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ABSTRACT

VARIATIONS OF SOURCE PARAMETERS DUE TO ANISOTROPIC

FOCAL REGION

Seismic sources in anisotropic medium have more complex moment tensor structures

compared with the moment tensors of isotropic medium. Shear sources in an isotropic fo-

cal medium generate pure double-couple (DC) moment tensors. However in an anisotropic

medium, shear sources can generate moment tensors with DC, compensated linear vector

dipole (CLVD) and isotropic (ISO) components. The DC, CLVD and ISO percentages of a

moment tensor depend on the magnitude and the orientation of the anisotropy.

In this study, we choose five fault types namely, left/right strike slip, normal, reverse

and dip-slip faults in a medium of different anisotropy classes; transversely isotropic, or-

thotropic and monoclinic. We rotated the anisotropic elasticity tensors of the medium for

every possible orientation and evaluate the moment tensors of each cases. Then moment

tensor decomposition is applied and DC, CLVD and ISO components are found. We plot the

DC, CLVD and ISO percentages of the moment tensors generated by different fault types

and anisotropy classes. By using the DC components, first we obtained fault plane orienta-

tion then we calculate the deviation from the original fault mechanism. Effects of anisotropy

of the source region on calculated fault parameters are found. Distance from isotropic space

of given anisotropic elasticity tensor and P/S wave velocity anisotropy percentages are mea-

sured. These percentages are proportional to the distane from isotropy. There is a correlation

between distance to isotropy and P wave anisotropy with variation of fault plane parameters

and percentages of non-DC components of earthquake source.
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ÖZET

ANİZOTROPİK DEPREM ODAĞININ KAYNAK

PARAMETERLERİNDE YARATTIĞI DEĞİŞİMLER

İzotropik ortamdaki sismik kaynaklar anizotropik ortamdakilere göre daha karmaşık

moment tensörü yapısına sahiptirler. İzotropik ortamdaki kayma şeklinde oluşan depremler

tamamen çift kuvvet çifti (DC) özelliğine sahip moment tensörler üretirler. Anizotropik

ortamdaki kayma şeklinde oluşan depremler ise çift kuvvet çifti, izotropik (ISO) ve telafi

edilmiş doğrusal vektör dipolleri (CLVD) bileşenler üretir. Moment tensörde bulunan DC,

CLVD ve ISO yüzdeleri anizotropinin yüzdesine, yönelimine ve büyüklüğüne bağlıdır.

Bu çalışmada normal fay, ters fay, eğim atımlı fay, sol yanal atımlı fay ve sağ yanal

atımlı fay olmak üzere beş ana fay türü seçilmiştir. Bu fay türleri enine izotropik, ortotropik

ve monoklinik simetri sınıflarına sahip altı farklı materyalden oluşan ortamlara uygulan-

mıştır. Anizotropik elastisite tensörü olası bütün açılarda döndürülmüş ve her döndürmede

oluşan yeni elastisite tensörü kullanılarak moment tensörler üretilmiştir. Sonrasında bu mo-

ment tensörlerin moment tensör çözümleri yapılmış ve ISO, CLVD ve DC bileşenleri bulun-

muştur. Moment tensörlerin DC, CLVD ve ISO yüzdeleri farklı fay türleri için çizdirilmiştir.

DC bileşeni kullanarak fay düzlemi oryantasyonu bulunmuş ve orjinal fay düzlemi param-

eterlerinden olan sapmaları hesaplanmıştır. Anizotropik ortamın fay düzlemi parametreleri

üzerindeki etkisi bulunmuştur. Verilen anizotropik materyalin en yakın izotropik uzaya ulan

uzaklığı bulunmuştur. MTEX yazılımı kullanılarak P ve S dalgası anizotropileri bulunmuş ve

P ve S dalgası azinotropi yüzdelerinin elastisite tensörlerinin izotropik uzaya ulan uzaklıkları

ile ilişkilendirilmiştir. P dalgası anizotropi yüzdesi ve elastisite tensörlerinin izotropik uzaya

olan uzaklıklarının fay parametrelerindeki değişmde ve çift kuvvet çifti olmayan kaynağın

yüzdesi arasında bir ilişki olduğu bulunmuştur.
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1. INTRODUCTION

In geophysics, fault plane solutions are determined by using the assumption of isotropic

seismic source medium. However, earthquake source medium might have anisotropic prop-

erties. Anisotropy of a medium has an influence on the calculated moment tensors [1]. Fault

plane orientation can change according to isotropic and anisotropic sources. In this thesis,

we seek a solution for the problem of effects of anisotropic source medium on calculated

fault plane solutions.

In order to determine these effects, one must decompose the moment tensor. There are

several moment tensor decomposition methods [3–10]. We used the method proposed by

Knopoff [3] and Fitch [5]. Vavryčuk determines the effects of different types of anisotropic

source regions on fault plane orientations [9]. Vavryčuk also make an inversion from non

double couple (non-DC) of the moment tensors to fin elastic parameters of non-DC parts

of earthquake. [11]. Moreover, moment tensors of specific areas and events are obtained

Vavryčuk [12], Fojtikova [13] and Stierle [14].

Anisotropy can be seen in Earth’s crust and upper mantle [15–18]. Layered geological

structures, micro cracks, fluid injections in geothermal or volcanic areas, fractures or atomic

texture of mineral can cause anisotropy [19–25].

Moreover, these properties of geological formations can cause seismic anisotropy.

Seismic anisotropy is related with the change of seismic wave velocities depending on the

orientation of the ray propagating in an anisotropic medium. Thus it is usually understood

as a structural property of the medium [26–28]. Anisotropy of source medium is directly

affects the moment tensor which contains important information of the earthquake. Type of

the faulting mechanism is one of them. For instance, shear faulting with anisotropic source

medium can cause non-DC components [29]. Since non-DC components can be seen in

many earthquakes [6, 7, 30, 31], this problem is worth to be considered as an important one.
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Seismic sources in anisotropic medium have more complex moment tensor structures

compared with the moment tensors of isotropic medium. It is a well known fact that shear

sources in an isotropic elasticity tensor, seismic sources generate pure double-couple (DC)

moment tensors. However, in anisotropic source medium, shear seismic sources can generate

moment tensors with DC, compensated linear vector dipole (CLVD) and isotropic (ISO)

components. The DC, CLVD and ISO percentages of the moment tensors depend on the

magnitude of the anisotropy.

In this thesis, for simplicity, five fundamental fault types, left/right lateral strike slip,

normal, reverse and dip-slip faults are chosen. Fault planes can be expressed with strike,

dip and rake (slip) angles. In a source medium with different anisotropy classes, isotropic,

transversely isotropic, orthotropic and monoclinic are used. Elasticity tensors are calculated

for several minerals, rocks and sub surfaces of earth. Effects of anisotropy types and their

rotations on moment tensors are found for each fault type. Moment tensors are decomposed

by using the Knopoff [3] and Fitch [5] decomposition method. Percentages of DC, CLVD

and ISO on moment tensors are found. In order to explain the effect of anisotropy, fault plane

angles are recalculated by using DC part of moment tensors.

Then, closest isotropic elasticity tensors that represent rotated anisotropic elasticity

tensors are found. Strike, dip and rake angles are recalculated. The purpose of this process

is to determine the difference between the true values of fault plane angles.

In chapter 2, physical meaning of the fault plane angles is mentioned briefly. Five

fundamental fault types and four anisotropic elasticity tensors that are used in this thesis is

explained. Moment tensor and earthquake source properties are also explained. Moment

density tensor in both isotropic and anisotropic medium is expressed. Definition of elasticity

tensor and its properties are explained. Rotation of elasticity tensor and its mathematical and

geometrical meanings are mentioned. Determining of a closest isotropic elasticity tensor of

a given anisotropic elasticity tensor is mentioned briefly. Mathematical process of moment

tensor evaluation and decomposition are explained. Demonstration of fault plane and normal

plane as a vector can also be found in chapter 2. Geometrical meaning of moment tensor is
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mentioned. Recalculation of fault plane parameters is also explained in this chapter. In

chapter 3, results of moment tensor decomposition can be found. Variation of fault plane

angles for given elasticity tensor and its rotations is explained. These explanations are also

made for closest isotropic elasticity tensor assumptions. Results are interpreted in chapter 4.

Materials with symmetry group of transversely isotropy are discussed with each other and the

results of Vavryčuk [9]. Decomposition results of materials with orthotropic and monoclinic

symmetry classes are discussed with their materials with their own symmetry class. Effects

of fault plane orientation are mentioned in this chapter. Distance from isotropic space of

given anisotropic material is correlated with P and S wave anisotropy percentages which are

calculated by using MTEX software. In last chapter, chapter 5, the physical meaning of these

results are interpreted.
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2. DATA AND METHOD

In this chapter, physical and mathematical definition of fault planes, moment tensors,

elasticity tensors, rotation matrices, process of defining closest isotropic elasticity tensor of

given anisotropic elasticity tensor, moment tensor decomposition are expressed. Elasticity

tensors that used in the thesis are also given in this chapter.

2.1. Fault Plane Parameters

A fault is a planar fracture or discontinuity in a volume of rock, across which there

has been significant displacement as a result of rock mass movement. A fault plane is the

plane that represents the fracture surface of a fault. One can define the orientation of fault

plane on Cartesian coordinates such that strike (Φ), dip (δ ) and slip (λ ). These parameters

can be expressed by slip vector (u) and fault normal (v) which are vital on moment tensors.

Φ is measured clockwise from north with the fault plane dipping to the right when looking

along the strike direction, δ ; measures the deviation from horizontal down and λ the slip

direction measured in the fault plane (Figure 2.1). Angles of these parameters can vary

between 0≤Φ≤ 2π ,0≤ δ ≤ π

2 and −π ≤ λ ≤ π [1, 32].

If Φ, δ and λ are known, u and v can be calculated by Aki [1] as,

u = u(cosλ + cosΦ+ cosδ sinλ sinΦ)ex

+u(cosλ + sinΦ− cosδ sinλ cosΦ)ey

−u(sinδ sinλ )ez

(2.1)

v =−sinδ sinΦex + sinδ cosΦey− cosδez (2.2)
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Figure 2.1. Fault Plane Representation in Cartesian Coordinates

u is the mean displacement on the fault plane. u has a vital role on determining scalar seismic

moment M0 which is an important parameter for moment magnitude (Mw) calculations.

2.2. Elasticity Tensor

Elasticity means the ability of a material to recover its original dimensions, and to

return its original shape, after being subjected to a stress. Hooke’s Law explain the mecha-

nisms of this process. If the amount of stress σ is infinitesimally small then the amount of

strain ε , which is also infinitesimal, is linearly proportional to the strain and can be written as:

σi j = ci jklεkl (2.3)

where ci jkl is forth rank elasticity tensor, σi j and εkl are second rank tensors.
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2.3. Orthogonal Transformations

Let e1, e2 and e3 be the unit vectors of x,y and z axis, respectively. In this system,

e1 = (1,0,0),

e2 = (0,1,0),

e3 = (0,0,1).

Let σ be a linear transformation that maps a to b;

b = σ(a) = a1σ(e1)+a2σ(e2)+a3σ(e3) (2.4)

bi = a jei ·σi j(e j) (2.5)

σ in ei ·σ(e j) can be written as a tensor form,

σi j = ei ·σ(e j) (2.6)

Then we can rewrite the Equation 2.5 as,

bi = σi ja j (2.7)
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These equations can be written as matrix form,


b1

b2

b3

=


σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

=


a1

a2

a3

 (2.8)

σ matrix is called matrix of the linear transformation or the the tensor σ with respect to the

orthogonal coordinate system {e1,e2,e3}

A tensor has infinitely many matrix representations since it can be represented in any co-

ordinate system. If {e1,e2,e3} and {e′1,e
′
2,e

′
3} are two different bases, then we denote the

components of tensor σ by σi j and σ
′
i j for each of the basis vectors, respectively. The entries

of σ in the {e′1,e
′
2,e

′
3} basis can be evaluated, similar to Equation 2.6, as σ

′
i j = e

′
i ·σ

′
(e j).

This gives {e′1,e
′
2,e

′
3} and {e1,e2,e3} are related with an orthogonal transformation

tensor, A. In other words, {e′1,e
′
2,e

′
3} can be obtained by applying an orthogonal transforma-

tion to {e1,e2,e3}.

e
′
i = A(e)i = Amiem (2.9)

Components of A can be obtained by using Equation 2.9 and it would be like below,

Ami = em ·A(ei) = em · e
′
i (2.10)

Euler’s rotation theorem states that a rotation matrix can be decomposed as a product of

three elementary rotations. By using this theorem, we can find a rotation matrix that trans-

form {e1,e2,e3} coordinate system to {e′1,e
′
2,e

′
3} coordinate system.
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Now let’s consider a linear transformation σ . The components of σ with respect to {e1,e2,e3}

and {e′1,e
′
2,e

′
3} are σi j = ei ·σ(e j) and σ

′
i j = e′j ·σ(e′j), respectively.

Since

σ
′
i j = e

′
j ·σ(e

′
j)

= Aimem ·σ(An jen)

= AmiAn j(em ·σ(en)),

(2.11)

we obtain

σ
′
i j = AmiAn jσmn. (2.12)

This can be written in matrix form as,


σ
′
11 σ

′
12 σ

′
13

σ
′
21 σ

′
22 σ

′
23

σ
′
31 σ

′
32 σ

′
33

=


A11 A21 A31

A12 A22 A32

A13 A23 A33




σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33




A11 A12 A13

A21 A22 A23

A31 A32 A33

 (2.13)

in short,

σ
′
= AT

σA (2.14)

We can use this method to change the coordinate system of elasticity tensor which is a forth
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rank tensor. The transformation can be shown as below,

c
′
i jkl = ApiAq jArkAsicpqrs, (2.15)

elasticity tensor expressed in {e1,e2,e3} coordinate system. Here in, c
′

is expressed in the

rotated coordinate system, namely {A(e1),A(e2),A(e3)}.

2.4. Rotation of an Elasticity Tensor

In this chapter we will explain how to evaluate matrix A that we express in section

2.3. Elasticity tensor can be represent in {e1,e2,e3}. However, in the nature Earth’s material

can be rotated by many reasons, such as the forces that moves the plates. This rotation

may have no affects on isotropic elasticity tensor whereas other types of elasticity tensors

may get affected by in the end of this process. Rotation process can be done by using three

rotation matrices which transform {e1,e2,e3} to {e′1,e
′
2,e

′
3}. According to Euler’s theorem,

any rotation matrix can be archived by multiplication of three elementary rotations; Z1, Z2

and Z3.

To obtain e
′
3 one applies a rotation around the e3 axis. This can be done by Z1 and Z2

Z1 =


cosψ −sinψ 0

sinψ cosψ 0

0 0 1

 (2.16)

Then, rotation around e1 is done by Z2
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Figure 2.2. Graphical representation of elementary transformations by using rotation matrices.
{e1,e2,e3} coordinate system transformed to {e′1,e

′
2,e

′
3} by using ψ , φ and θ .

Z2 =


1 0 0

0 cosφ −sinφ

0 sinφ cosφ

 (2.17)

In order to rotate e1 and e2 to e
′
1 and e

′
2 one must use Z3 rotation matrix around e

′
3 axis



11

Z3 =


cosθ −sinθ 0

sinθ cosθ 0

0 0 1

 (2.18)

{e1,e2,e3}, {e
′
1,e

′
2,e

′
3}, Euler’s angles ψ , φ and θ can be seen in Figure 2.2.

Thus A = Z1Z2Z3 rotates to basis vector {e1,e2,e3} to {e′1,e
′
2,e

′
3}.

Matrix A is 3 x 3 matrix however elasticity tensor C is a 6 x 6 matrix. In order to

overcome this problem C must be written in Kelvin notation and transformation matrix A

must be written as below,

A=



A11A11 A12A12 A13A13
√

2A12A13
√

2A11A13
√

2A11A12

A21A21 A22A22 A23A23
√

2A22A23
√

2A21A23
√

2A21A22

A31A31 A32A32 A33A33
√

2A32A33
√

2A31A33
√

2A31A32
√

2A21A31
√

2A22A32
√

2A23A33 A22A33 +A23A32 A21A33 +A23A31 A21A32 +A22A31
√

2A11A31
√

2A12A32
√

2A13A33 A12A33 +A13A32 A11A33 +A13A31 A11A32 +A12A31
√

2A11A21
√

2A12A22
√

2A13A23 A12A23 +A13A22 A11A23 +A13A21 A11A22 +A12A21


.

(2.19)

2.5. Anisotropy Classes

There are eight type of symmetry classes of a material [33]. There is a subgroup re-

lation between classes which can be seen in Figure 2.3. Anisotropy classes are; generally

anisotropy, monoclinic, orthotropic, tetragonal, transversely isotropic (TI), trigonal, cubic

and isotropic which can be seen in Figure 2.3. In this chapter, properties of these classes

are explained. TI, orthotropic and monoclinic elasticity tensors are chosen for the numerical
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applications. All elasticity tensors are given by using Voigt notation.

2.5.1. Transversely Isotropic

Assuming natural coordinate system is represented as {e1,e2,e3}, then the orientation

of e1 and e2 do not matter if e3 is parallel to the axis rotation. The matrix representation of

transversely isotropic symmetry in matrix form is shown below,

CT I =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0
C11−C12

2


.

Note that five parameters, namely C11, C12, C13, C33 and C44 are enough to describe TI.

TI corresponds to a planar structures layering in sediments or fractures persistent of layers

along parallel directions.

2.5.2. Orthotropic

Orthotopic symmetry class has three orthogonal symmetry planes. If any two mirror

planes orthogonal to each other, then the third plane is perpendicular to first two planes. In

natural basis, orthotropic elasticity tensor can be shown as a matrix form:
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CORT HOT ROPIC =



C11 C12 C13 0 0 0

C12 C22 C23 0 0 0

C13 C23 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C55 0

0 0 0 0 0 C66


.

If there are two planar structures which are perpendicular to each other than orthotropic

symmetry class can explain this symmetry class.

2.5.3. Monoclinic

Monoclinic symmetry class contains a reflection about a plane through the origin. Let

say a coordinate system such that reflection take place at e1e2 plane, which means along the

e3. In such system monoclinic elasticity tensor can be written as below,

CMONOCLINIC =



C11 C12 C13 0 0 C16

C12 C22 C23 0 0 C26

C13 C23 C33 0 0 C36

0 0 0 C44 C45 0

0 0 0 C45 C55 0

C16 C26 C36 0 0 C66


.

Two planar structures have oblique angle relation with each other.
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Figure 2.3. Orders of eight rotation classes. Arrows indicates subgroup relations. For instance;
Orthotropic is a subgroup of Tetragonal. Symmetry classes rather than TI, Monoclinic and orthotropic
are explained in Appendix C

2.6. Moment Tensor

Moment tensor can be defined as equivalent body forces of seismic sources (Figure

2.4). Moment Tensor, denoted by M, depends on source strength and fault orientation.

Number of studies state that seismic sources can generate non-DC components [31]. An ex-

plosion, for instance, can generate non-DC components. Collapse of cavity in mines, shear

faulting on a non-planar fault, fluid injection in geothermal or volcanic areas or seismic

anisotropy in focal area can also generate non-DC components [6, 8–10, 19, 20, 29, 34–36].

In order to define these forces, first we need to explain moment density function, m.

By using representation theorem displacement can be calculated as below,

un(x, t) =
∫∫
Σ

[ui]v jci jpq ∗
∂Gnp

∂ξq
dΣ (2.20)

Notice that ∗ is convolution symbol.
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Displacement at a point which is created by a point source can be found by Fp ∗Gnp

under the assumption of force is applied at ξ is F(ξ ,τ). Convolving with Green’s function’s

derivative indicates a force couple. Sum over q means that each displacement component

at x is equivalent to the effect of a sum of couples distributed over Σ. For displacement

discontinuities as in the formula above, there are instead derivatives of Gnp with respect to

the source coordinates ξq. This derivative can be thought of physically as the equivalent of

having a single couple with arm in the ξq direction on Σ at ξ .

Since [ui]v jci jpq∗
∂Gnp
∂ξq

in the formula is the n-component of the field at x due to couples

at ξ , it follows that [ui]v jci jpq is the strength of the (p,q) couple. We define

mpq = [ui]v jci jpq (2.21)

to be the components of moment density function m.

For three components of force and three arm directions, there are nine generalized cou-

ples, as shown in Figure 2.4. Thus equivalent surface force corresponding to an an infinitely

small surface element dΣ(ξ ) can be represented as a combination of nine couples.

The representation theorem for displacement at x due to general displacement discontinuity

[u(ξ ,τ)] across Σ can be written by using the moment tensor as

un(x, t) =
∫∫
Σ

mpq ∗Gnp,q dΣ (2.22)

If x is many wavelengths away from ξ and if the wavelengths of the observations are larger

than the source dimensions, then convolution with G gives the displacement at (x, t) that

depends on what occurs at ξ only at retarded time. This is called point source approximation.

This can be written as rλwl � L2 where r is the distance of the observation point from the

source, λwl is wavelength and L is dimensions of source [37].
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Figure 2.4. The nine generalized couples [1]

This results are for fault plane with finite extent. However, in practice seismographs

can only good at certain periods for which the whole of Σ is a point source. In such situation

whole surface, Σ, can be thought as a point, center of Σ, with moment tensor equal to the

integral of moment density over Σ. Thus, for an effective point source,

un(x, t) = Mpq ∗Gnp,q (2.23)

where the moment tensor components are

Mpq =
∫∫
Σ

mpq dΣ =
∫∫
Σ

[ui]v jCi jpq dΣ

=
∫∫
Σ

µ(vp[uq]+ vq[up])
(2.24)
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Theorem

It’s known that moment density tensor in anisotropic medium is given as

mpq = [ui]v jci jpq (2.25)

For an isotropic medium, above expression can be written as Mpq = µA([up]vq +[uq]vp)

Proof

For an isotropic body,

mpq = λemvk[uk]δpq +µ(vp[uq]+ vq[up]) (2.26)

If the displacement discontinuity (or slip) is parallel to Σ at ξ , the scalar product v ·u is zero

and

mpq = µ(vp[uq]+ vq[up]) (2.27)

First, we will show the form of the isotropic elasticity tensor and elasticity matrix.

Then substitute the elasticity tensor into the moment density tensor mpq = [ui]v jci jpq.

mpq = [ui]v jci jpq

= λemδi j[ui]v jδpq +µδipδ jq[ui]v j +µδiqδ jp[ui]v j

= λem[uk]vk +µ(upvq +uqvp)

(2.28)
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For isotropic medium, 21 parameters of elasticity tensor reduces to 2 parameters:



C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66


=



λem +2µ λem λ 0 0 0

λem λem +2µ λem 0 0 0

λem λem λem +2µ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ


(2.29)

λem and µ are called Lame parameters. These are the only parameters for isotropic

medium.

We can observe that the isotropic elasticity matrix defined in Equation 2.29 can be written in

tensor form as,

ci jpq = λemδi jδpq +µ(δipδ jq +δiqδ jp) (2.30)

Equation 2.28 can also be demonstrated as,

mpq = λemvk[uk]δpq +µ(vp[uq]+ vq[up]) (2.31)

Assuming that the slip is parallel to Σ, v.[u] = vkuk = 0, Equation 2.31 reduces to,
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mpq = µ(vp[uq]+ vq[up]) (2.32)

The relation between the moment density tensor and moment tensor in isotropic medium is

given as Equation 2.33.

Mpq =
∫∫
Σ

mpq dΣ =
∫∫
Σ

[ui]v jCi jpq dΣ

=
∫∫
Σ

µ(vp[uq]+ vq[up])
(2.33)

Assuming that the earthquake acts a point source [up],vq and µ are constant throughout Σ.

Since we assume the source as a point
∫∫
Σ

dΣ = A. Then we can take these expressions out

of the integral and obtain,

Mpq = µA([up]vq +[uq]vp) (2.34)

We note that the roles of the vectors u and v could be interchanged without any affecting the

displacement filed. This causes the well known fault plane - auxiliary plane ambiguity.

2.7. Eigenvalues of Moment Tensor

The expression Mpq = µA(upvq+uqvp) is a second tensor, describing a double couple.

This tensor is real and symmetric, giving real eigenvalues and orthogonal eigenvectors. The

eigenvalues are proportional to (1,0,-1). The characteristic properties of a moment tensor

representing a double couple are
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i) one eigenvalue of the moment tensor vanishes

ii)the sum of the eigenvalues vanishes, i.e. trace=0

Theorem : t, b and p are eigenvectors of Mpq which are corresponding eigenvalues are

positive, 0 and negative, respectively.

Proof

Eigenvectors of Mpq are t, b and p:

t =
1√
2
(v+u)

b = v×u

p =
1√
2
(v−u),

(2.35)

where v and u are taken to be unit vectors.

The eigenvectors t, b and p represents positive, zero and negative eigenvalues, respec-

tively.

In order to show that t is an eigenvector of Mpq, it should satisfy the equation

Mpqt j = λ tk:

Mpq(vq +uq) = (upvq +uqvp)(vq +uq)

= upvqvq +uqvkvq +upvquq +uqvpuq

= |~v|2up + |~u|2vp

(2.36)
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since ū and v̄ are perpendicular, uqvq = 0

Mpq(vq +uq) = up + vp (2.37)

since ū and v̄ are unit vectors.

|~v|= vqvqū =
~u
|u| (2.38)

where ū is a unit vector in the direction of ~u Similarly we can show that b and p are

eigenvectors of Mpq:

Mpq(vq−uq) = (upvq +uqvp)(vq−uq)

= upvqvq +uqvpvq−upvquq−uqvpuq

= |~v|2up−|~u|2vp

(2.39)

since u and v are perpendicular, uqvq = 0

Mpq(vq−uq) = up + vp (2.40)
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Mpq(v×u)q = (upvq +uqvp)(v×u)q

= upvq(v×u)q +uqvp(v×u)q

= 0

(2.41)

since v is perpendicular to v×u and u is perpendicular to v×u.

Thus we obtain that eigenvalues of Mpq are 0,1 and -1. Thus trace of u and v are unit

vectors of shear faulting.

The double couple upvq +uqvp can equivalently be described by its eigenvectors [38].

upvq +uqvp = tptq− pp pq

0.5[(tp + pp)(tq− pq)+(tp− pp)(tq + pq)]
(2.42)

Comparing these terms, we can find the relation between slip vector and fault normal:

u =
1√
2
(t+p)

v =
1√
2
(t−p)

(2.43)

The other nodal plane is defined by

u =
1√
2
(t−p)

v =
1√
2
(t+p)

(2.44)
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2.8. Moment Tensor of Shear Faulting for Different Anisotropy Classes With Varying

Orientations

In Chapter 2.1 we explain fault plane parameters and how to obtain u and v vectors.

Then the definition of elasticity tensor and its rotations explained in Chapter 2.2, 2.3 and 2.4.

And then we mentioned the anisotropic elasticity tensors in Chapter 2.5. Finally we explain

mathematical properties of moment tensor. Now we continue on generating moment tensors

by using anisotropic elasticity tensor and u and v vectors of fault plane parameters.

Moment tensor, m, can be generated by multiplying elasticity tensor, C, and fault

vector d. Fault vector has information about fault plane parameters which are u and v [1].

mpq = DSCqpklvkul (2.45)

D and S represents fault slip ( cm ) and fault area ( km2 ), respectively. Fault vector d

can be written as Equation 2.46,

d = DS(u1v1,u2v2,u3v3,u2v3 +u3v2,u1v3 +u3v1,u1v2 +u2v1)
T (2.46)

In Equation 2.46 u and v is selected as unit, 1.

In this thesis, all vectors are expressed in the natural coordinate system of TI elasticity

tensor; that is, the z-axis is along the direction of infinite-fold rotation axis. Elasticity tensor
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is rotated by rotation matrix A which is explained in Chapter 2.3 and Chapter 2.4. Elasticity

tensors are rotated by using Equation 2.47,

C′ = ATCA (2.47)

.

Generation of moment tensors are done as below,

i. We choose one fault type use specific d of it.

ii. Then we take anisotropic elasticity tensor and rotated it by using Euler’s angles which

is explained in Equation 2.47

iii. We multiply C′ with d and get 1 x 6 vector m as a result.

iv. We obtain moment tensor M.

v. ±%CLV D±%ISO are found by decomposing M. We also found fault plane parameters

and slip vector by using DC component of M. These process can be found in Section

2.9.

Then we expressed m in matrix form as below,

M =


m11 m12 m13

m12 m22 m23

m13 m23 m33

 (2.48)
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2.9. Moment Tensor Decomposition

There are several methods for decomposing moment tensors (M) [3–10, 39] . Decom-

position methods are developed in order to obtain physical properties of faults. In this thesis,

we used Double Couple-CLVD decomposition method which is proposed by Knopoff [3]

and Fitch [5]. Moment tensor is decomposed into isotropic (ISO), double couple and com-

pensated linear vector dipole (CLVD) parts.

Before applying decomposition methods M must be diagonalized. To do so M is

expressed according to the basis which are orthonormal eigenvectors of M. Let mi be the

eigenvalue corresponding to the orthonormal eigenvector ai = (aix,aiy,aiz)
T . We can write

M as:

M =
[
a1 a2 a3

]
m


aT

1

aT
2

aT
3



=


a1x a2x a3x

a1y a2y a3y

a1z a2z a3z




m1 0 0

0 m2 0

0 0 m3




a1x a1y a1z

a2x a2y a2z

a3x a3y a3z


(2.49)

m is the diagonalized moment tensor. m3 corresponds the maximum and m1 corresponds

the minimum eigenvalue. The elements of m are the eigenvalues of M. Now we can apply

decomposition method to M.
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
m1 0 0

0 m2 0

0 0 m3

=
1
3


tr(M) 0 0

0 tr(M) 0

0 0 tr(M)

+


m∗1 0 0

0 m∗2 0

0 0 m∗3

 (2.50)

where tr(M) = m1+m2+m3 is the trace of the moment tensor. First term of Equation

2.50 is isotropic part of the moment tensor. Second term describes the deviatoric part of the

moment tensor. Note that the decomposition is unique.

m∗i = mi−
m1 +m2 +m3

3

= mi−
1
3

tr(M)
(2.51)

Now we will decompose deviatoric part into DC and CLVD components.

Assume that
∣∣m∗3∣∣≥ |m∗2| ≥ |m∗1|. We can write deviatoric part as,


m∗1 0 0

0 m∗2 0

0 0 m∗3

= m∗3


−η 0 0

0 η−1 0

0 0 1

 (2.52)

where η = −m∗1 /
∣∣m∗3∣∣ and η − 1 = m∗2 /

∣∣m∗3∣∣.The decomposition can be archived DC and

CLVD components as,
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m∗3


−η 0 0

0 η−1 0

0 0 1

= m∗3(1−2η)


0 0 0

0 −1 0

0 0 1

+m∗3η


−1 0 0

0 −1 0

0 0 2

 . (2.53)

Expressing m in its original coordinate system we obtain the decomposition of M as follows.

M =
1
3
(m1 +m2 +m3)I+m∗3(1−2η)(a3a3−a2a2)

+m∗3η(2a3a3−a2a2−a1a1)

(2.54)

where I is 3 x 3 identity matrix. To estimate the deviation from seismic source of pure DC,

one can use η [40],

%ISO =
1
3

Tr(M)∣∣m∗3∣∣ ·100 (2.55)

%CLV D = 2η(100−|ISO|) (2.56)

%DC = 100−|ISO|− |CLV D|. (2.57)

Percentages of non-DC components can be found by using Equation 2.55, 2.56 and 2.57. We

found the non-DC percentages by using these formulas. Then we use the matrix which repre-

sents the DC component and then decompose it in order to recalculate fault plane parameters,

Φ, δ and λ .

2.10. Physical Interpretation of Non-DC Components

There are two possible origins for CLVD and ISO components; volumetric changes in

the source or anisotropy in the focal zone. ISO component can be explained by explosions



28

and implosions whereas interpretation of CLVD component is not simple. Faulting on non

planar fault or simultaneously activated neighboring faults can produce CLVD components

[41,42]. Another origin of CLVD components is shear faulting in anisotropic media which is

the main point of interest of this thesis [36, 43]. Origin of CLVD source was invented by [3]

in order to describe deep-focus earthquakes which causes phase changes in seismic records.

Figure 2.5. Body forces equivalents of ISO and CLVD components. In this figure both ISO and
CLVD components have positive signs. Negative signs of ISO and CLVD components can be obtained
by reversing the arrows.

For crustal earthquakes, tensional component in the source mechanism causes positive

sign in the non-DC components. In geothermal or volcanically active areas opening cracks

due to high pressure fluid which may filled by fluid or magma can cause positive ISO and
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CLVD components [44–46]. Negative sign in non-DC components indicate compressional

components in the source mechanism such as Collapse of a cave [47]. Non-DC components

can also be seen when source is a single force. Landslides and volcanic eruptions can be

expressed with a single force.

Non-DC components can also be generated by errors in the modeling. Errors in the

velocity model, falsely determined earthquake locations, scattered distribution of seismic

stations and noise in the seismic record can cause non-DC components. In this thesis, all

data is produced synthetically which provides me to get true non-DC components.

CLVD and ISO percentages can be both positive and negative. Positive and negative

indicates the direction of the forces which creates CLVD and ISO percentages. Positive ISO

component means that forces that create earthquake is from center to outwards. Negative

ISO component means that forces that create earthquake is from outwards to center. In other

words, source radiates in all directions equally. CLVD sources have one dipole in a specific

direction with strength of two and two dipole which are perpendicular to the other with a

strength of one. Positive CLVD has a dipole with strength of two which is from center to

outwards. In negative CLVD source this dipole is from outwards to center.

2.11. Determining Closest Isotropic Elasticity Tensor

The usage of the closest isotropic elasticity tensor is that one can calculate the distance

between the given anisotropic elasticity tensor and closest isotropic tensor of it. One of

the purposes of this thesis is to correlate the non-DC components of moment tensor and

distance of the elasticity tensor to isotropy. This distance is basically measures the distance

between elasticity tensor’s distance from isotropic space. Our suggestion is that there is a

direct proportion between them. Non-DC components’ percentages get higher if the given

elasticity tensor is farther from the isotropic space.

Let say, C is a anisotropic elasticity tensor and CISO is the closest isotropic elasticity

tensor of C. Determination of closest isotropic elasticity tensor is done as below [2],
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CISO
11 =CISO

22 =CISO
33 =

1
15

[3(C11 +C22 +C33)+2(C12 +C13 +C23)+4(C66 +C55 +C44)]

CISO
12 =CISO

13 =CISO
23 =

1
15

[C11 +C22 +C33 +4(C12 +C13 +C23)−2(C66 +C55 +C44)]

CISO
66 =CISO

55 =CISO
44 =

1
15

[C11 +C22 +C33− (C12 +C13 +C23)+3(C66 +C55 +C44)].

(2.58)

These distances are also correlated with P and S wave anisotropies. In order to calcu-

late the P and S wave anisotropies we used MATLABr based software named MTEX [48].

2.12. Data

2.12.1. Elasticity Tensors

In this thesis we used several anisotropic elasticity tensor which represent by using var-

ious minerals, rocks and sub surfaces. Our assumption is that whole fault plane composed

of these materials. TI [49, 50], orthotopic [11, 49] and monoclinic [51, 52] elasticity tensors

are used in order to construct the fault plane.

2.12.1.1. Transversely Isotropic Elasticity Tensors. We used two different TI elasticity ten-

sors. Elasticity tensors of materials, their physical properties and distance function figures

(Appendix A) of these materials are given as below.

One of the TI elasticity tensor that we used is determined by [49]. It is a Gneiss material

which is from German Continental Drilling Programme (KTB) on 7.9 - 8.2 km of the drilling.

It has density of 2.75 grcm−3. Elasticity tensor of this Gneiss is given below. By using these
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figure we can see the symmetry or the orientation of the elasticity tensor of layering.

CGNEISS =



102.7 25.1 25.2 0 0 0

25.1 102.7 25.2 0 0 0

25.2 25.2 71.8 0 0 0

0 0 0 26.9 0 0

0 0 0 0 26.9 0

0 0 0 0 0 38.8



Distance function figure of the material is given in Figure 2.6. One can see that material

has infinite fault rotation axis.

Figure 2.6. Distance Function of Elasticity tensor of Gneiss. Distance function calculates the distance
between given elasticity tensor and monoclinic space [2]. By using these figure we can see the
symmetry or the orientation of the elasticity tensor of layering. Dark blue represent the normal of the
mirror plane orientation.
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Second TI elasticity tensor that we used is calculated by [50]. It is Amphibolite min-

eral with the density of 3.13 grcm−3. Elasticity tensor of Amphibolite is given below

CAMPHIBOLIT E =



123.1 45.6 42.8 0 0 0

45.6 123.1 42.8 0 0 0

42.8 42.8 160.7 0 0 0

0 0 0 43.3 0 0

0 0 0 0 43.3 0

0 0 0 0 0 38.75



Distance function figure of the material is given in Figure 2.7.

Figure 2.7. Distance Function of Elasticity tensor of Amphibolite
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2.12.1.2. Orthotropic Elasticity Tensors. Two different orthotropic elasticity tensors are used.

Elasticity tensors of materials, their physical properties and distance function Figures (Ap-

pendix A) of these materials are given as below.

First orthotropic material that we used is studied by [49] . It has density of 2.64 grcm−3.

Granite rock has elasticity tensor as below

CGRANIT E =



72.27 21.25 23.84 0 0 0

21.25 69.00 22.13 0 0 0

23.84 22.13 75.06 0 0 0

0 0 0 27.31 0 0

0 0 0 0 26.46 0

0 0 0 0 0 24.92



Distance function figure of the material is given in Figure 2.8.

Second orthotropic elasticity tensor is determined for subsurface of Tonga Deep Zone

which is taken from Vavryčuk [11]. It has density of 3.92 grcm−3. Elasticity tensor of Tonga

Deep Zone is given below

CTONGA =



421.8 145.0 188.9 0 0 0

145.0 447.3 149.9 0 0 0

188.9 149.9 404.9 0 0 0

0 0 0 110.5 0 0

0 0 0 0 154.8 0

0 0 0 0 0 134.5


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Figure 2.8. Distance Function of Elasticity tensor of Granite. Thus we can see that there are three
mirror planes that orthogonal to each other. Dark blue represent the normal of the mirror plane
orientation.

Distance function of Tonga Deep Zone is given in Figure 2.9
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Figure 2.9. Distance Function of Elasticity tensor of Tonga Deep Zone

2.12.1.3. Monoclinic Elasticity Tensors. Two different monoclinic elasticity tensors are choose

for the thesis. Elasticity tensors of materials, their physical properties and distance function

Figures (Appendix A) of these materials are given as below.

One of the monoclinic elasticity tensor that we used is calculated for Albite mineral by [51].

It has a density of 2.62 grcm−3. Elasticity tensor of the mineral is given below

CALBIT E =



74 36 39 0 −6.6 0

36 131 31 0 −13 0

39 31 128 0 −20 0

0 0 0 17 0 −25

−6.6 −13 −20 0 30 0

0 0 0 −25 0 32


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Distance function of Albite is given 2.10

Figure 2.10. Distance Function of Elasticity tensor of Albite. Monoclinic elasticity tensor has only
one mirror plane. Dark blue represent the normal of the mirror plane orientation.

Another monoclinic elasticity tensor that we used is calculated for Sanidine mineral

which is calculated by [52]. It has a density of 2.57 grcm−3 . Elasticity tensor of the mineral

is given below

CSANIDINE =



69.3 41.6 24.0 0 0.6 0

41.6 176.2 14.3 0 −9.4 0

24.0 14.3 160.8 0 7.1 0

0 0 0 19.2 0 −11.5

0.6 −9.4 7.1 0 19.4 0

0 0 0 −11.5 0 33.4





37

Distance function of Sanidine is given in Figure 2.11

Figure 2.11. Distance Function of Elasticity tensor of Sanidine. Dark blue represent the normal of
the mirror plane orientation. However, figure suggest that corresponding elasticity tensor is close to
orthotropic symmetry.

2.12.2. Fault Parameters

In order to calculate moment tensors we also used shear source faults. Five fundamen-

tal shear faults which are left & right lateral strike slip, normal, reverse and dip slip fault

models are used. Moment tensors are calculated by matrix multiplication of elasticity tensor,

C, and fault vector d.



38

Table 2.1. Fault Parameters
Fault Type Strike Dip Rake d

Left Lateral Strike Slip 90 90 0 [0 0 0 0 0 -1]
Right Lateral Strike Slip 90 90 180 [0 0 0 0 0 1]

Reverse 90 45 90 [-0.5 0 0 0.5 0 0 0]
Normal 90 45 -90 [0.5 0 -0.5 0 0 0]
Dip-Slip 90 90 90 [0 0 0 0 1.0 0]
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3. RESULTS

In this chapter, we first demonstrate figures that shows variations of fault orientations

and slip directions due to anisotropic source region. Secondly, we plot figures that shows

non-DC components percentage for different orientation of the layers in the source region.

Thirdly, distance from isotropic space for given anisotropic elasticity tensor are plotted.

Moment tensors are produced for every possible rotation of given elasticity tensor.

Physically this corresponds to changes the orientations of the layers in the source region.

Thus each rotation of elasticity tensor varies the angle between the fault directions (fault

normal and slip direction) and layers. Rotation is done by using Euler angle rotation. TI

elasticity tensors have no sensitivity on θ angle. This process is done in order to visualize the

results. Maximum and mean values of decomposition result for orthotropic and monoclinic

materials are also divided into two sub categories which are positive and negative values

of the results. Main purpose of doing this process is to understand the characteristics of

decomposition results more easily. Some elastic materials’ decomposition result may vary

dramatically.

Anisotropic source region might change the angles of a fault plane even if the given

fault has pure shear features. Elasticity tensor with TI symmetry have no sensitivity on θ

angle. Since two Euler angle is enough to determine the orientation of the TI tensor. Hence

moment tensor is uniquely defined for a particular direction. This enables to visualize the

decomposition results of TI elasticity tensors; namely variation of fault angles and of non-DC

percentage component figures.

However this is not the case for orthotropic and monoclinic elasticity tensors since one

direction does not determine the orientation of these tensors. Specifically the orientation of

other coordinate axes must be determined to produce a unique moment tensor. To overcome

this problem, we take both maximum and mean values to achieve a unique number that

corresponds to the variation of fault parameter.
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In this chapter decomposition results are separated into subsections. All subsections

contain different part of decomposition results. Fault angles, non-DC components and dis-

tance between the isotropic space and given anisotropic materials’ features are given in sep-

arate sub sections. All subsections contain all anisotropic elasticity tensors and all fault type

results.

3.1. Variation on Fault Angles

Variation of strike, dip and rake angles for given anisotropic source region is evaluated

and plotted in this chapter . Results are calculated for six different elasticity tensor and five

different fault types. Figures in this section are only plotted for dip-slip fault model except

Tonga Deep Zone elasticity tensor. All five fault types results are given for this tensor.

Figures in the following parts of this section is obtained by using the following proce-

dure,

First we rotate elasticity tensor C for every possible orientation by using Euler angles. For

each rotation we have different elasticity tensors. Then we generate moment tensor by using

this elasticity tensor, C and fault plane vector d. Then we decompose the generated moment

tensor. Then we take the DC part of the moment tensor and obtain the fault plane parameters.

Figures in this chapter show the variation between the real values which are given in Table

2.1 and the calculated result from DC part of moment tensor M.

3.1.1. Gneiss

Visualizing Gneiss is possible for all angles since it has TI symmetry class and do not

sensitivity on θ angle. Figure 3.1 is for dip-slip fault model.
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(a) (b)

(c)
Figure 3.1. Variation of Fault parameters Φ (a), δ (b) and λ (c) of Gneiss. Red arrow (u) and green
arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high variations and
dark blue colored areas imply low or no variations. ψ angle increase from left to right on figures. φ

angle increase from North pole to South pole for fixed ψ angle.
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3.1.2. Amphibolite

Visualizing Amphibolite for all possible φ and ψ angles. Results can be seen in Figure

3.2
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(a) (b)

(c)
Figure 3.2. Variation of Fault parameters Φ (a), δ (b) and λ (c) of Amphibolite. Red arrow (u) and
green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high variations
and dark blue colored areas imply low or no variations. ψ angle increase from left to right on figures.
φ angle increase from North pole to South pole for fixed ψ angle.
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3.1.3. Granite

Visualizing Granite is not possible since it has orthotropic symmetry class and has

sensitivity on θ angle. In order to overcome this problem we plotted the maximum and mean

values of varied θ . Figure 3.3 and Figure 3.4 show maximum and mean plots respectively.
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(a) (b)

(c)
Figure 3.3. Maximum variation of Fault parameters Φ (a), δ (b) and λ (c) of Granite. Red arrow
(u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high
variations and dark blue colored areas imply low or no variations. ψ angle increase from left to right
on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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(a) (b)

(c)
Figure 3.4. Mean variation of Fault parameters Φ (a), δ (b) and λ (c) of Granite. Red arrow (u) and
green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high variations
and dark blue colored areas imply low or no variations. ψ angle increase from left to right on figures.
φ angle increase from North pole to South pole for fixed ψ angle.
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3.1.4. Tonga Deep Zone

Tonga Deep Zone is the only elasticity tensor which represents a sub surface on this

thesis. This is why we plot positive and negative values for all five different fault types of

maximum and mean values.

3.1.4.1. Normal Fault. Strike, dip and rake angle are 90,45 and -90 degree respectively.

Variation of maximum and mean values are in Figure 3.5 and Figure 3.6.
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(a) (b)

(c)
Figure 3.5. Maximum variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Normal Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red
colored areas imply high variations and dark blue colored areas imply low or no variations. ψ angle
increase from left to right on figures. φ angle increase from North pole to South pole for fixed ψ

angle.
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(a) (b)

(c)
Figure 3.6. Mean variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for Normal
Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored
areas imply high variations and dark blue colored areas imply low or no variations. ψ angle increase
from left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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3.1.4.2. Reverse Fault. Strike, dip and rake angle are 90, 45 and 90 degree respectively.

Variation of maximum and mean values are in Figure 3.7 and Figure 3.8.
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(a) (b)

(c)
Figure 3.7. Maximum variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Reverse Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red
colored areas imply high variations and dark blue colored areas imply low or no variations. ψ angle
increase from left to right on figures. φ angle increase from North pole to South pole for fixed ψ

angle.
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(a) (b)

(c)
Figure 3.8. Mean variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for Reverse
Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored
areas imply high variations and dark blue colored areas imply low or no variations. ψ angle increase
from left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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3.1.4.3. Dip-Slip Fault. Strike, dip and rake angle are 90 degree for each parameter. Varia-

tion of maximum and mean values are in Figure 3.9 and Figure 3.10.
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(a) (b)

(c)
Figure 3.9. Maximum variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Dip-Slip Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red
colored areas imply high variations and dark blue colored areas imply low or no variations. ψ angle
increase from left to right on figures. φ angle increase from North pole to South pole for fixed ψ

angle.
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(a) (b)

(c)
Figure 3.10. Mean variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Dip-Slip Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red
colored areas imply high variations and dark blue colored areas imply low or no variations. ψ angle
increase from left to right on figures. φ angle increase from North pole to South pole for fixed ψ

angle.
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3.1.4.4. Left Lateral Strike Slip Fault. Strike, dip and rake angle are 90, 90 and 0 degree

respectively. Variation of maximum and mean values are in Figure 3.11 and Figure 3.12.
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(a) (b)

(c)
Figure 3.11. Maximum variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Left Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal,
respectively. Red colored areas imply high variations and dark blue colored areas imply low or no
variations. ψ angle increase from left to right on figures. φ angle increase from North pole to South
pole for fixed ψ angle.
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(a) (b)

(c)
Figure 3.12. Mean variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Left Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal,
respectively. Red colored areas imply high variations and dark blue colored areas imply low or no
variations. ψ angle increase from left to right on figures. φ angle increase from North pole to South
pole for fixed ψ angle.
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3.1.4.5. Right Lateral Strike Slip Fault. Strike, dip and rake angle are 90, 90 and 180 degree

respectively. Variation of maximum and mean values are in Figure 3.13 and Figure 3.14.
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(a) (b)

(c)
Figure 3.13. Maximum variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for
Right Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are slip vector and fault normal,
respectively. Red colored areas imply high variations and dark blue colored areas imply low or no
variations. ψ angle increase from left to right on figures. φ angle increase from North pole to South
pole for fixed ψ angle.
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(a) (b)

(c)
Figure 3.14. Mean variation of fault parameters Φ (a), δ (b) and λ (c) of Tonga Deep Zone for Right
Lateral Strike Slip Fault.
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3.1.5. Albite

Albite is one the monoclinic elasticity tensor that we used in order to produce moment

tensor. Monoclinic elasticity tensor are sensitive on θ as orthotropic. We plot the maxi-

mum and mean values of variation of fault parameters. Figure 3.15 and Figure 3.16 show

maximum and mean plots respectively.
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(a) (b)

(c)
Figure 3.15. Maximum variation of Fault parameters Φ (a), δ (b) and λ (c) of Albite. Red arrow
(u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high
variations and dark blue colored areas imply low or no variations. ψ angle increase from left to right
on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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(a) (b)

(c)
Figure 3.16. Mean variation of Fault parameters Φ (a), δ (b) and λ (c) of Albite. Red arrow (u) and
green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high variations
and dark blue colored areas imply low or no variations. ψ angle increase from left to right on figures.
φ angle increase from North pole to South pole for fixed ψ angle.
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3.1.6. Sanidine

Sanidine is the second monoclinic elasticity tensor. Monoclinic elasticity tensor are

sensitive on θ as orthotropic. We plot the maximum and mean values of variation of fault

parameters. Figure 3.17 and Figure 3.18 show maximum and mean plots respectively.
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(a) (b)

(c)
Figure 3.17. Maximum variation of Fault parameters Φ (a), δ (b) and λ (c) of Sanidine. Red arrow
(u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high
variations and dark blue colored areas imply low or no variations. ψ angle increase from left to right
on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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(a) (b)

(c)
Figure 3.18. Mean variation of Fault parameters Φ (a), δ (b) and λ (c) of Sanidine. Red arrow
(u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high
variations and dark blue colored areas imply low or no variations. ψ angle increase from left to right
on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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3.2. Variation on Non Double Couple Sources

Non-DC components of earthquake sources are the other parameters on moment ten-

sor decomposition. All our initial earthquake sources are pure shear sources which cannot

produce non-DC components in isotropic earthquake source medium. However, anisotropic

source region can produce both positive and negative results that indicate the direction of

forces that produce earthquakes. Figures in this section are only for dip-slip fault model ex-

cept Tonga Deep Zone elasticity tensor. All five fault types results are given for this tensor.

Figures in the following parts of this section is obtained by the terminology at below,

First we rotate elasticity tensor C for every possible orientation by using Euler angles. For

each rotation we have different elasticity tensors. Then we generate by using this elasticity

tensor, C and fault plane vector d. Then we decompose the generated moment tensor. More-

over we find the parts of moment tensor which indicate ISO, DC and CLVD components.

Finally the calculate the percentage of ISO, DC and CLVD parts. Figures in this chapter

show the positive part of ISO and CLVD percentages except Tonga Deep Zone ( Subsection

3.2.4 ). In subsection 3.2.4 both positive and negative results are plotted.

3.2.1. Gneiss

Visualizing Gneiss is possible for all angles since it has TI symmetry class and do not

sensitive on θ angle. Figure 3.19 is for dip-slip fault model.
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(a) (b)
Figure 3.19. Percentage of CLVD (a) and ISO (b) parts of earthquake source of Gneiss. Red arrow
(u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply high
percentages and dark blue colored areas imply low or zero percentages. ψ angle increase from left to
right on figures. φ angle increase from North pole to South pole for fixed ψ angle.

3.2.2. Amphibolite

Amphibolite is the other elasticity tensor with TI features. Figure 3.20 is for dip-slip

fault model.
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(a) (b)
Figure 3.20. Percentage of CLVD (a) and ISO (b) parts of earthquake source of Amphibolite. Red
arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply
high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase from
left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.

3.2.3. Granite

Granite has orthotropic symmetry classes. It has sensibility on θ angle. In order to plot

its result we take the maximum and mean values on varied θ angle. Decomposition result of

Granite material are given in Figure 3.21 and Figure 3.22

3.2.4. Tonga Deep Zone

In this material we plotted results for five different fault types which is also done in

subsection 3.1.4. Moreover, we also plotted the cases of positive and negative earthquake

sources.
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(a) (b)
Figure 3.21. Percentage of maximum CLVD (a) and ISO (b) parts of earthquake source of Granite.
Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas
imply high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase
from left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.

(a) (b)
Figure 3.22. Percentage of mean CLVD (a) and ISO (b) parts of earthquake source of Granite. Red
arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply
high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase from
left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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3.2.4.1. Normal Fault. Results of non-DC components of Tonga Deep Zone elasticity ten-

sor for normal fault are plotted in Figure 3.23 and 3.24.
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(a) (b)

(c) (d)
Figure 3.23. Percentage of maximum positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Normal Fault. Red arrow (u) and green arrow (v) are slip vector
and fault normal, respectively. Red colored areas imply high percentages and dark blue colored areas
imply low or zero percentages for positive result. Indication of colors are reversed for negative results.
ψ angle increase from left to right on figures. φ angle increase from North pole to South pole for fixed
ψ angle.



74

(a) (b)

(c) (d)
Figure 3.24. Percentage of mean positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Normal Fault. Red arrow (u) and green arrow (v) are slip vector
and fault normal, respectively. Red colored areas imply high percentages and dark blue colored areas
imply low or zero percentages for positive result. Indication of colors are reversed for negative results.
ψ angle increase from left to right on figures. φ angle increase from North pole to South pole for fixed
ψ angle.
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3.2.4.2. Reverse Fault. Results of non-DC components of Tonga Deep Zone elasticity ten-

sor for reverse fault are plotted in Figure 3.25 and 3.26.
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(a) (b)

(c) (d)
Figure 3.25. Percentage of maximum positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Reverse Fault. Red arrow (u) and green arrow (v) are slip vector
and fault normal, respectively. Red colored areas imply high percentages and dark blue colored areas
imply low or zero percentages for positive result. Indication of colors are reversed for negative results.
ψ angle increase from left to right on figures. φ angle increase from North pole to South pole for fixed
ψ angle.
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(a) (b)

(c) (d)
Figure 3.26. Percentage of mean positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Normal Fault. Red arrow (u) and green arrow (v) are slip vector
and fault normal, respectively. Red colored areas imply high percentages and dark blue colored areas
imply low or zero percentages for positive result. Indication of colors are reversed for negative results.
ψ angle increase from left to right on figures. φ angle increase from North pole to South pole for fixed
ψ angle.
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3.2.4.3. Dip-Slip Fault. Results of non-DC components of Tonga Deep Zone elasticity ten-

sor for dip-slip fault are plotted in Figure 3.27 and 3.28.
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(a) (b)

(c) (d)
Figure 3.27. Percentage of maximum positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Dip-Slip Fault. Red arrow (u) and green arrow (v) are slip vector
and fault normal, respectively. Red colored areas imply high percentages and dark blue colored areas
imply low or zero percentages for positive result. Indication of colors are reversed for negative results.
ψ angle increase from left to right on figures. φ angle increase from North pole to South pole for fixed
ψ angle.
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(a) (b)

(c) (d)
Figure 3.28. Percentage of mean positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Dip-Slip Fault. Red arrow (u) and green arrow (v) are slip vector
and fault normal, respectively. Red colored areas imply high percentages and dark blue colored areas
imply low or zero percentages for positive result. Indication of colors are reversed for negative results.
ψ angle increase from left to right on figures. φ angle increase from North pole to South pole for fixed
ψ angle.
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3.2.4.4. Left Lateral Strike Slip Fault. Results of non-DC components of Tonga Deep Zone

elasticity tensor for left lateral strike slip fault are plotted in Figure 3.29 and 3.30.
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(a) (b)

(c) (d)
Figure 3.29. Percentage of maximum positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Left Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are
slip vector and fault normal, respectively. Red colored areas imply high percentages and dark blue
colored areas imply low or zero percentages for positive result. Indication of colors are reversed for
negative results. ψ angle increase from left to right on figures. φ angle increase from North pole to
South pole for fixed ψ angle.
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(a) (b)

(c) (d)
Figure 3.30. Percentage of mean positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Left Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are
slip vector and fault normal, respectively. Red colored areas imply high percentages and dark blue
colored areas imply low or zero percentages for positive result. Indication of colors are reversed for
negative results. ψ angle increase from left to right on figures. φ angle increase from North pole to
South pole for fixed ψ angle.
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3.2.4.5. Right Lateral Strike Slip Fault. Results of non-DC components of Tonga Deep Zone

elasticity tensor for right lateral strike slip fault are plotted in Figure 3.31 and 3.32.
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(a) (b)

(c) (d)
Figure 3.31. Percentage of maximum positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Right Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are
slip vector and fault normal, respectively. Red colored areas imply high percentages and dark blue
colored areas imply low or zero percentages for positive result. Indication of colors are reversed for
negative results. ψ angle increase from left to right on figures. φ angle increase from North pole to
South pole for fixed ψ angle.
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(a) (b)

(c) (d)
Figure 3.32. Percentage of mean positive and negative CLVD (a) and ISO (b) parts of earthquake
source of Tonga Deep Zone for Right Lateral Strike Slip Fault. Red arrow (u) and green arrow (v) are
slip vector and fault normal, respectively. Red colored areas imply high percentages and dark blue
colored areas imply low or zero percentages for positive result. Indication of colors are reversed for
negative results. ψ angle increase from left to right on figures. φ angle increase from North pole to
South pole for fixed ψ angle.
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3.2.5. Albite

Albite has monoclinic symmetry thus it is sensitivity on θ Euler angle. We plot the

maximum and mean values of variation of fault parameters. Results can be seen in Figure

3.33 and Figure 3.34
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(a) (b)
Figure 3.33. Percentage of maximum CLVD (a) and ISO (b) parts of earthquake source of Albite.
Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas
imply high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase
from left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.

(a) (b)
Figure 3.34. Percentage of mean CLVD (a) and ISO (b) parts of earthquake source of Albite. Red
arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply
high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase from
left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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3.2.6. Sanidine

Sanidine mineral is the second material with monoclinic symmetry. We plot the max-

imum and mean values of variation of fault parameters. Results can be seen in Figure 3.35

and Figure 3.36.
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(a) (b)
Figure 3.35. Percentage of maximum CLVD (a) and ISO (b) parts of earthquake source of Sanidine.
Red arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas
imply high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase
from left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.

(a) (b)
Figure 3.36. Percentage of mean CLVD (a) and ISO (b) parts of earthquake source of Sanidine. Red
arrow (u) and green arrow (v) are slip vector and fault normal, respectively. Red colored areas imply
high percentages and dark blue colored areas imply low or zero percentages. ψ angle increase from
left to right on figures. φ angle increase from North pole to South pole for fixed ψ angle.
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3.3. Distance From Closest Isotropic Space

Distance from isotropic spaces for a given anisotropic elasticity tensors are calculated

by using the equation A.3. In order to calculate it, one should first calculate the closest

isotropic elasticity tensor for given anisotropic elasticity tensor by using equation 2.58. In

order to test it, we find closest isotropic elasticity tensors of anisotropic elasticity tensors that

we use.

Our assumption is that variation of fault parameters and percentages of non-DC com-

ponents are related to distance from isotropic space of the material. Results can be seen in

table 3.1

Table 3.1. Table of Distance From Isotropic Spaces
Gneiss Amphibolite Granite

Distance to
Isotropic Space

14.3316 13.3192 1.7171
Tonga Deep Zone Albite Sanidine

7.8662 170.7883 185.0637

3.3.1. MTEX Results

In order to test our assumption we also want to correlate these results with a well

known open source software named MTEX. P wave anisotropy percentage and S wave per-

centage for all possible rotation of each elasticity tensor are calculated. P wave anisotropy

percentages are shown in table 3.2 and S wave anisotropy percentages are in Figure 3.37,

Figure 3.38, Figure 3.39, Figure 3.40, Figure 3.41 and Figure 3.42.

Table 3.2. P Wave Anisotropy (%)
Gneiss Amphibolite Granite

P wave
Anisotropy

(%)

17.8488 13.3074 4.5179
Tonga Deep Zone Albite Sanidine

7.3344 46.8890 46.8748
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Figure 3.37. P & S wave anisotropies, velocities and polarization and P/S wave ratio of Gneiss
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Figure 3.38. P & S wave anisotropies, velocities and polarization and P/S wave ratio of Amphibolite
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Figure 3.39. P & S wave anisotropies, velocities and polarization and P/S wave ratio of Granite
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Figure 3.40. P & S wave anisotropies, velocities and polarization and P/S wave ratio of Tonga Deep
Zone



96

Figure 3.41. P & S wave anisotropies, velocities and polarization and P/S wave ratio of Albite
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Figure 3.42. P & S wave anisotropies, velocities and polarization and P/S wave ratio of Sanidine
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4. DISCUSSION

In this chapter decomposition, distance from isotropic space and MTEX results are

represented. Compared numerical results can be found in Table 3.1, Table 3.2 and Table 4.1.

Non-DC decomposition results have the same amount of positive and negative parts,

where positive and negative non-DC shows the forces. Figures are positive results for all

materials except Tonga Deep Zone. Although we plotted these results in different figures,

numerical values are equal to each other in absolute sense.

Two different materials with TI symmetry class generate almost same percentage of

CLVD component. However shape of the figures, which shows the CLVD component for

different orientation of elasticity tensor, are different (Figure 3.19a and Figure 3.20a). ISO

components have the same shape with different percentages (Figure 3.19b and Figure 3.20b).

Positive and negative percentages are generated at the same face of the sphere but in different

hemisphere. Maximum CLVD% in absolute sense has eight different but relevant φ and

ψ combination which are 45, 135, 225 and 315 degrees of ψ and 45 and 135 degrees of

φ . Gneiss’ ISO% and Amphibolite’s CLVD% percentages get their maximum values in

absolute sense in 270 degree of ψ and 45 degree of φ . Variation of strike, dip and rake

angles of Gneiss and Amphibolite are comperable (Figures 3.1 and 3.2). Variation of strike,

dip and rake angles of Gneiss almost two time higher than Amphibolite. But both of these

materials get their maximum variations on almost same specific combination of φ and ψ .

Table 4.1. Moment Tensor Decomposition Results of Elasticity Tensors
Gneiss Amphibolite Granite Tonga Deep Zone Albite Sanidine

Strike
Max

10.00 5.00
2.50 9.00 90.00 35.00

Mean 2.20 6.00 32.00 20.00

Dip
Max

5.00 1.80
1.20 4.50 90.00 19.00

Mean 1.00 2.50 16.00 16.00

Rake
Max

10.00 5.00
2.50 9.00 90.00 35.00

Mean 2.20 6.00 32.00 20.00

± CLVD (%)
Max

30.00 25.00
9.50 30.00 100.00 80.00

Mean 7.30 16.00 48.00 40.00

± ISO (%)
Max

0.04 11.00
5.50 1.80 41.00 55.00

Mean 4.00 1.20 26.00 33.00
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Distances from the isotropic space of Gneiss and Amphibolite are close to each other (Table

3.1). Gneiss and Amphibolite P wave velocity anisotropies are correlated with variation

of fault plane angles, 6% and 8% respectively. S wave anisotropy of Amphibolite is close

to P wave anisotropy, however, Gneiss has two times bigger S wave anisotropy percentage

with respect to P wave anisotropy (Table 4.1). P wave anisotropy percentage of TI materials

are almost identical. S wave anisotropy percentages, however, are not correlated with each

other (Figure 3.37 and 3.38). Both non-DC and fault parameters of Granite and Amphibolite

generate similar shapes with [9] which used theoretical elasticity tensor on moment tensor

decomposition. There might be a correlation between moment tensor decomposition results

for TI symmetry classes.

Materials with orthotropic elasticity tensor generate different percentages of non-DC

components (Figures 3.21 and Figures 3.27). Granite can produce 9.5 CLVD% and 5.5 ISO%

sources whereas Tonga Deep Zone can produce 30 CLVD% and 1.8 ISO%. Distances from

the isotropic space of Granite and Tonga Deep Zone are 1.7171 and 7.8662, respectively (Ta-

ble 3.1). Both of these orthotropic materials are close to isotropic space compared with TI

materials which are 14.3316 and 13.3192 (Table 4.1). Even if Tonga Deep Zone is relatively

close to isotropic space, it generates almost same amount of non-DC component as TI ma-

terials (Table 4.1). Maximum CLVD% figures of Granite have full correlation with CLVD%

of Gneiss. ISO% figures are also correlated with each other (Figures 3.19b, 3.21b). Gran-

ite and Tonga Deep Zone, however, have no similarities on both CLVD% and ISO% plots

(Figures 3.21b, 3.9c). Tonga Deep Zone gets maximum CLVD% with similar to Granite but

it also have high percentages on other φ and ψ combinations. ISO% results of Tonga Deep

Zone has non-zero values in almost every combination of φ and ψ . P wave anisotropies

of Granite and Tonga Deep Zone are 4.5179 and 7.3344 percentages, respectively (Figure

3.39 and 3.40). They produces different amount of non-DC percentage even if their P wave

anisotropy percentages are relatively close to each other. S wave anisotropy percentages are,

however, not close to each other (Figure 3.39 and 3.40). S wave anisotropy of Granite is four

times bigger than Tonga Deep Zone. ISO results are ± 5% and ± 1% for Granite and Tonga

Deep Zone, respectively. Percentages of ISO parts of earthquake sources are related with

the distance from isotropic space of their elasticity tensors. Shape of the CLVD percentage
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figures of Granite are similar to Gneiss material even if they have different symmetry classes

(Figure 3.19a and Figure 3.21a). Variation of fault parameters are slightly different with each

other which can be correlated with the distance from isotropic spaces (Figures 3.3 and 3.9).

Fault plane parameters of Granite can vary 2.5 degrees for strike and rake and 1.2 degrees

for dip angles. Tonga Deep Zone can produce 9 degrees of strike and rake and 4.5 degrees

of dip angles. Shape of variation of dip angle are both similar for Granite and Tonga Deep

Zone (Figures 3.3b and 3.9b).

Tonga Deep Zone is decomposed for five different fault types. Results show that fault

plane does not effect the amount of non-DC components and variations of fault plane param-

eters but effect the shape of the plot (Figures 3.5, 3.7, 3.9, 3.11, 3.13, 3.23, 3.25, 3.27, 3.29

and 3.31). We expect this result since both the magnitude and shape of the elasticity tensor

remain same.

Monoclinic materials, Albite and Sanidine, can generate huge amount of non-DC com-

ponents and fault plane parameters can change vastly. Shear sources in isotropic source re-

gion generate pure DC. Strike, dip and rake angles are the same angles of fault planes. Both

Albite and Sanidine can generate so great percentages of non-DC components that one can-

not describe the earthquake with fault plane parameters. Albite, for instance, can generate ±

100 CLVD% component (Figure 3.33a) in which case the fault parameters are not meaning-

ful anymore. Albite mineral can also generate up to ± 41 ISO% component (Figure 3.33b).

Sanidine material can generate up to ± 80 CLVD% (Figure 3.35a) and ± 55 ISO% com-

ponent (Figure 3.35b). Both Sanidine and Albite generate their maximum CLVD and ISO

percentages on different orientation. One must recall that an earthquake cannot generate

more than 100% source. Even though Sanidine material has no similarity with TI materi-

als its dip and rake angle variation figures are similar to TI materials (Figures 3.1, 3.2 and

3.17). Strike, dip and rake angle variation of Albite mineral can be up to 90 degree (Figures

3.15). Sanidine, on the other hand, can generate maximum 35 degree strike and rake angle

variation and 19 degree dip angle variation (Figure 3.17). There are discontinuities in fault

plane angle parameter variations of both Albite and Sanidine. This can be linked with high

amount of non-DC percentages of the earthquake sources. Variation of dip angle of Sani-
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dine, however, has similarities with Gneiss and Amphibolite (Figures 3.1b, 3.17b). Distance

from the isotropic space of Albite and Sanidine are 170.7883 and 185.7883, respectively

(Table 3.1). They are more than 10 times farther from the isotropic space than TI materials.

P wave anisotropy of these materials are 46.8890 and 46.8748 which is correlating with the

results of isotropic space distances. S wave anisotropies are, however, not correlate P wave

anisotropy results. S wave anisotropy percentages of Albite and Sanidine are 190% and 60%,

respectively (Figures 3.41 and 3.42).
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5. CONCLUSION

Conclusions can be summarized as follows,

i. Shear faults in anisotropic source region can generate huge amount of non-DC compo-

nents depending on the strength of the anisotropy.

ii. The amount of non-DC components are related with the symmetry class of anisotropic

material.

iii. Fault types cannot change the amount of non-DC components or strike, dip and rake

angles but it can change the orientation of figures.

iv. Variation of non-DC components and strike, dip and rake angles are determined by the

anisotropic material’s distance from isotropic space. Materials which are farther from

isotropic space produce more non-DC components and strike, dip and rake angles varied

from original value.

v. Materials with TI symmetry generate a particular type of certain type of non-DC and

strike, dip and rake angles plots.

vi. In order to visualize moment tensor decomposition result of a material with sensitivity

on θ , e.g. orthotropic and monoclinic elasticity tensors, angle one can take the mean

or maximum values on θ angle. Maximum values can be a good way to understand the

capabilities of anisotropic source region.

vii. CLVD and ISO results of moment tensor decomposition can be positive and negative.

Negative and positive results have always same percentage in absolute sense.

viii. Monoclinic elasticity tensors can produce such high amount of non-DC components that

it can be hard to interpret the earthquake source as a shear source. In some combination

of Φ, ψ and θ monoclinic source region can produce almost ± 100% CLVD source.

Moreover, in some cases combination of ISO and CLVD parts of earthquake can be up

to ± 100% as well. In such cases strike, dip and rake angles cannot explain the fault.

ix. There is a correlation between the material’s distance from isotropic space and P wave

anisotropy percentage of the material. Materials which are farther from isotropic space

have more P wave anisotropy percentages. S wave anisotropy percentages, however, are
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not correlated with neither P wave anisotropy nor distance from isotropic space.
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10. Vavryčuk, V., “Tensile earthquakes: Theory, modeling, and inversion”, Journal of Geo-

physical Research: Solid Earth, Vol. 116, No. B12, 2011.
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APPENDIX A: DISTANCE FUNCTION

The best approximation in the Frobenius norm is the orthogonal projection prsym(c)

of tensor c on the linear space of all tensors on this class. The projection calculation can be

written as below,

prsym(c) =
∫

Gsym
(g◦ c)dµ(g), (A.1)

where the integration is over the symmetry group Gsym. Its elements are g, represented as A

matrix, with respect to the invariant measure µ [53].

Transformation on the space of elasticity tensor is given by C −→ ACAT . Because tensors

c− prsym(c) and prsym(c) are normal to one another, we have

∥∥c− prsym(c)
∥∥2

= ‖C‖2−
∥∥prsym(c)

∥∥2 (A.2)

It can be written as,

d2
sym = ‖C‖2−‖Csym‖2 (A.3)

Distance from monoclinic space of a given elasticity tensor (in Kelvin notation), for instance,

can be found as below,

distmono = 2(C2
14 +C2

24 +C2
34 +C2

15 +C2
25 +C2

35 +C2
46 +C2

56) (A.4)
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APPENDIX B: VOIGT AND KELVIN NOTATIONS OF

ELASTICITY TENSOR

Due to the symmetry of stress and strain tensor, elasticity tensor can be written in a

matrix form which contains six independent equations. This allows us to express elasticity

tensor as an elasticity matrix. Components of elasticity tensor, 36, can be written as 6 × 6

elasticity matrix.

Since ci jkl is symmetric 81 components of ci jpq reduces to 21 components.

c =



C1111 C1122 C1133 C1123 C1131 C1112

∗ C2222 C2233 C2223 C2231 C2212

∗ ∗ C3333 C3323 C3331 C3312

∗ ∗ ∗ C2323 C2331 C2312

∗ ∗ ∗ ∗ C3131 C3112

∗ ∗ ∗ ∗ ∗ C1212



ci jpq = c jipq = ci jqp = cpqi j (B.1)

σi j = ci jpqεpq (B.2)

εpq =
1
2
(up,q +uq,p) (B.3)

Since i j and pq are symmetric, one can define these terms as,

i j↔ k
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pq↔ l

Such symmetry can also be applied to ci jkl , and it becomes,

ci jpq =Ckl

Due to these symmetries, we can define each couple as one index:

11↔ 1

22↔ 2

33↔ 3

23↔ 4

13↔ 5
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12↔ 6

This allows us to write elasticity tensor in a matrix form:

C =



C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66



As an example, C12 corresponds to c1122 and C54 corresponds to c1323.

Hence, stress-strain for a general elastic continuum that obeys Hooke’s Law can be written as



σ11

σ22

σ33

σ23

σ13

σ12


=



C11 C12 C13 C14 C15 C16

∗ C22 C23 C24 C25 C26

∗ ∗ C33 C34 C35 C36

∗ ∗ ∗ C44 C45 C46

∗ ∗ ∗ ∗ C55 C56

∗ ∗ ∗ ∗ ∗ C66





ε11

ε22

ε33

2ε23

2ε13

2ε12


(B.4)
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where the stress and the strain tensor components are mapped to the matrix for as below,


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

→



σ11

σ22

σ33

σ23

σ13

σ12


,


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

→



ε11

ε22

ε33

2ε23

2ε13

2ε12


(B.5)

This representation is called Voigt notation. This allows us to represent second-rank strain

and stress tensors as a vector in six dimensional space. The Voigt mapping preserves the

elastic energy denstiy and the elasticity tensor. However, one can easily notice that some

stress and strain tensors are treated differently. Thus we lose all advantages of tensor alge-

bra. In order to preserve the equivalency of last three row of stress and strain tensor, one can

use Kelvin notation.


σ11 σ12 σ13

σ12 σ22 σ23

σ13 σ23 σ33

→



σ11

σ22

σ33
√

2σ23
√

2σ13
√

2σ12


,


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

→



ε11

ε22

ε33
√

2ε23
√

2ε13
√

2ε12


(B.6)
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Then, the stress-strain equation can be written as,



σ11

σ22

σ33
√

2σ23
√

2σ13
√

2σ12


=



c1111 c1122 c1133
√

2c1123
√

2c1113
√

2c1112

c2211 c2222 c2233
√

2c2223
√

2c2213
√

2c2212

c3311 c3322 c3333
√

2c3323
√

2c3313
√

2c3312
√

2c1123
√

2c2223
√

2c3323 2c2323 2c1313 2c1313
√

2c1113
√

2c2213
√

2c3313 2c2313 2c1313 2c1312
√

2c1112
√

2c2212
√

2c3312 2c2312 2c1312 2c1212





ε11

ε22

ε33
√

2ε23
√

2ε13
√

2ε12


(B.7)

This notation enables us to use tensor algebra for the matrix presentation in 6D. Kelvin

mapping preserves the elastic energy density. Norms of the three tensors are preserved.

Stress and strain are treated identically. However, the value of elasticity tensor components

are changed.

In order to decompose moment tensor, elasticity tensors are defined in Voigt notation.
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APPENDIX C: SYMMETRY CLASSES

C.1. Isotropic

For isotropic elasticity tensor, all coordinate systems are natural coordinate systems.

No particular orientation is required. Isotropic elasticity tensor is of the form

CISO =



C11 C11−2C44 C11−2C44 0 0 0

C11−2C44 C11 C11−2C44 0 0 0

C11−2C44 C11−2C44 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



In isotropic elasticity tensor, there only two independent elastic parameters; namely, C11 and

C44. These two are also called Lamé parameters. C44 is called rigidity and C11− 2C44 is

callad first Lamé parameter.

C.2. Cubic

For cubic symmetry, coordinate axes which are aligned with 4-fold rotation axes of the

cube. One can show cubic symmetry in matrix form as below,
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CCUBIC =



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44



In cubic elasticity tensor, there are three independent elastic parameters; namely, C11,C12

and C44.

C.3. Tetragonal

Tetragonal symmetry class contains a 4-fold rotation and a reflection through the plane

that contains the axis of rotation. If e3 is parallel to the axis of rotation, then natural basis is

where e1 and e2 are parallel of the normal of any two orthogonal symmetry planes. Matrix

representation of a tetragonal elasticity tensor in a matrix form as below,

CT ET RA =



C11 C12 C13 0 0 0

C12 C11 C13 0 0 0

C13 C13 C33 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C66



One can notice that, the only difference between tetragonal and TI is that C66 parameter
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of the matrix.

C.4. Trigonal

Trigonal symmetry class contains a 3-fold rotation. If e3 is parallel to the axis of

rotation, then natural basis is where either e1 or e2 is aligned with the normal of any two or-

thogonal symmetry planes. Matrix representation of a trigonal elasticity tensor with respect

to natural basis in a matrix form as below,

CT RIGONAL =



C11 C12 C13 C14 C15 0

C12 C11 C13 −C14 −C15 0

C13 C13 C33 0 0 0

C14 C14 0 C44 0 −C15

C15 −C15 0 0 C44 C14

0 0 0 −C15 C14
C11−C12

2



C.5. Generally Anisotropic

Generally anisotropic is the most general form that describes stress-strain equations. It

can be shown as a matrix as below,

CGENANISO =



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


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Generally anisotropic elasticity tensor only have point symmetry. It has twenty one

independent parameters.




