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ABSTRACT

RESOLUTION OF ISOTROPIC PERCENTAGE IN

MOMENT TENSOR INVERSION OF TENSILE SOURCES

Moment tensor solutions are commonly used in order to understand earthquake

source mechanism. Moment tensor can be decomposed into three components, namely

isotropic (ISO), double-couple (DC) and compensated linear vector dipole (CLVD). It

is well-known fact that tensile sources generate non-DC components and those earth-

quakes can be defined as the combination of both tensile and shear motion on a fault.

In this thesis, resolution of the isotropic part in the moment tensor are considered

for tensile sources. For that reason, synthetic waveforms are created by using full

moment tensors with different isotropic percentages and those waveforms are inverted

with gCAP method. Afterwards, a range of different isotropic values, with a step of

t = 0.1, are forced in the moment tensor inversion process in order to investigate the

change in variance reduction as the isotropic percentage deviate from its true value.

Inversions of the full waveform are performed in different distances and depths for three

moment tensors with different isotropic percentages, namely 2%, 5% and 14%. Inver-

sions results of those original moment tensors and moment tensors with manipulated

isotropic percentages are expressed. Those results are compared to each other in terms

of changing isotropic percentages, depth and variance reduction in different stations.

The results can be summarized as firstly, inversion is not really sensitive to the

isotropic component of the moment tensor because isotropic component has small en-

ergy compared to the whole waveform. Secondly, earthquakes with relatively high

isotropic percentages are less sensitive when inversions are performed for high values

of manipulated isotropy. Finally, it is observed that the error in the depth of the

earthquake is very sensitive to isotropic percentage.
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ÖZET

AÇILMA KAYNAKLARI İÇİN MOMENT TENSÖR

İÇERİSİNDEKİ İZOTROPİK KISMIN ÇÖZÜNÜRLÜĞÜ

Moment tensör çözümleri, depremlerin kaynak mekanizmasını anlamak için yaygın

olarak kullanılmaktadır. Moment tensör özgün olarak üç farklı parçaya ayrılabilir;

izotropik (ISO), çift kuvvet (DC) ve çizgisel vektör dipolü (CLVD). Açılma kaynaklarının

DC olmayan bileşenler ürettiği ve bu depremlerin bir fay üzerinde hem açılma hem

de kayma hareketinin birleşimi olarak tanımlanabileceği bilinen bir durumdur. Bu

tez çalışmasında, açılma depremleri için moment tensor içerisindeki izotropik kısmın

çözünürlügü ele alınmıştır. Bu nedenle, farklı izotropi yüzdelerine sahip depremler

üretilmiş ve bu depremleri temsil eden moment tensörlerin gCAP yöntemiyle ters

çözümleri yapılmıştır. Bununla birlikte, izotropi bileşeninin moment tensöründeki

çözünürlüğünü anlamak için ters çözüm aşamasında izotropi değerleri, 0.1 aralıklarla

farklı izotropi değerleriyle manipüle edilmiştir. Tam dalga formunun ters çözümü,

farklı izotropik yüzdelere sahip üç farklı moment tensör (2%, 5% ve 14%) için farklı

mesafelerde ve derinliklerde hesaplanmıştır. Orjinal moment tensörler ve izotropi değeri

değiştirilmiş moment tensörlerin ters çözümleri gösterilmiş ve bu sonuçlar farklı istasy-

onlarda, farklı derinliklerde ve varyans azaltılması açısından kendi aralarında mukayese

edilmiştir.

Sonuçlar şu şekilde özetlenebilir; ilk olarak, moment tensörün ters çözümü izotropiye

gerçekten duyarlı değildir, çünkü izotropi bileşeni tüm dalga formuna kıyasla küçük

miktar enerjiye sahiptir. Yüksek izotropi yüzdelerine sahip olan depremler, değiştirilmiş

izotropinin yüksek değerleri için ters çözümler yapıldığında daha az hassastır. Son

olarak, deprem derinliğindeki hatanın izotropik yüzdeye çok duyarlı olduğu gözlenmiştir.
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1. INTRODUCTION

Moment tensor solutions are commonly used in order to understand source mecha-

nism. Full moment tensor inversions have become more important now for understand-

ing the mechanisms of earthquakes as the resolution of the inversion process increases.

Besides the double couple (DC) component of moment tensor, which is frequently

encountered in the solution of tectonic earthquakes, some sources can generate non dou-

ble couble (non-DC) components as well. Vavrycuk (2011) states that tensile earth-

quakes are the combination of shear and tensile motions on a fault [1]. When the

slip of the plane is not perpendicular to the normal vector of the plane, it generates

non double couple components such as shallow earthquakes in volcanic or geothermal

regions [1].

In the article of Alvizuri and Tape’s (2016), the full moment tensor inversions

and solutions are studied in order to understand the structure of real events in geother-

mal fields, volcanic fields, mines, oil fields or induced earthquakes [2]. Moment tensors

in geothermal and volcanic fields are mainly considered in their article because non-

tectonic earthquakes have relatively more non double couple character [2]. In the

literature, there are a lot of different moment tensor solutions using different inversion

methods (first motion polarity, body wave, surface wave, waveform difference, ampli-

tude ratio) and different frequency ranges are also considered. Pesicek et. al. (2012)

states that it is hard to identify phase arrivals in a correct way when a signal has noise

and station are placed at the close range to the source [3]. For that reason, in this

thesis station distances are considered in order to distinguish phase arrivals separately.

Futhermore, Panza et. al. (2000) also states that structural velocity model may be the

reason of considerable noise in the data, therefore, we use one layer half-space velocity

model in order to reduce possible noise in the waveforms [4].

The main emphasis is examined in many different cases when performing the full

moment tensor solution and inversion. In Alvizuri and Tape’s (2016) article, small-
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magnitude earthquakes and even micro earthquakes are considered, so different station

numbers and distances are also considered [2]. In general, isotropy only exists in P

wave and relatively small amount in the full wave, for that reason, more and close

stations are needed. Alvizuri and Tape’s (2016) also states that moment tensor is an

increasingly common method, but there are some reservations about its sensitivity,

especially about the isotropic component resolution [2].

The main purpose of this study is exploring the tensile earthquakes, and investi-

gating what kind of criteria should be taken into consideration in the inversion process

to obtain reliable results. For that reason, three different synthetic earthquakes with

different isotropic percentages,namely 2%, 5%, 14%, are considered and it is aimed to

find if the resolution of isotropic components differs in those cases. Those earthquakes

are recorded at sets of stations with different distances. In this thesis, waveforms of

synthetic earthquakes with different isotopic percentages are shown and inversions of

moment tensors from those synthetic waveforms are also considered.

In chapter 2, the elastodynamic equation is derived by using Hooke’s law. Then

its Green’s function solution is stated which is known as representation theorem. In

this solution, the moment tensor expression is obtained and it is shown that data and

moment tensor are linearly related. Afterwards, decomposition of the moment tensor

is mentioned in order to calculate the isotropic percentage.

Chapter 3 describes the moment, elasticity and source tensors expressions in

Kelvin notation in order to use the linear algebraic manipulation tools for the decom-

position. Characterization of the tensile sources in the isotropic focal region is defined.

Additionally, strain-based potency tensor and its isotropic and deviatoric components

are represented similar to moment tensor decomposition. Moreover, isotropic parame-

ters ζ for the moment tensor and ζp for the potency tensor are also derivated. Inversion

theory and application method of the inversion (gCAP) for this study are also men-

tioned at the end of the chapter.

Chapter 4 includes the applications of the method. First, data set and its con-
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ditions are introduced. Distribution of the stations with respect to source location

are represented. Inversions are performed in different distances and depths for three

different moment tensors, which has different percentage of isotropy namely 2%, 5%,

14%. This process is approached as a case study. Apart from the original results of

the inversions, manipulated inversions results are also considered. As a result of those

inversions, changes in the strike, rake and dip angles with respect to manipulated per-

centages of ISO are shown. We conclude this chapter by representing the manipulated

inversion results for different hypocentral depths of the earthquakes.

In the last chapter, the results are discussed and compared to each other in

terms of changing isotropic percentages, depth, variance reduction and waveforms in

distributed stations. In this section, comparison of the inversions results for three dif-

ferent synthetic earthquakes with different isotropic percentages,namely 2%, 5%, 14%

are mainly considered. Different stations sets are used in order to perform those in-

versions for different earthquakes. There are totally 10 stations for each set, which are

located at 15, 45 and 80 km far away from the source. Firstly, isotropic component

in the full waveforms of different earthquakes are compared. Afterwards, inversion re-

sults of moment tensors with different isotropic percentages are compared for different

stations distances. Thirdly, earthquakes with different isotropic component are also

compared for the same stations. Finally, the hypocentral depths of the original earth-

quakes are changed in order to observe changes in isotropic perentage and variance

reduction values as a result of inversions.



4

2. THEORETICAL BACKGROUND

In this chapter, theoretical background of this research is introduced. In par-

ticular, the definitions of the fault plane parameters, equivalent body forces, Green’s

function, elasticity tensor, moment tensor decomposition and representation theorem

are stated.

2.1. Equation of Motion

By using Newton’s second law, equation of motion can be written. The total

force of a material is equal to the mass of a material (ρ) multiplied by acceleration (üi)

(double differentiation of displacement with respect to time). Interior body forces fi

and surface forces, which are represented by stress tensor σij, are the two types forces

acting on a particle in a continuum.

Consequently, the equation 2.1 that represents elastic motion in a continuum can

be written by using Einstein’s summation convention as

ρ(x)üi = fi + σij,j, i ∈ {1, 2, 3}, (2.1)

where u denotes the displacement and the two dots above u denotes the second deriva-

tive of displacement, namely acceleration. In order to write down equation 2.1 as a

partial differential equation with respect to the unknown function u, we are going to

write down stress tensor σij in terms of displacement. To do so, first we need to express

strain as a function of u. The measure of deformation (strain), which is a second rank

tensor, depends on differentiation of displacement as

εkl =
1

2
(uk,l + ul,k), (2.2)

where εkl is the strain tensor.
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2.2. Elasticity Tensor

Elasticity is the attitude of an object to get back its original form when it is

being subjected to a stress. The linear relation between elasticity, strain and stress

is explained by Hooke’s law (in this equation, Cijkl denotes elastic parameters of the

medium and it is a fourth rank tensor [26]).

σij = Cijklεijkl

= Cijkl
1

2
(uk,l + ul,k),

=
1

2
(Cijkluk,l + Cijkluk,l),

=
1

2
(Cijkluk,l + Cijlkuk,l), since Cijkl = Cijlk.

= Cijkluk,l. (2.3)

Consequently, if we substitude equation 2.3 onto 2.1, we get elastodynamic wave equa-

tion

ρüi = fi + Cijkluk,lj. (2.4)

assuming that Cijkl = 0, namely the medium is homogeneous.

2.3. Green’s Function Solution of Elastodynamic Wave Equation

Figure 2.1. V represents the domain, ∂V represents the boundary V′ represents the source

area and triangle (x,t) represents the measurement point’s location and time.
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The vector wave equation, expressed in equation 2.4, has a unique solution if

initial and boundary conditions are given as

1. Initial condition for all x ∈ V u(x, t0) and u̇(x, t0)

2. A boundary conditions;

(a) u(x,t) is given for all x ∈ ∂V

or

(b) T Traction vector Ti is given, for all x ∈ (Ti = σijnj = Cijklu(x)k,lnj).

Therefore, if we admit these initial and boundary conditions as mentioned above,

general solution of the vector wave equation can be constructed as

un(x, t) =

∫ ∞
−∞

∫∫∫
V

fiGnidV dτ +

∫ ∞
−∞

∫∫
S

uiTi(G)dSdτ

+

∫ ∞
−∞

∫∫
S

Ti(u)GnidSdτ.

(2.5)

The first term in equation 2.5 will result in displacement due to body force. Apart

from first term in the equation 2.5, other terms will give us boundary’s contribution

to displacement.

2.4. Greens’s Function Solution for Faults

Figure 2.2. Representation theorem for faults. Σ represents the fault region. V is the

domain volume and dV is the boundary of the domain.
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Assuming that the body source is zero, a fault can be defined as an internal

boundary where traction is continuous and displacement is discontinuous. One can use

the notation [ui] = u+
i (x, t)− u−i (x, t) in order to explain the slip discontinuity at the

fault surface. Since traction in equation 2.5 is continous the third term in equation 2.5

will vanish for internal boundary Σ which represents the fault region in Figure 2.2, ξ

represents the location in the fault region and τ denotes the time of the source, whereas

(x,t) represents receiver’s location and time[26]. From now on, writing down Ti(σ) in

terms of displacement, equation 2.5 becomes

un(x, t) =

∫ ∞
−∞

∫∫
Σ

[ui](ξ, τ)Cijkln̂j
∂Gnk

∂Σl

(x, t; ξ, τ)dΣdτ. (2.6)

Because of the shifting property of Green’s function due to time, one can change

the time variables. The difference between time at the measurement point and source

time is t–τ .

Gni(x, t; ξ, τ) = Gni(x, t− τ ; ξ, 0) (2.7)

If the Green’s function is represented in the right side of equation 2.7, time integral

can be assumed as a convolution.

f(t) ∗ g(t) =

∫ ∞
−∞

f(τ)g(t− τ)dτ. (2.8)

Then 2.4 becomes,

un(x, t) =

∫∫
Σ

[ui](ξ, τ)Cijkln̂j ∗Gnk,l(x, t; ξ, τ)dΣ(ξ). (2.9)
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2.5. Equivalent Body Forces

To get the equivalent body forces, Green’s function should be vanished from the

equation 2.9. By integrating the slip on the fault plane equation 2.9 proceeds the

displacement at a measurement point. By adding a dirac delta term to the equation,

volume integral for the whole area can be written in place of integral that is only for

the fault region. The spacial variable for source ξ will become to η.

un(x, t) =

∫∫∫
V

([ui](ξ, τ)Cijkln̂jδ(Σ)) ∗Gnk,l(x, t; ξ, τ)dV(η) (2.10)

Using partial integration, one can get rid of Green’s function’s derivative. Green’s

function vanishes when it is evaluated with the dirac delta at the boundaries, for that

reason first term will become zero (∂(Σ) is zero at ∂V outer surface of V), so we can

write the equation as

un(x, t) = −
∫∫∫

V

∂

∂ηl
([ui](ξ, τ)Cijkln̂jδ(Σ)) ∗Gnk(x, t; η, τ)dV(η). (2.11)

Consequently, the term ∂
∂ηl

[([ui](ξ, τ)Cijkln̂jδ(Σ))] is the equivalent body force for

the fault. And the term [ui](ξ, τ)Cijkln̂j equals to moment tensor Mkl. Then, we can

we say that equivalent body force for an earthquake equals to divergence of moment

tensor (Mkl,l = ∇ ·Mkl).

2.6. Moment Tensor

Equivalent body forces of seismic sources can describe moment tensor represented

by M (Figure 2.3). Moment tensor can be explained by two terms, which are fault

orientation and source strength.
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Figure 2.3. General representation of nine force couples.

2.6.1. Moment Density Tensor and Point Source Assumption

Initially, moment density tensor m should be explained in order to identify the

forces in Figure 2.3 With the help of Green’s function solution in the representation

theorem, displacement at the receiver un(x, t) can be written as below,

un(x, t) =

∫∫
Σ

[ui(ξ, τ)] n̂j(ξ)Cijkl(ξ) ∗Gnk,l(x, t; ξ, τ) dΣ, (2.12)

Since the term [ui(ξ, τ)] n̂j(ξ)Cijkl(ξ) represents the strength of the (k, l) couple

and the term Gnk,l(x, t; ξ, τ) represents the Green’s function displacement due to the

unit impulse at the source point and time, moment density tensor mkl can be defined

as

mkl = [ui(ξ, τ)] n̂jCijkl. (2.13)
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In point of fact, signal is generally used at certain periods for which the whole

surface Σ is efficiently a point source. In that case, the radiated waves from the different

parts of surface dΣ are approximately in phase [26]. In short, whole surface Σ can be

assumed as a point, which is the midpoint of Σ. In this manner, by using convolution

of moment density tensor at particular points of the fault surface with the Green’s

function where the source point is fixed, equation 2.13 can be written as

un(x, t)=

∫∫
Σ

[ui(ξ, τ)] n̂j(ξ)Cijkl(ξ) ∗Gnk,l(x, t; ξ̄, τ) dΣ,

=

(∫∫
Σ

[ui(ξ, τ)] n̂j(ξ)Cijkl(ξ) dΣ

)
∗Gnk,l(x, t; ξ̄, τ), (2.14)

where ξ̄ can be taken as the centroid of the earthquake and the Green’s function can

be withdrawn from the integral. Thus, one can define the point source moment tensor

as

Mkl =

∫∫
Σ

[ui(ξ, τ)] n̂j(ξ)Cijkl(ξ) dΣ. (2.15)

One can presume that the Σ is a planar surface and n̂ can be withdrawn from the

integral because n̂ represents the normal of a fault, so it never changes for different part

of the surface. Additionally, Cijkl(ξ) can be assumed as fixed on the fault plane. When

these assumptions are applied to the equation 2.15, we can expressed the equation as

Mkl = n̂jCijkl

∫∫
Σ

[ui] dΣ. (2.16)

If we consider the slip function as a constant, the average of slip can be taken on the

fault surface as [ūi] :=
∫∫

Σ[ui(ξ,τ)]dΣ

A
, where A =

∫∫
Σ
dΣ equals to fault surface area.

With these considerations, moment tensor of a point source can be simplified as

Mkl = [ūi]njCijkl, (2.17)

where n = An̂ represents the fault normal vector whose magnitude equals to fault

plane area and ūi becomes constant as mentioned above. Therefore the equation 2.12
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with the displacement at the measurement point and time un(x, t) can be written as

un(x, t) = Mkl ∗Gnk,l(x, t; ξ̄, τ). (2.18)

Consequently, in equation 2.18, moment tensor is derived for the point source assump-

tion instead of moment density tensor (equation 2.13).

2.7. Fault Plane Parameters

Fault is described as boundary in volume of rock, which can be explained as

planar fracture or discontinuity. Orientation of fault can be determined on Cartesian

coordinates such that strike (φ), dip (δ) and slip (λ) angles . Moreover, in order to

explain relation between these angles and moment tensor one can express these angles

by slip vector (u) and fault normal (n)

Strike (φ) is measured clockwise from north which is the direction of surface

intersection of the fault, this angle can vary between 0 ≤φ ≤ 2π. Dip (δ) is measured

clockwise from horizontal plane, which is the slop angle of the foot-wall block, the angle

δ can vary in the array 0 ≤ δ ≤ π
2
. Slip (λ) is measured counterclockwise from strike

and slip direction, which describes the direction of fault movement and the angle λ can

vary between -π ≤ λ ≤ π.

Figure 2.4. Fault Plane Expression.
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In order to calculate slip vector (u) and fault normal (n), strike (φ), dip (δ) and

slip (λ) should be known. This relation is calculated by [26] as

u = u(cosλ+ cos Φ + cos δ sinλ sin Φ)ex

+ u(cosλ+ sin Φ− cos δ sinλ cos Φ)ey

− u(sin δ sinλ)ez

(2.19)

n = − sin δ sin Φex + sin δ cos Φey − cos δez (2.20)

2.7.1. Decomposition of the Moment Tensor

It is a well-known result that the moment tensor can uniquely be separated into

two different parts, namely isotropic (ISO) and deviatoric (DEV) parts. Moreover,

deviatoric part can also be expressed as a sum of two parts, double-couple (DC) and

compensated linear vector dipole (CLVD). The sum of CLVD and isotropic parts is

referred to non-DC components of moment tensor and it is well-known fact that tensile

sources generate non-DC components. For example, explosions or seismic activities in

the volcanic or geothermal areas [5][1].

Mathematically stating decomposition into isotropic and deviatoric components

can uniquely be written as

M = MISO + MDEV . (2.21)

However, the deviatoric part can further be decompose into DC and CLVD components.

This feature leads to a non-unique decomposition. Due to its non uniquless there are

various methods for the moment tensor decomposition [1], [6], [7], in a sense, these

decompositions may lead to different interpretations. In this thesis the decomposition

method, which is proposed by Knopof and Fitch [7],[8], is used. The ISO, DC and
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CLVD decomposition can be written as

M = MISO + MDC + MCLV D, (2.22)

where

MISO =
1

3
tr(M)


1 0 0

0 1 0

0 0 1

 ,

MCLV D = |ε|M∗
|max|


1 0 0

0 −2 0

0 0 1

 ,

MDC = (1− 2|ε|)M∗
|max|


−1 0 0

0 0 0

0 0 1

 .

(2.23)

In equation 2.23, M* denotes the deviatoric moment where M∗
|max| denotes the

maximum eigenvalue of M* in an absolute sense and and M∗
|min| denotes the minumum

eigenvalue of M* in an absolute sense respectively. Additionally, the value ε, which is

equal to ε = −
M∗|min|
M∗|max|

, defines the size of CLVD with respect to DC (Sipkin, 1986, [5];

Kuge and Lay, 1994 [9]; Julian et al., 1998 [10], Vavryčuk, 2001, [11]).
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3. DATA AND METHOD

3.1. Moment and Source Tensors Expressed in Kelvin Notation

In order to identify the moment tensor structure for the different type of sources

such as shear and tensile, elasticity tensor should be considered as a linear transforma-

tion in R6 between the moment tensors space and source tensors space. Secondly, while

using Kelvin mapping one can use the capable linear algebraic manipulation tools. In

order to present equation 2.17 in Kelvin notation, firstly notice that it can be expressed

as

Mkl=
1

2
Cijkl ([ui(ξ, τ)]nj + [uj(ξ, τ)]ni)

=CijklDij, (3.1)

where ui represents the constant and average slip function instead of ūi. Due to the

symmetry of elasticity tensor, first equality can be written Cijkl = Cjikl. The second-

rank source tensor Dij in the second equality is constructed by the tensor product of

[u] and n. (Heaton and Heaton, 1989, [12]; Vavryčuk, 2005, [13]).

Dij =
1

2
([ui]nj + [uj ]ni) ,

=
1

2


2 [u1]n1 [u1]n2 + [u2]n1 [u1]n3 + [u3]n1

[u1]n2 + [u2]n1 2 [u2]n2 [u2]n3 + [u3]n2

[u1]n3 + [u3]n1 [u2]n3 + [u3]n2 2 [u3]n3


(3.2)

In order to simplify the equation 3.2, one can write the equation by using tensor

product as

D =
1

2
([u]⊗ n + n⊗ [u]) . (3.3)

When the tensor products image space a ⊗ b is considered as a linear transfor-

mation, it becomes one dimensional and more explicit image space, which is spanned
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by vector a since (a⊗ b)(v) = a(b.v). Image space of the source tensor is defined as

a plane in R3 and it is spanned by two vectors namely slip and normal (equation 3.3).

Notice that the equation 3.2 is the closer form of the Hooke’s law equation 2.3

In both equations fourth-rank elasticity tensor meets two second-rank tensors. For

that reason one can use Kelvin mapping to identify the tensors in matrix form. The

advantages of the Kelvin mapping is that firstly, the elastic energy is preserved by

using Kelvin mapping and it also preserves the norm of three tensors. Moreover,

Kelvin mapping allows us to keep advantages of the tensor algebra e.g evaluating

eigenvalues of eigenvectors of the tensors. To use Kelvin notation, one should identify

the norm-preserving map, which maps the space of symmetric second-rank tensor to

six dimensional vectors as below


M11 M12 M13

M12 M22 M23

M13 M23 M33

→



M11

M22

M33
√

2M23
√

2M13
√

2M12


,


D11 D12 D13

D12 D22 D23

D13 D23 D33

→



D11

D22

D33
√

2D23
√

2D13
√

2D12


. (3.4)

While doing the mapping above, Frobenius norm is preserved. Frobenius norm is

defined as the square root of the sum of the absolute squares of its entries.In this

condition Frobenius norm of second-rank tensors and vectors are equal each other.

Moreover, elasticity tensor can also be expressed by using the same mapping

method in the form of a 6× 6 matrix without changing the Frobenius norm. (Bóna et.

al. 2007, [14])

C =



C1111 C1122 C1133

√
2C1123

√
2C1113

√
2C1112

C1122 C2222 C2233

√
2C2223

√
2C2213

√
2C2212

C1133 C1133 C3333

√
2C3323

√
2C3313

√
2C3312

√
2C1123

√
2C2223

√
2C3323 2C2323 2C2313 2C2312

√
2C1113

√
2C2213

√
2C3313 2C2313 2C1313 2C1312

√
2C1112

√
2C2212

√
2C3312 2C2312 2C1312 2C1212


. (3.5)

Notice that, if we divide above matrix into four equal parts geometrically, we can see

the multiplier
√

2 to the elements of right-top and left-bottom parts and the multiplier

2 to the elements of right-bottom parts. Because of that in equation 3.5 elements

of right-top of the matrix appears twice e.g. C1123 = C1132, although the entries in
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the right-bottom corner appears four-times e.g. C2313 = C2331 = C3213 = C3231 and the

elements in the left-top appears only once. Moreover, in order to represent the tensor in

the form of symmetric matrix, symmetry of elasticity tensor can be used Cijkl = Cklij.

After all of this, one can represent the equation 3.2 as

m = Cd,

or in componentwise

m1

m2

m3
√

2m4
√

2m5
√

2m6


=



C11 C12 C13

√
2C14

√
2C15

√
2C16

C12 C22 C23

√
2C24

√
2C25

√
2C26

C13 C23 C33

√
2C34

√
2C35

√
2C36

√
2C14

√
2C24

√
2C34 2C44 2C45 2C46

√
2C15

√
2C25

√
2C35 2C45 2C55 2C56

√
2C16

√
2C26

√
2C36 2C46 2C56 2C66





d1

d2

d3
√

2d4
√

2d5
√

2d6


(3.6)

. For m and d tensors in the equation 3.6 following replacements is used,

(1, 1)→ 1, (2, 2)→ 2, (3, 3)→ 3,

(2, 3)→ 4, (1, 3)→ 5, (1, 2)→ 6.

Because of norm preserving feature of Kelvin notation elasticity matrix can be consid-

ered as a linear transformation in R6. While using Kelvin notation, we take advantage

of linear algebra which is used broadly in this thesis.

3.2. Tensile Source in Isotropic Focal Region

The tensile source theory depends on the case that when the slip and the normal

of the fault are not perpendicular to each other i.e. [u] .n 6= 0 (Figure 3.1).

Moreover, to simplify the moment tensor representation source area has been

chosen isotropic, so the form of the elasticity matrix is also modified by considering
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Figure 3.1. A model for the shear (above) and tensile (below), Σ represents the fault plane,

n denotes the fault normal, [u] is the slip and α is the angle between slip and fault plane.

isotropic medium in Kelvin notation as

C =



λ+ 2µ λ λ 0 0 0

λ λ+ 2µ λ 0 0 0

λ λ λ+ 2µ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ


, (3.7)

where λ and µ represent the Lamé parameters, for that reason only two eigenspaces

of isotropic elasticity tensor can be mentioned. This statement is described by Bóna
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et.al. (2007), [14]:

Σ1 =< (1, 1, 1, 0, 0, 0) >; λC1 = 3λ+ 2µ, (3.8)

Σ2 ={σ ∈ R6 — σ1 + σ2 + σ3 = 0}; λC2 = 2µ, (3.9)

where λC1 and λC2 is the eigenvalues of the tensor in equation .

The tensile source tensor, which is in equation 3.3, differs from the shear source

in that it has both isotropic and deviatoric parts (d = diso + ddev). Moreover, diso and

ddev parts of tensile source tensor depend on the different eigenspaces of the elasticity

tensor. In short, diso ∈ Σ1 and ddev ∈ Σ2 where eigenspaces are shown in equations 3.8

and 3.9. Moreover, since (Σ1.d) Σ1 = diso Then the moment tensor can be obtained

by the action of C onto d, namely

m =Cd

=C
(
diso + ddev

)
=Cdiso + Cddev

=λC1 diso + λC2 ddev. (3.10)

The moment tensor form with respect to the source tensor can be expressed equally as

M = λC1 Diso + λC2 Ddev, (3.11)

where λC1 and λC2 are the eigenvalues of the isotropic elasticity tensor agree with the

eigenspaces Σ1 and Σ2 specified in the equations 3.8 and 3.9.

The eigenvalues of the moment tensor can be acquired by utilizing the eigenval-

ues of the isotropic and deviatoric parts of the source tensor from equation 3.11. The

statements of the eigenvalues of the moment tensor and the source tensor are shown in

table 3.1. This table 3.1 also shows that in order to find the eigenvalues of the moment

tensor, one can add the eigenvalues of the isotropic and deviatoric parts of the source
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Table 3.1. The eigenvalues and eigenvectors in sequence of the source tensor, deviatoric and

isotropic parts of the source and lastly moment tensor are expressed.

Name of the Tensor Eigenvalues Eigenvectors

Source Tensor D 1
2

([u] · n + AD) [û] + n̂

1
2

([u] · n− AD) [û]− n̂

0 [û]× n̂

Ddev 1
2

([u] · n + AD)− [u]·n
3

[û] + n̂

1
2

([u] · n− AD)− [u]·n
3

[û]− n̂

− [u]·n
3

[û]× n̂

Diso [u]·n
3

Any

[u]·n
3

vector

[u]·n
3

in R3

Moment Tensor M λM1 = [u]·n
3

(λC1 +
λC2
2

) +
λC2
2
AD [û] + n̂

λM2 = [u]·n
3

(λC1 +
λC2
2

)− λC2
2
AD [û]− n̂

λM3 = [u]·n
3

(
λC1 − λC2

)
[û]× n̂

tensor that are multiplied by the relating eigenvalues of the elasticity tensors. This

relation also expressed in equation 3.11.

3.3. Parametrization of Potency Tensor

Seismic sources can be determined by using the seismic potency tensor Pij. The

reason of introducing potency tensor is that it represents the source whereas moment

tensor depends on the elastic parameters of the focal region. In this study the source

decomposition method is used. This decomposition is proposed by Zhu and Ben-Zion

[15]. Instead of stress-based moment tensor, using the strain-based potency tensor can

be more effective way to explain possible fault plane and slip orientations [16].

Similar to the moment tensor, potency tensor can also be decomposed into
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isotropic and deviatoric parts of it.

Pij =
1

3
tr(P )δij + P ′ij, (3.12)

where P represents potency and δij represents the Kronecker delta.

Moreover, the value ζp, which is a dimensionless parameter in order to quantify

the strength of the isotropic part, is introduced by Zhu and Ben-Zion [17],

ζp =

√
2

3

tr(P )

P0

. (3.13)

Note that ζp varies from -1 for implosion to 1 for explosion, where P0 denotes the scalar

potency and it can be formulated as P0 =
√

2PijPij. Additionally, from the equation

3.13 one can rewrite the equation 3.12 as

Pij =
P0√

2
(ζpIij +

√
1− ζ2

pDij), (3.14)

where Iij is the normalized isotropic tensor Iij = 1√
3
δij and Dij and the value Dij is

the normalized deviatoric part of source tensor which is also satisfying

Dii = 0, (3.15)

Dij = 1.

Secondly, Dij is decomposed to its CLVD and DC components. The CLVD has a

dipole in its symmetry axis compensated by two unit dipoles in the orthogonal di-

rections (Knopoff Randall 1970, [7]). In a sense λ1,λ2 and λ3 are the eigenvalues

corresponding the eigenvetors of T-axis (T̂ ), null-axis (N̂) and P-axis (P̂ ) respectively.

Those dimensionless eigenvalues also satisfy the three conditions, firstly λ1 ≥ λ2 ≥ λ3,

secondly λ1+λ2+λ3 = 0 and thirdly λ2
1+λ2

2+λ2
3 = 1. With the help of these conditions
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we get,

max(λ2) = min(λ1) =
1√
6
, (3.16)

min(λ1) = max(λ3) =
1√
6
.

If λ2 = 0, the deviatoric tensor Dij becomes pure DC. Due to the fact that CLVD

symmetry axis can be adjust with all of the principal axes (e.g. Hudson et al. 1989

[18]; Jost Herrmann 1989, [6]). In this case, the CLVD symmetry axis has aligned

with null-axiss (e.g. Chapman Leaney 2012, [19]).

Dij = λ1TiTj + λ2NiNj + λ3PiPj, (3.17)

=
λ1 − λ3√

2
DDC
ij +

√
3

2
λ2D

CLV D
ij ,

where

DDC
ij =

1√
2

(TiTj − PiPj), (3.18)

DCLV D
ij =

1√
6

(2NiNj − TiTj − PiPj). (3.19)

For the equation below, DDC
ij and DCLV D

ij are the normalized DC and CLVD tensors.

The above decomposition has the convenient feature that the DC and CLVD basic

sources are orthogonal, in other words, DDC
ij DCLV D

ij = 0. The dimensionless parameter

χp can specify the strength of CLVD as

χp =

√
3

2
λ2. (3.20)

From the equation 3.16 we can get 0.5 ≥ χp ≥ −0.5 (Bailey et al. (2009), [20] and

Julian et al. (1998), [10]) By using equation 3.15 and 3.20, equation 3.17 can be written

in the form of

Dij =
√

1− χ2
pD

DC
ij +DCLV D

ij . (3.21)
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In order to show general potency tensor as below, equation 3.21 is inserted into equation

3.14,

Pij =
P0√

2
(ζpIij +

√
1− ζ2

p (
√

1− χ2
pD

DC
ij +DCLV D

ij )). (3.22)

It can be seen, six independent values have an importance of potency tensor specifica-

tion, namely: three amplitude factors P0, ζp, χp and three angles of the principal axes

of the deviatoric tensor (fault-based coordinate system with strike φp, dip δp and slip

λp angles on the fault (Aki & Richards 2002, [21]).

3.4. Parametrization of Moment Tensor

General seismic moment tensor can be expressed by using same procedures,

Mij =
√

2M0(ζIij +
√

1− ζ2D
′

ij), (3.23)

where M0 is the scalar moment described as

M0 =

√
MijMij

2
(3.24)

and here ζ, which is a dimensionless parameter quantifying the strength of the isotropic

moment, can be expressed as

ζ =
tr(M)√

6M0

(3.25)

with the condition 1 ≥ ζ ≥ −1. In equation 3.23, the normalized deviatoric moment

tensor D′ij is actually represented in the same form with the Dij in the equation 3.21.

However, the vaule D′ij uses its own eigenvalues and principal axes. Similar to the

potency tensor, general moment tensor can also be explained by using six independent

parameter: M0, ζ, χ, φ, δ and λ. The moment tensor and potency tensor are linearly

related each other through the cijkl (fourth-order elastic moduli tensor) (e.g.Ben-Zion
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2013, [15]),

Mij = cijklPkl. (3.26)

For an isotropic elastic medium,

Mij = (λ+
2

3
µ)Pkkδij + 2µP

′

ij (3.27)

where λ and µ are the Lame parameterss. By using equation 3.14 it becomes

Mij =
√

2µP0(ηζIij +
√

1− ζ2Dij), (3.28)

where η = 1+ν
1−2ν

and ν represents the Poisson’s ratio. By comparing equation 3.23 and

3.28, it can be noticed that D
′
ij = Dij for the isotropic elasticity. This relation explains

that the CLVD variables and source orientation angles for the moment and potency

tensors are the same for the isotropic medium (χ = χp, φ = φp, δ = δp, λ = λp) but

isotropic parameters ζ for the moment tensor and ζp for the potency tensor are related

as

ζ =
ηζp√

1− (1− η2)ζp
. (3.29)

Moreover, scalar moment (M0) and scalar potency (P0) are also related as

M0 = µP0

√
1− (1− η2)ζp (3.30)

Assume that there is no volumetric change in the source (ζp = 0) equation 3.30 becomes

commonly-used relationship, M0 = µP0 (Zhu and Ben-Zion [17]).
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3.5. Moment Tensor Inversion

3.5.1. Theory of Moment Tensor Inversion

In order to find source parameters, moment tensor of seismic sources are in-

verted. Seismograms depend on fault parameters. Those parameters can be explained

as trigonometric functions of the fault strike, dip, and slip angles. Since seismograms

are linear function of entries of the moment tensor, the inverse problem is linear too. To

make the inversion, moment tensor can be represented as a vector m, which contains

the six parameters of the moment tensor. Although there are nine components of a

tensor, due to symmetry of a tensor only six components are independent, [22]. Then

seismogram u at the ith station can be defined as

ui(t) =
6∑
j=1

Gij(t)mj, (3.31)

where ui(t) is the seismogram in time domain, Gij(t) represents the Green’s function

in time domain which is related to the earth structure along the way from the source to

station and m represents the moment tensor components. Due to the fact that we have

more than one seismograms, we can define equation 3.31 as vector-matrix equation

u = Gm. (3.32)

For the equation below, u is a vector composed of the seismograms at n number of

stations and G represents the Green’s function matrix. If we expand the previous
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equation for the n number of station case,



u1

u2

·

·

·

·

·

un



=



G11 G12 G13 G14 G15 G16

G12 G22 G23 G24 G25 G26

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

· · · · · ·

Gn1 Gn2 Gn3 Gn4 Gn5 Gn6





m1

m2

m3

m4

m5

m6


. (3.33)

However, this linear equation is an overdetermined system. There are n number of

equations, which are more than six unknowns. Additionally, one can not invert matrix

G because it is not a square matrix. In this condition, instead of inverting matrix G,

closest moment tensor can be found by using observed seismograms in a least square

sense [22]. In other words, generalized inverse of G can be used, namely

m = (GTG)−1GTu. (3.34)

Due to the fact that moment tensor components are represented as linear functions of

the seismograms, they can be inverted in order to find the tensor components, [22].

3.5.2. Application of Moment Tensor Inversion

There are several methods of inversion of moment tensor but in this thesis gCAP

(generalized cut and paste) waveform inversion method is used. The gCAP method

based on the decomposition proposed by Zhu and Ben-Zion [17], [23]. This method

divides three component waveforms into five windows, which are vertical and radial

component Pnl; vertical and radial component Rayleigh wave; and transverse compo-

nent Love waves. The advantage of breaking waveforms into different windows is that

one can filter windows differently in terms of diverse frequencies in order to optimize

the level of fit during the inversion [24].
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The CAP method carries out a grid search over a double-couple mechanisms and

this method also allows us to generate synthetic waves, which are used as data in this

thesis. In order to account for errors in the Green’s functions, synthetic waveforms for

Pnl, Rayleigh and Love phases are also used with shifting in time property [25].

Moreover, the result of gCAP inversion includes strike, dip, rake, Mw, hypocentral

depth and additionally ζ and χ parameter for possible ISO and CLVD part of source.

From the zero initial values for ζ, χ and Mw grid search is performed repeatedly

with given step sizes [24]. At the end of each grid search, a quadratic interpolation

takes place in the vicinity of the grid point with a minimum misfit to identify the best

parameter value and calculate the locally curved area to estimate the value uncertainty.
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4. EXPERIMENTS AND RESULTS

In this chapter, firstly data set and the locations of seismometers are introduced.

This process is approached as a case study.

Three different synthetic earthquakes are simulated for this study. These earth-

quakes mainly represented as moment tensors, which have different isotropic percentage

and stations are located in different radius of the circles. For each cases 10 stations

are located in every other 36 degrees and at different distances, namely 10,15,45,80

km (Figure 4.1). In order to avoid wrong calculation of earthquake magnitudes in

the inversion stage, for each case two circles of stations are placed, which are at the

different distances from the source. If stations are selected in the one circle with the

same radius for the inversion, magnitudes can be calculated wrongly for the reason

that gCAP inversion consider the amplitude differences of a wave in the stations with

different distances when calculating the magnitude of an earthquake.

Figure 4.1. Station distribution with respect to source location. Circles are away from the

source point respectively 10,15,45 and 85 km, triangles represnts the synthetic stations.
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For three different moment tensors, which has different percentage of isotropy,

inversions are calculated in different distances, depths. For all cases, same one layer

half-space velocity model, which has 6 km/s P velocity and 3.37 km/s S velocity, is

used . Velocities of P and S waves in the model are selected by considering the average

velocities of P and S waves for the selected depths.

In this thesis, for each cases firstly moment tensor inversion is performed with

the original percentage of isotropy, DC and CLVD and then inversions are manipulated

with different values of ζ and χ in order to determine how the variance reduction is

changing for wrong values of ζ. More precisely, we want to find the sensitivity of the

waveforms and also inversion to the isotropic component of moment tensor, namely

parameter ζ. In gCAP inversion process, one can set the ζ and χ value as a constant

in the range of -1 and 1.

4.1. Case 1: Inversion of moment tensor with 2% isotropic component

For this case, our original moment tensor is

M =


0.653 4.287 0.659

4.282 5.493 2.635

0.659 2.635 −3.73

 , (4.1)

which has ζ = 0.143 and χ = −0.309 values. This moment tensor can be decomposed

as M = 2.032%ISO + 97.968%DEV (equation 4.2). This earthquake also has the

M0 = 6.93E+17 Dyne-cm, Mw = 1.16 and other initial parameters are shown in Table

4.1.
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M =


0.806 0.000 0.000

0.000 0.806 0.000

0.000 0.000 0.806


︸ ︷︷ ︸

MISO

+


1.382 2.933 −0.172

2.933 4.124 3.041

−0.172 3.041 −5.507


︸ ︷︷ ︸

MDC

+


−1.535 1.348 0.831

1.348 0.563 −0.406

0.831 −0.406 0.972


︸ ︷︷ ︸

MCLV D

(4.2)

The Table 4.1 also shows the parameters as a result of inversion with the initial

and original value of ζ and χ for the moment tensor.

4.1.1. Stations at 10 km and 15 km for 2% isotropy

In this case, twenty stations are placed in the two circles at 10 and 15 km far from

the source point for the inversion. Table 4.1 shows the initial values of the moment

tensor and its inverted results. Inversion results are obtained without imposing any

parameters such as ζ and χ, which defines the percentages of ISO and CLVD.

Table 4.1. Initial values and inversion results of an earthquake parameters with 98.4

variance reduction in the stations, which are placed at circle with 10 and 15 km radius for

the case 1.

Case 1.1 M0 Mw Strike Dip Rake ISO% DC% CLVD% ζ χ

Initial 6.93E+17 1.16 343 59 -72 2.032 88.620 9.347 0.143 -0.309

Inverted 6.89E+17 1.16 346 60 -69 2.031 88.608 9.361 0.143 -0.309

As a result of inversion, variance reduction is obtained as 98.4 and parameters of
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the moment tensor haven’t changed much (Table 4.1 and equation 4.3).

Minv =


0.578 4.278 0.578

4.279 5.393 2.752

0.577 2.752 −3.570

 (4.3)

Secondly, inversions are manipulated for the different isotropic percentages (dif-

ferent ζ values). More precisely, apart from original ζ value for the moment tensor,

other possible values of ζ are imposed in the inversion in the range of -1 to 1 with the

step of 0.1. Totally 21 inversions are performed for the changing ζ values.

As a result of inversions, results are shown in the Figures 4.2, 4.3, 4.4, 4.5. Figure

4.2 shows how the variance reduction changes as the isotropic percentage varies. These

plots show the sensitivity of the inversion to isotropic percentage of the moment tenor.

In figures 4.3, 4.4, 4.5, the changes in strike, dip and rake angles are shown according

to the variation of isotropic percentages in the range of -100% and 100%.



31

Figure 4.2. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, stations are placed at 10 and 15

km distances. The original moment tensor, which is expressed as red dot, has 2% isotropy.

The inversions of moment tensor are done for some forced values of ISO%-percentage, which

is shown in the x-axis, and the variance reduction values of the inverted moment tensors are

shown in the y-axis.

Figure 4.2 reveals the fault that waveforms are not very sensitive to the isotropic

component i.e even though the isotropic percentage has approximately 20% error, the

synthetic waveforms fit the data by 95% (variance reduction).
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Figure 4.3. Changes in the strike angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 2% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the strike angles of the inverted moment tensors are shown in the y-axis.

Figure 4.4. Changes in the dip angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 2% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the dip angles of the inverted moment tensors are shown in the y-axis.
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Figure 4.5. Changes in the rake angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 2% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the rake angles of the inverted moment tensors are shown in the y-axis.

For figure 4.3, 4.4 and 4.5, the results are expected same. Isotropic percentage

should not change the values of strike-dip-rake. In fact, strike-dip-rake are derived

from the double couple component of moment tensor, not the isotropic component of

moment tensor.

4.1.2. Stations at 45 km and 80 km for 2% isotropy

In this case, ten stations are placed in a circle with 45 km radius and other

ten stations placed in a circle which is 80 km far from the source point. Table 4.2

shows the initial values of the moment tensor and its inverted results. Inversion results

are obtained without imposing any parameters such as ζ and χ, which defines the

percentages of ISO and CLVD.
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Table 4.2. Initial values and inversion results of an earthquake parameters with 96.7

variance reduction in the stations, which are placed at circles with 45 and 85 km radius for

the case 1.

Case 1.2 M0 Mw Strike Dip Rake ISO% DC% CLVD% ζ χ

Initial 6.93E+17 3.16 343 59 -72 2.032 88.620 9.347 0.143 -0.309

Inverted 7.67E+17 3.19 340 56 -77 2.052 88.597 9.351 0.143 -0.309

Variance reduction is obtained as 96.7% after the inversion and other parameters

of moment tensor are shown in Table 4.2 and equation 4.4.

Minv =


0.798 4.742 0.714

4.742 6.284 2.494

0.714 2.494 −4.389

 (4.4)

Afterwards, inversion parameters are manipulated for the different isotropic per-

centages (different ζ values). More precisely, apart from the original ζ value of the

moment tensor, other possible values of ζ are forced in the range of -1 to 1 with the

step of 0.1. Totally 21 inversions are performed for the changing ζ values.

As a result of inversions, results are shown in the Figures 4.6, 4.7, 4.8, 4.9. Figure

4.6 shows how the variance reduction changes as the isotropic percentage varies. These

plots show the sensitivity of the inversion to isotropic percentage of the moment tenor.

In figures 4.7, 4.8, 4.9, the changes in strike, dip and rake angles are shown according

to the variation of isotropic percentages in the range of -100% and 100%.
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Figure 4.6. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, stations are placed at 45 and 80

km distances. The original moment tensor, which is expressed as red dot, has 2% isotropy.

The inversions of moment tensor are done for some forced values of ISO%-percentage, which

is shown in the x-axis, and the variance reduction values of the inverted moment tensors are

shown in the y-axis.

Figure 4.6 reveals the fault that waveforms are not very sensitive to the isotropic

component i.e even though the isotropic percentage has approximately 20% error, the

synthetic waveforms fit the data by 95% (variance reduction).
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Figure 4.7. Changes in the strike angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 2% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the strike angles of the inverted moment tensors are shown in the y-axis.

Figure 4.8. Changes in the dip angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 2% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the dip angles of the inverted moment tensors are shown in the y-axis.
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Figure 4.9. Changes in the rake angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 2% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the rake angles of the inverted moment tensors are shown in the y-axis.

For figure 4.7, 4.8 and 4.9, the results are expected same. Isotropic percentage

should not change the values of strike-dip-rake. In fact, strike-dip-rake are derived

from the double couple component of moment tensor, not the isotropic component of

moment tensor.

4.2. Case 2: Inversion of moment tensor with 5% isotropic component

For this case, our original moment tensor is

M =


2.123 4.282 0.659

4.282 5.493 2.635

0.659 2.635 −3.73

 . (4.5)

In this case, moment tensor has ζ = 0.224 and χ = −0.234 values. This moment

tensor can be decomposed as M = 5.040%ISO + 94.96%DEV (equation 4.6). This

earthquake also has the M0 = 7.07E+ 17 Dyne-cm, Mw = 1.17 and other initial values
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are shown in Table 4.3.

M =


1.296 0.000 0.000

0.000 1.296 0.000

0.000 0.000 1.296


︸ ︷︷ ︸

MISO

+


1.863 3.131 0.110

3.131 3.940 2.956

0.110 2.956 −5.802


︸ ︷︷ ︸

MDC

+


−1.035 1.151 0.549

1.151 0.258 −0.321

0.549 −0.321 0.778


︸ ︷︷ ︸

MCLV D

(4.6)

4.2.1. Stations at 10 km and 15 km for 5% isotropy

In this case, ten stations are placed in a circle with 10 km radius and other ten

stations are placed in a circle which is 15 km far from the source point. Table 4.3

shows the initial values of the moment tensor and its inverted results. Inversion results

are obtained without imposing any parameters such as ζ and χ, which defines the

percentages of ISO and CLVD.

Table 4.3. Initial values and inversion results of an earthquake parameters with 96.7

variance reduction in the stations, which are placed at circles with 45 and 85 km radius for

the case 2.

Case 2.1 M0 Mw Strike Dip Rake ISO% DC% CLVD% ζ χ

Initial 7.07E+17 1.17 338 58 -74 5.040 89.759 5.201 0.224 -0.234

Inverted 7.041E+17 3.19 338 58 -74 5.024 89.789 5.187 0.224 -0.234

As a result of inversion with original ζ value, variance reduction is obtained as

98.4% and parameters of initial and inverted moment tensor are shown in Table 4.3
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and equation 4.7.

Minv =


2.112 4.253 0.690

4.253 5.443 2.676

0.690 2.676 −3.689

 (4.7)

Secondly, inversions are manipulated for the different isotropic percentages (dif-

ferent ζ values). More precisely, apart from original ζ value for the moment tensor,

other possible values of ζ are imposed in the inversion in the range of -1 to 1 with the

step of 0.1. Totally 21 inversions are performed for the changing ζ values.

As a result of inversions, results are shown in the Figures 4.10, 4.11, 4.12, 4.13.

Figure 4.10 shows how the variance reduction changes as the isotropic percentage varies.

These plots show the sensitivity of the inversion to isotropic percentage of the moment

tenor. In figures 4.11, 4.12, 4.13, the changes in strike, dip and rake angles are shown

according to the variation of isotropic percentages in the range of -100% and 100%.

Figure 4.10. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, stations are placed at 10 and 15

km distances. The original moment tensor, which is expressed as red dot, has 5% isotropy.

The inversions of moment tensor are done for some forced values of ISO%-percentage, which

is shown in the x-axis, and the variance reduction values of the inverted moment tensors are

shown in the y-axis.
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Figure 4.10 reveals the fault that waveforms are not very sensitive to the isotropic

component i.e even though the isotropic percentage has approximately 20% error, the

synthetic waveforms fit the data by 95% (variance reduction).

Figure 4.11. Changes in the strike angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 5% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the strike angles of the inverted moment tensors are shown in the y-axis.
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Figure 4.12. Changes in the dip angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 5% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the dip angles of the inverted moment tensors are shown in the y-axis.

Figure 4.13. Changes in the rake angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 5% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the rake angles of the inverted moment tensors are shown in the y-axis.
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For figure 4.11, 4.12 and 4.13, the results are expected same. Isotropic percentage

should not change the values of strike-dip-rake. In fact, strike-dip-rake are derived from

the double couple component of moment tensor, not the isotropic component of moment

tensor.

4.2.2. Stations at 45 km and 80 km for 5% isotropy

In this case, twenty stations are placed in the two circles at 45 and 80 km far

from the source point for the inversion of full moment tensor with 5% isotropy. Table

4.4 shows the initial values of the moment tensor and its inverted results. Inversion

results are obtained without imposing any parameters such as ζ and χ, which defines

the percentages of ISO and CLVD.

Table 4.4. Initial values and inversion results of an earthquake parameters with 99.7

variance reduction in the stations, which are placed at circles with 45 and 85 km radius for

the case 1.

Case 2.2 M0 Mw Strike Dip Rake ISO% DC% CLVD% ζ χ

Initial 7.07E+19 3.50 338 58 -74 5.040 89.759 5.201 0.224 -0.234

Inverted 7.07E+19 3.27 338 58 -74 5.026 89.772 5.202 0.220 -0.230

Variance reduction is obtained as 99.7% after the inversion and other parametersof

moment tensor are shown in Table 4.4 and equation 4.8.

Minv =


2.123 4.282 0.659

4.282 5.493 2.635

0.659 2.635 −3.728

 (4.8)

Afterwards, inversion parameters are manipulated for the different isotropic per-

centages (different ζ values). More precisely, apart from the original ζ value of the

moment tensor, other possible values of ζ are forced in the range of -1 to 1 with the

step of 0.1. Totally 21 inversions are performed for the changing ζ values.

As a result of inversions, results are shown in the Figures 4.14, 4.15, 4.16, 4.17.
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Figure 4.14 shows how the variance reduction changes as the isotropic percentage varies.

These plots show the sensitivity of the inversion to isotropic percentage of the moment

tenor. In figures 4.15, 4.16, 4.17, the changes in strike, dip and rake angles are shown

according to the variation of isotropic percentages in the range of -100% and 100%.

Figure 4.14. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, stations are placed at 45 and 80

km distances. The original moment tensor, which is expressed as red dot, has 5% isotropy.

The inversions of moment tensor are done for some forced values of ISO%-percentage, which

is shown in the x-axis, and the variance reduction values of the inverted moment tensors are

shown in the y-axis.

Figure 4.14 reveals the fault that waveforms are not very sensitive to the isotropic

component i.e even though the isotropic percentage has approximately 20% error, the

synthetic waveforms fit the data by 95% (variance reduction).
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Figure 4.15. Changes in the strike angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80m distances and

red dot in the graph shows the original moment tensor with 5% isotropy. The inversions of

moment tensor are done for some forced values of ISO%-percentage, which is shown in the

x-axis, and the strike angles of the inverted moment tensors are shown in the y-axis.

Figure 4.16. Changes in the dip angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 5% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the dip angles of the inverted moment tensors are shown in the y-axis.
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Figure 4.17. Changes in the rake angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 5% isotropy. The inversions

of moment tensor are done for some forced values of ISO%-percentage, which is shown in

the x-axis, and the rake angles of the inverted moment tensors are shown in the y-axis.

For figure 4.15, 4.16 and 4.17, the results are expected same. Isotropic percentage

should not change the values of strike-dip-rake. In fact, strike-dip-rake are derived from

the double couple component of moment tensor, not the isotropic component of moment

tensor.

4.3. Case 3: Inversion of moment tensor with 14% isotropic component

For this case, our original moment tensor is

M =


5.523 4.282 0.659

4.282 5.493 2.635

0.659 2.635 −3.728

 , (4.9)

which has ζ = 0.375 and χ = −0.103 values. This moment tensor can be decomposed

as M = 14.053%ISO + 85.041%DEV (equation 4.10). This earthquake also has the

M0 = 7.94E + 17 Dyne-cm, Mw = 1.20 and other initial parameters and inverted
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parameters of moment tensor are shown in Table 4.5.

M =


2.429 0.000 0.000

0.000 2.429 0.000

0.000 0.000 2.429


︸ ︷︷ ︸

MISO

+


3.358 3.667 0.440

3.667 3.168 2.827

0.440 2.827 −6.525


︸ ︷︷ ︸

MDC

+


−0.264 0.615 0.219

0.615 −0.104 −0.192

0.219 −0.192 0.367


︸ ︷︷ ︸

MCLV D

(4.10)

4.3.1. Stations at 10 km and 15 km for 14% isotropy

In this case, twenty stations are placed in the two circles at 10 and 15 km far

from the source point for the inversion of full moment tensor with 14% isotropy. Table

4.5 shows the initial values of the moment tensor and its inverted results. Inversion

results are obtained without imposing any parameters such as ζ and χ, which defines

the percentages of ISO and CLVD.

Table 4.5. Initial values and inversion results of an earthquake parameters with 97.9

variance reduction in the stations, which are placed at circles with 10 and 15 km radius, for

the case 3.

Case 3.1 M0 Mw Strike Dip Rake ISO% DC% CLVD% ζ χ

Initial 7.94E+17 1.20 328 56 -74 14.053 85.041 0.906 0.375 -0.103

Inverted 7.75E+17 1.19 332 58 -69 14.033 85.071 0.906 0.379 -0.114

As a result of inversion, variance reduction is obtained as 98.4% and parameters
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of the moment tensor haven’t changed much (Table 4.5 and equation 4.11).

Minv =


4.990 4.866 0.798

4.866 5.161 2.573

0.798 2.5735 −2.565

 (4.11)

Secondly, inversions are manipulated for the different isotropic percentages (dif-

ferent ζ values). More precisely, apart from original ζ value for the moment tensor,

other possible values of ζ are imposed in the inversion in the range of -1 to 1 with the

step of 0.1. Totally 21 inversions are performed for the changing ζ values.

As a result of inversions, results are shown in the Figures 4.18, 4.19, 4.20, 4.21.

Figure 4.18 shows how the variance reduction changes as the isotropic percentage varies.

These plots show the sensitivity of the inversion to isotropic percentage of the moment

tenor. In figures 4.19, 4.20, 4.21, the changes in strike, dip and rake angles are shown

according to the variation of isotropic percentages in the range of -100% and 100%.

Figure 4.18. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, stations are placed at 10 and 15

km distances. The original moment tensor, which is expressed as red dot, has 14% isotropy.

The inversions of moment tensor are done for some forced values of ISO%-percentage, which

is shown in the x-axis, and the variance reduction values of the inverted moment tensors are

shown in the y-axis.
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Figure 4.18 reveals the fault that waveforms are not very sensitive to the isotropic

component i.e even though the isotropic percentage has approximately 20% error, the

synthetic waveforms fit the data by 95% (variance reduction).

Figure 4.19. Changes in the strike angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 14% isotropy. The

inversions of moment tensor are done for some forced values of ISO%-percentage, which is

shown in the x-axis, and the strike angles of the inverted moment tensors are shown in the

y-axis.
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Figure 4.20. Changes in the dip angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 14% isotropy. The

inversions of moment tensor are done for some forced values of ISO%-percentage, which is

shown in the x-axis, and the dip angles of the inverted moment tensors are shown in the

y-axis.

For figure 4.19, 4.20 and 4.21, the results are expected same. Isotropic percentage

should not change the values of strike-dip-rake. In fact, strike-dip-rake are derived from

the double couple component of moment tensor, not the isotropic component of moment

tensor.
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Figure 4.21. Changes in the rake angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 10 and 15 km distances

and red dot in the graph shows the original moment tensor with 14% isotropy. The

inversions of moment tensor are done for some forced values of ISO%-percentage, which is

shown in the x-axis, and the rake angles of the inverted moment tensors are shown in the

y-axis.

4.3.2. Stations at 45 km and 80 km for 14% isotropy

In this case, ten stations are placed in a circle with 10 km radius and other

ten stations placed in a circle which is 15 km far from the source point. Table 4.6

shows the initial values of the moment tensor and its inverted results. Inversion results

are obtained without imposing any parameters such as ζ and χ, which defines the

percentages of ISO and CLVD.

Table 4.6. Initial values and inversion results of an earthquake parameters with 99.7

variance reduction in the stations, which are placed at circles with 45 and 85 km radius for

the case 3.

Case 3.2 M0 Mw Strike Dip Rake ISO% DC% CLVD% ζ χ

Initial 7.93E+20 3.20 328 56 -74 13.974 85.105 0.921 0.374 -0.103

Inverted 7.041E+20 3.19 328 55 -74 13.970 85.106 0.924 0.370 -0.100

Variance reduction is obtained as 98.4% as a result of inversion. Moment tensor
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and its parameters are represented in equation 4.12 and Table 4.6.

Minv =


5.488 4.280 0.569

4.280 5.528 2.495

0.569 2.495 −3.783

 (4.12)

Afterwards, inversion parameters are manipulated for the different isotropic per-

centages (different ζ values). More precisely, apart from the original ζ value of the

moment tensor, other possible values of ζ are forced in the range of -1 to 1 with the

step of 0.1. Totally 21 inversions are performed for the changing ζ values.

As a result of inversions, results are shown in the Figures 4.22, 4.23, 4.24, 4.25.

Figure 4.22 shows how the variance reduction changes as the isotropic percentage varies.

These plots show the sensitivity of the inversion to isotropic percentage of the moment

tenor. In figures 4.23, 4.24, 4.25, the changes in strike, dip and rake angles are shown

according to the variation of isotropic percentages in the range of -100% and 100%.
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Figure 4.22. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, stations are placed at 45 and 80

km distances. The original moment tensor, which is expressed as red dot, has 14% isotropy.

The inversions of moment tensor are done for some forced values of ISO%-percentage, which

is shown in the x-axis, and the variance reduction values of the inverted moment tensors are

shown in the y-axis.

Figure 4.22 reveals the fault that waveforms are not very sensitive to the isotropic

component i.e even though the isotropic percentage has approximately 20% error, the

synthetic waveforms fit the data by 95% (variance reduction).
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Figure 4.23. Changes in the strike angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 14% isotropy. The

inversions of moment tensor are done for some forced values of ISO%-percentage, which is

shown in the x-axis, and the strike angles of the inverted moment tensors are shown in the

y-axis.

Figure 4.24. Changes in the dip angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 14% isotropy. The

inversions of moment tensor are done for some forced values of ISO%-percentage, which is

shown in the x-axis, and the dip angles of the inverted moment tensors are shown in the

y-axis.
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Figure 4.25. Changes in the rake angle with respect to manipulated percentages of ISO are

shown as a result of inversions. In this case, stations are placed at 45 and 80 km distances

and red dot in the graph shows the original moment tensor with 14% isotropy. The

inversions of moment tensor are done for some forced values of ISO%-percentage, which is

shown in the x-axis, and the rake angles of the inverted moment tensors are shown in the

y-axis.

For figure 4.23, 4.24 and 4.25, the results are expected same. Isotropic percentage

should not change the values of strike-dip-rake. In fact, strike-dip-rake are derived from

the double couple component of moment tensor, not the isotropic component of moment

tensor.

4.4. Changing the hypocentral depth

In this section inversion processes are manipulated for different hypocentral depths

of 3 different earthquakes with 2%, 5% and 14% isotropy and 2 sets od circles of sta-

tions, which are located at 45 and 80 km distances and each circle has ten stations are

used for each inversion.

Originally, hypocentral depths of the 3 different types earthquakes are set as 8

km. Afterwards, inversions are performed in every 0.5 meters from 0.5 meters depth to

20 meters for each case. As a result of those manipulated inversions of earthquakes at
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different depths, the changes in isotropic percentages and the corresponding variance

reduction values are ploted in Figures 4.26, 4.28, 4.30.

4.4.1. Changing the hypocentral depth for the inversion with 2% isotropy

In this case, total 20 stations are placed in the two circles at 45 and 80 km far

from the source point to the inversion. Firstly, generated moment tensor (equation

4.1), which has 2% isotropy, is inverted at its original hypocentral depth (8 km). After

that, inversion process is manipulated for different depth values from 0.5 km to 20 km

with a stepsize of 0.5 km for the same earthquake. In other words, only the hypocentral

depth of the original earthquake is changed in order to observe changes in isotropic

perentages and variance reduction values.

Figure 4.26. Changes in the isotropic percentages are shown with respect to manipulated

hypocentral depth as a result of inversions. In this case, the original moment tensor has 2%

isotropy and stations are located at 45 and 80 km distances. Red dot shows the original

result from the inversion and the values. The variance reduction for each inversion is shown

at the left-hand side of the dots.
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Figure 4.27. As a result of inversions, changes in the variance reduction depends on

changing hypocentral depth are shown. Red dot represents the original inversions result of

moment tensor with 2% isotropy.

As a result of inversions, findings are shown in the Figures 4.26 and 4.27. In Figure

4.26, changes in the isotropic percentages with respect to manipulated hypocentral

depth and variance reduction values for each case are shown. Moreover, changes in

the variance reduction depends on changing hypocentral depth are expressed in Figure

4.27 as a result of total 40 inversions.

4.4.2. Changing the hypocentral depth for the inversion with 5% isotropy

In this case, total 20 stations are placed in the two circles at 45 and 80 km far

from the source point to the inversion. Firstly, generated moment tensor (equation

4.5), which has 5% isotropy, is inverted at its original hypocentral depth (8 km). After

that, inversion process is manipulated for different depth values from 0.5 km to 20 km

with a stepsize of 0.5 km for the same earthquake mechanism. In other words, only the

hypocentral depth of the original earthquake is changed in order to observe changes in

isotropic perentages and variance reduction values.
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Figure 4.28. Changes in the isotropic percentages are shown with respect to manipulated

hypocentral depth as a result of inversions. In this case, the original moment tensor has 5%

isotropy and stations are located at 45 and 80 km distances. Red dot shows the original

result from the inversion and the values. The variance reduction for each inversion is shown

at the left-hand side of the dots.

Figure 4.29. As a result of inversions, changes in the variance reduction depends on

changing hypocentral depth are shown. Red dot represents the original inversions result of

moment tensor with 5% isotropy.
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As a result of inversions, findings are shown in the Figures 4.28 and 4.29. In Figure

4.28, changes in the isotropic percentages with respect to manipulated hypocentral

depth and variance reduction values for each case are shown. Moreover, changes in

the variance reduction depends on changing hypocentral depth are expressed in Figure

4.29 as a result of total 40 inversions.

4.4.3. Changing the hypocentral depth for the inversion with 14% isotropy

In this case, total 20 stations are placed in the two circles at 45 and 80 km far

from the source point to the inversion. Firstly, generated moment tensor (equation

4.9), which has 14% isotropy, is inverted at its original hypocentral depth (8 km).

After that, inversion process is manipulated for different depth values from 0.5 km to

20 km with a stepsize of 0.5 km for the same earthquake mechanism. In other words,

only the hypocentral depth of the original earthquake is changed in order to observe

changes in isotropic perentages and variance reduction values.

Figure 4.30. Changes in the isotropic percentages are shown with respect to manipulated

hypocentral depth as a result of inversions. In this case, the original moment tensor has

14% isotropy and stations are located at 45 and 80 km distances. Red dot shows the

original result from the inversion and the values. The variance reduction for each inversion

is shown at the left-hand side of the dots.
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Figure 4.31. As a result of inversions, changes in the variance reduction depends on

changing hypocentral depth are shown. Red dot represents the original inversions result of

moment tensor with 14% isotropy.

As a result of inversions, findings are shown in the Figures 4.30 and 4.31. In Figure

4.30, changes in the isotropic percentages with respect to manipulated hypocentral

depth and variance reduction values for each case are shown. Moreover, changes in

the variance reduction depends on changing hypocentral depth are expressed in Figure

4.31 as a result of total 40 inversions.
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5. DISCUSSION AND CONCLUSIONS

In this chapter, results are considered and compared to each other in terms of

changing isotropic percentages, depth, variance reduction and waveforms in distributed

stations. Locations of the stations are mentioned in Figure 4.1, and synthetic wave-

forms are shown in 10 different azimuthal locations for each case. Mainly, 3 different

earthquakes with 2%, 5% and 14% isotropy and correspondingly 3 different stations

set (at 15, 45, 80 km distances) are used. Moreover, inversion results of those syn-

thetic earthquakes are examined in terms of depth, isotropic percentage and variance

reduction value.

5.1. Case 1: Waveforms of the synthetic earthquake with 2% isotropy

In this case, mainly generated synthetic moment tensor and its isotropic and

deviatoric part are shown separately. There are totally 10 stations, which are located

at 15, 45 and 80 km far away from the source and the Figures 5.1, 5.2, 5.3 show the

distribution of the stations. For this case, moment tensor with 2% isotropy in equation

4.1 is shown as waveform and also it is divided into its components namely isotropic

and deviatoric. In each stations, waveforms are scaled by amplitude of isotropic parts

of the moment tensor and all of these data are shown without any filters.
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Figure 5.1. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 15 km and moment tensor has 2% isotropy component. Additionally,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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Figure 5.2. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 45 km and moment tensor has 2% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.



63

Figure 5.3. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 80 km and moment tensor has 2% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.

5.2. Case 2: Waveforms of the synthetic earthquake with 5% isotropy

In this case, mainly generated synthetic moment tensor and its isotropic and

deviatoric part are shown separately. There are totally 10 stations, which are located

at 15, 45 and 80 km far away from the source and the Figures 5.4, 5.5, 5.6 show the

distribution of the stations. For this case, moment tensor with 5% isotropy in equation

4.5 is shown as waveform and also it is divided into its components namely isotropic

and deviatoric. In each stations, waveforms are scaled by amplitude of isotropic parts
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of the moment tensor and all of these data are shown without any filters.

Figure 5.4. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 15 km and moment tensor has 5% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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Figure 5.5. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 45 km and moment tensor has 5% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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Figure 5.6. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 80 km and moment tensor has 5% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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5.3. Case 3: Waveforms of the synthetic earthquake with 14% isotropy

In this case, mainly generated synthetic moment tensor and its isotropic and

deviatoric part are shown separately. There are totally 10 stations, which are located

at 15, 45 and 80 km far away from the source and the Figures 5.7, 5.8, 5.9 show the

distribution of the stations. For this case, moment tensor with 14% isotropy in equation

4.9 is shown as waveform and also it is divided into its components namely isotropic

and deviatoric. In each stations, waveforms are scaled by amplitude of isotropic parts

of the moment tensor and all of these data are shown without any filters.

Figure 5.7. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 15 km and moment tensor has 14% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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Figure 5.8. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 45 km and moment tensor has 14% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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Figure 5.9. Waveforms of the unfiltered earthquakes data are shown. In this case, stations

are located at 80 km and moment tensor has 14% isotropy component. In this figure,

waveforms are differentiated with colors; red lines, green lines and blue lines express the

isotropic part, deviatoric part and moment tensor itself respectivelty.
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At this point, different isotropic percentages (2%, 5% and 14%) in the waveforms

are shown at stations which are located at different distances (15, 45 and 80 km) and

azimuths. In the light of those findings, one can notice that isotropy component has

small energy compared to the whole waveform. Inversion of the isotropic component

is very small part when it is compared to the inversion of the full waveform because

there are only small amount of isotropy part involves in P-wave.

As a result of those Figures mentioned above, inversion is not really sensitive to

isotropic percentage in the moment tensor. Even though the error of isotropic value

increases, variance reduction can be very high because the ratio of isotropy in the full

waveform is very low.

5.4. How does variance reduction change with respect to different

isotropic percentages ?

Firstly, inversion results of the moment tensor with 2% isotropy are recorded at

two different sets of stations. Those results are compared to each others. Figure 5.10

shows the effect of manipulated iso percentages (in the inversion processes) on the

variance reduction values.
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Figure 5.10. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, 2 different sets of stations are used

seperately. Blue dots indicate the inversion of the moment tensor with 2% isotropy recorded

at 45 and 80 km. Orange dots indicate the inversion of the same moment tensor, which is

recorded at 10 and 15 km.

Secondly, inversion results of the moment tensor with 5% isotropy are recorded

at two different sets of stations. Those results are compared to each others. Figure

5.11 shows the effect of manipulated iso percentages (in the inversion processes) on the

variance reduction values.
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Figure 5.11. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, the sets of two different stations

are used seperately. Blue dots indicate the inversion of the moment tensor with 5% isotropy

recorded at 45 and 80 km. Orange dots indicate the inversion of the same moment tensor,

which is recorded at 10 and 15 km.

Thirdly, inversion results of the moment tensor with 14% isotropy are recorded

at two different stations sets. Those results are compared to each others. Figure 5.12

shows the effect of manipulated iso percentages (in the inversion processes) on the

variance reduction values.
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Figure 5.12. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown. In this case, 2 different stations set are used

seperately. Blue dots indicate the inversion of the moment tensor with 14% isotropy

recorded at 45 and 80 km. Orange dots indicate the inversion of the same moment tensor,

which are recorded at 10 and 15 km.

Those three graphics mentioned below (Figures 5.10, 5.11 and 5.12) show that for

all cases inversion results are not sensitive when the manipulated isotropic percentages

are smaller than 0. Moreover, when the isotropy values are close to the original isotropic

percentages (approximately +-5), it can be seen that inversions of the full waveforms

recorded at 45 and 80 km give relatively better variance reduction values. Additionally,

as the initial values of the isotropic percentages are getting greater (from %2 to 14%),

relatively close stations give lower variance reduction values as a result of inversions.

Moreover, inversions of those different moment tensors are also examined to-

gether. In Figures 5.13 and 5.14 show the all inversions results of three moment ten-

sors recorded at two different sets of stations. Firstly, inversion results of the moment

tensors with 2%, 5% and 14% isotropy are recorded at 10 and 15 km far away from

the source location (Figure 5.13). Secondly, same conditions of inversion method is

applied to same earthquakes, but different stations, which are located at 45 and 80 km

(Figure 5.14). Those results are compared to each others in order to notice the effect

of manipulated iso percentages (in the inversion processes) on the variance reduction

values.
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Figure 5.13. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown together for three earthquakes recorded at 10

and 15 km far away from the source locations. Blue dots, orange dots and gray dots

indicate the moment tensors with 2%, 5% and 14% isotropy respectively.

Figure 5.14. As a result of inversions, changes in the variance reduction with respect to

manipulated percentages of ISO are shown together for three earthquakes recorded at 45

and 80 km far away from the source locations. Blue dots, orange dots and gray dots

indicate the moment tensors with 2%, 5% and 14% isotropy respectively.
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In the light of Figures 5.14 and 5.13, earthquakes with a relatively high isotropic

percentage give higher variance reduction values when the inversions are performed

with larger isotropic percentage than the initial one. In the earthquakes measured

at a greater distances (using stations set at 45-80 km), difference becomes even more

pronounced in the manner of variance reduction values as a result of inversions.

In the Figure 5.13, when the moment tensor with 14% isotropy is inverted with

values greater than the initial value of isotropy, it gives higher variance reduction results

than the inversion results of moment tensors with 5% and 2% isotropy. This means that

earthquakes with relatively high isotropic percentages are less sensitive when inversions

are performed with modified greater isotropic percentages than the initial one.

5.5. How does the error in depth effect the isotropic percentage in the

inversion ?

In this section total 20 stations are placed in the two circles at 45 and 80 km far

from the source point to the inversion. Firstly, generated moment tensors (equations

4.1, 4.5 and 4.9), which have 2%, 5% and 14% isotropy respectively, are inverted at

its original hypocentral depth (8 km) and all the results for changing hypocentral

depth are. Originally, hypocentral depths of the 3 different synthetic earthquakes are

set as 8 km. However, inversions are performed for different depth values from 0.5

km to 20 km with the step of 0.5 km for each earthquake. In other words, only the

hypocentral depths of the original earthquakes are changed in order to observe changes

in isotropy perentage and variance reduction values. As a result of those manipulated

inversions of synthetic earthquakes at different depths, changes of isotropic percentages

and dependently changes in the variance reduction values are considered (Figure 5.15).
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Figure 5.15. Changes in the isotropic percentages are shown with respect to manipulated

hypocentral depth as a result of inversions. In this event, stations are located at 45 and 80

km distances for all the inversions. Three different cases are considered; blue lines, orange

lines and blue gray expresses the moment tensor with 14%, 5% and 2% isotropy

respectivelty. Moreover, red dots show the inversion results of original depth for each case

and red line describes the original hypocentral depth.

When the original moment tensor has lower isotropic percentage, inverted mo-

ment tensor’s isotropy value is closer to the original value at near depths to the initial

depth. For instance, Figure 5.15 shows that inversion result of the moment tensor with

lowest isotropy (2% iso - gray dots) gives closer values in terms of variance reduction

parameters and isotropic percentages, when the manipulated depth values are closer

to the initial depth (e.g 6-10 km). In other words, even if wrong hypocentral depth

solutions (± 2 km) are calculated, the inversion results of the moment tensor with low

isotropy give relatively correct isotropic percentages and high variance reduction val-

ues. However, in the case that moment tensor has 5% or 14% isotropy (orange and blue

dots in Figure 5.15), this sensitivity is increasing. As far away from the original depth,

the inversion can yield more incorrect results for earthquakes with higher isotropy.

The results for this thesis can be summarized as follows;
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• The inverse solution of the moment tensor is not really sensitive to isotropy,

because the isotropic component has a small amount of energy compared to the

whole waveform (Figures 5.1, 5.2, 5.3,5.4, 5.5, 5.6, 5.7, 5.8, 5.9).

• Earthquakes, which has relatively high isotropic percentages, are less sensitive

when inversions are made for high values of modified isotropy (Figures 5.10, 5.11,

5.12, 5.13, 5.14).

• As the altered depths move away from the original depths of earthquakes, the in-

version solution for higher isotropic earthquakes may yield more incorrect results

(Figure 5.15).
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