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ABSTRACT

BRAIN COMPUTER INTERFACING (BCI) DATA
ANALYSIS USING GRAPH SIGNAL PROCESSING

Data have been growing enormously in various domains including society, eco-

nomics, industry, security, transportation, and medicine. The high dimensional struc-

ture of these data requires new techniques that employ their underlying connectivity

structure. Graph signal processing (GSP) has emerged as a processing tool for high

dimensional datasets as an extension of classical signal processing performed in the

Euclidean space. In this thesis, electroencephalography (EEG) data collected for brain

computer interfacing (BCI) are used for classification using GSP as a preprocessing

tool. Two EEG datasets, one during emotion detection, and one during motor imagery

are used. Support vector machines (SVM) and K−nearest neighboring algorithms are

used for classification. The underlying connectivity structure of the EEG data is ob-

tained using the distance and neighboring information of the electrode locations on

the scalp. The results show that the classification accuracy is significantly improved

when the data are projected to the underlying graph subspace determined by the graph

spectral eigenvectors followed by a temporal filtering determined by Fourier spectral

eigenvectors as a preprocessing step before classification.

Keywords: Graph Signal Processing, EEG, SVM, KNN, Brain Computer Interfacing

(BCI).
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ÖZET

ÇİZGE SİNYAL İŞLEME İLE BEYİN BİLGİSAYAR
ARAYÜZÜ VERİLERİNİN ANALİZİ

Veriler, toplum, ekonomi, endüstri, güvenlik, ulaşım ve tıp dahil olmak üzere

çeşitli alanlarda muazzam bir şekilde büyüyor. Bu verilerin çok boyutlu yapısı, altt-

larında yatan bağlantı yapılarını kullanan yeni teknikler gerektirir. Çizge sinyal işleme,

Öklid uzayında gerçekleştirilen klasik sinyal işlemenin bir uzantısı olarak yüksek boyutlu

veri kümeleri için bir işleme aracı olarak ortaya çıkmıştır. Bu tezde, beyin bilgisayar

arayüzü (BCI) için toplanan elektroensefalografi (EEG) verileri, ön işleme aracı olarak

çizge sinyal işleme yöntemi kullanılarak sınıflandırma için kullanılmıştır. Biri duygu

algılama ve diğeri motor imgeleme sırasında olmak üzere iki EEG veri kümesi kul-

lanılmıştır. Destek vektör makineleri (SVM) ve K− en yakın komşu algoritmaları

sınıflandırma için kullanılmıştır. EEG verilerinin altında yatan bağlantısallık yapısı,

kafatasına konumlandırılan elektrotların birbirleri ile uzaklığı ve komşu bilgileri kul-

lanılarak elde edilmiştir. Sonuçlar, data Fourier spektral özvektörleri tarafından be-

lirlenen zamansal frekansın takip ettiği graf spektral özvektörleri tarafından belirlenen

graph alt uzayına sınıflandırma işleminden önce bir ön işlem olarak iz düşürüldüğünde,

sınıflandırma doğruluğunun önemli ölçüde arttığını göstermektedir.

Anahtar Sözcükler: Çizge Sinyal Íşleme, EEG, SVM, KNN, Beyin Bilgisayar Arayüzü

.
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1. INTRODUCTION

The central goal of neuroscience is to investigate the human brain, which is

known to be the most complex organ of the nervous system. The brain comprises

billions of neurons that communicate with each other through electrical signals and

chemical transmitters. This central organ organizes many different activities of the

body. It receives all kinds of information from the body and makes decisions to maintain

essential instructions. Scientists from various disciplines try to understand the brain

processes principles to address many neurological diseases and behavioral problems.

There are various medical imaging techniques in modern technology to exam-

ine the human brain directly or indirectly. Anatomical brain imaging techniques as

magnetic resonance imaging (MRI) and computer tomography (CT) provide us infor-

mation about its structure. On the other hand, functional brain imaging techniques

as positron emission tomography (PET), single photon emission computed tomogra-

phy (SPECT), electro- and magneto-encephalography (EEG/MEG) enable us to know

about the physiological status of the brain.

Of the above methods, EEG is the earliest technique which registers the brain

electrical activity from the scalp electrodes. It is a powerful modality that measures the

electrical activity resulting from ionic current changes in neurons. EEG has become one

of the most widely techniques over the years for diagnosing neurological disorders such

as epilepsy, sleep disorders, stroke and cognitive processes such as attention, memory,

and emotion. Studying the networks in the brain using neuroimaging techniques help

scientist discover how it functions.

EEG data is recorded by multiple electrodes placed on the scalp according to a

standardization called the 10-20 electrode placement system, adopted by the Interna-

tional Federation in Electroencephalography and Clinical Neurophysiology [7]. Once

EEG data has been recorded, there are numerous signal processing techniques used
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to extract relevant information. A mathematical branch called graph theory provides

an ideal case for brain networks since it is not confined with the limitations of the

Euclidean space as it represents a network as a graph consisting of nodes and edges.

Graph signal processing (GSP) is developed to identify and exploit the structural

and functional relations of signals on graphs using classical signal processing techniques

such as Fourier transfrom, filtering, and sampling. Two essential perspectives lie in

graph signal processing. The first framework is rooted in the algebraic signal processing

theory applicable to directed graphs. The second one is rooted in spectral graph theory

that only uses undirected graph Laplacian matrix [8].

Algebraic signal processing, introduced in [9], leads to the use of weighted graph

adjacency matrix as a shift matrix whereas spectral graph theory uses the Laplacian

matrix of the underlying graph as its building block [6]. Since Laplacian is matrix sym-

metric and positive semi-definite, the Laplacian-based approach can only be applied to

undirected graphs. Although both methods define traditional signal processing frame-

works, difference in their origins gives rise to different techniques for signal processing

on graphs.

The goal of this thesis is to implement GSP algorithms for preprocessing EEG

signals for brain computer interfacing (BCI) and emotion estimation. We define graph

Fourier transform, graph frequency, and filtering to classify graph signals recorded

from motor/imagery and emotional EEG signals. The signals are first projected to

temporal frequency subspace to extract information in different EEG bands, then to

a subspace of eigenvectors of graph Laplacian before they are classified using support

vector Machines (SVM) and K-nearest neighbors (KNN).

The organization of the thesis as follows: in Chapter 2, the EEG technique and

the BCI systems are explained. Chapter 3 focuses on fundamental concepts in graph

theory and its basic applications. In Chapter 4, graph signal processing tools and a

brief revies of literature on GSP applications in various areas are given. Datasets used

in the thesis are described and the results presented in Chapter 5. Discussions and
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Conclusion are presented in Chapters 6 and 7, respectively.
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2. ELECTROENCEPHALOGRAPY (EEG)

The complex network structure in human brain plays an essential role in pro-

cessing motor or sensory stimuli can be observed with various imaging modalities such

as functional MRI fMRI, CT, PET, MEG. Among these modalities the EEG has the

advantage of having a high temporal resolution and inexpensive use of hardware com-

pared with other measurement techniques in order to discover the underlying networks

in the brain which active during the mental processes.

EEG measures the electrical potentials resulting from post-synaptic potentials

in the neurons with the help of a number of electrodes on the scalp during neuronal

excitations. EEG as a non-invasive and painless technique, is widely used to diagnose

clinical problems such as epilepsy, sleep disorder, tumors, and stroke, as well as to assess

cognitive processes such as perception, attention, memory, and emotion. In Figure 2.1,

an example of an EEG recording can be seen.

Figure 2.1 An example of EEG recording [1].
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2.1 History

The first electrical activity was recorded in rabbits in 1875 by scientist Richard

Caton (1842-1926) with the iad of a galvanometer’s aid. Since then, the concepts of

electro, encephalo, and graphy refer to the registration of brain electrical activities, r

emit- ting the signals from the head), and drawing or writing, respectively. The terms

were combined so that the term EEG was subsequently used to denote the brain’s

electrical neural activity [10]. In 1912, Vladimir Vladimirovich Prravdich-Neminsky, a

Russian physiologist, published a study and showed the first EEG oscillations [11].

Hans Berger, a German neurologist, studied human EEGs with a string gal-

vanometer, and he managed to record brain electrical activity from the human scalp.

In 1929, this was the first report on human EEG recordings of one to three min-

utes duration on photographic paper. Berger used a bipolar recording technique with

frontal-occipital leads for his one-channel EEG tracings, along with simultaneous elec-

trocardiogram (ECG) recording and a time marker. He observed 8-12 Hz rhythm and

named it alpha [12].

The gamma rhythm came in a paper in 1938 by Herbert Jasper [11]. Kornmüller

recognized the potential of recordings by using a significant number of electrodes. In

1947, the first international EEG congress was held, which led to the American EEG

society foundation. In the 1950s, sleep researches emerged up, and in 1958, REM sleep

was described [12]. To sum up, the development of EEG studies started in early 19th

century has been a continuous process that led to the improvement of clinical and

computational studies in order to treat the number of neurological and physiological

abnormalities of human beings.
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2.2 Rhythm in Brain Network

The rhythms of the brain range from 0.1 Hz up to higher frequencies depending

on wakefulness or sleep state which manifest waves of different characteristics. Since

the electrical activity in different brain regions show a random behavior, it requires

sophisticated methods to analyze the brain signals. These signals are distinguished

into five prominent brain oscillations labeled in Greek letters for different frequency

ranges. These oscillations are delta (0.1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta

(12-25/30 Hz), and gamma (30-100 Hz).

Delta wave, introduced by Walter in 1936 to designate all frequencies below al-

pha range [11], is the low-frequency signal seen in deep sleep especially in stages 3 and

4. Delta rhythm represents the frequency oscillations in the brain below 4Hz. With the

help of EEG studies during sleep, this slow wave has been localized in many cortical

areas such as the inferior frontal, medial prefrontal, precuneus, and posterior cingu-

late [13]. Delta rhythm is also important in case like brain injury or child atttention

deficiency hyperactivity disorder (ADHD) [14].

Theta waves denote oscillations in the range from 4 to 8 Hz which can be

observed while humans are in deep meditation, stress, or frustration. A theta rhythm is

most prominent in childhood, but it can be seen in adults having pathological problems

or depression as well. Theta rhythm enhances the production of human growth and

serotonin hormone that increase relaxation [15]. Theta rhythms are related to various

cognitive activities involving working memory and learning tasks [13].

Alpha rhythms are the first discovered EEG oscillations,also known as Berger’s

waves, and they lie between 8-12 Hz. They are observed in different cortical areas with

different frequencies. The alpha activity is originated from the occipital lobe during rest

while eyes closed, but it is also generated in other cortical areas such as the over frontal

cortex, sensory-motor cortex, and the supplementary motor area. The amplitude of

the alpha rhythm is enhanced during short-term (STM) and working memory (WM)

tasks, whereas it is suppressed by visual stimuli [16].
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Beta oscillations, vary within the range of 12-25 Hz, and have low amplitude

and high frequency which can be observed in awake state. It is a waking rhythm that

occurs in normal adults in conscious state, especially while humans focus on thinking,

problem-solving, and decision-making [10]. A beta rhythm related to behavior and

actions is more prominent in the frontal and parietal regions [16].

Gamma waves, also known as fast beta waves, lie within the range of 30-100

Hz and are related to perception and consciousness. Even though these waves rarely

occur with low amplitude and high frequency, they can indicate mood disorders such

as epilepsy and schizophrenia. A gamma wave can be detected in the somatosensory

cortex, temporal and parietal cortical regions [15].

Although many EEG studies rely on five primary brain oscillation, there are

other waveforms in the brain which can be categorized according to their morphological

structure. These are Mu, K-complex, Lamda, V, spike waves, and spike spindles, known

as sigma activity [15]. In this thesis, five brain waves are investigated that can be seen

in the Figure 2.2.

Figure 2.2 Five different brain waves.
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2.3 Electrode Positioning

The electrode positioning is critical for recording high-quality and reliable data

for interpretation. The International Federation of Societies for Electroencephalogra-

phy and Clinical Neurophysiology adopted a 10-20 electrode placement system due to

the reliability and comparability of EEG studies in 1958. (2). The "10" and "20" rep-

resent the proportion distance between electrodes. The electrode positions are shown,

and the widely used 64 electrode system, according to the extended version of the

International 10-20 system, is shown in Figure 2.3.

Figure 2.3 Electrodes positions according to International 10-20 system [2].
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2.4 Abnormal EEG Patterns

Recognition of artifacts can prevent scientists from misdiagnosis. The raw EEG

data may contain frequency components subjected to various contaminations, cate-

gorized into two chief categories: physiological (from a patient) and non-physiological

(not from a patient) artifacts. Physiological artifacts originate from eye movement, hy-

perventilation, sweating, and cardiac activities, whereas non-physical artifacts, known

as external artifacts, are caused by errors in the device and recording equipment gen-

erated from the subjects’ environment.

2.4.1 Physiological Artifacts

The simultaneous recording of EEG consists of ocular artifacts such as eye blink-

ing and eyeball movement. Since artifacts generate signals, one should recognize the

nonsensical electrical activity to make an accurate interpretation. The eyeblink gen-

erates signals with a larger amplitude than cortical signals, and eye movement rota-

tion causes significant external field variations that contaminate EEG readings [17].

Moreover, the peak amplitude of ocular artifacts is seen frontal region in humans. Hy-

perventilation or drowsiness may lead to affect the majority of electrodes and thus

misdiagnosis.

The other causes of physiological artifacts are head movements, muscle move-

ments, and cardiac activities [18] which increase the misreading of EEG signals. Muscle

artifacts such as jaw and eyebrow movements cause artifacts spotted above 13 Hz [19].

In addition, cardiac activity may render EEG signals uninterpretable.

2.4.2 Non-Physiological Artifacts

In addition to physiological artifacts, non-physiological artifacts stem from both

user environments and devices, which increases the difficulty of interpreting EEG
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recordings. These kind of contaminations may include electrode displacement, ca-

ble movement, and errors in recording equipment. The artifacts aggravate the problem

of interpreting the signals and cleaning the EEG recordings requires to identify their

characteristic features.

EEG signals are altered by artifacts that originate not only from physiological

but also from some extrinsic artifacts. Artifacts contaminate the true EEG signals,

so they can affect the results of classification accuracy that help diagnosis. Removal

of these artifacts so as to obtain meaningful results needs appropriate procedure and

planning. Different signal processing techniques such as ICA, PCA, regression-based

method, and Empirical Mode Decomposition (EMD) analysis have been proposed to

separate artifacts from valuable signals [20], [21].

2.5 Brain Computer Interface (BCI)

The brain-computer interface (BCI) is a system that interprets the commands

from brain activity and sends commands to the physical world without controlling the

peripheral nerves and muscles. BCI, also known as the brain machine interface (BMI),

is an artificial intelligence system. The ultimate aim of the BCI is to allow people to

interact with their physical environment using their brain activity which is essentially

more important for those who are disabled.

BCI systems are inexpensive and user friendly. EEG is recorded from multiple

sites over the scalp and information is analyzed using signal processing an machine

learning algorithmss [22], [23]. The block diagram of a typical BCI system can be seen

in Figure 2.4.

The BCI, which have various communication, entertainment, and medical ap-

plications, have portability, inexpensiveness, and ease of setting up. MEG and fMRI

techniques are also used in BCI research but they are much more expensive and non

transportable systems compared with EEG [24]. Although BCI is generally a non-
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invasive system, there are some invasive BCI applications for research purposes.

Figure 2.4 Typical block diagram of EEG based BCI [3].

Invasive BCI modalities include high risks due to their insertion of electrodes

inside the grey matter [24]. Most of the research on invasive BCI was carried out on

monkeys [10]. In this study [25], the monkey controlled prosthetic devices and modified

motor functions using a small numbers of neurons. In another work [26], the monkey

managed to control the robot arm.

Non invasive BCI generally uses EEG signals comprised of event-related desyn-

chronization (ERD) and synchronization (ERS) events, as well as event related (ERP)

and evoked potentials. ERD/ERS is a non-phased locked response, whereas ERP is

a stimulus-locked response. P300 signal is the most widely used ERP, which can be

visual, auditory, and somatosensory [10]. On the one hand, mu rhythm, recorded over
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the sensory motor cortex, which is given as an ERD example, is of particular interest

in BCI. ERD starts over the contralateral rolandic region and, during the movement,

becomes bilaterally symmetrical with the execution of an action [10].

As a communication tool, BCI guides those who do not use peripheral nerves

and muscles so that they can deal with their needs without someone’s help. For this

reason, interactions must be effective between a user who sends electrical signals as

inputs and the BCI systems which recognize inputs and makes inferences from them as

output signals. As a tool, the BCI system can carry out particular functions; therefore,

it has various applications in different areas such as neuromarketing, entertainment,

detection, and diagnosis.

EEG-BCI systems have special features for detecting abnormalities associated

with brain tumors, epilepsy, and sleep disorder. Brain tumors rise very rapidly, and

if not treated, the possibility of survival can fall into danger. For this reason, early

detection is vital for the sake of patients. Supervised methods such as Markov Random

Field and Random Forest Classifiers can be used; however, deep learning methods are

more robust [27] in analyzing tumor cells that have a strong relationship with high

signal powers in the delta band [28].

An example of EEG-BCI application on detection, Epilepsy, defined as a hy-

persynchronous activity among neurons is a neurological disorder and affects %1 to

%2 of the world population [27]. Although primary imaging techniques such as MEG

and fMRI are used to detect seizures, EEG-based BCI is the most traditionally used

approach for predicting epilepsy [10]. Various signal processing tools in the time or

frequency domain and classification algorithms can be used for seizure detection. In

this article [29], discrete wavelet transform with a classification algorithm called an

artificial neural network is used to identify epilepsy. In [30], Support Vector Machines

(SVM) were used detection of seizures.

Beyond medical applications, the BCIs system is used in entertainment-based

applications, especially in video games such as Pinball, Pacman, and Pong [31]. In this
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study [32], subjects who used non-invasive BCI systems could fly a virtual helicopter

to any point in 3D space. In another study [33], randomly, a labyrinth is created as a

game called Pacman for non-invasive BCIs.

BCI signals can be used to trigger and enforce customers so that they persist in

buying given products. The possibility of analyzing brain signals as responses to TV

commercials are known as Neuromarketing and Neuropolicy and it plays a vital role

for business and companies [31], [34], [35].
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3. GRAPH THEORY

Complex systems whose specific structure is not clear to model show unpre-

dictable characteristics among its’ properties and environment. Such systems comprise

many scientific disciplines ranging from economics, biology, and physics. Network

science was asserted to explore the behavior and function of complex systems. As

an academic field, network science uses nodes for representing the distinct properties

lying under the complex networks and edges for expressing a relationship between sys-

tems elements. Network science takes benefit from one of the mathematical structures

defined by graphs to understand the underlying mechanism of various chaotic systems.

The foundation of graph theory based on seven bridges of the Königsberg prob-

lem was introduced by Leonhard Euler (1707-1785). In 1735, a Swiss mathematician

came up with the issue: whether it was possible to walk around via a route that crossed

each bridge once and only once across the river Pregel which includes two large islands

in the city of Königsberg, Prussia [4]. Euler simplified the problem as a binary graph

and discovered the solution that, at most, two nodes must have an odd number of

degrees.

Figure 3.1 Euler’s graphical representation of Königsberg bridge problem [4].



15

A graph, G, is a collection of a set of nodes (vertices) that are connected via

edges. An edge defines a connection that can be weighted or directed between two

nodes. Therefore, graphs are beneficial for representing data in various domains such

as social networks, neuronal and sensor networks, and machine learning [6], [36]. They

are also helpful for the representation and analysis of images and videos [37].

Graph G, of size N, consists of a non-empty and finite set of vertices V =

{v1, v2, ..., vN} and edge set E = {e1, e2, ..., eN} and it is represented by G = (V ,E ).

A graph can be weighted if its’ all branches have weights, in contrast, it is called

unweighted when the edges do not have a numerical value.

If a graph consists of a finite number of vertices, it is called a finite graph, and

the size of a finite graph is the number of nodes. A graph can be called a directed:

edges have a direction that specifies a specific route from node to node and undirected

when there is no direction. An edge between (i, j) and (j, i) represent the same link

between two adjacent vertices vi and vj.

We will be interested in undirected and connected graphs in this thesis. If there

is an edge between two vertices in a graph, they are said to be adjacent. In this case,

adjacent vertices are also called neighbors of each other, and we can define all adjacent

vertices for given vertex i as :

N(i) = {j ∈ V | {i, j} ∈ E} (3.1)

A graph G = (V ,E ) is called connected if a path exists for any two vertices

i 6=j. That means there exists a subset of vertices {il}kl=0 ⊆ V with i0 = i and ik = j,

such that {il − 1, il} ∈ E , l = 1, ..., k. An example of undirected, unweighted, and

connected graph can be seen in Figure 3.2.
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Figure 3.2 Example of an undirected and connected graph.

3.1 Graph Metrics

A graph can also be represented by an adjacency matrix known as incidence

matrix. Adjacency matrix elements show whether a pair of nodes are neighbors or not.

In the particular case of undirected graphs, the adjacency matrix is symmetric, and its

components are comprised of 0 and 1. The adjacency matrix of graph G is defined. G

= (V ,E ) is defined as:

Aij =

1, if i and j are adjacent.

0, otherwise
(3.2)

The adjacency matrix of a given graph is n by n square matrix. Its vertices

connection is crucial to represent the adjacency matrix, whereas positioning of node is

not. The adjacency matrix of undirected and unweighted graph in Figure 3.2 is

A =



0 1 1 1 0 0

1 0 0 1 1 1

1 0 0 1 0 0

1 1 1 0 1 1

0 1 0 1 0 0

0 1 0 1 0 0


(3.3)

A degree matrix is a diagonal matrix whose elements represents the sum of



17

adjacent edges of each vertex, such that

Di =
∑
j

Aij (3.4)

A degree matrix is a diagonal matrix whose elements represent the sum of ad-

jacent edges of each vertex. A distance matrix, also called weighted adjacency matrix,

is a square matrix whose elements represent the strength of the relation or distance

between two nodes. If two vertices, i and j are neighbors, Wij shows the weight of this

edge.

A Laplacian matrix for simple graphs with n vertices is represented as:

L = D − A (3.5)

where D is the diagonal degree matrix and A is the adjacency matrix of graph G.

Laplacian matrix is symmetric and positive semi-definite matrix. [38]. Laplacian matrix

is also defined as follows:

L(vi, vj) =


d, if i = j.

1, if i and j are adjacent.

0, otherwise

(3.6)

Since the Laplacian matrix is symmetric, LT = L, and positive semi-definite,

it has orthogonal eigenvectors, and eigenvalues will be positive and real.Therefore,

Singular Value Decomposition can be applied to the matrix L as:

L = QΛQT (3.7)

where Λ is a diagonal matrix whose elements are positive and real eigenvalues, and U is
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the eigenvector matrix with the corresponding ordered eigenvalue λ0 ≤ λ1 ≤, ...,≤ λn.

If A is an m by m matrix, we know from linear algebra, it has m eigenvalues, which

can be complex. On the other hand, if A is a symmetric matrix, then all m eigenvalues

are real. For any complex number z = a + ib, where a and b are real numbers, its

conjugate is z̄ = a− ib. With the same logic, for any vector v, its conjugate is defined

as v∗. Therefore, we can write vv∗ = ‖v2‖.

3.2 Graph Applications

Since the beginning of graph theory, graphs have been utilized to model rela-

tions and processes in numerous areas such as chemistry, computer science, biology,

material science, computational neuroscience, and mathematics associated with real-

world problems. Besides helping to demonstrate features of systems underlying these

problems, graphs have also received attention in reducing complexity so that problems

can be translated to an application that guides them with ease.

The combination of chemistry and graph theory constitutes the chemical graph

theory applied to indicate the physical characteristics of molecules and their geometric

structure. Graph vertices symbolize molecules, atoms, or electrons, whereas edges rep-

resent the covalent bonds. Graph theory can be used in chemistry in the phenomenon

of isomerism [39], estimating the polarizability of a variety of polymers [40], predicting

the ecotoxicity of chemical substances [41], and chemical kinetics [42].

Mathematical modeling has been subjected to interpretation for biological sys-

tems. Mathematical frameworks have been utilized in the study of physical problems,

especially in the analysis of genes. RNA structure, RNA’s recurring modular units, and

the prediction of three-dimensional RNA folds have been investigated using mathemat-

ical graph modeling [43]. Graph theoretical approaches allow the representing RNA

structure and discovering RNA topologies [44]. Graph theory has also been pioneered

to capture critical elements in determining RNA secondary structures [45].
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Graph theory provides parameters that help to construct networks so that orga-

nization of cognitive functions related to brain network structure can be used to detect

brain dysfunction. Graphs are powerful tools to evaluate functional abnormalities of a

human brain by examining both brain functional connectivity and structural connec-

tivity investigated by EEG or fMRI analysis. Graph theory studies on brain diseases

such as multiple sclerosis (MS) [46], autism spectrum disorder (ASD) [47], generalized

anxiety disorder (GAD) [48], acute stroke [49], and late-life depression (LLD) [50], are

used for characterizing brain organization.

The relevance of graph theory in the field of computer science can be seen in

designing a database, representing networks of communication, image segmentation,

software engineering, clustering [51]. For instance, planning routes for mail delivery,

scheduling and assignments, and famous traveling salesman problems are addressed

with graph theory applications in computer science [52].

Other application area of graph theory is in the electrical engineering to solve

the electrical network problems. Current and voltage variable values can be solved

using digraphs in a given network [53]. The other widespread application of digraphs

is industrial engineering, including scheduling activities and different organizational

problems.

Graph theory has been used in various fields due to its numerous features, such

as balancing, modeling, decision-making ability, and showing the relationship among

objects [51]. The other graph application studies include the following air pollution

result from opencast mine [54], security services within IoT network [55], coding theory,

X-ray crystallography [56], linguistics [52], traffic network design [51].
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4. GRAPH SIGNAL PROCESSING

Data analysis has been growing in every aspect of human life, accompanied

by different application domains, including social networks, transportation networks,

financial and banking data, internet, economic network, and brain network. In many

ways, these data are analyzed by traditional and ad-hoc methods, leading to superficial

and non-systematic conclusions. There is thus an emerging field to cope with such high

dimensional data that utilize graph theory, called graph signal processing (GSP) [6].

Signals on graphs require for extending the traditional signal processing concepts

such as Fourier Transform, filtering, frequency analysis, smoothing, so that they would

be utilized to construct graph models of various networks.

GSP which is the generalization of classical signal processing over graphs has

two basic perspectives rooted in algebraic signal processing theory and spectral graph

theory. The former approach provides us to use a digital signal processing framework

by considering graph adjacency matrices as the graph shift operator [36], [5], [57]. In

contrast, the latter led to using the undirected graph Laplacian matrix to represent

data and its eigen spectrum for data processing [6], [58], [59].

In the algebraic signal processing (ASP) approach, concepts such as filtering,

frequency response, Fourier Transform, and convolution are developed using z- trans-

form.In the Laplacian-based framework, eigendecomposition of the graph Laplacian

matrix constitutes graph spectrum. Both approaches utilize fundamental signal pro-

cessing concepts.

This thesis focuses on the Laplacian-based approach that came out from mani-

fold discovery research [60]. The graph Laplacian operator, the negative second-order

derivative operator, helps construct a spectral projector-based graph signal by bene-

fitting from relations between geodesic distance and graph distance on a manifold. In
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this case, the graph Laplacian operator is seen as a discrete approximation to the con-

tinuous Laplace-Beltrami operator on a manifold; consequently, a graph can be seen

as a continuous manifold [61].

As for the high dimensional data processing on irregular data domains, the

question of what is the most efficient way to extract information from these data comes

to mind. In the following sections, some notations and traditional signal processing

operations using graph Laplacian matrix are described.

4.1 Graph Signal

In traditional signal processing, data analysis includes operations as convolution,

filtering, downsampling, Fourier transform. As for the data on irregular domains, how

do we perform these operations, and what is the best strategy to extract information

that we want to take. How do we translate a signal over a graph and what is the

notation for it?

We are interested in analyzing high-dimensional datasets on undirected graphs,

assuming that signals on a graph are indexed by the vertices of graph G = (V ,E ). In

other words, a graph signal will be represented as a function defined over the finite set

of vertices with | V |= N

Using a graph G with n nodes, a graph signal or function s: V −→ IR is defined

as a map represented as a vector, where the ith element si is indexed by node vi of a

given set of the vertex. Let write a graph signal as:

s =
[
s1, s2, ..., sN

]T
∈ IR (4.1)

where each signal si ismorphic to IRN , and dimension of s is dim S = N . In

Figure 4.1, graph signals in different datasets can be seen.
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Figure 4.1 Examples of graph signals in different data sets [5].

4.2 Graph Laplacian

We consider undirected and unweighted graphs G = (V ,E ,A ), where V is the

set of vertices, E is a set of edges, and A is a graph adjacency matrix. The graph

Laplacian, the difference operator, is defined as:

L(G)
def
= D(G)− A(G) (4.2)

where D is the diagonal matrix whose elements di represents geodesic distance between

two points. As a result, Laplacian L is a symmetric and positive semidefinite matrix,

and admits the eigendecomposition. The eigendecomposition of Laplacian matrix is

defined as :

L = QΛQT (4.3)
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where λ1, ..., λn are the eigenvalues of given matrix. Because the eigenvalues of a

symmetric matrix are real, we can order them as: λ0 ≤ λ1 ≤, ...,≤ λn−1, so we can

form the Laplacian spectrum by δ := λ0, λ1, ..., λn−1.

4.3 Graph Fourier Transform and Notion of Frequency

How do we go from a combinatorial Laplacian matrix to a notion of frequency?

Mathematically speaking, Fourier analysis is defined as the expansion of signals using

an orthogonal set of functions sin(2πft) and cos(2πft). Fourier analysis has been one

of the most beneficial methods in traditional signal processing to analyze signals and

to decompose them. Just as the set of basis vectors captures the notion of frequency

in time-domain the eigenfunctions of the Laplacian identify the frequency in the graph

domain. A low-frequency graph signal varies slowly across its neighbors, whereas a

high-frequency signal varies rapidly with respect to its neighbors.

Returning to the undirected graph Laplacian spectrum, the definition of graph

fourier transform is given in Eq. 4.4. graph Fourier transform is the generalization of

classical Fourier transform in the time domain given by Eq. 4.5. Moreover, the inverse

graph Fourier transform is given in Eq. 4.6.

f̂(λi) := 〈s,Qi〉 =
N∑
j=1

s(j)QT
i (j) (4.4)

f̂(ξ) := 〈s, e2πiξt〉 =

∫
IR

f(t)e−2πiξtdt (4.5)
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f(j) =
N∑
i=1

f̂(λi)Qi(j) (4.6)

The vector s that is defining a map represents the signal values at each vertex.

Laplacian eigenvector associated with the smallest eigenvalue is a constant, and eigen-

values related to low frequencies correspond to smoother over the graph structure [8].

Furthermore, λi provides notion of frequency in the graph Laplacian spectrum.

Once a graph representation of data is built, eigenvectors of L allow us to define

the frequency filtering of an input signal. In classical signal processing, we can filter

the signal via the ĥ transfer function defined in Eq. 4.7.

f̂out(ξ) = f̂in(ξ)ĥ(ξ), (4.7)

We can generalize the filtering idea to graph spectral filtering as:

f̂out(λi) = f̂in(λi)ĥ(λi), (4.8)

and taking an inverse graph Fourier transform we get Eq. 4.9

fout(j) =
N−1∑
j=0

f̂in(λi)ĥ(λi)uj(j) (4.9)

In order to take a specific frequency window, low pass or high pass filter can be defined

as:

ĥLr = 1 [r ≤ RL] (4.10)

ĥHr = 1 [RL ≤ r] (4.11)

where RL corresponds to the cut-off frequency.
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In summary, graph Laplacian matrix encoding connections among the nodes of

the underlying graph is used to define the notion of frequency and graph Fourier trans-

form. It is essential to keep in mind that smoothness and the spectral content of a graph

are contingent on the underlying graph. For instance, in Figure 4.2, the same graph

signal is represented with the same set of vertices, but with different edges (different

undirected graphs) to show the significance of graph setting on eigenspectrum.
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Figure 4.2 Importance of underlying graphs [6].

4.4 Graph Signal Processing Applications

In this section, we give some examples from set of application domains where

GSP has been utilized. Additionally, we discuss both datasets that naturally exhibit

irregular structures and more conventional datasets where traditional signal processing

techniques are widely implemented.

One of the irregular data domains that are subjected to GSP is sensor net-

works. A graph helps to represent the positions of sensors via a set of nodes, and

edges represent the distance between sensors. GSP application includes reconstruc-

tion, implementation, or compression of sensor data. In [62], [63], [64] one can find

the graph-based analysis of sensor networks. Additionally, another scenario on graph-

based data analysis is given by urban data processing. GSP can be used to analyze and

model urban traffic problems [65], [66] air pollution [67], and power consumption [68].
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Another popular application of GSP includes biological network studies such as

the human brain. Graphs represent a map of human brain activity by indicating each

node as a brain region while connections among nodes are determined by functional

coherence [69]. Furthermore, it is shown that there is a relation between the spectral

properties of brain networks and different tasks [70].

GSP is not only used for brain connectivity but also for the classification of brain

signals [71]. It also offers promising solutions in the analysis of anomalies and some

diseases, such as Alzheimer’s. GSP is an excellent framework to cover the unknown

connections in biological data. Moreover, gene regulatory [72] and protein interaction

networks [73] can be addressed with the help of GSP tools.

Images and visual modalities are also subjected to GSP analysis. GSP tools

provide more powerful operators the filtering [74] and graph representation of images

and 3D meshes. For instance, graph Fourier transform can be used to adapt different

types of image blocks and compressed smooth images [75].

Graphs have an indispensable position in machine learning applications because

of their capability to represent the structure of a dataset. Therefore, GSP provides

different signal processing operations that help to classify signals and construct ar-

chitectures. Once the signal values are represented by graph labels, the graph signal

processing techniques can be used to predict unknown labels [8], data clustering [76],

and semi-supervised learning problems [77].
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5. DATA ANALYSIS WITH GRAPH SIGNAL

PROCESSING

5.1 EEG Emotion Dataset

EEG data were obtained from the Electrophysiology Laboratory at the Istanbul

Medical School in Istanbul University. 13 healthy undergraduate/graduate students,

whose mean age was 27.4 (±2.96), joined the experiment. All participants were in-

formed and their written consent was taken for participation the experiment. ERP

data were recorded from 30 channels with a 250 Hz sampling frequency. Approxi-

mately 280 pleasant and unpleasant pictures were chosen from the IAPS dataset with

mean valence (7.13/2.96), and mean arousal level (4.99/5.02). Each image stayed on

the monitor for one second, and the inter-stimulus interval was two seconds.

Figure 5.1 Example of pleasant and unpleasant pictures.
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Emotion EEG data are recorded from 30 channels whose labels and locations in

Figure 5.2.

Figure 5.2 30 EEG channels.

5.1.1 Data Processing

Each subject data were decomposed into five brain waves using a temporal

filter. After this preprocessing step, we separated data into train and test sets to mea-

sure classification rates using SVM, KNN, and GSP algorithms. For each subject, we

chosed equal number of trials and we have X1 ∈ IR270x30x250 and X2 ∈ IR270x30x250 data

structures for pleasant and unpleasant conditions, respectively. Data dimensions define

trial × electrode× time. 150 trials for training and 50 trials for testing were chosen

randomly from each data set to construct data for each experiment. Consequently,

Xtrain ∈ IR300x30x250 (%75) and Xtest ∈ IR100x30x250 (%25) portions of data became

two groups whose binary output Y ∈ {1, 0}100×1 were determined depending on which

group they belonged.
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Fourier transform based filtering into delta, theta, alpha, beta, and gamma

bands project the data into temporal frequency subspaces. After filtering, SVM algo-

rithm with radial basis function (RBF) as kernel and KNN algorithm with Euclidean

and Chebyshev distances in the order of k = 1, k = 3, and k = 5 were applied.

The data were also projected to a subspace determined by the eigenvalues and the

graph eigenvectors of graph Laplacian such that a maximum separation between two

conditions was achieved using the classification algorithms.

Before the GSP preprocessing analysis, the 3D electrode locations were projected

into a two-dimensional subspace using their spherical coordinates. The underlying

graph was constituted with the help of using the exact location of electrodes as a

node. The adjacency matrix was created by assuming that a node has an edge with its

closest neighbor. In addition, the spherical distance among each pair of nodes formed

the degree matrix.

MATLAB 2019b was used for the analysis. MATLAB functions fitcsvm and

fitcknn are used to train the data for the SVM and KNN, respectively. The ran-

domization experiment was repeated 100 times for each subject and for each frequency

band with the same proportions of trials, %75 for training and %25 for testing.

5.2 EEG Motor/Imagery Dataset

The second EEG dataset was obtained from PhysioNet [78], created by BCI

developers [79]. 109 healthy subjects joined the experiment, and they performed 14

different motor/imagery experimental runs while 64 electrodes were recording via the

BCI2000 system. Electrode locations can be seen in Figure 5.3. Each run sampled at

160 Hz frequency contained two one minute baseline runs (one with eyes open and the

other one eyes closed), and four two-minute tasks, which are:

1. Opening and closing right or left fist with respect to target that appears on

either right or left side of the screen and then relaxing when the target disappears.
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2. Imagining to open and close right or left fist based on the target that appears

on the corresponding side of the screen and then relaxing when the target disappears

3. Opening and closing both fists (if the target is on top) and both feet (if the

target is on the bottom) based on the target that appears either the top or bottom of

the screen and then relaxing when the target disappears.

4. Imagining to open and close both fists (if the target is on top) and feet (if the

target is on the bottom) based on the target that appears either the top or bottom of

the screen and then relaxing when the target disappears.

EEG motor imagery data was recorded using a 10-20 International Electrode

system with 64 electrodes excluding Nz, F9, F10, FT9, FT10, A1, A2, TP9, TP10, P9,

and P10 electrodes.

Figure 5.3 64 EEG electrode locations.

In our study, we worked with the right and left fist classification. In other

words, task 1 and task 2 were compounded into one matrix. For each of the 109 sub-

jects, the data were decomposed into five brain waves using a temporal filter. After
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this preprocessing step, we separated data into train and test sets to measure classi-

fication rates concerning SVM, KNN, and GSP algorithms. For each class, we had

X ∈ IR90x64x656 data structures. Data dimensions define trial × electrode× time. For

each subject, data ere split into Xtrain ∈ IR33x64x656 (%75) and Xtest ∈ IR11x64x656 (%25)

and they were associated with their binary outputs Y ∈ {1, 0}22×1 before determining

the classification algorithm performance.

The same data processing as described in Section 5.1.1 was repeated for the

data motor imagery dataset.
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6. RESULTS AND DISCUSSION

GSP framework for processing of brain network allows us to analyze signals

from multiple sensors. Signal noise is discriminated by Graph Fourier Transform that

depends on graph representation. In particular, GSP generalizes the elementary op-

erator in signal processing. These operators such as Fourier transform, filtering, and

sampling underlie the graph signal processing framework.

We reviewed Graph Fourier transform, frequency and filtering operations based

on the Laplacian matrix. However, many applications on a graph, such as a vertex

domain design [80], wavelet transform design [81], sampling [82], and denoising [83],

have been introduced.

EEG emotion and EEG motor/ imagery data were classified in both graph

domain and time domain. First of all, the emotion data was subjected to temporal

filtering and divided into five frequency bands called delta, theta, alpha, and beta. Two

of the most widely used machine learning algorithms i.e. the SVM and KNN used for

classification. Results showed that the performance rate was around 60% for the delta

band (0-4 Hz) and lower than 60% for other bands in SVM. Moreover, it was observed

that the performance rate could not achieve a 60% accuracy for any band in KNN. In

the second part of EEG emotion data analysis, data were subjected to a spatial filter

defined by the underlying data. Results showed that classification accuracy increased

to around 90% when the graph spectral decomposition was applied before classification.

In the analysis of EEG Motor/Imagery data analysis, data was first subjected

to temporal filtering and divided into five frequency bands. Results showed that the

performance rate was around 66% for the delta band and lower for other bands in SVM.

Moreover, it was observed that the performance rate could not achieve a 60% accuracy

for any band in KNN. In the second part of EEG motor/imager data analysis, data were

subjected to a spatial filtering defined by the underlying graph. Results showed that
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the classification accuracy increased to 100% when the graph spectral decomposition

was applied before classification. There is possibility that method may overfit due to

limited data, that’s why data will reinvestigate.
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Table 6.1
The average results of EEG emotion data, taken from 13 subjects using SVM.

Method 0-4Hz 4-8Hz 8-12Hz 12-25Hz 25-30Hz

SVM 60.78% 58.15% 56.54% 55.25% 56.37%

GSP&SVM 56.27% 69.03% 84.61% 86.96% 85.40%

Table 6.2
The average results of EEG emotion data, taken from 13 subjects, using KNN with Euclidean and

Chebychev distance with order of k=1, 3, and 5.

KNN
k=1

0-4 4-8 8-12 12-25

Euclidean Distance 55.96% 54.14% 53.17% 51.81%

Chebychev Distance 56.24% 51.05% 53.54% 49.69%

KNN
k=3

0-4 4-8 8-12 12-25

Euclidean Distance 54.98% 53.61% 53.55% 52.46%

Chebychev Distance 56.47% 52.36% 52.88% 47.92%

KNN
k=5

0-4 4-8 8-12 12-25

Euclidean Distance 56.02% 53.89% 54.08% 52.22%

Chebychev Distance 55.09% 52.49% 52.22% 47.54%
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Figure 6.1 EEG Emotion data analysis results.
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Table 6.3
The table shows that average results of EEG emotion data, taken from 13 subjects, using GSP &

KNN with Euclidean and Chebychev distance with order of k=1, 3, and 5.

GSP & KNN
k=1

0-4 4-8 8-12 12-25

Euclidean Distance 56.08% 78.15% 80.96% 81.60%

Chebychev Distance 56.03% 61.22% 66.67% 66.29%

GSP & KNN
k=3

0-4 4-8 8-12 12-25

Euclidean Distance 56.92% 77.33% 81.71% 77.41%

Chebychev Distance 56.47% 62.03% 68.58% 68.12%

GSP & KNN
k=5

0-4 4-8 8-12 12-25

Euclidean Distance 54.73% 77.03% 80.8% 76.79%

Chebychev Distance 55.90% 63.14% 69.26% 67.29%
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Table 6.4
The results of EEG emotion data, taken from 13 subjects, using GSP & SVM.

GSP & SVM Results

Subjects 6-9 Hz 9-11 Hz 10-12 Hz 12-15 Hz

Subject 1 97.36 % 96.25 % 84.50 % 97.35 %

Subject 2 95.58 % 86.56 % 77.49 % 79.85 %

Subject 3 70.06 % 64.2 % 57.35 % 76.65 %

Subject 4 71.64 % 58.59 % 46.74 % 57.43 %

Subject 5 99.50 % 96.47 % 95.94 % 99.62 %

Subject 6 99.39 % 98.28 % 61.58 % 79.77 %

Subject 7 97.69 % 93.39 % 84.82 % 69.7 %

Subject 8 85.68 % 90.53 % 84.65 % 92.25 %

Subject 9 86.47 % 88.51 % 71.68 % 72.75 %

Subject 10 87.38 % 97.68 % 74.0 % 85.68 %

Subject 11 89.51 % 97.59 % 98.66 % 86.55 %

Subject 12 87.51 % 83.40 % 63.68 % 73.74 %

Subject 13 87.59 % 99.57 % 97.45 % 94.8 %

Average 86.81 % 88.51 % 76.81 % 86.02 %
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Table 6.5
The results of EEG emotion data, taken from 13 subjects, using GSP & SVM.

GSP & SVM Results

Subjects 15-17 Hz 17-20 Hz 18-20 Hz 19-21 Hz

Subject 1 99.39 % 99.25 % 96.16 % 96.67 %

Subject 2 97.27 % 82.18 % 75.63 % 95.58 %

Subject 3 88.91 % 84.28 % 81.54 % 53.15 %

Subject 4 54.32 % 86.66 % 65.44 % 50.09 %

Subject 5 96.25 % 94.59 % 97.81 % 97.45 %

Subject 6 99.50 % 99.40 % 96.97 % 99.75 %

Subject 7 77.46 % 92.91 % 94.37 % 98.72 %

Subject 8 82.73 % 83.78 % 85.35 % 91.38 %

Subject 9 79.20 % 72.42 % 53.79 % 74.00 %

Subject 10 93.31 % 99.75 % 85.08 % 88.78 %

Subject 11 86.67 % 95.96 % 92.74 % 92.73 %

Subject 12 95.37 % 92.36 % 73.70 % 91.9 %

Subject 13 96.79 % 89.93 % 98.42 % 97.78 %

Average 88.27 % 90.26 % 84.38 % 86.76 %
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Figure 6.2 EEG Emotion data analysis results in various subspaces projection determined by graph
spectral components.
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Table 6.6
The results of EEG Motor/Imagery data, taken from 109 subjects,using KNN with Euclidean and

Chebychev distance with order k=1, 3, and 5.

KNN
k=1

0-4 4-8 8-12 12-25

Euclidean Distance 50.25% 51.30% 51.36% 51.51%

Chebychev Distance 51.93% 51.04% 50.26% 49.86%

KNN
k=3

0-4 4-8 8-12 12-25

Euclidean Distance 55.37% 50.02% 51.78% 50.98%

Chebychev Distance 46.67% 46.18% 45.94% 45.49%

KNN
k=5

0-4 4-8 8-12 12-25

Euclidean Distance 57.01% 51.30% 52.05% 50.30%

Chebychev Distance 49.27% 47.85% 44.96% 49.94%

Table 6.7
The results of EEG Motor/Imagery data, taken from 109 subjects, using SVM.

Method 0-4Hz 4-8Hz 8-12Hz 12-25Hz

SVM 66.43% 51.66% 50.82% 43.05%

GSP&SVM 100% 100% 100% 100%
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Figure 6.3 EEG Motor/Imagery data analysis results.
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7. CONCLUSION AND FUTURE WORK

In this thesis, we presented some GSP notions in analysing high dimensional

data by taking intuition from Euclidean spaces. We compared spatial and temporal

brain network features using an undirected and unweighted graph. We proposed a

spectral projector-based graph signal processing analysis for two different EEG data.

We can conclude that graph spectral components carry essential information on data

classification.

For further research, analyses can be done by using an algebraic signal processing

framework. It can be determined whether the time shift matrix affects graph signal

properties. Most recent works assumed that a graph is given; however, a graph can

be constructed based on a statistical model. In addition, other data types, including

fMRI, can be used to measure the performance of GSP algorithm.
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