nd 

dimensional space (n=number of points in shape and d=number of dimensions). 

When we model this distribution we can generate new examples that are similar to 

those in the original training set.  We seek a model of the form x = M (b).  New vectors, x 

can be generated using this model.  In order to simplify the problem we lower the 

dimensionality using Principal Component Analysis.  This allows approximation of any of 

the original points using a model with fewer than nd parameters.  We do this by first 

calculating the mean shape of the N shapes. 





N

i
iN 1

1 xx
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The modes of variations, i.e.:  the ways in which the points of the shape tend to move 

together, can be found by applying a principal component analysis to the 

deviations, xxx ii   (i=1,�,N) from the mean.  From these deviations, the 2n by 2n 

covariance matrix can be calculated: 
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The modes of variation of the point of the shape can be described by the 2n unit 

eigen-vectors, p1, �, p2n, of S.  The eigenvectors are defined by 
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( 6.5 ) 

Where 1, , 2n are the corresponding 2n eigenvalues of S ( n221 ...   ).  

The kth principal component corresponding to the vector xi is defined as a weighted 

sum of the elements of this vector: 

nkNib i
T
kki 2,,1,,,1),(,   xxp

    
( 6.6 ) 

The principal components represent a linear independent decomposition of the 

variation of the training shapes.  The first principal component, which is associated with 

the largest eigenvalues, 1, describes the largest part of the shape variation (the first mode 

of variation).  In fact, the proportion of the total shape variance described by the kth 

principal component is equal to the k.  Most of the variation can usually be represented 

by a small number of principal components, say t (t < 2n).  The value of t can, for instance, 

be chosen in such a way that the first t principal components explain a sufficiently large 

proportion (e.g.  99%) of the total variance, T = k k, of the shapes.  Any shape in the 

aligned training set can be approximated as a sum of the mean shape and a weighted sum 

of the first t eigenvectors: 

 
Niii ,,1,  Pbxx

      
( 6.7 ) 

Where P=(p1,p2,�pi) is a matrix of the first t eigenvectors, and T
iiiii bbbb )...( ,2,1,  is 

a vector of weights (principal components), which is calculated as 

Nii
T

i ,,1),(  xxPb
      ( 6.8 ) 

Eqn.  (1) permits generation of a new shape example by replacing bi by a new vector 

of weight values, T
ibbbb )...( 21 .  The vector b defines a set of parameters of a deformable 

model.  Shape x can be varied by changing the elements of b.  The elements of b are 

constrained to lie in the range ±m√ëi where m usually has a value between 2 and 3.  

Provided that the weights are not to far from zero, the new synthetic example will be 

similar to those in the training set, as the change in shape will be determined by the modes 

of variation represented by the training shapes.  Suitable limits for the weight vector, b, are 

derived by examining the distributions of the weight values to generate the training set.  If 
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Gaussian distributions are assumed, the set of weights can be chosen, so that the 

Mahalanobis distance, Dm
2

 from the mean shape is less than a suitable value, D2

max
: 

2
max

1
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t

h h
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( 6.9 )
 

The number t of eigenvectors to retain can be chosen so that the model explains some 

proportion fv (e.g.: 98%) of the variance of the training set.  ëi are the eigenvalues of the 

covariance matrix of the training data.  The total variance in the training data is given by 

the sum of all the eigenvalues. VT = i . The desired number of modes is given by the 

smallest t for which the following holds: 
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       ( 6.10 ) 

An example showing the first two modes of a shape model is given in Figure 6.2. 

 

Figure 6.3 The first two modes of a shape model of the EMROI in the hand are shown here.  The shape 
parameters are varied in turn from left to right from -3 till 3 standard deviations.  Since this shape model was 
built from images that were not scaled the first mode represents the size differences occurring in the training 
set.  The development of the epiphysis is clearly visible, this is logical because the size of an EMROI is 
usually directly related to its developmental stage. 
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6.3  Active Shape Models 

When fitting a model to an image an iterative approach proposed by Cootes [5] is 

used to improve the fit of an instance X of the model to the image. 

1. A region around each point iX  is examined to find the best nearby match for the 

point iX    

2. Update the segmentation to best fit the new found points X (see formula 6.5) 

3. Repeat until convergence (The software we use uses a fixed number of iterations) 

The pixels that are examined around the points are on a line perpendicular to the 

contour (see Figure 6.4).  This does require a notion of connectivity between the points 

from which the perpendicular direction can be computed.  When we want to calculate the 

direction perpendicular to a point ),( nn yx  we rotate the vector that runs from ),( 11  nn yx   

to ),( 11  nn yx  over 90◦.  All contours are supposed to be closed contours in the 

implementation we use, so for the first point on a shape, the last point and the second point 

are used; for the last point, the one but last landmark and the first landmark are used. 

Now the pixel profile along the perpendicular line is used as an appearance model 

that describes the typical image structure around the points of the shape.  The pixel profiles 

which are made up of k pixels on either side are sampled using a fixed step size.  

The profiles thus have a length of 2k + 1.  Cootes proposes using the normalized first 

derivatives of the profiles to build the appearance model.  The profiles are normalized such 

that the sum of the absolute values of the elements in the derivative profile is 1.  For each 

image in the training set the procedure is repeated to get a set of normalized samples {gi} 

for each model point.  

Now the mean g and covariance Sg are calculated for each set of samples.  We end 

up with statistical models of the gray-level profile about each point.  The Mahalanobis 

distance between a new profile gi and the profile model can now be calculated using: 

)()()( 1 ggSgggf igii  

       (6.7) 
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Figure 6.4 A line perpendicular to the model boundary is taken through each point. 

When the Mahalanobis distance f(gi) is minimized the probability that originates gi  

from the original profile is maximized.  The profile models given by g  and Sg are 

calculated for multiple resolutions.  Lmax denotes the number of resolutions.  The original 

image is the finest resolution and a step size of 1 pixel when sampling the profiles.  The 

next resolution is the image observers at scale ó = 1 and a step size of 2 pixels.  Lower 

resolutions are constructed by doubling the image scale and the step size.  The software we 

used does not subsample the images as proposed by Cootes.  When we look again at the 

iterative approach detailed at the beginning of this section we can now see how we can 

determine a new best match for a point. 

Each model point is moved along the direction perpendicular to the contour to ns 

positions on either side, so total of 2ns+1 positions are evaluated.  The model point is put 

at the position with the lowest Mahalanobis distance.  When all the model points have been 

moved, the shape model is fitted to the new set of points and this yields an updated 

segmentation.  This is repeated a fixed number of times at each resolution, from coarse to 
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2

  xxD i

fine.  Cootes et al use a convergence criterion to move to a finer resolution if convergence 

is reached before the fixed number of iterations has been made.   

6.4  Method: Procrustes Analysis 

Using Procrustes analysis it is possible to align a set of shapes so that the 

sum of distances of each shape to the mean shape (     ) is minimized.  

Constraints must be placed on the alignment of the mean (e.g.  centered on the origin, has 

unit scale and a fixed, arbitrary rotation).  There are analytic solutions for this problem but 

we employ the iterative approach given by Cootes in [5]. 

1. Translate each shape so that its center of gravity is at the origin. 

2. Choose one example as an initial estimate of the mean shape and scale so that 

1x   

3. Record the first estimate as 0x  to define the default reference frame. 

4. Align all the shapes with the current estimate of the mean shape. 

5. Re-estimate mean from aligned shapes. 

6. Apply constraints on the current estimate of the mean by aligning it with x 0 and 

scaling so that 1x . 

7. If not converged, return to 4. 

(Convergence is declared if the estimate of the mean does not change significantly 

after iteration) 
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Figure 6.5 In this image the Procrustes analysis being applied to two triangular shapes is shown.  The thick 
shape (ABC) is the shape we want the dashed shape (abc) aligned to.  In 1 we see their respective starting 
positions.  First we translate them so that they each have the same centroid (2).  After this they are both 

scaled so that 1x  (3) and finally rotated so as to minimize D (4). 

 

During the alignment we can allow certain operations, this will affect the shape of 

the final distribution.  An approach that is commonly used is the one shown in Figure 6.5  

The scaling constraint in that method means that the aligned shapes x lie on a hypersphere, 

which can introduce non-linearities if large shape changes occur.  Therefore Cootes et al 

add another operation, a projection into tangent space.  This operation preserves the linear 

nature of the shape variation. 

The simplest way to achieve this is to apply the method from Figure 6.4 and add the 

projection into tangent space as a final step.  The actual projection can be done by scaling x 

by )(
1

xx  . 
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6.5  Outline of the Automatic Method 

Most of the research done on the subject of automatically assigning TW2 stages to 

EMROI depended mainly on measurements of the bones in the hand (see section 4).  We 

wanted to see how a method based on the appearance of the EMROI would perform.  The 

method we devised is to use mean images of each TW2 stage to determine the stage of a 

query EMROI.  We use an ASM model to segment the EMROI from query images and 

once the segmentation has been completed we use the shape information it provides to 

align the query image with the mean image of each stage.  Then the correlation is 

measured between a part of the mean and a part of the query image.  The results of these 

measurements are then used to indicate a stage of the query EMROI. Below we will 

discuss each part of our method in more detail. 

6.5.1  Producing Mean Images for Each Stage 

The mean images for each stage are produced from a series of clipped out EMROI 

that have been rated as the same stage.  The cutting of the EMROI is done manually for 

now but in the future these should be clipped out automatically.  Each of these EMROI is 

segmented by hand so as to get a �perfect� segmentation.  Once we have a certain number 

of EMROI of a particular stage segmented we can use Procrustes analysis to align all the 

segmented shapes in the images to the mean shape.  Then we use an orthogonal projection, 

to project the mean image onto a plane.  What this basically does is it adds up all the 

intensity values of a certain pixel in all the images and the result value is the pixel value in 

the mean image (see Figure 6.6). 

The resulting mean images can be seen in Figure 6.6.  I�ve placed the reference 

images from the TW2 atlas next to them and the match is good.  Do keep in mind that the 

reference images from the TW2 method are single radiographs that have been chosen by 

the authors of the TW2 method as the �perfect� example of a stage.  Because the mean 

images are made up of about 15 images each they are more blurred as a result of the 

variation within the radiographs from which they were composed. 

As we had only a limited amount of images we had to make some choices regarding 

the amount of images we could use in each average image.  We decided to use an amount 

of images that seemed to yield decent results.  Of course some stages had more images 
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than others and a number of images was still needed as test images therefore we were 

sometimes forced to use a smaller amount of images. 

The exact amount of images we had for each stage and the amount we used to make 

the mean images is shown in Table 6.6.1.  It is obvious from the table why we did not 

make mean images for the first two stages B and C.  There were not enough test images to 

make an ASM.   

 

Figure 6.6 (a) Here we see the orthogonal projection of a number of different images of stage F resulting in a 
mean image for that same stage.  All pixel intensities are added to one another so the mean image consists of 
the total intensity.  (b) A mean image with a mean shape projected over it.  The mean shape consists of 
points; the points have been connected in this image. 
 
 
 
Table 6.1 The total number of images and the number used for each mean image case of stage H we have a 
problem.  Only five images are available, this meant that we had to use all available images in our mean 
image. 
 

Stage B C D E F G H I All 
Total Number of images 3 4 4 29 11 14 5 1 84 
Number of Images Used in Mean 0 0 4 15 8 8 5 0 40 
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When calculating the mean images a mean shape is also calculated.  This means 

shape consists of a collection of points that delineate the EMROI in the mean image (see 

Figure 6.6b) 

6.5.2  Training the ASM 

The method to automatically locate and clip out the EMROI is still being developed 

and tested by Maas [3].  Therefore we assumed that the images of the EMROI were given 

and used a program to manually clip them out (see Figure 6.7). 

In order to be able to bring a random EMROI image and a mean image of a stage in 

registration we need to find the shape of the EMROI.  We can find the shape of an EMROI 

by segmenting it from the background of its clipped out image.   

 

Figure 6.7 The left image of each pair is the TW2 atlas reference image while the right image is the mean 
image used in our experiments.  They are constructed from several EMROI.  Note that the mean images have 
been scaled to approximately the same scale as the reference images. 

In section 6.2.4 the concept of ASMs has been introduced.  These self adapting 

statistical shape models can find objects in images.  In our case these objects are the 

EMROI.  When using ASM the choice of the position of the points used to delineate the 

objects in the training set is very important.  One can use the fixed points to accentuate 

certain aspects of a shape and when a lot of intermediary points are used in a certain area 

this heightens the chance that it is able to find a certain edge. 
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Selecting the positions of the fixed points that will be used to delineate the shape of 

the EMROI in the training set is the first step in building the ASM.  According to Cootes 

[5] these should be placed at points on the edges of the object that are easily located 

throughout the training set.  We have selected the points in Figure 6.8.  Some points like 4, 

11 and 18 are located where the longitudinal axis of the finger crosses the object border.  

Others like 1, 7, 15 and 21 are located at the border of the image.  Points like 3, 5, 9, 10, 12 

and13 are set at the outer most points of the meta and epiphysis.  These points could be 

used in determining the ratio of the width of the Meta and epiphysis which is an important 

indicator of skeletal age in the earlier stages.  All the points are easily located in each 

image.  Point 14 connects the contour of the epiphysis with that of the diaphysis.  This is 

needed because of a limitation in the software that we used all points in the shape need to 

be part of a single object. 

 

Figure 6.8 A typical EMROI with the fixed model points marked on it. 
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When we have determined all the fixed points we add the equidistant intermediary 

points.  Varying the amount of intermediary points on an edge allows us to heighten or 

lower the �weight� of that edge.  In our case we add a total of 70 intermediary points to the 

shape, added to the 21 fixed points this makes a total of 81 points.  We add the relatively 

largest number of intermediary points to the epiphysis because that is a very important 

structure.  Also at the bottom of the metaphysis and at the top of the diaphysis extra points 

are added. 

There are some parameters that can be varied while building an ASM in order to 

change its behavior and the quality: 

 Amount of variance to explain, fv 

 Aligned or unaligned training set 

 k the number of points in the profile on either side of the landmark point. 

Parameter fv controls the number of eigenvectors to retain so that the model explains 

some proportion of the variance of the training set.  When less variance of the training set 

is explained the ASM will generally not adapt well to subtle shape changes that may exist 

in the training set.  Since the images we want to segment contain some small detailed 

differences we used a value of 0.995 for this parameter.  One example of a subtle 

difference is the difference between stage F and stage G where only the outward edges of 

the epiphysis curl up (see Figure 6.6).  A value of 0.995 means that 99.5% of the variation 

in the training set is explained by the model. 

An aligned training set can be very useful when there are not too many training 

images available.  By aligning the training images before building the ASM the shape 

model can only generate shapes with a size, position and orientation that is consistent with 

the supplied examples.  When there are enough training examples available however it can 

be beneficial to use an unaligned model.  Parameter k controls the length of the profiles 

that are taken perpendicular to the points of the model.  A standard length is 4 pixels on 

each side thus the profile is a total of 9 pixels long (2 · 4 + 1).  After experimenting with 

this parameter, visual inspection of the segmentation results showed that this value also 

worked best for our application. 
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When segmenting an image with an ASM there are several parameters that can be 

varied influencing its segmentation: 

 Number of new positions to evaluate during each iteration on either side of 

the current landmark position, ns 

 The number of iterations to do per scale level, Nmax 

 The bounds on the eigenvalues of ëi, m 

During each one of iteration of the algorithm a number of positions on either side of 

the current landmark are evaluated for all points in the shape.  A standard value is 4 points, 

but tests showed that a value of two worked better.  Because of the linearity of the ASM 

and the normalization of the grey value profile the ASM has difficulty distinguishing 

between certain edge structures.  If we examine Figure 6.9 the first edges that would be 

detected would be the ones in the left image.  Using a value of ns = 4 the lower contour 

would jump to the stronger edge, a position shown in the right image of Figure 6.9.  When 

using a value of 2 for ns the ASM would stick to the correct edge because it does not detect 

the stronger edge above it. The number of iterations per scale level Nmax is set at a 

standard amount of 10.  Changing this value has little impact on the end result. 

A high bound signifies that the eigenvalues can vary more and the shape model thus 

tolerates more extreme variations.  The variation is set to 2.0 normally and that value 

seemed to produce the best results in our test set also.  However, no extensive tests were 

conducted. 

6.5.3  Assigning a TW2 Stage 

Given a set of mean images of several stages and a segmented EMROI (query image) 

we propose to use the correlation between parts of these images as an indicator of 

similarity.  The mean image that the query image has the highest correlation with indicates 

the stage of the EMROI in the query image.  Correlation ñ of two jointly distributed 

variables X and Y is defined as 

)()(

),(

YVarXVar
YXCov


       

( 6.11 ) 

The jointly distributed variables in this case are the grey values of the pixels in both 

the mean and the query image.  Before we can use correlation we need to bring both the 



 52 

mean and the query image into registration.  This can be accomplished using the shape of 

the mean image and the segmented shape in the query image.  By minimizing the distance 

between these two shapes we can register both images.  Our first plan was to use a warping 

algorithm described by Ruprecht and Mueller [27] to accomplish this.  However this 

transformation completely warps the shape in the mean image to the shape in the query 

image.  This meant that the results were not usable because the correlation was always very 

high. 

 

Figure 6.9 Varying ns between 2 and 4 had the effect shown here.  On the left we see the segmentation result 
with ns = 2, on the right with ns = 4.  The segmentation on the right might appear better but the dim shadow 
under the epiphysis must also be segmented. 

Both the shapes as well as the appearance play an important role in determining the 

TW2 stage.  Thus we wanted to use only transformations that would leave the appearance 

and shape of the original EMROI mostly intact (rotation, translation and scaling). 

Procrustes analysis (see section 6.3) only uses rigid transformations plus scaling so it 

fulfills the criteria we set for a shape aligning method.  Therefore we have chosen to use 

that analysis method to align the mean images with the query image.  This means we leave 

the query image as it is and change the mean image so that the shape of its EMROI 

matches the shape in the query image. 
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Once a mean image and a query image have been aligned we use the correlation 

between parts of both images to indicate the similarity between both images.  This part is 

specified as follows, the Y-coordinate of the 14th and 70th point in the query image shape 

is used as an indicator of the location of the EMROI.  Then we take an area that is about 

one third of the total image surface and center this on the EMROI.  Figure 6.10 illustrates 

the resulting areas. 

6.6  Experiments 

 Using the ASM and the mean images discussed in the previous section a number of 

experiments were conducted.  These experiments were designed to show that appearance 

based measurements could be used to assign a TW2 stage to an EMROI. 

 

Figure 6.10 The area of the query (left) and of the mean (right) image that are compared using correlation.  
The two black dots represent the 14th (upper) and 70th (lower) point on the shape. 

Because of practical and time limitations we have selected one EMROI for the 

experiments: the middle phalanx of the third finger.  That EMROI is the subject of the 

experiments in this section.  Below, when an EMROI is discussed, the middle phalanx of 

the third finger is meant. 

A total of 40 query images were used in the test.  Each of these images had a known 

TW2 stage.  Classes E-I were represented in the query images.  The distribution over the 

different stages was as in Table 6.1.  We determined the correlation of each of these query 

images with each of the mean images of the stages E through I.  We have not included 

stage B through D because we did not have enough images of the earlier stages (B and C) 

to train an ASM or make mean images.  Since we previously determined that we needed 



 54 

two ASMs one for the earlier and one for the later stages we decided to do the test with just 

the ASM for the later stages (E through I). 

6.7  Discussion and Conclusions 

There is one important factor which makes evaluating our results difficult: There is 

currently no method for skeletal age assessment which is uniformly accepted in clinical 

practice.  This means that it is impossible to find a �golden standard� to which to compare 

our results.  We have used the ratings from an experienced physician as a standard for this 

research.  This doesn�t mean that those ratings necessarily are the correct ratings.  Research 

has shown that a difference of one stage between observers can occur in 30% or more of 

all analyzed bones when using the manual system (see Tanner[18]).  Our own tests (see 

5.5.3) yielded approximately the same number (on average 33.8%) of differently rated 

EMROI.  For the middle phalanx of the third finger the average between observers 

variability was even 48%.  This shows that assigning a TW2 stage to an EMROI is a 

process which is subject to considerable inter-observer variability.  Our results should be 

interpreted with this in mind. 

6.7.1  ASM Results and Discussion 

The segmentation results we obtained with the ASM we developed seem good.  Still 

it is important to know how often the ASM fails to find and correctly segment the epi, meta 

and diaphysis.  We would also like to know how much this influences the assignment of 

TW2 stages later on in the method.  Some qualitative tests have been done and in Figure 

6.14 some results are shown rated from very good to average to bad to complete failure.  

The quality of the segmentation is determined by the fit of the end shape.  Bad quality 

segmentation like the one in Figure 6.11 (3) exhibits the problem that the top of the 

epiphysis is not correctly segmented.  In this case it is probably due to the curvature of the 

epiphysis which is quite extreme.  A total failure like in Figure 6.14 is usually a problem 

with the initial position of the ASM.  When the initial position is too far from the middle of 

the EMROI the ASM cannot find the edges of the epi- and metaphysis.  This problem 

could be solved by trying multiple starting positions in the image.  The starting position 

which results in the lowest Mahalanobis distance is the best starting position. 
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Another problem we encountered was that we wanted to make one ASM that could 

segment the entire range of TW2 stages.  Because we did not have enough training images 

for the first stages (B and C) we could not construct an ASM that could segment those 

stages.  The problem with this single model approach turned out to be that the difference 

between the later and earlier stages was so big that the ASM produced bad results for stage 

D and lower. 

To solve this we propose to use two ASMs which overlap on one stage (stage E) to 

improve the results.  The calendar age could then be used to give an indication of what 

range of stages is to be expected.  Then the suitable ASM for the segmentation can be 

selected.  We have not done any extensive testing of this method however. 

6.8  Future Work 

In the future further development of the method presented in this chapter can be 

expected.  This future development could start with further testing of the proposed method 

on other EMROI in the fingers.  Since EMROI in the fingers and hand follow the same 

skeletal development (epiphysis grows wider and then fuses with metaphysis) it should be 

possible to apply the method on those bones as well.  There are some bones in the hand 

which would probably be less suited for our method.  Some of the carpal bones would 

probably not work that well, also the metacarpals might present a problem but more testing 

is needed to confirm this. 

 The robustness of the method could be further improved by extending the use of the 

information provided by the ASM.  Now we only use the segmentation to bring the target 

EMROI into registration with a mean image.  Other information that could be derived from 

the ASM includes ratios between the width of the epi- and metaphysis and the location of 

certain sub ROI within the EMROI.  

The ratio of the width of the epiphysis and the width of the metaphysis could provide 

a lot of information in the earlier stages.  There, a better separation between stage D, E and 

F could be achieved because the assigning these stages in the original TW2 method 

depends heavily on these ratio.  Another application for the extra ASM information is 

locating the borders of the epiphysis where the subtle change takes place when 

transforming from stage F to stage G and from stage H to stage I.   
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Figure 6.11 Some examples of segmentations done with our ASM.  The results are ranked by quality of 
segmentation. 

 

Figure 6.12 The marked areas exhibit the most change between stages F and G and stages H and I.  Using 
the correlation between these smaller areas and the same part of the mean image could lead to better results 
or at least provide extra robustness in separating these highly similar stages. 

Once these specific areas within the EMROI have been found, the correlation of 

these areas could be used to strengthen the choice for a certain stage.  In Figure 6.12 these 

sub-ROI are marked.  Using the correlation between these more specific areas could 

improve the performance of the method but also places higher requirements on the 

segmentation accuracy of the EMROI by the ASM. 

Related to this is another interesting topic where further research could be expected, 

the segmentation quality of the ASM.  It would be interesting to know how much the 

quality of the segmentation influences our method.  I have done some qualitative testing 
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which looked good.  Also the results of the alignment procedure using Procrustes seem to 

be good.  Nevertheless, with the approach we are using now, good alignment seems crucial 

and a test could be devised which compared the results using a �perfect� manual 

segmentation and a segmentation done by the ASM. 

Another possibility is to use a principal component analysis on the grey values of 

each EMROI image to build an appearance model of an EMROI.  This appearance model 

can represent both shape and texture variability seen in a training set.  The training set 

could consist of the images of the EMROI that have been aligned using Procrustes 

analysis.  It could be possible to link the parameters of the appearance model to a certain 

TW2 stage and use this to assign stages to EMROI. 
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APPENDIX A 

Explanation of the Matlab files of the Bone age assessment software. 

Baa_asm.m 

Main file used to assign TW2 stage to ROI with active shape model. 

AlignShapeToShape.m  

Used to align shape 2 to shape 1; by changing x and y coordinate. 

AlignTrnSetCoor.m 

Aligning training shapes to first shape. 

FindShapeInImage.m 

Search image until converged with training set 

GetMatchingPosition.m 

Search through the search vector and find a portion of it which is the most similar to 

the target vector. 

GetMaxNumPyramidLevels.m 

Get max needed levels for multi resolution search.  

landmark.m 

User chooses training landmarks then this function get training coordinates. 

GetWeights.m 

Use 3 dimensional matrix to contain the distances from landmark1(x) to 

landmark2(y) in a shape (z) 

ScaleRotateTranslate.m 

This function first scale and rotate then translate coordinates. 
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