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ABSTRACT

FUNCTIONAL PARCELLATION OF MEMORY RELATED
BRAIN NETWORKS BY SPECTRAL CLUSTERING OF

EEG DATA

The EEG signal and its oscillatory components may relate with temporal mod-

ulation of information processing of a sensory activation in a local electrical �eld and

neural populations. In this study, we investigate the clustering information of alpha

band brain networks during memory load task. For this purpose, short time memory

experiment with a varying memory load combinations was designed. The functional

coupling among EEG electrodes were quanti�ed via mutual information in the time-

frequency plane. A spectral clustering algorithm was used to parcellate memory related

circuits in the brain in a load-dependent manner. The method was based on deter-

mining the eigenspectrum of the adjacency matrix of a graph and assigning nodes to

clusters with respect to this spectrum. To be able to circumvent the problem of choos-

ing the number of clusters beforehand a soft clustering approach was implemented. It is

a novel method which allows to construct signi�cant clusters without �xing their num-

ber and increases the inside cluster signi�cance by normalized-cut value decomposition

at each clustering level. In the N-cut clustering, clustered nodes which are projected

on occipital and bilateral regions increase in number with respect to the memory load.

In soft clustering, inter-cluster connections between left lateral and occipital clusters

are decreasing in the second time interval which can be linked to the enhancement of

posterior region due to an increase in the memory demand.

Keywords: Normalized Cut, EEG, Working Memory, Memory Load, Mutual Infor-

mation, Information Theory
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ÖZET

HAFIZA �LE �L�NT�L� EEG BEY�N A�LARININ �ZGESEL
KÜMELEME YÖNTEM� �LE GRUPLANDIRILMASI

EEG sinyali ve onun sal�n�mlar�n�n, bilgi i³lenmesi esnas�nda beyindeki zamana

ba§l� nöral topluluklar ve lokal elektriksel alanlar ile bir ili³ki içerisinde bulundu§u

dü³ünülmektedir. Bu çal�³mam�zda, haf�za yükleme deneyi esnas�nda, alfa frekans

band� temelli beyin a§lar� öbeklenmesi yap�lm�³t�r. Deney tasla§�, k�sa süreli de§i³en

haf�za ko³ullar� ile tasarlanm�³t�r. EEG elektrotlar� aras�ndaki e³ ba§lant�n�n hesa-

planmas� ad�na, zaman ve frekans da§�l�mlar� hesaplanarak, kar³�l�kl� ili³ki ölçütleri

hesaplanm�³t�r. Haf�za yüklemesi durumlar� hesaba kat�larak, izgesel öbekleme i³lemi

ile beyin alt a§lar�na ayr�³t�r�lm�³t�r. �zgesel kümeleme yönteminin temeli, kom³uluk

matrisinden olu³turulan bir çizgenin, kom³uluk matrisinin öz görüngesi hesaplanarak,

bu öz vektörler ile öbeklenmesine dayan�r. Beyin a§lar�n�n kaç adet öbekten olu³mas�

gerekti§i problemini çözmek ad�na, hassas öbekleme yöntemi kullan�lm�³t�r. Yeni bir

yöntem olan hassas öbekleme algoritmas�, kesin bir öbek say�s� belirmeksizin, alt a§lar�n

içsel ba§lant� güçlerinin artt�r�lmas� ile belirgin öbekler olu³turulmas�na olanak sa§lar.

Düzgelenmi³ kesim öbeklenmesi sonuçlar�nda, beyinin oksipital ve bilateral bölgeler

üzerinde yans�t�lm�³ öbek dü§ümlerinin haf�za ile ilintili art�³� gözlemlenmi³tir. Has-

sas öbekleme sonuçlar�nda ise ikinci zaman aral�§�nda, oksipital ve sol lateral öbekleri

aras�ndaki ba§lant� say�lar�nda azal�³, haf�za talebi art�³�nda, art beyin a§lar�n�n iy-

ile³mesi ile ili³kilendirilebilir.

Keywords: Normalize Kesim, EEG, Çal�³an Haf�za, Haf�za Yüklemesi, Mü³terek

Bilgi, Bilgi Teorisi
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1. INTRODUCTION

1.1 General Background

Hans Berger was a psychiatrist who had the purpose of investigating the relation

between mind and body. He was the �rst person to discover alpha �uctuations based on

the electrical activity and found an intermediary device, the human Electroencephalo-

gram (EEG) [2]. The electrical potential over the scalp is produced by the activities

of brain cortex and recorded with the help of EEG electrodes. It is noninvasive and

has a high temporal resolution within milliseconds. Temporal resolution is important

for investigating the time dependent behavior of the brain under sensory and cognitive

stimulation [1].

Figure 1.1 Hans Berger (Human EEG founder) [2]

The use of EEG moved into multidisciplinary areas such as Psychiatry and

Neurology. The brain abnormalities such as epilepsy and structural lesions were some

of the major �elds in clinical applications.

There are several usages of EEG for studying cognitive and memory based brain

dynamics. The e�ect of memory load is investigated with event related potentials

(ERP) and event related oscillations (EROs). ERP is derived by averaging the post-

stimulus of EEG over trials. Kok et al. [4] have discovered that the cognitive demand
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Figure 1.2 A clinical EEG system [1]

caused by memory load was re�ected by the P3 signal. Additionally, with the help of

EROs, increased alpha band oscillations (∼ 10Hz) proportional to the memory demand

were found in a working memory task. The �nding indicated that the correlation of

inhibitory task-irrelevant neural networks relates to the increase of alpha oscillations.

The EEG signal and its oscillatory activity are strongly related with temporal

modulation of information processing. Task-related brain dynamics can be referred to

an activation of neural populations in a local electrical �eld [5]. Generally, with the

oscillations of alpha (8 Hz- 12 Hz) and gamma (+30 Hz) bands of the EEG rhythm,

the amplitude of the signal changes in the memory and cognitive based tasks can be

observed. On the other hand, performing shorter time scale analysis of the EEG signal,

information theoretic measures may provide better results rather than investigating

the amplitude change in the EEG oscillations. Furthermore, the mutual information

(MI) analysis allows to construct adjacency matrices due to the similarity information

between electrode pairs.
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1.2 Motivation and Objectives

The main motivation of this thesis study is to implement a method to inves-

tigate and to observe the memory related brain dynamics. The brain dynamics can

be considered as an activation behavior of an individual voxel or a group of voxels.

Thus, to determine the information �ow between electrode pairs, the normalized cut

clustering algorithm may provide a suitable option. Furthermore, the experimental

design should be selected carefully in order to induce the memory related brain cir-

cuits because task-related brain dynamics may be inhibited by the complexity of the

experiment design.

We investigate the clustering information of memory related brain networks.

For this purpose, short time memory task which includes memory load varieties is

implemented on the subjects. To calculate mutual information, time and frequency

information are both taken into consideration with the Cohen class time-frequency

distribution (TFD) formulation. Cohen class mutual information helps us to integrate

adjacency matrices based on the similarity information of individual electrode pairs.

In addition, essential frequency bins are selected from the TFD with respect to the

default alpha frequency (8Hz−12Hz) intervals.

Spectral clustering was �rst used by Donath et al. [6] to partition a graph by

calculating eigenvectors of an adjacency matrix. With the help of graph Laplacian,

a graph can be represented in a matrix formation. The second important discovery

about spectral clustering was that the bi-partitions of the graph were closely related

with the second eigenvector of the graph Laplacian [7]. This idea led to the concept

that bi-partitioning with the help of a speci�c eigenvector was an adequate solution.

The ongoing research activities about Spectral Clustering became widespread in the

Machine Learning community with the popular works of Shi and Malik [8]. In the

bi-partitioning problem, the main reason why the normalized cut spectral clustering

technique is used is because the form of clusters are constructed without strong assump-

tions. Furthermore, enhancement of weighted kernel-k-means algorithm with spectral

clustering allows for determining the relation between the smallest eigenvectors of the
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graph Laplacian with the largest eigenvectors of the kernel matrices . Moreover, spec-

tral clustering technique is used for investigating the cognitive demand and how it

changes over the organization of the brain networks with the EEG and fMRI. Based

on correlated BOLD signal, Shen et al. [9] proposed an fMRI technique to exam-

ine network properties in terms of clustering the brain networks into the functional

subunits.

Since the clustering analysis has an intuitive goal of grouping interrelated nodes

and excluding the non-related nodes, investigating network properties may provide

detailed information about functional integration between brain regions [10]. Hence,

previous studies have suggested that, an adequate network bi-partitioning solution

could be obtained with the help of eigenvectors. In addition, the normalized cut algo-

rithm provides �exible clustering approach which allows to generate clusters without

making strong assumptions about the form of clusters [8]. On the other hand, the

main problem for the clustering analysis is �nding out optimum number of clusters.

For this reason, an adequate solution to determine optimum number of clusters before

implementing a clustering analysis is one of the main motivations for this thesis study.

Moreover, one of the popular graph based spectral clustering algorithms, the

normalized cut clustering method is used to group memory related circuits in the

brain. From the calculated adjacency matrices, the N-cut algorithm is used for node

wise clustering between nodes. After node wise clustering information, subject wise

clustering is applied with respect to the similarities of node information over all sub-

jects. To provide information for the number of clusters from the adjacency matrices,

soft clustering method is used.

1.3 Outline of this thesis

The general outline is summarized as follows; Chapter 2 gives detailed informa-

tion about the EEG signal characteristics due to the speci�ed EEG band intervals. In

addition, cognitive brain networks related to memory processing and short time mem-
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ory load are introduced. The information theoretic measures are brie�y explained and

time-frequency based (Cohen Class) mutual information is explained. At the end of

the Chapter, the graph based spectral clustering algorithm is brie�y explained in EEG

signal processing. The detailed approximation of methods and our experimental design

are explained in Chapter 3. The preprocessing procedure, THE information theoretic

measures and their calculations, THE formulation of N -Cut clustering algorithm are

presented. Moreover, the soft clustering method is introduced and presented in detail.

In Chapter 4, behavioral, N-cut clustering and soft clustering results are presented. In

Chapter 5 and 6, discussions and conclusion are given respectively.
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2. EEG

2.1 EEG Signal Characteristics

The electroencephalogram (EEG) signal is obtained from the electrodes on hu-

man scalp that can be observed as cyclic �uctuations of the brain electrical potentials.

The EEG signal o�ers us the chance to investigate distinct sleep stages, depth of

anesthesia, seizures and other neurological disorders [11]. Further studies show that,

cognitive process is associated with working memory, analytical thinking and attention

[12, 13]. In addition, neocortical dynamic functions can be measured with the help

of scalp EEG. However, head volume conduction causes the EEG electrodes to have

reduced spatial information over the scalp. On the other hand, intracranial electrodes

allow obtaining detailed local information. For example, an intracranial electrode can

provide averaged synaptic action of approximately 100 million neurons.

Figure 2.1 64 Channel EEG electrodes

The EEG has a �ne time resolution in milliseconds in contrast to its a poor
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spatial resolution. In other words, the physical layer between electrodes and the brain

current sources generally limits the spatial resolution. However, recent advances on

electrode materials and electronic equipment have improved spatial resolution by pro-

viding systems having 256 recording channels.

Figure 2.2 How EEG signal is generated [2]

The relation between a�erent �bers and the cortical neurons causes the depo-

larization stage. The depolarization stage stands for generating the excitatory post

synaptic potentials (EPSP) which may be re�ected as a signal variability with respect

to the amplitude and duration. Furthermore, sinusoidal �uctuations can be observed

with the combination of periodic a�erent neurons [2].

Standard EEG rhythms have a wide frequency range from low (0.1 Hz - 4 Hz) to

high frequency oscillations (12 Hz - 30 Hz). They can be labeled as delta (0 Hz - 4 Hz),
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Figure 2.3 EEG frequencies

theta (4 Hz - 8 Hz), alpha (8 Hz - 12 Hz), beta (12 Hz - 30 Hz), gamma (above 30 Hz).

Delta and theta rhythms are generally associated with drowsiness, deep sleep stage

and can be observed in infancy and childhood. In the condition of relaxed wakefulness

in eyes close stage, alpha �uctuations can be easily observed. Both alpha and gamma

�uctuations are associated with the cognitive e�ort and memory based neural circuits

of the brain. The beta rhythm is also seen during increased cognitive e�ort as well as

during drowsiness and light sleep.

2.1.1 Introduction to Memory Processing

In terms of obtaining the memory related information from the brain, the mem-

ory processing has to be accepted as a dynamic process. Fuster et al. [14] claimed that,

it was not possible to separate the perception, recognition, language, planning, prob-

lem solving and decision making apart from memory processing. From his �ndings,

memory was initiated as distributed property of a cortical system. Furthermore, Rose

et al. [15] initiated the idea that, investigation of the memory dynamics in a single

speci�c region was inadequate. On the other hand, Damasio et al. [16] considered that

various levels of neural groups could be able to settle up the memory processing by the
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integration of several brain systems.

Figure 2.4 Structure of memory [3]

Examining everyday routines in terms of cognitive process in the brain, such as

recognition of a familiar object, the working memory system (WMS) and long-term

memory system (LTMS) are important concepts. The brief mechanism of the memory

process was formed by Shi�rin et al. [3] who assumed that the bottom-up memory

feedback loop was started from the sensory input and was ended with the comparison

between sensory input and previously stored semantic information in LTM. The short

term memory (STM) code was created by the positive outcome of this comparison.

Furthermore, in the case of speaking and thinking which referred to complex cognitive

processes, similar STM and LTMS interaction could exist. However, in the complex

cognitive mechanism, sensory inputs could not be adequate enough to generate and

compare with a STM code in simultaneous applications such as planning a speech and
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talking at the same time. Thus, the recent idea of WM concept relies on the enhanced

mechanism which comprises the attention control system, the central executive system

and the assistant system [17]. In other words, WMS and LTMS are important memory

features to explore the changes in cognitive performance and memory span.

Several strategies have to be discussed about investigating the memory process-

ing on the brain. To improve the credibility of the strategy, Klimesh et al. [18] claimed

that, a researcher might take both physiological and mental factors into consideration.

As such, some physiological factors which could be listed as thickness of the skull or

the volume of cerebrospinal �uid and some technical factors which could be listed as

inter-electrode distance or montage variety were vital inconsistency factors. In addi-

tion, developing cognitive based experimental design might have uncertain a�ects on

subjects due to the extraction of complex results which might consist both related and

non-related cognitive circuits together. Moreover, the task performance might di�er

between subjects. To sum up, Klimesh et al. [18] proposed that, previously mentioned

variety had to be carefully structured by the researcher.

Ba³ar et al. [19] suggested that the alpha band and its oscillatory components

could be a bridge between thalamus and cortex which was a�ected by the synchronized

neural activity. Furthermore, Klimesh et al. [18] came with the assumption of inves-

tigating memory related brain dynamics with respect to dynamic property of memory

processing. From their assumption, if the memory processing is using the longitudinal

pathways (feedback loops) which link the thalamic nuclei with the cortex, one of the

most predominant rhythm (alpha 8 Hz - 12 Hz) can be used to extract the memory

information in these pathways. In addition, they found signi�cant di�erence with re-

spect to the frequency analysis of the alpha rhythm between subjects with respect to

their memory performances. The relation between the alpha band and the memory

related brain dynamics were investigated by using the amplitude analysis of the alpha

signal such as the overall power distribution of the signal and shifts in the power. Fur-

thermore, the shifts in the alpha power came with the event-related desynchronization

(ERD) term which was �rst found by Pfurtscheller et al. [20] The main idea of ERD

relies on the di�erence in percentage which can be determined as an increase or de-
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crease in the band power during a test interval with respect to the reference interval.

During retrieval period of the memory task, poor memory performers showed a lack of

signi�cant desynchronization in lower alpha (8 Hz-10 Hz).

Several clinical techniques are also used as a pre-diagnostic tool for memory

related disorders in the brain. Pijnenburg et al. [21] measured the linear and non-

linear statistical dependencies of the EEG signal in Alzheimer's disease (AD) and mild

cognitive impairment (MCI) patients. The synchronization likelihood (SL) analysis

which is similar to mutual information (MI) calculation, is used to measure statistical

dependencies. However, the SL calculation is di�erentiated from MI with an additional

normalization procedure. They found decreased functional interactions in AD patients,

but they found increased functional interactions in MCI patients in lower alpha band

(8 Hz-10 Hz). In a recent study, Haenschel et al. [22] investigated the WM di�erence

between schizophrenia patients and healthy subjects in terms of event related potentials

(ERP).

2.1.2 Short Term Memory and Memory Load

Particular studies were done to research brain circuitry during memory load.

Jensen et al. [23] used modi�ed STM paradigm (Stenberg task). In addition, their ex-

perimental design allowed to separate the encoding, the retention and the recognition

states of the memory processing. They found increased peak in the alpha oscillations

due to increased memory load. They assumed that power increase in the alpha oscil-

lations re�ected by the synchronization across multiple brain regions to achieve active

inhibition. Fink et al. [24] selected individual alpha frequencies (IAF: Lower 1 6 Hz - 8

Hz, lower 2 8 Hz - 10 Hz, upper alpha 10 Hz - 12 Hz) during various types of memory

related experimental designs to compare the IAF with default alpha frequency (8 Hz-12

Hz). The relation between the memory load and memory related circuit demands in

the brain was determined by the ERD of the upper alpha band. It was observed as a

decrease when the experiment became more complex and di�cult. On the other hand,

during the classical retention task and speed of the information processing task, the
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interrelation between ERD patterns in the upper alpha band becomes stronger. Fur-

thermore, during the increased task demands, a decreased ERD correlation between

lower 1 and upper alpha bands was observed. Fink et al. [24] stated that upper alpha

band was re�ected by the retention speci�c task demands. However, lower 1 was gener-

ally related to the attention speci�c task demands. To �nd out working memory related

brain circuits Sauseng et al. [5] used an experimental design which investigated the

di�erences between retention and manipulation organizations in the brain. They found

a strong prefrontal alpha power increase and occipital alpha suppression during visuo-

spatial information processing. Furthermore, in the memory scanning task, an alpha

band speci�c event related synchronization (ERS) was observed during the retention

interval of the memory load based experiment [17]. In other words, retention interval

can be referred to the time spend after certain encoded items were seen by subject and

kept in the mind as the encoded information. In the experiment, they observed an

increase in the alpha band power by the increase in the number of represented items.

One of the recent studies has proposed model of local �eld potentials (LPFs)

by using the attractor network model [25]. During the memory load in the simulated

working memory task, they observed an increase in the theta and gamma band power.

In addition, they found a simultaneous decrease in the ratio od alpha/beta power.

2.1.3 Information Theoretic Measures Based on EEG

For estimating the time delays between EEG electrodes, the mutual information

calculation (MI) was used by Moddemeijer et al. [26]. At that time, the analysis which

was performed to observe statistical properties of the EEG signal, was quite rare.

Thus, they �rst generated the probability density function from a pair of electrodes

with respect to their time delay information. Then, Shannon entropy based mutual

information was computed.

The entry into a new millennium has been accompanied by investigating the

phase information of the EEG signal. Morrman et al. [27] used mean phase coherence
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to diagnose temporal lobe epilepsy. They assumed that spatial and temporal changes

in the phase synchronization might have promising relation in terms of detecting the

epileptic activity. They indicated that the phase synchronization of an EEG signal

might be used as an intermediary tool for performing functional analysis about cogni-

tive circuits in the brain such as memory. Rosso et al. [28] used wavelet-based informa-

tion theoretic measures to examine both time and frequency components of the EEG

signal. They used the orthogonal wavelet transform (ODWT) in order to overcome

the non-stationary characteristics of an EEG signal. In several BCI (brain computer

interface) studies, information theoretic measures were also applied such as mutual

information analysis to compute the information transfer within the brain regions [29].

To investigate the classi�cation accuracy, they used an entropy di�erence method of

stochastic process which can be considered as a mutual information computation.

In order to analyze both time and frequency components of an EEG signal by

using information theoretic measures , time-frequency distributions (TDF) are con-

ventional. The dependencies between signal pairs on time-frequency plane can be

investigated within the signal characterization and classi�cation method like mutual

information (MI). The MI generally represents a measure of independence between

random variables. Hence, to generate the statistical di�erence between signal pairs,

the individual TFDs and a joint TDF of a signal pair are adequate enough to calculate

the time-frequency based MI [30, 31]. Lu et al. [32] used the time-frequency cross

mutual information analysis. They inquired the functional connectivity in alpha and

the beta bands during resting, preparing, movement onset and movement o�set states.

There are several clinical studies based on information theoretic measures which

are used as a pre-diagnostic tools for AD and MCI patients. Dauwels et al. [33] en-

quired di�erent synchrony measures such as correlation coe�cient, mean-square, phase

coherence, Granger causality, phase synchrony indices, information-theoretic diver-

gence, state space based measures, stochastic event synchrony measures. Generally,

for pre-diagnosing MCI patients, Granger causality and stochastic event synchrony

methods o�ered successful results. The di�erences between local and global synchrony

measures were emphasized. Local synchrony measures were o�ered by a relationship
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between pairs of the signal. On the other hand, global measures assisted them to in-

vestigate all EEG signals over the scalp. In addition, decreased synchrony measures

between the signal pairs were identi�ed by functional disconnection of the neocortex

areas.

2.2 Spectral Clustering

Several scienti�c �elds have similar purposes to separate their data in groups

which consist of interrelated components. Spectral clustering has several advantages

among varieties of other clustering methods due to the implementation ease, calculation

e�ciency and enhancement of traditional clustering algorithms such as k-means. In

the spectral clustering algorithm, the Laplacian matrix is an important measure. The

spectral graph theory is formed with the help of Laplacian matrix properties. Mohar

et al. [8] inferred that, the eigenvalues and the eigenvectors of the un-normalized

Laplacian matrix could be used to distinguish properties of graphs. Furthermore,

second eigenvector of the Laplacian matrix has an important role on bi-partitions of

the graph. Apart from an un-normalized Laplacian matrix, a normalized Laplacian

matrix is commonly used in bio-informatics studies. The normalized cut algorithm is

one of the popular clustering algorithms which was founded by Shi and Malik [34]. The

grouping algorithm is mainly about, extracting global impressions in a given image and

generate perceptional grouping. It was referred to an unbiased measure which allows

for establish a sub-group of a graph by minimizing normalized cut with maximizing

the similarity within the cluster.

Investigating the use of normalized cut algorithm in brain research, Shen et

al. [9] used graph theory based clustering algorithm to parcellate the resting state

functional subunits of the brain by using fMRI. Normalized cut clustering was used to

examine network properties in the brain. They parcellated the brain into the functional

clusters based on a correlated BOLD signal. This study o�ers us to observe brain

regions in terms of both cortical functioning and psychologically functioning clusters

rather than to observe the brain only with psychological clustering information.
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In addition, another study by Chen et al. [35], was made on the purpose of

the brain tumor separation by using fMRI images. They found that graph cut based

clustering algorithm was promising for the tumor exploration and its separation for

anatomic variability.
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3. METHODS

3.1 Experimental Procedure and Subjects

In this experiment, the EEG data was recorded over 17 (12 male, 5 female mean

age of 23) healthy volunteers. Each participant gave an informed consent about the

experimental procedure. First of all, a baseline recording was performed with 3 minutes

eyes-open and 3 minutes eyes-closed resting condition. The visuo-spatial short time

memory task was run afterwards. The locations of one, three or �ve targets on four by

four box model were shown to the subjects for 500 milliseconds. During each stimulus,

one of three box combinations (one, three or �ve box) was represented randomly. Due

to the box combination model, their positions had to be kept in memory for 2, 500

milliseconds and had to be compared with an answer stimulus which was presented in

gray color. A comparison should be made between the probe and the answer stimulus

to decide on whether the target positions were exactly the same as answer positions or

not. After 2, 500 milliseconds retention interval, if it was true, subjects had to answer

with the right mouse button press or vice versa in 1000 milliseconds.

To be able to preserve the event synchronization, the clock in the data recording

computer and the clock in the experiment computer were synchronized periodically

after each trial.

The segmentation period for this experiment was 4000 ms. Each segment was

started from 500 ms after the probe (green) stimulus to 1000 ms after the answer

stimulus (gray). The signi�cant time interval for each segment which was 2500 ms

long between the probe and the response, was used in analysis. Furthermore, the main

reason for initializing longer time interval in segmentation was to secure the signal from

�uttering in the �ltering of preprocessing analysis. Each answer, each reaction time,

and the overall mean reaction time for each box model was calculated and written into

a log �le.
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Figure 3.1 The experimental design

There were 100 stimuli for each box combinations and there were equal number

of true and false probes. In total, 300 stimuli were represented during the experiment.

Only correct answers were taken into consideration. The experimental design was made

by the Psyctoolbox, Matlab software.
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3.2 Data Gathering

EEG recordings were done by 64 channel EGI HydroCel ampli�er and the on-

going recordings were stored on Macintosh Workstation computer. To establish the

impedance levels which were set as 50 kΩ, sponge electrodes were soaked in potassium

chloride and alcohol free shampoo solution for about 10 min before the cap placement.

Figure 3.2 64 channel EGI HydroCel and experiment room

3.3 Preprocessing

The preprocessing steps can be listed as; 0.1 Hz �rst order high pass �ltering,

100 Hz low pass �ltering, 50 Hz Notch �ltering, segmentation of correct segments,

artifact detection, ocular artifact removal, bad channel replacement and �le export.

The preprocessing was done with EGI Net Station software tools.

The initial EEG recording was sampled at 1 kHz. In addition, �ltering tools

were used as a standard preprocessing steps to analyze the default EEG bands. There

were important details in the �ltering application such as selecting the �lter roll-o� to

2 Hz. The initial part and the end part of the signal was �uttered because of �lter
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roll-o� property. The �uttered signal was observed as 506 ms shorter than the original

signal. Fluttering problem was observed in the 0.1 Hz high pass �ltering and 100 Hz

low pass �ltering process too. However, longer segment periods were used in order to

prevent the signal from su�ering the �uttering e�ect and to secure the preprocessed

segments.

Figure 3.3 Netstation preprocessing software

The power line noise was �ltered in the last part of the EEG �ltering procedure.

Narrow-band electrical �eld was generated by various electrical equipment which were

located in the lab environment. In order to preserve the signal from 50 Hz power line

interference, 50 Hz notch �lter was used.
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In the segmentation, only segments which consisted of correct responses, were

generated as 4000 ms long time intervals with respect to the one, three and �ve box

combination models.

The fourth preprocessing routine was de�ned as an artifact detection tool. It

can exclude bad channels caused by eye blinks, eye movements, eye-blink segments.

Detected bad channels were marked as unused channels for the entire recording. The

bad channels were sorted out from the entire segments with the threshold level of

±200 µV. 80 ms moving average window was applied to correct the bad segments. In

addition, eye blinks were detected from 640 ms time windows with the threshold level of

±140 µV and they were corrected with 80 ms moving average window. Eye movements

were detected as with the same routine as an eye blink detection process except for

a change of threshold level to ±55 µV. The detected and re�ned bad channels due to

the default characteristics of EEG amplitude were �uttered with the help of ocular

artifact removal tool. There were speci�c face and eye electrodes to detect the eye

blink. Detected eye blinks were �attened due the blink slope threshold level of 14

µV/ms with the references of Gratton et al. [36].

In bad channel replacement procedure, the bad channel was replaced with the

interpolation of remaining channels. This process was used in case of a bad channel

existence after the artifact detection and the ocular artifact removal process. Finally,

for further analysis, the data was converted into a "mat." �le to access in Matlab

environment [10].

3.4 Generating Adjacency Matrices

3.4.1 Information Theoretical Measures on Time-frequency plane

To calculate both time and the frequency components of the signal, Cohen class

distributions can be calculated. The main formula of Cohen's class C(t, f) can be

expressed as;
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C(t, f) =

∫ ∫ ∫
φ(θ, τ)s(u+

τ

2
)s∗(u− τ

2
)ej(θu−θt−2πτf)dudθdτ (3.1)

The s represents the signal, s∗ represents for complex conjugate of the given

signal and the φ(θ, τ) stands for the kernel function. The energy preservation and

marginals which are the properties of time frequency distributions (TDF) are satis�ed

when φ(θ, 0) = φ(θ, τ) = 1∀τ, θ

The analogy between probability density functions (PDFs) and time frequency

distributions (TFDs) [30] of a two dimensional random variable can be presented as

Equation 3.2 and 3.3. The conversion of information theoretic measures such as entropy

into TFDs representation can be accomplished by Equation 3.3.

∫ ∫
C(t, f)dtdf =

∫
|s(t)2|dt =

∫
|S(f)2|df (3.2)

∫
C(t, f)df = |s(t)2|,

∫
C(t, f)dt = |S(f)2| (3.3)

PDFs and TFDs are di�erent from each other for that, TFDs are not always

positive like as PDFs. Hence, in this thesis spectrograms which are always positive,

are used for generating Cohen class TDFs. Moreover, before the implementation for

information theoretical based measures, TFD has to be normalized by its energy dis-

tribution.



22

3.4.2 Time Frequency Plane Mutual Information

For a brief approximation of one dimensional mutual information (MI) calcula-

tion, assume that two random variables X and Y have mutual information which can

be expressed as;

I(X;Y ) =
∑
x

∑
y

p(x, y)log
p(x, y)

p(x)p(y)
(3.4)

The p(x, y) is a joint probability density function and, p(x) and p(y) are marginal

PDFs of X and Y . If X and Y are independent from each other, MI is determined as

minimum and equal zero.

To calculate Cohen class TFD with the help of Cohen class distribution, energy

density functions are taken into account instead of PDFs. If we replace the marginal

densities p(x), p(y) with the individual energy densities Cx(t, f), Cy(t, f) and the joint

PDFs p(x, y) with the joint energy distributions Cxy(t, f) the main Equation 3.4 can

be formed.

The MI equation 3.4 can be computed by;

I(Cx, Cy) =

∫ ∫
|Cxy(t, f)|log |Cxy(t, f)|

Cx(t, f)Cy(t, f)
dtdf (3.5)

Simplifying the Equation 3.5, the cross energy distribution can be stated as a

combination of two individual TDF in root, equation 3.6 has a similar formulation such

as Jensen Renyi divergence;
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√
Cx, Cy(t, f) =

√
Cx(t, f)Cy(t, f) (3.6)

Thus, the MI calculation in Equation 3.6 can be transformed into Equation 3.8;

|Cxy(t, f)| =
√
|Cx(t, f)|

√
|Cy(t, f)| (3.7)

In the end without calculating the joint energy distribution the MI Equation

can be stated as 3.8;

I(Cx, Cy) =

∫ ∫ √
|Cx(t, f)|

√
|Cy(t, f)|log 1√

|Cx(t, f)|
√
|Cy(t, f)|

dtdf (3.8)

3.5 Graph Based Adjacency Matrices

A network is represented with the help of nodes or vertices and the edges between

these nodes. The directed and undirected graph can be represented as follows;

the vertices and edges can be represented as V = {v1, v2, ..., vn}, if the edges are

connected in terms of the MI results e(i, j) = 1 otherwise e(i, j) = 0. The graph can

be represented as G(V,E) [9].

To determine the relationship between the nodes, the number of edges between

each pair of nodes is used to create adjacency matrices. If the adjacency matrix consists

of binary elements (either 1 or 0), it is called un-weighted adjacency matrix. It means,

if there is an edge between pair of nodes, the value of adjacency is equal to 1 otherwise



24

it is equal to 0. In this thesis study, weighted graphs are generated by normalized

mutual information of electrode pairs. Generated weighted graphs consist of the MI

values which indicate the similarity bond between all node pairs [37].

3.5.1 Graph Based Clustering Parameters and Types

If the graph is considered as a weighted graph, the adjacency matrix can be

represented by W = ((wij)i, j = 1, ..., n), then the wij = 0 means that there is not a

connection between vi, vj otherwise, it carries non-negative value wij ≥ 0.

The degree of a matrix can be de�ned as;

di =
n∑
j=1

wij (3.9)

In this particular notation, this sum indicates that sum of all vj vertices are

adjacent to vi. Degree matrix D is de�ned as a diagonal matrix which includes the

sum of edges attached to given vertices d1, ..., dn [8].

If a graph G(xi, xj) consists of two partitions such as A and A where A∪A = V

and A ∩ A = �, indicator vector of �rst partition can be de�ned as;

xi = 1 if viεA

xi = 0 if viεA
(3.10)

The number of vertices is used to measure the size of partition A. On the other

hand, vol(A) measures the size in terms of summation over the weights of all edges
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which are attached to vertices in A.The size of the partition can be described in two

ways;

|A| = the number of vertices in A

vol(A) =
∑
iεA

di
(3.11)

With the combination of weights and degree matrices, Laplacian matrices can

be calculated. The graph Laplacian can be described as;

L(i, j) = di if i = j

L(i, j) = −wi,j if e(i, j) = 1

0 elsewhere

(3.12)

L =


L1

L2

. . .

Lk



The unnormalized graph Laplacian can be represented as following Equation

3.13;

L = D −W (3.13)

The graph Laplacian can be normalized in two ways;
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Lsym = D− 1
2LD− 1

2 = I −D− 1
2WD− 1

2

Lrw = D− 1
2L = I −D− 1

2W
(3.14)

The Lsym is denoted as symmetric matrix and Lrw is obtained by random walk

normalization algorithm.

3.6 N-Cut Clustering Algorithm

Adjacency Matries

TDF Based

MI 

calculation

Cohen Class

TDF 

Bootstrap

Clusters

Group Wise 

Clustering

Statistically Significant  Cluster  

Comparison

Subject Wise Clustering
Modified EEG Electrode 

Montage 

Figure 3.4 Normalized Cut clustering �ow diagram: TFDs, MI adjacency matrix calculation, mod-
i�ed montage, subject-wise N-cut clustering, group-wise clustering, statistical comparison

N-cut clustering is an algorithm which computes an unbiased measure that

allows to establish a sub-group of a graph by minimizing the normalized cut and maxi-

mizing the similarity within the cluster. In contrast to other graph clustering methods,

it does not make strong assumptions on outliers which can be considered as an impor-

tant advantage.

3.6.1 Subject-wise N-Cut Clustering

N-cut algorithm can be described as;

Ncut(A,A) =
cut(A,A)

V ol(A)
+
cut(A,A)

V ol(A)
(3.15)
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cut(A,A) =
∑

vi=A,vj=A

w(i, j) (3.16)

According to Shi and Malik [34], normalized spectral clustering algorithm can

be listed as follows;

• the number of clusters k clusters is selected,

• The un-normalized Laplacian is computed by L = D −W ,

• Due to number of k clusters, u1, . . . , uk eigenvectors are computed with the help

of generalized formula Lu = λDu and those eigenvectors corresponding to the k

largest eigenvalues are selected,

• The U ∈ Rn×k matrix is generated by using u1, . . . ,uk eigenvectors as columns,

• For i = 1, . . . , n, the yi ∈ Rk vector is obtained as the i-th row of U matrix,

• The yi in Rk, i = 1, . . . , n are clustered in with the k − means algorithm into

clusters C1, . . . , Ck [8],

• The clusters A1, . . . , Ak with Ai = {j|yj ∈ Ci} are generated,

3.6.2 Group-wise implementation of N-Cut Clustering

• The cluster vectors A1, . . . , Ak of a single subject are merged by multiplying each

Ai with its cluster index i to form the vector NA = [1.A1 + ...+ k.Ak],

• The subject-wise clustered matrix SA ∈ Rs×n for 17 subjects is generated as

SA = [(NA)1, . . . , (NA)s],

• The 3-D prone matrix PA ∈ Rn×n×s is generated by taking each column of SA

and mapping its indices as
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PA(i, j, s) =

 1 if SA(s, i) = SA(s, j)

0 else
s = 1, . . . , 17 i, j = 1, . . . , n

(3.17)

• Generalized N -Cut clustering algorithm is applied to the mean of the 2D slabs

of the prone matrix PA to form the �nal cluster vectors A1, . . . , Ak from which

the NA clustering matrix is obtained and mapped on the scalp surface.

This group-wise analysis is repeated over three task conditions i.e. 1, 3 and

5 box combination and clustering information is topologically plotted over modi�ed

electrode locations to investigate the comparison between di�erent box models.

3.6.3 Bootstrap Statistical Test

In order to identify statistically signi�cant electrodes from group-wise clusters,

bootstrap technique is employed [38]. The 2D slabs of the PA matrix are shu�ed with

the repetion allowed manner to obtain its surrogate versions. 1000 trials of PA are

obtained from a sequence of indices uniformly distributed between [1− 17] which give

the shu�ed indices of the slabs. The indices allow for a slab to appear more than once.

The shu�ed PA is fed into generalized N -cut algorithm 1000 times and the

average cluster matrix is thresholded by %95 of its maximum value and the entries

exceeding it are plotted on the scalp as statistically signi�cant nodes.

3.7 Soft Clustering

A signi�cant drawback of existing clustering algorithms is determining the num-

ber of clusters beforehand. Most of the time it is not possible to de�ne an optimum

and this determination is done with heuristic methods. Additionally, when the task
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Figure 3.5 Normalized Cut clustering �ow diagram: TFDs, MI adjacency matrix calculation, mod-
i�ed montage, subject-wise N-cut clustering, group-wise clustering, statistical comparison

is determining the group-wise clusters from individual subject level clusters, setting

the cluster number to the same value for all subjects and the group may restrict the

inference that might be obtained from this large group of data. Hence, to introduce

some �exibility and circumvent the problem of setting a �xed cluster number, a soft

clustering approach may be adopted. The method is based on the successive applica-

tion of the clustering algorithm to the clusters that are obtained at earlier steps. The

rationale is that if two nodes have a strong interconnection then they will be separated

at later levels of these successive clusterings, but if they have a weak connection they

will be segregated at earlier steps (Figure 3.5).
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3.7.1 Soft Clustering Algorithm

The N -cut clustering algorithm is applied to the adjacency matrix W by choos-

ing the symmetric version of the normalized L matrix, Lsym. At any particular level,

existing clusters are partitioned individually and the global N-cut values for these can-

didate clusters are computed. Then, the cluster which gives the minimum N-cut value

is partitioned. This procedure continues until all the clusters have at most 4 nodes.

At each partitioning step a cluster identity vector is formed and written in a matrix

form. After the termination of the procedure, these cluster identity matrices are av-

eraged and a resultant matrix which represents clustering strength between any two

nodes is obtained. This matrix has values between 0 and 1, and a value near 1 signi�es

that those two nodes are highly likely to be clustered together, whereas a value near 0

noti�es that those two nodes are hardly to be clustered within the same cluster. As a

result, this procedure gives us a new interaction matrix generated from the adjacency

matrix, but this time the interaction strength between two nodes is computed from the

probability of being clustered together.

In Figure 3.6, tree shaped decomposition represents the N -Cut value compu-

tation for the all possible end clusters in a given graph. In other words, a road map

with respect to clustering information of the whole graph, is computed. In this thesis,

subject-wise and group-wise adjacency matrices have low- sized matrix formation such

as 52× 52 which allow us to implement N -Cut analysis with computational ease.

• UsingN -cut values l1, . . . , ll ofN -Cut index IN is used as a computation threshold

for the generalized N -cut algorithm,

• The cluster vectors A1, . . . , Ak of a speci�c N -cut value are merged by multiplying

each Ai with its cluster index i to form the vector NS = [1.A1 + ...+ k.Ak],

• The N -cut value based clustered matrix SS ∈ Rs×n for number of N -cut values

is generated as SS = [(NS)1, . . . , (NS)s],

• The 3-D prone matrix PS ∈ Rn×n×L is generated by taking each column of SS
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and mapping its indices as Equation 3.17

• The mean of 2-D prone matrix PS ∈ Rn×n is generated to form the 2-D subject

prone matrix.

The algorithm is calculated for all subjects (s = 17), two time intervals (0 ms -

1250 ms, 1250 ms -2500 ms) and 3 task conditions (1, 3 and 5 box combination).

Figure 3.6 Soft clustering N-cut value decomposition of a graph

To implement group-wise anaysis over calculated subject-wise 2D slabs of the PS

matrix are shu�ed with the repetition allowed manner to obtain its surrogate versions.

1000 trials of PS are obtained from a sequence of indices uniformly distributed between
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[1 − 17] which give the shu�ed indices of the slabs. The indices allow for a slab to

appear more than once. (Figure 3.9).

Generalized soft clustering algorithm is applied to the mean of the 2D slabs of

the prone matrix PS to form the �nal cluster vectors A1, . . . , Ak from which the NS

clustering matrix is obtained and mapped on the scalp surface. Hierarchical clusters

are generated from prone matrixPS, the function assigns a unique color to each group

of nodes in the dendrogram where the linkage is less than threshold t = (max(Z)),

upper triangle of 1− PS is Z vector (Figure 3.10),

Figure 3.7 Soft clustering: generation of adjacency matrices with respect to node-cluster existence
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4. RESULTS

4.1 Behavioral Results

During the experiment, the visuospatial stimulus information, subject response

information and reaction times were recorded into a log �le. In addition, the percentage

of correct answers, the mean reaction time, fastest reaction time were calculated and

added into log �le. To compare the reaction time and error percentage between 3

di�erent task conditions, mean reaction times and mean error rates of all subjects were

computed (Figure 4.1).

0.5 1 1.5 2 2.5 3 3.5
0.4

0.45

0.5

0.55

0.6

0.65

Figure 4.1 3 Box model mean reaction time comparison

There was no statistically signi�cant di�erence in correct responses between 3

box and 5 box model (%92, 9 ± 4, 6) (p = 0, 811). However, there were signi�cant

di�erences between 1 box (%94, 8± 4, 0) and 3 box model (%93, 13± 5, 3) (p = 0, 050)

and between 1 box and 5 box model (p = 0, 0030).

Directly proportional reaction time increase was observed by the number of
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represented boxes. The mean reaction time due to box models can be listed as follows;

1 box model 0, 50± 0, 07 , 3 box model 0, 53± 0, 08, 5 box model 0, 55± 0, 08 seconds.

There were signi�cant di�erences between 1 box and 3 box model (p = 0, 00047),

between 1 box and 5 box model (p = 0, 000046), 2 box and 3 box model (p = 0, 0067).

4.2 Experimental Results

4.2.1 N-Cut Clustering Results

Figure 4.2 Mutual information based adjacency matrices

Preprocessing procedure is implemented by Netstation software. Preprocessed

EEG segments which are selected as only good segments, are converted into .mat �les

to determine the ongoing procedures in Matlab software. Each segmented signal was

converted into time-frequency distribution components with Cohen class distributions
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[3.1]. To separate the frequency interval of the signal, associated frequency bins are

selected. Mutual information is calculated by using Equation 3.8 equation to generate

adjacency matrices. The representation of the MI based adjacency matrices are given

in Figure 4.2.

Figure 4.3 Eliminated electrode channel view

From the EGI EEG ampli�er default electrode locations, the red dotted elec-

trodes are eliminated (Figure 4.3). In other words, to increase the clustering signi�-

cance, eye and ear electrodes are removed and theN -Cut clustering algorithm is applied

both on normal clusters and bootstrap clusters. Furthermore, again 1000 pseudo clus-

ters are generated with respect to the clustering information of each subject clusters

to generate bootstrapped clusters. The same clustering algorithm is applied to one

thousand clusters as well.
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In the N -Cut clustering process adjacency matrices are transformed into sparse

matrix formation. Then, with respect to the similarities of each subject clusters, new

adjacency matrices of all subjects are calculated due to the similar clustering informa-

tion of separate subjects. Furthermore, the procedure of N -Cut clustering is repeated

over all subjects based adjacency matrix. The clustering information is topologically

plotted over electrode locations to investigate the comparison between various box mod-

els. Only 4 cluster based, parcellation analysis is taken into consideration. When the

number of boxes are increased, the topological parcellation is revealed with respect to

the memory related areas on the brain. The main clusters are observed over posterior,

bilateral and prefrontal areas of the brain. The number of nodes in the each cluster

for determined brain regions are used to observe the memory related brain dynamics.
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Figure 4.4 RET 1 box model all clusters and separate clusters

In Figure 4.4, 4.5 and 4.6 the reduced electrode locations of the 1, 3 and 5

box model clusters are presented. There were 3 main clusters in the 1 box model. In

the cluster B, there are clusters which are well projected on the parietal regions of

the brain. In addition, cluster C is positioned over the occipital region. Cluster D is

mainly grouped over prefrontal region.
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Figure 4.5 RET 3 box model all clusters and separate clusters

In Figure 4.5, there were 4 main clusters in the 3 box model. In the clusters A

and D, there are clusters which are projected on the prefrontal regions of the brain. In

addition, cluster C is grouped over occipital region. Cluster B is mainly grouped over

parietal region.
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Figure 4.6 Modi�ed RET 5 Box Model All Clusters and Separate Clusters

In Figure 4.6, there were 3 main clusters in the 5 box model. In the cluster D,

there are nodes which are projected on the prefrontal regions of the brain. In addition,

cluster C consists of increased group of nodes which can be observed as a combination

of left parietal and occipital regions. Cluster B is mainly grouped over right parietal

region.
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Statistically signi�cant nodes are represented as topological plots over di�erent

memory box models to investigate the signi�cance of the cluster credibility and the

relation between memory and functional clustering in terms of cognitive functioning.

In Figure 4.7, modi�ed electrode locations which are generated by removing face

and ear electrodes from default electrode locations are shown. Their clustering infor-

mation and the statistically signi�cant electrode node locations within their clustering

information are plotted over topographic maps. In 1 box model, several prefrontal and

left parietal electrodes are observed within two separate cluster groups in the statis-

tically signi�cant map. In addition, there are occipital electrodes which are generally

grouped around the left occipital region of the brain. In the 3 box model, statistically

signi�cant electrodes are located over the left parietal region and the occipital cluster

remained as same as 1 box model. However, in the 5 box model, statistically signi�cant

electrodes are located as a slightly huge cluster which can be observed as a combination

of the left parietal and the occipital region of the brain due to the increased memory

load. Furthermore, unrelated signi�cant nodes and small group of clusters are located

in right parietal and prefrontal regions.
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Figure 4.7 Modi�ed Electrodes RET 1,3,5 Box Model Signi�cant Nodes and Their Clusters
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4.2.2 Soft Clustering Results

As in the N -Cut clustering, Preprocessing procedure is implemented by Netsta-

tion software. Preprocessed EEG segments which are selected as only good segments,

are converted into .mat �les to apply following procedures in Matlab software. Each

segmented signal was converted into a time-frequency distribution with the help of

Cohen class distributions [3.1]. To implement coherent analysis due to the temporal

organization of the memory related brain networks, the 2500 ms retention interval is

divided into two 1250 ms long time intervals. To separate the frequency interval of the

signal, speci�ed frequency bins which are directly related with default alpha band fre-

quencies (8 Hz-12 Hz) are taken into consideration. Mutual information is calculated

by Equation 3.8 to generate adjacency matrices.

In the soft clustering approach, only modi�ed electrode montage [Figure 4.3]

is used to determine mutual information based adjacency matrices. With respect to

modi�ed electrode locations, Soft Clustering algorithm is implemented over subjects

with respect to the change in two time intervals and three task conditions. Using Equa-

tion 3.15 Laplacian vectors are computed to determine normalized cut values of the

graph. Hence, the N -Cut values which are used to cluster the graph into sub-graphs

are computed for all clustering levels using Equation 3.16.For each subject adjacency

matrix is repetitively clustered for all previously calculated N -Cut values which can be

considered as using N -Cut value to threshold the level of cluster computation. In ad-

dition, clustered adjacency matrices are saved to determine subject-wise soft clustering

matrix. Subject-wise soft clustering matrix is calculated from the number of node ex-

istence within a speci�c cluster. Thus, if a node is eager to exists in the same cluster at

various clustering levels, edge weights are supposed to be high valued. The mentioned

procedure is repeated over each experiment condition and two time intervals.

Over 17 subject-wise soft cluster matrices, 1000 pseudo subject-wise soft cluster

matrix combinations are generated. Pseudo combinations which can comprise repeti-

tive sequences are randomly distributed. After the generation of simulation database,

overall mean is calculated over subject-wise soft clusters (1000 × 17 × 52 × 52), and
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for further soft clustering analysis 1000 group clusters (1000× 52× 52) are generated.

Similarly, to implement group-wise soft clustering analysis, from each subject-wise soft

clustered matrix in simulation database, N -Cut values are computed. Minimum num-

ber of nodes inside the end clusters are set to four and group-wise soft clusters are

generated with the help of previously computed N -Cut thresholds.

In Figure 4.8, modi�ed electrode locations which are generated by removing face

and ear electrodes from default electrode locations can be observed. After the procedure

of subject-wise and group-wise soft clustering approach, clustering information are

plotted over maps with respect to two di�erent time intervals and three di�erent task

conditions. In addition, after group-wise soft clustering, all connections between various

clusters can be observed. In Figure 4.8, maps A,C,E are representing �rst 1250 ms time

interval in the retention period for 1, 3 and 5 box combinations, respectively. First of

all, with respect to the memory load, the number of soft clusters are increasing inversely

proportional to the number of boxes which are represented in the probe stimulus. In

addition, the form of the occipital and left bi-lateral clusters due to the memory load

are not changing in the �rst time interval. However, the number of clusters located

on prefrontal and left-bilateral regions are decreasing with respect to the number of

boxes. In maps A and C, left prefrontal regions and left-parietal regions have several

one-node clusters (for A; cluster 9, for C; cluster 8). However, in the map E, it

can be observed as more stable clusters with respect to memory load. On the other

hand, maps B,D, F are representing the second 1250 ms time interval in the retention

period for 1, 3 and 5 box combinations. Without thresholding with random matrices,

increased inter-cluster connections (connections between di�erent cluster pairs except

intra-cluster connections) due to the di�erent temporal organization can be observed

from networks in the three di�erent task condition. In addition, the occipital and

prefrontal clusters, are not changing in the second time interval. However, node sizes

are changing due to the degree variations which is obtained by using Equation 3.9. In

the D map, the cluster which is located on the left parietal region consist of nodes that

have high degrees with respect to number of inter-cluster and intra-cluster connections.

In Figure 4.9, apart from the previous maps, the �nal adjacency matrices are
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thresholded with random adjacency matrices which are generated by preserving degree

distribution with original adjacency matrices and soft clustered. In addition, node sizes

are changing due to the degree variations which are obtained by using Equation 3.9.In

Figure 4.9, maps A,C,E are representing �rst 1250 ms time interval in the retention

period for 1, 3 and 5 box combinations. The results which are obtained from Figure

4.8, have similar outcomes with Figure 4.8 except the di�erences between degrees of

the each node. For instance, in the �rst time interval, A map has dominant nodes

which are located on occipital, left lateral regions. On the other hand, in C map,

there are several high degree nodes located on prefrontal region but, overall degree

distribution can be observed as stable. In E map the over all degree distribution of

each node increased with respect to the increase in intra and inter cluster connections.

On the other hand, maps B,D, F are representing the second 1250 ms time interval in

the retention period for 1, 3 and 5 box combinations with random graph thresholding.

As same as original network topologies which can be observed in Figure 4.8, increased

inter-cluster connections directly proportional to the increased memory demand can

be observed from networks.

In Figure 4.10, the soft clustered and random thresholded matrices are �xed to

the number of six clusters in order to observe coherent results in the form of clusters. In

the �rst time interval, the organization of bilateral and occipital clusters are observed

as the same formation. However, their degree distribution (node sizes) changes over

memory load. For instance, in E map, left lateral cluster is representing increased inter-

cluster connections with occipital cluster. However, except for the C map, prefrontal

cluster organization consists of 3 main clusters in both A and E maps. In the second

time interval, all prefrontal, occipital and bilateral clusters, are representing the similar

behavior and formation. The inter-cluster connections between left lateral and occipital

clusters are obtained from the B and C maps. Although, in the F map, the linkage

between left lateral and occipital cluster can be observed with respect to the memory

load. In addition, several high degree nodes can be observed from the clusters located

on left lateral and parietal regions.
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Figure 4.8 Soft Clusters with respect to color thresholds A−C −D representing �rst time interval
in 3 tasks (retention 1 box, retention 3 box, retention 5 box), B − E − F representing second time
interval in 3 tasks (node sizes are changing due to the degree variations which is obtained by using
equation 3.9)
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Figure 4.9 Soft Clusters with respect to random graph threshold, A−C −D representing �rst time
interval in 3 tasks (retention 1 box, retention 3 box, retention 5 box), B −E −F representing second
time interval in 3 tasks (node sizes are changing due to the degree variations which is obtained by
using equation 3.9)
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Figure 4.10 6 - Soft Clusters with respect to random graph threshold, A−C −D representing �rst
time interval in 3 tasks (retention 1 box, retention 3 box, retention 5 box), B − E − F representing
second time interval in 3 tasks (node sizes are changing due to the degree variations which is obtained
by using equation 3.9)
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5. DISCUSSION

5.1 Mean Reaction Time

In Figure 4.1, shows the di�erence between 1, 3, 5 box model via mean reaction

time values. Ole Jensen [23] assumed that di�erence in the mean reaction time can be

considered as a function of memory load. Our experiment design revealed an increase

of mean reaction time due to the increase in the number of boxes.

5.2 Modi�ed Electrode Montage Design

There are several studies which analyzes the e�ect of the memory load on the

alpha band. Tuladhar et al. [39] observed, a parametric increase in alpha band activity

over posterior brain with increasing memory load. Jensen et al. [23] assumed that there

were separate memory related sources which were located on the posterior and bilateral

regions of the brain. In addition, they stated that, the memory load activity on the

separate brain regions could re�ect the degree of synchronization across multiple brain

regions or number of regions involved. In Figure 4.7, modi�ed electrode locations and

their statistically signi�cant nodes may provide an evidence for the previous studies.

In other words, when the number of boxes increases, the number of clustered nodes

which are projected on occipital and bilateral regions increases. Furthermore, in the

left parietal and occipital clusters are observed separately in 1 and 3 box model and

in the 5 box model, they are observed in a huge cluster which may be formed with

respect to the increased memory load.
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5.3 Memory load dynamics in optimum number of clusters

The parametric power increase in the �rst time interval with respect to the

memory load was reported in the posterior regions of the brain [23]. This can be linked

to the active inhibition of neural activity [40, 41]. There are several PET and fMRI

experiments that have previously indicated that several prefrontal and parietal regions

are involved in the working memory maintenance. In Figure 4.8 during the �rst time

interval, number of clusters in the prefrontal region is decreasing with respect to the

memory load which can be described as an inhibition of neural anterior activity [42].

In Figure 4.8, A,C and D maps, the number of clusters in the left lateral region are

increasing (E map has two clusters but A and C maps have one cluster in the left

lateral region). Furthermore, in Figure 4.9, E map is presenting that number of inter

cluster nodes in the left lateral region are increasing which may provide evidence for

the previously mentioned study [5].

There are several studies which stated that, memory load could produce en-

hancements in the posterior and lateral regions of the brain [23]. In Figure 4.10, B,D

and F maps, the inter-cluster connections between the left lateral and occipital clusters

are decreasing in the second time interval which can be linked to the enhancement of

posterior region and �ssure between the parietal - occipital region.
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6. CONCLUSION AND FUTURE WORK

The EEG signal and its oscillatory activity are strongly related with temporal

modulation of information processing. Thus, the brain has a complex structure and a

complex functioning capability. Band and region speci�c studies are made to observe

the overall brain functioning. Generally, oscillations of alpha (8 Hz - 12 Hz) band of

the EEG rhythm and the amplitude of the signal changes in the memory and cogni-

tive based tasks are observed. Furthermore, to obtain local and global interaction of

memory processing, clustering analysis can be considered as important studies.

The sophisticated architecture of brain networks can be observed with the help

of spectral clustering algorithm to create the dynamic interactions between regions like

clusters and the directions of information �ow from one cluster to another. In this

thesis, a spectral clustering algorithm was used to parcellate memory related circuits

in the brain in a load-dependent manner. To be able to circumvent the problem of

choosing the number of clusters beforehand a soft clustering approach was implemented.

To investigate both the spatial and the temporal change in terms of functional dynamics

on the brain, EEG-fMRI fusion studies are incorporated into our ongoing schedule.

Since the fMRI part of the future project, consists huge raw databases to cluster, our

proposed method, the soft clustering algorithm, has to be updated with respect to

computational ease and time.

In the end, the main future work will rely on developing an enhanced soft

clustering algorithm which will be used as an intermediary tool to establish the link

between the temporal and the spatial functional dynamics of the brain.
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APPENDIX A. Code Descriptions

A.1 Cohen Class Time Frequency Distribution and Mutual In-

formation Calculation

A.1.1 pre_main.m - Matlab Code

Description: Allocates the memory with respect to two time intervals and three

task conditions. Stands for calculating the Cohen Class Based Time-Frequency distri-

bution matrices from segmented time segments for each task condition and two time

intervals (�rst 1250ms, second 1250ms).

Outputs: mutual_ret1 (NumSubxNumNode×NumNode) TFD based Mutual

Information adjacency matrices.

Inputs: core_csegret1 (NumSub × NumSeg × TimeInt ) Time segments for

each task condition and two time intervals.

Call: mutual_adjacency.m

Called by: Command line

A.1.2 mutual_adjacency.m - Matlab Code

Description: Re-samples the previously calculated segments (Preprocessing Net-

station) from 1Hz to 250Hz and determines the Wigner-Ville TFD of alpha frequency

bins (8− 12Hz).

Outputs: mutual_ret1 (NumSub×NumNode×NumNode), TFD adjacency
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matrix of 17 subjects with respect to each task condition.

Inputs: core_csegret1 (NumSub × NumSeg × TimeInt ) Time segments for

each task condition and two time intervals. Group of segments gathered from 17

subjects and each (1, 3 and 5) task condition.

Call: resample.m, re_sizer.m, mutdene.m

Called by: pre_main.m

A.1.3 re_sample.m - Matlab Code

Description: Uses the resample.m function from the signal processing toolbox if

present. It down-samples the time segments from 1000Hz to 250Hz frequency interval.

It also uses the pop_resample.m in EEGLAB Toolbox [43] of Matlab.

Outputs: temp (NumSub×NumSeg×TimeInt ), down-sampled time segments.

Inputs: segments (NumSub×NumSeg× TimeInt ), group of segments gath-

ered from 17 subjects and each (1, 3 and 5) task condition.

Call: resample.m

Called by: mutual_adjacency.m

A.1.4 re_sizer.m - Matlab Code

Description: Reshapes the time segments from the format of 17x52x1250 to

17x65000 in order to obtain histogram based TFD calculation.
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Outputs: resized (NumSub×MulSeg_by_TimeInt), resized time segments.

Inputs: temp (NumSub×NumSeg×TimeInt ), down-sampled time segments.

Call: None

Called by: mutual_adjacency.m

A.1.5 mutdene.m - Matlab Code

Description: Calculates the TFD by Equation 3.3 and determines the TFD

based Mutual information by Equation 3.8. It sets the default alpha band frequency

(8− 12Hz) bins and calculates the Mutual Information.

Outputs: alpha_ret1_t1 (NumSub × NumNode × NumNode) TFD based

adjacency matrices for each subject, task condition and time interval.

Inputs: resized (NumSub×MulSeg_by_TimeInt), resized time segments.

Call: tfrwv.m

Called by: mutual_adjacency.m

A.1.6 tfrwv.m - Matlab Code to compute Wigner-Ville distribution

Description: Calculates the Wigner-Ville distribution based TFD by using 3.3.

It uses the function in the Time Frequency Toolbox [44] of Matlab.

Outputs: tfr1 time frequency representations of given time segment, t1 fre-

quency bins, f1 vector of normalized frequencies.
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Inputs: X (MulSeg_by_TimeInt) Time segment, T time instant (length of

time segment), N number of frequency bins (250 bin was selected).

Call: None

Called by: mutdene.m

A.2 N-Cut Data Clustering

A.2.1 ncut_main.m - Matlab Code

Description: Reallocates the memory for calculated clustered matrices. It sets

the diagonal vector of the TFD adjacency matrix. It normalized the adjacency matrix

before the clustering process. It converts the 64x64 EEG electrode locations to 52x52.

It both computes the Ncut clustering and bootstrap Ncut clustering.

Outputs: mod_bret1_clu (ModNode × CluNumNodes), adjacency matrix of

Ncut clusters for each task condition.

Inputs: alpha_ret1 (NumSub×NumNode×NumNode), previously calculated

TFD based Mutual Information adjacency matrices for each task condition.

Call: all_cluster.m, all_bootsrt_ex.m

Called by: Command Line

A.2.2 all_cluster.m - Matlab Code

Description: Computes the subject-wise Ncut Clustering.
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Outputs: cl_first (NumSub×ModNumNode×ModNumNode), subject-wise

soft clustered adjacency matrices for each task condition

Inputs: first (NumSub×ModNumNode×ModNumNode), normalized TFD

Mutual Information adjacency matrices for each task condition, numcluster = 4, pre-

de�ned number of clusters, numch = 52, number of electrode channels.

Call: cag_shi_mod.m

Called by: ncut_main.m

A.2.3 all_bootsrt_ex.m - Matlab Code

Description: Computes the group-wise Ncut Clustering. Implements bootstrap

statistical test.

Outputs: cl_second (NumSub×ModNumNode×ModNumNode) Group-wise

soft clustered adjacency matrices for each task condition

Inputs: cl_first (NumSub ×ModNumNode ×ModNumNode), Normalized

TFD Mutual Information adjacency matrices for each task condition, numcluster = 4,

Prede�ned number of clusters, numch = 52, number of electrode channels.

Call: cag_shi_mod.m

Called by: ncut_main.m
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A.2.4 cag_shi_mod.m - Matlab Code

Description: Clusters the given subject-wise adjacency matrices by using the N-

cut clustering algorithm [34] with prede�ned number of clusters. It converts the original

adjacency matrix into sparse matrix formation before the clustering implementation.

Outputs: cl_second (NumSub×ModNumNode×ModNumNode) Group-wise

soft clustered adjacency matrices for each task condition

Inputs: cl_first (NumSub ×ModNumNode ×ModNumNode), Normalized

TFD Mutual Information adjacency matrices for each task condition, numcluster = 4,

Prede�ned number of clusters, numch = 52, number of electrode channels.

Call: ncutW.m

Called by: ncut_main.m

A.2.5 ncutW.m - Matlab Code

Description: Uses Shi Malik algorithm [34]. Calls ncut.m function to compute

NcutEigenvectors and NcutEigenvalues of W with nbcluster clusters,computes con-

tinuous Ncut eigenvectors and computes discretize Ncut vectors.

Outputs: NcutDiscrete (NumSub × ClusNumNode) discretize Ncut vectors,

NcutEigenvectors andNcutEigenvalues of inputW matrix with respect to prede�ned

number of clusters.

Inputs: W (ModNumNode×ModNumNode), normalized TFD Mutual Infor-

mation adjacency matriX of individual subject, nbcluster = 4, Prede�ned number of

clusters.
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Call: ncut.m

Called by: cag_shi_mod.m

A.3 Soft Clustering

A.3.1 post_main.m - Matlab Code

Description: Reallocates the memory for calculated clustered matrices. It sets

the diagonal vector of the TFD adjacency matrix. It normalized the adjacency matrix

before the clustering process. It converts the 64x64 EEG electrode locations to 52x52.

It both computes the �rst soft clustering and bootstrap soft clustering. It repeats the

process for two time intervals.

Outputs: mod_bret1_clu (CluNumNodes × CluNumNodes), adjacency ma-

trix of bootstrap soft clusters for each task condition.

Inputs: alpha_ret1_t1 (NumSub×NumNode×NumNode), reviously calcu-

lated TFD based Mutual Information adjacency matrices for each task condition and

time interval.

Call: mainth.m, all_bootstr_exex.m

Called by: pre_main.m

A.3.2 mainth.m - Matlab Code

Description: Gets the preprocessd TFD adjacency matrices and decomposes

the adjacency matrix of an individual subject into all possible N -Cut value by using

Equation 3.15. It repetitively clusters the adjacency matrix for all previously calculated
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N -Cut values which can be considered as using N -Cut value to threshold the level of

cluster computation. In addition, clustered adjacency matrices are saved to determine

subject-wise soft clustering matrix. Subject-wise soft clustering matrix is calculated

from the number of existing nodes within a speci�c cluster. Thus, if a node is eager to

exists in the same cluster at various clustering levels, edge weights are supposed to be

high valued.

Outputs: m_mainvec_r1 (NumSub×ModNumNode×ModNumNode), subject-

wise soft clustered adjacency matrices for each task condition.

Inputs: mod_alpha_ret1 (NumSub×ModNumNode×ModNumNode), nor-

malized TFD Mutual Information adjacency matrices for each task condition.

Call: ncutter_oycag.m

Called by: post_main.m

A.3.3 ncutter_oycag.m - Matlab Code

Description: Calculates the all possible N -Cut values of given adjacency matrix

and clusters the matrix with respect to given N -Cut value.

Outputs: ncutlist, index of all possible N -Cut values, mainvec (NumNcut ×

CluAdj), adjacency matrix which is clustered with respect to given N -Cut value.

Inputs: W (ModNumNode×ModNumNode), Adjacency matrix,MinNosNodes

(N=4), minimum number of nodes to exist as one cluster, threshold (TH=1.35 exam-

ple), N -Cut value to cluster the adjacency matrix.

Call: None
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Called by: mainth.m

A.3.4 all_bootstr_exex.m - Matlab Code

Description: Generates 1000 subject-wise soft cluster matrix combinations over

17 subject-wise soft cluster matrices. Pseudo combinations which can comprise repet-

itive sequences are randomly distributed. After the generation of simulation database,

overall mean is calculated over subject-wise soft clusters (1000x17x52x52), and for the

further soft clustering analysis 1000 group clusters (1000x52x52) are generated. It

clusters the previously calculated group matrices due to soft clustering computation.

Outputs: group_temp (NumModNode×NumModNode),group-wise clustered

adjacency matrix.

Inputs: cl_first (NumSub×NumModNode×NumModNode), clustered sub-

ject wise adjacency matrices for each task condition.

Call: mainth.m

Called by: post_main.m

A.3.5 random_yeni.m - Matlab Code

Description: Generates random graphs by preserving degree distribution with

original adjacency matrices, and clusters by soft clustering method. Implements subject-

wise clustering and group-wise soft clustering analysis.

Outputs: rand_mod_bret1_clu, (CluNumNodes× CluNumNodes), random

adjacency matrix of bootstrap soft clusters for each task condition.
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Inputs: alpha_ret1_t1 (NumSub×NumNode×NumNode), previously calcu-

lated TFD based Mutual Information adjacency matrices for each task condition and

time interval.

Call: mainth.m, all_bootstr_exex.m

Called by: pre_main.m

A.3.6 all_bootstr_random.m - Matlab Code

Description: Computes the group-wise soft clustering of previously generated

random adjacency matrices

Outputs: group_temp (NumModNode×NumModNode), group-wise clustered

adjacency matrix

Inputs: cl_first (NumSub×NumModNode×NumModNode) clustered sub-

ject wise adjacency matrices for each task condition

Call: mainth.m

Called by: post_main.m
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