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ABSTRACT

FPGA IMPLEMENTATION OF MACHINE LEARNING
ALGORITHMS FOR VIBROTACTILE FEEDBACK IN

PROSTHESES

This study aimed to apply discrete event-driven vibrotactile feedback using ma-

chine learning algorithms in real time. Previously acquired tactile and proprioceptive

sensor data were input to an FPGA and classi�ed by multinomial logistic regression

(MLR) and decision tree (DT) algorithms. Calibrated force and angle values and

their derivatives were used as features. Movement-type (stationary, �exion, contact,

extension, release) and object-type (no object, hard object, soft object) classes were

predicted as discrete events. Training of the models was performed in MATLAB o�ine;

model parameters were implemented in the FPGA by using NI LabVIEW and FPGA

module. Vibrotactile feedback stimuli were generated in the FPGA card according

to real-time classi�cation. FPGA outputs were sent to custom-made power ampli-

�ers to drive two actuators (Haptuator) placed on both upper arms of participants.

The classes were mapped to discrete prosthesis events by using two frequencies and

two magnitudes (relative to each participant). Six able-bodied humans participated in

psychophysical experiments for measuring absolute detection thresholds and sequen-

tial pattern recognition of vibrotactile feedback. DT performed better than MLR for

both object-type (97% vs. 94%) and movement-type (88% vs. 59%) classi�cation in

real time. Furthermore, the participants could distinguish vibrotactile feedback signals

associated resulting from discrete events with medium recall (0.38 ± 0.08), precision

(0.38 ± 0.09), similar to o�ine identi�cation in our previous work. The presented the-

sis shows that FPGA implementation of machine learning for vibrotactile feedback is

feasible in prostheses. It is expected that human performance for utilizing the feedback

may increase during daily use because of additional sensory cues and physical context.

Keywords: FPGA, Somatosensory Feedback, Vibrotactile, Touch, Tactile Sensor,

Proprioceptive Sensor, Decision Tree, Multinomial Logistic Regression, Machine Learn-

ing, Discrete Event-Driven Sensory Feedback Control.
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ÖZET

PROTEZLERDE T�TRE��M UYARANLI GER� B�LD�R�M
SA�LAMAK �Ç�N MAK�NE Ö�RENMES�
ALGOR�TMALARININ FPGA KARTINDA

ÇALI�TIRILMASI

Bu çal�³mada, alanda programlanabilir bir kap� dizisinde (FPGA), dokunsal ve

propriyoseptif verilerin makine ö§renme algoritmalar�yla, gerçek zamanl� s�n��and�r�l-

mas� ve protezler için ayr�k olay güdümlü titre³imsel geri bildirimi uygulanmas� amaçlan-

m�³t�r. FPGA'ya önceden toplanm�³ sensör verileri girilerek, multinom lojistik re-

gresyon (MLR) ve karar a§ac� algoritmalar� (DT) ile, hareket ve nesne tipine göre

s�n��and�rma yap�lm�³t�r. Öznitelik olarak kalibre edilmi³ sensör de§erleri ve türevleri

kullan�lm�³t�r. Hareket tipi (hareketsiz durum, �eksiyon, temas, ektansiyon, ayr�lma)

ve nesne tipi (nesnesiz durum, sert nesne, yumu³ak nesne) s�n��ar� ayr�k olaylar olarak

tahmin edilmi³tir. Modeller MATLAB'da e§itilmi³tir, model parametreleri NI Lab-

VIEW ve FPGAmodülü kullan�larak FPGA'ya girilmi³tir. Gerçek zamanl� s�n��and�rma

sonuçlar�na göre FPGA kart�nda titre³i³imsel geri bildirim i³aretleri olu³turulmu³tur.

FPGA ç�k�³lar�, kat�l�mc�lar�n her iki koluna yerle³tirilmi³ iki aktüatörü sürmek için

güç ampli�katörlerine gönderilmi³tir. Nesne ve hareket tipi s�n��ar� iki frekans ve iki

genlik de§eri (kat�l�mc�ya göre ba§�l olarak) kullanarak kodlanm�³t�r. Alt� sa§l�kl� in-

san, psiko�ziksel deneylere kat�lm�³ ve mutlak alg�lama e³ikleri ile s�ral� titre³imsel geri

bildirim verilen örüntü tan�ma performans� ölçülmü³tür. DT, hem nesne tipini (%97'ye

kar³� %94) hem de hareket tipini (%88'e kar³� %59) MLR'den daha iyi s�n��and�rm�³t�r.

Ayr�ca, kat�l�mc�lar hareket ve nesne tiplerini temsil eden s�ral� olaylarla ili³kili titre³im-

sel geri bildirim i³aretlerini orta düzeyde duyarl�l�kla (0.38 ± 0.08) ve kesinlikle (0.38 ±

0.09) ay�rt edebildiler. Sunulan tezde, protezler için FPGA tabanl� makine ö§renmesi

kullan�larak titre³imsel geri bildirimin uygulanabilir oldu§u gösterilmi³tir.

Anahtar Sözcükler: FPGA, Somatosensoryel Geri Bildirim, Vibrotaktil, Dokunma,

Dokunsal Sensör, Proprioseptif Sensör, Karar A§ac�, Multinom Lojistik Regresyon,

Makine Ö§renimi, Ayr�k Olay Güdümlü Duyusal Geri Bildirim.
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1. INTRODUCTION

1.1 Motivation and Aim

The need for tactile feedback is increasing day by day due to the ine�ciency of

prostheses caused by the lack of sensory information. This ine�ciency leads to the re-

jection of prosthesis use [14, 15]. Quality of life and self-esteem is signi�cantly reduced

due to physical and psychosocial deterioration, especially in upper extremity losses.

Thus, patients may feel powerless and dependent. Commonly the upper limb losses

are the results of traumatic events. Therefore, the patients mostly have no experience

living without a limb nor prepared for it [16]. Especially the hand is an essential part

of a person's life because of its use in daily activities on complex sensorimotor tasks.

However, without sensory feedback, the patients will mostly rely on visual cues, which

will increase the cognitive load and adjusting the grasping force will take a longer time

to learn [16, 17]. Using prostheses without sensory feedback causes patients to expe-

rience it as a foreign body. Therefore, with sensory feedback, patients can accept the

prosthesis by feeling it as a part of the body [18, 19]. In addition, the phantom limb

pain is reduced with sensory feedback so that discomfort for the amputees are reduced

and functionality is increased in daily tasks [20]

Although there are several sensory feedback techniques, DESC based vibrotac-

tile feedback is shown as an e�ective method in terms of improving the performance

of the user [12, 21, 22, 23]. Cipriani et al. (2014) used this feedback for the �rst time

and showed that this feedback improves the performance [22]. Then they showed that

DESC based vibrotactile feedback reduces slip [23]. Previously, Karaku³ and Güçlü

(2020) used psychophysical characterization procedure speci�c to the each participant

and conveyed object and movement type events e�ectively [12].

In this study, the main goal is to implement machine learning algorithms (specif-

ically MLR and DT) in an FPGA and generate discrete event-driven vibrotactile feed-

back based on tactile and proprioceptive sensor data in real-time. Without any so-

matosensory feedback the user would have to rely on visual cues and it is known that
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visual cues cause 250 ms latency. However, latency of a tactile cue is 150 ms in av-

erage [24]. Therefore using prostheses without somatosensory feedback increases the

latency and cognitive burden. So that the user's motor response could not be fast

enough to securely control the prosthesis and grab objects [16, 17]. We aimed to re-

duce latency in somatosensory feedback, and hence improve prostheses' performance.

The novelty of this thesis is also the mapping between classi�ed sensor data to the

discrete vibrotactile events. We used the sensor data that were previously acquired in

our lab and applied the novel mapping method [25]. The data consisted of force and

bend sensor values and they were input to the FPGA card by using another computer

outputting the data through a di�erent card. Using FPGA card, we calibrated the

sensor data to convert voltage values to angle values for bend sensor and gram force

for force sensor. The calibrated data were saved to the computer and used for training.

The features included the calibrated sensor data and their derivatives. MATLAB was

used for training the MLR and Python was used for training DT classi�cation. After

training the parameters of both algorithms were written to the FPGA. FPGA classify

sensor data in real time and generated vibrotactile stimuli using DESC policy. Accord-

ing to our knowledge this approach is the �rst in the literature and it was tested on

six able-bodied participants. Psychophysical results from real time classi�cation and

feedback were compared to previous study [12]. The main di�erence in our study to

the previous study [12] is, they did not use real time classi�cation of the sensor data.

For the experiments they presented the vibrotactile feedback by generating the stimuli

from a computer without using the sensor data. However, in our study, we used the

FPGA to classify tactile and proprioceptive sensor data in real time and generated the

stimuli accordingly. Although there are real-time applications of vibrotactile feedback,

they used the feedback for posture correction or helping to teach musical instruments

e�ciently especially the violin [26, 27, 28]. This thesis shows that it is feasible to apply

DESC based vibrotactile feedback by real time classi�cation of sensor data. It is hoped

that this approach can be used in future prosthetic applications.
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1.2 Outline

In this chapter, motivation and aim which includes our novelty and contribution

are given. In Chapter 2, the background information about somatosensory feedback,

prostheses, the somatosensory system, the FPGA and side components to communicate

with the environment are presented. In Chapter 3, the materials and methods that was

used in this thesis including the experimental setup, classifying and calibrating the data,

the machine learning methods that are used, experimental procedures are presented.

In Chapter 4, the results of both classi�cation and psychophysical experiments are

presented. Finally, Chapter 5 presents, discussion including previous studies, technical

limitations and some other issues, future work, and a conclusion.
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2. BACKGROUND

2.1 Short Review of Somatosensory Feedback and Prostheses

A typical hand can perform highly coordinated precise movements and can grasp

objects with strength with 27 degrees of freedom and nearly 17000 mechanoreceptors

in the skin [29, 30]. The use of the prosthetic arm or hand helps the patient to restore

the lost limb partially. Accident, injury, congenital defect and illness can be the reason

for loosing limb [31]. A prosthetic hand or arm are created in di�erent shapes, sizes,

and designs. They try to imitate the attachment of the limb to a joint or socket by

using shafts, sockets or by using cables. Upper limb prostheses can be categorized as

passive and active prostheses. Passive prostheses are divided into cosmetic prostheses

and functional prostheses in the market. Cosmetic prostheses come with no function-

ality and they are made to give the limb a natural look. They are made from silicone

and to match the amputee's skin tone, hairs or other features, they are painted by

an artist. Having a cosmetic device can provide psychosocial bene�ts to the patients,

especially in traumatic events, by helping them feel more whole and it can improve

their con�dence. On the other hand, functional prostheses can restore partially the

use of the hand by helping the patient in speci�c activities such as in work or sport.

All parts that make up the prosthesis are assembled in a detachable way. In case of

any problem or damage, prosthetic parts can be easily replaced. The hooks or �ngers

are movable by the person, they can grip by opening and closing manually. It can

perform functions of elbow bending and locking at a certain angle. The advantages

of a mechanical prosthesis are that it has very simple mechanics and it is relatively

inexpensive [32, 33].

Active prostheses are divided into body-powered and externally powered pros-

theses. The body-powered prosthetics are operated with straps that commonly pass

over the amputees' shoulders and they move with the person's own mechanical power.

By moving shoulder or elbow person can open and close the hand. Using this type of

prostheses are hard to get used to therefore, they require training period and lots of
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repetition. Body-powered prosthesis are usually used for heavy jobs and farm work.

The advantages of the body-powered prostheses are, they can be used in various me-

chanical environmental conditions, they require less maintenance, they can achieve

high performance. The disadvantages are that the control of the prosthesis requires

unnatural body movements and a lot of time to get used to the prosthesis which can

be a reason to abandon it [34, 35]). Externally powered prostheses use external power

source such as battery. The common externally powered prostheses are myoelectric

prostheses. A custom fabricated socket is used to connect the myoelectric prosthesis

to the residual limb. They are controlled through electromyographic (EMG) signals

by using one or more sensors fabricated into the prosthetic socket. Whenever a person

intentionally engages speci�c muscles in residual limb the surface EMG is captured and

the signals amplitude is compared to a threshold. By doing so intended movements

can be recorded and mapped to a speci�c event. Then if that speci�c movement is

captured during use, the controller sends command to the myoelectric hand to drive

motors and eventually move the joints. Usually, surface electrodes are placed on the

skin to get the surface electromyography (sEMG) signal[36, 37, 38]. However, this

signal can be very noisy and unstable if it does not have a good skin contact. Also,

the electrodes may cause the skin to sweat and disrupt the signal [39]. To overcome

this problem invasively implantable electrodes are being used [40, 41]. Compared to

a traditional body-powered prosthesis, myoelectric arms can achieve greater comfort,

larger functional area, increased range of motion, natural appearance. However, it

may cost and weight more than a body-powered prosthesis [42]. Some examples of the

commercially available hand prostheses are; The BeBionic v3 made by RSL Steeper,

The i-Limb Quantum by Touch Bionics, Michelangelo Hand by Ottobock, DEKA Arm

RC by DARPA. Although these prostheses facilitate the life of an amputee and provide

several grip types with fully controllable �ngers they su�er from lack of sensory feed-

back. Only Evolution 2 from Vincent Systems is equipped with vibrotactile feedback

on the hand.

To apply sensory feedback to the patients, invasive and non-invasive methods

are being used. The invasive method uses surgically implanted electrodes to apply

electric currents to the central or peripheral nervous system to provoke di�erent tactile

sensations [43, 44, 45]. However, the non-invasive method does not require surgery.
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Non-invasive feedback is used to stimulate the skin surface by using electrotactile,

mechanotactile and vibrotactile feedback. Electrotactile feedback is provided using

surface electrodes and stimulators. It is applied as low-level current pulses applied to

the skin which travels through the sub-dermal area and stimulates the skin a�erents. If

the nerve bundles are near the contact point the sensation may spread further [46]. By

changing the stimulation parameters, such as amplitude, frequency etc., the sensation

intensity and quality can be modulated. In this method the sensation is more natural

than the other methods, used stimulator can be compact, power consumption is low

and no mechanical components are required. Electrode's location, shape or material

may a�ect the feedback as well as the features of the current, such as frequency, am-

plitude and duration, and the anatomy of the person. Some deformations caused by

burns, electric shock or cuts, even the moisture below the electrode, can change the

perception and decrease the performance of the feedback. It can produce sensations

such as vibration, pressure, tingling, However, it may also cause pain or fatigue [47, 48].

There is a possibility of the interference with the EMG signals which are used to control

the prosthesis [49].

Mechanotactile feedback is used to convey pressure stimulation on body sites

to represent the pressure sensed from the sensors on the prosthesis. These stimula-

tions are given by a device named tactor. They are often used to detect the sensory

input, detected from the force sensors on the �nger of a prosthetic hand. Modality

matched sensation is the result of this type of feedback and it improves the feeling of

body ownership and lower cognitive burden then others. However, in terms of power

consumption and noise level, vibrotactile feedback is better than mechanotactile feed-

back. In addition, the system's response is slow and require bulky indenters or motors

[50, 15]. One example for the mechanotactile can be the system that was proposed by

Antfolk et al. [51]. They used silicone pads on the amputation stump connected to the

pads on the prosthetic hand, which were expanded whenever corresponding pads were

touched on the prosthesis. They conducted experiments on 20 healthy and 12 amputee

participants. The results showed that the accuracies were very high in discriminating

two levels of pressure and locating the sites of the touch correctly.

Vibrotactile stimulation uses small actuators to vibrate the skin at frequencies

between 10 to 500 Hz, usually around 250 Hz because humans are most sensitive at
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this frequency [52, 53]. To convey various information, amplitude, frequency, pulse

width, shape of the stimulus can be modulated [54, 12]. We used vibrotactile feedback

in this study because the integration procedure is not complicated and small portable

actuators can be used to convey the feedback, which is easy to use and power-e�cient ,

they are compatible with EMG control and their acceptance rate is higher [52, 55, 56].

Gonzelman et al. �rst proposed the vibrotactile feedback in prostheses [57]. Then it

was widely used due to its advantages. Pylatiuk et al. [58] used vibrotactile feedback

to compare the grasp force with and without the vibrotactile feedback. Five transra-

dial amputees which were using myoelectric hands regularly were participated in the

experiments. They were asked to grasp and lift a hand dynamometer and hold it. The

dynamometer was randomly attached to four di�erent weights. Results showed that

the feedback reduced the grasping force signi�cantly. Chatterjee et al. [59] used a

prosthesis with angle and force sensors mounted on it. They compared the grasping

force by using three grasping force levels. The participants were required to grasp

the object and squeeze the object to reach the desired level and hold on that level

for ten seconds. Results showed that at all force levels vibrotactile feedback was use-

ful to improve the performance. However, it was also noted that training might be

needed to use vibrotactile feedback e�ciently. Saunders et al. [60] used I-limb Pulse

prosthetic hand by Touch Bionics and they put it on the able-bodied participants'

dominant hand. Participants controlled the hand with force-sensing resistors placed

on their �ngertips. Vibrotactile feedback were applied to the participant's forearm.

The results showed that the best result was achieved when both visual and vibrotactile

feedbacks were present. Witteveen et al. [61] conducted virtual hand experiments with

seven amputees and ten non-amputees. The virtual hand was controlled by a com-

puter mouse for opening and closing. Four di�erent objects having di�erent sti�ness

level were tested. The results were signi�cantly higher when the opening hand feed-

back and grasping force feedback were applied than no feedback. In addition, they did

not �nd any di�erence between amputee and non-amputee subjects. In these systems

they applied the continuous vibrotactile feedback by modulating amplitude, frequency

or pulse width, however, this system increases the processing and cognitive load and

forces the user to continuously focus on the stimuli for changes to identify the events

[62, 63, 64, 58, 59, 51, 61, 21]. Instead of giving continuous signals, Cipriani et al. [22]
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attempted to look for the changes in events such as contact, lift-o�, etc. by using the

discrete event-driven sensory feedback control (DESC) policy for the �rst time. DESC

is a neuroscienti�c theory that was shown to be a better and e�ective solution. Johans-

son and Flanagan [65] stated that, in terms of the sensorimotor control, because the

object manipulation is dealing with interactions of human body with their environment

and di�erent sequential movement stages that create the manipulation tasks, it is an

interesting model system. In other words, this model states that in humans, certain

coordinated muscle activity and sensory encoded discrete events, characterize the or-

ganization motor tasks such as object manipulation. They proposed that, the brain

looks for speci�c events that specify transitions between sequential manipulative task

phases, that comprises the crucial control events. During these events brain makes

predictions about sensory information which makes them to serve as control points.

Then brain applies appropriate control signals from these events. Therefore, for the

same task, the continuous stimulation can be replaced by time-discrete signals. With

this method the user will not have to continuously focus on the signal and this will

decrease the cognitive load as well as processing load [65, 66, 67].

Cipriani et al. [22] used DESC policy to convey vibrotactile feedback for simple

grasping tasks. They used a robotic hand named Smart-Hand (Cipriani et al. 2011;

Prensilia Srl, Italy). which only the index �nger and the thumb were allowed for �exion

and extension. Nine healthy participants controlled the robotic hand by using their

own index and thumb �ngers. They were asked to �rst grip and lift the test object

then they were supposed to replace and release it. The feedback was applied in short

durations to the �ngers of the participants whenever contact, release, lift-o� and re-

place events occurred. They showed that this policy can be used as an e�ective method

for vibrotactile feedback. Later, they used the virtual egg test by using a DESC glove,

which was composed of vibrating motors and sensorized digit thimbles. Five amputees

were joined the experiments and they used the equipment at their home for one month.

The participants performed grasp and lift task on fragile boxes called Virtual Eggs.

They were asked to grasp the boxes and carry to the other side of the wall without

breaking them. The results were promising in terms of performance improvement [21].

They also showed that discrete feedback reduces slip in another study by comparing

the visual, discrete and continous fedback [23].
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However, in these studies, the stimulus duration was short and vibration in-

tensity, frequency and duration were adjusted manually. In addition, the magnitudes

were had to be adjusted according to the position on the arm and magnitudes were

needed to be scaled, in di�erent frequencies. Recent study used psychophysical char-

acterization procedure speci�c to the each participant. Thus, for various conditions,

they balanced the sensation magnitudes. They also used two actuators each placed

on one arm, two magnitudes and two frequencies, to transmit more information to

the user, which made possible to convey object and movement type events e�ectively.

They found medium performance for recognizing the events, however, these results are

su�cient for the prostheses. Because, for example the user already knows the hand

will continue closing in sequential applications [12].

2.2 The Somatosensory System

All animal species need to have su�cient knowledge of both the outside world

and their body condition. It is the function of the somatosensory system that provides

this information. Animals continue their activities depending on the signals arising

from the activity of the receptors reaching the central nervous system. Thermorecep-

tion, touch, propriception and nociception are the sub-modalities of the somatosensa-

tion. Information of the body's posture and body movements are sent from receptors

located in skin, skeletal muscle and joint capsule which refers to proprioception. Lack

of sensory feedback from proprioceptors will often cause awkward, poorly coordinated

movements and without visual guidance, the person will have a hard time adapting

to the complex tasks. The sense of touch is person's direct interaction with the envi-

ronment and it is important factor in guiding one's behavior. For object identi�cation

the sense of touch is important and contact, pressure, stroking, motion and vibration

are some examples of the touch. Thermoreception is the sense of heat and cold. In

terms of maintaining body's homeostasis, thermoreceptor is an important factor. They

provide information on object's heat that touches the skin. Nociception is the sense of

pain what responses when the body is either harmed or damaged from external events.

They are useful to protect the injured tissues by constantly warning by the sense of
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pain [1].

Somatosensory perception begins from the activation of primary sensory neu-

rons. These neurons' cell bodies are positioned in the dorsal root ganglia (DRG). The

DRG neurons relay the sensory information to the brain (Figure 1.1). The peripheral

branches of dorsal root ganglia cells contain special endings that transmit mechanical

change information, called mechanoreceptors, distributed throughout the body [68].

The mechanoreceptors that enable the skin to function as sensory organs are located

in the dermis layer and these receptors are sensitive to mechanical changes as pressure,

touch, stretching, and motion. With the help of these receptors, the skin is referred

to as one of our �ve sensory organs. Receptors that perceive the sense of touch dif-

fer in their function and structure and therefore each has been given di�erent names.

There are four types of mechanoreceptors in human glabrous skin: Meissner corpuscles,

Pacinian Corpuscles, Merkel disks and Ru�ni endings [1].

Meissner corpuscles are associated with the rapidly adapting type 1 (RA1)

Figure 2.1 Dorsal root ganglion and nerve endings [1].

�bers. They mostly sense the low-frequency vibrations. They can detect hand motion
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Figure 2.2 (A) The location of each receptor and their receptive �elds. (B) The responses of the
receptors when activated under constant pressure [1].

over textured surfaces. They can also detect object contact and slippage. Meissner

corpuscles are relatively large clusters of cells located in dermal projections just below

the epidermis. The RA1 �bers �re the action potential whenever there is a physical

deformation. The rate of action potentials will decreases fast while a static stimulus

exists [1].

Pacinian corpuscles, which are associated with rapidly adapting type 2 (RA2)

�bers, mostly detect the high-frequency vibrations in handheld objects, tools or probes.

Similar to Meissner's corpuscles, Pacinian corpuscles are also fast adaptive receptors

with encapsulated nerve endings and are located deeper in the skin's dermis. However,

they are fewer than Meissner corpuscles. Pacinian corpuscles are very sensitive, they

have large receptive �elds on the skin's surface [69, 1].

Merkel cells are associated with slowly adapting type (SA1) �bers. They are

located in the basal layer of the epidermis and they sense the corners, edges and points.
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Braille alphabet can be recognized and read by Merkel cells. They can respond to the

pressure over a long time.

The Ru�ni endings are associated with slowly adapting type 2 (SA2) �bers.

These receptors can mostly sense the shape of large handheld objects and respond to

the skin's stretch. The places of the mechanoreceptors and their receptive �elds are

shown in Figure 1.2 (a). When constant pressure is applied, these mechanoreceptors

respond, as in Figure 1.2 (b).

Unlike glabrous skin, hairy skin includes hair follicles instead of the Meissner

corpuscle. Although their function is similar to the Meissner corpuscle, they sense

the movements of hair located on the skin. In hairy skin, there are other types of

mechanoreceptors such as C mechanoreceptors, �eld receptors, hair-guard receptors

and hair-down receptors [2, 1]. Figure 1.3 shows the locations of the receptors and the

di�erences between hairy skin and glabrous skin.

Figure 2.3 Locations of the mechanoreceptors in the glabrous and hairy skin [2].

Psychophysical channels are important in investigating sensory systems. The

mechanoreceptors mediate four channels which are called Pacinian (P), Non-Pacinian(NPI,

NPII, NPIII) channels in the glabrous skin. Bolanowski et al. [70] discovered these
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channels by conducting experiments on detection thresholds in frequencies between 0.4

Hz to 500 Hz. They used both large contactor with 2.9 cm2 diameter and small con-

tactor with 0.008 cm2 diameter. In the early stages of the perception, these channels

process information and then they combine their outputs within the CNS [71]. Mostly

Pacinian corpuscles mediate the P channel. This channel are most sensitive to the

vibrations from 40 to 500 Hz. It follows U-shape at these frequencies and it is most

sensitive at 250 Hz. Skin temperature changes a�ect this channel largely [72]. NPI

channel is most sensitive in between 2-40 Hz. It is mostly mediated by the Meissner

corpuscles. Temperature changes do not a�ect the NPI channel [72]. Ru�ni endings

mostly meditate the NPII channel and it's sensitivity region is in between 100-500

Hz which is similar with the P channel. However, in the large stimulation area, their

sensitivity is much lower. The NPIII channel, which is mostly mediated with Merkel's

cells, is sensitive between 0.4 Hz and 2 Hz. Figure 2.4 shows the frequency responses

of the four channels.

Among all these channels only the P channel has the ability of spatial and temporal

Figure 2.4 Frequency ranges of the four-channel model of mechanoreception glabrous skin [3].
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summation. Having spatial summation means that when the contactor size increases

the detection threshold decreases and having temporal summation means that, increase

in stimulus duration decreases the detection threshold [73, 71]. However, the spatial

summation e�ect of the P channels are negligible with the small contactor sizes [74].

The vibrotactile thresholds follow a �at shape other than U-shape for small contactor

sizes. Figure 2.5 shows the thresholds of di�erent contactor sizes in various frequencies

in hairy skin. In addition, the hairy skin thresholds are higher than glabrous skin [4, 75].

The static indentation is also an important part of the tactile thresholds because the

thresholds decrease when the indentation increases. This e�ect is shown in Figure 2.6.

The temporal gap of two stimuli, spatial distance between the stimulation sites and

masking e�ect also a�ect the tactile sensitivity for multiple stimuli [76, 77, 78].

To understand the relationship between stimuli (physical or chemical) and the

Figure 2.5 Vibrotactile thresholds of a hairy skin for di�erent contactor areas [4].

sensory responses that was triggered by these stimuli, a scienti�c method called psy-

chophysics is used. Psychophysics was established by a German physiologist, physicist

and philosopher Gustav T. Fechner in the nineteenth century. Fechner described some

procedures in his book to examine the relationship between sensation and stimuli by

setting out psychophysical measurement principles [79]. Any sensory system can be

examined by the psychophysics. The main components of psychophysics are; stimu-

lus, task, method, analysis and measure. The stimulus must be adapted to a speci�c

question, therefore, it is the least generic component. The stimuli are generally applied
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Figure 2.6 The static indentation e�ect on thresholds. Filled dots represent 2.9 cm2 contactor and
open dots represent 0.008 cm2 contactor. (a) glabrous skin (b) hairy skin [5].

from a computer. The task refers to the action which the observer must perform in

each trial. The analysis, explains how the data is converted in to the measurements.

The analysis result is called measure [80]. Sensory threshold is the main concept of

the psychophysics. The method is the way of presenting the stimuli and the way the

observer's reactions are recorded. Weber and Fechner developed the classical experi-

mental methods to measure minimum detectable sensations which is de�ned as absolute

threshold and di�erence between just discriminable two thresholds which is de�ned as

di�erence threshold or in other word just noticeable di�erence (JND) which can be used

for other stimulation parameters such as frequency, duration etc. Weber and Fechner

de�ned the relationship between JND and stimulus intensity as, the size of JND is and

stimulus intensity are linearly related [73]. This relationship is called as Weber's law.

Fechner showed that a logarithmic function can approximate the relationship between

strength and intensity, if JNDs obeyed Weber's Law [73, 81]. Later, Stevens [1] showed

that rather than logarithmic function, power function best describes the relationship

between strength and intensity.

There are three main psychophysical methods; constant stimuli, methods of

limits and staircase method [73, 1]. The constant stimuli method applies the prede-

�ned stimulus intensities randomly. In the method of limits, the intensity is changed
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in ascending or descending order continuously. The participant reports the intensity

when it is no longer detectable (descending order) or it is detectable (ascending or-

der). Absolute threshold is found by averaging this two intensity levels. The staircase

method, which is used in our study, applies a stimulus in detectable level and adjusted

ascending or descending by the responses that user gives [73, 1]. In this thesis study

modi�ed three-down one-up rule is used. In this rule the correct responses decreased

the stimulus level after three correct responses which are not necessarily consecutive

and incorrect responses increased the level by one step [82]. These methods can be

applied to the subjects using two methods. First one is the forced choice task in which

the subject has to choose one of the multiple options. For instance in the two-interval

forced-choice task, one of the two intervals has to be chosen by the subject for the

given stimulus. The other one is the yes/no task in which the subject has to answer

if they could detect the stimulus when presented. In this study we used two-interval

forced-choice task with adaptive tracking (staircase) method [73].

Psychometric functions are fundamental model of the psychophysics and they

Figure 2.7 Psychometric function. Modi�ed from [1].

relate given psychophysical task's responses to intensity level of stimulus. This function

is created by �tting sigmoid function to the proportion of the responses to the inten-
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sity level of the stimuli. An example of the psychometric function is given in Figure

2.7. Usually stimulus intensity where 50% probability of stimulus detection matches

the stimulus intensity is chosen as the threshold. However, in this study the stimulus

intensity at 75% probability of correct stimulus detection was chosen for the threshold

as done in tactile psychophysics.

The gross structure of hand is shown in Figure 2.8. The hand consists, �ve

metacarpal bones, 14 �nger bones, the wrist joint and the small carpal bones in 8

bones that articulate with each other. The nerves that come out of the cervical ver-

tebra �rst make the brachial plexus and extend to the hand as three more nerves.

Median, radial nerve and ulnar nerve are the main nerves in hand. Bones are essential

elements for stability and movement. Movable regions where bones meet each other

form joints. There are cartilage covers on the faces of the bones that join with each

other. The radius is located on the thumb line between the elbow and wrist, called the

forearm, and ulna bone is located on the little �nger line. There are �ve metacarpal

bones, one towards the base of each �nger. Finally, there are phalanx bones that make

up our �ngers. Two phalanges are located in the thumb and the other �ngers have

three phalanges each. They are named proximal phalanx, middle phalanx and distal

phalanx according to their location. The bones and their joints are shown in Figure

1.5.

Muscles are contractile elements that provide movement. The end extensions

where the muscles attach to the bones are called tendons. Muscles and tendons gener-

ally cause �exion, extension, abduction, adduction and rotation movements. There are

separate muscle groups specialized for each movement as �exor muscles and extensor

muscles. When for any reason, the nerve transmission is disabled (such as nerve cuts,

compression), the movement and proprioceptive sensation caused by these nerves can-

not be possible. Nerves can be motor or sensory nerves separately, or they can have

mixed functions. The functions of the three main nerves (radial nerve, median nerve,

ulnar nerve) carry electrical signals from the brain to the hand muscles and carry the

sense of pain, heat, touch and proprioception to the brain. Two arteries, called radial

artery and ulnar artery, supply blood to the hand. At the level of the palm and �ngers,

the branches of the radial artery and the ulnar artery �rst join and then give their

blood supply to these areas. Veins are much more in number than arteries and their
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Figure 2.8 The anatomy of the human hand. Modi�ed from [6].

anatomical location is more variable [6, 83].
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2.3 Machine Learning

Learning is a process of adaptation in order to improve the results �t for the

purpose. Machine learning (ML) is a �eld of study that deals with the question of

how to obtain predictions for the future and produce solutions to possible problems by

examining the past and incoming data. ML provides the development of algorithms

and techniques that will enable the learning process of the computer. In other words,

it is the modeling of the systems to make predictions by making inferences from the

data with mathematical and statistical methods [84]. Today, there are many method-

ologies and algorithms for ML. It is a collection of algorithms that allows software

programs to be more accurate in predicting results without explicit programming. The

primary basis of machine learning is to create algorithms that can take input data and

use statistical analysis to estimate an output while updating the outputs as new data

emerges [7]. There are various studies in the �eld of health. For instance, scientists

have devised models to develop systems that can detect cancer by examining cell im-

ages [85, 86, 87]. If only humans were to undertake this task, it would take much time,

but thanks to machine learning, systems can accurately detect the chances of getting

cancer or not without delay. All required to do this process is a machine with high

computational capacity and a model with suitable algorithms. Several data mining and

machine learning techniques such as classi�cation, regression, and clustering are used

to diagnose and treat diseases. Studies on hypertension, chest radiographs, prediction

of blood urea concentration, scoliosis, diabetes, cardiovascular diseases, mammographic

images, coronary artery disease can be seen in the literature [88, 89, 90, 91, 92, 93, 94].

In the literature, several attempts were made to control prostheses with machine

learning methods. Edwards et al. [95] used machine learning to control the robotic

arm in real-time. They tried the system in both amputee and non-amputee persons

and they used a modi�ed box-and-blocks task to assess the performance of the study.

They used an adaptive switching method to continually reorder the joints by predict-

ing which joint will be use next. They concluded that this method reduces process

and cognitive load of the amputees in complex tasks. Swami et al. [96] produced a

method to control prosthetic wrist with multi degrees of freedom by using random

forest classi�cation and regression methods. They asked ten healthy participants to



20

perform wrist radial/ ulnar deviation or pronation/ supination while they collect the

data. Then they used this data to train the algorithm. This method allowed to control

prosthetic wrist in multi degrees of freedom with high classi�cation accuracy. Gibson

et al. [97] used DT to classify EMG signals in real time into �ve movements (grasp,

extension, �exion, pronation and pointing the index �nger) to control the prosthesis.

Their aim was to control the prosthesis in real time without the need of training. They

placed six EMG electrodes on the arms of ten healthy participants. and they asked

the participants to perform the movements for ten seconds. The results showed that

79% overall accuracy can be achieved by using this method. Suchodolski et al. [98]

used DT to classify eleven movements from six electrodes placed on the skin and DT

based on Neural Network Tree solution resulted in 89% accuracy and DT resulted in

85% accuracy. Wolczowski and Kurzynski [99] used two lever classi�er for EMG and

mechanomyography (MMG) signals to control the prosthesis. They also added sensor

feedback signal from prosthesis to the classi�er. They tried six types of grips and used

decision tree in the classi�cation. They compared EMG and MMG combined with

only EMG or MMG. They showed that combined signals gave the highest accuracy

and feedback mechanism increased the classi�cation accuracy.

Parker et al. [100] proposed to use machine learning to provide vibrotactile feed-

back to the prosthetic users. They used a custom made robotic arm designed to use

with non amputee arms. Five healthy participants conducted the experiments. Partic-

ipants controlled the arm with a joystick. The actuators were placed with a sleeve arm.

Blind folded and sound isolated participants were asked to navigate the arm inside a

box from wall to wall. Reactive feedback, predictive feedback and no feedback were

compared. Reactive feedback which applied vibrotactile feedback when the servo of

the shoulder reached de�ned current load threshold. Predictive feedback applied vi-

brotactile feedback by predicting the electrical load on the servo motor using machine

learning. They showed that feedback improved the task performance and predictive

learning decreased the average load on the servo motors. Mazilu et al. [101] used ma-

chine learning to provide vibrotactile feedback when freezing of gait(FoG) is detected.

The system detected the FoG using machine learning and applied vibrotactile feedback

or auditory cue to warn the patient and resume walking. They used several ensemble

methods and other machine learning algorithms such as kNN or naive Bayes. They
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showed that the proposed system could detect the FoG with high accuracy and low

latency. Huang et al. [102] proposed a model that can apply vibrotactile feedback to

the amputee using the sensors on the hand glove. They used support vector machine

and feedforward neural network to map the sensory information of the sensors. They

created phantom map to apply feedback accordingly. In that study, SVM and FNN

performed very good. However, they stated that rest of the system is under develop-

ment and was not tested.

According to the learning method, ML is divided into three groups: Super-

vised, Unsupervised, and Reinforcement Learning. In Supervised Learning, a function

is created between matching input values (labeled data) and desired output values.

Training data consists of both inputs and outputs. This function can be determined

by classi�cation or regression algorithms. If the outputs in the data set are categorical,

classi�cation algorithms are used, and if outputs are numerical, regression algorithms

are used. Logistic regression, multinomial logistic regression, decision tree algorithms

are examples of this learning method [7].

Logistic regression is a statistical method used to analyze a dataset with one or

more independent variables to determine a result. The result is measured by a binary

variable; therefore, the dependent variable contains data coded as binary, i.e., only 1

(TRUE, success, etc.) or 0 (FALSE, error, etc.). The purpose of logistic regression is

to �nd the most suitable (yet biologically plausible) model to describe the relationship

between a two-way characteristic and a set of independent variables. Logistic regres-

sion generates the coe�cients, standard errors and signi�cance levels of a formula to

estimate the probability of the classes. Rather than choosing parameters that minimize

the sum of square root errors, estimation in logistic regression chooses parameters that

maximize the probability of observing sample values [103, 104].

Multinomial logistic regression examines a nominal dependent variable with

more than two categories and many independent variables. In this analysis, while the

dependent variable is a multi-category (at least 3) nominal variables, independent vari-

ables can be continuous, sequential, or categorical. The multinomial logistic regression

aims to estimate the probability that a particular person belongs to any category of

the dependent variable. In the multinomial logistic regression, the category of the de-

pendent variable to be referenced is selected �rst. MATLAB's mnr�t chooses the last
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category as the reference category [105]. Several binary regressions are then performed

to compare the remaining categories with the reference category [103]. For a dataset

with k categories, k-1 equations must be calculated, which is for each category relative

to the reference category. Therefore, Eq. 1.1 can be used to get the predicted log odds.

ln
(πj

πr

)
= βj0 + βj1xj1 + βj2xj2 + . . .+ βjnxjn = Zj j = 1, ...k − 1, (2.1)

Where r is the reference category, n is the number of predictor variables, π is the

categorical probability. The coe�cients are represented as β, which are calculated

using maximum likelihood estimation. Hence, for each category, there will be one log

odd, which is relative to the reference category, making k-1 log odds in total. In order

to calculate probabilities for each category, Eq. 1.2 is used. This equation is also called

softmax function. MLR uses softmax function as a classi�er. After calculating the

probabilities for each class, the class with highest probability is chosen as classi�cation

result [105, 106, 107].

pij =
exp

(
Zj

)
1 +

∑k−1
h=1 exp

(
Zh

) j = 1, ...k − 1, (2.2)

The mnr�t command in MATLAB is used for training the MLR model. After

training the mnr�t function gives coe�cients of the trained model. To classify the data

either mnrval function or Eq. 1.2 can be used [105].

The decision tree is either classi�cation or regression method that creates a

model in the form of a tree structure consisting of decision nodes and leaf nodes. It is

used to divide a data set containing large datasets into smaller sets by applying a set of

decision rules. The decision tree approach approximates the goal functions and shows

the learning function in a tree structure. A decision tree is a descriptive and predictive

model. This model helps the decision-maker consider the factors while making a de-

cision and determine how each factor relates to the di�erent outcomes of the decision

in the past [108, 36]. Tree-based learning algorithms are considered to be one of the

most used supervised learning methods. They are easy to interpret, they can handle

nominal and numeric attributes or datasets with missing values or errors. Unlike linear

models, they can also match nonlinear models quite well. However, sometimes small

changes in the input data can cause large changes in the tree structure [109, 110]. Clas-
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si�cation or regression can be adapted in solving any problem obtained. Decision trees,

random forest, gradient boosting are widely used in all kinds of data science problems.

Some methods combine various decision trees to predict better from a single decision

tree. These are called tree ensemble algorithms. The primary purpose of ensemble

algorithms is to get many weak learners to form a strong learner [7, 111, 110, 109].

There are several techniques for implementing ensemble algorithms. The �rst

method is called bagging. Bagging is used when the variance of a decision tree is needed

to be reduced. An example of this method is the random forest algorithm. Boosting

is another method used to build a collection of insights. In this technique, learners are

based on learning sequentially by matching simple models of early learners with data,

then analyzing data for errors. Gradient boosting can be given as an example of this

technique [112, 113].

A decision node can contain one or more branches. Non-split nodes are called

Leaf or Terminal nodes that represent a decision or �nal classi�cation. The �rst deci-

sion node in a tree corresponds to the best determinant called the root node. A node

divided into sub-nodes is called the parent node, and the parent node's sub-nodes are

called the child nodes. A decision tree can consist of both categorical and numerical

data. It has decision nodes and terminal leaves to classify the data. The basic idea is

that the input data is divided repeatedly into groups with the help of a clustering algo-

rithm. The clustering process continues in depth until all nodes are pure. Learned tree

models can be represented as if-then rule sets to increase human readability [7, 111].

Gini or entropy is used to measure the impurity of a node. Entropy, known as

the uncertainty measure of a random variable, is the expected value of the informa-

tion contained by all instances for a process [114]. The higher the entropy, the more

information is obtained by the system. The entropy is calculated with Eq. 1.3 below.

E = −
n∑

i=1

(log2
ns(i)

N
) ∗ ns(i)

N
(2.3)

In this equation, n represents the number of classes, ns (i) the number of samples

for each class, and N represents the total number of samples. It shows the represen-

tation value of the information gain data set after the division. The entropy value is

expected to be high [7, 114].



24

Gini index or Gini Impurity was developed by the Italian statistician Corrado

Gini in 1912 [115]. Gini is widely used in statistics. The coe�cient is in the range

of 0 to 1; 0 means perfect equality and 1 means perfect inequality. The Gini index is

a metric used to measure how often a randomly selected item is detected incorrectly.

A feature with a low Gini index should be preferred [7, 115]. The Gini index runs

successfully or fails for the categorical target variable. The high Gini index increases

the homogeneity. The advantage of the Gini index over entropy is, if there are more

than two categories in the output variable, they perform better [110]. To calculate the

Gini index, the sum of squares of each classes' probabilities is subtracted from 1, as

shown in Eq. 1.4. Where c is the number of classes and p is the probabilities of each

class [7, 115].The Gini index is minimum if each terminal nodes contain data from just

one class and it is maximum when all classes are distributed equally in each node [116].

Gini = 1−
c∑

i=1

(pi)
2 (2.4)

A simple decision tree structure is shown in Figure 2.9. There are applications

such as classi�cation tree or regression tree in the literature, which can be accepted as

sub-methods of decision tree learning [117, 118, 119, 120, 121, 122, 123].

Figure 2.9 Schematic of decision tree structure. Modi�ed from [7].

To �nd the best split node decision tree �rst �nds the best Gini Impurity of all

features. For the numerical data, algorithm �rst sorts the rows of each feature sepa-

rately in ascending order. Then, the algorithm calculates the average of all adjacent

values which are called candidate thresholds. After that, it calculates the Gini Impu-
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rities by using Eq. 1.4 for each Leaf and then calculates the weighted average of Gini

Impurities for each candidate threshold by splitting the data from that value. Lastly,

the lowest value is chosen as the best split threshold for that feature. This process is

repeated for each feature separately. After �nding the Gini values of all features, the

feature with lowest Gini index is chosen for the split [124, 116]. For the features with

categorical data however, the algorithm splits the data for either one child node per

class (multiway splits) or only two child nodes (binary split). CART [125] is an exam-

ple of the binary split and FACT [126] algorithm is an example for the multiway split.

CART (Classi�cation and Regression Trees) uses the Gini method to create binary

panes. For binary split, if the predictor is made of two classes, one split is possible.

However, if the predictor has three or more classes, the algorithm splits the data by

taking one class for the �rst child node and the rest of the classes for the other child

node, which is called one-vs-rest algorithm [127]. The split with lowest Gini Impurity

is chosen for that feature. Then the algorithm calculates the weighted Gini Impurities

for each candidate and follows the same steps as numerical data.

2.4 FPGA Board

FPGA (Field-programmable gate array) is a programmable integrated device

with hardware in which the internal structure can be changed according to the op-

eration desired by the user [128]. There are logic gates and memory elements in the

FPGAs, but it is entirely up to the user to decide which of them to connect to get the

results. The user expresses the design he needs with the help of a hardware de�nition

language (HDL) and can design the elements within the capacity of the FPGA. If the

circuit does not work after completing the design or if the user wants to include a

new feature or change a feature, the design can be changed and implemented again

to the FPGA. Due to this advantage, many ASIC manufacturers in the market �rst

try their designs on FPGA, and if necessary, they make changes to it and produce

ASIC from the �nal form of the design and put it on the market. Apart from rapid

prototyping, FPGA is used in many other applications such as; aerospace & defense,

automotive, consumer electronics, data center, industry, medical applications, video
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and image processing, machine learning applications, wired or wireless communica-

tions [8, 90, 117, 119, 121, 129, 130, 131, 132, 133, 134, 135].

FPGA ICs consist of 3 main parts: logic blocks, interconnections, and input-

Figure 2.10 Parts of the FPGA [8].

output blocks, as shown in Figure 2.10. L.U.T.s (Look-up Table) perform logic op-

erations in logic blocks and memory elements (Flip-Flops) to store their results. The

interconnections provide the connections between the logic blocks according to the de-

veloper's needs and enable the desired function to work. Input-output ports, on the

other hand, allow FPGA to transfer data by communicating with external devices such

as sensors, screens, computers, etc. [136]. The FPGA has a parallel programming ad-

vantage to the other I.C.s. Also, it is reprogrammable and reusable, which makes it

better than ASICs. It can be adapted to the need of the customer and the project.

However, it is slightly expensive, and it consumes more power than microcontrollers

[136, 137, 134]. The FPGA consist logic gates which are AND, OR, NOT, XOR and

NAND gates. Gates are the fundamental blocks in FPGA. OR gate gets two input

and if either of the inputs are 1 then the output will be one. The AND gate outputs

one if both inputs are one, otherwise zero. The NOT gate outputs the opposite of the

input. It only accepts one input. The XOR gate has two inputs and if just one of the

inputs are one it outputs one, otherwise it outputs zero. The NAND gate is the exact

opposite of the AND gate. XOR gates are used in binary adders. When two bits are
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added, if the addition is equal or more than two the extra carry bit is shifted to the

next column [136].

The languages used to determine the internal con�guration of FPGA are called

HDL (Hardware Description Language). The traditional languages are VHDL (Very

High-Speed Integrated Circuit Hardware Description Language) and Verilog. While

Verilog has a structure similar to C, VHDL is like a lower-level language. However,

these languages are completely di�erent from traditional programming languages, and

they express the structure of the hardware, that is, the connection of the elements and

the internal con�guration of the integrated, rather than �ow and operation. There are

also High-Level Synthesis (HLS) Design Tools such as LabVIEW. LabVIEW is a graph-

ical programming language to make FPGA coding easier than traditional languages,

and it is more e�ective. Because, unlike most of the HLS code generators, rewriting

the code in VHDL for satisfying the timing or resource constraints is not needed [138].

Figure 2.11 shows the FPGA board (NI 7845R) that was used in this project.

This FPGA board contains cost e�cient, high power Kintex-7 70T FPGA chip. Also,

to communicate with the environment it includes, 8 analog input (AI) ports, 8 analog

output (AO) ports and 48 digital input and output (DIO) ports. Lastly, there is a

NI ASIC card to communicate with the computer by USB cable. The block diagram

of the FPGA is shown in Figure 2.12 [9]. The analog inputs are connected to the

analog to digital converters (ADC), which converts the analog signals to the digital

signals. They are mostly used in data transmission,information processing, computing

and control systems. On the other hand the output ports are connected to the digital

to analog converters (DAC). DACs convert the stored or transmitted data to analog

signal. They are used to display the data or to control other devices such as motors

[139].

In the literature FPGA is widely used in machine learning real-time applica-

tions. Krips et al. [140] used resilient backpropagation algorithm for hand tracking in

real-time. They aimed to develop a video tracking device in works to increase safety.

They showed such applications can be done in real-time. Page et al. [141] used FPGA

to detect seizures using several machine learning methods and compared them in terms

of latency, accuracies, memory, etc. However, they used a high memory FPGA model

and used algorithms that require high memory such as kNN, which is not suitable for
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Figure 2.11 Photograph of the FPGA card (NI 7845R) that was used in this project.

Figure 2.12 Block diagram of the FPGA card (NI 7845R) [9].
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low memory applications. Boschmann et al. [142] used FPGA to improve signal pro-

cessing time thus reduce latency multi-channel EMG in myoelectric prosthesis. They

controlled the prosthetic hand with this classi�ed data. They were successful to re-

ducing latency and controlling the prosthetic hand. Fejer et al. [143] used FPGA to

control prosthetic hand in real-time by analyzing the visual environment captured from

a video camera. Their results show the FPGA consumes less power than processors

and they are faster. Alfaro-Ponce et al. [90] used FPGA to detect electrocardiographic

arrhythmias by using continous neural networks. They achieved high accuracy and

sensitivity in real-time on EKG signals.
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3. MATERIALS AND METHODS

3.1 Experimental Setup

We used MATLAB to control and communicate with the NI data acquisition

card (DAQ) (model number NI6259). The data acquisition card was used to send

the data to FPGA card (model number NI7845R). The features of both FPGA card

and data acquisition card is shown in TABLE 2.1. The data acquisition card has four

analog outputs and they were connected to the input ports of the FPGA card. After

calibrating and classifying the data, vibrotactile feedback stimuli were generated and

sent to the power ampli�er accordingly. The classi�cation results were sent back to

the computer from an analog output port of the FGPA through the data acquisition

card and saved for comparison. The stimuli were ampli�ed and sent to the actuators.

The actuators were placed on both upper arms of the participants. The block diagram

of the setup is shown in Figure 2.1. The �rst actuator was placed in the left arm and

used to give object-type (soft object, hard object, and no object) and force-related

(low force and high force) feedbacks. The second one was placed in the right arm and

used to give feedback for the movement-type events (�exion in air, extension in air,

stationary in air, �exion in object, extension in object, and stationary in object).

Table 3.1

Speci�cations of FPGA card (NI 7845R) and DAQ card (NI 6259).

Analog Inputs Max Sampling Analog Outputs Max Update Rate Digital

Product (16-bit) Rate (16-bit) per Channel I/O

per Channel (MS/s)

NI 7845R 8 500 kS/s 8 1 48

NI 6259 32 1.25 MS/s 4 1.25 48

The participants were sitting on a comfortable chair in front of a computer

screen. The experiments were conducted using MATLAB. Earphones were used to

block the sounds from the actuators and play white noise while conducting the ex-
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Figure 3.1 MATLAB is used for conducting the experiments and controlling the DAQ card to
send the raw data to FPGA card. The FPGA card receives the raw data and after calibration and
classi�cation, it produces the vibrotactile stimuli and sends the stimuli to the power ampli�er by two
output channels. One output is for the object-type events, and it drives the Haptuator-1. The other
output is for movement-type events and it drives the Haptuator-2. The power ampli�er ampli�es the
signals and sends them to the actuators accordingly.

periments. A keyboard and a mouse were used to get participant's responses. An

illustration of part of the experimental setup and placement of the actuators is shown

in Figure 2.2. The power ampli�er was located between the computer screen and the

keyboard, along with its power supply. FPGA card and the data acquisition card were

not shown in this illustration.

3.2 Data Calibration and Classi�cation

In this study, we used the sensor dataset from Karaku³ et al. [25, 13]. The

sensor data were taken from the robotic hand in the Tactile Research Laboratory.

Fourteen bend sensors and eleven force sensors were mounted on it. The bend (�ex)

sensor (Figure 2.3) is a sensing circuit element that changes its resistance by bending

amount. Resistance varies in direct proportion to bent. Higher the bend, the greater

the resistance value [10]. Bend sensors were placed on the dorsal side of metacar-

pophalangeal (MCP), proximal interphalangeal (PIP), and distal interphalangeal (DIP)

single-precision �oating-point (SGL)joints. Piezoresistive Force Sensor (Figure 2.4) de-

tects the applied pressure and converts it into an analog signal [11]. Force sensors were

mounted on the ventral side. The sensors were named by their positions on the hand.
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Figure 3.2 The actuators are electromagnetic recoil-based, and a foam rubber piece was used to hold
in place using adjustable straps. To block the sound coming from the actuators, participants were
listening to white noise with headphones. They were sitting in front of a computer for the experiment.

The sensor outputs were converted from resistive changes to voltage changes via multi-

channel op-amp circuits [13]. The hand executed simple grasping tasks with a soft

object, a hard object, and without any object, and the collected data of the sensors

were stored and sent to the input ports of the FPGA card by DAQ card. We used

FPGA to �lter and convert the data to the sensor's correct units (gram force for force

sensors and degrees for bend sensors).

Figure 3.3 Bend sensor (FlexSensor, SpectraSymbol) [10].
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Figure 3.4 Force sensor (FSR400-Short, Interlink Electronics) [11].

3.2.1 Numerical Representation Format in FPGA

The sensor data consist of 560000 �oating-point numbers. To handle �oating-

point numbers in FGPA, the data were converted to the single-precision �oating-point

(SGL) type. In order to facilitate the use and calculation of �oating-point numbers and

to save memory on FPGA card signi�cantly, we used LabVIEW FPGA Floating-Point

Library by National Instruments [144].

3.2.2 Data Calibration

Pre-processing the data is a crucial step of machine learning because the learning

ability of the model is directly a�ected by the quality of the data and the information

that can be derived from it [7]. Therefore, before feeding it to the decision tree clas-

si�er, the data were �ltered and calibrated in the FPGA card. First, the input data

were �ltered with a Butterworth �lter (second-order low-pass �lter). The �lter module

in LabVIEW only accepts the numbers as �xed-point types or 32-bit integers. Hence,

the data were converted to the integers, and in order to avoid the loss of the decimal

numbers, the data were multiplied by 108 before �ltering. Then the output of the �lter

was converted back to the SGL type and divided by 108.

y = axb + c (3.1)
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y = axb (3.2)

The data were �ltered and converted to correct units (gram force for force sensors

and degrees for bend sensors. In Eq. 2.1 and Eq. 2.2, a, b and c are the calibration

parameters shown in Table 2.2. X represents the calibrated output of the data and y

represents the input which is the raw sensor data in our case.

FPGA is unable to compute exponential �oating-point numbers other than the

square root. In Eq. 2.1 and Eq. 2.2, the power of x with the �oating-point b values

from Table 2.2 needed to be calculated.

Following approximation in Eq. 2.3 was used to calculate the intended powers

using only the square and square root.

For |α|<|β|,

α

β
=

n∑
k=1

ck

(
1

2

)k

+R ck = 0 or 1 (3.3)

|R| < 0.005 was selected because when powers are �tted there are 0.01 precision

so that exponent α/β has two signi�cant digits. Using Eq. 2.3, the intended number

can be approximated. For example, to calculate the 0.70, Eq. 2.4 can be used.

0.70 = (
1

2
) + (

1

2
)3 + (

1

2
)4 + (

1

2
)6 − 0.003125 (3.4)

Therefore, to calculate x0.70, Eq. 2.5 can be used.

x0.90 =
√
x.

√√√
x.

√√√√
x.

√√√√√
√√√√√√√√

x− 0.003125 (3.5)

Then the derivatives of the calibrated data were taken. The raw and calibrated

data of all sensors are shown in the Appendix (Figure a.7-a.11). The top graph shows

the calibration in MATLAB for comparison with the FPGA card calibration output

which is shown in the middle graph. The bottom graph shows the raw data input to

the FPGA card. The derivatives of the calibrated data for each sensor are shown in the

Appendix (Figure a.12 and Figure a.13). The graphs show the each sensor's derivative

data. For each sensor, there were two outputs, which formed ten features in total

for the multinomial logistic regression. However, for the decision tree classi�cation,
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Table 3.2

Table of calibration parameters. Modi�ed from [13].

Sensor Type Sensor Name a b c

Ring-MCP 0.32 0.69

Bend Sensors Ring-PIP 0.66 0.48

Ring-DIP 0.15 0.90

Force Sensors Ring-distal -601.36 -1.11 8.08

Ring-palmar -55.34 -0.57 9.11

the MCP was eliminated. The reason for eliminating the MCP is because the data

acquisition card only has four analog output ports to send the raw data. Therefore

there were eight features in total and the features used for training and classi�cation.

For training, %70 of the output data were initially transferred to MATLAB to

train the data. Then the parameters of multinomial logistic regression or the decision

tree structure were implemented in FPGA card for classi�cation.

There were two di�erent classi�cation techniques. In object-type classi�cation,

there were three classes, no-object, soft object, and hard object. In movement-type

classi�cation, there were �ve classes, stationary, �exion, contact, release, and extension.

Figure 2.5 shows the calibration code on FGPA.

Figure 3.5 The calibration part of the code.
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3.2.3 Multinomial Logistic Regression

The FPGA card has low memory capacity, and the data could not be stored on

it. Therefore, the data was exported to MATLAB for training. The data contained

ten features (�ve sensor outputs and �ve derivatives of each sensor and one output

class for the supervised learning). The data were trained using the MATLAB function

mnr�t [105].

ln(
πj

πr

) = Bj0 +Bj1Xj1 +Bj2Xj2 + · · ·+BjpXjp j = 1, . . . , k = 1 (3.6)

To implement the model in the FPGA card, Eq. 2.6 was used. Where πr is the

reference class, which π stands for a categorical probability, the number of all classes

is k, p is the number of predictor variables [145]. For example, there are three classes

in object type classi�cation, and the last class, soft object class, is the reference class.

Furthermore, applying the Eq. 2.6 for all classes, using the coe�cients taken from

MATLAB after training the data, we had two probabilities for three classes. From

these probabilities, class probabilities had to be calculated. To accomplish that, a

simple decision algorithm was used to get the maximum probability, which was the

result of the classi�cation.

First, the division of the categorical probabilities (for object type classi�cation,

Figure 3.6 The decision steps to �nd the classi�cation result of MLR for movement-type classi�ca-
tion.

ln(π1

π3
) and ln(π2

π3
) were taken. If the reference class were higher, the result of the

division would be less than one, and the reference class probability was the maximum

probability. However, if the ratio were the higher one, the result would be higher than



37

Figure 3.7 The decision steps to �nd the classi�cation result of MLR for object type classi�cation.

one. In this case, we had to compare both divisions and choose the higher one, and

that would give the class which had maximum probability. Figure 2.6 and Figure 2.7

show the decision steps for movement and object type classi�cations, respectively.

3.2.4 Decision Tree Classi�cation

Decision trees are simple to understand yet very e�ective. Decision tree models

do not consume much memory, which is a plus in low memory FPGA applications.

Besides, data preparation for decision tree classi�cation is more straightforward than

other machine learning methods, which often require data normalization, handling null

values and some other techniques [104].

Python and the sci-kit-learn library were used for training the decision tree

model [146]. After data calibration, the features were saved to the computer from the

FPGA card. The data were split into the training set and testing set by 70% and 30%,

respectively. For object-type events, three classes were de�ned as a hard object, no

object and soft object. Five classes were de�ned as stationary, �exion, contact, release,

and extension for the movement type. A split criterion was de�ned to stop the growth

of the tree at the intended number of leaf nodes. The Gini cost function was used to

measure the quality of a split, which indicates the pureness of the node.

Next, the decision tree model was visualized and the visual tree structure was

used to implement the model to the FPGA card. We used the if-else structure to im-

plement the model. Starting from the root node, we carefully coded the model. Each

node has an input variable and a split point that divides the data. The split point is
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chosen from other possible split points by calculating the lowest cost while training.

According to that split point, the subsequent two leaf nodes are constructed from the

parent node by following each branch with the following calculated splits until the al-

gorithm reaches its �nal prediction.

Input variable and corresponding splitting point were used to construct the

Figure 3.8 The decision steps to �nd the classi�cation result for object type classi�cation. If-else
was used to implement the decision tree.

if condition. The following two if-else structures are created within the true or false

statements using the subsequent nodes (child node) and their input variable and cor-

responding splitting point. Figure 2.8 shows the tree structure that was used to imple-

ment the object-type classi�cation model. For instance, in Figure 2.8, the root node is

located at the leftmost part. If the PIP value gets higher than 488.155, the classi�ca-

tion reaches the terminal node and the result is �exion. However, if the PIP value gets

lower than 488.155, the child node is selected. This process continues until all branches

reach a terminal node. This method facilitates the implementation of decision trees

to the FPGA and de�ning the split amount helps to control memory usage on FPGA

card.
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3.3 Signal Generation

The vibrotactile stimuli were generated in the FPGA card after classifying the

data. We created an algorithm that checks the transitions between states to generate

the stimuli.

The algorithm checks the changes in the classi�cation results in real-time. The

algorithm creates a window by collecting the following sixty incoming results in real-

time and chooses the most frequent class among the classes in that window for object

and movement-type classi�cation results separately, whenever there is a change the

algorithm generated the stimuli. However, if the classes do not change, the algorithm

waits for a change. After choosing a class, the algorithm resets the window and sends

the results to the next stage.

In the next stage, the algorithm uses the results from the window to de�ne

the DESC event and generates the signal accordingly. Then FPGA card sends the

generated signal to the power ampli�er to drive the actuators. If it is an object-type

event, the FPGA card actuates Haptuator 1 and if it is a movement-type event, FPGA

card actuates Haptuator 2. The block diagram of the algorithm is illustrated in Figure

2.9. The signal generation part of the code is shown in the Appendix (Figure a.14)

Figure 3.9 Multiple data paths are shown in the �gure with a single arrow. To adapt to the DESC
policy, the program waits until there is a change in the classi�cation result either in the object type
or the movement type classes. The window resets after reaching the 60 data points. The window is
used to eliminate false classi�cation results. FPGA card outputs are connected to the power ampli�er
to amplify the signal before driving the Haptuators (Figure 1.3).
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3.3.1 Representation of The DESC Events

We mapped the object and movement type classes from decision tree classi�-

cation to the frequency and the magnitude values from discrete prosthesis events, as

shown in Table 2.

For object-type events and force-related feedback, Haptuator 1 was used and

placed on the left arm. For movement-type events, Haptuator 2 was used and placed

on the right arm. The classi�cation results of the movement and object type events

were used to de�ne the events. For instance, to de�ne the low force events, the algo-

rithm checks the object-type classi�cation result, whether it is the hard object or the

soft object and checks the movement-type classi�cation result whether it is contact or

release. To de�ne the high force events, the algorithm checks the object-type results,

whether it is the hard object or the soft object and checks the movement-type classi�-

cation result if it is �exion.

Two magnitude values (M1 and M2) were explicitly calculated for each partici-

pant, and two frequencies (F1 and F2, 80/180 Hz respectively) were used. Manipulating

a soft object with low force was assigned to the frequency F1 and magnitude M1 and

manipulating a soft object with the high force was assigned to the frequency F1 and

magnitude M2. The frequency F2 was used to represent the hard object manipulation

with the low and high force, where magnitudes stayed the same. These object-type

events were assigned to the Haptuator 1. However, changes to no object did not actu-

ate to the Haptuator 1.

Flexion without any object, in other words, �exion in the air, was represented

using the frequency F1 and magnitude M1 and �exion in the hard or soft object was

represented using the frequency F1 and magnitude M2. Extension in the air was repre-

sented using the frequency F1 and magnitude M1 and extension in the hard or soft ob-

ject was represented using the frequency F1 and magnitude M2. These movement-type

events were assigned to the Haptuator 2. When the movement changed to stationary,

Haptuator 2 was not actuated. All of the events with their given codes are shown in

Table 2.3.



41

Table 3.3

Table of events and their frequency and magnitude values. Modi�ed from [12].

Haptuators Events (codes) Frequency Magnitude

Soft object/low force (L1) F1 M1

Haptuator 1 Soft object/high force (L2) F1 M2

(Object-type events) Hard object/low force (L3) F2 M1

Hard object/high force (L4) F2 M2

Flexion/no object (R1) F1 M1

Haptuator 2 Flexion/in object (R2) F1 M2

(Movement-type events) Extension/no object (R3) F2 M1

Extension/in object (R4) F2 M2

3.3.2 Vibrotactile Stimuli

The stimuli were generated in the FPGA by using one-dimensional Look-Up

Tables (LUTs). To create the LUTs, MATLAB and LabVIEW were used. First, using

MATLAB, two sinusoidal signals with frequencies 80Hz (F1) and 180Hz (F2) were

created separately. These signals were sinusoidal mechanical displacements presented

in bursts with 50 ms cosine squared rise and fall times. The signal duration was 600

ms, including 50 ms rise and 50 ms fall time. Note that magnitude was calculated in

the FPGA by multiplying the signal with stimulus magnitudes (M1 and M2) which

were de�ned individually for each participant. Then, the created signal was exported

to LabVIEW. By using LabVIEW, LUTs were created using the signal data. Finally,

the LUTs were saved and used in the FPGA. The settings and the representation of

the signal in the LUT's are shown in the Appendix (Figure a.15 and Figure a.16).

The delay between each signal was de�ned as 300 ms and the features of each

signal were decided in the FPGA by using classi�cation results and the DESC events

from Table 2. Figure 2.10 shows an examples of the signal output of the FPGA

card. Signals that are sent to the Haptuator 1 were shown in the upper graphs, and

Haptuator 2 outputs were shown in the lower graph of the example. In Figure 2.10,

the �rst signal represents the �exion in the air (R1) event. Therefore, the frequency

is F1 and the magnitude is M1. Because the algorithm looks for the transitions, the
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Figure 3.10 Example of the stimuli that have di�erent frequencies for the DESC experiments. This
example shows R1-L3 movements from Table 1 and the third signal represents the possible stimuli
(in this case R3, R2 or none) according to the input data. Signal durations are 600ms with 50ms
increasing time and 50ms decreasing time. The waiting time between the signals is 300ms. The
number of signals, amplitudes and frequencies change according to the input data. Also the windows
and the classi�cation results of the data points are shown in below graph. Below graph only shows
the time between one and two seconds of the above graph.

previous state of the �rst signal might be stationary or extension in air. The second

signal represents the low force on a hard object (L3) with frequency F2 and magnitude

M1. The previous state was �exion in the air and there is a 300 ms interstimulus

interval between the signals. According to future events, the third signal might have

the frequency F1 or F2 and the magnitude M1 or M2. Also, there might not be any

signal if no transition occurs to a new state. The lower graph shows the a portion

of the classi�cation results processed in real time. Windows are generated with sixty

data points to take most frequent classes among the classes each time. In window 1

and window 3 the classi�cation mistakes can be seen however they do not a�ect the

algorithm because of the window. In window 2 of the movement type classi�cation

graph, the frequent classes change from stationary to �exion. The algorithm generates
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vibrotactile stimuli on Haptuator 2 after this discrete event transition. Than the stimuli

lasts for 600 ms and then interstimulus interval for 300 ms passes. By the end of the

stimuli the events change in object type classi�cation as shown in window 12 and after

the interval the algorithm generates the stimuli on Haptuator 1.

3.4 Participants

Four healthy female and two male participants, aged from 24 to 33, were included

in the experiments. These participants have also joined the previous study conducted

in our laboratory [12]. In the beginning, all participants were informed about the

experiments and signed an informed consent. Also, participants stated that they did

not have any dermatological, neurological, or psychiatric disorders that could a�ect

experimental results. The experiments approved by the Institutional Review Board for

Research with Human Subjects of Bogazici University.

3.5 Psychophysical Experiments

The experiments were completed in one session. First, absolute detection thresh-

old values were measured for each participant. Then the DESC experiments were

conducted.

3.5.1 Absolute Thresholds

Absolute detection thresholds were measured for each actuator placed on the

left and right arm. For each actuator, two threshold values were measured for each

vibrotactile frequencies (F1 = 80 Hz and F2 = 180 Hz). Adaptive tracking method

was used in a two-interval forced-choice task [147, 53].

The participants were sitting in front of a computer screen and the experiments

were done using MATLAB. The stimulus was generated in the computer and sent to the
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data acquisition card and then to the FPGA card. In absolute threshold experiments,

the algorithm was bypassed to send the stimuli directly to the power ampli�er to drive

the actuators. The experiment started with user entry and red, green and yellow

squares appeared in sequence. During red or green intervals, stimuli were presented

randomly with equal probability. Interval durations were 2s. The yellow interval was

used for user feedback using two prede�ned keys to decide which interval the stimulus

was presented. If the selection was correct, the yellow square blinked and if it was

wrong, the yellow square did not blink. In the beginning, the stimulus was easily

detectable and it was changed according to the correct or incorrect responses using

three-down one-up rule [148, 12]. Whenever the last 20 trials were between ±1 dB,

the experiment was ended and the mean score of this range was used as the threshold

value.

3.5.2 DESC Experiments

Discrete event-driven sensory feedback control experiments were conducted af-

ter measuring the absolute threshold values. Since the participants were the same as

the previous study [12], the psychophysical models were reused in this study. The new

measured absolute thresholds and the psychophysical models were used to de�ne the

magnitudes. MATLAB was used for interaction with the participants. The raw data

was generated from MATLAB and sent to FPGA card through the data acquisition

card. The FPGA card generated the signal automatically in real-time using Table 2.3.

The raw data were split according to the transitions in Figure 2.12 and used in the

experiments. All possible events are shown in a block diagram in Figure 2.12. The

arrows indicate transitions from one state to another state and double-sided arrows

indicate that transitions between those states can be either way.

Before starting the experiment, participants were trained to distinguish between

events using MATLAB. During the training session, vibrotactile stimuli were created

for all transitions in Figure 2.12. While giving the feedback, the pictures of the cor-

responding transitions were shown (Figure 2.11). In Figure 2.11, arrows indicate the

direction of the motion. Participants were trained as long as they needed. For the
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DESC experiments, fourteen prede�ned sequences were used [12]. These sequences are

made of two or three consecutive discrete events. The pictures from Figure 2.11 were

combined to represent events in those sequences. The initial steps were shown at the

beginning of each sequence.

At the beginning of the experiments, participants were asked to press a button to

start the experiment. Then, vibrotactile stimuli were given according to the randomly

selected sequences. A red square was displayed on the screen during the vibrotactile

feedback. Pictures of all sequences were then presented in a window for selection. Par-

ticipants were asked to identify the sequence of vibrotactile stimuli presented and they

were asked to select the correct sequence by pressing on the corresponding picture.

Actual sequences and participants' responses were recorded on the computer. The ex-

periments took about two hours and ended after 140 trials of ten randomly allocated

repeats for each sequence.

Figure 3.11 The pictures were used in DESC experiments to show fourteen sequences that were
created by combining two or three consecutive discrete events. Modi�ed from [12].
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Figure 3.12 States/transitions that are shown in this block diagram were observed in a typical
cylindrical grasp task. Modi�ed from [12].

3.6 Statistical Analyses

Statistical analyses were performed in MATLAB 2019b and SPSS [149]. Two-

way non-parametric ANOVA was used to analyze the di�erences in threshold values
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converted from dB to micrometer units. Stimulus frequencies (80 and 180 Hz) and

stimulus site (right and left arm) were the parameters for the analysis. Because the

number of participants were low, thus the sample size was low, non-parametric ANOVA

were had to be used. Therefore ARTool [150] was used to convert the data using align

and rank transform for analyzing multi-factor at a time using two-way ANOVA. For

the DESC experiments, one proportion z-test was used to compare the proportions of

the correct responses in the confusion matrix to the chance level. A chi-squared test

was used to assess the proportion of predicted classes' homogeneity. Two proportion

z-test with Bonferroni correction was used to compare the proportions of the correct

responses in the confusion matrix of this study and o�ine results [12]. Class averaged

recall, precision and F1 scores were calculated. O�ine performance scores from [12]

were compared to calculated performance scores using non-parametric Wilcoxon rank-

sum test.
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4. RESULTS

4.1 Classi�cation Results

The classes for object-type events are; no object, hard object and soft object.

The movement-type classes are; stationary, �exion, contact, release and extension. The

algorithm looks for changes in both events. Figure 3.1 shows a part of the data which

is one cycle representing grasping a hard object. The data were taken from the ring

�nger, which has Ring-MCP, Ring-DIP, Ring-PIP, Ring-Distal, Ring-Palmar sensors

mounted on it. The hand performed 80 cycles cylindrical grasp, where 35 cycles were

for the hard object, 35 cycles for the soft object, and ten cycles for without any object.

There were 560000 data points and each data point took 1 ms in the data. For one

cycle there were 7000 data points. The windows lasted sixty ms. The data starts from

stationary in the air (no object) and continues with �exion in the air. After contacting

the object, the object-type class changes and �exion continues. One cycle of the data

were split into classes, as shown in Figure 3.1 [25]. The calibration took place in the

FPGA. Figure 3.1(a) shows an example of the bend sensor data and Figure 3.1(b)

shows an example of the force sensor data. To train the MLR model, the data were

exported to MATLAB and to train the decision tree model; the data were exported to

Python. Later, the trained models were implemented on the FPGA card.

For the MLR the data were sent to the FPGA by using the LabVIEW interface.

The data of �ve sensors were sent the FPGA for calibration and classi�cation. However,

for the DT, the data of four sensors, (MCP was excluded), were sent from the analog

outputs of the data acquisition card to the inputs of FPGA card. That was because,

the daq card had only four outputs. First, the data were �ltered (low pass Butterworth

�lter) to get the contact forces and joint angles. Then the data were calibrated using

the Eq. 1.1 and Eq. 1.2 in Section 3.
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Figure 4.1 The labels which were extracted from the example data. The data represents one cycle of
grasping a hard object. (a) The bend sensor data example. The cycle lasts seven seconds and shows
the grasping a hard object. (b) The force sensor data example. The cycle lasts seven seconds and
shows the grasping a hard object. Modi�ed from [13].

4.1.1 Multinomial Logistic Regression Results

The resources on FPGA are de�ned by the number of slices where a slice is com-

posed of look-up tables (LUTs) and �ip �ops. Default numeric controls (add, multiply,

etc.) consumed too many LUTs, and the memory was not enough for those operations.

To overcome this issue, LabVIEW FPGA Floating-Point Library by NI. [144] was used,

and it decreased memory and LUT usage signi�cantly. With the default numeric con-
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trols 76427 LUT's were used, however with the �oatin-point library only 19200 LUT's

were used for the same code.

Figure 4.2 Confusion matrices of the MLR classi�cations. (a)Confusion matrix for object type clas-
si�cation. The data with 560000 data points were tested in FPGA card. The model was very accurate
at predicting the classes with 93% accuracy (b) Confusion matrix for movement type classi�cation.
The data with 560000 data points were tested in the FPGA card. The accuracy of the model was low
(59%) hence, MLR was not a best choice for movement type classi�cation.

The data were randomly shu�ed and the �ve-fold cross-validation method was

used for training. Simply cross-validation divides the data into �ve equal parts, allow-

ing each part to be used for both training and testing. Thus bias and errors caused

by dispersion and fragmentation are minimized. Cross-Validation allowed us to see

whether the model's high performance was random or not [7].

Table 3.1 shows the classi�cation results done in both FPGA card and MAT-

LAB. Real-time classi�cation yielded lower results than the o�ine classi�cation [12].
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Table 4.1

Comparison between o�ine [12] and real-time classi�cation of MLR.

Device Classi�cation Classi�cation

Accuracy

O�ine Object type 0.98

classi�cation with

MATLAB Movement type 0.72

Real-time Object type 0.94

classi�cation with

FPGA Movement type 0.59

That is because, in o�ine classi�cation, feature normalization was done to the data

after calibration, which is not applicable in FPGA. We can see that object type clas-

si�cation gives an excellent result. The confusion matrix of the object type results are

shown in Figure 3.2(a). However, for movement type, it is clear that we need to use

di�erent algorithms to get better accuracies. The performance scores of the real-time

MLR classi�cation is shown in Table 3.2. We can see that for object type classi�cation

Table 4.2

Classi�cation results of real-time MLR classi�er.

Classi�cation Type Classi�cation Labels Recall Precision F1 Score

No object 0.73 0.97 0.83

Object type Soft object 0.93 0.99 0.96

Hard object 0.99 0.88 0.94

Stationary 0.57 0.68 0.62

Flexion 0.68 0.57 0.62

Movement type Contact 0.08 0.32 0.13

Release 0.70 0.65 0.67

Extension 0.58 0.56 0.57

the results are high. However, for the movement type the recall, precision and F1 scores

are low and in Figure 3.2(b), this indicates that, the model was best at classifying the
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�exion and worst at classifying the contact. The model often misclassi�ed the contact

with �exion and extension. That might be because contact comes after the �exion and

before the extension and there might be some similarities between contact, �exion and

extension. So that, the model might not be able to discriminate them from �exion and

extension.

4.1.2 Decision Tree Classi�cation Results

The data were randomly shu�ed and the 10-fold cross-validation method was

used for training. The decision tree structure of the object-type classi�cation is shown

in Figure 3.3. The �rst line at each node shows where the data split for that feature.

For instance, the model checks if feature 8, which is the data of derivative of the DIST,

is whether greater than 488.155 for the root node. The Gini indexes indicate the suc-

cess rate of the split. Zero means the best split. It can be seen that the terminal nodes

are very close to zero, which indicates that the classi�cation for the object-type events

will be very successful for the sensor data. The sample amount in that split is shown in

the third line. For instance, after the root node, the data is split into two, and the tree

reaches the terminal node if the condition is met. After reaching the terminal node,

it can be seen that 138112 samples from training data met the condition of the root

node. The value in the fourth line shows the number of samples that belong to each

class for that node. For instance, in the terminal node after the root node, there are

138112 samples and 593 of them belong to the �rst class, 134944 samples belong to

the second class and 2575 of them belong to the third class. The last line shows the

decision class for the terminal node. So after the root node, if the data of derivative of

the DIST gets lower than 488.155, the model concludes that it is the second class.

The number of splits was limited by de�ning the amount of the leaf nodes. This

helped us to implement the model into the low memory FPGA e�ciently. We de�ned

and tested several split criteria and checked how the accuracies change accordingly.

Graphs in Figure 3.4 show the number of leaf nodes and their training accuracies for

both object and movement-type classi�cations. Note that these results were calculated

by taking averages of the cross-validation results. Figure 3.4(a) shows the object-type
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Figure 4.3 The Gini indexes show how well the split was done. The Gini value gets a result between
0 and 1, and the closer the result is to 0, the better the discrimination is. The number of samples
was shown in each node. The value array represents the discrimination of the samples that were used
in the node. There are three classes in object type events; therefore, samples were divided into three
groups in the value array. The decision tree algorithm takes the maximum number to decide the class
at that node. Five leaf nodes were used for split criteria.

classi�cation results. The classes of the object-type classi�cation are easily distinguish-

able from one another. That is why the accuracy converges rather quickly. We only

plotted the numbers up to 30 in this graph to show the detailed information. After

careful consideration, split criteria with �ve nodes were selected to achieve the opti-

mum results with the minimum leaf nodes possible. The test data accuracy was % 97.

Figure 3.4(b) shows the training accuracies for movement-type classi�cation.

Since it is more challenging to distinguish classes than object-type classes, accuracy

increases slowly. The classes and their places on the example data can be seen in

Figure 3.1. Table 3.3 shows the detailed results of the movement-type classi�cation.

Three di�erent accuracies were tested and their memory usages were observed. The

slice LUT's are basically the LUTs that are a set of logic gates. For every combination

of inputs possible, LUTs store the prede�ned list of outputs and provide a quick way

to get the output of a logic operation.
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Table 4.3

The results of decision tree algorithm for movement type events.

Nodes of O�ine

Decision Training Memory Used Total Percentage Accuracy of

Tree Accuracy Components Test data

Total Slices 5465 10250 53.3%

19 0.72 ± 0.02 Slice Registers 16764 82000 20.4% 0.69

Slice LUT's 16324 41000 39.8%

Total Slices 7068 10250 69%

80 0.81 ± 0.03 Slice Registers 22071 82000 26.9% 0.78

Slice LUT's 22164 41000 54.1%

Total Slices 9147 10250 89.2%

290 0.90 ± 0.02 Slice Registers 28152 82000 34.3% 0.88

Slice LUT's 29797 41000 72.7%

Figure 4.4 (a) The graph for classi�cation of object type events. The classes are easy to discriminate
and the percentage converges to 100 quickly (b) The graph for classi�cation of movement type events.
The classi�cation is more complicated than object-type events. It requires 290 leaf nodes to reach
90%.

Slice registers are made of �ip-�ops. It stores a bit pattern that holds the states

between iterations, synchronizes input and output and communicates with the host VI

that LabVIEW o�ers [151]. The model reaches 72% accuracy, which is the average
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of 10-fold cross-validation using 19 leaf nodes. Implementing the model on the FPGA

uses nearly half of the memory. Note that these memory results contain the calibration

step and the decision tree model. Since there is a lot of memory left unused, we tried

to implement a model with 80 leaf nodes that resulted in 81% accuracy. This model

uses 69% of the memory. Lastly, to reach 90% accuracy, 290 leaf nodes were used and

implemented on the FPGA card. The reason we choose 290 was to achieve the opti-

mum results with the minimum leaf nodes possible to use memory in the most e�cient

way. With this model, % 89 of the memory was used. After implementing the decision

tree models of both object and movement types, real-time performances of the models

were tested with the data.

Figure 4.5 (a) Confusion matrix for object type classi�cation. The data with 560000 data points
were tested in FPGA card. Five leaf nodes were chosen for split criteria. The decision tree classi-
�cation performed exceptionally well with %97 accuracy. (b) Confusion matrix for movement type
classi�cation. The data with 560000 data points were tested in the FPGA card. The decision tree
classi�cation using FPGA card performed considerably well with %89 accuracy.

The accuracy of the object-type classi�cation was %97 and the accuracy of

the movement-type classi�cation was %89. The recall, precision and F1 scores of the

DT classi�cation are shown in Table 3.4. The score are high for both the movement

and object type classi�cations. We can say that DT can successfully discriminate the
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classes in these data types. Figure 3.5(a) shows the confusion matrix of the decision

tree model for object-type classi�cation. The model was very successful in predicting

the classes. The highest error was predicting no object where it was actually a hard

object. The model learned well to separate hard and soft objects, which gave the lowest

error. Figure 3.5(b) shows the confusion matrix for the movement-type classi�cation

performance of the model. The model was successful however had some di�culties

discriminating extension from the stationary. Also, the model predicted �exion while

it was actually an extension. The reason might be because some of the angle values are

the same for the stationary, �exion and extension. A small percentage of the contact

was misclassi�ed with �exion and vice versa, probably due to contact occurs after the

�exion. Furthermore, because release comes after extension in some situations, the

model was confused about classifying some of the releases with the extension. So some

similarities may cause errors in a small percentage of the data.

Table 4.4

Classi�cation results of real-time DT classi�er.

Classi�cation Type Classi�cation Labels Recall Precision F1 Score

No object 0.98 0.94 0.96

Object type Soft object 0.97 0.98 0.98

Hard object 0.94 0.98 0.96

Stationary 0.87 0.81 0.84

Flexion 0.93 0.92 0.93

Movement type Contact 0.83 0.87 0.85

Release 0.86 0.84 0.85

Extension 0.84 0.90 0.87

4.2 Psychophysical Results

Psychophysical experiments were conducted in one session for each participant.

Absolute detection thresholds were measured for two vibrotactile frequencies (80 Hz
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and 180 Hz) and two stimulation sites (right and left arm). Absolute detection thresh-

olds for each participant are shown in Figure 3.6. Each participant is shown in di�erent

colors and the threshold scores are divided into four groups using the frequency and site

that were used to measure the thresholds. To compare with the literature, the thresh-

old scores in the y-axis are plotted in dB referenced to 1 µm. Note that thresholds were

measured only once in this study. The experiment started by placing the Haptuator 1

on the left arm and the thresholds were measured for 80 Hz and 180 Hz, respectively.

Then Haptuator 2 was placed on the right arm and the same measurements were taken.

Threshold values were consistent with the literature [12, 4]. Threshold di�erences were

analyzed using two-way ANOVA. There were no interactions found between frequency

and site or their signi�cant e�ects on thresholds. Threshold values were used in FPGA

to adjust the stimulation amplitude for each participant using the psychophysical mod-

els that were established in the previous study [12].

Figure 4.6 Absolute detection thresholds for each participant at di�erent frequencies and locations.
The thresholds were measured only once by the adaptive tracking method and the results are shown
as bars.
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DESC experiments were conducted right after the absolute threshold experi-

ments. Participants were trained to learn and di�erentiate the discrete event-driven

vibrotactile patterns, as shown in Table 2.3, before the DESC experiments. The length

of the training session was dependent on the participants. For the actual experiments,

fourteen sequences were created with two or three discrete events from Table 2.3. To

be able to compare both performances, these sequences were selected similar to the

previous study [12]. The sequences and their event codes are shown in Figure 3.7.

These sequences were de�ned in MATLAB by combining the raw data that represents

the events. Raw data were sent to the data acquisition card and eventually to the

FPGA card. FPGA card generated the stimuli in real-time using Table 2.3 and the

algorithm that was de�ned in section 2.3. The stimuli duration was 600 ms with 50

ms rise and fall time and FPGA waited 300 ms before generating the next stimulus.

Figure 3.7(a) shows the confusion matrix, which was created from pooled data

of the participants' performances in the DESC experiments. The diagonal shows the

correct responses for each class. The performance of the participants on choosing the

correct response was moderately acceptable. Participants had the worst performance

on identifying sequence ten (contact to hard object, �exion in hard object, force in-

creases). This sequence was mostly mistaken with sequence nine, which were contact to

soft object, �exion in soft object, force increases. However, their best performance was

identifying sequence four (stationary in air, �exion in air, contact to hard object). This

sequence was confused with sequence three (stationary in air, �exion in air, contact to

soft object). Participants were commonly mistaken in identifying sequences that are

similar to the correct sequences. Especially, discriminating the hard object from the

soft object and vice versa was a common mistake. Statistical analysis comparing the

correct responses to the chance level showed that the correct responses were signi�-

cantly above the chance level (p<0.002). In addition, the chi-square test result was

p<0.05, which indicated that target and predicted sequences were signi�cantly depen-

dent. The confusion matrices of each participant's responses and their performance

score are shown in the Appendix (Figure a.1-a.6 and Table a.1-a.6).

We compared our results with the previous study [12]. Proportion di�erences

are shown in Figure 3.7(b). Positive percentages indicate that participants performed

better in our study than in the previous study at that sequence. Negative percentages



59

Figure 4.7 (a) The confusion matrix of pooled results from the DESC experiments. The actual
number of responses is shown in the matrix cells. The numbers that represent the class labels are
the sequences of the events. (b) The matrix of di�erences between o�ine [12] and real-time pooled
results from DESC experiments. The di�erences are in percentage and negative percentages indicate
that o�ine percentages are bigger than the real-time percentages. The numbers that represent the
class labels are the sequences of the events.

indicate vice versa. Note that six participants completed the DESC experiments in

this study; however, seven participants were able to complete the DESC experiments
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in the previous study [12]. Therefore, the lack of one participant might be the reason

for some di�erences. The most signi�cant di�erence was in sequence ten which was

negative. Sequence ten was the worst performance in this study, so that di�erence

is understandable. The most signi�cant di�erence among the positive percentage was

sequence six. Although our study lack of one participant, participants were better

at identifying some sequences than o�ine study. The di�erences between the correct

responses of both experiments (diagonal of Figure 3.7(b)) were analyzed using Bon-

ferroni corrected two-proportion z-test. The null hypothesis means there should be no

di�erence between the diagonals of the two studies. All p values were greater than

0.004, which fails to reject the null hypothesis and implies that there is no signi�cant

di�erence between the two studies.

Figure 4.8 Overall mean performance scores of the DESC experiments compared with the o�ine
scores from [12].

Figure 3.8 shows the class-averaged recall, precision and F1 scores from each

participant for real-time scores of this study and the o�ine scores [12]. No signi�cant

di�erences were found between the two experiments (all p's > 0.05). Even though the

real-time recall (0.38 ± 0.08), precision (0.38 ± 0.09) and F1 score (0.37 ± 0.09) are

slightly lower than the o�ine scores.
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5. DISCUSSION

5.1 Previous Studies

FPGA is used in various applications and scopes for decision tree applications.

Narayanan et al.[120] implemented the decision tree model for training the model us-

ing a Gini score calculation method. They used HDL to implement the algorithm to

the FPGA. The main focus was to accelerate the training process. Their study was

the �rst attempt to implement decision tree models in FPGA. However, we trained

the model o�ine and implemented it in FPGA for classi�cation due to memory lim-

itations. Alhammami et al. [152], Pittman et al. [153] and J. Oberg, et al. [121]

implemented random decision tree models on FPGA for body part recognition using

Microsoft Kinect. However, these designs cannot be used in low-power FPGAs due

to memory constraints. Taiga Ikeda, et al. [118] proposed the threshold compaction

method to merge similar thresholds and reduce the size of the gradient-boosted decision

tree models, which simply combine decision trees in series to achieve a strong learner

from many sequentially connected weak learners. Rafal Kulaga and Marek Gorgon

[119] designed a decision tree classi�er to recognize letters and digits using FPGA.

They wrote the decision tree model in a high-level language, such as C, and then used

Vivado to convert it to a hardware description language. LabVIEW was used as a

hardware description language in our study because it is easier to use, more e�cient

and e�ective, which is the �rst study to our knowledge that implements the decision

tree algorithm using LabVIEW to the FPGA.

G. Di Patrizio Stanchieri, et al. [135] proposed an electro-tactile sensory feed-

back system using optical �ber data communication link. However, they were focused

on an optical �ber data communication link between two FPGAs, not the sensory feed-

back. They found improvement in power consumption, transmission data rate and the

robustness to electromagnetic disturbances.

Vibrotactile feedback is widely used to give sensory feedback to the patients in

the literature [23, 59, 154, 155, 156, 12, 63, 64]. Patterson and Katz used both vibro-
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tactile and mechanotactile feedback in 1992 and they used a myoelectric hand to give

grasp force information. They found out that the feedback reduced the grasping errors.

[63]. After that study, the myoelectric hand was used to get grab force information

and only continuous vibrotactile feedback was applied in some studies, which improved

prosthetic use performance slightly better [59, 64, 58]. However, continuous feedback

increases the processing load and forces the user to focus on the stimuli for changes

continuously to identify the events. To solve that problem, the DESC policy was used

in non-invasive sensory feedback for the �rst time by Christian Cipriani, et al. [22].

Participants of that study controlled the robotic hand by their thumb and index �n-

gers. The robotic hand was attached to the participants' forearm and they grasped and

lifted o� an object during the experiments. More recently, they used the virtual egg

test by using a DESC glove, which was composed of vibrating motors and sensorized

digit thimbles. The result was promising in terms of performance improvement [21].

They also showed that discrete feedback reduces slip in another study [23]. However,

in these studies, the stimulus duration was short and vibration intensity, frequency and

duration were adjusted manually.

A recent study [12] was successfully done in our laboratory, where they used

two actuators (electromagnetic vibrotactile) to understand psychophysical principles

behind the DESC theory by using the patterns or stimuli changing in amplitude, loca-

tion, and frequency, after placing them on the upper arms of 10 human subjects. They

controlled the actuators by using audio power ampli�ers, which were custom-made,

and they generated the stimulus waveform from the data acquisition card controlled

by a MATLAB script. To equalize the sensation magnitudes, they measured absolute

thresholds, psychometric functions, and magnitude estimates. The subjects had to

complete several tasks (same- di�erent, pattern recognition, and DESC experiments).

For the DESC experiments, they used 300 ms interstimulus intervals, which were si-

nusoidal signals with the frequencies 80 Hz and 180 Hz for the vibrotactile events.

The magnitudes were calculated individually for the subjects to represent movement

in air and movement in object. The actuator placed in the left arm was used to sig-

nal object-type (soft object, hard object, and no object) and force-related (low force

and high force) discrete events. The other actuator was used to signal movement type

(�exion in air, extension in air, stationary in air, �exion in object, extension in object,
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and stationary in object) discrete events. These methods were used in this study in

real-time. Enzo Mastinu, et al. [157] examined the e�ects on motor coordination while

providing tactile perception. They compared the performances of no feedback, contin-

uous feedback, discrete event-driven feedback and hybrid feedback which combined the

continuous and discrete event feedbacks. The experimental procedure included routine

grasping and grasping an object under uncertainty. They found that hybrid and DESC

feedback yielded similar performance, which is better than no feedback and continuous

feedback. However, they used the invasive sensory feedback method in their study.

To the best of our knowledge, no attempt was made to apply real-time vibrotactile

feedback using FPGA.

5.2 Technical Limitations and Other Issues

The FPGA that was used in this study (NI USB-7845R) o�ers low memory;

therefore, some machine learning models, such as KNN, can not be implemented. This

situation led us to use the MLR and DT, which are very e�cient and do not require

high memory usage. Another issue with the low memory was that training could not

be done in FPGA. Therefore the model was trained o�ine and the trained model was

implemented to FPGA. Also, usage of the �oating-point numbers is limited and even

with the SGL type, the precision is limited. The SGL type may occasionally throw

a rounding error if signi�cant digits get more than six [158]. This might result in an

insigni�cant classi�cation error for the model. Therefore, this error percentage can be

neglected.

There were certain limitations on placing the actuators to the upper arm for the

experiments. The actuators were mounted on a rubber foam and straps were attached

to the foam to secure it to the arm. The actuators were mounted perpendicularly.

During the experiments detaching the straps caused the experiment to start over from

the beginning. Also, the displacement of the actuator might be a�ected by the skin's

reaction in the opposite direction and resulting in a decrease in the performance of

the participants. Although the actuators were placed nearly on the same site using

the placement measurements from Karaku³ and Güçlü [12] on the arm, there was
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variation between the thresholds from the that study because of the indentation shifts

and small location shifts. As stated in Section 1.2, change in the indentation e�ects

the thresholds. These issues can be solved with the actuators attached directly to the

prosthesis. Nevertheless, measured threshold values were consistent with the literature

as can be seen in Figure 2.5 [12, 4]. The contactor area was 0.03 cm2 in our study. It

was previously shown that the spatial summation e�ect of the Pacinian channel could

be neglected using small contactor areas [74, 159] and the thresholds follow a �at trend.

Therefore it was expected to have no di�erence between 80 Hz and 180 Hz threshold

results, which was the case in our study.

One another issue was with the Haptuator devices, although they have good

linearity over a wide frequency range, they were not designed speci�cally to work

with prostheses. They were generating vibrations on the casing which could generate

complex stimuli on the skin. Therefore, we had to make some adjustments to the

Haptuator by mounting small plastic probes as done in previous study [13]. However,

sometimes during the experiments, the probes were dismounting and we had to remount

them on the Haptuator. So that the experiments had to be retaken by the participants

after recalculation of the absolute thresholds. This issue can be solved with using a

Haptuator that comes with a probe designed by the manufacturer.

In our system, the FPGA decides on the events using the classi�cation results.

Although we used window to prevent misclassi�cation errors, FPGA made mistake in

32 out of 840 sequences. To prevent these errors and improve the results, a simple

decision algorithm can be added before applying the feedback. In Figure 4.7 we can

see that, some events are not possible to come after a speci�c event. For example

there is no possibility of force increase, when the event is stationary in air or there

is no possibility of �exion in soft object when the current event is stationary in hard

object etc. So that, the algorithm can eliminate the irrelevant events and wait for the

relevant events that might come after the current event. For instance, if it is �exion

to soft object the algorithm will wait for the extension in soft object, force increases

event or stationary in soft object. When the FPGA makes a mistake and de�nes the

event as stationary in air the algorithm will eliminate that event and might take the

classi�cation of the next window or wait for the next event. However, this algorithm

might increase the memory usage of the FPGA.



65

5.3 Future Work

Future work may address using an available real prosthetic arm such as IH2

Azzurra hand (Prensilia SRL, Italy), Michelangelo hand prosthesis (Otto Bock Health-

care, Austria), etc. For the implementation of the system to the real prosthetic arm

some improvements can be made. For example the Azzurra hand already has force

sensors mounted on it. With the addition of the bend sensors, the hand can be used

to provide feedback as presented in this study. With the hand's wireless communi-

cation feature, the sensor data can be sent to the FPGA wirelessly. Because of the

FPGA card that was used in this study, is big and ine�cient for the real prosthetic

hand, one FPGA chip (such as Kintex-7 70T) with A/D converter can be added to

a custom made circuit. The Haptuators can be placed on either each upper arm or

stumps of each arm by designing a socket on the hand to secure them in their places.

Also, a small custom made board with a small ampli�er and one port D/A converter

can be placed near each Haptuator. Wireless communication between the FPGA and

the Haptuators can be accomplished by adding wireless communication cards to the

boards. The proposed algorithm code can easily be implemented to the FPGA chip

by getting the bit �les that LabVIEW can create. The presented system can also be-

come bene�cial in surgery robots, such as da Vinci surgical system (Intuitive Surgical

Inc., Sunnyvale, CA, USA), by allowing the surgeons to have the improved control in

the surgery. It was shown that lack of haptic feedback is a limiting factor in robotic

surgeries [160] and haptic feedback improves the control of the robot [161]. Our sys-

tem can be implemented to the surgery robots and it can help to shorten the training

time and decrease the surgeons' cognitive burden. On the other hand, arti�cial skin

[162, 131, 132] may be implemented on a prosthetic hand using FPGA. That would

improve the quality of the data and therefore, the model would perform better. Also,

the training may be implemented in the FPGA to prevent errors that the sensors might

cause after some time due to abrasion; and the model can be trained by the user during

the use of prosthesis. Besides, to measure the absolute threshold values after reattach-

ing the actuators, custom software on a computer or smartphone can help the user to

measure using the adaptive tracking method and adjust the magnitude levels, so that

the user would not have to go to a clinic or a laboratory for a simple calibration. The
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performance of the presented system was tested on six healthy participants in a short

time. The performance may increase with a long term study on prosthetic users and

the results of the study can be compared with this study.

In our study we used force and bend sensors and their derivatives, as features

of the machine learning algorithms. The force sensor represents exteroceptive informa-

tion and bend sensors represents proprioceptive information in humans [163]. In the

literature, derivative of the force sensor is shown to increase the accuracy while de-

tecting object slippage [164, 165, 166] and discriminating the object types [13]. There

are also other techniques such as; Fast Fourier Transform, mean absolute value, root

mean square, waveform length, mean frequency, standard deviation, maximum, mean

value etc. [167, 168, 169]. The frequency analysis could be relevant to distinguish the

contributions of di�erent mechanoreceptors such as Pacinian corpuscles and Meissner

corpuscles [169]. In the future, these techniques can be tested and the technique that

gives most informative features can be implemented. Thus the machine learning algo-

rithm would perform better and accuracy can be increased. However, because we are

using low memory FPGA, number of features has to be chosen as low possible.

This presented system can be applied invasively using cu� electrodes, TIME or

LIFE electrodes for peripheral nerve stimulation (PNS) [170]. Two electrodes can be

implemented in median and ulnar nerves separately. Tactile and proprioceptive sensa-

tions can be evoked by choosing di�erent parameter set of rectangular biphasic current

pulses [171, 172]. Fixed 50 Hz frequency was commonly used in PNS studies, which

can be also used in this study [173, 45, 174]. The amplitude can be adjusted using

staircase method to de�ne thresholds and upper-limit pulse amplitudes. Pulse widths

can be de�ned between 20 and 250 µs as done in literature [157, 173, 45, 174]. However,

with our algorithm, the parameters of invasive pulses can be changed in every 60 ms.

In the future, activity recognition can be adapted to our system. Roggen et al.

[175] showed that, by using accelerometer, gyroscope and magnetometer some daily

activities such as opening and closing door,fridge,dishwasher or drawer, drinking from

cup, preparing co�ee, cleaning table, preparing and eating sandwich can be recognized.

By using such method our system can recognize the activity and give the feedback ac-

cordingly. That would be more accurate and e�ective. Such system can be tested and

compared to our study.
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5.4 Conclusion

In this study, we proposed a method for real-time vibrotactile feedback using the

DESC policy. Most of the highly sophisticated prosthetic devices are rejected by the

users because of the substantial cognitive load [14, 176]. Therefore it is not very feasi-

ble at this time to convey all the physical information e�ectively. Some simpli�cation

is required to get e�ective results. In this study, we used only two levels of frequencies

and two levels of magnitudes. However, even with this simplicity, the performance is

not perfect. As we apply this feedback in sequence in daily use, some events might be

missed. In the three pattern sequence of DESC stimulation, participants' performances

were acceptable but not very good for recognizing all three events. However, at least

two out of three were recognized accurately. When the user has this in a daily task,

some will be missed because of task continuity. The user might get that information

a second later or in a di�erent way. It may not be feasible and e�cient to introduce a

lot of continuous types of information which will decrease the user performance. That

is why the DESC is needed in these types of applications.

We used FPGA card to process the data and apply appropriate feedback accord-

ing to the classi�cation result. FPGA is known for its e�cient power consumption that

reduces costs for large-scale operations. This makes them a great choice as accelera-

tors for battery-powered devices [177]. Thus it is a good choice for a prosthetic device.

However, low memory makes it rather challenging to implement complicated machine

learning algorithms. Therefore e�cient yet straightforward algorithms are needed to

be chosen. First, the MLR was chosen. The accuracy of the object type classi�cation

was % 93, and it was a very promising result. However, the movement-type (%59) ac-

curacy was not satisfying enough. To improve the results, DT was used. The decision

tree model yielded very promising results for both object type and movement type.

Object type classi�cation accuracy was 97% and movement-type accuracy was 89%.

Decision tree models were controlled by de�ning split criterion. This simply facilitated

the achievement of maximum accuracy using less memory. The proposed model in this

study can easily be used in other machine learning applications, and the accuracy can

be compared to our study.

The data were sent to FPGA card using MATLAB and data points were sent
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one by one to mimic real-time applications using sensors. Data acquisition card was

simply the communication link between the computer and the FPGA card. However,

the data acquisition card will not be needed in real-time applications using a real pros-

thesis because sensors will be connected directly to the input ports of the FPGA card.

An algorithm was created in FPGA card to �lter, calibrate and classify the raw data

and generate vibrotactile stimuli using DESC policy. To apply the DESC policy, the

algorithm checked the changes in classi�cation results for both object and movement

types. The algorithm created a window for sixty data points and chose the most fre-

quent class among all the classes and whenever the change occurs in either type the

DESC signals were generated. That prevented generating the wrong stimuli due to

misclassi�cation errors. The Haptuators were placed on each arm to increase ability

to discriminate the vibrotactile feedback.

We found no signi�cant di�erence between the performances of this study and

previous study [12]. Our study is an excellent example of how psychophysical mod-

els can be established once (the models that we used were taken from the previous

study [12]) and then reused easily by only measuring the thresholds using the adaptive

tracking method for the same person. Thus in real-life applications, users can simply

measure the thresholds whenever needed and continue to use the prosthesis without any

problem. The previous study showed that vibrotactile feedback using discrete events

are perceivable with reasonable accuracy by the user and our results con�rm this study

[12]. Remarkably, participants were able to identify correct sequences almost half of

the time in both studies and they were mostly confused by similar sequences. This

performance was quite good compared to the 7% chance level. Note that this results

are for the full sequences. So that if the participant could not get all the sequences

correctly, the answer is considered wrong. Because of this situation these scores might

seem low, however if we calculate two discrete events out of three we reach 65% and if

we calculate one event out of three we reach 80% accuracy. So that this performance

scores are considered to be enough for the prosthesis use and in the literature it was

shown that DESC based vibrotactile feedback improves the use of prosthesis better

than no feedback or continuous feedback [23, 22, 21]. In addition, after some time, the

performance of the user will improve for getting all the sequences correctly, because

they will learn better after spending some considerable time using the prosthesis with



69

our system. This system can be tested on long term in the future and the results can

be compared to our study.

When we imagine a real life situation of grasping and lifting a glass; the user

would �rst needs place the hand around the glass. Then the user has to start closing

the �ngers (�exion in the air), touch the glass (contact to hard object) and in order

to lift the glass ,the hand has to grip �rmly, therefore, the �ngers have to close little

more after contacting the glass (�exion in hard object), this will help the user to easily

grasp and lift the object without any slip. If the prosthesis keeps closing, the pressure

on force sensor will increase (force increases), so that the user will know to stop the

�exion before breaking the glass. Finally, the user has to lift the glass by applying

right amount of force and the user has to keep that force while lifting. This is where

another advantage of our system comes. If the prosthesis mistakenly opens or closes

the hand, our system can detect that event right after it changes and give to the user

an appropriate feedback. Although, there are several studies to prevent object slip-

page by using automatic grip controllers [164, 165, 166, 168, 178, 179], unintentionally

generated EMG signals that gives �exion or extension commands, could result the ob-

ject to drop or crush. With our system, the user will feel the movement and prevent

unwanted situations. In our experiments, if one of these events were misclassi�ed, the

whole sequence was considered wrong. That is the reason the performance score for

whole sequence is medium. However, the user can grab and lift the glass even with

that classi�cation error in real life. That is why performance score of our study is ac-

ceptable. When we apply feedback for these discrete events, the user will be in control

of every step just as the real life and the prosthesis will �nally seem to the user as a

part of the body. Because, as mentioned in Section 1, without sensory feedback, the

patients tend to abandon the prosthesis or use a cosmetic one. One reason is they can

not own the prosthesis as their missing limb [14, 15].

In this thesis study, we successfully implemented two machine learning algo-

rithms to a low memory FPGA card and applied vibrotactile feedback in real time.

We successfully mapped the sensor data to discrete vibrotactile events. We used two

frequencies and two magnitude values to map the events. The results showed that the

performance of a prosthetic user can be improved with this system and reduce device

abandonment. We present the detailed information and steps to apply DESC based
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vibrotactile feedback by real time classi�cation of sensor data and we showed some

possible future applications that can be made on a real prosthetic hand. We hope that

this system can be used in future applications and make prosthetic users' life easier.
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APPENDIX A. ADDITIONAL FIGURES AND TABLES

Figure A.1 Confusion matrix of the responses of S1 in DESC experiment.

Table A.1

Performance scores of S1 in DESC events.

Sequence Precision Recall F1 score

1 0 0 0

2 0 7.14 8.33

3 10 16.67 18.18

4 20 22.22 34.28

5 75 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 11.11 9.09 10

10 11.11 16.67 13.33

11 20 20 20

12 9.09 14.29 11.11

13 9.09 12.50 10.52

14 10 33.33 15.38
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Figure A.2 Confusion matrix of the responses of S2 in DESC experiment.

Table A.2

Performance scores of S2 in DESC events.

Sequence Precision Recall F1 score

1 33.33 40 36.36

2 70 33.33 45.13

3 0 0 0

4 0 0 0

5 50 50 50

6 20 28.57 23.53

7 62.5 50 55.56

8 50 50 50

9 30 23.08 26.09

10 20 16.67 18.18

11 10 7.7 8.70

12 20 16.67 12.50

13 20 33.30 24.99

14 20 25 22.22
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Figure A.3 Confusion matrix of the responses of S3 in DESC experiment.

Table A.3

Performance scores of S3 in DESC events.

Sequence Precision Recall F1 score

1 70 46.67 56

2 30 37.50 33.33

3 50 71.43 58.82

4 80 66.67 72.73

5 60 50 54.55

6 60 33.3 42.83

7 50 35.71 41.66

8 20 50 28.57

9 50 45.46 47.62

10 10 50 16.67

11 33.3 37.5 35.28

12 70 63.64 66.67

13 56.54 60 58.22

14 30 37.5 33.33
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Figure A.4 Confusion matrix of the responses of S4 in DESC experiment.

Table A.4

Performance scores of S4 in DESC events.

Sequence Precision Recall F1 score

1 0 0 0

2 10 14.29 11.77

3 60 42.86 50

4 77.78 53.85 63.64

5 0 0 0

6 8.33 9.10 8.70

7 33.33 20 25

8 0 0 0

9 10 9.10 9.53

10 0 0 0

11 30 16.67 21.43

12 30 27.27 28.57

13 10 33.30 15.38

14 9.09 25 13.33
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Figure A.5 Confusion matrix of the responses of S5 in DESC experiment.

Table A.5

Performance scores of S5 in DESC events.

Sequence Precision Recall F1 score

1 100 71.43 83.33

2 100 83.33 90.91

3 50 83.33 62.50

4 80 80 80

5 100 60 75

6 80 72.73 76.19

7 50 62.50 55.56

8 70 77.78 73.69

9 60 54.55 57.15

10 40 40 40

11 70 63.64 66.67

12 70 70 70

13 40 80 53.33

14 50 71.43 58.82
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Figure A.6 Confusion matrix of the responses of S6 in DESC experiment.

Table A.6

Performance scores of S6 in DESC events.

Sequence Precision Recall F1 score

1 100 62.5 76.92

2 100 100 100

3 80 88.89 84.21

4 50 100 66.67

5 40 36.36 38.09

6 70 58.33 63.63

7 40 30.77 34.78

8 30 50 37.50

9 90 47.37 62.07

10 30 37.5 33.33

11 30 100 46.15

12 50 45.46 47.62

13 40 40 40

14 20 28.57 23.53
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Figure A.7 Example of the calibrated MCP data. In the �rst graph, the data calibration was done in
MATLAB for comparison with FPGA. In the second graph, the data calibration was done in FPGA.
The raw data is shown in the third graph. The dataset were taken from [25].

Figure A.8 Example of the calibrated DIP data. In the �rst graph, the data calibration was done
in MATLAB for comparison with FPGA card. In the second graph, the data calibration was done in
FPGA card. The raw data is shown in the third graph. The dataset were taken from [25].
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Figure A.9 Example of the calibrated PIP data. In the �rst graph, the data calibration was done
in MATLAB for comparison with FPGA card. In the second graph, the data calibration was done in
FPGA card. The raw data is shown in the third graph. The dataset were taken from [25].

Figure A.10 Example of the calibrated PAL data. In the �rst graph, the data calibration was done
in MATLAB for comparison with FPGA card. In the second graph, the data calibration was done in
FPGA card. The raw data is shown in the third graph. The dataset were taken from [25].



79

Figure A.11 Example of the calibrated DIST data. In the �rst graph, the data calibration was done
in MATLAB for comparison with FPGA card. In the second graph, the data calibration was done in
FPGA card. The raw data is shown in the third graph. The dataset were taken from [25].
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Figure A.12 The graphs of derivatives of the calibrated sensor data for PIP,DIST and DIP. The
�rst graph shows the derivative of the PIP. The second graph shows the derivative of the DIST. The
third graph shows the derivative of the DIP. The dataset were taken from [25].

Figure A.13 The graphs of derivatives of the calibrated sensor data for MCP and PAL. The �rst
graph shows the derivative of the MCP. The second graph shows the derivative of the PAL. The
dataset were taken from [25].
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Figure A.14 Signal Generation part of the code. The code generates the signal by getting the
classi�cation results. The algorithm checks for discrete events and generates the signal accordingly.
The amplitudes of the signals were calculated using the psychophysical models of each participant.
The Look-up Table was used to generate the signal.

Figure A.15 LUT of the 180Hz signal. The signal was created in MATLAB and imported into the
FPGA card using LUT's.
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Figure A.16 LUT of the 80Hz signal. The signal was created in MATLAB and imported into the
FPGA card using LUT's.
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APPENDIX B. LIST OF PUBLICATIONS PRODUCED

FROM THE THESIS

1. FPGA Implementation of Multinomial Logistic Regression For Vibrotactile Feed-

back In a Robotic Hand. Erba³, �., D.A. Vargas, and B. Güçlü. in 2020 Interna-

tional Conference on e-Health and Bioengineering (EHB). 2020. IEEE.
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