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ABSTRACT

SENSITIVITY AND SPECIFICITY OF THE
MULTI-CHANNEL CW-fNIRS FOR MEDICAL PURPOSES

In last decades, optical imaging technology has been rapidly developed and

become much popular for scientific researches. Its safe, non-invasive and portable de-

sign easily integrates fNIRS to different research areas and makes it much preferable

especially for brain researchers. Since fNIRS sensitively scan neurobiological changes in

the PFC during neurological and psychiatric disorders, many studies benefits from the

convenience of fNIRS to extend the understanding about these disorders. This study

aims to present reflections of different PFC related disorders which are schizophrenia,

migraine and attention deficit & hyperactivity disorder (ADHD) on fNIRS measure-

ments and to reveal their differences from control group via advanced signal processing

application. For this purpose, collected fNIRS measurements during cognitive task

were preprocessed to remove artifacts and prepared for further analysis. Pre-processed

signal sets were used to create feature set for each subject with the assistance of inde-

pendent component analysis. Then these feature sets were investigated by clustering

algorithm to observe discrimination of experimental groups and performance of the

system was reported. In some cases, proposed system presents success rates up to 82%

for migraine group, 92% for schzophrenia group and 95% ADHD group.

Keywords: fNIRS, Signal Processing, Schizophrenia, Migraine, Attention Deficit &

Hyperactivity Disorder, Independent Component Analysis ,Clustering
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ÖZET

ÇOK KANALLI SD-iYKAS SİSTEMİNİN MEDİKAL
AMAÇLI HASSASİYETİ VE ÖZGÜLLÜĞÜ

Optik görüntüleme teknolojisinin son yıllarda gösterdiği hızlı gelişmeler, bu

teknolojiyle yapılan bilimsel çalışmaların popüleritesini artırmıştır. Güvenli, portatif

ve non-invasif tasarımı, iYKAS’ın başta beyin araştırmaları olmak üzere birçok farklı

bilimsel alanda kullanımını yaygınlaştırmıştır. iYKAS teknolojisinin nörolojik veya

psikolojik rahatsızlıklar esnasında dahi hassas bir şekilde prefrontal kortexteki nöro-

biyolojik olayları ölçümleyebiliyor olması, bu hastalıkların araştırılmasında daha sık

tercih edilmesine sebep olmaktadır. Bu çalışma, prefrontal kortekste etkilerini gösteren

migren, şizofreni ve ADHD (dikkat eksikliği ve hiperaktivite bozukluğu) rahatsızlık-

larının iYKAS ölçümleri üzerindeki yansımalarını göstermeyi ve ileri seviyede sinyal

işleme teknikleriyle sağlıklı deneklerle olan farklılıklarını ortaya koymayı amaçlamıştır.

Bu sebeple, deneklere uygulanan bilişsel görevler esnasında toplanan iYKAS ölçümleri

önişlemeden geçirilip artefaktlardan temizlenip daha sonraki analiz için hazırlanmıştır.

Her bir denekten toplanmış olup önişlemeden geçirilen bu sinyaller bağımsız bileşenler

analizi yardımıyla özellik seti oluşturmada kullanılmıştır. Oluşturulan özellik setleri

kümeleme algoritması yardımıyla incelenmiş, deney grupları arasındaki farklılıklar or-

taya konulmuş ve kurulan sistemin performansı raporlanmıştır. Önerilen sistem migren

grubu için %82’ye, şizofren grubu için %92’ye ve ADHD grubu için %95’e ulaşan doğru-

lukta sonuçlar vermiştir.

Anahtar Sözcükler: Yakın Kızılaltı Spektroskopi, Sinyal İşleme, Şizofreni, Migren,

Dikkat Eksikliği ve Hiperaktivite Bozukluğu, Bağımsız Bileşenler Analizi, Kümeleme
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1. INTRODUCTION

Cognitive neuroscience has been in search of systems that would enable re-

searchers to explain the behavioral differences with respect to neurobiological changes.

In many pathological cases (i.e. psychiatric and neurological disorders) the abnormali-

ties observed in the behavior have strong correlations with the impairments in respec-

tive neurobiology. In most cases these impairments can only be found via invasive (i.e.

PET scans) or very expensive techniques (i.e. fMRI scans). Hence there has been

a trend to develop rapid, non-invasive and accurate biomedical systems to determine

the link between the behavior and biology and use these systems in clinical settings

for improved diagnostic and therapeutic protocols. The functional near-infrared spec-

troscopy (fNIRS) developed at the Neuro-Optical Imaging laboratory over the last 8

years is a proposed system to address these issues.

fNIRS is an optical neuro-imaging method for measuring the hemodynamic re-

sponses in response to neuronal activation in the prefrontal cortex of the brain that is

based on the hypothesis of neuro-vascular coupling. The technique depends on placing

a probe housing light sources and detectors on the subject’s forehead and connecting it

to a data acquisition box and then a computer. The data is recorded and then analyzed

for changes in the blood flow or its oxygenation levels of the brain.[2, 3]

One of the promises of fNIRS has been the rapid and easy scanning of the

neurobiological changes in the PFC during neurological and psychiatric disorders.

There have been many studies to assess the feasibility to use fNIRS in these disor-

ders [4, 5, 6, 7, 8, 9, 10, 11, 12]. In most cases the power of fNIRS as a diagnostic

tool has been investigated for a specific type of disease (i.e. migraine, schizophrenia,

attention deficit and hyperactivity disorder, etc). These diseases are all PFC related

diseases and they exhibit themselves as an impairment in executive functions.
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Migraine is proposed to be a neurovascular coupling disorder where the neuronal

activity-induced metabolic demand, such as oxygen or glucose, is not provided by the

vascular supply. It was suggested that patients with migraine may present altered

values of the parameters related to their cerebral circulation. Even during the interictal

period several studies reported hypoperfusion, decrease in the regional cerebral blood

flow, and changes in the cerebrovascular reactivity [10, 9, 13, 14, 15, 8, 16, 7].

Schizophrenia is a psychiatric disorder and prefrontal cortex dysfunction has

been shown as one of the characteristic of the disease [11, 17, 18]. This absence of

adequate functionality on prefrontal area of the cerebral cortex also affects the per-

formance of the patients during cognitive tasks and results in successfully differentiate

these patients from healthy subjects [19, 5, 20].

Attention deficit/hyperactivity disorder is a disorder related with central ner-

vous system and can be seen in both childhood and adulthood [21]. It has been reported

that ADHD patients shows poor performance across frontal lobe tests. fNIRS is one of

the useful modality to observe hemodynamic changes on prefrontal cortex and is also

preferred in ADHD studies [6, 22, 23, 4].

In this project, clinical data previously collected by the 16 channel fNIRS system

developed at the Neuro-Optical Imaging Laboratory will be analyzed and differences

between patients and healthy controls will be investigated. Specifically I will attempt

to develop novel signal processing techniques to quantify the sensitivity and specificity

of this instrument for different illnesses (migraine, schizophrenia, attention deficit and

hyperactivity disorder). Although there is not enough findings between these groups

for fNIRS technology, similar studies for other imaging modalities motivates us for the

possible results [24, 25, 26, 27].
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2. PRINCIPLES OF NEURO-OPTICAL IMAGING

2.1 functional Near Infrared Spectroscopy

In the last decades, functional near-infrared spectroscopy (fNIRS) has taken

a place as a new neuroimaging modality. Its portable, safe and noninvasive design

attracts brain researchers to prefer this technology in their studies. fNIRS technology

uses specific wavelengths of lights that can pass through the scalp and make it possible

to measure relative oxygenated and deoxygenated hemoglobin concentration changes

during cognitive or emotional brain activity [2, 3].

Optical imaging technology is based on measuring the attenuation of light as

it passes through the underlying tissues. In brain imaging studies, changes in the

attenuation means changes of HbO2 and Hb concentrations in the underlying tissues

which in turn represents the neural correlates of a specific cognitive activity at that

specific area. This relationship is also known as thenneurovascular coupling mechanism

which relates functional neuronal brain activity to local hemodynamic changes.

In order to compute the concentration information of HbO2 and Hb, it is re-

quired to convert light information obtained from measurements of optical attenuation

at suitable wavelengths. It is known that the range of 710nm and 1000nm is the most

useful interval to observe tissue oxygenation and using two light sources with different

wavelengths one can extract relative information about HbO2 and Hb concentration

variation [28]. Change in optical density is measured as in equation 2.1 which is de-

rived from Beer-Lambert Law. According to this, change in optical density at the

specific wavelength (4ODλi) depends on absorption coefficient of HbO2 and Hb at

this wavelength (ελiHB,HBO2
), concentration change of HbO2 and Hb (4CHB,HBO2) and

source-detector distance (L).
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∆ODλi = ln

{
I0
I

}
= ελiHB,HBO2

∆CHB,HBO2L (2.1)

Optical density information for two light source with different wavelengths is

then converted to concentration change ofHbO2 andHb information by using equations

2.2 and 2.3 [29, 30].

4[HB] =
ελ2HBO2

4ODλ1 − ελ1HBO2
4ODλ2(

ελ1HBε
λ2
HBO2

− ελ2HBε
λ1
HBO2

)
L

(2.2)

4[HBO2] =
ελ1HB4ODλ2 − ελ2HB4ODλ1(
ελ1HBε

λ2
HBO2

− ελ2HBε
λ1
HBO2

)
L

(2.3)

NIRS equipment which used in this study was developed in the Neuro-Optical

Imaging Laboratory of the Institute of Biomedical Engineering, Bogazici University.

Illustration of prefrontal cortex probe of the system can be seen in figure 2.1. Probe has

four light source and ten optical sensors and they placed in rectangular probe with 2.5

cm source-sensor space. This design allows 16 photon paths which means 16 different

location for taking measurements from prefrontal cortex. The device uses LEDs which

produce light with wavelength of 730nm and 850nm to obtain cerebral HbO2 and Hb

concentration information. Additionally, sampling frequency of the device is 1.6Hz

which enables us to see response up to 0.8Hz according to Nyquist Theorem.
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Figure 2.1 Illustration of 16-channel fNIRS probe

2.2 Experimental Groups & Applied Task

In this study, fNIRS measurements collected from a group of people during

cognitive Stroop task were examined. Experimental group consist of 13 healthy adult

controls, 15 adult migraine, 26 adult schizophrenia and 9 adult ADHD patients.

In order to see hemodynamic response of subjects, a cognitive task is applied

during the measurement. For this reason, a modified version of the color-word matching

Stroop task was used in the study [1]. Subjects were presented with two words, one

written above the other. The upper word was written in different ink colors whereas

the bottom one was in white over a black background. Subjects were asked to decide

whether the word written below correctly denotes the color of the upper word or not. If

the printed color of the upper word matches with the color name below, then subjects

were to press on the left mouse button with their right index finger, and if not, on

the right mouse button with their middle finger. This task consists of three different

stimulus conditions as neutral, congruent and incongruent. In the neutral trials, upper

word consisted of four X’s (XXXX) printed in red, green, blue, or yellow. In the

congruent trials ink color of the upper word and the word itself were the same, whereas

in the incongruent condition, they were different. The trials were presented in a blocked

manner. Each block consisted of six trials and there were 5 blocks for each condition.

Inter-stimulus interval within the block was 4.5 s and the blocks were separated with

20 s interval during which the screen was blank. Subjects were informed to perform
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the task as quickly and correctly as possible. The words stayed on the screen until the

response was given with a maximum time of 3 s.

Figure 2.2 Example for neutral, congruent and incongruent questions of color-word matching Stroop
test [1].
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3. METHODOLOGY

In this study, I attempt to evaluate fNIRS measurements to highlight the hemo-

dynamic differences between the groups of patients who are schizophrenia, ADHD,

migraine and healthy controls. To this aim, an algorithmic approach which consists of

three main blocks (Figure 3.1) was developed. Firstly, preprocessing step was applied

to fNIRS signals to reduce possible unfavorable effects of artifacts and noise on the

measurements. Then, these processed signals were used to create a feature vector for

each subject. These features were evaluated in clustering step and finally, performance

of the system for all Hb, HbO2 and HbT signals were observed separately.

PreprocessingXi,16

Feature

Extraction
Clustering

Figure 3.1 Flowchart of the proposed system

3.1 Pre-processing

Removing artifacts from physiological signals is an essential part of bio-signal

processing studies and its robustness on the selectivity characteristic is the main factor

which affects whole processing system. Artifacts on the fNIRS signals may result

from various reasons such as imaging systems, environmental conditions or subject-

specific conditions. Artifacts in fNIRS measurements are mainly due to subject-specific

conditions because, other physiological signals may interfere to measurements and they

may not be detected and removed totally. These artifacts are generally observed as

drifts, spikes or jumps on the measurements. Preprocessing step of the system includes

three sub-steps as seen in Figure 3.2.
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Band-pass

Filter
Xi,16

Artifact

Removal by

Modified

PCA

Noisy

Channel

Decision

X̂i,16

Figure 3.2 Flowchart of the preprocessing step

3.1.1 Band-pass Filtering

As a first step of preprocessing part of the analysis, in order to remove baseline

drifts on measurements, Hb, HbO2 and HbT signals were band-pass filtered by using

4th order Butter-worth filter in the frequency range of 0.01-0.8Hz (see Figure 3.3). By

removing drift on the data, it is aimed to prevent from any negative effects like bias

on the results.

Figure 3.3 A typical baseline drift observed at the HbO2 signal is removed by 4th order 0.01-0.8 Hz
Butterworth filter from the Xth channel of a subject. Red line is the filtered data.

3.1.2 Artifact Removal by Modified PCA Algorithm

There are a lot of filtering techniques which are generally based on statistical

estimation such as adaptive filtering and Kalman filtering. Statistical analysis methods

like principal component analysis (PCA) and independent component analysis (ICA)
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are also used effectively to remove artifacts from fNIRS signals [31] [32] [33] [34] [35].

PCA can be considered as a kind of transformation which represent the data in an

orthogonal space that depends on maximum variance and it is commonly used to

reduce dimensionality of datasets. Its performance of removing artefacts especially

from fNIRS measurements has been shown in literature [31] [32] [34]. Because of its

unsupervised structure, data will not be affected by model signal which mathematically

represents embedded physiological signals or any similar outside information during the

processing.

PCA assumes that signal set Xk is composed from n uncorrelated components

Yk and Xk can be interpretted as linear combination of Yk’s.

X =


x1

x2
...

xn

 = WY =
(
w1 w2 · · · wn

)

y1

y2
...

yn

 , (3.1)

where X and Y contains the signals xk and yk, and W is the mixing matrix which

contains eigenvectors of covariance matrix of X.

It was shown that removing principal components which have high eigen-values

leads to a reduction of artifacts on measurements, since dominant characteristics of

signal sets appears on those principal components [31] [32] [34]. However, removing

whole component from the dataset also leads to some information loss. For this reason,

detecting corrupted region on principal components and trying to clean out determined

parts of signal sets will prevent from possible information loss. To this aim, computing

moving standard deviation (Eqn 3.2) assists to specify corrupted regions [35]. Based

on the information which comes from MSD functions, corrupted regions of principal

components is removed while reconstructing signal-set from eigen-vectors and corre-
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sponding coefficients.

s(t) =
1

2k + 1

 k∑
j=−k

x2(t+ j)− 1

2k + 1

(
k∑

j=−k

x(t+ j)

)2
1/2

(3.2)

Figure 3.4 Sample for principal component and corresponding moving standart deviation function
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Figure 3.5 Samples for output (blue line) of artifact removal algorithm.
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3.1.3 Noisy Channel Decision

Based on the visual inspection of the time course and spectral properties of the

measurements, some of the channels were discarded from the analysis. Signals with

relatively high variance and/or frequency characteristic corresponding to white noise

were also excluded from the analysis (Figure 3.6).

Figure 3.6 Sample for discarded measurements from the analysis

3.2 Feature Extraction

Different cerebral illnesses may show themselves by changing patterns in dif-

ferent imaging modalities [24, 25, 26, 27]. Methods like PCA and ICA which expose

intrinsic information of multivariate signal sets are successfully used for finding these

patterns. Especially studies which use ICA outputs in machine learning algorithms has

been seen quite successful [25]. For this reason, it was decided to use ICA to extract

features from fNIRS measurements and Fastica algorithm [36] was used to find the

space axes which are maximally independent from each other. Fastica uses high order

statistics to derive independent components from the negentropy information of data

and it assumes that data includes nongaussian sources.
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3.2.1 Feature Extraction from ICA Output

ICA is a method to extract subcomponents from the system of multivariate

signals. Simply, ICA exposes hidden factors S from blended outputs X by assuming

statistical independency and non-gaussianity of the factors . FastICA algorithm devel-

oped by Hyvarinen and Oja [36] (see Appendix A) was used to estimate the independent

components, mixing A and the separation matrices W for each subject.

X = AS (3.3)

S̃ = WX (3.4)

ICA decomposition was applied to expose dominant signals in the Hb, HbO2

and HbT signals. For each subject, spatially independent components were obtained

with their corresponding weights given in the mixing matrix A.

The components and their weights extracted by ICA algorithm from each subject

are used to create a feature set for clustering step. To this aim, frequency spectrum of

each independent component was computed via fourier transform (Eqn 3.5) and these

components were ranked based on the dominancy of a specified frequency band as seen

in Table 3.1. Dominancy of these components was determined by calculating the power

of the spectra within that specific frequency band (Eqn 3.6).

Xk =
N−1∑
n=0

xne
−i2πk n

N (3.5)
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Power =

∫ fupper

flower

| X(f) | df (3.6)

Table 3.1
Frequency intervals of the specified bands

Band Interval

B1 0.01 - 0.1 Hz

B2 0.1 - 0.2 Hz

B3 0.2 - 0.3 Hz

B4 0.3 - 0.4 Hz

B5 0.4 - 0.5 Hz

B6 0.5 - 0.6 Hz

B7 0.6 - 0.7 Hz

For each subject, hemodynamic feature-set was created by using weights of

the highest ranked independent components on specified frequency band. For each

measurement channel, weights of top-ranked IC’s, which are elements of the mixing

matrix A (Eqn 3.3), are stored in feature-matrix. Since there are 7 frequency bands

and 16 measurement channels, size of the feature-matrix of each subject becomes 7x16.

Then, significant features on the feature matrix are determined by computing their

score on Fisher’s Discrimination Ratio (Eqn 3.7) and applying threshold.

FDR =
n∑
i=1

n∑
j=1

(µi − µj)2

σ2
i + σ2

j

, (3.7)

where µi and σi are mean and variance of the feature for ith group.
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Figure 3.7 Sample for independent components which are dominant at different frequency range.
(a) Component on left is more dominant at 0.4-0.5Hz and 0.5-0.6Hz intervals while the one at the
right (b) is more dominant at 0-0.1 and 0.1-0.2Hz.
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3.3 Clustering

Final step of this study is to investigate the discrimination ability of selected

features. There are a lot of clustering and classification algorithms to check this ability.

Since sizes of experimental groups are small and unequal, observing their clustering

ability is much suitable than applying classification. Clustering results may also give

good inspiration for further research to form much proper database.

K-means is well-known algorithm which is commonly used to cluster datasets,

however its strict format and dependency to seeds as start points sometimes lead to

show poor performance. If characteristics of the datasets are not known well, soft

clustering algorithms like Fuzzy C-means have been seen much suitable. In literature,

performance of the FCM and K-Means algorithms were compared for overlapped clus-

ters at different rate [37] and FCM was seen better for most of the situations. Thus, it

was decided to use FCM algorithm (See Appendix B) provided in Fuzzy Logic Toolbox

of MATLAB to cluster our experimental groups by using selected features at previous

step.
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4. RESULTS

The algorithmic approach mentioned before was applied for each dataset (i.e.

control, migraine, ADHD and Schizophreina) and then pairwise clustering results are

reported with following indexes. Frequency and location information of determined

features, which are used to cluster chosen datasets, is also visualized as well as clustering

results.

• Precision: True Positive / (True Positive + False Positive)

• Recall (Sensitivity): True Positive / (True Positive + False Negative)

• True Negative Rate (Specificity): True Negative / (True Negative + False

Positive)

• Accuracy (Success): True Positive / (True Positive + True Negative + False

Positive + False Negative)

• Dunn’s Index: For well-separated clusters, distances among the clusters are

usually large and the diameters of the clusters are small. Larger value means

better cluster configuration [38].

• Davies Bouldin Index: Measurement of the average of similarity between each

cluster and its most similar one. Compact and well-separated clusters lowers

Davies-Bouldin index[38].

In addition to pairwise results, all datasets were used together to see how they

can be discriminated from others. Then the success ratio and corresponding mixing

matrix are reported.



18

Table 4.1
Illustration of True/False and Positive/Negative terms

Actual Class

Predicted Class

TP FP

Correct Result Unexpected Result

FN TN

Missing Result Correct Absence of Result

4.1 Results for Control vs. Migraine Groups

Clustering results for control and migraine groups are summarized in table 4.2.

It can be observed that extracted and selected features from HbO2 signal set is more

suitable for discrimination of these groups since it gives better results than bothHb and

HbT depended clustering. Additionally, these features are much related with right side

of the prefrontal cortex (channels 13, 14, 15 and 16) and they are mostly corresponding

to components which are dominant on 0.1-0.2 Hz and 0.3-0.5 Hz (bands 2, 4 and 5)

(see figure 4.1).

Table 4.2
Clustering indexes for control & migraine groups

Signal Set Accuracy Sensitivity Specificity Precision Dunn’s Index D-B Index

HbO2 0.82 0.87 0.77 0.81 0.2144 0.0363

Hb 0.79 0.87 0.69 0.76 0.3526 0.0560

HbT 0.71 0.93 0.46 0.66 0.2987 0.4837
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(a)

(b)

Figure 4.1 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for Control-Migraine discrimination
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(a)

(b)

Figure 4.2 True map (a) and clustering result (b) based on selected HbO2 features for Control-
Migraine discrimination
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4.2 Results for Control vs. Schizophrenia Groups

Clustering results for control and schizophrenia groups are summarized in table

4.3. It can be observed that features derived from all HbO2, Hb and HbT signal sets

contain useful information for discrimination of these groups and they show almost

equal performance in clustering step. Additionally, these features are much related

with both right left side of the prefrontal cortex (channels 1, 2, 4, 14 and 16) and they

are mostly corresponding to components which are much dominant on high frequencies

(bands 3, 5 and 7) (see figure D.5, D.7 and 4.3).

Table 4.3
Clustering indexes for control & schizophrenia groups

Signal Set Accuracy Sensitivity Specificity Precision Dunn’s Index D-B Index

HbO2 0.87 0.85 0.92 0.96 0.2260 0.1178

Hb 0.85 0.85 0.85 0.91 0.0902 0.0196

HbT 0.92 0.96 0.85 0.93 0.0712 0.0446
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(a)

(b)

Figure 4.3 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for Control-Schizophrenia discrimination
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(a)

(b)

Figure 4.4 True map (a) and clustering result (b) based on selected HbT features for Control-
Schizophrenia discrimination
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4.3 Results for Control vs. ADHD Groups

Clustering results for control and ADHD groups are summarized in table 4.4.

It can be observed that extracted and selected features from HbT signal set is more

suitable for discrimination of these groups since it gives better results than both HbO2

and Hb depended clustering. Additionally, these features are much related with middle

region of the prefrontal cortex (channels 6, 8, 10 and 12) and they are mostly corre-

sponding to components which are dominant on lower frequencies (bands 1 and 2) (see

figure 4.5).

Table 4.4
Clustering indexes for control & ADHD groups

Signal Set Accuracy Sensitivity Specificity Precision Dunn’s Index D-B Index

HbO2 0.86 0.67 1 1 0.4489 0.0723

Hb 0.36 0.89 0 0.38 NA NA

HbT 0.95 0.89 1 1 0.2187 0.0771
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(a)

(b)

Figure 4.5 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for Control-ADHD discrimination
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(a)

(b)

Figure 4.6 True map (a) and clustering result (b) based on selected HbT features for Control-ADHD
discrimination
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4.4 Results for Schizophrenia vs. Migraine Groups

Clustering results for schizophrenia and migraine groups are summarized in table

4.5. It can be observed that extracted and selected features from HbO2 signal set is

more suitable for discrimination of these groups since it gives better results than both

Hb and HbT depended clustering. Additionally, these features are much related with

middle region of the prefrontal cortex (channels 6, 7, 8, 9 and 10) and they are mostly

corresponding to components which are dominant on higher frequencies (bands 3, 5

and 6) (see figure 4.7).

Table 4.5
Clustering indexes for Schizophrenia & Migraine Groups

Signal Set Accuracy Sensitivity Specificity Precision Dunn’s Index D-B Index

HbO2 0.80 0.60 0.92 0.82 0.2402 0.0663

Hb 0.46 0.87 0.23 0.38 NA NA

HbT 0.75 0.53 0.88 0.73 0.1481 0.3876
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(a)

(b)

Figure 4.7 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for Schizophrenia & Migraine discrimination
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(a)

(b)

Figure 4.8 True map (a) and clustering result (b) based on selected HbO2 features for Schizophrenia
& Migraine discrimination
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4.5 Results for ADHD vs. Migraine Groups

Clustering results for ADHD and migraine groups are summarized in table 4.6.

It can be observed that extracted and selected features from HbO2 signal set is more

suitable for discrimination of these groups since it gives better results than both Hb

and HbT depended clustering. Additionally, these features are much related with right

side of the prefrontal cortex (channels 13, 14, 15 and 16) and frequency characteristics

of these features does not focus on any specific interval (see figure 4.9).

Table 4.6
Clustering indexes for ADHD & migraine groups

Signal Set Accuracy Sensitivity Specificity Precision Dunn’s Index D-B Index

HbO2 0.88 0.87 0.89 0.93 0.1962 0.0877

Hb 0.83 0.94 0.67 0.82 0.3264 0.0062

HbT 0.88 0.93 0.77 0.88 0.2937 0.1195
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(a)

(b)

Figure 4.9 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for ADHD-Migraine discrimination
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(a)

(b)

Figure 4.10 True map (a) and clustering result (b) based on selected HbO2 features for ADHD-
Migraine discrimination
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4.6 Results for ADHD vs. Schizophrenia Groups

Clustering results for ADHD and migraine groups are summarized in table 4.7.

It can be observed that extracted and selected features from HbO2 and HbT signal sets

are more suitable for discrimination of these groups since it gives better results than

Hb depended clustering. Additionally, these features are much related with channels

5, 6, 14 and 16; and frequency characteristics of these features does not focus on any

specific interval (see figures D.17 and 4.11).

Table 4.7
Clustering indexes for ADHD & schizophrenia groups

Signal Set Accuracy Sensitivity Specificity Precision Dunn’s Index D-B Index

HbO2 0.94 0.78 1 1 0.375 0.1194

Hb 0.83 0.67 0.89 0.67 0.3079 0.0347

HbT 0.94 1 0.92 0.82 0.1747 1.5602
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(a)

(b)

Figure 4.11 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for ADHD-Schizophrenia discrimination
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(a)

(b)

Figure 4.12 True map (a) and clustering result (b) based on selected HbT features for ADHD-
Schizophrenia discrimination
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4.7 Results for Discrimination of All Groups Together

Mixing matrix of clustering results for discrimination of all groups are shown in

tables 4.8, 4.9 and 4.10. It can be seen that success rate does not exceed 65% for any sig-

nal set. Additionally, extracted features are much related with 4th, 6th, 14th, 15thand16th

channels and frequency characteristics of these features does not focus on any specific

interval (see figures D.21, 4.13 and D.23).

Table 4.8
Clustering results of selected HbO2 features for all experimental groups together

# of Subjects HbO2 Control Migraine Schizophrenia ADHD

13 Control 12 - 1 -

15 Migraine - 1 13 2

26 Schizophrenia 7 - 18 1

9 ADHD 1 - 1 7

Accuracy: 0.60

Dunn’s Index: 0.1896

D-B Index: 0.1467
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Table 4.9
Clustering results of selected Hb features for all experimental groups together

# of Subjects Hb Control Migraine Schizophrenia ADHD

13 Control 8 3 1 1

15 Migraine 2 8 4 1

26 Schizophrenia 2 2 22 -

9 ADHD 3 2 1 3

Accuracy: 0.65

Dunn’s Index: 0.2052

D-B Index: 0.0397

Table 4.10
Clustering results of selected HbT features for all experimental groups together

# of Subjects HbT Control Migraine Schizophrenia ADHD

13 Control 11 - 2 -

15 Migraine 2 2 8 3

26 Schizophrenia 3 2 21 -

9 ADHD 4 1 - 4

Accuracy: 0.60

Dunn’s Index: 0.2701

D-B Index: 0.1803
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(a)

(b)

Figure 4.13 Channel distribution (a) and frequency band distribution (b) of selected Hb features
for discrimination of all groups
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(a)

(b)

Figure 4.14 True map (a) and clustering result (b) based on selected Hb features for discrimination
of all groups
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5. DISCUSSIONS

ICA has been commonly used to detect and remove artifacts from multivariate

signal sets and researchers reported that it shows a better performance for removing

artifacts from biosignals compared to other filtering or regression-based techniques

[39, 34, 40]. The main reason of its high performance for finding these artifacts is its

ability to recognize different patterns in multivariate signal sets. In some studies, ICA

appears as a purposive tool to discriminate patterns which correspond to changes in

a situation. For example, in a study by Formisano et al. [25] features extracted from

task related IC’s of fMRI dataset were used in automatic classification algorithm where

they obtained high true-positive rate. In a study by Lu et al. [41], depressed people

have been discriminated from healthy people with respect to their MEG signals. They

compared Multi-channel Matching Pursuit algorithm to ICA to extract features and

evaluated their performance. Furthermore, Storti et al. [42] use frequency information

of independent components to investigate resting state networks in an fMRI study.

They grouped IC’s based on their dominancy of determined frequency intervals and

use required IC’s to extract these networks. In my case, IC’s were ranked based on their

spectral powers for determined frequency intervals and a feature set for each subject

was extracted based on these spectral information coding the IC’s to be used in the

clustering step.

With inspiration from these studies, I decided to use ICA to extract features cor-

responding to common patterns which were specific for different PFC related diseases;

namely schizophrenia, ADHD, and migraine.

In the study of Azechi et al. [5] schizophrenia patients were discriminated from

healthy subjects by evaluating HbO2 changes from fNIRS measurements during cog-

nitive tasks. 88% of 60 subjects were correctly classified. HbO2 depended control-

schizophrenia clustering results of my study is very close to their study and it was also

shown that using HbT information improves the success rate up to 92%. Additionally,
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Callicot et al. reported abnormal activity of dorsal PFC under specific conditions in

an fMRI study [11]. In my results, we observed that features effectively used to dis-

criminate schizophrenia patients are much related with rightmost and leftmost parts of

the fNIRS probe which are the closest locations of the probe to dorsal PFC (see figure

4.3).

In the study of Negoro et al. [4] ADHD patients exhibits lessHbO2 concentration

change in fNIRS measurements during Stroop task and they reported HbO2 changes in

the control group is significantly greater than ADHD group in the inferior prefrontal

cortex. Although there is not enough discrimination analysis during cognitive task

in literature, activation differences between ADHD and control groups were reported

during different tasks [4, 6, 22].

An fNIRS study that investigated migraine patients during a Stroop task re-

ported no significant differences in amplitude of HbO2 and Hb measurements [12].

However, Sayita completed a classification study in 2012 [30] and reported success

rates up to 83% especially for HbT depended cases. Although experimental task which

was used in my study is different from Sayita’s, I reached to 82% accuracy for HbO2

related analysis.
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6. CONCLUSIONS

In this study, reflections of PFC related diseases on fNIRS measurements were

investigated. It was seen that Schizophrenia, migraine and ADHD patients exhibit

different alterations in fNIRS parameters which are hidden in these measurements.

Signal processing technique used in this study helped us to differentiate disease specific

fNIRS parameters. This new approach might increase the reliability of fNIRS usage for

diagnostic purpose. Signal processing is an immense and ever-expanding research area.

Therefore, choosing appropriate tools is essential to reach the goal of the study. For

this reason, presented technique could be a start point for future studies to improve

sensitivity and specificity of fNIRS for different cases.

In many of the previous fNIRS studies [8, 19, 5, 20, 6, 22, 23, 4, 30], the difference

in the mean of the change in HbO2 and Hb concentration were used to observe the

discrimination power of fNIRS between one specific patient group and healthy controls.

We challenged this approach by increasing the size and variety of the patient groups in

this study. Furthermore, in contrast to most studies, we exploited the whole spectrum

of the fNIRS signal for an improved accuracy. Although neuronal activity corresponds

to low frequency part of fNIRS measurements, to understand meaning of high frequency

content which seemed significantly effective on our results will be an important topic

in future work.

Discrimination of control, migraine, schizophrenia and ADHD is evaluated both

pairwise and all together, and then results were reported. It was seen that features

derived from HbO2, Hb or HbT measurements could be useful to the show differences

between these groups. Results also indicate that used patient groups can be differen-

tiated from both control group and each other by choosing appropriate feature set.

Pairwise results for migraine show that they can be discriminated from other

experimental groups with more than 80% of success and HbO2 depended features come
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into prominence. Results for schizophrenia indicate that these patients cannot be dis-

criminated well from migraineurs, but evaluating them with control or ADHD patients

gives more than 90% success rate. Clustering success for ADHD patients are relatively

high than other results and HbT features gives better result during the study. However,

ADHD Group is the smallest experimental group in this study and this may cause a

bias on the results.

Clustering results shows more than 80% accuracy for at least one of the deter-

mined feature set for each pairwise analysis, but common features to cluster each exper-

imental groups together does not exceed 65% success rate. It can be seen that selected

common features cannot correctly discriminate migraine and schizophrenia patients.

Although all our experimental groups consist of PFC related diseases, schizophrenia

and ADHD are psychiatric diseases while migraine is a neurological disease. Therefore,

evaluating them in the same pool could be inappropriate and may be the reason of this

low success. Investigating discrimination of migraine and psychiatric diseases is an-

other topic for future studies and it will be very assistive when explaining the meaning

of our results.

fNIRS measurements may consist of different patterns for various experimental

groups and this study proposed a novel analysis method to understand these differ-

ences. Although meaningful part of the fNIRS signals are constrained to low frequency

information, we observed that high frequency components also carry valuable infor-

mation for these patterns. Despite promising clustering results, extending database is

necessity to reach much certain conclusion.
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APPENDIX A. Independent Component Analysis

Steps of Fastica algorithm for one unit is shortly defined as following [36].

• Preprocessing for ICA

1. Centering x: Initial and the most necessary step is making x zero mean

by subtracting its mean vector m = E {x}.

2. Whitening x: x is linearly transformed to obtain a new vector x̃ which is

white which means that covariance matrix of x̃ is equal to identity matrix and

components of x̃ are uncorrelated.

E
{
x̃x̃T

}
= I = EDET (A.1)

x̃ = ED−1/2ETx (A.2)

• Main algorithm

1. Choose an initial weight vector w.

2. Let w+ = E
{
xg
(
wTx

)}
− E

{
g′
(
wTx

)}
w where g(u) = tanh(u).

3. Let w = w+/ ‖ w+ ‖

4. If not converged, go back to 2.

The one-unit algorithm estimates only one of the independent components. To estimate

others, this algorithm is needed to run with weight vectors w1, . . . , wn. These vectors

must be also decorrelated at each iteration to preventing from converging to the same

maxima. This is achieved by subtracting the projections of the previously estimated n

vectors from wn+1 and then normalizing wn+1

wn+1 = wn+1 −
n∑
j=1

wTn+1wjwj (A.3)
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wn+1 = wn+1/
√
wTn+1wn+1 (A.4)
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APPENDIX B. Feature Selection Algorithm

Here I will try to explain the algorithmic steps to define the features used in

my thesis. The feature extraction can be applied to any type of fNIRS signal (i.e.

X = HbO2 or X = Hb, or X = HbT )

Algorithm 1 FSA Computation of the Feature Set
k=1; F[:, :] = zeros(7, 16)

Calculate si from the ICA decomposition X = AS

Calculate power spectrum Pi(f) = |FT {si(t)}|2

Calculate the Power in frequency bands Pi(Bk) =
∑f=fH

f=fL
Pi(fL, fH) where Bk =

(fL, fH) is given in Table.

Sort Pi(Bk) and choose the highest one (i.e. jth component).

F[k, :] = A[j, :]

repeat

k = k + 1

until k = 7

return F
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APPENDIX C. Fuzzy C-Means Clustering

Fuzzy C-means algorithm is based on to minimize following objection function.[43]

Jm(U, v) =
n∑
k=1

c∑
i=1

(uik)
md2ik, (C.1)

where d2ik = ‖ yk − vi ‖2

Variables of Equation B1 are identified as below.

Y = {y1, y2, · · · , yN} ⊂ Rn = data

c = number of clusters in Y ; 2 ≤ c ≤ n

m = weighting exponent; 1 ≤ m ≤ ∞

U = fuzzy c-partition of Y

ui(yk) = uik =

 1 yk ∈ Yi;

0 otherwise


v = (v1, v2, · · · , vc) = vectors of centers

vi = (vi1, vi2, · · · , vic) = centers of cluster i

• Main algorithm:

1. Fix c and m. Choose an initial matrix U (0)

2. Compute v̂(k) at step k according to

* v̂i =
∑N

k=1(ûik)
myk∑N

k=1(û
m
ik)

; 1 ≤ i ≤ c
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3. Update membership matrix Û (k+1) =
[
û
(k+1)
ik

]
according to

* ûik =

(∑c
j=1

(
d̂ik
d̂jk

)2/(m−1))−1
; 1 ≤ k ≤ N ; 1 ≤ i ≤ c

4. If ‖ Û (k+1)− Û (k) ‖<∈, stop. Otherwise, set Û (k) = Û (k+1) and return to (2)
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APPENDIX D. Additional Figures for Results
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(a)

(b)

Figure D.1 Channel distribution (a) and frequency band distribution (b) of selected Hb features for
Control-Migraine discrimination
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(a)

(b)

Figure D.2 True map (a) and clustering result (b) based on selectedHb features for Control-Migraine
discrimination
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(a)

(b)

Figure D.3 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for Control-Migraine discrimination
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(a)

(b)

Figure D.4 True map (a) and clustering result (b) based on selected HbT features for Control-
Migraine discrimination
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(a)

(b)

Figure D.5 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for Control-Schizophrenia discrimination
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(a)

(b)

Figure D.6 True map (a) and clustering result (b) based on selected HbO2 features for Control-
Schizophrenia discrimination
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(a)

(b)

Figure D.7 Channel distribution (a) and frequency band distribution (b) of selected Hb features for
Control-Schizophrenia discrimination
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(a)

(b)

Figure D.8 True map (a) and clustering result (b) based on selected Hb features for Control-
Schizophrenia discrimination
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(a)

(b)

Figure D.9 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for Control-ADHD discrimination
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(a)

(b)

Figure D.10 True map (a) and clustering result (b) based on selected HbO2 features for Control-
ADHD discrimination
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(a)

(b)

Figure D.11 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for Schizophrenia & Migraine discrimination
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(a)

(b)

Figure D.12 True map (a) and clustering result (b) based on selected HbT features for Schizophrenia
& Migraine discrimination
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(a)

(b)

Figure D.13 Channel distribution (a) and frequency band distribution (b) of selected Hb features
for ADHD-Migraine discrimination
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(a)

(b)

Figure D.14 True map (a) and clustering result (b) based on selected Hb features for ADHD-
Migraine discrimination
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(a)

(b)

Figure D.15 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for ADHD-Migraine discrimination
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(a)

(b)

Figure D.16 True map (a) and clustering result (b) based on selected HbT features for ADHD-
Migraine discrimination
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(a)

(b)

Figure D.17 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for ADHD-Schizophrenia discrimination
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(a)

(b)

Figure D.18 True map (a) and clustering result (b) based on selected HbO2 features for ADHD-
Schizophrenia discrimination
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(a)

(b)

Figure D.19 Channel distribution (a) and frequency band distribution (b) of selected Hb features
for ADHD-Schizophrenia discrimination
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(a)

(b)

Figure D.20 True map (a) and clustering result (b) based on selected Hb features for ADHD-
Schizophrenia discrimination
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(a)

(b)

Figure D.21 Channel distribution (a) and frequency band distribution (b) of selected HbO2 features
for discrimination of all groups
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(a)

(b)

Figure D.22 True map (a) and clustering result (b) based on selected HbO2 features for discrimi-
nation of all groups
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(a)

(b)

Figure D.23 Channel distribution (a) and frequency band distribution (b) of selected HbT features
for discrimination of all groups
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(a)

(b)

Figure D.24 True map (a) and clustering result (b) based on selectedHbT features for discrimination
of all groups
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