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ABSTRACT

TIME-FREQUENCY ANALYSIS OF SOMATOSENSORY
POTENTIALS EVOKED BY VIBROTACTILE

STIMULATION OF THE FINGERTIP

Tactile sensory feedback has become an essential topic for neural engineering

to model advanced neuroprostheses providing artificial sensations. For this purpose,

it is required to understand human brain activity related to some parameters (e.g.,

sensation level, frequency, time window, etc.) of tactile somatosensory inputs. There

have been numerous studies related to tactile psychophysical channels and their prop-

erties. However, so far, a link could not be established between psychophysical data

and somatosensory evoked potentials (SEPs) generated by vibrotactile stimulation in

humans. Therefore, the fundamental goal of this study is to analyze SEPs, which were

generated by 40 Hz vibrotactile stimulus applied to human fingertip, over the S1 cor-

tex. EEG data were collected and analyzed in a previous study by Yildiz (2013), but it

was reanalyzed by different methods in this thesis. In particular, seven healthy adult

subjects participated in psychophysical experiments. EEG recordings were obtained

for several (NS, 10dB, 20dB, and 30dB) sensation levels (SLs) at and above threshold.

They were collected at the forehead and Cpi-Cpc as mechanically evoked SEPs by

gold surface EEG electrodes on the human scalp over the S1 cortex. The data were

analyzed by Continuous Wavelet Transform (CWT) by means of Morse Wavelet at dif-

ferent time windows of stimulation. Consequently, no significant differences were found

in frequency band energies for different sensation levels except some combinations in

the low gamma band at the stimulus onset. Given the small sample size, these results

imply that non-invasive EEG recording methods may not be adequate to measure fine

psychophysical parameters in this study for flutter sensation at 40 Hz.

Keywords: tactile sensory feedback, tactile psychophysical channels, primary so-

matosensory cortex, somatosensory evoked potentials, morse wavelet, continuous wavelet

transform.
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ÖZET

PARMAK UCUNUN MEKANİK TİTREŞİMLE
UYARILMASIYLA OLUŞAN BEDEN DUYUSU

POTANSİYELLERİNİN ZAMAN-FREKANS ANALİZİ

Dokunsal duyu geribeslemesi, yapay hisler sağlayan gelişmiş nöroprotezler mod-

ellemek amacıyla nöromühendislik açısından önemli bir konu haline gelmiştir. Bu

amaçla beyin aktivitesinin mekanik titreşimsel uyaranların duyu seviyesi, frekans, za-

man penceresi gibi bazı parametreleriyle arasındaki ilişkisini anlamak önemlidir. Psiko-

fiziksel vibrotaktil kanallar ve özellikleriyle ilişkili literatürde çok çalışma bulunmak-

tadır. Ancak, şimdiye kadar psikofiziksel veriler ve titreşimli dokunsal girdilere karşı

üretilen beden duyusu korteksindeki uyarılmış potansiyeller arasında bir bağlantı ku-

rulamamıştır. Bu çalışmanın amacı insan parmak ucunda 40 Hz titreşimli dokun-

sal uyaranla oluşan beden duyusu potansiyellerinin korteks üzerindeki kafa derisinden

ölçümünü analiz etmektir. Elektroensefalogram (EEG) kayıtları Yildiz (2013) tarafın-

dan önceki bir insan çalışmasında toplanmış ve analiz edilmiştir. Ancak, bu tezde farklı

yöntemler kullanılarak yeniden analiz edilmişlerdir. Yedi yetişkin ve sağlıklı katılımcı

psikofizik deneylerine katılmıştır. EEG kayıtları eşik ve eşik üzeri birçok farklı duyu

seviyesi (NS, SL10, SL20 ve SL30 dB) için toplanmıştır. Kayıtlar, mekanik uyarana il-

işkin beden duyusu potansiyelleri olarak alın bölgesinden ve Cpi-Cpc montajıyla birincil

beden duyusu korteksi üzerindeki kafa derisinden altın yüzeyli elektrotlar kullanılarak

alınmıştır. Veriler, Morse dalgacık dönüşümüyle uyaranın farklı zaman pencereleri için

analiz edilmiştir. Farklı duyu seviyeleri için low gamma bandının bazı kombinasyon-

ları haricinde frekans bant enerjilerinde belirgin farklılıklar bulunamamıştır. Katılımcı

sayısına göre bu sonuçlar, girişimsel olmayan EEG kayıt yöntemlerinin 40 Hz uyaran

için hassas psikofiziksel parametreleri ölçmede yeterli olmadığını göstermektedir.

Anahtar Sözcükler: dokunsal duyu geribeslemesi, psikofiziksel taktil kanallar, bir-

incil bedenduyusu korteksi, beden duyusu korteksindeki uyarılmış potansiyeller, morse

dalgacıkları, sürekli dalgacık dönüşümü.
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1. INTRODUCTION

The somatosensory system is an essential part of the human nervous system,

which allows an individual to perceive body awareness, touch, pain, and temperature

change [1, 2, 3]. By means of the ability of tactile fibers to transmit neural information,

a human can successfully distinguish textures such as smoothness and shape of objects

and grip of them. Fundamentally, the skin is separated into three subcategories which

are hairless, or with another name glabrous, hairy skin and mucocutaneous skin, and

human glabrous skin has four kinds of mechanoreceptors that are Meissner corpuscles,

Merkel cells, Ruffini endings, and Pacinian corpuscles [4, 5, 6]. They have unique

characteristics which have a capability to response under mechanical deviations or

forces, and they vary spike responses based on the size of the receptive field, pressure,

and frequency parameters of the stimulus [7].

In the human body, there are many sensory systems, and tactile system is the

one that can involve our ability to sense vibration, stretch, and pressure [1]. These

characteristic features of tactile perception may readily be analyzed by electrophysio-

logical or psychophysical methods. Stimulations, among them, can be either electrical

or mechanical, and although former of which can be favored in clinical studies because

of simplicity and higher responses, the latter one was preferred in this study since

mechanical vibrations are more relevant in nature.

The main goal of this study is to compare somatosensory potentials evoked by

the vibrotactile stimulus of the fingertip and related to psychophysical SLs. Hypothet-

ically, it has been expected that stimulus amplitude close to threshold level has an

influence on evoked potential parameters such as frequency band and time windows.

Experiments and analyses were conducted by Yildiz (2013), but significant results could

not be found for vibrotactile stimulus within a certain parameter set [8]. Therefore, the

time-frequency analysis method was performed to reanalyze the same data in this the-

sis. However, in the results, any correlation could not be observed. Hence, non-invasive
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EEG recordings may have a limited contribution to understanding the effects of tactile

sensory feedback in brain-machine interfaces (BMIs) and neuroprosthesis. However,

invasive electrocorticography (ECoG) may be more useful for that purpose.
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2. BACKGROUND

2.1 Sense of Touch by Glabrous Skin

Sense of touch is a sort of connection between object and human hand, and

it has, basically, two types: active touch and passive touch, the former of which is

associated with the conscious orientation of the skin using a receiver such as holding or

lifting of a glass. On the contrary, various outside factors are needed for passive touch

[9]. Thanks to its compliable and soft features, the skin of humans is involved in the

sense of touch when they touch a tool [10, 1]. Skin is a multi-layered and biggest organ

for humans, and it facilitates tactile sensation. There are, fundamentally, three types

of skin that are glabrous, hairy, and mucocutaneous skin [7].

2.1.1 Mechanoreceptors in the Glabrous Skin

The glabrous skin, among those, is generally found on our soles and palms,

and it has 4 mechanoreceptors: Ruffini endings, Pacinian corpuscles, Merkel cells, and

Meissner corpuscles. Those differ from each other, corresponding to deepness, surface

morphology, and pattern of innervation. In terms of response properties, they are

called either rapidly (RA) or slowly adapting (SA) fibers. While the RA fibers stop

responding within a very short time if the stimulus is stationary, the SA fibers can

respond when they are aroused from skin indentation, which is steady [1].

Hence, the sense of touch in glabrous skin is mediated by 4 afferent fibers that are

slowly adapting to type 1 (SA1), slowly adapting type 2 (SA2), rapidly adapting type 1

(RA1), and rapidly adapting type 2 (RA2) [5]. Among these fibers, SA1 refers to Merkel

disc-receptor-fibers, SA2 points out Ruffini endings, RA1 represents Meissner fibers,

and RA2 indicates Pacinian corpuscles, or PC, fibers. While Ruffini and Pacinian

corpuscles stay within the dermis that is cover 1-4 mm thickness, Merkel cells, and
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Meissner corpuscles is found within the epidermis (comprise between 0.07-0.12 mm

thickness) (Figure 2.1) [11, 12].

Figure 2.1 Mechanoreceptors in the human glabrous skin [11]

2.1.2 Receptive Fields in the Glabrous Skin

In addition to adaptation properties, these mechanoreceptors differ from each

other in terms of their spatial sensitivity. The spatial sensitivity is varied depending on

the receptive field, and the receptive field is a small skin area that tactile information

is transmitted by any type of mechanoreceptors. Figure 2.2 shows the receptive field

areas of the mechanoreceptors in the human hand shown by Johansson and Valbo

[13]. According to Figure 2.2, blue and red spots represent tactile acuity, the contours

exhibit sensitivity, and arrows monitor the skin stretch of each receptive field. For

the contour map, sensitivity increases from a pink color to a red one. In the figure,

mechanoreceptors which are located superficial levels (SA1 and RA1), have more tactile

acuity compared to deeper layers (SA2 and RA2) of the human glabrous skin since, as

it can be seen on the contour maps, their receptive fields have more red areas which

represent high sensitivity. The capability to tactile acuity allows them to recognize
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gaps, grates, and letter identification such as the Braille alphabet. On the other hand,

although RA2 fibers (P channels) have only one red spot, its wide spot area provides

maximum sensitivity to touch than superficial ones. This ability gives them to extract

the tactile information from a larger area [1].

Figure 2.2 The receptive fields in the human glabrous skin [1].

In the literature, it has been proved that there is a robust mathematical con-

nection between psychophysics and physiological parameters when it comes to the RA

fibers so that behavior of psychophysics can be modeled by the activity of the neurons

[14, 15, 16, 1, 17, 18]. Figure 2.3 displays the relationship between receptive field sizes

and adaptation of the mechanoreceptive fibers. According to Figure 2.3, while RA

fibers generate spikes at the onset and offset of the stimulus, SA fibers may sustain

their responses whole stimulus duration [4].
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Figure 2.3 Influence of receptive field size and adaptation on the axon firing of the stimulus evoked
by stimulus [4].

2.1.3 Sense of Vibration for Mechanoreceptive Fibers

The sensation of created oscillation of a tool closely located to the human

glabrous skin is called a sense of vibration. In neuroscience, vibration motors, high-

intensity focused ultrasound, musical instruments, or other types of sources can be

used as tactile stimuli thanks to their pressure effect characteristics.

For mechanoreceptive fibers, except for their sensitivity and adaptation proper-

ties, their thresholds diverge from each other with respect to frequency. That is to say,

every mechanoreceptive fiber class is more responsive in a certain frequency range. For

instance, while slowly adaptive fibers produce a high amount of spike firing at a low

frequency of stimulus, rapidly adaptive fibers have a tendency to evoke such firings at

high frequencies.

In Figure 2.4, tactile threshold levels of humans and frequency characteristics

of three mechanoreceptive fibers can be observed. According to the figure, it can be

argued that each mechanoreceptive fibers act as a bandpass filter since every one of

them has a different responsivity range in terms of frequency. For instance, while two of

them (Merkel disks and Meissner corpuscles) have the higher ability in responsivity at

lower frequency points, Pacinian corpuscles are good at responding to high-frequency

levels. This is mainly because the lowest threshold level for a mechanoreceptive fiber at
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a specific frequency means higher detection capability and responsivity at that point.

Particularly, the stimulus frequency that is between 0.3-2 Hz, Merkel disks are more

responsive. Another mechanoreceptor, Meissner corpuscles, has the lowest thresholds

between 2-30 Hz frequency stimulus [19]. The Pacinian corpuscles are more responsive

if only they are exposed to a high-frequency stimulus (30-500 Hz) [19, 20].

Figure 2.4 Neural thresholds of an individual and three mechanoreceptors [1, 11].

2.2 The Somatosensory System and its Central Pathways

2.2.1 Transduction of the Stimulus

Stimulus transduction is, or mechanoelectrical transduction, a transformation

mechanism that transforms mechanical stimulus exposed by the skin into electro-

chemical activities received and progressed by the human nervous system [13]. This

mechanism has the same characteristic features for all mechanoreceptor types. Simple

Pacinian corpuscle, sinusoidal vibration and human finger illustration can be seen in

Figure 2.5. In Figure 2.5, connective tissue laminae have the fluid-filled structure of

RA2 fibers that covers the tip of the Pacinian corpuscles [1, 11]. When mechanical

forces are applied to the fingertip, the axon of the corpuscle transduces mechanical
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information into electrical information. Then, the generated spike travels around the

myelinated axon in order to convey the sensory information to the central nervous

system (CNS) [11].

Figure 2.5 Simple illustration of Pacinian corpuscle [1].

2.2.2 Mechanosensitive Ion Channels

The chemical phenomenon begins with mechanosensitive ion channels. Both

decreasing and increasing of the opening of the channels and gate changes have occurred

if there is an applied force. Particularly, This applied force can be either directly or

indirectly. It means that the concept can be revealed by either the interconnections

between cytoskeletal components of intracellular or proteins of extracellular matrix

and the ion channels or the membrane. [11]. Figure 2.6a shows that when the ion

channels are induced directly by the increased membrane tension, the permeability

of the membrane is increased, which results in depolarization of the membrane and

transformation Na+ and Ca2+ from outside to inside the cell. In Figure 2.6b, the gate
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is opened by an extracellular protein outside the cell. Furthermore, in Figure 2.6c, the

same phenomenon is revealed by a cytoskeletal component inside the cell.

Figure 2.6 Mechanosensitive ion channels [11].

2.2.3 Primary Afferent Neurons

For the somatosensory system, the primary afferent neuron is a sort of neuron

which carries sensory information from the receptors of the somatosensory system to the

brain stem and spinal cord. As it can be seen in Figure 2.7, there is an interconnection

between the spinal cord and primary afferent neurons, and it is called as dorsal root.

The body of the dorsal root extends throughout ganglion cells of the dorsal root. It has

two branches, ones goes to the spinal cord segment and the other ascends the dorsal

column nucleus for further processing [1, 11].
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Figure 2.7 A segmental structure of the spinal cord and its pathway and root [1].

2.2.4 Dorsal Column Medial Lemniscal Pathway

The mechanoreceptive and proprioceptive information, for humans, is conveyed

through the dorsal column lemniscal system [1]. In Figure 2.8, the pathway of the

sensory information has been monitored. As it can be seen in Figure 2.8, every dorsal

column has been separated into two main parts. The first one, by means of the medial

septum, is medially edged, and the dorsal horn of the grey matter laterally bounds the

second piece. The dorsal column is made up of cuneate (wedge-shaped) and gracile

(slender) fascicles, and by their combination with gracile, cuneate, spinal trigeminal

nucleus, and tract. When it comes to medial lemniscus, in the dorsal column, it is

composed of axons of the neurons. By this, the midline is crossed in the medulla.

In the medial lemniscus, due to the crossing, tactile information from the left side of

the body is derived and processed by the right side of the brain [11]. Furthermore,

the spinothalamic system conveys other information types such as chemoreceptive and

nociceptive information [1].

The tactile information coming from the dorsal root is, firstly, reaches the spinal

cord and then ascends the medulla. Later on, there has been a sensory decussation in

the medulla, and the somatosensory information in the medial lemniscus ascends until

arriving at the thalamus through respectively pons and midbrain. Eventually, it arrives
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somatosensory cortex by tracts between the thalamus and somatosensory cortex [1].

Figure 2.8 Pathway of the sensory information from trunk and limb [1].

2.2.5 Somatosensory Cortex

The somatosensory cortex is a cortex type that is mainly responsible for so-

matosensory processing at the most specialized levels and is located posterior to the
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central sulcus of the parietal lobe in the cerebral cortex (Figure 2.9) [21]. The so-

matosensory cortex is, fundamentally, made up of three subdivisions that are posterior

parietal cortex, the primary somatosensory cortex (S1), and the secondary somatosen-

sory cortex (S2) [11].

Figure 2.9 shows that areas 5 and 7 lies on the posterior parietal cortex, the

first of which is responsible for active touch. S1 extends from the central sulcus to the

postcentral gyrus, and it contains Broadmann′s areas (1, 2, 3a, and 3b). Among those,

while 2 and 3a collects and processes proprioceptive inputs, area 1 and 3b derive tactile

inputs that are cutaneous [11].

The reason why area 3b corresponds to the proper somatosensory cortex has 4

causes. Firstly, somatosensory experiences are aroused when they are stimulated elec-

trically. Secondly, if there has been a lesion, then it ruins the sensation of the somatic

system. Another reason is that somatosensory inputs evoked its neurons since they are

very responsive to such stimuli. Lastly, as mentioned before, it receives sensory infor-

mation from the nucleus or nuclei of the ventral posterior VP system of the thalamus

[11]. Moreover, the dense inputs transmit from area 3b to areas 2 and 1. Mainly, area

1 receives texture, and area 2 derives size and shape information of the object from

area 3b (Figure 2.9) [1, 11].

Figure 2.9 Somatosensory areas of the cerebral cortex [1].
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In addition to Broadmann’s areas, brain parts in the somatosensory cortex were

separated into layers and columns by Vernon Mountcastle. According to his studies,

every one of the columns has approximately 300-600 µm width and length. The same

receptors are responded to by neuron groups in a column, and these neuron groups

derive the neural information from the same receptor sheet area [1, 22].

Figure 2.10 displays simply somatosensory pathway from finger to area 3b of

the somatosensory cortex and deep layers and columns of it. As it can be seen in the

figure, from layer VI to layer I, there are some feedback and feed-forward connections

to ascend the information. Layer I involves lateral transmission of the somatosensory

information. Layer II and layer III conveys the neural activities to other parts of

somatosensory cortex. The information in layer IV generally comes from the thalamus

and is the main sensory input. Furthermore, layer V represents the neural activities

that are transmitted to the spinal cord, brain stem, and basal ganglia, and eventually,

layer VI transfers the information to the thalamus [1, 23, 24].

Figure 2.10 Columnar organization of the somatic sensory cortex [11].
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The somatosensory information from receptors to the somatosensory cortex is

transmitted through somatosensory pathways, which have feedback-feedforward con-

nections and excitatory-inhibitory relay nuclei. According to Figure 2.11, these relays

not only convey the sensory information but, from in presynaptic pathway, derive

synaptic inputs that are excitatory and convergent, as well. Huge amounts of postsy-

naptic neurons are excited by single receptor neuron or neuron groups. Further, the

ability to excitation of relay neurons is triggered by inhibitory interneurons in the relay

neurons [1].

In Figure 2.11A, neurons in the relay nucleus in the receptors under the skin

were monitored. In relay nuclei in the thalamus and brain stem, huge amounts of

postsynaptic neurons modulate a stimulus to the skin [1]. Most of this process has

occurred in central (red) neurons. Due to the convergent connections, any types of

presynaptic neurons smaller than individual relay neuron′s receptive fields [25]. In

Figure 2.11B, by improving adversity between stimulated relay neurons weakly and

strongly, excitation (orange) is bounded by local interneurons mediated by inhibition

(grey) to the central area [1]. Lastly, for Figure 2.11C, three different pathways of

excitation evoke inhibitory interneurons in relay nuclei. Lastly, for Figure 2.10C, three

different pathways of excitation evoke inhibitory interneurons in relay nuclei. Output

neurons are inhibited by the interneurons, which produce inhibitory and excitatory

activity in the nucleus. Additionally, in the output pathway from the nucleus, for

neurons, collateral axons create feedback inhibition. Moreover, afferent receptive fibers

create feedforward inhibitions. Sharply described zones by interneurons ensure the

strategy of winner-take-all, which allows them to perform just one single response

among more than one.

2.3 Psychophysical Theory

In neuroscience, one of the most ubiquitous topics is psychophysics. Psy-

chophysics is a scientific research topic that is responsible for the relationship between

perception and stimulus. The stimulus may be produced to evoke all sorts of senses
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Figure 2.11 Completion of somatosensory activity from several receptors by neural connections in
relay nuclei [1].

in the human body, such as smell, taste, touch, hearing, or vision. Discrimination,

absolute threshold, and scaling are three fundamental concepts of psychophysics [26].

The absolute threshold is a boundary level that can be perceived by a par-

ticipant depending on the absence or presence of the stimulus. Sensing difference or

presence parameters are accepted as probabilistic, and therefore, the specific amount

of proportion of correct responses produced by given stimulus level is assumed as the

absolute threshold level in the field of neuroscience [26]. To derive a more accurate

absolute threshold parameter, measures of the threshold should be averaged [26]. In

the experiments, 75% correct probability of the trials is supposed to be an absolute

tactile threshold. [27].

The absolute tactile threshold can be assumed as the minimum tactile perception

level for an animal or human. Tactile perception, fundamentally, has 4 psychophysical

channels mediated by receptive systems and which are called as Pacinian (P) channel

and Non-Pacinian I (Meissner corpuscles), II (Ruffini endings), III (Merkel cells), or
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NPI, NPII, and NPIII, channels [28, 19, 29, 30, 6, 17]. Among all those, the P channel

has a minimum detection threshold level within the wide range between the frequency

of 200 and 300 Hz [31, 17, 32].

In Figure 2.12, threshold levels of four mechanoreceptive fibers within the fre-

quency range of 0.1-1000 Hz were shown. According to the figure, NPII is the least

sensitive psychophysical channel for any frequency level. However, NPIII channel is

the most sensitive channels below 2 Hz frequency and the NP I (Meissner corpuscles)

is the most sensitive channel at 30 Hz vibrotactile stimulus. In this thesis, 40 Hz vi-

brotactile stimulation was used. According to previous literature, P channel may have

lower threshold level than NPI channel at 40 Hz (Figure 2.12).

Figure 2.12 4 channels mechanoreceptive model between 0.1-1000 Hz [29].

2.4 Somatosensory Evoked Potentials (SEPs)

Somatosensory evoked potentials (SEPs or SSEPs) are spinal cord or brain re-

sponses, and they are namely recorded to evaluate the somatosensory pathway, which

allows us to diagnose neurological disorders [33]. Typically, SEP recordings can be

obtained by electrical stimulation to an ankle or a wrist of the individual body [34].

The potentials are collected from sensory areas of the cortex.
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2.4.1 Somatosensory Potentials Evoked by Electrical Stimulus

Electrical stimulation for evoking somatosensory potentials is mainly rectangu-

lar pulses within a certain period. It has a good capability of activating numerous

neurons. Precisely, in the literature, 5-15 electrical stimulation pulses (biphasic rect-

angular pulse duration of 0.2 ms) was applied to the median nerve. It was pointed out

that the amplitude responses evoked by electrical stimulation (1 to 5 µV) were consid-

erably higher than mechanical SEPs (0.25 to 1 µV). Electrical somatosensory evoked

potentials are derived as three distinct parts, which are short-latency, mid-latency, and

long-latency [35, 36]. Thanks to short-latency responses, we can study sub-cortical

areas. By observing mid latency, the primary somatosensory cortex can be monitored.

Additionally, the long latency may enable us to observe other connected cortical areas.

Figure 2.13 monitors the SEPs when the right arm of a human is exposed to

stimulation. In the figure, there are 4 different potentials and are several types of

peaks, either negative or positive, which are derived from different areas of the neck

and head.

Figure 2.13 Electrical stimulation of the arm [37].
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Furthermore, Figure 2.14 exhibits that there can fundamentally be five different

peaks that are considered (N20, P25, N35, P45, and N50) and used to describe latency

during observations [38].

Figure 2.14 Somatosensory evoked potentials revealed by an arm stimulation [39].

2.4.2 Somatosensory Potentials Evoked by Mechanical Stimulus

As mentioned in the previous sections, Although SEPs evoked by the electri-

cal stimulus is robust in terms of responsivity, they may enable a restricted amount

of knowledge such as relative contributions and velocity of transmissions of groups

of fibers [40]. On the other hand, mechanical evoked SEPs are good at monitoring

the information processing for tactile sensory feedback, thanks to their intrinsic char-

acteristics. Specifically, realistic or natural stimulations should be used, so electrical

stimulation is not required for human nature. Hence, conducting tactile stimulus-based

studies is extremely important in order to understand natural SEP responses. Even

more, there are a lot of studies about electrically evoked somatosensory potentials on

human subjects and their apparent peaks or components. However, there is very little

research on SEPs evoked by mechanical stimulus and the still gap in the literature.

The reason for this may be related to being a low pass (LP) filter feature of the human

scalp so that the certain frequencies or amplitudes knowledge could be suppressed.
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As an example for mechanical SEPs studies in literature, brain responses were

derived from the cortex by using many non-invasive electrodes for 33 Hz vibrotactile

stimulation. When they observed temporal responses, they could not observe certain

peaks in time and strong correlations could not be found. However, some promi-

nent peaks could be observed by looking frequency domain information (Figure 2.15)

[41, 42]. In Figure 2.15, the somatosensory responses of different areas of the brain

triggered by mechanical stimulation were shown. According to the figure, anterior rep-

resents frontal, but posterior represents back areas of the brain. Medial is middle, and

the lateral is side-ward. Additionally, the C3 area is our main recording area for so-

matosensory recordings. One of the fundamental aims of this thesis study is to observe

the somatosensory response by using a non-invasive recording method and analyzing

the data in both the time and frequency domain simultaneously. This is because, there

are currently no strong results to show clear time-domain peaks for mechanical SEPs

in literature.

Figure 2.15 Somatosensory potentials evoked by mechanical stimulation [41, 42].
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2.5 Time Domain Analysis

Briefly, time domain analysis is a signal analysis method that focuses on the

amplitude information of a signal with respect to time. Recently, in order to interpret

the brain data, non-linear techniques and EEG methods have been ubiquitously used

[43, 44]. Among them, the former was not considered in this thesis since non-linear

analysis methods are generally used to observe a restricted amount of neuronal (for

single or just a few neurons) activity. On the other hand, EEG methods are one of the

well-known methods to analyze brain data within a certain brain area.

Electroencephalography (EEG) is a dynamic response of the CNS. In order to

gather clear results, its recording is needed to be paid careful attention. The method

may enable us to analyze the data in either time (as a voltage) or frequency (as an

amplitude) domains. EEG signals are observed as EEG bands by filtering the original

(raw) data, and each band carries divergent information. In other words, various wide

or narrow bands of EEG responses are generated by the human brain when the brain

of an individual in the different brain states (e.g., concentration, active mind, or sleep)

[45]. When an individual undergoes a vibrotactile stimulus, a higher frequency of 90 Hz

and lower than 4 Hz brain responses are not considered much for EEG signals resulting

from mechanically vibrational stimuli and, generally, the former of which is filtered by

low pass (LP) filters and the latter one is eliminated by high pass (HP) filters by means

of signal processing methods.

Although there are much more narrow EEG bands, just a few of them are as-

sumed as fundamental EEG bands, which are delta (0-4 Hz), theta (4-7 Hz), alpha

(8-12 Hz), beta (12-30 Hz) and gamma (30 Hz and up) [45, 46]. Among those bands,

the delta band is associated with dreaming and sleep. The theta band can be asso-

ciated with deeply relaxing or snoozing. The alpha band exhibits passive attention

and restfulness. The beta band may represent the external attention and active mind,

and lastly, the gamma band can be correlated with concentration and problem-solving

(Figure 2.16) [46]. In this thesis, delta and theta bands were not included due to being

associated with sleep or dreaming and snoozing or relaxing.
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Although EEG is one of the proper ways to observe the brain data, its bands

in the time domain could not show us clear information or apparent peaks, as seen

in the figure (Figure 2.16). Figure 2.16 shows raw EEG data and its fundamental

bands in the time domain for 40 Hz vibrotactile stimulation for one human subject

by using mechanical stimulation and non-invasive recording for 1000 ms time duration

[8]. Stimulus starts at 0.2s and last for 0.5s. According to this figure, it appears there

are no changes related with the stimulus in the time domain for specific intervals of

time. They seem to be randomly distributed. Even if raw EEG data were separated

into narrow bands, there are no exact prominent peaks that were able to be observed

for SEPs upon mechanical stimulation by only looking at its time-domain information.

Figure 2.16 Raw EEG data and its delta, theta, alpha, beta, and gamma bands in time domain.
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2.6 Frequency Domain Analysis

The SEPs can be transformed from time into frequency domain responses in

order to collect the information or verify the hypothesis in neuroscience, particularly

in computational neuroscience. Frequency domain analysis is, mainly, to transform

the amplitudes of a signal from the time into the frequency axis. By doing this, the

amplitude spectrum of a signal may be observed for various frequencies. In other words,

they are the sinusoidal representation of a measured or original signal. In math, the

common way is the Fourier transform method to represent measured data by sinusoids.

In several studies, it has been displayed that adequate duration of periodic vi-

brations was able to result in spike activities in the primary somatosensory area (S1

cortex), which could be observed by MEG or EEG recordings [47, 48, 49]. Specifically,

20 Hz repetitive mechanical stimulations on human fingertips for 1s duration with 5

seconds time interval and magnetoencephalogram (MEG) for recordings of the brain

responses were used. They have concluded that vibrotactile stimulations lead to oscil-

lations of the S1 cortex [47]. In another study, 75 Hz mechanical vibrations on human

upper limb and EEG recordings were considered, and the results showed that the S1

cortex could be excited by mechanical stimulations. Even more, it was also proved

that mechanical vibrations on the skin could evoke brain responses on the S1 cortex

by means of EEG recordings [49].

Even though there are numerous studies, recently, in terms of the effect of

mechanical stimulus or vibrations on the S1 cortex, yet still, the impact of 40 Hz

vibrotactile stimulation at psychophysical threshold and suprathreshold levels (up to

30dB SL) could not be found by only considering the frequency domain analysis (e.g.,

cross-correlation, FFT, etc.) methods. In Figure 2.17, the frequency domain informa-

tion of an EEG signal was shown. The signal represents EEG response taken by the

non-invasive recording of a subject for 40 Hz mechanical stimulation of human skin

[8]. The figure shows that narrow bands (delta, theta, alpha, and beta) are not able to

carry a sufficient amount of information, and any prominent peak cannot be observed

for any band similar to the time-domain analysis. It means that collecting only fre-
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quency domain information of the signal and its bands may not be sufficient to analyze

brain data. As a result, likewise time, only frequency domain information is not a so-

lution to show the clear information. Hence, using both time and frequency knowledge

simultaneously may be required to analyze mechanically evoked human brain data.

Figure 2.17 EEG data and its delta, theta, alpha, beta, and gamma bands in frequency domain.

2.7 Time-Frequency Information Derived by Signal Processing

Methods

Signal processing is a mathematical way used to analyze electrical signals in

various fields such as neuroscience as well as engineering. In neuroscience, signal pro-

cessing and its algorithms are considered as it is one of the quintessential and widely
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used methods in order to transform complex physiological signals into noteworthy

pieces of information [50]. Specifically, this method is used in terms of analyzing audi-

tory (AEPs), visual (VEPs), and somatosensory evoked potentials (SEPs), and whole

those signals are assumed as responses of the brain undergo several stimulus types (e.g.,

electrical stimulus transmitted to a nerve, visual pattern change, flash of light, click,

and the burst of tone) [44]. Furthermore, evoked potentials (EPs) should be extracted

a lot of times and averaged since when they are collected trial-by-trial, their magnitude

responses are really lower compared to background noises, and averaging step boosts

the amplitudes sufficiently [44]. In literature, many studies were monitored that signal

processing methods as a thorough way to extract expected knowledge in neuroscience

for all EP types.

In practice, There are several signal processing techniques depending on the

dimension (e.g., 1D, 2D, and 3D) of the data used to derive neural data. For instance,

wavelet transform and filter-Hilbert can be considered to analyze 1D and 2D signals.

Fourier transform (FT) and filter-Hilbert are able to be used for 2D signals. Even

more, tensor decomposition and multidimensional signal processing methods are good

methods for reconstruction and analysis of 3D or more dimensional signals respectively.

In this thesis, because of our data is 2D, FT, filter-Hilbert, or Wavelet Transform (WT)

can be considered. Among those filters, in this thesis, WT method was chosen instead

of FT or filter-Hilbert.

This is because FT may give amplitude information of the data with respect to

the only frequency information. However, observing time and frequency information

of a signal at the same time may sometimes be more important for brain signals. WT

has the ability to exhibit all these features of such data simultaneously [51, 52, 53].

FT leads to global uncertainty in the signal, which cause of being less informative for

the non-homogeneous signals such as brain signals; however, WT may cause regional

uncertainty in small regions, and this allows the signal to give knowledge in terms of

every one of the fragments of the signal [51, 52, 53, 54]. Even more, EEG signals are

accepted as non-stationary, which means statistical properties of these signals may alter

in the time in the literature, and FT is usually an appropriate method for stationary
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signals, but it is insufficient for analyzing non-stationary ones. Conversely, WT is

pretty capable of observing those signal types [51, 52, 53, 55].

Apart from FT, filter-Hilbert method was not considered since although this

method may produce accurate frequency domain results, it generates highly energetic

signals at each time or frequency point, which makes the results uninterpretable. In

other words, it has only empirical results only if the data are narrowband signal [56].

Hence, this method is required to be used after implementation of a bandpass (BP)

filter. Compared to WT, filter-Hilbert takes more time since it includes several Fast

Fourier Transforms (FFT) inside, and it is required a preprocessing step (bandpass

filtering), as mentioned. On the other hand, WT is needed just a few FFT, so its

implementation is absolutely easy and rapid [57].

2.8 Time-Frequency Analysis (TFA)

By using WT, data can be segmented or windowed into tiny fragments on the

entire spectrum (Time-Frequency Plane). The length or width of every single win-

dow, or called as Heisenberg box, defines the resolution of frequency or time of the

information. Just like Heisenberg′s uncertainty principle, if the time resolution of the

signal is increased, the resolution of the frequency information needs to be reduced

proportionally (Heisenberg Box 2). On the other hand, if one would like to collect

high-resolution frequency information, then the time information should be lowered in

terms of resolution (Heisenberg Box 1) (Figure 2.18) [58].

Simply put, Time-Frequency analysis (TFA) is a signal analysis method that

may enable us to observe amplitudes corresponding to time and frequency plane at

the same time unlike time or frequency domain analysis methods. Its thorough fea-

ture is ability to monitor the whole concept at only one plot. There are various time-

frequency plots that are used for signal analysis such as multiresolution analysis (MRA),

Constant-Q Gabor transforms, reassignment and synchrosqueezing, Wigner-Wille dis-

tribution (WVD), spectrogram (short-time fourier transform), and scalogram (CWT:
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Figure 2.18 Heisenberg uncertainty boxes on the Time-Frequency Plane [44].

continuous wavelet transform) [59].

Among those, MRA is mostly used for discrete analysis, and constant-Q Ga-

bor transform is a good way for processing music signals. For the reassignment and

synchrosqueezing method, it has been shown that oscillations of seismic or earthquake

vibrations and power systems could be analyzed by this method [60, 59, 61]. The WVD

technique is good at processing the sounds of cochlear origin undergoing auditory stim-

ulations, and spectrogram can be considered to analyze audio signal processing such

as Pacific blue whale [59]. On the other hand, for either processing physiological (par-

ticularly ECG or EEG) signals or considering CWT, scalogram-based time-frequency

analysis is taken into account [62, 59]. Hence, in this thesis, a magnitude scalogram plot

was chosen in order to monitor whole amplitudes with respect to the time-frequency

information.

2.8.1 Wavelet Transform

Wavelet transform is, simply put, a signal analysis method that mainly enables

us to use in data compression, feature extraction, and signal processing [63, 64, 65]. Its
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usage areas are formed only for a couple of decades although it has been accepted math-

ematically approximately for a hundred years [44]. Its ability to show non-stationary

brain responses makes this method unique when it comes to observing physiological

(e.g., MRI, PET, ECG, or EEG) data compared to conventional signal processing tech-

niques [66]. By means of wavelet analysis, frequency-domain knowledge of the signals

can be obtained like FT or filter-Hilbert. It may give information about where a specific

frequency reveals in the spatial or temporal plane.

Wavelet analysis can be performed in both discrete and continuous time do-

mains. According to Table 2.1, all WT types provide the time-frequency plane with a

center frequency which is a logarithmic one. Moreover, discrete type wavelets, which

are wavelet decomposition (WAVEDEC), DWT, maximal overlap DWT (MODWT),

have only one wavelet-filter/octave and 2 bases, but CWT differs from others in terms

of generally having 8 or 16 wavelet filters per octave and 21/NV (NV is number-of-

filter/octave) bases. Moreover, the time shift of the WAVEDEC, DWT, and CWT is

1 sample, but for MODWT, there are 2L (L represents a level of DWT). In addition

to those features mentioned in Table 2.1, Continuous wavelet transform is ubiquitous

for harmonic signal analysis thanks to its ability to conserve the phase information of

the signal [67, 44]. In other words, highly fidelity analysis can be obtained for signals

by means of its thorough feature, perfect monitoring the characterization of the os-

cillatory mechanisms, compared to discrete ones when the proper sampling frequency

is considered, which makes the CWT is a perfect and appropriate method to analyze

such signals in this thesis [68].

Table 2.1
Fundamental differences and similarities among main WT types [69, 70]

Method Wavelet Filters Logarithmically Base Time Shift

per Octave Space Center

Frequency

WAVEDEC, DWT 1 Yes 2 1 Sample

MODWT 1 Yes 2 2(L) Samples

CWT Mostly 8-16 practically Yes 2(1/NV ) 1 Sample
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2.8.2 Continuous Wavelet Transform (Scalogram)

Scalogram or magnitude scalogram is a time-frequency plot that displays am-

plitude and time-scale by the implementation of the CWT in MATLAB [71]. It has

many application fields, two of which (ECG and EEG) are very well-known. CWT is

considered as such a proper method in terms of monitoring the signals if their instan-

taneous frequency fastly ascends or intuiting transients in the non-stationary signals

[59]. In neuroscience, there are three most common problems such as raw EEG signals

have numerous artifacts, a very small amount of signal-to-noise (SNR) ratio, and insuf-

ficient spatial resolution for neuroscientists encountered [59]. By using thresholds for

wavelet coefficients, the SNR ratio can be enhanced since even if there are only a few

large valued CWT coefficients, consistent peaks could be extracted with no random

distribution adjusting of noises [59].

Scalogram plot can be constructed by using three analytic continuous wavelet

types provided in MATLAB, bump, analytical Morlet [72], and generalized Morse

[73, 74] (Figure 2.19). Among these wavelets, bump wavelets are more strict in time,

but they are broader in the frequency domain compared to others in terms of variance

[75]. On the other hand, the frequency variance of the Morlet wavelets is the same as

their time variance. In other words, their time and frequency variances are fixed. On

the contrary, generalized Morse wavelet has changeable two (compactness and time-

bandwidth) parameters in order to change frequency and time dissemination [75]. This

unique characteristic enables Morse wavelet to exhibit Morlet or Bump like behavior

by just changing these parameters [76]. Even more, for the brain signals, each time

and frequency fragments can sometimes be important to make deductions from the

data. Hence, it has the ability to evaluate and monitor a well spectral estimation of

the brain responses at every one of the time-frequency planes between 1-2048 Hz in the

frequency axis and from before stimulus to after stimulus in the time axis [75, 73, 77].

Therefore, in this thesis, the Morse wavelet method was preferred to transform the

EEG signals. Furthermore, in literature, there are several studies shown before about

processing EEG signals and plotting time-frequency plots by using Morlet wavelets

[78, 79, 80, 81, 82, 83], but very few amounts of research carried out by means of Morse
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[84, 85].

Figure 2.19 Time domain and Time-Frequency domain plots of the Bump, Analytic Morlet (Gabor),
and Generalized Morse Wavelet respectively [75].

Morse Wavelet is a wavelet analysis method which has complex values. Only if a

signal is in the real axis, Fourier transform can be performed for these complex values.

Morse Wavelet was theorized, firstly, by Olhede and Walden [73], and its application

fields were enhanced by Lilly, and Olhede [86, 87, 88]. Moreover, Lilly established an

effective computer algorithm of the Morse wavelet and defined features of them [89].

For Morse wavelet, fourier transform demonstration is,

ΨP,γ(ω) = U(ω)αP,γω
P2

γ e−ω
γ

(2.1)

where U(ω) characterizes unit step function, αP,γ symbolizes a constant of nor-

malization, P 2 indicates time-bandwidth product, and γ represents Morse Wavelet′s

symmetry feature. In most of the literature, instead of the time-bandwidth product,

compactness parameter β is considered, so the equation need to be organized as [86],

Ψβ,γ(ω) = U(ω)αβ,γω
βe−ω

γ

(2.2)
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In the equation, symmetry parameters and product of time-bandwidth for Morse

wavelet may allow us to derive various featured analytic wavelets. In order to do this,

these parameters should be altered in requested values. Figure 2.20 and Figure 2.21

exhibits time and time-frequency domain knowledge derived by changes in P 2 and γ

parameters, respectively. Specifically, it is assumed that the duration of wavelet in

time is proportional to the P value [90]. At a certain frequency region, or called peak

frequency, the number of oscillations that fit into center window of the wavelet in the

time-domain has regulated by the duration. Formulation of the peak frequency can be

shown as (P
2

γ
)

1
γ [90]. According to this equation, if the γ parameter is adjusted as 3, the

least number of Heisenberg Boxes will be composed, and the Morse wavelet’s skewness

will be equal to 0; therefore, this value can be assumed as default in MATLAB [90].

As it can be seen in Figure 2.20, long-time decay is increased when the P 2 is

ascended if the γ becomes equivalent or lower amount than 3. For the γ parameters

bigger than 3, when the P 2 is diminished, the wavelet information has become more

asymmetrical [90].

Figure 2.20 Changes in time and time-frequency knowledge of the signal when γ are same, but P 2

is altered [90].
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Figure 2.21 signalizes that long-time decay rates can be ascended when the P 2

is reduced. However, the increases in the γ parameter do not cause any change in time

decay. That is to say, unexpected time lobes in the time domain and asymmetry in the

frequency domain are generated by means of the higher level of γ and lower amounts of

P 2. Furthermore, in frequency and time axis, the wavelet may lead to more oscillations

when P 2 and γ becomes larger [90].

Figure 2.21 Changes in time and time-frequency knowledge of the signal when P 2 parameters are
same, but γ is altered [90].

2.9 Research Question

The background knowledge mentioned in the previous sections was elaborately

demonstrated. The purpose of this is to show the impact of SEPs on the somatosensory

cortex by applying 40 Hz mechanical vibrations on the human fingertip. At threshold

level, probably P channel is activated primarily. However, at suprathreshold levels, P,

NPI and NPIII channels could be activated. One of the substantial aims of this study is

to observe this effect by using mechanically evoked SEPs. This is because they enable

us to produce mechanical stimuli which are close to a natural stimulus, which boosts
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the possibility of collecting more empirical results. Moreover, data were analyzed using

CWT by Morse wavelet since it has certain advantages over other FT or filter-Hilbert

methods. Eventually, one of the fundamental goals of this research is to determine

if the stimulus intensity and time window (TW) have a significant effect on studying

somatosensory processing. This is because it may contribute to the literature of tactile

sensory feedback in BMIs studies to be designed advanced neuroprosthesis. In order to

verify those, the following experiments were carried out by Yildiz (2013) and analyzed

by FFT, cross-correlation, and time-domain analysis methods [8]. However, significant

correlations could not be found in previous studies. Therefore, the same EEG data

were analyzed in more detail by TFA in this thesis.
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3. METHODS AND PROCEDURES

The experimental data used in this thesis were collected by Yildiz (2013). In

the experiments, mechanically evoked SEP responses were taken from seven subjects

using 40Hz and 230Hz vibrotactile stimulations in four different sensation levels (NS,

SL10, SL20, and SL30 dB). Both 40Hz and 230Hz data were analyzed by FFT, and

Complex Morlet Transform [8]. Since significant results could not be found for 40Hz

data, subsequent analyses were performed in this thesis.

3.1 Participants

Seven healthy adults (three male and four female), between 22-29 age, partici-

pated in the experiments [8]. The reason for choosing young participants is that aging

has a negative influence on the sensitivity of vibrotaction [91]. To test individual par-

ticipants, the experiments adhered to NIH ethical guidelines, and they were approved

by the Ethics Committee for Human Subjects of Bogazici University. By self-report,

it was informed that all participants were right-handed, so their middle fingertips of

left hands were mechanically stimulated. The mechanical was very weak and did not

cause any harm.

3.2 Experimental Setup

3.2.1 Apparatus

All experimental procedures were carried out in a vibration and soundproof room

(RE-242, ETS-Lindgren Acoustic Systems, Cedar Park, TX). Firstly, by a computer

and its connection with a digital-analog-converter card (DaqBoard/2000, IO Tech,

Cleveland, OH), waves of the stimuli were produced. By using a PA5 digital attenuator
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(Tucker-Davis Technologies, Alachua, FL), the intensity of the stimuli was regulated.

In order to drive the mechanical shaker, adjusted signals were amplified by means of

an RA300 power amplifier (Alesis, Fort Lauderdale, FL). Then, by driving of V203

electro-dynamic shaker that has a cylindrical probe (radius = 2mm) without surround

(Ling Dynamic Systems Ltd., Royston, Herts, UK), the left middle fingertip of human

participants was mechanically stimulated (Figure 3.1).

Figure 3.1 The block diagram of the experimental setup

In Figure 3.1, by using a Schaevits ATA2001 LVDT (Lucas Control Systems,

Pennsauken, NJ) and TDS 2014 digital oscilloscope (Tektronix, Inc., Beaverton, OR),

produced vibrations were measured and displayed, respectively. By modeling clay, the

finger of the participants was stabilized to avoid shaking of the fingertip, which was

observed during experimental protocol by a CCD video camera and projected onto a

monitor. During the procedure, continuous auditory white noise was applied to the
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subject by using a headphone in order to mask the noises of the shaker. By using

a response box that was custom made, subject responses were collected, and finally,

by means of a portable evoked potential amplifier (Micromed System Plus), evoked

potentials were recorded.

3.2.2 Stimuli

As it can be seen in Figure 3.2, the stimuli are made up of vibrations that have

cosine-squared ramps of 50 ms rise/fall times. The duration of each was 1 second

and evoked potential recording was performed throughout the trial. The stimulus

duration was 0.5s. The stimuli are formed by enveloping the burst sine waves of distinct

magnitudes. The stimulus started 0.2s after the beginning of the trial. The timing

diagram in Figure 3.2 applies to the evoked potential measurement step described

below.

Figure 3.2 Stimulus timing diagram of the experimental procedure
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3.3 Experimental Protocol

The experimental protocol was constituted of two fundamental steps, the former

of which is psychophysical threshold measurements, and the latter is the SEP recording

step. In the first step, an unmasked stimulus was applied to the participants at 40 Hz

frequency in a psychophysical detection task. After the first step, SEP recordings were

obtained at various stimulus intensity (NS, SL10, SL20, and SL30 dB) levels at 40 Hz.

3.3.1 Psychophysical Procedure

During experiments, a psychophysical procedure was performed initially. This

procedure consisted of a two-interval forced-choice task, which included adaptive track-

ing (three-down one-up for not necessarily consecutive correct responses) rule. By doing

this method, their tactile thresholds were evaluated without any criterion of partici-

pants. For this procedure, after every three correct answers, the stimulus amplitude

decreased 1 step; on the other hand, after every wrong choice, the intensity was in-

creased 1 step. This up-down rule was repeated until the average of the last 20 trials

within ±1 dB range for all subjects. At the end of this psychophysical procedure,

within this range, were recorded. During the procedure, the subject selected the in-

terval in which he or she sensed the stimulus. The stimuli were randomly presented

either in the first or second interval at every trial for threshold measurements at 40 Hz

stimulus.

3.3.2 Recording of Evoked Potential

During this step of the whole experiment, four electrodes were placed on the

scalp over the head, two electrodes placed over the forehead, and the other two placed

over the somatosensory cortex. Mechanical stimuli for the evoked potential procedure

were similar to those used in the threshold measurements. However, their amplitudes

were increased referenced to the threshold (sensation level: SL). All EPs were averaged
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100 times, and the recording duration was about 1s. For recordings, the sampling

frequency was adjusted to 2 kHz. In Figure 3.3, for the stimulus, CH1 was considered

as the test channel and CH2 for the control. CH1 data were collected by the difference of

the potential coming from two electrodes placed over contralateral (Cpc) and ipsilateral

(Cpi) on the human scalp. Cpi was attached to the negative end, and Cpc was attached

to the positive end of the amplifier. For four amplitude levels (no stimulus (NS), SL10,

SL20, and SL30 dB), the experimental protocol was repeated.

Figure 3.3 Measurement diagram of the SEP [8].

3.4 Analyses

During analysis, firstly, raw EEG data or SEP responses of all subjects for

CH1 and CH2 were monitored corresponding to the time. Secondly, the signals were

projected onto the frequency domain. In the frequency domain, firstly, the CH1 data of

each (7 subjects) subject was subtracted from its CH2 data and obtained for 4 different

SLs. Afterwards, CWT was performed with Morse Wavelet Transform by taking γ = 3

and P 2 = 60 and almost 10 bandpass filter per octaves in MATLAB [92]. The average

Time-Frequency plot was produced and displayed as a magnitude scalogram plot with

respect to the time and frequency axes by taking the subject average from those 4 SLs.
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In addition to the scalogram plot, wavelet coefficients were averaged in the time

and plotted as EEG bands with respect to the frequency to find overall EEG band

knowledge as wide-band (8-314 Hz). After that, the wide-band was separated into

small fragments as other EEG bands, alpha-beta (8-32 Hz), stimulus band (32-48 Hz),

low gamma (32-90 Hz), high gamma (90-314 Hz), and TWs (Ro comprises 0.2-0.3s or

the first 0.1s of the stimulus period recording period and Rd∗ contains 0.3-0.7s or last

0.4s of the stimulus duration). Lastly, the overall energy corresponding to time and

frequency was evaluated and statistically analyzed.

Statistical analyses were performed using the SPSS Statistics 27 computer pro-

gram. For the average amplitudes of theRd∗ andRo scalogram difference data, two-way

repeated-measures ANOVA was applied to the data with the within-subject factors of

sensation level and frequency band. To test within-subject effects, sphericity assumed

parameters were considered, and significant parameters were listed. Finally, in order

to collect post-hoc results, tests of pairwise comparisons were carried out by Fisher′s

Least Significant Differences in estimated marginal mean, and significant results were

noted.

Figure 3.4 Block diagram of the signal analysis steps
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4. RESULTS

4.1 Mechanical SEP Responses

In this section, raw data (mechanical SEP responses) outputs of all subjects for

two channels were shown (Figure 4.1 and Figure 4.2). The following signal processing

and statistical analysis were conducted by using these data. Figure 4.1 monitors SEPs

responses of the CH1 (test) channel, and Figure 4.2 represents SEPs of the CH2 (con-

trol) channel. Only for the S1 subject, SL10 data were excluded after experiments for

both channels.

As it can be seen in Figure 4.1, the SEP responses of S1, S2, and S7 were very

noisy. For S1 and S7, the responses were, firstly, diminished from NS to SL20 and

then, a considerable amount increased from 20 to 30dB SL. Furthermore, For S5 and

S6, the amplitudes were a little bit increased linearly. However, there were no clearly

increased trends for S3, S4, and S7.

Figure 4.1 CH1 average data outputs of all subjects
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According to Figure 4.2, compared to CH1 activities, only more minor changes

were able to be observed, which generally have no meaning because it was considered as

control channel. For S1 responses, there was a decrease from NS to 20dB SL, but then

it increased from 20 to 30dB. For only the S2 subject, there could be seen a positive

trend. For S3, S4, S5, S6, and S7 participants, any clear trends could not be observed

because CH2 is the control channel as mentioned.

Figure 4.2 CH2 average data outputs of all subjects

4.2 Time-Frequency Plots and EEG Bands

Each raw SEP response was projected onto the frequency domain, and all CH1

signals were subtracted from CH2 ones with respect to the subject and SL based, then

averaged them of all subjects for various SLs. After that, they monitored as average

scalogram plot (Figure 4.3). In the plot, red areas represent the highest while the

dark blue ones represent the lowest amplitudes. According to Figure 4.3, any periodic

response could not be found for stimulus (40 Hz) frequency. Furthermore, as it can
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be seen on the magnitude scalogram projection, for high-frequency levels (high gamma

band), there was a little bit diminished trend in terms of magnitude from NS to 10dB

SL. Afterward, there was a barely but visibly increase in magnitude from 10dB to 20

and 30dB SLs at the same frequency areas. However, any difference cannot be observed

for other frequency bands depending on the SLs.

Figure 4.3 Scalogram Plots of CH1 and CH2 difference data for all SLs

The data were separated into two different (Ro represent 0.2-0.3s of the time

course and Rd∗ is 0.3-0.7s of the recording time) time windows (TWs), and it was

averaged in time axis for both TWs, then it was plotted in order to show frequency

domain spectrum and see whether there was a prominent peak or not during the

stimulus (onset) period.

According to Figure 4.4, only 30dB SL visibly differ from other sensation levels

(NS, 10, and 20dB) in terms of amplitudes at higher frequency levels (stimulus, low

gamma, and high gamma bands) for Rd∗. However, any significant differences in peaks

among SLs could not be shown for either around stimulus or other frequency bands

(alpha-beta and wide-band).
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Figure 4.4 Rd∗ Wide-Band frequency domain responses for all SLs

In Figure 4.5, Ro magnitude responses of wide-band were plotted. These plots

did not show prominent peaks for low gamma, stimulus, and high gamma bands. On

the other hand, likewise Rd∗ TW, 30dB SL has higher amplitudes compared to other

SLs, as well.

Figure 4.5 Ro Wide-Band frequency domain responses for all SLs
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4.3 Average Magnitudes and Statistical Analysis

For sensation level, any significant differences were not able to be found. How-

ever, for overall Rd∗ data, the factor of frequency band was found as significant with

the p = 0.010 according to sphericity assumed value. Post-hoc test exhibited (Fisher′s

Least Significant Differences in estimated marginal means) that alpha-beta, low gamma

(p = 0.028) and stimulus band (p = 0.023) were significantly different, but there was

not found a significant correlation between alpha-beta and wide-band. There was no

significant difference between high gamma and resting (low gamma, stimulus band, and

wide-band) frequency bands. Moreover, there was a statistically significant difference

between low gamma and wide-band with the p-value of 0.030; however, there was no

significant difference between low gamma and stimulus band, and stimulus band and

wideband (Figure 4.6 and Table 4.1). Even more, observed power of this analysis was

also very weak since observed power of SL and frequency band parameters were found

as 0.131 and 0.420 respectively.

Figure 4.6 Amplitudes of channel difference data for Rd∗ time window in the various frequency
bands

Furthermore, for Rd∗ NS, stimulus band and the wide-band was observed as
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significant p = 0.004. Like NS, there was a statistically significant effect between

stimulus band and wide-band with the p-value of 0.032 for 10dB SL, and also, stimulus

band and alpha-beta were observed as significant (p = 0.026). However, for 20dB and

30dB SL, there were no significant main effects among EEG frequency bands (Table

4.2). Even more, as it can be seen on the Table 4.3, there is no effect of the frequency

band energies on SL correlations.

For overall Ro data, SL was not significant likewise Rd∗ data. Frequency band

had a significant main effect (p = 0.006) corresponding to sphericity assumed values.

According to post-hoc there was a statistically significant difference between alpha-

beta and low gamma (p = 0.015), stimulus band (p = 0.016), wide-band (p = 0.047),

but there was no difference between high gamma and remaining (low gamma, stimulus

band, and wide-band) bands. A significant difference was found between low gamma

and the wide-band (p = 0.012), but low gamma and stimulus band were not found

as significant. Lastly, There was no significant difference between stimulus band and

wide-band (Figure 4.7 and Table 4.1).

Figure 4.7 Amplitudes of channel difference data for Ro time window in the various frequency bands
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Moreover, For NS Ro data, significant main effect was found between stimulus

band and wide-band (p = 0.044) likewise Rd∗. For 10dB SL, there was a statistically

significant effect between alpha-beta and low gamma (p = 0.009), stimulus band (p =

0.001). Wide-band and low gamma (p = 0.003), and stimulus band (p = 0.004) were

observed as statistically significant. But, for 20dB and 30dB SL, any significant effect

could not be found (Table 4.2).

Furthermore, for Ro low-gamma, there was a significant correlation between

SL30 and NS (p = 0.025), SL20 (p = 0.023) (Table 4.3). However, statistical power of

SL was found 0.11 and frequency band parameter was 0.165, which were very low, in

Ro TW.

Table 4.1
Pairwise comparisons for various sensation levels and frequency bands for two TWs.

Analysis Parameter Comparisons Ro Rd∗

Sensation Level NS - 10dB SL p 0.989 0.869

NS - 20dB SL p 0.988 0.467

NS - 30dB SL p 0.362 0.445

10dB SL - 20dB SL p 0.945 0.469

10dB SL - 30dB SL p 0.114 0.176

20dB SL - 30dB SL p 0.141 0.475

Frequency Band Alpha-Beta - High Gamma p 0.109 0.104

Alpha-Beta - Low Gamma p 0.015* 0.028*

Alpha-Beta - Stimulus Band p 0.016* 0.023*

Alpha-Beta - Wide Band p 0.047* 0.056

High Gamma - Low Gamma p 0.500 0.581

High Gamma - Stimulus Band p 0.637 0.750

High Gamma - Wide Band p 0.273 0.227

Low Gamma - Stimulus Band p 0.993 0.942

Low Gamma - Wide Band p 0.012* 0.030*

Stimulus Band - Wide Band p 0.084 0.131
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Table 4.2
The effect of frequency band energies on correlations of sensation levels for two TWs.

Sensation Level Frequency Band Ro Rd∗

NS Alpha-Beta - High Gamma p 0.611 0.614

Alpha-Beta - Low Gamma p 0.253 0.281

Alpha-Beta - Stimulus Band p 0.227 0.091

Alpha-Beta - Wide Band p 0.448 0.467

High Gamma - Low Gamma p 0.137 0.217

High Gamma - Stimulus Band p 0.107 0.227

High Gamma - Wide Band p 0.864 0.830

Low Gamma - Stimulus Band p 0.740 0.338

Low Gamma - Wide Band p 0.083 0.104

Stimulus Band - Wide Band p 0.044* 0.004*

10dB SL Alpha-Beta - High Gamma p 0.174 0.075

Alpha-Beta - Low Gamma p 0.009* 0.084

Alpha-Beta - Stimulus Band p 0.001* 0.026*

Alpha-Beta - Wide Band p 0.062 0.074

High Gamma - Low Gamma p 0.254 0.820

High Gamma - Stimulus Band p 0.169 0.659

High Gamma - Wide Band p 0.458 0.100

Low Gamma - Stimulus Band p 0.080 0.687

Low Gamma - Wide Band p 0.003* 0.125

Stimulus Band - Wide Band p 0.004* 0.032*

20dB SL Alpha-Beta - High Gamma p 0.089 0.708

Alpha-Beta - Low Gamma p 0.083 0.347

Alpha-Beta - Stimulus Band p 0.114 0.320

Alpha-Beta - Wide Band p 0.079 0.556

High Gamma - Low Gamma p 0.653 0.611

High Gamma - Stimulus Band p 0.811 0.820

High Gamma - Wide Band p 0.137 0.892

Low Gamma - Stimulus Band p 0.450 0.773

Low Gamma - Wide Band p 0.118 0.232

Stimulus Band - Wide Band p 0.462 0.551

30dB SL Alpha-Beta - High Gamma p 0.884 0.943

Alpha-Beta - Low Gamma p 0.636 0.491

Alpha-Beta - Stimulus Band p 0.717 0.161

Alpha-Beta - Wide Band p 0.960 0.821

High Gamma - Low Gamma p 0.540 0.292

High Gamma - Stimulus Band p 0.685 0.383

High Gamma - Wide Band p 0.764 0.703

Low Gamma - Stimulus Band p 0.993 0.530

Low Gamma - Wide Band p 0.418 0.180

Stimulus Band - Wide Band p 0.694 0.244
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Table 4.3
The effect of SLs on correlations of frequency band energies for two TWs.

Frequency Band Sensation Level Ro Rd∗

Alpha-Beta NS - 10dB SL p 0.989 0.329

NS - 20dB SL p 0.736 0.137

NS - 30dB SL p 0.761 0.721

10dB SL - 20dB SL p 0.449 0.699

10dB SL - 30dB SL p 0.584 0.929

20dB SL - 30dB SL p 0.923 0.726

High Gamma NS - 10dB SL p 0.614 0.928

NS - 20dB SL p 0.751 0.580

NS - 30dB SL p 0.470 0.342

10dB SL - 20dB SL p 0.351 0.531

10dB SL - 30dB SL p 0.559 0.100

20dB SL - 30dB SL p 0.148 0.297

Low Gamma NS - 10dB SL p 0.974 0.734

NS - 20dB SL p 0.698 0.266

NS - 30dB SL p 0.025* 0.149

10dB SL - 20dB SL p 0.608 0.370

10dB SL - 30dB SL p 0.058 0.128

20dB SL - 30dB SL p 0.023* 0.468

Stimulus Band NS - 10dB SL p 0.319 0.857

NS - 20dB SL p 0.200 0.095

NS - 30dB SL p 0.074 0.209

10dB SL - 20dB SL p 0.149 0.080

10dB SL - 30dB SL p 0.116 0.126

20dB SL - 30dB SL p 0.219 0.194

Wide-Band NS - 10dB SL p 0.828 0.755

NS - 20dB SL p 0.769 0.855

NS - 30dB SL p 0.738 0.593

10dB SL - 20dB SL p 0.180 0.802

10dB SL - 30dB SL p 0.695 0.273

20dB SL - 30dB SL p 0.334 0.429
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5. DISCUSSION

In this thesis, the influence of 40 Hz vibrotactile stimulation on human EEG

over the somatosensory cortex was observed. For observations, The stimulus parameter

(SLs), onset and remaining time (TWs), and frequency band were considered. In order

to verify this, extracted CH1 brain responses were subtracted from CH2 ones and then

were analyzed by TFA. After that, the time-frequency information was averaged for

specific regions either in the time or frequency domain for seven subjects for each

stimulus level.

For scalogram (Figure 4.3) and frequency domain plots (Figure 4.4 and Figure

4.5), clear peaks or periodic patterns were not able to be observed, unlike responses in

mechanoreceptive fibers and cortical neurons, which may be related to the character-

istic feature of RA like fibers, periodic firings are not produced by P neurons in the

S1 cortex at the low stimulus level [93, 94]. Likewise pointed out in the literature,

those time-frequency figures and power plots could not show such precise results for

lower stimulus intensities. On the contrary, robust spike activities can be recorded

from mechanoreceptive fibers and cortical neurons at these low stimulus levels. How-

ever, when the magnitudes were averaged and statistically analyzed, SL30 and NS

were, parametrically, found as significant for only Ro low-gamma, but other ones were

not significant, which displays that the relationship between stimulus intensity and

activation could not be established in this EEG data.

Even more, the frequency band parameter was analytically observed as signifi-

cant (Figure 4.6 and Figure 4.7). These analyses were not done in previous works that

are related to this experiment [95, 8]. For both Rd∗ and Ro data, significant activities

were observed between alpha-beta and low gamma, alpha-beta and stimulus band, low

gamma and wide-band. However, any significant correlation was not observed for other

frequency bands. In other words, the stimulus band (32-48 Hz) and low gamma (32-90

Hz), which also covers the stimulus band, bands may differ from other frequency bands
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during the whole stimulus period (0.2-0.7s) since there was no significant correlation

between TWs (Rd∗ and Ro). Furthermore, retrospectively on human experiments, it

was shown that S1 activity was directly modulated with attention, and by the atten-

tion, it may be significantly enhanced [96, 97, 98, 99, 100]. It was mentioned that

concentration or attention led to gamma activities [101]. In our experiments, subjects

may extremely focused on the experiment, so this may be another reason why the low

gamma-band activity was significant.

The average data of 7 subjects in each stimulus level was much more unclear,

so the overall effect of SL could not be shown. However, for SL10 dB in both Rd∗ and

Ro, there were somewhat more significantly correlated frequency bands compared to

NS, but this was not observed for other SLs (SL20 and SL30 dB). It can partially be

deducted that although SL has no significant main effect, more frequency differences

can be observed to some extent. It means that if the stimulus intensity is slightly

increased, such as from NS to 10dB, more frequency bands could be found as significant.

Furthermore, as it was, previously, mentioned, SL30 and NS were significant for Ro low-

gamma band. It can be asserted that there can be an influence of the presence of their

intensity adequately high or the absence of the stimulus on frequency parameters to

study somatosensory processing. This result is similar to previous studies in literature,

as well [95, 8, 15].
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6. CONCLUSIONS

In this thesis, SL, TW, and frequency band parameters were observed to de-

termine if there were an influence on EEG over the S1 cortex for 40 Hz vibrotactile

stimulus with non-invasive recording methods, and they were substantial criteria in

somatosensory processing and psychophysical experiments. According to findings, SL

and TW had no overall effect on this EEG. The influence of the SL was shown only in a

certain type of frequency band (for low gamma) and TW (for Ro), which may suggest

that neural activity may increase at the onset of vibrotactile stimulation. Overall, this

particular experimental data could not distinguish psychophysical parameters by the

presented methods.
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7. LIMITATIONS

Most of the subjects were university students in the research, so it does not

comprise the whole population. Since the tactile sensitivity diminished corresponding

to age, participants were selected within a narrow (22-29) range in terms of age. Very

few amounts of subjects were participated, which may be related to the long duration

of the experiments.

Finding electrode location was somewhat difficult on every subject, which may

negatively influence the collected data. Furthermore, during experiments, subjects

were moved due to missing comfort, which resulted in artifacts of motion. Although

the procedure was conducted in an isolated environment, there were still much more

noises for some subjects′ recordings. Even more, each signal was averaged 100 times,

yet still, the background noises could not be reduced sufficiently, which implicates

that non-invasive recording methods cannot be a good way to observe psychophysical

parameters. The solution to this may be to extract these data by invasive (e.g. ECoG)

recordings.

Furthermore, observing single-trial activity can sometimes be important, but

the experimental setup automatically averaged the data, so they were not collected as

trial-by-trial, which restricts us from analyzing and observing the trial-by-trial activity

since some recordings were noisy, and this was also not feasible.
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