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ABSTRACT

AUDITORY BRAIN RESPONSE DETECTION USING A
PORTABLE EEG HEADSET

In general terms, evoked potentials are electrical signals generated by the ner-

vous system in response to a stimulus. Auditory evoked potentials (AEPs) are gener-

ated in response to an acoustic stimulus. Measuring the electrical response of auditory

system gives many information about the status of individuals hearing. Auditory brain

response (ABR) is an AEP and can be detected using EEG technology and signal pro-

cessing techniques.

In this thesis, an ABR detection system has been implemented. Experiment

procedure was designed using auditory oddball paradigm. An acoustic stimulus has

been sent to the subject and a marker about the stimulus has been sent to the recording

software simultaneously while recording EEG. A low cost, wireless EEG headset was

used to record EEG data under auditory stimulus from 13 subjects. Raw EEG data

has been processed by using epoch extraction, event related potential (ERP) averaging,

and independent component analysis (ICA) methods. Some features were extracted

about the auditory stimulus. Then the extracted features were used to classify the data

to understand if hearing has occurred or not under given stimulation. Results of the

experiments showed that the implemented ABR detection system detected the sound

and silence stimulation with 85% accuracy.

Keywords: EEG, ERP, Auditory Brain Response ABR.
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ÖZET

TA�INAB�L�R EEG KAYDED�C�S� KULLANARAK
���TSEL BEY�N YANITI ALGILAMA

Genel olarak, uyar�lm�³ potansiyeller sinir sistemi taraf�ndan bir uyar�c�ya yan�t

olarak üretilen elektrik sinyalleridir. �³itsel uyar�lm�³ potansiyeller (AEPs) akustik

uyarana yan�t olarak olu³turulur. I³itme sisteminin elektriksel tepkisinin ölçülmesi

bireylerin i³itme durumu hakk�nda birçok bilgi verir. �³itsel beyin yan�t� (ABR) bir

i³itsel uyar�lm�³ potansiyeldir (AEP) ve EEG teknolojisi ile sinyal i³leme teknikleri

kullan�larak tespit edilebilir.

Bu tezde, bir ABR alg�lama sistemi tasarlanm�³t�r. Deney prosedürü `auditory

oddball paradigm' kullan�larak dizayn edilmi³tir. EEG kayd� s�ras�nda, deneye kat�lan

ki³iye akustik uyaran, EEG kaydedilen yaz�l�ma da uyaran hakk�nda bir i³aretleyici e³

zamanl� olarak gönderilmi³tir. 13 denekten i³itsel uyaran alt�nda EEG verilerini kaydet-

mek için dü³ük maliyetli, kablosuz bir EEG kay�t cihaz� kullan�lm�³t�r. Kaydedilen EEG

datas� `epoch' ayr�³t�rma, olaya ili³kin potansiyel (ERP) ortalamas� alma ve ba§�m-

s�z bile³en analizi (ICA) yöntemleri kullan�larak i³lenmi³tir. EEG datas�ndan i³itsel

uyaran hakk�nda baz� ay�rt edici özellikler ç�kar�lm�³t�r. Daha sonra, ç�kar�lan bu özel-

likler, verilen stimülasyon alt�nda i³itmenin olu³up olu³mad�§�n� anlamak amac�yla ver-

ileri s�n��and�rmak için kullan�lm�³t�r. Deneylerin sonuçlar�, uygulanan ABR alg�lama

sisteminin % 85 do§ruluk pay� ile ses ve sessizlik stimülasyonlar�n� tespit etti§ini göster-

mi³tir.

Anahtar Sözcükler: EEG, ERP, �³itsel Beyin Yan�t�, ABR.
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1. INTRODUCTION

1.1 Motivation and Objectives

In general terms, evoked potentials are electrical signals generated by the ner-

vous system in response to a stimulus. Auditory evoked potentials (AEPs) are gener-

ated in response to an acoustic stimulus and AEPs are measured using electrodes on

the surface of the scalp or on the eardrum [1, 2]. Measuring the electrical response of

auditory system gives many information about the status of individuals hearing. Audi-

tory brain response(ABR) can be detected using EEG technology and signal processing

techniques. ABR can be used for adults and also for newborn babies to test their hear-

ing ability [3]. Since hearing has critical e�ect on the development of learning, speech

and communication skills, early recognition of hearing loss and early intervention di-

minish the delays on language and learning development.

Extracting information from EEG is a complicated task because EEG signals

are recorded from the scalp, far away from the origin of activity and contains many

artefacts [4]. Recorded EEG signal is the sum of EEG source activities and non-brain

source artefacts such as eye movement, muscle (EMG), cardiogenic (ECG) artefacts

plus external instrumental noise [5]. EEG/ERP researchers try to �nd methods to

separate recorded EEG signals into set of activities originating from di�erent source

domains [6, 7].

Event related potential (ERP) trial averaging method is used by researchers to

reduce complexity of event-related EEG data [5, 8]. If an experimental event (stimulus)

is presented to a subject while recording the EEG, an epoch of the EEG that is time-

locked to the stimulus can be de�ned [9]. If count of these epochs is large enough,

extracted and averaged epochs give information about the processing of that event

on the brain. This is because the event related activation will occur on all epochs

and contributes to the averaged ERPs, whereas the remaining EEG (noise) tends to
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become smaller and smaller by means of `phase cancellation' [10]. An acoustic stimulus

is presented to subject while recording the EEG, to get the information about auditory

brain response to the acoustic stimulus.

Independent component analysis (ICA) as a signal proccessing method that

receives increasing interest. The ICA problem is to separate statisticaly independent

sources(inputs) which have been linearly mixed on the observations(outputs). It is

�rst used for speech seperation(cocktail-party problem) [11] and shortly after applied

to EEG signal source seperation [10]. Since brain acts as a volume conductor, meaning

that electrical activity generated in one spot can be detected at di�erent locations, ICA

is helpful to separate indepedent activities produced on the brain as well as non-brain

artefacts [6].

The objectives of the study can be stated as follows :

• To design an experiment procedure for the auditory brain response detection.

• To record the EEG data under auditory stimulus using the experiment procedure.

• To test the low cost, wireless Emotiv Epoc neuroheadset EEG recording device

as an EEG research tool.

• To process EEG signal using independent component analysis and extract the

features to identify silence and sound stimulus.

• To classify the extracted features to get the information about if hearing occurs

or not.

1.2 Outline of the Thesis

Remaining chapters are prepared as follows.
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In Chapter 2, Event Related Potentials (ERPs) are explained giving some in-

formation about brain structure, EEG and extraction of event related potentials from

EEG. In that chapter we also mention from the auditory brain response explaining

how human auditory system works and how ABR is generated as well as how it can be

detected using EEG. Additionally, blind source separation methods (Principal Com-

ponent Analysis and Independent Component Analysis) are explained. In Chapter 3,

Materials that are used in the study containing the experiment design (Emotiv EPOC,

Openvibe, Null-Modem Emulator), signal processing (Matlab-Eeglab), and classi�ca-

tion(Weka) are explained brie�y. In Chapter 4, Experiment design, EEG recording

procedure, signal processing methods and classi�cation methods that are used in the

study are explained. In Chapter 5, Results of the study are given. In Chapter 6,

Results of the study are discussed, and feature work is explained.
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2. BACKGROUND

2.1 EVENT RELATED POTENTIALS

2.1.1 EEG

Electroencephalography (EEG) is composed of two Greek words, "graphein"(write)

and "encephalon" (brain). This is a diagnostic method to measure the electrical ac-

tivity on the brain along the scalp over a period of time. German physiologist Hans

Berger (1873 - 1941) recorded the �rst human EEG in 1924 [12].

The electric potential produced by single neuron cannot be picked up by EEG

because it is too far and too small to be detected [13]. EEG can measure the summation

of the synchronous activity of millions of neurons whose spatial orientation are similar.

If an electrode pair is attached to the surface of the human scalp and connected to a

di�erential ampli�er, as output of the ampli�er a pattern of variation in voltage over

time is seen. This voltage variation is known as the EEG. The amplitude of the voltage

variation vary between nearly -100 and +100 microV, and its frequency ranges to 40

Hz or more.

Generally EEG waveforms are classi�ed according to their location, amplitude

and frequency. The most familiar classi�cation uses EEG waveform frequency. There

are four major frequency bands on the EEG based on the brain functions. Alpha, beta,

theta, and delta [14, 15]. The naming of the waves are related with the history. Alpha

waves were among the �rst waves documented by Berger in 1920s.

• Delta Rhythms (0.5 - 4Hz) = Infants show irregular delta activity in the waking

state, in adults it is associated with deep sleep.

• Theta Rhythms (4 - 8Hz) = These rhythms are frequently observed in young
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children, and also in adults during phases of drowsiness or sleep.

• Alpha Rhythms (8 - 13 Hz) = These rhythms are particularly prominent in

subjects who are relaxed and awake with their eyes closed are found on either

side of the posterior regions of the head. Blocked or attenuated by attention,

especially visual(occipitally), and mental e�ort.

• Beta Rhythms (14 - 30Hz) = Beta rhythms are associated with an activated

cortex and can be observed during certain sleep stages. Occur in individuals who

are alert and attentive to external stimuli or exert speci�c mental e�ort. The

main parts of observation are the frontal and central regions of the scalp.

Figure 2.1 Rhythmic EEG activity [16]

2.1.2 ERP

If a stimulus is presented to a human subject while recording the EEG, we can

de�ne an epoch of the EEG that is time-locked to the stimulus. Within this epoch,
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there may be voltage changes that are speci�cally related to the brain's response to the

stimulus and it is known as event related potential. In 1970s Donchin had stated that

ERPs recorded from the scalp are not strictly depend on only one stimuli, they are

related to a variety of processes that are invoked by the psychological demands of the

situation and ERPs represent net electrical �elds associated with the activity of sizeable

populations of neurons. The individual neurons that comprise such a population must

be synchronously active, and have a certain geometric con�guration, if they are to

produce electrical �elds that can be measured at the scalp [17].

Electrode locations are generally expressed with reference to the 10-20 sys-

tem(Jasper 1958'). In this system, the location of an electrode is speci�ed in terms

of its proximity to particular regions of the brain (frontal, central, temporal, parietal,

and occipital) and of its location in the lateral plane (even numbers for right, the sub-

script z for midline and odd number for left). Although these electrode descriptors

refer to particular brain areas, activity recorded at any particular scalp location is not

necessarily attributable to activity in brain regions in close proximity to that location.

This is because the brain acts as a volume conductor, meaning that electrical activity

generated in one spot can be detected at far-away locations.

To obtain an ERP we need to record the voltage di�erence between two elec-

trode sites. Recordings are based on the di�erence in voltage between each `exploring'

electrode and the same (common) reference electrode(s). To produce a waveform, the

voltages at both electrodes are subtracted from each other by the ampli�er. Noise or

electrical activity that is common to both electrodes is canceled out and what's left is

only the response voltage. This is called common mode rejection. Then the response

voltage is ampli�ed. Popular reference selection is usually `linked mastoid' reference,

which consists of a linked pair of electrodes, one on each mastoid bone located be-

hind each ear. The reference site is chosen so as to be relatively unin�uenced by the

electrical activity of experimental interest [17].

There are some sections in the cerebral cortex that has some speci�c functional

activity in the brain. The cerebral cortex is divided into four parts, called "lobes":
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temporal, frontal, parietal, and occipital lobe [18].

1. Frontal Lobe- associated with planning, reasoning, movement, parts of speech,

problem solving, and emotions.

2. Parietal Lobe- associated with orientation, movement, perception of stimulus,

and recognition.

3. Occipital Lobe- associated with visual processing.

4. Temporal Lobe- related with perception and recognition of speech, auditory stim-

uli, and memory.

Figure 2.2 Visual representation of the cortex [18]

2.2 AUDITORY BRAIN RESPONSE

2.2.1 Human auditory system

The auditory system is the sensory system for the sense of sound waves. The

system senses the sound (acoustical energy on the environment) and converts the acous-

tical energy into electrical energy to be processed and interpreted in the brain.



8

The system has mainly two parts; Auditory nervous system and the ear. The ear

consists of three main parts; outer ear, the middle ear, and the inner ear. The working

principle of all of these elements is not completely understood, but the functioning can

be explained roughly.

The ear (scienti�cally `pinna') collects the outer environment sound as an acous-

tical energy. The sound travels into ear canal. The ear canal boosts the sound and

makes a little bit louder at certain frequencies. The travelled acoustical energy vibrates

the eardrum.

The energy becomes mechanical energy with the movement of the eardrum. On

the other side of the eardrum there are three tiny bones (ossicles) stirrup, hammer,

and anvil. These bones form the connection between the eardrum and the inner ear.

They increase and amplify the sound vibrations even more. The leveraged and boosted

sound waves are transmitted to the inner ear [19].

The inner ear (or the cochlea) is a spiral-shaped bony structure. It looks like

the circular shell of a snail, and has a �uid �lled tubes system. The mechanical energy

transmitted by the inner ear vibrates oval window and the �uid on the cochlea. The

energy becomes hydraulic energy, the �uid motion sets tiny hair cells in motion and

the cells produce electrochemical energy to be sent to the brain.

Figure 2.3 Auditory System [20]
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2.2.2 Auditory Brain Response (ABR)

In general terms, evoked potentials are electrical signals generated by the ner-

vous system in response to a stimulus. Auditory evoked potentials (AEPs) are gen-

erated in response to an acoustic stimulus and AEPs are measured using electrodes

on the surface of the skin or on the eardrum. Auditory Brain Response (ABR) is a

kind of auditory evoked potential and it is a far-�eld recorded potential because the

electrodes are placed on the scalp or on the ears, far away from the potential genera-

tor, the cochlea [21]. The auditory brainstem response is also commonly referred to as

an ABR or brainstem auditory evoked response (BAER), depending on the region in

which you live.

Figure 2.4 Central Auditory Pathway [22]

Electrochemical energy produced on the inner ear (cochlea) is transferred by the

auditory nerve to the cochlear nucleus where the timing information on the sound is

preserved, even enhanced. Then the output of the cochlear nucleus goes to the superior

olivary nucleus in which the sound can be localized by discriminating the di�erences

in arrival of the time to each ear or by considering the intensity of sound di�erences

on each ear. The auditory stimulus is relayed to the inferior colliculus where the

dorsal portion of it receives low-frequencies of sound, while the ventral portion receives
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high-frequencies of sound. Then the stimulus goes to medial geniculate nucleus which

relays precise information to the auditory cortex regarding the frequency, intensity, and

binaural properties of the sound [23].

Figure 2.5 Primary auditory cortex. Broadman's area 41-42 receives projections from the medial
geniculate nucleus. Wernicke's area (secondary auditory area) is important for the interpretation of
the spoken word [23].

The auditory stimulus is processed at the temporal lobe. The �rst region of

cerebral cortex is primary auditory cortex to receive acoustic input. Perception of

sound is associated with the left posterior superior temporal gyrus (STG). The neurons

of the primary auditory cortex are thought to have receptive �elds covering a range

of auditory frequencies. Primary auditory cortex is surrounded by secondary auditory

cortex, and intersects with it. These secondary areas intersect with further processing

areas in the superior temporal gyrus, in dorsal part of the superior temporal sulcus,

and in frontal lobe. In humans, association between these regions with the middle

temporal gyrus is possibly important for speech perception [24, 25].

Auditory stimulus processing can be detected using EEG. 10-20 system is used

for electrode placement. For a two channel recording, Cz which is the top of the skull,

(or FPz, which is high forehead) A1 for the left ear and A2 for the right ear are used.

Earlobe placement or sometimes M1 and M2 for mastoid placement is used as well in

the clinic [21].
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The auditory stimulus can be a click, tone burst, or white noise. The auditory

brain response arises shortly after the beginning of the stimulus so it is called an early

potential. AEPs can be divided into three categories with di�erent latencies, 1. Fast

response - after 0-10 ms from the stimulus, 2. Middle response - after 10-50 ms from

the stimulus 3. Slow response - after 50-500 ms from the stimulus.

Figure 2.6 Idealized waveform of the computer-averaged auditory event-related potential (ERP) to
brief sound. The ERP is generally too small to be detected in the ongoing EEG (top) and requires
computer averaging over many stimulus presentations to achieve adequate signal noise ratios. The
logarithmic time display allows visualization of the early brain-stem responses (Waves I-VI), the
rnidlatency components (No, Po, Na, Pa, Nb), the `vertex potential' waves (Pl, N1, P2), and task-
related endogenous components (Nd, N2, P300, and slow wave). Source, Reprinted from Hillyard
SA, Kutas M, `Electrophysiology of Cognitive Processing' Annual Review of Psychology 34 33 - 61,
1983.Copyright 1983, Annual Reviews

Anatomical locations related to the the di�erent waves of the AEP are; wave I

- auditory nerve, wave II - cochlear nuclei, wave III - superior olive, wave IV - lateral

lemniscus, wave V - inferior colliculus. Waves I to V make up the brainstem potentials

(BAEPs).The thalamus (medial geniculate ganglion) and the auditory cortex (temporal

lobe) make up the middle and late waves (N, P) of the AEP.
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2.3 BLIND SOURCE SEPERATION

Blind source separation also known as blind signal separation, can be described

as the separation of a set of original source signals from a set of mixed signals, without

the help of the knowledge about the source signals or the integration process.

An essential problem in many disciplines especially in neural network research,

is to �nd an appropriate representation of multivariate data. For the sake of conceptual

and computational ease, the representation is often looked for as a linear transformation

of the original data. Principal component analysis (PCA) and the newer method Inde-

pendent component analysis (ICA) are the well-known linear transformation methods.

PCA method is based on variance, covariance, eigenvectors whereas the ICA method

is based on statistical independence (nongaussianity, entropy, negentropy).

The problem de�nition on the BSS problem can be formulated as below. If the

observed signals are formulated as;

X(t) = [x1(t), x2(t), x3(t), ..., xn(t)] (2.1)

And the original source signals as;

S(t) = [s1(t), s2(t), s3(t), ..., sm(t)] (2.2)

The problem is to �nd a set of basis vectors that transforms the recorded signals

into a set of original source signals.

X(t) = AS(t) (2.3)

Here, A is the unknown mixing matrix of dimensions n × m. Using the mixing

matrix A, it is then possible to project the components back to reconstruct the original
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data.

S ′(t) = WX(t) (2.4)

Where S ′(t) is the source component estimation.The BSS method then tries

to �nd the corresponding unmixing matrix W that best estimates the original source

signals.

X(t) = W−1S ′(t) = AS ′(t) = AWX(t) (2.5)

2.3.1 Principal Component Analysis

Principal component analysis (PCA) is a useful statistical technique that is

used in application �elds such as image compression, face recognition and, it is a

common method to �nd patterns in high dimensional data. PCA is a method to �nd

a linear transformation of the data that maximizes the variance of the transformed

data. The transformation is constrained to be orthogonal. The process for computing

the principal components of a set of multidimensional data is based on the common

statistical concepts of variance, covariance and eigenvectors.

PCA algorithm can be summarized as [26] :

1. Normalize the data to zero mean and unit variance

2. Compute the coveriance matrix of the normalized data

Σ =
1

n

n∑
i=1

x(i)x(i)
T

(2.6)

3. Find top k eigenvectors of (Σ)

To apply the algorithm, singular value decomposition(SVD) is used. SVD states
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that for any A ∈ Rm×n , matrix A can be decomposed to;

[
A
]

︸︷︷︸
m×n

=
[
U
]

︸︷︷︸
m×n

[
D
]

︸︷︷︸
n×n

[
V
]T

︸ ︷︷ ︸
n×n

(2.7)

Where D is a diagonal matrix and contains the singular values of A (σ),

D =


σi 0 0 0

0 σi+1 0 0

0 0
. . . 0

0 0 0 σn



U's columns are the eigenvectors fo AAT and V's columns are the eigenvectors

of ATA.

To get the top k eigenvectors, X (observed data) can be written in Equation 2.7

as X = UDV T then top k columns of `V' are the top k eigenvectors of Σ

PCA is eigenvector-based multivariate analyses. PCA's principle action can be

thought of as enlightening the internal structure of the data in a technique that best

explain the variance of the data. PCA can provide to the user a lower-dimensional

image, a "shadow" of this object that includes the most informative part of the data.

By computing the �rst few principal components, the dimension of the original data

is reduced on the transformed data. PCA �nds a set of orthogonal axes in the data

then rotating the axes and representing the original data on the rotated axes provides

principle components of the original data.

PCA can be demonstrated using the Figure 2.7. In that �gure three dimen-
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Figure 2.7 Principal component analysis (PCA) [27].

sional gene expression data is converted to (reduced) two dimensional data. A two

dimensional plane which represent the highest variance of the data is constructed, then

rotated to present a two dimensional component space.

2.3.2 Independent Component Analysis (ICA)

ICA is a technique to separate independent sources linearly mixed in several

observations. The assumption on the ICA method is that the observed signals are

produced from a mixture of several separate (independent) source signals. The well-

known example of ICA is the `cocktail party problem'. In the cocktail party, there is

several independent sound sources (music, individual's voices, noise from the outside

environment etc.) and there are also a number of microphones set up in the room to

record a mixture of all the sounds (sources). Using the data recorded from all of the

recording channels (microphones), ICA try to transform recorded data into a set of

original independent source signals. The goal is to �nd a linear representation of non-

Gaussian data with the intention that the components are statistically independent.

ICA does not require orthogonality of the components and it can be thought as

a higher order generalization of PCA. ICA tries to make components to have minimum
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Figure 2.8 Independent component analysis (ICA) model [28]

.

mutual information, there are some ICA algorithms that measures the non-Gaussianity

of the components using higher order statistics [29, 30]. By the help of central limit

theory, relation between non-Gaussianity and statistical independence can be under-

stood. Central limit theory states that the sum of independent random variables tend

to become more gaussian than each variable. So if the sources Si(t) in ICA is assumed

to be independent, the observed signal Xi(t) will be more gaussian by the central limit

theorem. For the closest approximation to the real sources, the unmixing vector W is

found such that it maximizes the independence on all of the source components (S'(t)).

There are several ways to measure components' independence. While some methods

try to minimize mutual information, others try to maximize non-Gaussianity.

There are several ICA algorithms, some of them are called, Kernel-ICA [31],

Infomax Ica [32], RADICAL [33], Fast Ica [34], JADE [35]. Infomax Ica and Fast

Ica are probably the most known and used algorithms. For the measurement of non-

Gaussianity entropy-negentropy and kurtosis methods can be used. Kurtosis is a mea-

sure to understand whether the probability distribution of data is `peaked' (super-

Gaussian) or `�at' (sub-Gaussian) relative to normal distribution (Gaussian). Positive

kurtosis means the data is super-Gaussian whereas negative one means the data is

sub-Gaussian.
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If we de�ne original sources (e.g. n speakers) as S(t), signal from source i (e.g.

i'th speaker) at time t as si(t) , the observed signal can be expressed as X(t) = AS(t)

and Xi =
∑n

k=1Aiksk . Then our goal is to �nd W = A−1 so that S(i) = WX(t) .

ICA model has mainly two ambiguities:

• The variances of the independent components cannot be determined. Since

X = AS and both S and A are unknown, any scalar multiplier in the sources

S can be cancelled by dividing the mixing matrix A by the same scalar, so the

magnitudes of the independent components could not be determined correctly.

Fortunately the problem can be resolved by normalizing the data to zero mean

and unit variance, but still the sign of the components are unknown and in most

applications luckily the sign of the components are insigni�cant.

• The order of the independent components can not be determined. Since one com-

ponent can be computed as the sum of unmixing matrix coe�cients multiplied

by the observed signals, we can freely change the order in the summation and

any of the independent components can be called as �rst one.

ICA algorithm can be summarized as [36]:

• Normalize the data to zero mean and unit variance.

• Initially start with a random W matrix.

• Measure non-gaussianity or mutual information (entropy-negentropy) of the com-

ponents.

• Iteratively update W to have maximum non-gaussian components.

Despite the fact that at �rst ICA is used for "cocktail party problem" and

succeeded, also it is used for EEG processing and have satisfactory results [10].
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Figure 2.9 Principal Components and Independent Components of a normalized data [36]

Figure 2.10 PCA and ICA solution of `cocktail party e�ect' [37]
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3. MATERIALS

3.1 Emotiv EPOC

The EPOC neuroheadset reads electrical activity in the brain using EEG tech-

nology and then it sends this information to a computer through wireless signals.

The EPOC neuroheadset uses a set of 14 sensors and 2 references to tune into

electric signals produced by the brain to detect the user's thoughts, expressions and

even feelings in real time [38]. It has a software called TestBench which is used to

real-time display of the Emotiv headset data stream, the display includes the raw EEG

data, contact quality of the electrodes, FFT, gyro, wireless packet acquisition/loss

display, marker events and battery level of the headset [39]. EEG neuroheadset does

not require gel on the scalp; it should be moisturized with saline solution before usage.

Figure 3.1 Electrode locations used by the EPOC [38]

The Epoc neuroheadset has been used as a gaming tool and recently it also

used by research purposes [40, 41, 42]. We have used that neuroheadset and TestBench

software to record the EEG data from subjects under auditory stimulus.
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Table 3.1

Speci�cation of Emotiv Epoc [38]

3.2 Openvibe

OPENVIBE is free and open source software platform. It can be used to design

and test brain computer interfaces. It consists of several software modules and these

modules can be easily integrated to design BCI applications. It has acquisition client

box to acquire signals from some supported devices(EMOTIV EPOC is supported), the

signal processing boxes to �lter and process signals and visualization boxes to show

the signals in real time [43].

We have used the OPENVIBE platform to design the experiment procedure.

It has been used to design an auditory oddball paradigm. "Clock-stimulator", "Lua

Stimulator", "Sound Player" and "Run Command" modules of OPENVIBE are used

(for a detailed description see "METHOD" section).
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3.3 Null-Modem Emulator (com0com)

The Null-modem emulator is a virtual serial port driver for Windows; it is open

source software and can be downloaded freely under GPL license.

The Null-modem emulator can be used to create virtual COM port pairs and it

can be used to connect one COM port based application to another. Two COM ports

are created for each COM port pair. The output to one of the port pairs is the input

from other port [44].

We have used that software to connect OPENVIBE and EMOTIV TestBench

software. We have created a pair of virtual COM port. We have used one of these

ports in OPENVIBE to write the marker value on that port. We have used the other

port in TestBench in order to import marker value while recording the EEG. Since the

output of one port is the input of the other, TestBench is received the marker value

which is sent by OPENVIBE while recording EEG.

3.4 Matlab-Eeglab

EEGLAB is a toolbox for Matlab environment. It can be used for process-

ing event-related and continuous EEG data. It has some features like graphical user

interface, open source plug-in facility, independent component analysis (ICA), time/fre-

quency analysis, artifact rejection, and several useful interactive plotting functions for

the visualization of the single-trial and averaged data [45].

We have used the EEGLAB toolbox for the processing of the recorded EEG data.

Some facilities of EEGLAB toolbox such as �ltering, independent component analysis,

artifact rejection, epoch extraction and averaging are used. Row EEG data recorded

by EPOC is processed and some features are extracted from data using MATLAB-

EEGLAB.
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3.5 Weka

WEKA is open source data mining software written in JAVA. It has a many

machine learning algorithms to use in data mining tasks. It contains tools for data

classi�cation, regression and clustering [46].

We have used WEKA for classi�cation of data. The extracted features of the

data are given to the WEKA software and the data is classi�ed.
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4. METHOD

4.1 Experiment Design

An experiment for the detection of Auditory Brain Response is designed using

auditory oddball paradigm [47, 48] and OPENVIBE environment.

A pure tone, 0.2 sec sound �le is created, with the frequency of 1000Hz. Playing

procedure is designed in OPENVIBE environment, a "clock stimulator box" is used

to stimulate the marker generator at every second. "Clock stimulator" is used to

trigger stimulation at �xed frequency. This box produces stimulations at speci�c times

depending on its con�guration. It is con�gured to produce one stimulation (stimulation

id=OVTK_StimulationId_Label_00) at every second. Then, the stimulation label is

sent to a "Lua Stimulator" box. Lua Stimulator generates some stimulations according

to a Lua script. Lua script is a simple programming language. It can be used for high-

level operations and it does not need compilation. The Lua script code is arranged to

produce two di�erent stimulation labels randomly one for the sound, other one for the

silence marker. The script generates the random stimulation as frequency distribution

of %20 for the sound, %80 for the silence(Appendix A.1). "Lua Stimulator" generates

two outputs as the result of lua script. (OVTK_StimulationId_Label_02 for silence

and OVTK_StimulationId_Label_03 for sound).

"Sound Player" box is triggered by "OVTK_StimulationId_Label_03" stimu-

lation and plays the 0.2 sec 1000Hz sound. The �rst "Run Command" box is also trig-

gered by the "OVTK_StimulationId_Label_03" stimulation and it writes the number

`3' indicating the sound as a marker for TestBench recording (Fig.4.1).

Second "Run Command" box is triggered by the "OVTK_StimulationId_Label_02"

stimulation and it writes the number `2' indicating the silence as a marker for Test-

Bench recording.
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Figure 4.1 Experiment procedure design in OPENVIBE

4.2 EEG Recordings

Epoc neuroheadset is prepared to be used; its sensors are moisturized by contact

lens solution. It is placed on the subject's head and the connection qualities of the

sensors are checked for each sensor using the Emotiv Control Panel and TestBench.

Recording is done after being sure about the connection quality of the sensors. A

subject on a silent room has listened to the sound, which is played by OPENVIBE,

with an earphone. TestBench is arranged to get the marker value from a serial port.

TestBench and Openvibe have run at the same time. Openvibe has played the sound

and sent a marker at every second when TestBench receives that marker and saves the
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EEG data of the subject. The EEG recording procedure is repeted for 13 people (8

male, 5 female). All of the participants volunteered for the experiment. The experiment

is done for each subject three times with about 3 minute EEG recordings.

In Figure 4.2 a recorded EEG data using TestBench is shown. Each line on

the graph depicts 14 channel of the Emotiv-Epoc neuroheadset. The 15th line in the

buttom shows the markers corresponding to sound stimulation and silence durations.

A more clear recorded EEG data with the stimulation markers is shown in Figure 4.3.

Figure 4.2 A recorded data on TestBench

4.3 Signal Processing

The data recorded by the Testbench is in the type of `edf' �le. The data is con-

verted to csv �le and processed in MATLAB. EEGLAB plug-in is used for processing.

The recorded data is imported to the EEGLAB. The event channel (marker values are

added to data as an extra channel) is set and channel location �le [49] is imported.
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EEG data is �ltered by using linear �nite impulse response (FIR) �ltering with 1Hz

high pass �ltering and 50Hz low pass �ltering. After �ltering the extreme values on

the recorded data are removed.

Independent component analysis is done on the data. ICA has computed the

"ICA weight matrix" for the recorded data. ICA weight matrix is computed by rotating

the axis, and minimizing the Gaussianity of the projection on all axes [50]. Multiplying

the Weight matrix with the EEG data gave us the maximally independent components

on the EEG data.The ICA solution has been used �rstly to the cocktail party problem

and it is �rst adopted to the decomposition of EEG on 1996 (Makeig) and subsequent

work over the next dozen years or more has con�rmed the ability of ICA to identify

both functionally and temporally independent source signals in multi-channel EEG or

other electrophysiological data [51].
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Figure 4.3 Channel Data of EEG for 10 second

If a stimulus is presented to a human subject while recording EEG, an `epoch'

of the EEG that is time locked to the stimulus can be de�ned [17]. Within this epoch

there may be some voltage changes that is related with the brain's response to that

stimulus, and event related potential (ERP) is a set of voltage changes contained in
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this epoch of EEG. In most cases the ERP waveform is small in relation to the EEG

waveform. To extract the signal (time locked-ERP) from the noise (background EEG)

"averaging" is used as a signal extraction technique most commonly [17]. Since the

EEG activity that is not related (time locked) with the event will randomly vary across

epochs, this average background EEG will tend to become zero. Therefore the time

locked average ERP will largely represent activity of the brain, that is related with

the given event. This averaging technique also deals with the rejection of two major

sources of artifact, movement of the eyes and eye blinks, because these artifacts occur

randomly across epochs, averaging reduces the e�ect of artifacts . In this study the

epoch begins with 500ms before the stimulus and ends with 1000ms after the stimulus.

The epochs are extracted from the EEG using the markers on the data. The silent

epochs are extracted by taking the EEG data part, 500ms before and 1000ms after the

marker `2'. All the extracted silent epochs are averaged and an ERP waveform for the

silent is obtained. The same thing is done for sound epochs using the marker `3' after

averaging epochs, an ERP waveform for the sound is obtained too. Epoch averaging

is also done for the ICA components.

The ERP waveform for the sound and silence is compared.

For the feature extraction part, �ve feature for the sound and silence ERPs are

calculated separately. The calculated values are written to an `arrf' �le format to be

used later on the classi�cation part.

Firstly the energy of the ERP signal is calculated. The energy of a discrete-time

signal is:

Ed =
n∑
k=1

(|x(k)|)2. (4.1)

As the second feature the maximum power of the signal is calculated by taking

the square of each data point on the ERP signal and taking the maximum of the

squares.
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MaximumPower = max(|x(k)|2). (4.2)

As the third and fourth feature, the peak values of the ERP signal is taken.

Maximum peak value and minimum peak value of the ERP signal is taken out.

As the last feature average power of power spectral density (PSD) of the ERP

is calculated. Power spectral density is the average of the Fourier transform magnitude

squared. It is calculated by using the Equation 4.3;

1

2T
|
∫ T

−T
f(t)e−j2πftdt |2 (4.3)

PSD is calculated using the Signal Processing Toolbox on MATLAB.[52] (Ap-

pendix A.2.2)

A MATLAB script is written to extract the features (Appendix A.2.2). The

script has run for all of the recordings, it has computed the feature values and it wrote

them to a text �le. Since the subject count is 13, recording count for each subject is 3

and the features are extracted for each sound and silence part separately, total number

of feature data is 78. The feature data is converted to an `ar�' �le to be used in WEKA

for classi�cation.

4.4 Classi�cation

Classi�cation is done using a simple probabilistic classi�er, naive Bayes classi�er,

it is based on applying Bayes' theorem with strong (naive) independence assumptions[53]

[54].
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If we show each data instance as attribute values consisting of n-dimensional

vector as:

X = (x1, x2, x3, ..., xn), (4.4)

and each class value which the data instance is assigned as m-dimensional vector as

C = (C1, C2, C3, ..., Cm). (4.5)

The classi�er assings the data X, to class Ci if and only if the probability of

given data `X' to be in class `i' is bigger than all of the probabilities for each class.

P (Ci|X) > P (Cj|X) for all j such that1 ≤ j ≤ m, j 6= i (4.6)

The Bayes' Theorem states that

posterior probability︷ ︸︸ ︷
P (Ci|X) =

likelihood︷ ︸︸ ︷
P (X|Ci)

prior probability︷ ︸︸ ︷
P (Ci)

P (X)︸ ︷︷ ︸
normalising factor (equal for all classes)

(4.7)

If we assume that all of the attributes are independent to each other (this is why the

model is called `naive') we can write the likelihood as:

P (X|Ci) =
n∏
k=1

P (xk|Ci) (4.8)

with the independence assumption, the Bayes' rule can be rewritten as :

P (Ci|x1, x2, ..., xn) =
P (x1|Ci)× P (x2|Ci)× ...P (xn|Ci)× P (Ci)

P (x1, x2, ..., xn)
(4.9)

The model on 4.9 can be used e�ciently in categorical attributes, but since we

use numerical attributes, we need to use probability density function (pdf). Assuming

the probability distribution of an attribute follows the normal (Gaussian) distribution,
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the probability density function can be written as:

f(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (4.10)

By using the mean and the standard deviation of each attribute for each class

outcomes, we can compute the pdf value at any given decision point. By using the pdf

values in Naive Bayes' rule we can obtain the probabilities corresponding to each class.

We used WEKA machine learning software tool to generate and test Naive

Bayes model. The feature data in `ar�' format is used for classi�cation. The �le is

given to WEKA as input to generate Naive Bayes model. As the test option `10-

fold cross validation' is used. The option randomly breaks the whole dataset(size=n)

into 10 partitions of size n/10. For each selected partition, analysis is done on all

the partitions except the selected one(training set), and validating the analysis on the

selected subset(validation set or testing set).The procedure is repeated 10 times and

the overall validation result is found by calculating the average over the rounds.

After generating and running Naive Bayes Model, the results about the clas-

si�cation are shown as confusion matrix (contingency table). By using the confusion

matrix, Chi Square test is used to test statistical signi�cance.

As the second method for classi�cation, the data has been spectrally analyzed.

The averaged epoch signals have been converted to frequency domain, power of the

signal for 5Hz intervals has been computed and written to an `ar�' �le seperatly for

the sound and silence parts of the data.

Signal processing procedure is also applied without using ICA. Feature values

are extracted using the averaged ERP waveform and data is classi�ed to understand if

ICA gives better results or not.
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5. RESULTS

After every experiment, the recorded EEG data is converted to `csv' format and

used in MATLAB - EEGLAB to be processed. The data is �ltered with 1Hz high pass

�lter and 50Hz low pass �lter.

Independent component analysis is done on the �ltered data. When ICA is

applied to a matrix of EEG scalp data, it �nds an `unmixing' matrix of weights (W)

that, when multiplied by the (channels by time points) scalp data matrix, gives a matrix

of independent component (IC) activities. This is the process of ICA decomposition of

the data into maximally temporally independent processes, each with its distinct time

series and scalp map [51]. In our case, ICA has converted the 14 channel EEG data to

14 independent components. ICA is done before the epoch extraction in order to use

the same weight matrix for sound and silence parts.

The �gures below (Fig.5.1) (Fig.5.2) show the channel and component graph of

the EEG data. The di�erence between scalp EEG and components can be clearly seen

on the graphs. We can say that the �rst component on Fig.5.2 is probably eye-blink

artefact.

After �nding ICA weight matrix and ICA components, epoch extraction is done

for silence and sound parts on the data. Epoch duration is given as -0.5sec to 1sec

distance to the marker value. The epochs are extracted and averaged to have an ERP

signal for silence and sound parts separately.

ERP signal of one of the subject's data, with 14 channel graphs can be seen on

Fig.5.3 and Fig. 5.4. ERP signals of 14 components are shown on Fig.5.5 and Fig. 5.6.

The graphs clearly shows the reaction of brain to the auditory stimulation.
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Figure 5.1 15 sec part of 14 Channel EEG Data for one subject
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Figure 5.2 14 Components of EEG Data of the same subject
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Figure 5.3 14-Channel Silence Epochs For One Subject
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Figure 5.4 14-Channel Sound Epochs For The Same Subject
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Figure 5.5 Silence Component ERP epochs

Figure 5.6 Sound Component ERP epochs
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After obtaining the ERP waveforms for sound and silence, features are extracted

from the ERP signals to be used in classi�cation.

Energy of the silence ERP signal and sound ERP signal are calculated for each

data. Ratio between `sound ERP signal energy' and `silence ERP signal energy' was

nearly 2.99 .

Similarly the calculated values of max(Power), max(ERP), min(ERP), and psd

was su�ciently di�erent for sound and silence ERPs.

Mean and standard deviation of extracted feature values can be seen on Table

5.1. The values for each feature attribute have been tested with t-test. T-test result

shows that all of the attributes were signi�cantly di�erent(p=0.05) on sound and silence

stimulus.

Table 5.1

Mean and standard deviation of extracted features

silence sound

Mean 135.9289 404.5848 Energy

Std. Dev. 71.1357 172.9513

Mean 5.1507 15.2929 max(Power)

Std. Dev. 2.7637 6.7159

Mean 1.9365 3.6087 max(ERP)

Std. Dev. 0.5301 0.9098

Mean -1.967 -3.2229 min(ERP)

Std. Dev. 0.6315 0.7985

Mean 0.3667 1.0901 psd

Std. Dev. 0.1957 0.4715

Classi�cation based on this 5.1 feature values are done using the Naive Bayes'

classi�er on WEKA. 10-fold cross validation is used. The classi�cation results were like

the following:
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Table 5.2

Confusion Matrix

Classi�ed as -> Silence Sound Total

Silence 34 5 39

Sound 7 32 39

Total 41 37 78

Correctly Classi�ed Instances = 66 =>84.6154 %

Incorrectly Classi�ed Instances = 12 =>15.3846 %

Using the confusion matrix Chi-square statistics test is done. Since the calcu-

lated Chi Square value for the confusion matrix exceeds the value on the Chi-square

table with degree of freedom=1 and probability level p=.05 we can conclude that the

results are statistically signi�cant.

Visualization of the feature matrix can be seen on Fig. 5.9.

After calculating the component ERP features and confusion matrix, the data

has been processed without using the ICA method, only averaged ERP waveform is

used for feature extraction and classi�cation.

Mean and standard deviation of extracted feature values without ICA can be

seen on Table 5.3.

Classi�cation based on this 5.3 feature values are done using the Naive Bayes'

classi�er on WEKA. The classi�cation results were like the following:
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Figure 5.9 Visualization Of The Feature Matrix
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Table 5.3

Mean and standard deviation of extracted features without ICA

silence sound

Mean 21792.3391 66224.9683 Energy

Std. Dev. 20395.6439 52102.9801

Mean 853.2856 2730.5141 max(Power)

Std. Dev. 765.2978 1689.8934

Mean 24.487 47.4115 max(ERP)

Std. Dev. 9.0257 15.7767

Mean -24.0846 -38.4194 min(ERP)

Std. Dev. 11.3488 14.6854

Mean 58.1975 180.8601 psd

Std. Dev. 54.7966 143.6188

Correctly Classi�ed Instances = 60 =>76.9231 %

Incorrectly Classi�ed Instances = 18 =>23.0769 %

As the result of second feature extraction method(5Hz interval power spectral

analysis), power spectral density graph of one subject for sound and silence stimulus

can be seen on Fig 5.10. Blue line indicates sound stimulus, red line indicates silence

one. The peaks on the graph does not represent the signal energy on the speci�c

frequency. The area under the graphs for some interval represent the energy of the

signal on the speci�c frequency interval.

Mean and standard deviation of extracted feature values by using the second

feature extraction method can be seen on Table 5.5. The values for each attribute(each

frequecny interval) have been tested with t-test. T-test result shows that all of the

attributes were signi�cantly di�erent(p=0.05) on sound and silence stimulus.

Classi�cation based on this (Table 5.5) feature values are done using the Naive
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Figure 5.10 Power Spectral Density Graph of One Subject
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Table 5.4

Confusion Matrix Without ICA

Classi�ed as -> Silence Sound Total

Silence 34 5 39

Sound 13 26 39

Total 47 31 78

Bayes' classi�er on WEKA. 10-fold cross validation is used. Classi�cation results using

5Hz-interval power spectral analysis have been found like the following (Table 5.6)

Correctly Classi�ed Instances = 67 =>85.8974

Incorrectly Classi�ed Instances = 11 => 14.1026

Results for spectral analysis method can be seen as a feature matrix on Fig.

5.11

Classi�cation is also done by using the results on 5Hz-interval power spectral

analysis without ICA. Classi�cation results have been found like the following (Table

5.7).

Correctly Classi�ed Instances = 59 =>75.641 %

Incorrectly Classi�ed Instances = 19 => 24.359 %
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Table 5.5

Mean and standard deviation of extracted features (5Hz-interval power spectral analysis)

silence sound

Mean 206.719 651.2974 a1_5

Std. dev. 130.9761 421.3211

Mean 61.3815 160.7035 a5_10

Std. dev. 94.0506 129.1714

Mean 26.9712 80.8319 a10_15

Std. dev. 31.0792 51.5866

Mean 13.0691 46.1994 a15_20

Std. dev. 8.6364 26.0112

Mean 9.8814 27.0544 a20_25

Std. dev. 5.6849 13.0509

Mean 10.1745 25.1873 a25_30

Std. dev. 7.2879 14.9639

Mean 9.9987 27.3729 a30_35

Std. dev. 10.7062 20.4041

Mean 5.8562 17.1211 a35_40

Std. dev. 5.1604 10.412

Mean 2.3317 6.7368 a40_45

Std. dev. 1.4298 4.2871

Mean 0.3861 1.025 a45_50

Std. dev. 0.2962 0.6752
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Figure 5.11 Visualization Of The Feature Matrix For 5Hz Interval Spectral Power
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Table 5.6

Confusion Matrix (5Hz-interval power spectral analysis)

Classi�ed as -> Silence Sound Total

Silence 34 5 39

Sound 6 33 39

Total 41 37 78

Table 5.7

Confusion Matrix Without ICA(5Hz-interval power spectral analysis)

Classi�ed as -> Silence Sound Total

Silence 33 6 39

Sound 13 26 39

Total 46 32 78
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6. DISCUSSION AND CONCLUSIONS

6.1 Experiment Design

In the experiment design, implemented auditory oddball paradigm gave us the

opportunity to detect selective attention to given auditory stimulus. Sound and silence

stimulus are presented randomly with the ratio of 1/5 to identify the brain response to

the sound stimulus accurately. Sound stimulus was pure tone and duration has been

chosen as 0.2 second in order to identify the stimulus e�ect in 1 second duration epochs.

6.2 EEG Recording

EEG data is recorded using Emotiv TestBench software, acoustic stimulus marker

has been sent using di�erent program (Openvibe) via virtual serial port. There were

nearly 100 ms delay between sending of marker to the Testbench recording and playing

the sound on sound player box when we use same stimulator for marker send and to

open sound player box on Openvibe, this delay has been decreased by not using the

same stimulator but stimulating the sending of marker with the playing of sound.

EEG data recording time has been chosen as nearly 3 minute in order not to

make the subjects get bored because if the subjects are annoyed with the length of

experiment the artifacts (e.g. eye movement, muscle, eyeblink .. ) on the recording

increases. Another reason for not using a long experiment duration is the adaptation

process on the brain, because if same stimulus is presented in long duration, brain

adapts to that stimulus and begins to ignore it.
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6.3 Signal Processing

Raw EEG data has been �ltered and some extraordinary voltage values has

been substracted. Then independent component analysis is done on the �ltered data,

ICA has been done before the epoch extraction and averaging because ICA gives bet-

ter results with more data points. Epochs of EEG data has been extracted using the

markers and averaged for the sound and silence stimulations separately. Phase di�er-

ence on each epoch caused averaged silence epochs to become smaller on amplitude.

Acoustic stimulation make the sound epochs to be on nearly the same phase so that

the resulting averaged sound epochs re�ects the brain response to the stimulus.

6.4 Classi�cation

To classify the feature extracted data 10-fold cross validaiton is used with Naive

Bayes classi�er. Cross validation gave us the opportunity to use all of the feature data

on both training and testing parts.

The study shows that experiment design and signal proccessing procedure can

be a starting point of new experiments for the auditory brain response detection using

portable, wireless and low cost eeg headsets. Even though the headset(EPOC) used in

the study is thougt as a game tool it is shown that it can be used for research purposes

on auditory response detection with the help of improved signal proccessing techniques.

We could not show the idealized waveform of the ABR on this study because

the sampling rate of the Emotiv-Epoc is not enough(128Hz) to detect the peak values

of early brain-stem responses on the idealized waveform.

Independent component analysis gave us better results than only using the av-

erage ERP method. Without using ICA the classi�cation result accuracy was nearly

75% and the classi�cation result accuracy by using ICA was nearly 85%, so we can
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conclude that using ERP averaging with ICA is better than using only ERP averaging

method.

6.5 Future Work

It is shown in the study that the method can be used to separate sound and

silence stimulations with nearly 85% correctness on 13 subject with 78 data (39 silence,

39 sound), but the results may be compared with the clinical instrumentation to get

better idea about the system's performance.

Brain adaptation process may be considered deeply and e�ective long time du-

ration for the experiments may be obtained. An audiometer can be implemented by

using di�erent frequency and dB level sound as stimulators.
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APPENDIX A. SCRIPTS

A.1 Lua Script

1

2 %Taken from openvibe−examples and modi f i ed by ZKOCSOKER

3

4 d o f i l e ( " . . / share /openvibe−p lug in s / s t imu la t i on / lua−s t imulator−stim−codes .

lua ")

5

6 −− t h i s func t i on i s c a l l e d when the box i s i n i t i a l i z e d

7 f unc t i on i n i t i a l i z e ( box )

8 i o . wr i t e (" i n i t i a l i z e has been c a l l e d \n") ;

9

10 −− i n s p e c t s the box topology

11 i o . wr i t e ( s t r i n g . format (" box has %i input ( s ) \n" , box : get_input_count ( ) ) )

12 i o . wr i t e ( s t r i n g . format (" box has %i output ( s ) \n" , box : get_output_count ( ) ) )

13 i o . wr i t e ( s t r i n g . format (" box has %i s e t t i n g ( s ) \n" , box : get_sett ing_count ( )

) )

14 f o r i = 1 , box : get_sett ing_count ( ) do

15 i o . wr i t e ( s t r i n g . format (" − s e t t i n g %i has va lue [%s ] \ n" , i , box :

ge t_set t ing ( i ) ) )

16 end

17

18 end

19

20 −− t h i s func t i on i s c a l l e d when the box i s u n i n i t i a l i z e d

21 f unc t i on u n i n i t i a l i z e ( box )

22 i o . wr i t e (" u n i n i t i a l i z e has been c a l l e d \n")

23 end

24

25 −− t h i s func t i on i s c a l l e d once by the box

26 f unc t i on proce s s ( box )

27 i o . wr i t e (" proce s s has been c a l l e d \n")

28

29 −− en t e r s i n f i n i t e loop

30 −− cpu w i l l be r e l e a s e d with a c a l l to s l e e p
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31 −− at the end o f the loop

32 whi le t rue do

33

34 −− ge t s cur rent s imulated time

35 t = box : get_current_time ( )

36

37 −− l oops on a l l inputs o f the box

38 f o r input = 1 , box : get_input_count ( ) do

39

40 −− l oops on every r e c e i v ed s t imu la t i on f o r a g iven input

41 f o r s t imu la t i on = 1 , box : get_stimulat ion_count ( input ) do

42

43 −− ge t s the r e c e i v ed s t imu la t i on

44 i d e n t i f i e r , date , durat ion = box : get_st imulat ion ( input , 1)

45

46 −− l o g s the r e c e i v ed s t imu la t i on

47 i o . wr i t e ( s t r i n g . format ("At time %f on input %i got s t imu la t i on id :%s date

:%s durat ion :%s \n" , t , input , i d e n t i f i e r , date , durat ion ) )

48

49 −− d i s c a rd s i t

50 box : remove_stimulation ( input , 1)

51

52 a = math . random (5)

53

54 i f a == 1 then

55 box : send_st imulat ion (1 , OVTK_StimulationId_Label_03 , t , 0)

56 e l s e

57 box : send_st imulat ion (1 , OVTK_StimulationId_Label_02 , t , 0)

58 end

59

60 end

61 end

62

63 −− r e l e a s e s cpu

64 box : s l e e p ( )

65 end

66 end
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A.2 MATLAB scripts

A.2.1 ICA Script

1 rawdata = importdata ( 'C: \ Users \Toshiba\Desktop\data . csv ' ) ;

2 eegdataS1 = rawdata . data ; %Subject1 EEG data

3 eegdataS1 ( : , 1 7 : 3 5 ) = [ ] ;

4 eegdataS1 ( : , 1 : 2 ) = [ ] ;

5 eegdataS1 = eegdataS1 ' ;

6 eeg lab

7 EEG = pop_importdata ( ' data ' , eegdataS1 , ' s r a t e ' ,128) ; % import data from

MATLAB array

8 EEG = pop_chanevent (EEG, 15 , ' edge ' , ' l e ad ing ' , ' edge len ' , 0 ) ; % event

channel

9 EEG = pop_chanedit (EEG, ' load ' ,{ 'C: \ openvibe \P300New\emotiv . ced ' '

f i l e t y p e ' ' autodetec t ' }) ; % channel l o c a t i o n s

10 % ced f i l e i s taken from http :// neurofeedback . visaduma . i n f o /

emot ivresearch . htm

11 EEG = pop_eeg f i l t (EEG, 1 , 0 , [ ] , [ 0 ] ) ; % highpass f i l t e r i n g at 1Hz

12 EEG = pop_eeg f i l t (EEG, 0 , 50 , [ ] , [ 0 ] ) ; % low pass f i l t e r i n g at 50Hz

13 eeg lab redraw

14

15 EEG = eeg_checkset ( EEG ) ;

16 EEG = pop_runica (EEG, ' i ca type ' , ' run ica ' , ' da ta se t ' , 1 , ' opt ions ' ,{ ' extended

' 1}) ;

17 [ALLEEG EEG] = eeg_store (ALLEEG, EEG, CURRENTSET) ;

18 EEG = pop_epoch ( EEG, { ' 2 ' } , [−0.5 1 ] , ' epoch in fo ' , ' yes ' ) ;

19 [ALLEEG EEG CURRENTSET] = pop_newset (ALLEEG, EEG, 1 , ' setname ' , ' s i l e n c e ' , '

gu i ' , ' o f f ' ) ;

20 EEG = eeg_checkset ( EEG ) ;

21 EEG = pop_rmbase ( EEG, [−500 0 ] ) ;

22 [ALLEEG EEG] = eeg_store (ALLEEG, EEG, CURRENTSET) ;

23 [ALLEEG EEG CURRENTSET] = pop_newset (ALLEEG, EEG, 5 , ' r e t r i e v e ' , 1 , ' study '

, 0 ) ;

24 EEG = eeg_checkset ( EEG ) ;

25 EEG = pop_epoch ( EEG, { ' 3 ' } , [−0.5 1 ] , ' epoch in fo ' , ' yes ' ) ;

26 [ALLEEG EEG CURRENTSET] = pop_newset (ALLEEG, EEG, 1 , ' setname ' , ' sound ' , '

gu i ' , ' o f f ' ) ;
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27 EEG = eeg_checkset ( EEG ) ;

28 EEG = pop_rmbase ( EEG, [−500 0 ] ) ;

29 save ( 'C: \ Users \Toshiba\Desktop\ALLEEGS1.mat ' , 'ALLEEG' ) ;

30 c l e a r

A.2.2 Feature Extraction Script

1 eeg lab

2 load ( 'C: \ Users \Toshiba\Desktop\ALLEEGS1.mat ' )

3 eeg lab redraw

4 [EEG ALLEEG CURRENTSET] = eeg_re t r i eve (ALLEEG, 1 ) ;

5 [ALLEEG EEG CURRENTSET] = pop_newset (ALLEEG, EEG, 1 , ' r e t r i e v e ' , 2 , ' study '

, 0 ) ;

6 EEG = eeg_checkset ( EEG ) ;

7 EEG = pop_rmbase ( EEG, [−500 0 ] ) ;

8 [ALLEEG EEG] = eeg_store (ALLEEG, EEG, CURRENTSET) ;

9 [ALLEEG EEG CURRENTSET] = pop_newset (ALLEEG, EEG, 2 , ' r e t r i e v e ' , 3 , ' study '

, 0 ) ;

10 EEG = eeg_checkset ( EEG ) ;

11 EEG = pop_rmbase ( EEG, [−500 0 ] ) ;

12 [ALLEEG EEG] = eeg_store (ALLEEG, EEG, CURRENTSET) ;

13 EEG = eeg_checkset ( EEG ) ;

14 [ erp1 erp2 erpsub time s i g ] = pop_comperp ( ALLEEG, 0 , 3 ,2 , ' addavg ' , ' on ' , '

addstd ' , ' o f f ' , ' subavg ' , ' on ' , ' d i f f a v g ' , ' on ' , ' d i f f s t d ' , ' o f f ' , ' t p l o t op t '

,{ ' yd i r ' −1}) ;

15 saveas ( f i g u r e (2 ) , 'C: \ Users \Toshiba\Desktop\s1Component ' , ' f i g ' ) ;

16 c l o s e ( f i g u r e (2 ) )

17 d=erp1 ; d1=sum(d) ;

18 energy=sum(d .^2) ;

19 power=(d1 .^2) ;

20 energy=sum( power ) ;

21 maxpower=max( power ) ;

22 maxErp=max(d1 ) ;

23 minErp=min ( d1 ) ;

24

25 Fs = 128 ; x1=d1 ;

26 n f f t = 2^nextpow2 ( l ength ( x1 ) ) ;

27 Pxx1 = abs ( f f t ( x1 , n f f t ) ) .^2/ l ength ( x1 ) /Fs ;
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28 Hpsd1 = dspdata . psd (Pxx1 ( 1 : l ength (Pxx1 ) /2) , ' Fs ' , Fs ) ;

29 power1=avgpower (Hpsd1 ) ;

30 f i d=fopen ( 'C: \ Users \Toshiba\Desktop\matlabData . txt ' , ' a ' ) ;

31 f p r i n t f ( f i d , '%5s %4.4 f %4.4 f %4.4 f %4.4 f %4.4 f \n\n ' , ' sound ' , energy ,

maxpower ,maxErp , minErp , power1 ) ;

32 f c l o s e ( f i d ) ;

33 d=erp2 ; d1=sum(d) ;

34 energy=sum(d .^2) ;

35 power=(d1 .^2) ;

36 energy=sum( power ) ;

37 maxpower=max( power ) ;

38 maxErp=max(d1 ) ;

39 minErp=min ( d1 ) ; Fs = 128 ; x1=d1 ;

40 n f f t = 2^nextpow2 ( l ength ( x1 ) ) ;

41 Pxx1 = abs ( f f t ( x1 , n f f t ) ) .^2/ l ength ( x1 ) /Fs ;

42 Hpsd1 = dspdata . psd (Pxx1 ( 1 : l ength (Pxx1 ) /2) , ' Fs ' , Fs ) ;

43 power1=avgpower (Hpsd1 ) ;

44 f i d=fopen ( 'C: \ Users \Toshiba\Desktop\matlabData . txt ' , ' a ' ) ;

45 f p r i n t f ( f i d , '%5s %4.4 f %4.4 f %4.4 f %4.4 f %4.4 f \n\n ' , ' s i l e n c e ' , energy ,

maxpower ,maxErp , minErp , power1 ) ;

46 f c l o s e ( f i d ) ; c l e a r
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