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ABSTRACT

COMPARISON OF MEGA-PRESS AND SHORT ECHO
TIME PRESS ON CLASSIFICATION OF IDH MUTATION

USING MACHINE LEARNING AT 3T

Malignant glioma is a type of frequent and lethal cancer the brain. Recent

World Health Organization (WHO) criteria has included genetic mutations in glioma

classification. One of these mutations, isocitrate dehydrogenase (IDH) is common in

grades II and III gliomas, and has been related to metabolism of the cancer tissue.

IDH mutant gliomas have better prognosis than IDH wild type ones. As a result of

this mutation, an onco-metabolite 2-HydroxyGlutarate (2HG) accumulates in tumor

tissue. Detection of IDH mutation before surgical procedure could play an important

role in treatment planning. Magnetic resonance spectroscopy (MRS) is a noninvasive

technique that could be used to provide IDH mutation information. In this study, first,

a 3D printed MRS phantom was designed and produced to analyze spatial distribution

performances of MRS sequences. Then, 82 glioma patients, whose IDH status have

been determined by immunohistochemistry, have been included. Short echo time Point

Resolved Spectroscopy (PRESS) and Mescher-Garwood PRESS (MEGA-PRESS) MRS

sequences were acquired on a 3T Siemens MRI scanner. Metabolite concentrations

have been estimated with LCModel spectal fitting program using corresponding basis

sets. Machine learning models have been developed to determine IDH mutation using

metabolite concentrations as features. Our results indicated that a decision tree model

using features from short TE PRESS profile could detect IDH mutation with 75%

accuracy, while maximum accuracy attainable with MEGA-PRESS was 68%. The

MRS phantom that was produced as a part of this study could be used as a validation

tool for new MRS sequences. Future studies will aim to detect other genetic alterations

in gliomas on a larger patient cohort.

Keywords: glioma, IDH, magnetic resonance spectroscopy, machine learning.
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ÖZET

MAKİNE ÖĞRENME KULLANARAK IDH
MUTASYONUNUN SINIFLANDIRILMASINDA

MEGA-PRESS VE KISA EKO ZAMANLI PRESS’İN 3T’DA
KARŞILAŞTIRILMASI

Malign gliom, beyinde sık görülen ve ölümcül bir kanser türüdür. Son Dünya

Sağlık Örgütü (WHO) kriterleri, gliom sınıflandırmasına genetik mutasyonları dahil

etmiştir. Bu mutasyonlardan biri, izositrat dehidrogenaz (IDH), derece II ve derece

III gliomlarda yaygın olup, kanser dokusunun metabolizması ile ilgilidir. IDH mutant

gliomlar, IDH vahşi tiplerinden daha iyi prognoza sahiptir. Bu mutasyonun bir sonucu

olarak onko-metabolit 2-HidroksiGlutarat (2HG), tümör dokusunda birikir. IDH mu-

tasyonunun cerrahi prosedürden önce tespiti tedavi planlamasında önemli bir rol oy-

nayabilir. Manyetik rezonans spektroskopi (MRS), IDH mutasyon bilgisi sağlamak için

kullanılabilecek noninvaziv bir tekniktir.Bu çalışmada, ilk olarak, 3 boyutlu basılmış

bir MRS fantom, MRS sekanslarının uzaysal dağılım performanslarını analiz etmek için

tasarlanmış ve üretilmiştir. Daha sonra çalışmaya, IDH durumu immünohistokimya

ile saptanmış 82 gliom hastası dahil edilmiştir. Kısa eko zamanlı Nokta Çözünürlüklü

Spektroskopi (PRESS) ve Mescher-Garwood PRESS (MEGA-PRESS) MRS dizileri, 3T

Siemens MRG tarayıcısında elde edilmiştir. IDH mutasyonu tespitinde makine öğrenme

modellerinde öznitelik olarak metabolit konsantrasyonları kullanılmıştır. Sonuçlarımız,

kısa TE PRESS profilindeki öznitelikleri kullanan karar ağacı modelinin, IDH mutasy-

onunu % 75 doğrulukla tespit edebileceğini, MEGA-PRESS ile elde edilebilecek maksi-

mum doğruluğun ise % 68 olduğunu göstermiştir. Bu çalışmada üretilen MRS fantomu,

yeni MRS darbe sekansları için bir doğrulama aracı olarak kullanılabilir. Gelecekteki

çalışmalarımız gliomlardaki diğer genetik değişiklikleri daha büyük bir hasta populasy-

onunda tespit etmeyi hedeflemektedir.

Anahtar Sözcükler: gliom, IDH, manyetik rezonans spektroskopi, makine öğrenme.
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1. INTRODUCTION

Brain tumors could be identified as abnormal cell proliferation or a mass in

the brain. There are many types of brain tumors and these types could be classified

in different aspects. Malignant tumors tend to grow and spread over healthy tissues.

Primary brain tumors originate at the brain tissue, while secondary tumors grow first

in another part of the body, and then spread to the brain tissue. Primary brain tumors

are named after the cell type that tumors originate. Two of the primary tumors with

highest occurrence rate are gliomas and meningiomas, that originate the from glial cells

and brain membrane, respectively [5, 6].

Malignant glioma is one of the most frequent and lethal cancer that occurs in

the central nervous system. Gliomas account for almost 30% of all primary brain

tumors, and 80% of all malignant ones, and are responsible for the majority of deaths

from primary brain tumors [6]. Recent World Health Organization (WHO) criteria has

included genetic mutations in glioma classification [7]. Isocitrate dehydrogenase (IDH)

gene has been indicated as an important marker for brain tumor metabolism. IDH

mutations are common in grades II and III gliomas [8]. IDH mutant (IDH-mut) glioma

patients have better prognosis than IDH wild type (IDH-wt) [9]. The current gold

standard for identification of IDH mutation is biopsy. As a result of this mutation,

an onco-metabolite called 2-HydroxyGlutarate (2HG), accumulates in tumor tissue.

Magnetic resonance spectroscopy (MRS) is a noninvasive technique that could be used

to measure the concentrations of different chemical compounds within the tissue of

interest. Different MRS techniques, such as short echo time (TE) Point Resolved

Spectroscopy (PRESS) and Mescher-Garwood PRESS (MEGA-PRESS), have been

developed and compared in research centers for detecting 2HG in IDH-mut gliomas, but

the cohort sizes were relatively small compared to the clinical studies [10–13]. 2HG has

a very similar chemical structure with other abundant metabolites in the brain, which

makes 2HG detection challenging even with specially developed sequences. Machine

learning methods have recently been developed for IDH mutation classification using
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radiomics and multimodal MRI features [14–17], but to our knowledge, there has not

been any studies that compares the performance of short TE PRESS and MEGA-

PRESS for IDH mutation classification using machine learning.

A preoperative noninvasive detection method for IDH mutation could be helpful

for personalized treatment planning. The main purpose of this thesis is to investigate

the relative performances of a short TE PRESS and MEGA-PRESS MRS sequences for

noninvasive preoperative detection of IDH mutation in glioma patients using machine

learning methods.
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2. BACKGROUND

2.1 Gliomas and IDH Mutation

Gliomas, which originate from the glial cells that are the support cells for neu-

rons, occur in the brain and spinal cord of the central nervous system. Gliomas are

classified into 4 grades based on WHO criteria, and 3 types on their histological ap-

pearance as astrocytic, oligodendroglial, and ependymal [9, 18]. These classifications

strongly impact clinical decisions in treatment planning. In 2016, WHO classification

of gliomas included genetic mutations such as IDH and 1p/19q codeletion. The ne-

cessity of this addition comes from those cases, for which the genotype comes over

histological phenotype [19]. Magnetic resonance imaging (MRI) is mainly used for

grading gliomas in the clinics, yet histopathological tests, applied on resected tissue,

give detailed information on tumor specifications [19].

Isocitrate dehydrogenase is an enzyme in cytoplasm (IDH1) and mitochondria

(IDH2), which catalyzes the conversion of isocitrate to a-ketoglutarate [20]. Mutations

on IDH genes have been frequently seen in low grade (II-III) gliomas [21]. These muta-

tions alter enzymatic activities of the tumor cells, and as a result of this alteration, 2HG

accumulates to levels that could detected by MRS sequences (Figure 2.1). Importance

of detecting IDH mutation comes from its effect on prognosis of the patients. Median

overall survival has been reported to be statistically significantly higher in IDH-mut

gliomas than IDH-wt ones [21,22].

2.2 Magnetic Resonance Spectroscopy

MRS is a noninvasive technique that could be used to measure the concentra-

tions of different chemical compounds within the tissue. When patient is inside an MRI

scanner, protons with different chemical structure and different neighboring atoms ex-
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Figure 2.1 2-HydroxyGlutarate accumulates in cytoplasm or mitochondria in IDH1 and IDH2 mutant
gliomas, respectively [1].

perience different amounts of magnetic field, which causes shifts in their precessional

frequencies. Protons in molecules are excited with a radio frequency (RF) electromag-

netic pulse just like in MRI, and after a certain time, which is determined by timings

in pulse scheme, signal emitted from protons is acquired. This signal is sinusoidal with

an exponential decay and is called a free induction decay (FID). An appropriate acqui-

sition time should be selected for application, since signal loss will occur in time. The

beginning of data acquisition time is called the echo time (TE). Fourier Transform is

applied to the MR signal to get a spectrum, and each proton group is represented with

a peak at a certain frequency, which corresponds to their precessional frequency. MRS

could be applied for a single-voxel or multi-voxel imaging (MRSI). Since water concen-

tration is extremely high compared to other molecules, water suppression techniques

must be used to get useful information from an MR spectrum. Figure 2.2 shows an

example MR spectrum for healthy brain acquired at TE=68 ms (left) and placement

of the voxel on the corresponding T2 weighted MR images at 3T.
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Figure 2.2 An example of healthy brain MR spectrum (left) and voxel placement on T2 weighted
MR images at three orthogonal planes (right).

Proton MRS acquired from healthy human brain consists of three major peaks.

Intensity values of these peaks may be altered with diseases. N-acetyl-aspartate (NAA)

is the most abundant metabolite with a peak at 2 ppm. Concentration of NAA provides

information on neuronal density of the voxel [23]. Energy metabolism of the tissues

in volume of interest is inspected with creatine (Cr), which resonates at 3.0 and 3.8

ppm. Cr is also commonly used as a reference for relative quantification of other

metabolites [24]. Another major metabolite in the spectrum is choline (Cho) with 9

resonating protons represented on a single peak at 3.2 ppm. Especially, brain tumor

studies have an interest in Cho concentrations as Cho elevation is associated with an

increase in cellular density [25]. There are a few other metabolites in a brain MR

spectrum to be mentioned, such as glutamate (Glu) and glutamine (Gln). Because

of their very similar structures, these two metabolites often are reported as Glu+Gln

(Glx). While Glu is known to be an excitatory neurotransmitter, Gln works as a

storage form of Glu in astrocytes [26]. Myo-Inositol (Ins) is another metabolite, which
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is believed to play a role in cell growth and storage of glucose [26]. Glycine (Glyc)

acts as an inhibitory neurotransmitter. Elevation in Glyc has been reported in brain

tumors [27]. Glutathione (GSH) is a metabolite with low concentration that is present

in astrocytes, and decreasing levels of GSH has been associated with cell death [28].

Lactate (Lac) peak could also be seen in brain tumors, which accumulates in tumor

site as an end product of anaerobic glycolysis [25].

2.2.1 Point Resolved Spectroscopy

PRESS is one of the common pulse sequences used in MRS. In PRESS sequence,

protons are excited with 90◦-180◦-180◦ slice selective pulses using simultaneous mag-

netic field gradients to create 3 orthogonal intersecting planes [29]. A stimulated echo

is generated as a result of these three slice selective RF pulses at TE, which is de-

termined by time intervals between RF pulses. Chemical shift selective saturation

(CHESS) pulses are used before PRESS sequence block to suppress water signal [30].

PRESS is widely used because of its high signal-to-noise ratio (SNR) compared to other

MRS techniques. Figure 2.3 shows RF pulse schemes along with gradients for PRESS.

Figure 2.3 RF pulse scheme of PRESS with corresponding gradients [2].
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2.2.2 Spectral Editing Using Mescher-Garwood PRESS

Mescher-Garwood (MEGA) is a frequency selective refocusing technique that

could be placed into MRS sequences such as PRESS. In addition to slice selective

pulses, MEGA employs frequency selective refocusing pulses to dephase transverse

magnetization. Since MEGA water suppression relies on two 180◦ Gaussian shaped

pulses, it could be also used for editing J-coupled spin systems. J-coupling results in

peak splitting and changes line shape and signal amplitude with TE. If these refocus-

ing pulses are double banded, both water suppression and spectral editing could be

done simultaneously [31]. MEGA-PRESS data acquisition is done sequentially for ON

and OFF editing pairs. At ON stage, refocusing pulse is applied and at OFF stage

refocusing pulse is applied to its frequency symmetric with respect to the water fre-

quency for simplicity of sequence programming. As a result of the refocusing pulses,

only J-coupled systems that will have a peak at the chosen frequency will be affected.

Spin evolution of these coupled systems will be prevented when the refocusing pulse is

ON. After both acquisitions are done, OFF spectra will be subtracted from ON spec-

tra to get difference spectra. Since metabolites that are not affected with refocusing

pulse will have the same peaks on both spectra, they will cancel out each other and

only metabolites that have peaks at the refocusing frequency will be observed in the

difference spectra. MEGA-PRESS has been used for detection of γ -amino butyric acid

(GABA), which is an inhibitory neurotransmitter that has overlapping peaks with Glu

and Gln [31–33]. A MEGA-PRESS pulse sequence scheme is given in Figure 2.4.
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Figure 2.4 MEGA-PRESS pulse sequence scheme.

2.2.3 Detection of 2HG

2HG molecule is a 5-spin system with J-coupling interactions. 2HG protons

give rise to peaks located at 4.02, 2.25 and 1.9 ppm (representing 1, 2 and 2 protons

respectively) [34]. All peaks of 2HG overlap with other metabolite peaks, such as

NAA, Cr, Gln, Glu and GABA [35]. Moreover, concentration levels of these overlapping

metabolites, such as Glu, also alter with IDH mutation status of the tumor [36]. Figure

2.5 shows some of the overlapping metabolites, which has been reported to be altering

with IDH mutation. These overlaps make detection of 2HG challenging.
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Figure 2.5 Simulated spectra of 2-HG and other metabolites that have overlapping peaks at similar
frequencies [3].

.

2.3 Machine Learning Classification

Artificial intelligence methods such as machine learning, have been of interest

for the last decade, with increased availability of data for data driven approaches.

Machine learning methods need substantial amount of well-structured data to learn [4].

This data actually consists of features extracted from observations. The features help

machine learning models by numerically quantifying a specialty of the sample. Machine

learning methods could be divided into two parts depending on the task. If the samples

have two or more classes with provided class labels, then supervised machine learning

methods could be applied. On the other hand, if the samples only consists of features

without a group label, then unsupervised machine learning methods could be used to

cluster similar samples. Classification tasks is one of the most popular study areas for

supervised machine learning methods.
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Models learn from features of the training set samples and predict class of the

samples in the test set. If the data is not big enough to separate as training and test

sets, then other techniques, such as k-fold cross validation, could be used. All data is

shuffled and divided to subgroups consisting of k samples. Last sample of these group

is used for testing prediction accuracy. Different classification models were tested in

this study with k-fold cross validation.

2.3.1 k-Nearest Neighbor Classifier

k-Nearest Neighbor (kNN) is one of the first models that is tried on a new dataset

in machine learning, because of its simplicity. kNN is a non-parametric method and

assumes that same classes should have similar features, which could be translated as

samples from same classes should be close to each other in the feature space [4]. Pre-

dictions are made by calculating the distances between test sample and all samples in

the feature space. Figure 2.6 shows an example decision boundary in kNN algorithm

for binary classification. Euclidian and Minkowski distances could be used for contin-

uous features. Classification is made by nearest samples to the test sample in a voting

way. Hyperparameter k stands for how many similar samples in training set would be

used in voting. Setting an odd number for k could help avoiding ties in voting. kNN

method comes with a drawback as it is computationally expensive in each prediction,

and requires large amount of memory to store all training set for calculating distances.

Figure 2.6 A demonstrative decision boundary in kNN algorithm for binary classification.
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2.3.2 Decision Trees

Decision tree is a nonparametric supervised machine learning model that is

widely used in classification. A hierarchical model, which consists of decision nodes

and terminal leaves, is used to divide data into smaller groups with recursive splits [4].

Decision nodes discriminate samples based on features evaluating an impurity measure

and lead to branches until a leaf is reached. These leaves represent one of the class

labels and give the output of the classifier. Univariate trees could be given as a simple

example of tree structures in machine learning. These trees use only one feature in

each decision node, while proceeding from roots to leaves by branches. In binary split,

decision nodes compare the input with a threshold value and split based on outcome

of this comparison. Figure 2.7 gives an example of univariate tree decision boundaries

on feature space (left) with the corresponding hierarchical model of the tree (right).

Figure 2.7 Decision boundaries of a univariate tree on feature space (left) and corresponding decision
tree scheme (right) [4].
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2.3.3 Support Vector Machine

Support vector machine (SVM) is a discriminant based kernel method that

constructs hyperplanes, which utilizes margins on boundaries [4]. As a kernel-based

algorithm, SVMs have single optimum solution that could be found in a convex opti-

mization. This has a great advantage, since learning procedure does not need hyperpa-

rameters such as learning rate, initialization, and convergence as in numerical methods.

First, a linear model is constructed and class boundaries are found with a margin. Sup-

port vectors are extracted from feature space of the training set, and hyperplanes are

constructed to divide each class. Those samples that sit close to the boundaries be-

tween classes are uncertain cases and give an estimate of generalization error. Figure

2.8 gives an example of SVM as encircled support vectors separate hyperplanes for

binary classification.

Figure 2.8 An example of hyperplane separation in binary classification by support vectors [4].
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2.3.4 Ensemble Methods

Some of the machine learning methods that are widely used have been intro-

duced previously. These methods are generally successful on most studies. Neverthe-

less, combination of these methods in the same classifier, like parametrics with non-

parametrics or in itself, may also be used to boost accuracy, sensitivity and specificity

of the model. This approach is named as ensemble methods in machine learning [4].

The simplest way of ensemble methods is voting, which is combination of models in

their sum of votes. In addition to that, bootstrap aggregating (bagging) is also a vot-

ing method, but models are trained with a subset of training set with possibility of

overlapping samples in trained models. Another ensemble method to achieve higher

accuracy is boosting. In boosting, learning models are cascaded, and each model learns

from previous model’s mistakes.

2.4 Literature Review

There have been several studies in the literature concentrated on detection of

2HG as it is one of most popular topics in MR spectroscopy field. In one of the first

studies, Pope et al. used short echo time (30 ms) PRESS sequence and stated that

specificity of 2HG detection might be an issue, since 26% false positive detection rate

was seen along with 100% sensitivity [10]. Furthermore, Choi et al. optimized echo

time and pulse sequence parameters in PRESS with numerical simulations and phantom

studies and applied long (97 ms) echo time PRESS and detected 2HG signal at 2.25

ppm in all IDH mutant patients in their study cohort [13]. Another study by the same

group, compared short (35 ms) and long (97 ms) echo time PRESS and reported that

at TE=97 ms a better 2HG estimation could be achieved, but TE=35 ms allowed for a

quantification of full signal from other metabolites [12]. In a recent study, Branzoli et

al. employed both 97 ms PRESS and MEGA-PRESS at 68 ms and found out that 97

ms PRESS acquisition may result in lower sensitivity and specificity values, especially

when strict Cramer-Rao Lower Bound (CRLB) threshold, such as 15% or 30%, was

applied [37]. In addition to that, same study stated that spectral editing methods could
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be a better option for monitoring 2HG levels in IDH-mut patients to follow therapy

response. Also, other sequences were developed to face problems that are frequently

seen in MRS. In one of these studies, Andronesi et al. used spectral editing technique

Mescher-Garwood Localization by Adiabatic Refocusing (MEGA-LASER) in addition

to 2D LASER COSY and 1D LASER. Relative quantification of 2HG was compared to

Gln+Glu and it was said that 2HG/Gln+Glu >1 could be a specific threshold for IDH

mutation detection [11]. Ultra-high field scanners were also used on detection of 2HG

in gliomas. For instance, Emir et al. reported that sensitivity and spectral resolution

could be increased by using 7T scanners for detection of 2HG [1]. Yet, 7T scanners are

still far from being common in clinics and still have inhomogeneity issues. All of these

studies concentrated on detection of 2HG at a specific range of precessional frequencies

using target oriented sequences rather than utilizing all metabolites that are expected

in the MR spectrum.

Machine learning and pattern recognition techniques have been used earlier for

classification of brain tumors. One of the earliest studies was combination of MRS and

MRI features and investigation of brain tumor classification utilizing feature reduction

techniques [38]. Furthermore, the study employed estimated metabolite concentrations

as features in classification algorithms. Similarly, the whole spectra that was acquired

from the tumor region was used in another study and 90% accuracy was achieved in

the test set, predicting glioblastoma, low-grade glioma, and meningioma spectra [39].
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3. MATERIALS and METHODS

3.1 MRS Phantom

MRS sequences are first validated with phantoms before in vivo studies. Yet,

commercially available MRS phantoms have uniform structure, which limits assessment

of sequence performances in terms of spatial localization accuracy of multi-voxel acqui-

sitions and resultant quantification of varying metabolite concentrations. There have

been studies that produced multi-compartment MRS phantoms using vials, but those

phantoms lack geometric similarity with a human head to simulate coil loading and B0

inhomogeneity [40]. As 3D printers become widespread, rapid prototyping has been

more available at research centers. Previous studies employed 3D printers to produce

MR phantoms for other modalities or generic use [41,42]. As a part of this thesis, a 3D

printed human head sized multi-compartment MRS phantom was designed and printed

for validating sequences on detection of brain metabolites including 2HG for IDH-mut

and IDH-wt gliomas.

MRS solutions were prepared in two steps: first a single vial to optimize solution

preparation procedure, then the solutions that would be used in the phantom. Table

3.1 shows metabolite concentrations of each solution that were prepared in this pro-

cess. The single vial solution was prepared in 100 ml polyethylene jar. Other solutions

were prepared in volumes corresponding to compartment sizes in phantom. Gln was

not added to the phantom solutions, because of the instability of this metabolite. The

vial was scanned on the same day of preparation to avoid Gln degradation. Metabo-

lite ratios were chosen to mimic normal brain white matter, IDH-mut, and IDH-wt

brain tumors. The molecular weights, concentration values and CAS numbers of all

the chemicals used in phantom preparation are given in Appendix A. For each metabo-

lite in the solutions, its amount was calculated using the corresponding concentration

values and molecular weights listed in Appendix A. First, ionized water, in half of the

solution volume, was poured to a beaker with a magnetic stirrer fish inside and pH
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was fixed to 7.2 by titration with sodium hydroxide (NaOH) and potassium monophos-

phate (KH2PO4) buffer solutions. When the pH is fixed, metabolites were added to

the solutions one by one starting from the highest weight to the lowest one. After

that, Gadolinium (C14H20GdN3O10) in 0.047% and sodium azide (NaN3) in 0.1% of

the solution weight were added to the solutions for shortening T1 and preventing bac-

terial growth, respectively. After all ingredients were added, pH of the solution would

normally be acidic because of the nature of the chemicals used, so pH was fixed to 7.2

again with buffer solutions in the amounts of 1-2 ml. In the final step, ionized water

was added to the solution to match the volume of solution to the desired compartment.

Table 3.1
Metabolite concentrations in millimolar for each prepared solution.

Vial IDH-mut IDH-wt Normal Brain

NAA 6.32 7.50 6.32 12.50

Myo-Inositol 3.80 4.50 3.80 7.50

Creatine 6.32 6.32 6.32 10.00

Choline 5.00 4.50 5.00 3.58

Lactate 6.00 5.25 6.00 0.00

Glutamate 5.75 5.75 5.75 12.50

GABA 3.00 3.00 3.00 3.00

2HG 4.73 5.20 0.00 0.00

Glutamine 5.75 0.00 0.00 0.00

The phantom model was designed using Solid Edge (Siemens PLM Software,

Plano, Texas). For the design of the phantom, a half sphere with a diameter of 17 cm

was used as the outer shell. The thickness of the outer shell was set to 1 cm to simulate

the skull. Three sphere shaped compartments with volumes of 35 ml each were placed

inside the phantom with a thickness of 3 mm at their perimeter. The compartments

were placed at least 1 cm away from each other (a) and also from the outer shell (b) to

avoid susceptibility issues (Figure 3.1). The compartment perimeters did not generate

an MR signal (c), which shows the suitability of the material for MRS phantom design.

Acrylonitrile butadiene styrene (ABS) was used as the 3D printing material, as
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Figure 3.1 Top (a), frontal (b) and axial MRI (c) views of the 3D phantom design.

it is waterproof and does not generate any detectable MR signal. All parts were printed

in highest density on M200 (Zortrax, Olsztyn, Poland) 3D printer and carefully cleaned

to avoid contamination. The lid was sealed with hot glue before filling the phantom.

Two of the compartments were filled with solutions that mimic the spectra of IDH-

mut and IDH-wt brain tumors. Metabolite concentration ratios of these compartments

were selected from previous studies [36]. Last compartment was filled with water and

additive salts to mimic cerebrospinal fluid (CSF). Rest of the volume was filled with a

solution mimicking normal brain white matter.

The vial and the phantom were scanned on a 3T Siemens Prisma scanner using

a 32 channel head coil at room temperature. Single voxel PRESS data was acquired

from vial (TR=2000ms, TE=30ms, NA=32, voxel size=8ml, BW=2000Hz, 1024 spec-

tral points). A water unsuppressed spectrum was acquired from the same voxel for

absolute metabolite quantification (NA=4). A multi-voxel PRESS data was acquired

covering all compartments of the phantom (TR=2000ms, TE=30ms, voxel size=0.5ml,

spatial resolution=16x16, BW=2000Hz, 1024 spectral points). Also, MEGA-LASER

sequence was used for detecting 2HG (TR=2000ms, TE=68ms, Resolution=16x16,

voxel size=0.5ml, BW=1100Hz, 512 spectral points) [43]. LCModel spectral fitting

program was used for quantification of metabolites using respective basis sets [44]. For

multi-voxel acquisition, metabolite maps were generated in MATLAB R2018a (Math-

Works Inc., Natick, MA). Metabolites with a CRLB of higher than 25% were excluded

from the analysis.
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3.2 Data Acquisition

For MEGA-PRESS and short TE PRESS comparison, a total of 82 glioma pa-

tients, whose MRI/MRS scans were available with pathology reports, were included.

Acıbadem Mehmet Ali Aydınlar University Ethics committee approved the study pro-

tocol and written consent was obtained from the patients before the scan. A clinical

MR imaging protocol for glioma patients was followed before MRS data acquisition.

An experienced radiologist conducted all steps of the MRS acquisitions and evaluated

the results visually before saving the data to the database.

3.2.1 MRS Data Acquisition

The MRI/S data were obtained on a 3T whole body MR scanner (Prisma,

Siemens Medical Systems, Erlangen, Germany) with a 32 channel head coil at Acıba-

dem Altunizade Hospital. The data acquisition sequences of PRESS and MEGA-

PRESS were supplied by the vendor. T2 weighted and T2 FLAIR MR images were

used as reference by the radiologist for voxel placement. MRS data were acquired from

the solid tumor region excluding gross hemorrhage, edema and necrosis. An automatic

shimming scheme was followed by manual first and second order shimming for best

spectral results. The number of signal averages was set to a value between 128 and

256, depending on the situation of the patient in the scanner and expected spectrum

quality from the placed voxel.

For PRESS sequence, a short echo time (TE=30ms) was chosen to avoid T2

signal loss and TR value was set to 2000ms. At this echo time macromolecule and lipid

contamination was still expected to occur to an extent, especially in heterogeneous

tumor sites [45]. Nevertheless, short echo time acquisitions are advantageous with

higher signal intensity, and were used in previous 2HG detection studies in gliomas [10].

For MEGA-PRESS sequence, echo time was chosen as 68ms and TR value was

set to 1600ms. At this echo time, middle part of the 2HG triplet at 4.02 ppm is
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inverted since J-coupling constants between neighbor protons resonating at 1.90 ppm

are 7Hz (leading to an inversion at TE=142ms) and 4.1Hz (inversion at TE=243ms).

At difference spectra, the outer peaks of the triplet at 4.02 ppm are magnified, while the

one in the middle is almost suppressed. Also, this echo time is widely used in studies

for quantification of J-coupled metabolites such as Glu, Gln and GABA [32,46,47] .

3.2.2 Histopathological Tests

Immunohistochemistry (IHC) and sequencing methods are widely used in the

clinics for detection of IDH mutation in surgical specimen excised from gliomas [48].

IDH status of each sample was assessed with DIA-H09 antibody. Also, sequencing was

used for IDH negative samples for possible false positive results of IHC.

3.3 MRS Data Analysis

LCModel spectral fitting program was used for quantification of the metabo-

lites [44]. LCModel software uses basis sets to estimate metabolite concentrations of

a given spectrum. These basis sets include each metabolite’s peak pattern at a given

TE, and LCModel linearly combines these patterns for quantification. The basis set

for MEGA-PRESS sequence was simulated for TE=68 ms by using General Approach

to Magnetic Resonance Mathematical Analysis (GAMMA/PyGAMMA) simulation li-

brary of Versatile Simulation, Pulses and Analysis (VESPA) [49] using known metabo-

lite chemical shifts and coupling constants [34, 35]. First, simulation package of the

MEGA-PRESS pulse sequence was downloaded from VESPA contributions website.

This simulation package includes all parameters used in Siemens MEGA-PRESS se-

quence. Most of the metabolites, that were expected in brain MRS, comes as default

in VESPA software [50]. For those metabolites that should be added into the basis set,

chemical shift values and j-coupling constants were defined in "Add metabolite" sec-

tion under "Management". When the setup was ready, "New simulation" was clicked

under "Experiment" and all the parameters were set and metabolites of interest were
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included in the simulated signal. For a reasonable computation time, some of the

metabolites were either divided to their moieties, such as GSH, or peaks that do not

have J-coupling, were downscaled to less protons, such as trimethyl in choline com-

pounds. These metabolites could be mixed in the export of results or upscaled by a

coefficient. After all the metabolites were simulated with the same parameters that

were used in the MRS scan, makebasis function of LCModel was used to combine these

metabolites into a basis set. A short echo time basis set containing all metabolites in-

cluding 2HG existed in the LCModel program. CRLB was used as a quality measure of

the quantification process, as concentration values of expected metabolites could only

be estimated. LCModel quantified metabolite concentration estimations with their

standard deviations, and ratio to total Cr estimations were used as the output.

As this retrospective study used only already available clinical data, data loss

caused by quality assurance was inevitable. MR spectra with high full width at half

max (FWHM) values or low quality caused by lipid contamination in either or both

of the MRS acquisitions were excluded from the analysis. Seventeen patients of the

cohort had to be excluded from the study because of poor SNR or high FWHM values

either in short TE PRESS or MEGA-PRESS spectrum. The rest of the cohort included

26 IDH-mut and 39 IDH-wt gliomas. Figure 3.2 shows LCModel analysis results for

short TE PRESS and difference spectrum of MEGA-PRESS sequence for an example

IDH-mut grade III glioma.

Using strict CRLB thresholds, such as 20%, could result in losing most of the

metabolite estimations, but would result in a more confident analysis. On the other

hand, this approach would harm the accuracy of the machine learning models, because

as stated before, machine learning algorithms require large datasets for learning. In

this thesis, metabolites with higher than 30% CRLB values were either filled with zero

or not a number (NaN) as a quality control in the quantification process. By this way,

the effect of uncertain metabolite estimations was investigated, for either setting that

metabolite as nonexistent in the voxel (as filled with zero) or not estimated properly

in the quantification (as filled with NaN).
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Figure 3.2 LCModel analysis of MEGA-PRESS difference (a) and short TE PRESS (c) spectra
and voxel placements (b, d) for an IDH-mut grade III glioma.
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The correlations between quantification of metabolites was also investigated.

For those metabolites that had correlation coefficient below -0.5, their sum was used

as a feature. 2HG, total of Ins and Glyc (Ins+Glyc), GSH, Lac, Cho, NAA and Glx

(Glu+Gln) to Cr ratios were used in machine learning for both PRESS and MEGA-

PRESS sequences. 2HG, GSH, NAA and Glx were estimated from the difference spec-

trum for the MEGA-PRESS sequence.

3.4 Machine Learning Models

Classification Learner app in MATLAB R2018a was used to construct machine

learning models, such as decision trees, SVM, kNN, and ensemble of bagged trees to

classify IDH-mut and IDH-wt gliomas. 10-fold cross validation was used to evalu-

ate the classifier performances. Default MATLAB settings were used while training

models. Models giving the highest accuracy was executed hundred times with default

parameters and average accuracy, sensitivity and specificity values were reported.

3.5 Statistical Analysis

LCModel outputs were also used for the statistical analysis of the study. Sensi-

tivity and specificity of both methods was calculated using pathology reports. Bland-

Altman method was used for analysis agreement of the two MRS data acquisition meth-

ods [51]. Mean value and standard deviation of differences was calculated to estimate

mean bias and to measure variations on NAA/Cr, Cho/Cr and Glx/Cr estimations of

short TE PRESS and MEGA-PRESS.
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4. RESULTS

4.1 MRS Phantom Results

Figure 4.1 shows LCModel analysis results for the first solution prepared in

a vial. Table 4.1 gives the differences of actual and estimated concentration values

of metabolites in the vial. While Gln estimation was 55% less, 2HG estimation was

79.5% higher than the actual concentration value. Other metabolites were quantified

well with up to 20% error margin.

Figure 4.1 LCModel analysis results of the solution prepared in a vial.
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Table 4.1
The differences of actual concentration values of the solutions and LCModel results.

Vial(mM) LCModel output Difference

NAA 6.32 6.37 +0.8%

Myo-Inositol 3.80 4.48 +17.9%

Creatine 6.32 5.59 -11.5%

Choline 5.00 4.03 -19.4%

Lactate 6.00 4.56 -21.9%

Glutamate 5.75 4.71 -18.0%

Glutamine 5.75 2.54 -55.8%

2HG 4.73 8.49 +79.5%

GABA 3.00 3.36 +12.0%

In Figure 4.2, grid placement of short echo time multi-voxel PRESS on phantom

image (a), LCModel analysis results of voxels taken from IDH-mut (b), and IDH-wt

(c) compartments, and metabolite maps generated from LCModel results of Cho (d),

Cr (e) and NAA (f) values in multiple voxels are given. Metabolite concentration

estimates with a CRLB of higher than 25% were excluded from the analysis. The

grid placement of MEGA-LASER on phantom image(a) and 2HG map generated from

difference spectrum (b) are given in Figure 4.3. It could be seen that, 2HG was detected

only in voxels placed on the IDH-mut compartment. LCModel analysis of difference

spectrum taken from IDH-mut tumor (c), IDH-wt tumor (d), and healthy brain (e)

mimicking compartments are given in the bottom row. Edited signal of 2HG giving rise

to peaks at 4.02 ppm could only be seen in the IDH-mut compartment of the phantom.
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4.2 Comparison of Metabolite Levels Between MEGA-PRESS

and Short TE PRESS

Bland-Altman results are given in Table 4.2. There were only 2 outliers for

NAA/Cr and Glx/Cr, while the number of outliers was 4 for Cho/Cr. Mean difference

value was close to zero for NAA/Cr (-0.2795) and Cho/Cr (0.1696) estimations. Also,

standard deviations were low for NAA/Cr (0.2769) and Cho/Cr (0.1603) between ac-

quisition methods. On the other hand, for Glx/Cr both mean difference (1.3647) and

standard deviation (0.9646) were relatively high compared to the other two metabo-

lites. The scatter plots of Bland-Altman test for Cho/Cr, NAA/Cr and Glx/Cr are

given in figures 4.4, 4.5, and 4.6, respectively.

Table 4.2
Bland-Altman statistical test results for Cho/Cr, NAA/Cr and Glx/Cr metabolites between short

TE PRESS and MEGA-PRESS.

Cho/Cr NAA/Cr Glx/Cr

Number of outliers 4 2 2

Mean difference 0.1696 -0.2795 1.13647

Standard deviation 0.1603 0.2869 0.9646
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Figure 4.4 Bland-Altman scatter plot of Cho/Cr measurements.

4.3 Machine Learning Results

The highest average classification accuracy of 75% was obtained with decision

trees for short TE PRESS when zero filling was used for for missing values (Table

4.3). While decision trees model also had the highest average sensitivity value of 75%,

ensemble of bagged trees model resulted in the highest average specificity value of 83%.

Table 4.3
The classification accuracy results obtained from MRS profile of short TE PRESS with zero filling.

Accuracy Sensitivity Specificity

Decision trees 0.75± 0.04 0.75± 0.06 0.75± 0.04

Ensemble of bagged trees 0.73± 0.03 0.57± 0.06 0.83± 0.03

SVM 0.69± 0.03 0.63± 0.05 0.74± 0.02

kNN 0.66± 0.03 0.63± 0.06 0.69± 0.04

Between the models that used MEGA-PRESS features with zero filling, the

highest average accuracy of 68% and the highest average specificity of 81% were ob-
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Figure 4.5 Bland-Altman scatter plot of NAA/Cr measurements.

tained with ensemble of bagged trees (Table 4.4). However, a kNN model resulted in

the highest sensitivity of 59%, along with the second best accuracy performance among

all trained models.

Table 4.4
The classification accuracy results obtained from MRS profile of MEGA-PRESS with zero filling.

Accuracy Sensitivity Specificity

Decision trees 0.58± 0.04 0.36± 0.08 0.73± 0.06

Ensemble of bagged trees 0.68± 0.04 0.48± 0.06 0.81± 0.05

SVM 0.53± 0.03 0.44± 0.04 0.59± 0.04

kNN 0.64± 0.03 0.59± 0.05 0.67± 0.08

The highest average classification accuracy and the highest average specificity

obtained were 72% and 91% with a kNN model for short TE PRESS with NaN filling

(Table 4.5). Also, decision trees model had the highest average sensitivity of 69% with

the second best average accuracy of 70%. In addition, an SVM model did not work in

this setting as the number of missing values were high and SVM could not be trained
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Figure 4.6 Bland-Altman scatter plot of Glx/Cr measurements.

with NaN values.

Table 4.5
The classification accuracy results obtained from MRS profile of short TE PRESS with NaN filling.

Accuracy Sensitivity Specificity

Decision trees 0.70± 0.04 0.69± 0.07 0.70± 0.04

Ensemble of bagged trees 0.70± 0.03 0.63± 0.06 0.75± 0.03

kNN 0.72± 0.02 0.42± 0.01 0.91± 0.01

The highest average classification accuracy of 66% was obtained with ensemble

of bagged trees when MEGA-PRESS was used with NaN filling (Table 4.6). Also, a

kNN model had the highest average specificity value of 90%, but average sensitivity

was very poor for the same model. Similarly, SVM models did not work with NaN

values.
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Table 4.6
The classification accuracy results obtained from MRS profile of MEGA-PRESS with NaN filling.

Accuracy Sensitivity Specificity

Decision trees 0.64± 0.04 0.53± 0.06 0.71± 0.04

Ensemble of bagged trees 0.66± 0.03 0.48± 0.06 0.78± 0.04

kNN 0.61± 0.01 0.17± 0.03 0.90± 0.02
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5. DISCUSSION

In this study, a multi-compartment MRS phantom was designed and printed

using 3D printer technology. Chemical solutions were prepared to mimic IDH-mut and

IDH-wt tumor tissues for MRS sequences. A prototype of the MRS phantom was pro-

duced and used as a validation tool. Furthermore, the classification performances of

machine learning models were compared for IDH mutation detection based on metabo-

lites of short TE PRESS and MEGA-PRESS sequences acquired from same patients.

Even though, the dataset was not optimal for machine learning applications, reasonable

accuracies were achieved in some models.

In short term, ABS was a suitable material for the design of the MRS phantom

in terms of signal generation and magnetic susceptibility. However, we observed an

unexpected peak at 2.2 ppm in the spectrum when the phantom was scanned for

the second time six months later. We suspect that ABS might have interacted with

the solution inside the phantom and dissolve in the process. In addition to that, 3D

printing is still a costly procedure in terms of time and money. In the printing process,

we observed that the printer may use printing patterns that could cause leakages in

the future steps. Also, coating materials that could prevent these leakages may cause

susceptibility artifacts and unexpected peaks in the spectrum.

LCModel is widely used in MRS studies as it needs minimal user interference

in data analysis. Nevertheless, LCModel quantification is optimized for in-vivo data,

and even with the phantom settings, the quantification of phantom solutions was less

accurate for metabolites having overlapping peaks, such as Gln, Glu, and 2HG. Yet, the

main metabolites of the brain spectrum were quantified well, and the intensity values

in generated metabolite maps were in agreement with the metabolite ratios in the

corresponding compartments of the phantom. Therefore, a 3D printed phantom could

be used as a validation tool for optimizing spatial localization and testing quantification

performances of new MRS sequences before in-vivo experiments.
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The pipeline constructed for this study utilized multiple quality control steps.

As stated in methods, all MRS data were collected in routine clinical procedures. For

this reason, data of 17 patients were excluded because of poor SNR and FWHM values.

In addition to that, small size of IDH-mut group caused imbalance in cohort. This

imbalance affected the sensitivity of the machine learning algorithms. Also, some of the

metabolites that were picked as features had overlapping peaks with other metabolites

in addition to low concentrations in tissue. As a result of applying a strict CRLB

threshold, some portion of the features were assigned either zero or NaN. Using zeros

for missing values resulted in a higher accuracy and sensitivity. When the missing

values were filled with NaN, only decision trees had a good balance between sensitivity

and specificity for both MRS techniques. On the other hand, models based on MEGA-

PRESS profiles failed to achieve sensitivity values of higher than 50% except kNN.

Although average accuracy of kNN was second best among other models, sensitivity

and specificity values were more reasonable compared to others (Table 4.4).

Previous MRS studies, which used PRESS and MEGA-PRESS for 2HG detec-

tion had smaller patient cohorts than our study [10] [12] [13] [37]. Additionally, these

studies also reported issues with sensitivity or specificity of the technique as more strict

CRLB thresholds were applied [12] [37]. In one of these studies, MEGA-PRESS was

utilized with same parameters but longer acquisition time and Branzoli et al. stated

that MEGA-PRESS results were better compared to optimized PRESS [37].Similarly,

our results indicated that MEGA-PRESS had less false positive results as there were

no other peaks expected at 4.02 ppm on difference spectrum. Yet, we observed that

MEGA-PRESS resulted with false negative outcomes with patients that may have low

2HG concentration.

According to Bland-Altman test results, mean difference values and standard

deviations were low for Cho/Cr and NAA/Cr ratios, which indicated that short TE

PRESS and MEGA-PRESS sequences were similar in terms of their metabolite es-

timations. The main reason behind the variance of Glx/Cr estimations between the

two sequences could be the overlapping peaks of Glx. As Glx was estimated from the

difference spectrum in MEGA-PRESS, the editing scheme might have nulled out other
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overlapping peaks resulting in a more reliable quantification of Glx. Mean difference

values could be lower with T2 correction of metabolite concentrations as echo time dif-

ferences between sequences could affect quantification results. Yet, for T2 correction,

T2 relaxation times of each metabolite should be known, but these constants are only

calculated for limited number of metabolites in healthy brain regions so far [52].

This study had some limitations caused by imbalance in groups and cohort size.

Hyperparameter tuning was not applied on machine learning models as the groups were

small that might have caused overfitting. However, a larger and more balanced cohort

would allow advance machine learning models and optimization applications.

Future studies will explore the design of an anthropomorphic head MRS phan-

tom with details of the brain structure, and T2 relaxation times of the healthy brain

and tumor tissues will be matched using agarose. As a further application, machine

learning algorithms will be utilized on other genetic alterations that are known to affect

prognosis of the gliomas, such as telomerase reverse transcriptase (TERT) promoter

and 1p/19q codeletion [22]. Also, higher CRLB threshold values could be applied to

see how the machine learning algorithms would handle less reliable metabolite con-

centration estimations. Additionally, after a feature elimination process, features that

survive for both sequences could be used together to achieve even higher sensitivity

and specificity.
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6. CONCLUSION

In this project, we have successfully produced a 3D printed multi-compartment

head MRS phantom, which could help with MRS sequence development studies for

detecting the spatial distribution of metabolites for brain tumor studies, including

IDH mutation. The accuracy, sensitivity, and specificity performances of different

machine learning models have been compared on two MRS data acquisition methods

for detecting IDH mutation in gliomas. Since all the data was acquired as a part of

the clinical routine on a relatively large cohort, it could be said that our results reflect

real world performances of machine learning algorithms for these MRS sequences. The

results of the study indicated that, IDH mutation in gliomas could be predicted with

machine learning algorithms using short TE PRESS or MEGA-PRESS.
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APPENDIX A. Phantom solution ingredients

Table A.1
Names, molecular weight, concentrations in millimolar and CAS numbers for the chemicals used in

the phantom solutions.

Ingredient Molecular weight Concentration(mM) CAS number

N-Acetyl-L-aspartic acid (NAA) 175.14 6.32 997-55-7

Myo-Inositol 180.16 3.80 87-89-9

Creatine Hydrate 149.15 6.32 6020-87-7

Choline Chloride 139.62 5.00 67-78-1

DL-Lactic Acid 96.01 6.00 16891-53-5

L-Glutamatic Acid 187.13 5.75 03-04-06

Gamma-Amino-N-Butyric Acid 103.12 3.00 56-12-2

L-alpha-Hydroxyglutaric Acid (2HG) 192.08 4.73 63512-50-5

L-Glutamine 146.14 5.75 56-85-9

Sodium Azide 65.01 15.38 26628-22-8

Magnavist 547.57 0.85 80529-93-7
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