
EPILEPTIC SEIZURE PREDICTION USING MACHINE
LEARNING AND DEEP LEARNING METHODS

by

Burak Gözütok

B.S., in Electrical and Electronics Engineering, Istanbul Sehir University, 2019

B.S., in Computer Engineering, Istanbul Sehir University, 2019

Submitted to the Institute of Biomedical Engineering

in partial fulfillment of the requirements

for the degree of

Master of Science

in

Biomedical Engineering

Boğaziçi University

2021



iii

ACKNOWLEDGMENTS

First of all, I would like to thank my thesis advisor, Prof. Dr. Ahmet Ademoğlu,

for his guidance and support in my studies. His academic and personal contributions

to me are invaluable.

I would also like to thank my colleagues for the time we shared in our Neurosignal

Analysis Laboratory. Also, I would like to thank all my other professors at Boğaziçi

University for inspiring me.

Finally, I would like to thank my family. Their support has always been with

me throughout my education life. I could not have completed this thesis without their

sincere support.



iv

ACADEMIC ETHICS AND INTEGRITY STATEMENT

I, Burak Gözütok, hereby certify that I am aware of the Academic Ethics

and Integrity Policy issued by the Council of Higher Education (YÖK) and I fully

acknowledge all the consequences due to its violation by plagiarism or any other way.

Name : Signature:

Date:



v

ABSTRACT

EPILEPTIC SEIZURE PREDICTION USING MACHINE
LEARNING AND DEEP LEARNING METHODS

Epilepsy is one of the most common neurological diseases in the world which

negatively affects the daily life of a patient. Predicting epileptic seizures is of great im-

portance for healthcare professionals and patients. The electroencephalography (EEG),

which allows for registering brain activity with the help of electrodes placed on the

scalp, is generally used to diagnose and monitor epilepsy. In this study, automatic

seizure prediction was performed using CHB-MIT dataset which contains EEG data

recorded at Boston Children’s Hospital. Support Vector Machines (SVM), a common

machine learning algorithm chosen as the primary method within this thesis’s scope,

and three different deep learning methods were compared. The first of these meth-

ods was long short term memory (LSTM) classifier with convolutional autoencoder

which did not need any feature extraction. The second method used the spectrograms

obtained by preprocessing the EEG data which were fed into a convolutional neural

network (CNN) based classifier. The last method was based on converting the EEG

data into three-dimensional images by applying source localization and performing

classification with CNN. Among the methods used, the best result was obtained using

source localization based CNN classification with 89.06% specificity, 92.58% sensitivity

and 90.41% accuracy. Computational cost of three methods in terms of runtime effi-

ciency were also compared, and it was observed that the SVM, which yielded the lowest

classification performance with 74.07% accuracy, worked significantly faster than other

methods.

Keywords: EEG, Epilepsy, Seizure Prediction, Deep Learning, Autoencoder, CNN
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ÖZET

MAKİNE ÖĞRENİMİ VE DERİN ÖĞRENME
YÖNTEMLERİYLE EPİLEPTİK NÖBET TAHMİNİ

Epilepsi, dünya üzerinde en yaygın nörolojik hastalıklardan biridir ve hasta-

ların günlük yaşamlarını yakından etkilemektedir. Epileptik nöbetlerin önceden tah-

mininin yapılabilmesi sağlık çalışanları ve epilepsi hastaları için ciddi önem taşımak-

tadır. Epilepsinin teşhisi ve izlenmesinde genellikle kafa derisi üzerine yerleştirilen elek-

trotlar yardımıyla beyin aktivitesinin izlenmesini sağlayan Elektroensefalografi (EEG)

yöntemi kullanılmaktadır. Bu çalışmada, Boston Çocuk Hastanesinde kayıt altına

alınan EEG verilerini içeren CHB-MIT verisi kullanılarak otomatik nöbet tahmin-

lemesi yapılmıştır. Çalışma kapsamında birincil yöntem olarak bir makine öğren-

mesi türü olan SVM seçilmiş ve bununla beraber üç farklı derin öğrenme yöntemi

kıyaslanmıştır. Bu yöntemlerin ilki, herhangi bir öznitelik çıkarmaya ihtiyaç duymayan

Evrişimli Otokodlayıcı girdili LSTM sınıflandırıcıdır. İkincisi, EEG verisinin ön işlen-

mesi ile spektrogramlarının elde edilip daha sonrasında Evrişimsel sinir ağı (CNN)

temelli bir sınıflandırıcı ile ele alındığı yöntemdir. Denenen son metod ise, EEG veri-

lerine kaynak yerelleştirme uygulayarak üç boyutlu kayıtlara dönüştürmek ve bunlar üz-

erinden CNN ile sınıflandırma gerçekleştirmektir. Kullanılan yöntemler arasında en iyi

sonuç 89.06% özgüllük, 92.58% duyarlılık ve 90.41% doğruluk ile kaynak yerelleştirme

bazlı CNN Sınıflandırma kullanılarak elde edilmiştir. Çalışma kapsamında ayrıca yön-

temlerin çalışma süreleri kıyaslanmış ve 74.07% doğruluk ile en düşük sonucu veren

SVM’in diğer yöntemlere kıyasla ciddi oranda hızlı çalıştığı görülmüştür.

Anahtar Sözcükler: EEG, Epilepsi, Nöbet Tahminleme, Derin Öğrenme, Otokod-

layıcı, CNN
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1. INTRODUCTION

Electroencephalogram (EEG) is a method of recording the electrical potential of

the brain through electrodes placed on the scalp [4]. EEG is a widely used method for

detecting changes in brain activity, and abnormal EEG patterns can arise from differ-

ent reasons, such as epilepsy, sleep disorders, and brain damage. The term "epileptic

seizure" refers to a set of diseases characterized by the repeated discharge from the

cerebral cortex, which causes abnormal brain activity [5]. An epileptic seizure com-

prising this abnormal brain activity is a symptom of epilepsy. Epilepsy is a crucial

disease affecting approximately 1% of the world’s population [6]. Neurologists usually

analyze EEG by visual inspection. However, examining long EEG recordings is time-

consuming and imposes a significant burden on neurologists. In this regard, systems

that will facilitate the analysis of EEG signals or completely automate this process

in detecting epilepsy are of great importance. According to [6], loss of consciousness

caused by epileptic seizures, which might be ordinarily harmless, can be fatal when driv-

ing, crossing a busy street or swimming. Besides being a significant life-threatening

disease, epilepsy can have a crucial psychological and social impact on patients due

to unexpected seizures. For these reasons, in addition to detecting epileptic seizures,

researchers also emphasize predictive methods. An early warning system, which can be

created by predicting seizures, can enable healthcare professionals to take the necessary

precautions for the patient. Additionally, detecting the incoming seizure by examining

the EEG signals will also lead to neuroprostheses that will suppress the neural brain

foci that cause the epileptic seizure with electrical signals.

EEG classification problems can be the subject of many studies for many pur-

poses. They are separated by different titles, according to the method used and the

problem solved. Besides seizure prediction, which is the subject of this study, there

are several other problems to be solved using EEG such as motor imagery and sleep

scoring. The methods used in this regard also differ based on the problem. A recent

study [7], uses feature extraction with common spatial pattern (CSP) filters, which is
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similar to the machine learning approach employed in this thesis. With the widespread

use of deep learning algorithms and the easier access to processing power, studies in

this area have also increased. Additionally, deep learning algorithms also have many

applications. For example, [8, 9, 10, 11] use CNN with deep learning. Of these, [8]

prefers to visualize the EEG data with spectral maps and classifies them using those

images, and the lowest error rate they obtained was with the CNN model that they

have developed. The study in [9] also examined the problem of seizure detection by

converting EEG data into 3D visuals and using CNN. The study in [10] performed

classification by creating spectrogram images from EEG data. Another study [11] used

the short time fourier transform (STFT) process for this visualization. Besides, LSTM

method was applied in [2, 12, 13]. While [2] and [13] used raw data as input to LSTM,

[12] extracted several EEG features from cross-correlation, time-domain, frequency-

domain and graph theory and then input these attributes into LSTM. Studies in [14],

and [15] applied the autoencoder method to classify epileptic EEG data. One of the

seizure prediction studies [15] used a convolutional autoencoder, while [14] which was a

seizure detection study, preferred the stacked autoencoder method. All these developed

methods need to be applicable in real-time to achieve their goal. For this reason, [16],

which performed classification with CNN, drew attention to this issue and discussed

the running time cost of the method that they proposed.

In this study, different preprocessing methods and deep learning methods were

employed to predict epileptic seizures from EEG data, and these were compared with

a conventional machine learning method called SVM. The first deep learning method

is an LSTM classifier based on convolutional autoencoder using raw data. The second

method is to classify the data by the CNN method after preprocessing and estimating

spectrogram images. Finally, CNN classifier was used to classify 3D source images

obtained by source localization of EEG data.

The organization of the thesis is as follows: Chapter 2 gives general background

information about seizure prediction, machine learning classification, deep learning

classification, and EEG preprocessing. In Chapter 3, data, evaluation method and the

models used in this study are explained in detail. Chapter 4 demonstrates the result
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of each classifier separately. In Chapter 5, the discussion of the results is presented.

Finally, in Chapter 6 conclusions and future recommendations are presented.
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2. BACKGROUND

2.1 Seizure Prediction

The uncertain timing of epileptic seizures makes the life of epilepsy patients dif-

ficult. In this regard, it is crucial to develop seizure prediction systems as a step ahead

of seizure detection systems. An early warning system will make patients feel ready for

seizures and prevent unpredictable, dangerous consequences. Epileptic EEG recordings

are categorized into four different classes as interictal, preictal, ictal, and postictal [17].

Preictal state refers to the period just before the seizure. The ictal state refers to the

seizure time, and the postictal state refers to the time following the epileptic seizure.

The remaining non-seizure periods are called interictal. Epileptic seizure states are

demonstrated in Figure 2.1. Rasekhi et al. define the seizure prediction problem as a

binary classification problem between preictal and non-preictal states [18].

Figure 2.1 Epileptic seizure states [1].

One of the studies conducted in this area [19] states that the main weakness in

seizure prediction studies is the lack of comprehensive testing in seizure-free baseline

data and the failure to test the performance of the algorithm in different studies and

to reduce it to the essential components of multichannel data. In addition, due to the
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differentiation of EEG activity from person to person, seizure prediction and detection

are generally patient-specific [20].

2.2 Machine Learning Classification

Machine Learning is the modelling of systems with computers that make pre-

dictions by making inferences from data with mathematical and statistical operations.

Machine learning models aim to generalize over the data given for training by em-

ploying all available data. Accordingly, it extracts the parameters of the algorithm

by understanding the underlying structure of the training data. However, while doing

this, it is necessary to confirm that the model does not choose the simple way of mem-

orizing the training data (over-fitting) instead of learning the structure. Therefore,

training and validation data should be separate, and the model trained with training

data should be evaluated with validation data.

When using machine learning methods, pre-processing and feature extraction

are usually applied to the data beforehand. In this way, unnecessary information is

removed from the data, allowing for better generalization of the model with less effort.

These pre-processing steps vary according to the problem and data type.

There are many machine learning algorithms in the literature, such as nearest

neighbor, decision trees, naive bayes, linear regression and support vector machines. In

this study, SVM was employed as the machine learning method to be compared with

deep learning methods.

2.2.1 Support Vector Machines (SVM)

SVM [21] can be defined as a vector space based machine learning method that

finds a decision boundary between the two classes that are far from any point in the

training data. The SVM method can be used for both regression and classification
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problems.

Figure 2.2 Optimal hyperplane using support vector machines.

SVM algorithm which is visualized in Figure 2.2, finds the closest points from

both classes to the decision boundary, called support vectors. Distance between these

support vectors is called the margin. The purpose of the SVM is to maximize the mar-

gin, and the decision boundary where it is maximum is called the optimal hyperplane.

This optimal hyperplane created with the SVM algorithm is the separation boundary

of the two classes, and new samples can be classified according to which direction they

stand relative to the boundary. SVM problem is given by the following optimization

problem:

Find max
w,b

M (2.1)

s.t.
1

‖w‖
yi(w.xi + b) ≥ M ≥ 0 ∀xi, i = {1, ...,m} (2.2)

where m is the number of samples, x ∈ Rn is the input vector, w ∈ Rn is a vector

of parameters (weight vector), b ∈ R is a constant of hyperplane’s equation, M is the
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orthogonal distance between the hyperplane and each training point and yi ∈ {−1, 1}

indicates the class to which xi belongs.

2.3 Deep Learning Classification

Deep learning is a field of study that covers artificial neural networks and sim-

ilar machine learning algorithms with one or more hidden layers. Classical machine

learning models are still far from what humans can do in complex problems with their

requirements, such as feature extraction. Deep learning models simulate the function

of neurons for the human brain and process information with multiple layers. While

machine learning models require improvement with manual analysis of the results, deep

learning can understand its prediction error and improve itself with the artificial neural

network it contains during the training process. Furthermore, thanks to the complex

learning structure of deep learning models, they can give successful results by working

on the original data without feature extraction. Deep learning has various architectural

types with different usage areas such as deep neural networks, recurrent neural net-

works, convolutional neural networks. Additionally, deep learning models can handle

unsupervised and supervised training according to the problem type.

Deep learning is a method frequently used in the field of EEG classification,

and it is used in topics such as emotion recognition, motor imagery, mental workload,

seizure detection, sleep stage scoring [22].

2.3.1 Recurrent Neural Networks (RNN) and LSTM

RNN is a specialized artificial neural network structure that uses sequence and

time data. The architecture of RNN in which inter-node connections are routed back-

wards allows previous outputs to be used as inputs. In this way, RNN can exhibit

time-based behaviour. The structure of RNN is demonstrated in Figure 2.3. How-

ever, the vanishing gradient problem, which can be experienced when using RNNs, can
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Figure 2.3 Structure of RNN.

weaken the model’s success. Loss of weights with back-propagation is an unavoidable

problem for RNN. Since chain rules set the weights in each layer, the gradient values

will get exponentially smaller and closer to zero as the model steps back. As a solu-

tion to this problem, the LSTM model [23], which is a kind of RNN model, has been

developed. LSTMs have several gates that control whether new information can be

transferred to the next, and with these gates, the gradient flow is better controlled

and long-term bonds are conserved. LSTM cell architecture is demonstrated in Figure

2.4. The input gate (it) determines what information is entered into the cell and its

equations are given as:

it = σ (W i[ht−1, xt] + bi)

C̃t = tanh (WC . [ht−1, xt] + bc)

(2.3)

where t is timestamp, σ is sigmoid function, xt is current input at time step t, ht−1

is previous hidden state, Wi is weight matrix of sigmoid operator between input and

output gate, bi and bc are bias vectors, C̃t value generated by tanh andWc weight matrix

of tanh operator between cell state information and network output. The forget gate

(ft) decides what information should be ignored and what information should be kept

and its equation is given as:

ft = σ (W f [ht−1, xt] + bf ) (2.4)

where bf is bias vector and Wf is weight matrix between forget gate and input gate.

The output gate (ot) is used to read the outputs from the cell and its equations are
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given as:

ot = σ ( W o [ht−1, xt] + bo )

ht = ot ∗ tanh(Ct)

(2.5)

where bo is bias vector and Wo is weight matrix of output gate. With its structure

suitable for sequence data, LSTM is used frequently in the classification of EEG data

which already contains time information.

Figure 2.4 LSTM cell architecture [2].

2.3.2 Convolutional Neural Networks

CNN [24] is a deep learning algorithm that is generally used in image processing

and takes images as input, usually consisting of convolution and pooling layers. Con-

volutional neural networks perform an automatic feature extraction with convolution

operations on the image data. CNN architecture is demonstrated in Figure 2.5. EEG

data when converted into images such as spectrograms, fourier feature maps and topo-

graphic maps can be fed into CNN for classification. According to a review by Craik et

al. [22] 20% of the EEG classification studies convert data into image format to be as

an input to the model. 41% of them classify with various feature calculations. Besides,
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some algorithms consider two dimensional EEG samples consisting of channels versus

time and apply the CNN algorithm directly to the raw data [25].

Figure 2.5 CNN Architecture.

2.3.3 Convolutional Autoencoders

Autoencoder is a kind of artificial neural network used for unsupervised learning.

It is a structure that learns to reduce the training data to a small size representation and

convert it back to the original from this small-sized sample. This two-way structure

consists of an encoder and a decoder. An exemplary auto-encoder architecture is

shown in Figure 2.6. Since these models aim to recover the original data from the low-

dimensional representation, they learn to make the most lossless reduction and preserve

important information. In this respect, autoencoders can be used as unsupervised

feature extractors. It is also often used in size reduction problems, as it learns to

obtain a small-sized representation of the data. Besides, CA is an autoencoder type in

which CNN is used. Convolution and pooling layers play a role in the encoder part of

CA, while deconvolution and unpooling layers are used in the decoder part. CA have

many uses, from noise reduction [26] to feature extraction [27] on EEG.



11

Figure 2.6 Auto-encoder example.

2.4 EEG Preprocessing and Feature Extraction

Although it is known that the main difference between deep learning algorithms

and classical machine learning algorithms is that deep learning does not need feature

extraction, feature extraction still can be used in deep learning to refine the model

further. In addition, the application of pre-processing may also affect classification

success. These pre-processing steps can be general or domain-specific, and there are

several methods for EEG pre-processing. These can be ordinary methods such as

bandpass filtering or they can be more complex as power spectrum, time-frequency

analysis or parametric modeling.

2.4.1 Sliding Window Approach for EEG Inputs

EEG data containing seizure information can consist of different classes in a

single recording and is hard to process in a single pass because it consists of long

recordings (measured in hours) for each epileptic condition. For this reason, the sliding
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window approach is used, which divides the data into different windows in the time

axis. These windows consist of two distinct variables as the length of the window (L)

and percentage of overlap or displacement (D) [3]. Appropriate L and D may vary

depending on the problem and data. For example, [15] used 5-second non-overlapping

windows, the study [28] used 50% overlapping 10-second windows for preictal, 75%

overlapping 10-second windows for interictal, and [29] used 30-second non-overlapping

windows. The sliding window method is demonstrated in Figure 2.7.

Figure 2.7 Sliding windows [3].

2.4.2 Bandpass Filtering

Bandpass filtering is an application of signal filtering that transmits frequencies

within a specific range and attenuates frequencies outside that range. It is a widely used

method to remove physiological artifacts and noise from EEG signals and to extract the

frequency in a specific range of interest. The ideal frequency range may vary according

to the problem to be solved. EEG frequency bands, which are categorized according to

their functional characteristics, are generally used when choosing the frequency range.
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These can be listed as Delta band (1-4 Hz), Theta Band (4-7 Hz), Alpha band (8-12

Hz), Beta band (12-30 Hz) and Gamma Band ( 30 - 100 Hz) [30].

2.4.3 Common Spatial Patterns

CSP [31] is a feature extraction method widely used in signal processing. It tries

to maximize the distinguishability between two classes using spatial filters [32]. The

CSP method splits the signal into additive subcomponents, and these components can

be used as features. Let X ∈ RNxT denote the EEG signal, where N is the number of

channels and T is the number of samples. Then, the spatial covariance matrix of trial

can be represented as:

R =
XXT

tr(XXT )
(2.6)

Then, composite spatial covariance can be calculated as:

R = R1 +R2 = U ΣUT (2.7)

where R1 and R2 denotes averaged normalized covariance over all trials of each group

and U denotes the matrix of eigenvectors and Σ denotes the diagonal matrix of corre-

sponding eigenvalues. The full projection matrix is formulated as:

W = BT Σ− 1
2 UT (2.8)
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where B denotes the matrix of eigenvectors for whitened spatial covariance matrix. For

features, the corresponding n eigenvector is used from the beginning and end when the

eigenvalues are sorted. Then feature vector can be calculated as:

Z = W TX (2.9)

fq = log (
var(zq)∑2n
i=1 var(zi)

) (2.10)

where zq indicates the q-th row vector of Z and fq represents the 2n dimensional feature

vector [33].

2.4.4 Spectrograms

The spectrogram is a visualization method that shows the time-dependent vari-

ation of power spectra at different frequencies. Spectrograms usually consist of two-

dimensional (time x frequency) visual patterns that show the power variation over

frequency and time with colour dimension. Spectrum, on the other hand, shows the

power distribution of the frequency at a particular time. The continous and discrete

power spectrum formula is:

PS(f) =
1

T

∫ T

0
rxx(t)e

−j2πmf1tdt m = {0, 1, 2, 3...} (2.11)

PS[m] =
N−1∑
n=0

rxx[n]e−
j2πmn
N m = {0, 1, 2, 3...N} (2.12)

where rxx(t) and rxx[n] are autocorrelation functions [34]. For the spectrogram calcula-

tion, the signal is divided into windows of equal lengths and the spectrum is calculated

for each window. The spectrogram can be obtained by displaying the magnitudes for
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each window with a colourmap on an image. The spectral analysis of actual data dif-

fers from the ideal spectrum due to the data’s discrete, finite and aperiodic nature. A

method known as multitaper spectrum [35] is used for the spectral estimation to be

more accurate and close to the true spectrum. This method reduces estimation bias by

taking an average of many independent estimations from the same sample. Also, all of

the samples use "taper" functions, which reduces bias in single samples. The detailed

application of this method is explained in the study [35].

2.4.5 EEG Source Localization

Source localization is the process of identifying from which part of the brain

the activities in the brain originates. By using source localization, EEG signals can

be converted to 3D source images. The location and intensities of each active source

are determined by inverse problem solving using regularization or Bayesian methods

[36]. If available as a head model, a patient-based MRI model is preferred, but if not,

general models such as MNI brain can also be used [37]. Minimum norm estimation is

used here as an inverse method for projecting the sensor data measured from the scalp

electrodes to the source space locations defined on the tessellated MNI cortex model.

In the brain maps produced by this method, the brain electrical activity can be

seen, and even the differences between preictal and interictal stages can be observed

for some cases. The images of preictal and interictal windows of Subject 1 in different

time windows estimated by this method are demonstrated in Figure 2.8.
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Figure 2.8 10 sec single channel EEG data segments for preictal (above left) and interictal stages
(above right). Distribution of average power over 10 sec window for the multichannel EEG data of
preictal (below left) and interictal (below right) stages projected to source space.
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3. METHODOLOGY

3.1 Data

In this study, Physionet CHB-MIT Scalp EEG Database [38, 39] was used as

data. This data includes EEG recordings of epilepsy patients recorded at Children’s

Hospital Boston. The data pool contains 23-channel EEG recordings of 22 subjects

and 198 seizures in total. Electrode positions in these recordings are selected according

to the International 10-20 system, and the sampling rate of the recordings is 256 Hz.

The dataset contains many different record files for each patient. While some of these

recordings are regular recordings, others are moments of epileptic seizures. Seizure

start and end times are labelled on the data.

Figure 3.1 Sample signal from CHB-MIT scalp EEG database.
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To predict the seizure in the EEG, the preictal state, which is the moment just

before the seizure, must be determined. For this reason, classification will be between

interictal states and preictal states, as in [18]. Preictal and interictal states should be

selected manually, as the available data only includes seizure moments. For this, the

interval before a specific time of each seizure should be selected as the preictal state.

In this study, different preictal lengths were employed in the baseline model and how

they were determined will be explained in the next section. Among the 15, 30 and

60-minute intervals tried, it was seen that the worse result was the 60-minute preictal

selection. Since there was no significant difference in the results between 15 and 30, 30

minutes was preferred to predict the seizure earlier. These results can be seen in Table

3.1.

Table 3.1
Ideal preictal length comparision.

Specificity Sensitivity FPR AUC Accuracy

15 min 78.64% 80.03% 0.21 79.33% 79.48%

30 min 78.67% 78.32% 0.21 78.49% 79.04%

60 min 77.47% 72.23% 0.22 74.85% 75.54%

The number of seizures in the data of each subject is listed in Table 3.2. Some

conditions have been imposed to correctly distinguish between interictal and preictal

times from data labelled seizure times. Firstly, the 60-minute time after the seizure

was determined as postictal and not included in the interictal state. Secondly, despite

the preictal length chosen as 30 minutes, the minimum preictal time length was limited

to 15 minutes if there was not enough preictal recording due to the lack of pre-seizure

recording or because it was too close to the previous seizure. The selected samples and

subjects that did not meet these conditions were excluded from the data.

While processing the data, a balanced distribution of data was formed by se-

lecting an equal number of interictal and preictal samples for each subject. After-

wards, many different samples were created by dividing the data into 10-second non-

intersecting time windows which corresponds to 2560 time points in a 256 Hz frequency
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signal.

Table 3.2
Number of seizures per subject.

Subject Number of seizure

1 7

2 3

4 4

5 5

8 5

9 4

16 10

18 6

23 7

3.2 Machine Learning Model (Baseline)

In the first method chosen for the classification problem, the SVM, a machine

learning model, was preferred. In order to denoise the signals and obtain the signal

information of interest, the EEG data were firstly filtered between 0.5 and 45 Hz with

a Finite Impulse Response (FIR) band-pass filter. Afterwards, feature extraction was

performed on 10-second signal segments with the CSP method using the Python MNE

Library [40], and by using these segments, data were classified as binary (preictal or

interictal) with the SVM classifier. The number of components in which the EEG

signal was decomposed in the CSP method was determined as eight due to different

trials. The scheme of the system implemented by SVM is shown in Figure 3.2.
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Figure 3.2 Flow of SVM classifier.

3.3 Deep Learning Models

In this study, different deep learning models were also applied, and the results

were compared. The deep learning methods used are CA based classifier over raw

signals, CNN based classifier over spectrograms and CNN based classifier over EEG

source images.

3.3.1 Convolutional Autoencoder Classification

In the model proposed in this section, a convolutional autoencoder-based clas-

sifier has been developed. In the encoder part of the model, features are extracted

through the convolution and pooling layers. In this way, the data size is gradually

decreased, and is reduced from three dimensions to two dimensions in the last layer.

On the other hand, the decoder enlarges the data with upsampling and deconvolu-

tion layers to restore it to its original state. The structure developed in this study is

demonstrated in Figure 3.3. Since this model aims to generate the original signal again

after projecting the data into the latent space, it learns to find the optimum reduced

representation with the encoder without losing crucial information in the data. This

structure, which reduces large-sized data to a smaller size, works as a feature extractor
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and preserves the most descriptive information. During the training of the autoencoder

model, mean absolute error (MAE) is used as the loss function. MAE is determined

as:

MAE =
1

n

n∑
t=1

| yi − ŷi| (3.1)

where |yi− ŷi| represents the absolute error. Since the problem is signal reconstruction

and is desired to obtain continuous values, this loss function is preferred.

In the next step, the encoder part of the trained auto-encoder model is separated

and combined with the LSTM-based classifier. This classifier also includes a dropout

layer with a reduction ratio of 0.2 at the input and 0.5 at the output of the LSTM

layer. In this way, it is aimed to prevent the model from overfitting the training data

and under-performing on the test data. During the training, "Binary Cross Entropy" is

preferred as the loss function, and "Adam" algorithm [41] is used as the optimizer. This

classifier, shown in Figure 3.4, learns to make predictions with the data in the low-

dimensional space by using the feature extraction ability learned by the pre-trained

encoder. Thus, the model can both learn faster and capture the essential features.

Since the seizure pattern and brain structures of the patients differ, this classifier is

trained for each patient separately.

3.3.2 Spectrogram Based CNN Classification

Another deep learning method used in this study is the CNN classifier working

with spectrograms. This method includes a preprocessing step that converts EEG

signal segments to spectrogram images. In this method, two dimensional spectrogram

of each channel is estimated separately by using multi-taper spectrum for each signal

segment, and combined channel-wise to make the data three dimensional. Creating a
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Figure 3.3 Auto-encoder model structure.

multi-taper spectral estimation consists of three steps. The first stage is the generation

of discrete prolate spheroidal sequence (DPSS) tapers. In this regard, the parameters

required for DPSS are number of samples (L) and half bandwidth (L1/2). These

parameters can be calculated as,

L = bTW ∗ fsc (3.2)
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Figure 3.4 Classifier with pre-trained encoder.

L1

2
= b2 ∗ TW ∗∆fc − 1 (3.3)

where TW is the time window length, fs is the sampling rate, and ∆f is frequency

resolution. After the DPSS tapers have been generated, the next step is to calculate the

single-taper spectrum estimate for each DPSS taper. To do this calculation, we apply

Fast Fourier Transform (FFT). Finally, a multi-taper spectrum can be estimation by

taking the mean of the single-taper spectrums. The parameters used for estimating

the spectrograms are as follows: time window length TW = 1.0 sec, spectral resolution

∆f = 45Hz. Time windows with 50% overlaps are used to show spectral changes in

EEG in the course of time.

During training, "Binary Cross Entropy" is chosen as the loss function, "Adam"

is used as the optimizer in the auto-encoder model. This system is illustrated in Figure

3.5, and example spectrograms are demonstrated in Figure 3.7. As can be seen in the

random samples selected for both preictal and interictal, the preictal sample is more

active than the interictal sample, and there is a difference that can be used in decision

making for this classifier as well.

The 3D spectrograms are input to the CNN and classified as preictal or interictal.

This classifier consists of 3D convolution, max pooling, batch normalization, dense and

dropout layers. Additionally, rectified linear unit (ReLU) is preferred as the activation
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Figure 3.5 Flow of spectrogram based classifier.

function in the outputs of the convolution layers. In order to prevent over-fitting of

the model and ensure that it can generalize, L2 regularization with 0.1 ratio and L1

regularization with 0.01 ratio is applied on the weights of all convolution layers. The

3D classifier developed for this classification problem is demonstrated in Figure 3.6.

Figure 3.6 Spectrogram classifier.
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Figure 3.7 Example spectrograms for both preictal and interictal states.
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3.3.3 Source Localization Based CNN Classification

Another deep learning method used in this study is the classifier, which works on

3D brain images estimated by source localization and includes 3-D convolution layers.

In this method, each time window of EEG signals is converted into 3D source maps.

The source localization aims to project the sensor space EEG data to source space.

The forward problem is given as:

v = Lj + e (3.4)

where v is sensor space EEG data, j is a vector of current dipoles at different sources,

e is the noise and L is the lead field matrix that links source amplitudes j to electric

potential v. L is obtained from the MNI atlas brain using tesellation based realistic

head modeling and forward modeling algorithms available in Statistical Parameter

Modeling (SPM). To achieve this, each vertex is mapped to a 3D location in the MNI

atlas brain and to obtain a 3D EEG volume and smoothed with a spatial filter to

achieve a continuous image.

The inverse problem is solved using the minimum norm algorithm. The mini-

mum norm solution to Eq. 3.4 is given as ĵ = Tv where T = LT (LLT + λCe)
−1, Ce

is the covariance matrix of the error e which is assumed to be normally distributed as

N (e|0, Ce) and λ is the weight coefficient. Our optimally chosen λ value is λ = 1.25.

Each time window consisting of 10 seconds are mapped on the source space and

its average power spanning in the 13-45 Hz band is computed. The signal frequency

is limited to provide meaningful information in source maps. The selected frequency

range is chosen as the 13-45 Hz range, that is, the Beta and Gamma bands. 3D EEG

power image is fed into CNN for classification. The block diagram of this system is

represented in Figure 3.8, and the details of the classifier are shown in Figure 3.9. As

in the other models, the loss function is "Binary Cross Entropy", and the optimizer is

"Adam".
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Figure 3.8 Source localization classifier schema.

3.4 Evaluation Method

The unbalanced distribution of the data set can make learning difficult in deep

learning models. Since the dataset contains many more interictal periods than preictal

periods, the number of interictal samples was taken to be same as the number of preictal

samples. In the testing phase of the model, the leave-one-out cross-validation (LOOCV)

method was preferred. In this method, the training is repeated for each patient for

the number of seizures recorded at different times. In each training step, the data

of all states for selected seizure were excluded, then training was conducted with the

remaining data, and a test was conducted with the data of the selected seizure. In this

way, it was ensured that each sample of data that the model did not use in learning

could be tested for the generalization of the model. For performance measurement, the

average of tests performed with all seizures of a patient was computed. The way this

method works is demonstrated in Figure 3.10.
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Figure 3.9 Source localization CNN classifier.

Figure 3.10 Leave-one-out cross-validation method.
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4. RESULTS

In this study; the specificity, sensitivity, false positive rate (FPR), accuracy

and area under the curve (AUC) metrics were used to measure system performance.

AUC corresponds to the area under the ROC curve. A high AUC rate means low

false positive and high true positive rate and represents a better model. Performance

parameters are defined as:

Specificity =
TN

TN + FP
(4.1)

Sensitivity =
TP

TP + FN
(4.2)

FPR =
FP

FP + TN
(4.3)

Accuracy =
TN + TP

TP + FP + TN + FN
(4.4)

where, TP represents number of correctly predicted preictal windows, TN represents

number of correctly predicted interictal windows, FP represents number of interictal

windows that are predicted as preictal and FN represents number of preictal windows

that are predicted as interictal.

4.1 SVM Based Classifier

An average of 70.38% specificity and 86.23% sensitivity scores were obtained

among subjects in the study conducted with the SVM-based classifier, which was run

on CSP-based features. In addition, the average FPR was 0.296. There were many false

positives for Subject 16 and Subject 23 (FPR=0.601 and 0.577). The best performance
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of the model was obtained with 93.11% specificity and 97.1% sensitivity scores for

Subject 1. All results of SVM classifier are listed in Table 4.1.

Table 4.1
SVM based classifier results.

Specificity Sensitivity FPR AUC Accuracy

Subject 1 93.11% 97.15% 0.069 95.13% 94.49%

Subject 2 97.92% 78.61% 0.021 88.26% 91.48%

Subject 4 66.52% 81.52% 0.033 74.02% 68.20%

Subject 5 62.87% 75.98% 0.371 69.42% 67.24%

Subject 8 69.57% 90.11% 0.304 79.84% 76.32%

Subject 9 87.68% 94.86% 0.123 91.27% 88.58%

Subject 16 39.81% 87.49% 0.601 63.65% 55.70%

Subject 18 73.70% 89.44% 0.263 81.57% 78.95%

Subject 23 42.23% 80.88% 0.577 61.55% 45.69%

MEAN 70.38% 86.23% 0.296 78.30% 74.07%

4.2 Autoencoder Based Classifier

An average of 85.61% specificity and 83.07% sensitivity was achieved among

subjects in the autoencoder-based classifier. Besides, FPR was 0.144 and accuracy was

84.59%. The lowest performance of the autoencoder model, which gave higher results

than SVM, was in Subjects 16 and 23, similar to the SVM method (FPR= 0.283 and

0.337). Likewise, the best result was also obtained with Subject 1. Results of the

auto-encoder based classifier are given in Table 4.2.

4.3 Spectrogram Classifier

An average of 89.96% specificity and 88.83% sensitivity scores were obtained

with the classifier running with spectrograms, while the FPR was 0.101. The mean

values of the other scores, AUC and accuracy, were 89.39% and 89.18%, respectively.
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Table 4.2
Autoencoder based classifier results.

Specificity Sensitivity FPR AUC Accuracy

Subject 1 96.05% 96.11% 0.039 96.08% 96.09%

Subject 2 98.19% 69.44% 0.018 83.82% 88.61%

Subject 4 87.59% 72.36% 0.124 79.98% 85.90%

Subject 5 90.93% 85.49% 0.091 88.21% 89.12%

Subject 8 79.51% 85.89% 0.205 82.70% 82.23%

Subject 9 92.26% 95.28% 0.077 93.77% 92.62%

Subject 16 71.67% 67.33% 0.283 69.50% 70.21%

Subject 18 87.96% 88.15% 0.120 88.06% 88.02%

Subject 23 66.28% 87.61% 0.337 76.95% 68.52%

MEAN 85.61% 83.07% 0.144 84.34% 84.59%

The model gave the lowest performance for Subject 8 (FPR=0.184), unlike other mod-

els. The best score was obtained with Subject 1 as in other models (Specificity =

97.39%, Sensitivity=96.80%). Results of this classifier are listed in Table 4.3.

4.4 Source Localization Based Classifier

An average of 89.06% specificity and 92.58% sensitivity scores were obtained

with the classifier running with source localized images, while the FPR was 0.109.

The mean values of the other scores, AUC and accuracy, were 90.82% and 90.41%,

respectively. The model gave the lowest performance for Subject 16 (FPR=0.223

AUC=84.00%). The best score was obtained with Subject 1 as in all other models

(Specificity = 94.17%, Sensitivity=97.45%). Results of this classifier are listed in Ta-

ble 4.4.
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Table 4.3
Spectrogram based classifier results.

Specificity Sensitivity FPR AUC Accuracy

Subject 1 97.39% 96.80% 0.026 97.09% 97.09%

Subject 2 86.39% 93.98% 0.136 90.18% 89.85%

Subject 4 84.79% 83.27% 0.152 84.03% 84.40%

Subject 5 90.00% 86.41% 0.100 88.20% 88.21%

Subject 8 81.61% 76.93% 0.184 79.27% 77.96%

Subject 9 99.46% 98.87% 0.005 99.16% 99.38%

Subject 16 88.70% 79.17% 0.113 83.94% 83.95%

Subject 18 89.07% 89.10% 0.109 89.09% 89.14%

Subject 23 92.18% 94.93% 0.078 93.55% 92.66%

MEAN 89.96% 88.83% 0.101 89.39% 89.18%

Table 4.4
Source localization based classifier results.

Specificity Sensitivity FPR AUC Accuracy

Subject 1 94.17% 97.45% 0.058 95.81% 95.81%

Subject 2 97.22% 92.08% 0.028 94.65% 94.68%

Subject 4 82.55% 91.03% 0.174 86.79% 84.08%

Subject 5 85.00% 86.97% 0.150 85.98% 85.97%

Subject 8 91.55% 96.48% 0.084 94.02% 93.78%

Subject 9 95.89% 93.45% 0.042 94.67% 95.46%

Subject 16 77.68% 90.32% 0.223 84.00% 83.99%

Subject 18 83.33% 89.56% 0.167 86.45% 85.51%

Subject 23 94.14% 95.91% 0.059 95.03% 94.42%

MEAN 89.06% 92.58% 0.109 90.82% 90.41%
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5. DISCUSSION

5.1 Performance

It has been observed that deep learning methods are more successful than the

machine learning-based SVM method within the scope of this study. While the average

AUC was 78.30% in the classifier developed with SVM, this rate was above 80% in all

deep learning-based classifiers. Among the deep learning models, the lowest score

was obtained with auto-encoder with 84.34% and the highest score was reached using

source localization with 90.82%. Among the models tried in this, study it has been

seen that the complex structure of deep learning models can give high results even

without pre-processing. Obtaining the best results with source localization shows that

the performance of deep learning models can be increased when combined with the

correct preprocessing methods. In the classifier developed with source localization,

89.06% specificity, 92.58% sensitivity, 0.109 FPR, 90.82% AUC and 90.41% accuracy

scores were obtained. The spectrogram based model comes in second place. 89.96%

specificity, 88.83% sensitivity were obtained. Although the auto-encoder-based model

lags behind the other deep learning models, it differs from other methods in that it

eliminates the need for preprocessing, and in this respect, it can be preferred with its

rapid integration to different data.

Table 5.1
Average scores of each model.

Specificity Sensitivity FPR AUC Accuracy

SVM 70.38% 86.23% 0.296 78.30% 74.07%

Autoencoder 85.61% 83.07% 0.144 84.34% 84.59%

Spectrogram 89.96% 88.83% 0.101 89.39% 89.18%

Source Localization 89.06% 92.58% 0.109 90.82% 90.41%
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5.2 Run-time Considerations

For the epileptic seizure predictor to be successful, its adaptability to a real-time

system is also crucial. The algorithm to be used should be able to work on real-time

EEG recordings. Within the scope of this study, the estimation time of each tried

method was calculated. The results were calculated and averaged over 1000 different

samples. Time calculations were made on the Google Colab environment. The running

times of all the developed algorithms are shown in Table 5.2. In the developed systems,

it has been observed that the machine learning-based SVM algorithm works the fastest

with a total of 0.76 ms, including the feature extraction process with CSP. On the

other hand, deep learning algorithms are relatively slow compared to the machine

learning-based system, although they yield for similar time scores among themselves

while making predictions. Since the prediction times alone are around 30-40 ms, the

difference among deep learning algorithms cannot affect the real-time applicability

of the system. However, the pre-processing times required for the spectrogram and

source localization algorithms considerably extend the running times of the system.

It takes 372 ms to generate spectrograms from EEG data and 1.45 s to create source

localization images. The Autoencoder-based method does not require pre-processing,

so it only uses the prediction time and can estimate within 41 ms on the GPU and

61 ms on the CPU. In addition to the long pre-processing times of source localization

and spectrogram algorithms, they give high performance, which might be acceptable

according to the system to be developed. However, in cases where speed is much more

critical, an auto-encoder based algorithm may be preferred.

Table 5.2
Runtime of each algorithm for single sample (Calculated with the average of 1000 trials).

Preprocess Time Prediction Time

Spectrogram 372 ms 32 ms on GPU - 92ms on CPU

Autoencoder - 41 ms on GPU - 61 ms on CPU

CSP + SVM 0.76 ms total

Source Localization 1.45 s 34ms on GPU - 45ms on CPU
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6. CONCLUSION

This study discussed epileptic seizure prediction on EEG data, and different clas-

sification methods were tried and compared. Within the scope of the study, an SVM

classifier working with CSP-based feature extraction, a deep learning-based CNN clas-

sifier working on the generated spectrogram images, a CNN classifier working on source

localization images, and a classifier working with a deep learning-based convolutional

autoencoder structure were developed and analyzed. Among these different methods

developed, it was seen that the system working on source images worked best, while the

machine learning-based classifier gave the lowest performance. Although deep learning-

based methods are much more successful than SVM, they lag in terms of runtime.

In the epilepsy prediction system to be developed, the balance between the

speed and performance requirement and the available system resources will determine

the model type to be selected. Performing epileptic seizure prediction with a high

accuracy enables developing an early warning system for healthcare professionals. In

future studies, this method can be improved by experiments on different datasets. The

developed approaches can be adapted to embedded software and hardware systems in

the future and integrated with epilepsy monitoring systems in clinical settings.
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1. B. Gozutok and A. Ademoglu, "Epileptic Seizure Prediction Using Convolutional

Autoencoder Based Deep Learning," 2021 29th Signal Processing and Commu-

nications Applications Conference (SIU), 2021, pp. 1-4
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APPENDIX A. EPILEPSY DATABASES

A.1 CHB-MIT Scalp EEG Database

This dataset [38], consists of training data of 22 patients recorded at Children’s

Hospital Boston. The total recording time is 969 hours, and the data sampling rate is

256 Hz. The International 10-20 System is followed for the electrode placement.

A.2 Siena Scalp EEG Database

This dataset [42], contains EEG data of nine male and five female patients,

recorded at the Unit of Neurology and Neurophysiology of the University of Siena.

The data sampling rate is 512 Hz, and the International 10-20 System is followed for

the electrode placement. The total recording time is 128 hours.

A.3 TUH EEG Seizure Corpus (TUSZ)

This data [43] consists of training data of 265 patients and 504 hours of EEG

recordings. However, this data contains tens of different EEG channel configurations

and recordings at different sampling rates. This inconsistency aspect, since the records

come from multiple sources, differentiates this dataset from the others.
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