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ABSTRACT

INTER AND INTRA-INDIVIDUAL BEHAVIORAL
VARIABILITY PREDICTED BY NEURAL ACTIVITY IN

THE MULTIPLE DEMAND NETWORK

A wide range of cognitive tasks consistently identify a Multiple Demand (MD)

network in frontal and parietal brain regions. Its activity is closely linked to exec-

utive functions (EFs) such as attention, task switching, solving novel problems and

manipulating information in the working memory. We here investigate the relation

between MD neural activity and EFs using a large fMRI dataset (n=120). We examine

this relation through two approaches (1) inter-individual variability, addressing sev-

eral methodological challenges: We �nd that MD activity - which varies substantially

across individuals, but is consistent within individuals across time - can explain a sub-

stantial proportion of variance in individual performance on a spatial working memory

task such that individuals who �nd the task challenging, increase their MD activity

substantially to improve their performance. This suggests that MD activity tightly

re�ects the executive demand of an individual. In the second approach we examine (2)

trial-by-trial variability by employing three di�erent models to fuse reaction time (RT)

data with the BOLD time-series. We �nd that BOLD amplitude increases with longer

RTs. This is consistent with the �ndings from the �rst approach showing increased MD

activity for slower individuals. Together both �ndings support the view that within and

between individual di�erences are manifested in the same brain regions. These results

have implications for (1) understanding brain processes of EFs through ID studies (2)

given that ID in EF are largely genetically determined, genetic variability can be linked

to the neural activity of the MD network as an intermediate stage to link genetics with

behavior (3) using ID in fMRI responses as clinical biomarkers.

Keywords: Multiple Demand, Executive Functions, Individual Di�erences, Reaction

time, Spatial Working Memory, Parametric modulation, fMRI.
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ÖZET

B�REYLER ARASI VE B�REY �Ç� DAVRANI�SAL
FARKLILIKLARIN ÇOKLU TALEP S�STEM�NDEK�

NÖRAL AKT�V�TE KULLANILARAK ÖNGÖRÜLMES�

Geni³ bir yelpazeye yay�lan bili³sel görevler, Çoklu Talep (ÇT) a§�n� frontal ve

paryetal beyin alanlar�nda tutarl� olarak tan�mlamaktad�r. Bu a§�n aktivitesi dikkat,

görev geçi³i, al�³�lmam�³ problemleri çözme ve i³ler bellekte bilginin i³lenmesi gibi

yürütücü i³levlerle (Y�) yak�ndan ili³kilidir. Bu çal�³mada ÇT nöral aktivitesi ve Y�

aras�ndaki ili³kiyi geni³ bir fMRG veri öbe§i kullanarak ara³t�rd�k (n=120). Bu ili³kiyi

bireyler aras� de§i³kenlik ve denemeler aras� de§i³kenlik olmak üzere iki yakla³�mla in-

celedik; (1) Yöntemsel zorluklar� göz önüne alarak inceledi§imiz bireyler aras� de§i³ken-

likte, bireyler aras�nda önemli ölçüde de§i³en ancak zaman boyutunda bireyler içinde

tutarl� gözüken ÇT aktivitesi, uzaysal i³ler bellek görevlerindeki bireysel performans

(BF) farkl�l�klar�nda olu³an de§i³kenli§in önemli bir bölümünü aç�klayabilmekte, görevi

zorlu bulan bireyler performanslar�n� geli³tirmek için aktivitelerini önemli ölçüde art-

t�rmaktad�rlar. Bu durum ÇT aktivitesinin bireyin yürütücü talebini bütünüyle yans�t-

t�§�n� dü³ündürtmektedir. (2) �kinci yakla³�mda ise tepki zaman� verisini BOLD zaman

serileri ile birle³tirmek için üç farkl� model kullanarak denemeler aras� de§i³kenli§i in-

celedik. BOLD genli§inin uzayan tepki zaman�yla artt�§�n� gösterdik. Bu sonuç ilk yak-

la³�mdan elde edilen daha yava³ bireylerde artan ÇT aktivitesi bulgusuyla tutarl�d�r. �ki

yakla³�mdan elde edilen bulgular da bireyler aras� ve bireyler içi farkl�l�klar�n ayn� beyin

bölgelerinde ortaya ç�kt�§� görü³ünü desteklemektedir. Bu sonuçlardan yap�lan ç�kar�m-

lar (1) Y�'deki beyin süreçlerinin bireysel farkl�l�k çal�³malar� üzerinden anla³�lmas� (2)

Yürütücü i³levlerdeki bireysel farkl�l�klar�n büyük ölçüde genetik olarak belirlendi§i göz

önüne al�nd�§�nda, ÇT nöral aktivitesinin genetik farkl�l�kla olan ba§lant�s�n�n genetik

ve davran�³� ili³kilendiren ara bir a³ama olarak ortaya konmas� (3) fMRG yan�tlar�ndaki

bireysel farkl�l�klar�n klinik biyobelirteç olarak kullan�lmas� üzerinedir.

Anahtar Sözcükler: Çoklu Talep, Yürütücü �³levler, Bireysel Farkl�l�klar, Tepki

Zaman�, Uzaysal �³ler Bellek, Parametrik Modülasyon, fMRG



vii



viii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACADEMIC ETHICS AND INTEGRITY STATEMENT . . . . . . . . . . . . . iv

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF SYMBOLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Science of Individual Di�erences from FMRI . . . . . . . . . . . . 1

1.2 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2. INTER-INDIVIDUAL DIFFERENCES . . . . . . . . . . . . . . . . . . . . . 4

2.1 Background and Literature Review . . . . . . . . . . . . . . . . . . . . 4

2.1.1 A Multiple Demand Brain Network for Executive Functions . . 4

2.1.2 Previous fMRI Studies on Inter-Individual Di�erences in Execu-

tive Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Limitations of Previous Studies . . . . . . . . . . . . . . . . . . 9

2.1.4 Hypothesis Space . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Experiment Design . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 fMRI data acquisition . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Functional ROIs de�nition and Data analysis . . . . . . . . . . 12

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Behavioral Performance . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 FMRI Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.2.1 Stability of MD fMRI responses within Individuals . . 18

2.3.2.2 Prediction of Behavior using MD fMRI responses . . . 18



ix

2.3.2.3 Replicability of Findings in a Second Dataset . . . . . 22

2.3.3 Validation using Language network fMRI responses . . . . . . . 24

3. INTRA-INDIVIDUAL DIFFERENCES . . . . . . . . . . . . . . . . . . . . 25

3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1.1 Previous studies on Trial by Trial BOLD-Reaction Time Variability 25

3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 BOLD Time-series Extraction . . . . . . . . . . . . . . . . . . . 27

3.2.2 Fusion of BOLD and Reaction Time . . . . . . . . . . . . . . . 27

3.2.2.1 Variable Impulse Model . . . . . . . . . . . . . . . . . 28

3.2.2.2 Variable Epoch Model . . . . . . . . . . . . . . . . . . 28

3.2.2.3 Finite Impulse Response Model . . . . . . . . . . . . . 28

3.2.3 Model Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3.1 Design Matrix . . . . . . . . . . . . . . . . . . . . . . 29

3.2.3.2 Parameters Estimation . . . . . . . . . . . . . . . . . . 31

3.2.4 Hierarchical Modeling . . . . . . . . . . . . . . . . . . . . . . . 34

4. RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Inter-Individual di�erences . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Intra-Individual di�erences . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.1 Results of RT Regressors . . . . . . . . . . . . . . . . . . . . . . 42

4.2.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Convergence of Inter- and Intra-individuals di�erences . . . . . . . . . 43

5. CONCLUSION AND FUTURE RECOMMENDATIONS . . . . . . . . . . . 45

APPENDIX A. DETAILED RESULTS . . . . . . . . . . . . . . . . . . . . . . 46

A.1 Individual MD ROIs responses . . . . . . . . . . . . . . . . . . . . . . . 46

A.2 MD BOLD prediction of behavioral performance . . . . . . . . . . . . . 47

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51



x

LIST OF FIGURES

2.1 The Multiple Demand system. 5

2.2 Experiment and fROIs de�nition. 13

2.3 Behavioral performance on spatial WM task. 16

2.4 H-E behavioral performance. 17

2.5 Stability of MD responses. 19

2.6 fMRI-behavior prediction. 20

2.7 Prediction of behavioral performance by MD BOLD responses

for the second dataset. 23

2.8 Language ROIs prediction of spatial WM performance. 24

3.1 Assumption based RT regressors. 29

3.2 Finite Impulse Response Model. 30

4.1 Contribution of separate condition to the di�erence H-E index. 38

A.1 Stability of individual ROIs responses H-E contrast. 46

A.2 High correlations between ROIs. 46

A.3 Stability of individual ROIs responses across both runs (H-�x

contrast). 47

A.4 Inconsistency of 9/18 individual ROIs responses across both runs

for E-�x contrast. 47



xi

LIST OF TABLES

2.1 Identi�ed MD ROIs at subject level. 14

2.2 MD BOLD prediction of behavioral performance. 21

4.1 Methodological challenges in fMRI studies of individual di�er-

ences addressed in this thesis. 37

A.1 MD BOLD - Behavior predictions on separate runs (�rst n=60

group). 48

A.2 MD BOLD - Behavior predictions across opposite runs (�rst n=60

group). 49

A.3 MD BOLD-Behavior predictions (second dataset n=59). 50



xii

LIST OF SYMBOLS

Y (i) Time-series data vector for (i) model level

X(i) Design Matrix for (i) model level

β(i) Parameter estimates for (i) model level

ε(i) Residual errors for (i) model level

Cε Error Covariance Matrix

V Temporal Autocorrelation Matrix

σ2 Error Variance

w White Noise

λ Hyper-parameter

Q Covariance Component



xiii

LIST OF ABBREVIATIONS

fMRI Functional MRI

SNR Signal to noise ratio

BOLD Blood Oxygen Level Dependent

MD Multiple Demand

ID Individual Di�erences

EFs Executive functions

E Easy

H Hard

H-E Hard minus Easy

H&E sum of Hard and Easy

VarImp Variable Impulse

VarEp Variable Epoch

FIR Finite Impulse Response

ReML Restricted Maximum Likelihood Estimation



1

1. INTRODUCTION

1.1 The Science of Individual Di�erences from FMRI

Individuals di�er from each other both behaviorally and physiologically. Un-

derlying these di�erences are complex genetic, environmental and neural interactions.

Executive functions (EFs), a set of cognitive abilities necessary for goal-directed be-

havior, is one area where individual di�erences (ID) are prominent. Although genetics

account for a signi�cant proportion of EFs variability [1, 2], it has failed to be linked

directly to behavioral di�erences [3]. On the other hand, linking genes with neural

activity has been more successful. Thus, it has been suggested that neural activity can

serve as an intermediate stage in linking genetics with behavioral variability [3, 4].

A common method to investigate neural activity is functional MRI (fMRI).

The prevalent approach in fMRI research is to average functional brain scans across

individuals to improve the low signal to noise ratio (SNR). This approach is useful

in revealing general brain processes that are common among individuals, as well as

exposing di�erences between groups, as in comparing patients and healthy groups.

Yet neural activity is substantially variable from one individual to another and

the averaging approach has limited the understanding of brain activity at the individual

level [5]. Further, a number of methodological challenges held back the progress of

investigating neural activity at the individual level. These are mainly concerned with

the validity and reliability of comparing brain activity between individuals [4]-[6].

That said, studies examining neural activity and individual di�erences are in-

creasing due to the great potential they carry for basic research and clinical appli-

cations. If functional brain scans can be acquired for a large population, then an

individual's brain scan can be statistically compared against it. This has the potential

of using individual scans as clinical bio-markers for early diagnosis and better classi�-
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cation of patients. Moreover, since inter and intra-individual variances are statistically

independent, studies of ID can be used to infer underlying brain processes as a com-

plementary evidence to those revealed by experimental manipulation or di�cult to

investigate experimentally.

1.2 Objective

In this thesis, We aim to provide a detailed and comprehensive investigation of

the relation between a Multiple Demand (MD) brain network and individual behavioral

variability in a spatial working memory task.

We will examine both (i) trial-by-trial variability (i.e., dynamic changes in blood

oxygen level dependent (BOLD) signal and behavior within an individual over time)

(ii) individual-by-individual variability (i.e., stable characteristics of individuals).

We aim to investigate to what extent can behavioral variability be predicted by

the MD network activity and whether inter and intra-individual di�erences �ndings

from the same brain regions converge.

1.3 Thesis Outline

The thesis is organized as follows:

In Chapter 2, we examine inter-individual di�erences. We �rst introduce the

Multiple Demand system and its relation to executive functions. Followed by a review

of previous fMRI research on individual di�erences in executive functions focusing on

working memory studies. In a separate section we outline the methodological shortcom-

ings of several of the previous studies and set out a hypothesis space for the expected

results. We then present the experiment and analysis through which we investigate the
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relation between MD activity and behavioral performance on a spatial working memory

task and illustrate how we address any methodological shortcomings. We then present

the results.

In Chapter 3, we examine intra-individual di�erences. Using the same dataset

from Chapter 2, we examine reaction time variability with BOLD signal from the MD

network. First, We review previous studies examining fMRI activity and reaction time

on a trial-by-trial basis. We then employ three di�erent models to fuse fMRI and

behavior.

In Chapter 4, we discuss both inter-individual �ndings in contrast with previ-

ous studies and explain the extent to which MD activity can account for individual

behavioral variability. We then present intra-individual results and discuss the validity

of examining inter and intra-individual variations in the same brain regions.

In the Conclusion, we summarize the main results and their implications for

future neuroimaging research on individual di�erences.

In the Appendix, we included detailed results of performance on the working

memory task as well as results concerning the validation of fMRI predictions.
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2. INTER-INDIVIDUAL DIFFERENCES

2.1 Background and Literature Review

2.1.1 A Multiple Demand Brain Network for Executive Functions

Executive functions (EFs) is an umbrella term for a group of cognitive abilities,

such as the ability to pay attention to a speci�c item while ignoring other distractions

(selective attention), monitoring the surrounding environment (performance monitor-

ing), detecting false outcomes from actions (error feedback), switching between tasks,

manipulating items in working memory, withholding an unwanted response (response

inhibition) and representing the current available information into an abstract set of

rules to guide novel and �exible goal-oriented behavior [7].

EFs are tightly linked to individual di�erences in general cognitive abilities such

as general �uid intelligence (gF) and working memory capacity (WMC) [8, 9].

The neural architecture underlying EFs has been extensively investigated. The

focus started on the lateral prefrontal cortex (PFC) with Positron Emission Tomog-

raphy (PET) studies �nding its activity increases while performing tasks with high

cognitive loads [10] and this activity predicted participants' gF. Improvements in fMRI

SNR allowed studies to implicate a wider network beyond lateral PFC, mainly in the

parietal cortices as well as medial PFC [11, 12].

A consistent distributed fronto-parietal network then started to emerge from

several studies tapping into di�erent aspects of EFs such as response inhibition [13, 14],

working memory [15, 16], selective attention [17, 18], task switching [19] and �exible

coding of task information [20, 21]. Meta-analysis of several of these studies showed

a common set of frontal and parietal regions that are recruited in a diverse set of

tasks [22]. This network is known in the literature by several names, including the
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Multiple Demand (MD) system [22, 23]. A recent study showed that the di�erence

between a hard and easy version of seven diverse tasks (spatial and verbal WM, three

response inhibition tasks, arithmetics, Non-words > sentences) revealed a distributed

set of focal regions, in the frontal and parietal lobes, at the individual subject level

[24] (i.e the same set of voxels in each individual respond to each of the seven di�erent

tasks) providing yet the strongest and most comprehensive evidence for the existence

of a core set of domain general brain regions in every individual brain (Figure 2.1) yet

varying in pattern from one person to another (Figure 2.2 (B)). The same study further

validated this conclusion by testing responses from control regions in the temporal lobe,

outside of the MD system, on each of the seven tasks and found no voxels that respond

commonly to all tasks.

intraparietal 
sulcus

premotor cortex

inferior frontal 
sulcus

anterior insula / 
frontal operculum

pre-SMA / anterior cingulate

Figure 2.1: The Multiple Demand system. Adapted from [24].

Neuropsychology studies provided complementary support for the existence of

a MD network. For example, patients with lesions to frontal and parietal cortices had

de�ciencies in a number of executive functions [25] and in a more spatially speci�c

study, lesions to MD regions, but not outside of it, predicted loss of gF [26].

Studies tapping into the function of the MD system �nd that it encodes a broad

range of information [23] and task rules [21, 27] as well as �exible and rapid transitions

to encode di�erent stimuli within the current context [28]-[30]. MD regions are also

highly correlated in activity either during rest [31] or task [32].

This led to the proposal that the MD system main role is to guide complex
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behavior through the construction of a series of attentional episodes [23]. The rapid

and �exible encoding properties of its neurons support the idea of encoding the current

attentional state. MD system then communicates with other brain networks during

each episode, assembling and di�using connections to solve the current problem [23].

That said, the neurophysiological processes underlying MD activity and the

contribution of MD system to individual di�erences in EFs is still a matter of investi-

gation. In the next section, we discuss previous fMRI studies on individual di�erences

in EFs, focusing on working memory, and point out several of their limitations and the

contribution that this thesis can add to the existing literature to inform both areas of

individual di�erences in EFs and the neurophysiology of MD system.

2.1.2 Previous fMRI Studies on Inter-Individual Di�erences in Executive

Functions

Individual di�erences (ID) studies relate brain activity to two types of behav-

ioral measures (1) in-scanner task performance such as RT or accuracy (2) measures

of general cognitive abilities from tests outside of the scanner such as tests of gF. The

former approach is thought to give unreliable results due to the lack of control of con-

founding factors related to current state of the subject. While the latter approach can

provide a better understanding of �ndings from the former approach, it is less com-

monly implemented. Nonetheless, in both approaches, most EFs studies use activity

measures from a subset of the MD regions but never the whole set.

One study investigating ID in RT report that activity in fronto-parietal regions

(from three di�erent response inhibition tasks) could not predict individuals RT except

for the bilateral insula, and inferior frontal gyrus (IFG), which are found to have higher

activity for slower individuals [13]. Further, only when they used an averaged activity

measure from a frontal-cingulate-opercular network, rather than separate regions, they

report the same relation; that is slower subjects have a higher level of activity in this

network.
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Another study on ID in RT found that slower individuals had a larger number

of voxels recruited during a WM task [33]. Outside of the MD network, one study used

a 3-back WM task and reported opposite �ndings that faster subjects have increased

activity in the amygdala [34].

To summarize the few studies investigating RT ID, they �nd that slower subjects

have, on average, increased neural activity within MD regions. This activity could be

re�ecting increased neural processing as longer RTs usually accompany tasks with a

higher cognitive load. However, some studies argue that this re�ects a "time on task"

e�ect. In other words, the relation between RT and fMRI activity could be re�ecting

basic properties of the BOLD signal. The longer the subject stays on a task, the larger

the BOLD signal will be, simply because of linear summation of the BOLD signal across

a longer time [35]. However, several studies show that regressing out RT variance from

BOLD signal still shows signi�cant activity in MD regions [36, 37] (See Discussion

section for further details).

As for studies investigating ID in accuracy, their results are not consistent. Two

large scale working memory (WM) studies report that better performing individuals

have on average stronger activity in lateral PFC, ACC and cerebellum [11], all within

the MD regions. While outside of the MD regions, one study reports increased activity

in the medial posterior parietal cortex predicts performance accuracy [4].

On the other hand, Wager et al. report weaker neural activity for lower per-

formers in IFG (on a go-no-go task) and in posterior parietal cortex (on a �anker task)

[13]. Rypma et al. reports the same relation; less accurate individuals had weaker

activity in the ventro- and dorso-lateral PFC (in a WM task) [15].

Another study using a 3-back WM task found both relationships in di�erent

regions. Better performing individuals had higher activity in the left MFG yet lower

activity in left ACC and inferior parietal regions [38], again all are within the MD

network.



8

In summary, ID studies on accuracy show a mixed picture. On one hand, re-

searchers explain weaker activity for individuals who perform better in terms of neural

e�ciency (i.e., more e�cient recruitment of their cognitive resources). However, it

is argued that better performers have stronger activity for briefer periods, which is

not detected by averaging over long tasks thus showing weaker activations [11]. One

further explanation is that activity-di�culty relation in MD network might follow an

inverted U-shape. It increases as the task cognitive load increase, reaches a peak, then

decreases as the individuals give up if the task is too hard. The previously mentioned

studies use di�erent tasks with at most two levels of di�culties which might explain

these mixed results.

As for studies investigating ID using more stable behavioral measures such as

gF scores, they report that participants with higher gF scores have on average stronger

activity in lateral PFC, dorsal anterior cingulate cortex (ACC) and lateral cerebellum

[11], parietal regions [12] and left MFG [37]. These studies lend support to the view that

better performers have stronger MD activity. Importantly, one of these studies show

that activations in three MD regions mediate the relation between gF and accuracy (i.e.

their neural activity could account for variance between the two behavioral measures)

which is a more powerful measure than simple correlations [11]. Worth to note also is

that this relation was only observed when using activity from trials with high cognitive

load (non-lure trials in an n-back task). Easier trials (lure and target) showed no

reliable correlations.

Working memory capacity (WMC) is another out of scanner cognitive measure

that studies used. Individuals with higher WMC have stronger activity in ACC and

IFG [16], and posterior parietal cortex (PPC), intra-parietal sulcus (IPS) and intra-

occipital sulcus (IOS) [39]. These studies again lend support to the view that better

performing individuals have stronger MD activations.

In summary, studies on ID using fMRI show increased activity in MD regions

for (1) slower subjects (2) subjects with better cognitive abilities (higher gF and WMC

scores) (3) better performing subjects (more supported by studies combining accuracy
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and gF or WMC). There are two clear discrepancies here; (a) subjects with higher

cognitive abilities are usually faster in response (b) not all studies show increased

MD activity for those with better performance. In the next section, we illustrate

several methodological limitations for many of the studies mentioned above which

might explain such discrepancies. We then lay out a hypothesis space for expected

results by considering only methodologically sound results.

2.1.3 Limitations of Previous Studies

Most of the previously mentioned studies su�er from a number of shortcomings

that are of concern for fMRI studies of ID in general, these include:

1. Small number of subjects: Projecting inferences using a small number of

participants can produce in�ated statistics (n = 14 for [13] and n = 6 for [33], n

= 17 [39]) casting doubt on the studies concluding decreased neural activity in

better performers.

2. Validity of neural measurements: fMRI responses from a Task>Fix contrast

may re�ect state (current) conditions or trait characteristics of the individual

which confound ID of interest. In other words, a subject might have better

performance or higher activations on a task due to unrelated state conditions

such as motivation, sleepiness, ca�eine intake or di�erences in trait characteristics

such as di�erent levels brain vascularizations or age. This again increases doubt

about studies, which used this contrast, showing decreased neural activity in

better performers [13] or which showed mixed results from di�erent regions [38]

or the one showing increased activity with WMC [39]. Another limitation in [38]

is using the same data for ROIs de�nition and analysis. This type of circular

analysis can give biased results [40].

3. Reliability of results: The use of simple correlational analysis is less statisti-

cally powerful than other types of analysis such as prediction analysis [5]. In a

prediction analysis, BOLD and behavioral measures should be from independent
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sources. This is a common limitation for most of the studies mentioned above.

However, studies which also correlated neural measures with independent mea-

sures (gF or WMC) are more reliable. This increases con�dence in the �ndings

of increased neural activity with better performers.

4. Use of Extreme Groups Categorizing participants into high and low groups

can in�ate correlations [6]. This result decreases con�dence in the high- level of

correlations reported by [12, 16].

5. Lack of Intra-Individual di�erences analysis: None of the previous studies

complement their �ndings with analysis of trial-by-trial BOLD-behavior variabil-

ity which complicates the interpretation of the results. Only one study performed

this within-subjects analysis and found converging evidence for increased activity

in the medial PPC for more accurate subjects and on accurate trials [4]. However,

the analysis was reported for one region only. Nevertheless, it again reinforces

the �ndings of increased neural activity in better performers.

2.1.4 Hypothesis Space

In the following analysis, we investigate the ID in MD fMRI responses with

in-scanner behavioral measures: RT and accuracy. From the previous literature review

and taking into consideration the limitations of each study, one can set out a hypothesis

space for the expected results.

Concerning accuracy, we expect more accurate subjects to have, on average,

increased neural activity. This is following the results by the most methodologically

sound study [11]. Such a �nding would lend further support to the �ndings that

stronger MD network activity is related to having higher cognitive abilities [10, 11].

As for RT, although previous studies suggest increased neural activity for slower

subjects, this is in contradiction with the classical evidence of faster responses for more

accurate individuals or those with higher cognitive abilities (excluding tasks with speed-
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accuracy trade-o�s). Thus, we would expect that faster subjects would show increased

MD activity, in line with the �ndings on accuracy.

2.2 Methodology

2.2.1 Participants

120 participants were recruited from the Massachusetts Institute of Technology

(MIT). Data were collected by Ev Fedorenko's Language Lab (PI: Evelina Fedorenko)

and Kanwisher Lab (PI: Nancy Kanwisher). Participants ages ranged from 18 to 50

and their vision was normal or corrected-to-normal. Informed consent was given by all

participants in line with Internal Review Board at MIT.

2.2.2 Experiment Design

Participants performed a spatial working memory task. The task was block

designed with four blocks for each of the easy, hard and �xation conditions. Each trial

consisted of four successive 3x4 grids, with one (easy) or two (hard) square locations

greyed out in each grid. For each trial, participants had to keep track of four (easy)

or eight (hard) square locations in total. Then they had to choose the correct grid in

a two-alternative forced-choice by pressing one of two buttons followed by a feedback

screen. Two �xation screens at the start and end of each trial were also presented.

(Figure 2.2 (A))

Before the spatial working memory runs, there were two functional localizer

runs using a block design of sentences and non-words. These are used for validation

analysis (Section 2.3.3).
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2.2.3 fMRI data acquisition

Data were acquired using a 3 Tesla Siemens Trio scanner with a 32-channel head

coil at the Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain

Research at MIT. 176 sagittal T1-weighted scans were acquired. BOLD data were

collected using an echo-planar imaging (EPI) sequence (Acquisition parameters: 31 4-

mm thick near-axial slices acquired in the interleaved order, �eld of view in the phase

encoding (A� P) direction 200 mm and matrix size 96 mm × 96 mm, TR = 2000 ms,

and TE = 30 ms). To allow for steady-state magnetization, the �rst 10 s of each run

were disregarded .

2.2.4 Functional ROIs de�nition and Data analysis

Data preprocessing pipeline included motion correction, normalization to Mon-

treal Neurological Institute (MNI) space and resampling into 2-mm isotropic voxels.

Followed by smoothing using a 4-mm Gaussian �lter and high-pass �ltering (at 200

s). Boxcar regressors were created for the Easy and Hard conditions and convolved

with a canonical Hemodynamic Response Function (HRF) and its temporal derivative.

Motion regressors and a mean regressor were further added to the model.

Functional Regions of Interest (fROIs) were de�ned in each individual partic-

ipant by i) creating a set of anatomical parcels corresponding to regions where MD

activity has been previously reported [22] ii) intersecting the anatomical map with the

functional activation t-map for the Hard-Easy contrast iii) The top 10 % of voxels that

fell within the anatomical parcels were included in the analysis. This resulted in the

de�nition of 18 fROIs, 9 in each hemisphere (Table 2.1 and Figure 2.2 (B))
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250 ms

Easy trial

Hard trial

(A) Spatial Working Memory Task

500 ms
1000 ms

4000 ms 3000 ms 250 ms

Run 1

Run 2

Easy block 32s

Hard block 32s

Fixation block 16s

(B) Functional Localization of MD system

Anatomical constraints using previously reported MD regions

Group constrained - Subject Specific MD fROIs

Figure 2.2: (A) Each condition had six blocks, each block lasted for 32 sec and consisted

of four trials. Four �xation blocks each 16 sec (B) MD fROIs de�nition (Top) Anatom-

ical ROIs constraining subject activations (adapted from [24]). (Bottom) Left-most

brain: probabilistic H-E activations across a set of subjects. The other three brains are

examples of single subject activations constrained by anatomical ROIs adapted from

[31].
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Table 2.1: Identi�ed MD ROIs at subject level.

MD regions (bilateral)

1 Inferior Frontal Gyrus opercular (IFGop)

2 Middle Frontal Gyrus (MFG)

3 MFG Orbital (MFGOrb)

4 Inferior Parietal (ParInf)

5 Superior Parietal (ParSup)

6 Anterior Cingulate Cortex (ACC)

7 Insula

8 Supplementary Motor Area (SMA)

9 Pre-central Gyrus (PrecG)

For response estimation, the �rst run was used to de�ne the fROIs while the

second run was used for estimation then vice versa to ensure that the data used to

identify the ROIs are independent from the one used for estimation [40]. Responses

were averaged across voxels for each ROI and then further averaged across all ROIs for

each individual.

We divided participants into two sets, 60 in each, and performed the analysis on

both separately in order to examine to what extent results can be replicated. We will

now present the results from the �rst set in details and then present the main results

from the second set in a separate section.

2.3 Results

2.3.1 Behavioral Performance

Averaging across both runs, individuals are faster and more accurate on the easy

(E) trials (reaction time (RT), 1.19 ± 0.22 sec (mean ± s.t.d)), accuracy (% correct

responses) 91.7% ± 7.49) than hard trials (H) (RT, 1.47 ± 0.27 sec, accuracy 78.65% ±

11.11, t59 = 14.19 for RT and t59 = −11.40 for accuracy, p < 0.0001 for both) (Figure

2.3 (a)).
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This relationship also holds between individuals, as those who respond faster

are more accurate on either conditions (r = −0.32, p = 0.013) (Figure 2.3 (b)). These

�ndings also hold when each run is examined separately and are stable between runs

(correlation between run 1 and run 2 for RT(E) (r = 0.87), RT(H) r = 0.81, RT Hard

minus Easy (H-E) r = 0.48, accuracy(E) (r = 0.59), accuracy(H) (r = 0.60, p < 0.0001

for all) accuracy(H-E) (% correct responses on hard trials minus % correct responses

on easy trials) (r = 0.36, p < 0.005).(Figure 2.3 (c-d)).

Individuals who performed better (H&E) (average performance on all trials)

showed smaller H-E di�erences for both accuracy and RT (accuracy(H&E) vs accuracy(H-

E) (r = 0.45, p < 0.001); RT(H&E) vs RT(H-E) (r = 0.34, p = 0.0003).

However, on examining correlation between accuracy(H-E) and RT(H-E) we

found no signi�cant relation (r = −0.15, p = 0.26). This could be because both low

and high performers can show small H-E di�erences. This is indeed evident from

the distribution of H-E accuracies when plotted against average performance accu-

racy(H&E) (Figure 2.4 (b)). Thus, when we excluded low performers (those with

accuracy <75%, n=56), the expected relation between accuracy H-E and RT H-E

was found (r = −0.29, p = 0.030) (Figure 2.4 (c)) and the positive relation between

overall performance and H-E was more signi�cant (accuracy(H&E) vs accuracy(H-E)

r = 0.47, p < 0.0001; RT(H&E) vs RT(H-E) r = 0.45, p < 0.0001).

The same relation between RT(H-E) distribution against accuracy (H&E) could

not be observed (Figure 2.4 (c)). This suggests that di�erences between RT in the H

and E conditions do not re�ect di�erences in overall individual performance.

To test whether subjects might be performing better on the 2nd run (learning

e�ect), we compared the means and variances between both runs for RT(H-E) (F1,59 =

1.5, p = 0.4 and t59 = 1.2, p = 0.23) and accuracy(H-E) (F1,59 = 1.67, p = 0.025 and

t59 = −2.27, p = 0.027). These results show that subjects were indeed performing

better on the 2nd run but their speed did not change.
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Figure 2.3: (a) Behavioral performance in spatial WM task (b) Individuals with better

performance have shorter RTs (c) and (d) Stability of behavioral measures across runs

within individuals.
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Figure 2.4: (a) Better performing subjects show small di�erences between H-E accuracy

and RT, however, when looking at distribution of accuracy H-E scores (b) it is evident

that low H-E scores can belong to both low and top performers. while (c) such a

relation is not evident for the RT H-E distribution (d) Removing low performers (with

accuracy <75) reveals the negative correlation between accuracy H-E and RT H-E,

which was previously masked by low performers.
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2.3.2 FMRI Predictions

2.3.2.1 Stability of MD fMRI responses within Individuals. MD fMRI re-

sponses are stable within individuals across both runs for the H condition and the H-E

contrast for each MD ROI (Figure A.1) and on average across all ROIs (correlation

between run 1 and run 2 for MD(H) r = 0.67 and MD(H-E) r = 0.78, p < 0.0001 for

both). However, MD responses were less stable in the E condition for separate ROIs

and on average (MD(E) r = 0.15, p = 0.24). (Figure 2.5)

2.3.2.2 Prediction of Behavior using MD fMRI responses. In the follow-

ing analysis, we focused on using the contrast (H-E) as an index to compare BOLD

and behavioral data. As mentioned before on the study limitations (section 2.1.3),

the E>�x or H>�x contrasts could be a�ected by several confounding factors related

to the subject's trait and state level properties such as their motivation to perform

the task or di�erent brain vascularizations. Thus a di�erence contrast would minimize

such variability and mainly re�ect change in task demand.

All MD e�ect sizes were averaged across all ROIs as the aim of this thesis is to

understand relation between MD responses as a whole system. This is motivated by

previously mentioned literature review on involvement of all ROIs in any individual

task [24], the high task functional connectivity between all ROIs (i.e it is unlikely that

some ROIs will be active while others don't) [32, 31] as well as the high correlation

between individual ROIs e�ect sizes (Figure A.2).

Averaging across both runs, MD(H-E) responses are positively correlated with

RT(H-E) (r = 0.44p < 0.001) (i.e, as the di�erence in MD activity between the E and

H conditions increase, the di�erence between H RT and E RT also increase). (Figure

2.6 Left). MD(H-E) is also correlated with RT(E) (r = −0.30, p = 0.02). MD(H-E) is

not correlated with overall RT in both conditions (RT H&E) (r = −0.14, p = 0.29). To

further test the prediction power of the MD H>E index, we compared BOLD-Behavior

relations across the di�erent runs. MD(H-E) run 2 successfully predicted RT(H-E) run
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1 (r = 0.43p < 0.001) while MD(H-E) for the �rst run failed to predict RT(H-E) for

the second run (r = 0.17, p = 0.18).

Regarding accuracy, MD(H-E) responses did not correlate with accuracy(H-

E) (r = −0.097, p = 0.46). As mentioned earlier could be because small MD(H-E)

responses can re�ect both top performers (Figure 2.4 (b-c)). Thus, we repeated this

analysis after excluding bottom performers (with an accuracy <75, remaining n = 54)

which revealed a trending negative correlation (r = −0.20, p = 0.14). Again to test the

predictive power across runs, MD(H-E) of the second run could predict accuracy(H-E)

of the �rst run (r = −0.24, p = 0.08) but not vice versa (r = −0.10, p = 0.44) (Figure

2.6).

Overall accuracy in both conditions (H&E) is correlated with MD(H-E) (r =

0.49, p = 0.0001) when averaged across both runs (Figure 2.6). This prediction was

consistent across runs; second run MD H-E predicts �rst run accuracy(H&E) (r =

0.49, p = 0.0001) and �rst run MD(H-E) predicts second run accuracy(H&E) (r =

0.40p = 0.002). All other correlations can be found in Table 2.2. Correlations of

separate runs can be found in Table A.1.

Figure 2.5: Stability of MD responses across runs. MD E response is not consistent

across runs.
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Figure 2.6: Prediction of behavioral performance by MD BOLD responses for the �rst

dataset after excluding low performers (accuracy<75%) (n=56).
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Table 2.2: MD BOLD prediction of behavioral performance.

n = 60 (acc<75%) excluded (n = 56)

r p r p

MD H-E vs RT H-E 0.44 <0.01 0.34 0.01

RT E -0.30 0.02 -0.26 0.05

RT H 0.01 0.97 -0.03 0.85

RT H&E -0.14 0.29 -0.13 0.33

Acc H-E -0.10 0.46 -0.20 0.14

Acc E 0.60 <0.01 0.49 <0.01

Acc H 0.33 0.01 0.11 0.42

Acc H&E 0.49 0.00 0.30 0.02

MD H vs RT H-E 0.35 0.01 0.20 0.13

RT E -0.18 0.16 -0.04 0.77

RT H 0.05 0.71 0.08 0.58

RT H&E -0.06 0.66 0.03 0.85

Acc H-E 0.00 0.98 -0.09 0.52

Acc E 0.21 0.10 0.00 0.97

Acc H 0.15 0.26 -0.08 0.55

Acc H&E 0.19 0.14 -0.06 0.67

MD E vs RT H-E 0.46 <0.01 0.33 0.01

RT E -0.29 0.03 -0.18 0.18

RT H 0.03 0.81 0.03 0.83

RT H&E -0.12 0.38 -0.07 0.63

Acc H-E -0.06 0.68 -0.17 0.20

Acc E 0.48 <0.01 0.30 0.03

Acc H 0.28 0.03 0.02 0.90

Acc H&E 0.40 <0.01 0.15 0.27
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2.3.2.3 Replicability of Findings in a Second Dataset. We performed the same

analysis on a second group of participants (n=59) who performed the same spatial WM

task. The aim is to check the reliability of the �ndings from the �rst group of partic-

ipants. We here only mention the main results that could be replicated with a strong

or trending signi�cance. The full set of the results is reported in (Table A.3)

For behavioral measures, RT H-E correlation with ACC H-E is trending for

the second set (r = −0.23, p = 0.08). Correlation between accuracy(H&E) and

accuracy(H-E) is also trending (r = 0.22, p = 0.09) but not signi�cant for RT(H&E)

correlation with RT(H-E) (r = 0.18, p = 0.18) though the trend is in the same direction

as the �rst group results.

As for behavioral prediction using fMRI responses, MD(H-E) predicts RT(E)

(r = −0.4, p = 0.0017) and RT(H-E) though with a trending signi�cance (r = 0.24, p =

0.06). MD(H-E) could also predict accuracy(E) (r = 0.29, p = 0.026) and accuracy(H-

E) (r = −0.27, p = 0.04) but not accuracy(H&E) (r = 0.16, p = 0.24) though again

the trend is in the same direction (Figure 2.7).

In summary, all predictions were in line with the �rst group results. However,

most are with a trending signi�cance. This could be for several reasons such as dif-

ferent distribution of extreme performers in both groups. We elaborate on several

interpretations in the Discussion section.
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Figure 2.7: Prediction of behavioral performance by MD BOLD responses for the

second dataset(n=59).
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2.3.3 Validation using Language network fMRI responses

To test the validity of the predictions by MD regions, we repeated the same

prediction analysis but using fMRI responses of the left hemisphere language network

ROIs. The language ROIs were identi�ed using the Sentences>Non-Words contrast.

Their responses to the H and E trials of the spatial WM task were estimated as de-

scribed before.

Language ROIs H-E contrast responses failed to predict any of the behavioral

measures of the spatial WM task (Figure 2.8). Thus supporting the view that MD

responses are indeed spatially localized to this network.
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Figure 2.8: (a) Example of Language and MD ROIs from two participants adapted

from [24] (b) Comparing correlations between responses of Language and MD ROIs vs

Behavioral measures on the spatial WM task. None of the Language ROIs correlations

is signi�cant.
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3. INTRA-INDIVIDUAL DIFFERENCES

3.1 Literature Review

3.1.1 Previous studies on Trial by Trial BOLD-Reaction Time Variability

Several brain regions have been consistently found to vary in activity with RT.

However, the nature of this variation and the direction of causality is not well under-

stood. The hemodynamic response (HDR) can vary with RT in one or more of the

following ways: (1) change in HDR onset (2) change in HDR amplitude (3) change in

HDR width.

One expected BOLD-RT relation is for longer RTs to be accompanied by a

delayed HDR onset in sensorimotor brain regions because trials with longer RTs are

accompanied by a delay in responses initiation. This �nding has been observed repeat-

edly in several studies [35, 41, 42]. Interestingly, a recent study observed a delayed

HDR onset in not only sensori-motor regions but also a wider network which includes

MD regions [35]. However, the delay e�ects were more pronounced in parietal, visual

and cerebellar regions. The relation between RT and HDR amplitude/width is more

complex. Two di�erent phenomena can be expected

1. As RT increases

a) HDR amplitude increases: Reported in several MD regions, speci�cally

lateral and medial PFCs and parietal, insular, SMA as well as primary sensory

and motor areas [35, 36, 43]

b)HDR width increases: Also observed in several MD regions especially the

parietal lobes [41, 44]

2. As RT increases

a) HDR amplitude decreases: This relation was observed primarily in ACC,
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precuneus, PCC, angular and temporal regions [36, 42, 45]. This was also re-

ported for the BOLD signal before trials with long RT in ACC and PFC [46] or

right after the RT onset, within 2 seconds, in almost all MD regions [35]. It is

worth noting that in the latter study these regions proceed to exhibit a positive

correlation between RT and HDR amplitude after 2 sec from RT onset.

b) No studies report a decrease in HDR width

There are several possible interpretation of the previous �ndings. A positive

correlation between RT and BOLD responses could be re�ecting basic properties of

the BOLD signal rather than cognitive demands. This is because BOLD signal sums

approximately linearly over short durations [48]. Thus, the longer a person sustains

attention on a task, the larger the expected BOLD response should be. This falls in

line with the positive correlations observed across the fronto-parietal attention network,

which is a part the MD network, supporting its role as an attention control network

that is engaged regardless of the type of the task at hand and should covary with RT

[47]. However, even after regressing out RT, activations are minimally a�ected and

remain signi�cant in this network [36, 37].

A negative correlation between BOLD and RT could indicate increased alloca-

tion of cognitive resources to solve the task at hand and respond faster. In this case,

the negative correlation should be observed at task speci�c regions. However, as men-

tioned above, several of these regions are domain general such as the ACC or belong

to the default mode network (DMN) such as precuneus and angular gyrus.

In an e�ort to reconcile this complex picture, an engagement-e�ort framework

has been proposed to interpret RT-BOLD relations [36]. The framework suggests that

if a region is tuned to respond to speci�c stimulus property, then its activity should not

be expected to covary with RT. Further, if the region is less tuned yet still recruited,

then this constitutes an "e�ort" for that region and such activity should covary with

RT.
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Through such a framework, MD regions covariation with RT could be inter-

preted: As the MD system encodes task-relevant properties, the easier the task, the

faster the MD regions will represent it. While harder tasks would require to be "decom-

posed" [23] before being encoded. In this case, the decomposition (e�ort) period will

be related with RT. Thus regressing out RT would remove the decomposition related

activity but leave out the task representation activity. This interpretation has impli-

cations against the practice of regressing out of RT to remove "time on task" e�ects.

While it might be true to some extent that BOLD-RT positive correlation could be

re�ecting basic BOLD properties, regressing out RT could be eliminating processing

related to task decomposition.

3.2 Methodology

3.2.1 BOLD Time-series Extraction

Experiment and ROIs de�nition details are the same as explained in section

3.1.1. However, for this analysis, fROIs were de�ned using both runs (i.e most stable

voxels in both runs). BOLD time series were then extracted from each voxel for each

run separately. Each time series was highpass �ltered (200s), de-trended, and white

matter and CSF mean signals were regressed out.

3.2.2 Fusion of BOLD and Reaction Time

There are two main methods to model RT with respect to the BOLD signal,

one which is based on assumptions of how RT should in�uence the BOLD signal and

the other is an empirical approach with no assumptions.

For all the following models, RT onset is considered as the �rst appearance of

the two-alternative forced-choice screen (Figure 2.2 (A)).
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3.2.2.1 Variable Impulse Model. Variable Impulse (VarImp) (also known as

parametric modulation) is based on the assumption that RT is related to BOLD am-

plitude. RT is modeled as a series of impulse functions at RT onset then convolved

with the Hemodynamic Response Function (HRF) (Figure 3.1). The length of RT

modulates the amplitude of the impulse function such that longer RTs will be modeled

with a larger BOLD amplitude when convolved with HRF. The RTs are z-scored for

each individual across all trials of the same run.

The VarImp approach is believed to su�ciently model short RTs (<4s) [48],

which is the case in this experiment (max RT 2-3s). However, the approach is criticized

as it only assumes RT modulates HRF amplitude while it ignores its e�ect on HRF

width as will be described in the next section [49].

3.2.2.2 Variable Epoch Model. The variable epoch (VarEp) approach was pro-

posed as an alternative to the VarImp to take into account the e�ect of RT on HRF

width. RTs are modeled as a series of box cars (epochs) starting at the RT onset.

Each epoch varies in width corresponding to the trial's RT duration. The RTs are not

z-scored as negative RTs would shift the epoch before the onset time on interest. The

epochs are then convolved with the HRF (Figure 3.1).Thus the VarEp regressor will

model the linear relation between RT and HRF width.

Grindband et al demonstrated that the VarEp approach has better statistical

power and more consistent results [49]. However, it is based on the assumption the

cognitive processes di�er in length but not in amplitude. Further, over stimuli with

short period (<4s), it might decrease the variance in the modeled signal (as HRFs will

be summed up) and lead to loss of statistical power.

3.2.2.3 Finite Impulse Response Model. Finite Impulse Response (FIR) is an

empirical approach with no assumption on how RT relates to BOLD signal. Each scan

time point is modeled with a single impulse function. Regressors are constructed as
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Regressors onsets

Variable Impulse Model
Variable Epoch Model

TR time points
0 50 100 150 200

HRF convolved regressors

Variable Impulse Model
Variable Epoch Model

Figure 3.1: VarImp (blue) and VarEp (orange) regressor onsets (top) and after con-

volving with canonical HRF(bottom).

a series of impulse functions for the time point of interest. Since each time point is

modeled, the regressors are not convolved with the HRF. In this case, each regressor

parameter estimate corresponds to one time point.

In this experiment, each trial is 4 TRs in length thus each trial is modeled using

4 FIR "windows". The RT onset mostly coincides with the 3rd FIR point. Thus to

incorporate RT information into the model, we modulated the height of 3rd FIR time

point on each trial with z-scored RTs of that run. (Figure 3.2)

3.2.3 Model Estimation

3.2.3.1 Design Matrix. Data is modeled and estimated using the General Linear

Model (GLM) approach [50, 51]. GLM in matrix formulations is:

−→
Y i×1 = Xi×j

−→
β j×1 +

−→ε i×1 for ε ∼ N(0, σ2) (3.1)

where Y is a vector of BOLD values at each TR (i), X is the design matrix representing

the model regressors, β is the vector of the model parameters to be estimated (one for
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TR time points
20 40 60 80 100 120 140 160 180 200 220

FIR regressors

Figure 3.2: (Top) FIR modeling of a single trial (Bottom) four FIR regressors. Third

regressor from below corresponds to third TR and is modulated by RT. Regressors are

not convolved with HRF.

each regressor) and ε represents the residual errors.

For the VarImp and VarEp models the design matrix consists of four regressors:

The �rst two are boxcar regressors convolved with HRF and its time derivative (TD)

and the second two are RT regressors (VarImp or VarEp convolved with HRF and

its TD. The TD of the HRF regressor models voxels which vary in temporal onset.

Though parameter estimates from the TD regressor are not the focus of this study,

it was included to improve model estimation and avoid large error variance that can

undermine the statistical power of parameters of interest.

The regressors were then serially orthogonalized as follows Task reg > Task TD

reg > RT reg > RT TD reg so that task regressors capture mean task(also mean RT)

variance leaving RT-related variance to be captured by RT regressors.
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As for FIR model, the design matrix consisted of four regressors, each corre-

sponding to one of the four time points of a single trial. Regressors were already

orthogonal and uncorrelated as they represent separate time points and no HRF was

convolved.

In all models, correct trials only were included. Incorrect trials were not mod-

eled. six motion regressors were further added to the design matrix to capture signal

related to head movement and a mean regressor of ones to capture mean BOLD signal.

3.2.3.2 Parameters Estimation. Under the assumption that the residual errors

are independent and identically distributed (i.i.d.), model parameters can be estimated

using the Ordinary Least Squares (OLS) approach from Eq. 3.1:

β̂OLS = (XTX)−1XTY (3.2)

However, since fMRI data points are correlated from one scan to the other, residual

errors are not i.i.d. such that

ε ∼ N(0, σ2V ) V 6= I

where V is the temporal autocorrelation matrix Nt × Nt (Nt is the total number of

TRs). Thus, βOLS estimates will be biased as the degrees of freedom (df) will be lower

than in the case of i.i.d. errors. To correct for this bias, the error covariance matrix Cε

is estimated and used to �nd Maximum Likelihood (ML) parameter estimates through

pre-whitening of the data and design matrix as follows:

β̂ML = (XTC−1
ε X)−1XTC−1

ε Y where Cε = σ2V (3.3)

The resulting errors are i.i.d and parameter estimates do not require df correction.

The �rst step to estimate Cε is to �nd an appropriate model for it. A commonly

used model is the �rst order autoregressive process + white noise (AR(1) +Wn) and
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has been demonstrated to su�ciently model the error autocorrelation process [51]

−→ε = A−→ε +−→w (3.4)

Thus the estimation of Cε can be divided into two parts: (1) Estimate autocorrelation

matrix V re�ecting the AR(1) part and (2) error variance σ2 of the white noise process.

To estimate V , a common assumption is that it has a similar structure across

all voxels of interest. That is, the pattern of autocorrelation is the same but the error

variance is di�erent for each voxel (i.e the amplitude of autocorrelation is di�erent).

Based on this assumption, all time series from voxels of interest are pooled together to

estimate V .

However, based on calculations of data from this experiment, we found that this

assumption does not hold for all ROIs. So time series was pooled from each ROI to

estimate a ROI speci�c V . The pooled data are used in the form of their temporal

covariance matrix to estimate V as follows

CY =
Y Y T

Nv

where Y is the Nt× v data matrix (v is the number of voxels, Nt is the number of time

points). Nv is the total number of voxels in the ROI. The data covariance matrix CY

is composed of two variances, the experiment related variance and the error variance

component.

V can be expressed using a linear combination of known covariance components

scaled by unknown hyperparameters, as follows

V =
∑
i

λiQi

where Qi are the N × N covariance components modeling the autocorrelation and λi

are the hyperparameters to be estimated. Assuming the autocorrelation process follows
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the AR(1) +Wn model,

V = λ1Q1 + λ2Q2 (3.5)

where component Q1 represents white noise variance (IN) and component Q2 represents

the AR(1) process with an unspeci�ed 1st order coe�cient.

The use of covariance components allows V to be estimated using a one step

Restricted Maximum Likelihood (ReML) to give an unbiased estimator of the two

hyperparameters λ hence giving the estimated V (cf. Eq. 3.5).

V = ReML(CY , QI , X)

The ReML method estimates the hyperparameters using an Expectation-Maximization

algorithm described in [52].

The next step is to estimate the error variance σ2 which is also called the voxel

speci�c hyperparameter. From equations 3.1 and 3.2

−→ε = [I −X(XTX)−1XT ]Y = RY (3.6)

and from equation 3.4

−→ε = (I − A)−1−→w (3.7)

εεT = (I − A)−1wwT (I − A)−T = (I − A)−1σ2I(I − A)−T

Cε = σ2(I − A)−1(I − A)−T

and since Cε = σ2V , thus

V = (I − A)−1(I − A)−T

(I − A) = V −1/2 (3.8)
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From Eq. 3.6, 3.7 and 3.8

−→w = (I − A)−→ε = V −1/2RY

σ2
v = variance(−→w )

To summarize, Cε was assumed to follow an AR(1)+Wn model, which can be modeled

using covariance components. Thus, its estimation was done in two steps: (1) Estima-

tion of the autocorrelation matrix V , corresponding to the AR(1) part, for each ROI

using ReML (to estimate the hyperparameters of the covariance components) (2)Esti-

mation of the error variance or voxel speci�c hyperparameter σ2
v . Cε was then used to

pre-whiten the data and design matrix returning ML parameter estimates as shown in

Eq. 3.3.

3.2.4 Hierarchical Modeling

We then performed a random e�ects analysis (RFX) using the summary statistic

approach [52] which applies a two stage model as follows

Y = X(1)β
(1)
i + ε(1) 1st level

β
(1)
all = X(2)β(2) + ε(2) 2nd level

β
(1)
all is a vector of each participant's βi of interest from the 1st level model, X(2) is the

2nd level design matrix, β(2) are the 2nd level parameter estimates, ε(2) represent 2nd

level residual errors.

The βi of interest in each model is the β corresponding to VarImp regressor,

the VarEp regressor or the 3rd regressor in the FIR model. These βs where averaged

across ROIs to give a single value for each individual.

The summary statistic approach assumes that the second level non-sphericity
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(variance components) has the same form as the �rst level. This approach is valid in

this experiment because (1) We used the same �rst level model for all participants (2)

only one contrast is imported from the 1st level (3) We will perform a one-sample t-test

(i.e. using only one group). Under these conditions, the contribution of non-sphericity

at the second level can be ignored [52].

By using dummy codes (ones) as a single regressor in the design matrix X(2),

β(2) can be estimated using OLS,

β̂(2) = (X(2)TX(2))−1X(2)Tβ
(1)
all

then the one sample T test,

T =
β̂(2)

√
varpop

for varpop = varwith + varbet

where varpop is the population variance which consists of within-subject variance varwith

from the �rst level,

varwith = σ2
v(V X

(1)−)(V X(1)−T

) for V X(1)− = (X(1)TV X(1))−1X(1)T

and between-subject variance varbet of the second model,

varbet = σ2
b (X

(2)TX(2))−1 for σ2
b =

ε(2)
T
ε(2)

S − rank(X(2))

where S is the length of vector β(1)
all corresponding to number of participants.
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4. RESULTS AND DISCUSSION

In this thesis, we investigated the neural basis underlying individual di�erences

(ID) in executive functions (EFs). Speci�cally, we investigated fMRI responses of a

Multiple Demand (MD) brain network, closely related to EFs [23], and behavioral

variability during a spatial working memory (WM) task. we investigated this relation

through two approaches: (1) inter-individual di�erences (variation on an individual-

by-individual basis) (2) intra-individual variations (variation on a trial-by-trial basis).

This study investigated a large fMRI dataset (n=120). The spatial WM task consisted

of easy and hard trials presented in a block design. Each subject was scanned for two

runs. We used the same dataset for both approaches analysis.

The strength of this study stems from (1) overcoming several methodological

challenges related to the reliability and validity of fMRI responses and its prediction

power of the behavioral measures (Table 4.1) (2) complementing inter-individual �nd-

ings with intra-individual variability analysis. For this thesis, we only investigated the

intra-individual variability between BOLD and RT.

4.1 Inter-Individual di�erences

The results demonstrate a high degree of stability of MD activity within indi-

viduals across time. Speci�cally the H-E and H-�x responses are stable even at the

individual ROIs level (Figures A.2 and A.3). However, E-�x responses are not consis-

tent across runs. This could be due to the small variance of the E-�x responses, yet

9 out of the 18 ROIs still show consistent responses (Figure A.4). This consistency

serves as the �rst con�rmation of the validity of MD fMRI responses.

Behavioral measures, both RT and accuracy, were also relatively stable within

individuals over time. The stability of neural and behavioral measures allowed the

averaging of both measures across runs to give more robust results. More accurate
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Table 4.1: Methodological challenges in fMRI studies of individual di�erences addressed

in this thesis.

Limitations of

previous studies
Solutions implemented in this study

Small sample sizes (n=15-20) Large dataset (n=120)

Validity of MD fMRI responses

1) Used Hard-Easy contrast eliminates

subjects' states confounds

2)Used Individual-speci�c fROIs

(Figure 2.2 (B))

3) Stability of MD responses across runs

(Figures 2.5 and A.2)

4) Validation using language ROIs responses

(Figure 2.8)

Reliability of �ndings

1) Replicability across both runs

(Table A.1)

2) Prediction of behavioral measures of run 2

using BOLD measures of run 1

(Table A.2)

3) Testing results replicability on a second dataset

(Table A.3)

Use of Extreme groups
Participants were not grouped into high/low

performers

Lack of intra-individual analysis

Complementary intra-individual analysis

performed supporting �ndings from

inter-individual analysis
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participants were faster on both the easy or hard conditions.

In this study, we focus on the H-E contrast for the validity concerns mentioned

earlier (see Section 2.1.3). Thus, the use of this contrast allows a better interpretation

of the results from previous fMRI studies; such that instead of discussing whether

a participant has, on average, higher or lower brain activity the interpretation now

examines whether a participant needs to engage their MD system more or less on a

current task of high or low cognitive demand.

That said, the H-E is a di�erence index which means it is in�uenced by its two

conditions. Thus, for a valid interpretation, it is necessary to determine whether one

condition contributes to the H-E index more than the other. Figure 4.1 demonstrates

that the hard condition of the task is the main driving factor behind the H-E index for

all: MD BOLD, RT and accuracy measures

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

BOLD H-E RT H-E Acc H-E

r

Easy Hard

Figure 4.1: Correlations of H-E MD BOLD, RT and accuracy with each of their Easy

(blue) and Hard (orange) measures.
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Examining MD responses prediction of performance, we �nd that better per-

formers on the easy task are also the ones who have the largest increase in MD activity

(MD(H-E) vs ACC(E) positively correlated in both datasets). In other words, partici-

pants who found the hard task cognitively challenging are the ones who had the largest

demand in MD activity.

This also suggests that low performers are not the ones with the strongest neural

activity. This is further supported by the observation that participants who performed

better on the hard task relative to the easy had the largest increase in MD activity

(MD(H-E) vs accuracy(H-E) is negatively correlated in both datasets i.e., as the gap

in accuracy between the easy and hard conditions gets closer, the larger is the demand

in MD activity).

The same relation holds for RT variability. Faster participants on the easy task

are the ones who have the largest surge in MD activity (MD(H-E) vs RT(E) negatively

correlated in both datasets).

Moreover, participants with strongest demand in MD activity also have a large

RT H-E (MD(H-E) and RT(H-E) are positively correlated in both datasets). One in-

terpretation could be that this re�ects the "time on task" e�ect previously mentioned

[35] (i.e. that BOLD increase is re�ecting sustained attention during duration of the

task rather than task-relevant cognitive processing). If this was the case, one would

expect the same positive correlation between BOLD and RT for their separate condi-

tions. This is only true for the easy condition (Table 2.2, though the e�ect is abolished

when low performers are excluded) and since the H-E index is largely driven by the H

scores then it renders the "time on task" interpretation less likely. Moreover, there is

no correlation between MD H-E and overall RT (H&E) lending further support against

the time on task e�ect.

To further validate these �ndings, we tested the prediction power of MD BOLD

and behavioral measures of opposite runs (Table A.2). MD BOLD measures of second

run successfully predicted behavioral measures of the �rst run with similar results as
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before. However, �rst run BOLD failed to predict behavior of the second run, except for

the MD H-E vs overall accuracy (H&E) correlation, which is consistent with previous

results. The non-replicablity of the accuracy H-E index could be attributed to its

smaller variance on the second run (see Section 2.3.1) as subjects learn the task better

and become more accurate. However, the RT H-E variance on the second run is not

smaller than the �rst run. Thus this non-replicability remains to be explained.

Together these �ndings suggest that the MD system activity highly re�ects

the cognitive demand of the participants for the spatial WM task. The main goal,

however, is to extrapolate these �ndings to explain more stable individual di�erences

in EFs. While this can be best revealed by contrasting independent measures of EFs

with neural or behavioral activity from this task, we speculate about this relation based

on our results.

We start with the assumption that MD H-E belongs to individuals with better

EFs abilities. The change in cognitive demand for them requires minimal change in

neural activity. One opposing �nding is the positive correlation between MD H-E and

overall accuracy on the task. If smaller MD H-E values re�ect better performers, then

a negative correlation should have been expected. However, as previously mentioned,

large MD H-E di�erence is less likely to re�ect a bad performer but individuals who

�nd this task challenging. Thus, individuals with a large MD(H-E) will engage their

MD system more to achieve the same accuracy.

One supporting �nding is the opposite correlation between MD(H-E) vs ac-

curacy(H&E) and MD(H-E) vs accuracy(H-E). The positive correlation between MD

H-E and overall accuracy should make us expect a positive correlation as well between

MD(H-E) and accuracy(H-E) yet we �nd a negative correlation. If accuracy(H-E) taps

into EFs better than accuracy(H&E) then this negative correlation predicts that indi-

viduals with small MD(H-E) will have better executive abilities. It could be argued

that the positive correlation between accuracy(H&E) and accuracy(H-E) discredits the

idea that they tap into di�erent variance of behavior. However, it follows that a small

accuracy(H-E) will re�ect more correct trials solved on the task but it doesn't reveal
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whether an individual struggled or not to achieve this high accuracy. Thus, what sets

these two measures apart is their opposite correlation with MD(H-E).

In summary, BOLD responses in the MD system are consistently stable within

individuals but variable between them. This variability explains a signi�cant propor-

tion of their performance on the spatial WM task. Speci�cally, BOLD responses of the

MD system are sensitive to the challenging cognitive demands as participants who �nd

the task di�cult are the ones with largest increase in MD activity. The larger the leap

in MD activity, the better the individual performs on the hard condition of the task

yet the slower they become. The �ndings also suggest that MD activity is sensitive to

learning e�ects. However, this is beyond the scope of this thesis.

4.2 Intra-Individual di�erences

In this analysis, we investigated the trial-by-trial variability between BOLD and

RT. The aim is to test whether MD-RT �ndings between individuals is also replicable

within individuals. For the scope of this thesis, we am only investigating RT at the

intra-individual level but not accuracy.

To perform this analysis, we tested three di�erent models to fuse RT with the

BOLD time-series. Two models are based on assumptions: one expects RT to be

related to BOLD amplitude (VarImp model), while the other expects RT to be related

to BOLD HDR width (VarEp model). The third model is not based on assumptions but

rather estimates relation of RT at a each time point of the BOLD signal(FIR model).

We tested the three models on each of the 60 participants and on each run separately,

to replicate the �ndings in both runs lending more con�dence in the results.
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4.2.1 Results of RT Regressors

1. Variable Impulse model There is a positive relation between BOLD amplitude

and RT which is replicable across runs ( trun1 = 2.21, p=0.015, trun2=2.68, p=

0.0048).

2. Variable Epoch model No signi�cant relation between BOLD width and RT

for both the �rst run (t=-0.077, p = 0.53) and the second run (t=-0.22, p =

0.59).

3. Finite Impulse Response model Modulating the amplitude of the third FIR

time point also showed no signi�cant relation between BOLD amplitude and RT

for the �rst run (t=0.046, p=0.48) and the second run (t=0.004, p=0.50)

4.2.2 Discussion

The main result comes from the analysis using the VarImp model: the amplitude

of the BOLD signal increases as a function of RT. This result is consistent across both

runs. This is in line with previous studies reporting positive correlations between

fronto-parietal regions and trials RT [35, 36].

The VarEp model results were not signi�cant on either of the two runs. In

other words, RT is not signi�cantly related to BOLD HDR width. One reason could

be the short RTs in this study. BOLD width is thought to increase for trials with

RTs longer than 4 seconds [48, 49]. Further, modeling close trials with box-cars can

decrease the variance of the regressor. In other words, due to the HDR latency, there

is not enough time for the modeled signal to decrease in value before the next stimulus,

thus the signal has more sustained "activations" (cf. Figure 3.1). This might cause a

considerable loss of statistical power which might explain why the results of this model

were not signi�cant.

The FIR model results were also non signi�cant across both runs. This was not
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an expected result. It could be however due to the small duration between successive

RT onsets which limited the FIR model to only four windows. If longer FIR windows

could be used, perhaps di�erences due to RT could be detected later. This is indeed

plausible as a large scale study on RT-BOLD relation using FIR modeling only �nds

signi�cant RT e�ects after the �rst 3 seconds of RT onset [35]. The time window we

modulated in this study is only 2 seconds after RT onset.

In summary, within-individuals, trial-by-trial BOLD signal increases in ampli-

tude but not in width on trials with longer RTs.

4.3 Convergence of Inter- and Intra-individuals di�erences

The results from both approaches regarding RT converge. At an individual-by-

individual level, participants who require a large increase in their MD activity for a

di�cult task have the longest RTs. At a trial-by-trial level, slower trials were correlated

with large BOLD amplitude.

This convergence serves two purposes:

1. It reinforces the use of inter-individual di�erences (ID) �ndings to infer

brain processes underlying EFs. This is useful for (1) research topics where

experimental manipulations are di�cult to implement or (2) complementary sup-

port for a brain-behavior hypothesis based on experimental manipulations (3) as

a bio-marker for patients diagnosis, speci�cally in the cases where patients are

not able to reliably undertake an experiment.

2. Inter and intra-individual e�ects are not spatially dissociable, at least

for the MD network. There are concerns on whether inter-and intra-individual

�ndings should converge in the �rst place. On one hand, it is logical to expect

that di�erences within an individual in one region should also be observed across

individuals. This follows the observation that BOLD signal variations showing
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intra-individual di�erences are more reliable in revealing inter-individual di�er-

ences [53]. On the other hand, there is no reason not to expect a di�erent picture.

For example, Yarkoni et al. report that the fronto-parietal attention control net-

work showed inconsistent inter-individual di�erences in response accuracy during

a WM task. However, activity in a region not related to WM, the medial pos-

terior parietal cortex, predicted inter-individual di�erences reliably [6]. In fact,

one study recommended focusing on regions that do not show within-individual

variability to detect inter-individual di�erences [54]. However, the convergence

of �ndings in our study provides support to using ROIs that are identi�ed based

on intra-individual variability.
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5. CONCLUSION AND FUTURE RECOMMENDATIONS

In this study, we investigated the relation between neural activity in a Multiple

Demand (MD) network and individual di�erences (ID) on an executive functions (EFs)

task.

A number of conclusions can be drawn:

1. MD activity varies substantially across individuals but is consistent within an

individual across time.

2. MD activity can explain a signi�cant proportion of variance in individual perfor-

mance on the spatial WM task, such that individuals who �nd the task challeng-

ing, increase their MD activity substantially to improve their performance. This

suggests that MD activity is sensitive to the executive demand of an individual.

3. RT variability within and across individuals shares the same relation with MD

activity such that longer RT is correlated with stronger MD activity.

To these conclusions, this study addressed several methodological challenges

concerning the reliability and validity of using fMRI for individual di�erences research.

This paves the way for the use of fMRI in individual di�erences in clinical settings.

This study could be further improved by investigating yet a larger sample, em-

ploying more complex statistics and relating MD activity with individual measures of

executive functions such as �uid intelligence scores.

Given that a signi�cant proportion of individual di�erences in EFs is genetically

determined, future work should attempt to link genetic variability to variability in the

neural activity of the MD system.
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APPENDIX A. DETAILED RESULTS

A.1 Individual MD ROIs responses
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Figure A.1: Stability of individual ROIs responses H-E contrast.
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Figure A.3: Stability of individual ROIs responses across both runs (H-�x contrast).
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Figure A.4: Inconsistency of 9/18 individual ROIs responses across both runs for E-�x

contrast.

A.2 MD BOLD prediction of behavioral performance
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Table A.1: MD BOLD - Behavior predictions on separate runs (�rst n=60 group).

run1 run 2 avg both runs

r p r p r p

MD H-E vs RT H-E 0.51 <0.01 0.30 0.02 0.44 <0.01

RT E -0.31 0.02 -0.22 0.08 -0.30 0.02

RT H 0.06 0.64 0.02 0.86 0.01 0.97

RT H&E -0.11 0.40 -0.09 0.49 -0.14 0.29

Acc H-E -0.15 0.24 0.06 0.67 -0.10 0.46

Acc E 0.62 <0.01 0.31 0.02 0.60 <0.01

Acc H 0.28 0.03 0.26 0.05 0.33 0.01

Acc H&E 0.48 <0.01 0.31 0.01 0.49 <0.01

MD H vs RT H-E 0.34 0.01 0.20 0.13 0.35 0.01

RT E -0.20 0.12 -0.12 0.37 -0.18 0.16

RT H 0.05 0.73 0.04 0.79 0.05 0.71

RT H&E -0.07 0.60 -0.03 0.80 -0.06 0.66

Acc H-E -0.10 0.43 0.09 0.51 0.00 0.98

Acc E 0.38 <0.01 -0.06 0.65 0.21 0.10

Acc H 0.16 0.21 0.03 0.81 0.15 0.26

Acc H&E 0.29 0.02 -0.01 0.96 0.19 0.14

MD E vs RT H-E 0.48 <0.01 0.34 0.01 0.46 <0.01

RT E -0.28 0.03 -0.23 0.07 -0.29 0.03

RT H 0.06 0.64 0.04 0.75 0.03 0.81

RT H&E -0.10 0.45 -0.08 0.52 -0.12 0.38

Acc H-E -0.15 0.27 0.10 0.45 -0.06 0.68

Acc E 0.56 <0.01 0.16 0.21 0.48 <0.01

Acc H 0.25 0.06 0.19 0.14 0.28 0.03

Acc H&E 0.43 <0.01 0.20 0.12 0.40 <0.01
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Table A.2: MD BOLD - Behavior predictions across opposite runs (�rst n=60 group).

BOLD run 1 vs

BHV run2

BOLD run 2 vs

BHV run 1

r p r p

MD H-E vs RT H-E 0.18 0.18 0.43 <0.01

RT E -0.23 0.08 -0.33 0.01

RT H -0.06 0.63 -0.01 0.96

RT H&E -0.14 0.27 -0.16 0.22

Acc H-E 0.01 0.96 -0.17 0.20

Acc E 0.43 <0.01 0.64 <0.01

Acc H 0.30 0.02 0.28 0.03

Acc H&E 0.40 <0.01 0.49 <0.01

MD H vs RT H-E 0.25 0.06 0.12 0.35

RT E -0.08 0.55 -0.14 0.30

RT H 0.10 0.46 -0.04 0.78

RT H&E 0.02 0.87 -0.09 0.51

Acc H-E 0.10 0.43 -0.03 0.80

Acc E 0.14 0.30 0.09 0.49

Acc H 0.18 0.17 0.03 0.82

Acc H&E 0.18 0.17 0.06 0.63

MD E vs RT H-E 0.25 0.05 0.38 <0.01

RT E -0.16 0.21 -0.32 0.01

RT H 0.04 0.79 -0.03 0.82

RT H&E -0.06 0.67 -0.17 0.19

Acc H-E 0.07 0.58 -0.14 0.30

Acc E 0.30 0.02 0.49 <0.01

Acc H 0.27 0.04 0.21 0.11

Acc H&E 0.31 0.01 0.37 0.00
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Table A.3: MD BOLD-Behavior predictions (second dataset n=59).

r p

MD H-E vs RT H-E 0.24 0.06

RT E -0.4 0.0017

RT H -0.21 0.10

RT H&E -0.32 0.014

Acc H-E -0.27 0.041

Acc E 0.29 0.026

Acc H 0.01 0.93

Acc H&E 0.16 0.24

MD H vs RT H-E 0.22 0.1

RT E -0.2 0.13

RT H -0.05 0.71

RT H&E -0.13 0.33

Acc H-E -0.29 0.03

Acc E 0.26 0.053

Acc H -0.03 0.81

Acc H&E 0.11 0.41

MD E vs RT H-E 0.11 0.40

RT E 0.07 0.61

RT H 0.13 0.33

RT H&E 0.1 0.43

Acc H-E -0.19 0.15

Acc E 0.12 0.36

Acc H -0.06 0.64

Acc H&E 0.02 0.86
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