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ABSTRACT 

 

THE MAGNETOTELLURIC PHASE TENSOR METHOD  

FOR IMAGING THE NORTH ANATOLIAN FAULT ZONE  

 
Magnetotelluric data often suffer from localized (three-dimensional) 

heterogeneities by a real and frequency independent phenomenon known as “galvanic 

distortions”. There have been numerous techniques developed for avoiding the galvanic 

distortions and thus, determining the dimensionality of the observed data. Groom and 

Bailey’s decomposition and the phase tensor analyses are used for avoiding galvanic 

distortions and Swift’s analysis, Bahr’s parameters are some of the most common and 

conventional dimensionality determination approaches. The phase tensor is a relatively 

more recent approach compared to the rest and is useful for studying in a distortion-free 

medium. The main objective of this study is to develop MATLAB® scripts for calculating 

and imaging the phase tensor ellipses and applying them to observed data collected at the 

central part of the North Anatolian Fault Zone (NAFZ). Final images are compared to 

other geophysical study results performed within the same area. 
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ÖZET 

 
MANYETOTELLÜRİK FAZ TENSÖRÜ METODU KULLANARAK TOSYA 

ÇEVRESİNDE KUZEY ANADOLU FAYI’NIN GÖRÜNTÜLENMESİ 

 

Manyetotellürik veri, çoğu kez “galvanik bozulma” olarak bilinen lokalize olmuş 

çok boyutlu heterojen yapılardan etkilenir. Galvanik bozulmalar gerçel sayılardan oluşur 

ve frekanstan bağımsızdır. Galvanik bozulmalar ile ilgilenen ve ayrıca yeraltındaki 

boyutluluğu kestirmede kullanılan birçok teknik geliştirilmiştir. Groom ve Bailey 

ayrıştırması ve faz tensörü verideki bozulmadan kurtulmayı sağlayan metotlardandır. 

Swift’in analizi ve Bahr parametreleri yeraltı yapısının uzanımı hakkında bilgi almayı 

sağlayan yöntemlerden en yaygın kullanılanlarından bazılarıdır. Faz tensörü diğerlerine 

göre daha yeni bir yöntemdir ve galvanik düzeltmedeki avantajı ile yeraltındaki yapının 

boyutluluğu hakkında geleneksel yöntemlere göre daha iyi bilgi vermektedir. Bu 

çalışmanın temel amacı faz tensörü analizi yapan MATLAB® programları geliştirmek ve 

bunu Kuzey Anadolu Fay Hattının orta kesiminde toplanan gerçek veriye uygulamaktır. 

Sonuçlar aynı bölgede yapılmış başka jeofizik çalışmalarla da karşılaştırılmıştır.  
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1.  INTRODUCTION 

 

The main goal in geophysics is to investigate the physical properties of the Earth 

and its subsurface. For this purpose, several methods sensitive to various physical 

parameters were developed. One of these methods is a geo-electromagnetic technique 

known as magnetotellurics method (Vozoff, 1972; Chave and Jones, 2012). 

Magnetotellurics (MT) method is based on monitoring the electric and magnetic fields as 

time series at the surface of the Earth. Following the data acquisition, electromagnetic data 

are transferred to frequency domain and electromagnetic impedance elements are 

calculated for further analyses and numerical modeling.   

 

MT data often suffer from localized (three-dimensional) subsurface heterogeneities 

by surplus effects known as “galvanic distortions”. They are real and frequency 

independent. There have been numerous attempts made to remove these distortions from 

observed data (Vozoff, 1972; Bahr, 1988; 1991; Groom &Bailey, 1989; Caldwell et al., 

2004; Bibby et al., 2005). In general, this operation can be considered as part of the 

dimensionality analysis and it targets to assist the determination of the distortion-free 

impedance tensor and regional distortion-free geo-electric strike (Vozoff, 1991; Bahr, 

1988; Groom and Bailey, 1989; Mc Neice and Jones, 2001; Caldwell et al., 2004; Bibby et 

al., 2005). 

 

To discard the effects of galvanic distortions from their data, MT practitioners have 

endeavored to produce more accurate subsurface models with several common approaches 

such as: Swift’s analysis (Swift, 1967), Bahr’s parameters (Bahr, 1988), Groom and 

Bailey’s decomposition (Groom and Bailey, 1989) and the MT phase tensors (Caldwell et 

al., 2004). Swift’s analysis is an amplitude based approach that deals with the recovery of 

the so-called “geo-electric strike angle” rather than distortion removal. This analysis is 

performed by maximizing (minimizing) the off - diagonal (diagonal) elements of the 

impedance tensor (Swift, 1967; Bahr and Simpson, 2005). Bahr’s parameters are calculated 

form the observed impedance tensor and are used to detect dimensionality, too. The 
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electromagnetic strike that is recovered using the Bahr’s method is often referred to as the 

phase-sensitive strike (Simpson, 2001; Bahr, 1988; Bahr, 1991; Bahr and Simpson, 2005). 

In Groom and Bailey’s decomposition, the main objective is to separate the local responses 

that cause galvanic scatterings on the electric field data and regional response parameters 

as much as possible through a product factorization (Groom and Bailey, 1989). In other 

words, Groom and Bailey decomposition is used for removing the distortion parameters 

“twist” and “shear”. The method is unable to solve the problems caused by “the site gain” 

and “the anisotropy” and leave them untouched. Induction arrows can also be used to 

resolve difficulties in determining the geo-electric strike. The theory of this method 

depends on linear combinations of horizontal and vertical magnetic field components 

(Vozoff, 1991). 

 

MT phase tensor is a practical method introduced by Caldwell et al., (2004) and is 

useful for determining the dimensionality and geo-electric strike of a regional structure. 

The phase tensor elements may be calculated by taking the ratio of the imaginary and real 

components of the complex impedance tensor elements (Caldwell et al., 2004). The major 

advantage of this technique is that, the phase tensor elements do not contain effects caused 

by galvanic distortions.  

 

Aim of this thesis is to develop MATLAB® scripts that perform phase tensor 

analysis. Following the development, some synthetic data obtained from several forward 

subsurface models were applied to the scripts. For this purpose, a three-dimensional 

forward code developed by Mackie et al., (1993) was used. Firstly, the scripts were tested 

for a homogenous half-space. An identical geometry (and structure) given in the Caldwell 

et al. (2004) was used during the tests of the developed scripts (at this point, it might be 

important to note that Caldwell et al., (2004) used a different three-dimensional forward 

code developed by Xiong (1992) and Xiong and Tripp (1995) for calculating the model 

responses).  

 

Finally, after testing the synthetic models, the scripts were used for analyzing an 

observed MT data set. For this purpose a north-south aligned MT profile was used that 
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crosses the North Anatolian Fault Zone (near Tosya, Kastamonu). The profile is made up 

of 25 wide-band (320 Hz - 1800 s) MT soundings. 

 

Chapter 2 briefly explains the theory of the MT method. Within this chapter, 

concepts of directionality and dimensionality are also mentioned. Swift’s analysis (Swift, 

1967) and the phase tensors (Caldwell et al., 2004) are described. Chapter 3 involves the 

development, tests and application of the MATLAB® scripts on sythetic data. A short 

description of the case study and the application of the scripts on observed data can also be 

found in Chapter 3. Results and their interpretations are shown in Chapter 4. Detailed 

information about how the phase tensor ellipses and maps are produced with synthetic 

(Comparisons to Caldwell et al. (2004) results) and observed data (ellipses superimposed 

on topography maps and pseudo-sections) can be found in this chapter. Chapter 5 includes 

discussions and comparisons to other geophysical results. All these information is followed 

by a conclusion as Chapter 6. 
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2.THEORY 

 

2.1. BASICS OF MAGNETOTELLURIC (MT) METHOD 

 

2.1.1.Maxwell’s Equations 

 

Fundamental theory of electromagnetics and magnetotellurics (MT) method can be 

described by Maxwell’s equations. Maxwell had arranged Gauss, Ampére and Faraday 

laws to define electromagnetics in a mathematical and physical manner (Ward and 

Hohmann, 1988). Differential form of Maxwell’s equations can be represented as:  

 

                                                          ∇ × 𝐄 = −∂𝐁
∂t

                                                   (2.1) 

                                                          ∇ × 𝐇 = 𝐉 + ∂𝐃
∂t

                                                (2.2) 

                                                          ∇.𝐃 = ρ                                                           (2.3) 

                                                          ∇.𝐁 = 0                                                           (2.4) 

 

where E is electric field intensity in V/m, H  is  magnetic field intensity in A/m, B  is 

magnetic induction in Teslas (Wb/m2), J is the electric current density in A/m2,  D is the 

dielectric displacement (𝐃 = ε𝐄)  in C/m2  and  ρ is the electric charge density in C/m3 

(Ward and Hohmann,1988). 

 

2.1.1.1. The Constitutive Relations.

 

 The constitutive relations are generally used in 

electromagnetics in order to define relations between the electric and the magnetic field. 

For that, the medium should be linear, isotropic and homogeneous. Moreover, the medium 

should have electrical properties, which are independent of time, temperature or pressure. 

B, D and J can be stated as    
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                                             𝐁 = μ𝐇                                                             (2.5) 

                                                              𝐃 = ε𝐄                                                             (2.6) 

                                                              𝐉 = σ𝐄                                                              (2.7) 

 

 

where ɛ is the dielectric permittivity in F/m, μ is the magnetic permeability in H/m (it is 

assumed to be that of free space μ = μ0 = 4π.10-7) and σ is the electrical conductivity (in 

S/m) of the medium (Ward and Hohmann,1988). 

 

If homogeneous Earth materials have conductivity of 10-4 S/m or greater, free 

charge ρe scatters in less than 10-6 sec. In frequencies less than 105 Hz,  𝜕ρ𝑒 𝜕𝑡⁄  ~ 0, and by 

taking the divergence of equation (2.7), we obtain 

 

                                                                    𝛁. 𝐉 = 0                                                       (2.8) 

 

and this equation does not apply to inhomogeneous regions because at the interface 

between two distinct media a surface charge accumulates (Ward and Hohmann, 1988). 

 

2.1.2. Assumptions of the MT Method 

 

In the theory of MT method, there are several assumptions so as to understand 

electromagnetic induction in the Earth (Rikitake, 1948; Tikhonov, 1950; Cagniard, 1953; 

Keller and Frischknecht, 1966; Bahr and Simpson; 2005). 

 

• In order to apply MT method, Maxwell’s equations must be obeyed (Rikitake, 1948; 

Tikhonov, 1950; Cagniard, 1953). 
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• Source of the Earth’s current is originally external. Thus, most part of the Earth’s current is 

induced by the variation of the external geomagnetic force (Rikitake, 1948). 

 

• In the theory of MT method, the natural electric and magnetic fields of the Earth are 

measured by the help of the ionospheric current systems. Electromagnetic waves are 

assumed to be plane waves that penetrate into the Earth near vertical incidence (Cagniard, 

1953; Kaufmann and Keller, 1981; Simpson and Bahr, 2005). 

 

• There are also some assumptions on Maxwell’s equations. One of them is about Amperé’s 

law, which is 

 

                                    𝛁 × 𝐇 = σ𝐄 − iωε𝐄                                                      (2.9) 

 

where H is magnetic field, E is electric field, ω angular frequency, σ conductivity and ε 

dielectric permittivity. At right hand side, the first term is conduction currents and the 

second term is the displacement currents. Because of the quasistatic approximation, 

displacement currents are very small when compared with conduction currents. In other 

words, in the theory of MT method, Amperé’s law is assumed to be 

 

                                              𝛁 × 𝐇 = σ𝐄                                                       (2.10) 

 

• Another assumption about Maxwell’s equations is for Gauss’s law for electricity. Original 

form of the equation is valid for in the static case. That is, source of the electrical field is a 

charge. 

 

Original form of the equation is: 

 

                                                   ∇.𝐄 = ρ                                                         (2.11) 
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but the theory of MT method handles the dynamic case of the law. That is, the 

electric field is related with current flow. In that situation, divergence of the electric field is 

equal to zero. In MT method, Gauss’s law for electricity takes the form as  

 

                                                   ∇.𝐄 = 0                                                         (2.12) 

 

 (Kaufmann and Keller, 1981; Ward and Hohmann, 1988; Simpson and Bahr, 

2005). 

 

• In a multi-dimensional Earth, charge can accumulate along discontinuities. This   generates 

a non-inductive phenomenon known as static shift. Also the Earth behaves as an Ohmic 

conductor and charge is conserved. That situation obeys the equation 

 

                                                 J=σE                                                                (2.13) 

 

where  J is total electric current density (in Am-2),  σ is the conductivity of the 

sounding medium (in Sm-1)  and  E is the electric field (in Vm-1) (Simpson and Bahr, 

2005). 

 

• Changes in the magnetic permeability and electrical permittivity of rocks are assumed 

negligible compared with changes in bulk rock conductivities (Simpson and Bahr, 2005). 

 

2.1.3. Electromagnetic impedance and impedance tensor 

 

In magnetotelluric studies, there is an interrelation between horizontal components 

of the electric field (i.e. Ex, Ey) and horizontal components of the magnetic field (i.e. Hx, 

Hy). It is stated that these components of the electric and the magnetic fields are 
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proportional to each other and that proportionality is diagnostic for finding different 

resistivities under the Earth’s surface (Tikhonov, 1950; Cagniard, 1953). That is;                                                      

 

                                                       𝐙ij = Ei
Hj

                                                                    (2.14) 

 

where Z is the electromagnetic impedance (note that electromagnetic impedance is 

different than electrical impedance) and E and H are horizontal components of electric and 

magnetic fields, respectively. Because of E and H are complex, so the impedance is a 

complex number. Z can also be defined as a tensor (Cagniard, 1953; Swift, 1967; 

Kaufmann and Keller, 1981, Simpson and Bahr, 2005). 

  

                                    𝐙 = �Z11 Z12
Z21 Z22

� =

⎣
⎢
⎢
⎢
⎡
EX

HX
� EX

HY
�

EY
HX
� EY

HY
�

⎦
⎥
⎥
⎥
⎤
                                         (2.15) 

       

2.1.3.1. Dimensionality detection from impedance tensor.

 

   If the Earth is one-dimensional 

(1D), (Swift, 1967; Vozoff, 1991; Simpson and Bahr, 2005) one dimensional 

electromagnetic impedance tensor takes the form  

                                                𝐙1D = � 0 Z12
−Z21 0 �                                                      (2.16) 

 

In the two-dimensional (2D) Earth, (Swift, 1967; Vozoff, 1991; Simpson and Bahr, 

2005) the 2D electromagnetic impedance tensor is 

 

                                                     𝐙2D = � 0 Z12
Z21 0 �                                                    (2.17) 
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In three-dimensional (3D) Earth, impedance elements are neither zero, nor equal 

(Swift, 1967; Vozoff, 1991; Simpson and Bahr, 2005). Then, 3D impedance tensor takes 

the form 

 

                                                      𝐙3D = �Z11 Z12
Z21 Z22

�                                                   (2.18) 

 

 

2.1.4. Apparent resistivity and impedance phase 

 

 Apparent resistivity values are generally seen as curves for displaying results of MT 

data and this parameter is one of the most frequently used parameter. Cagniard (1953) has 

proposed two fundamental assumptions for calculating resistivity. Firstly, the Earth should 

have horizontal layers and each layer should be homogeneous and isotropic. Secondly, 

magnetic micropulsations should be plane electromagnetic waves running into the Earth. In 

consideration of these assumptions, Cagniard (1953) has stated that resistivity can be 

calculated as a function of depth if apparent resistivity is known (Vozoff et al., 1963). 

Mathematical form of apparent resistivity is given by;  

 

       𝜌𝑎 = 𝜔𝜇0  �𝐸𝑋
𝐻𝑌
�
2
                                               (2.19) 

 

where 𝜌𝑎 is apparent resistivity in ohm.m,  𝐸𝑋 (A.m-1) and 𝐻𝑌 (Wb.m-2) are horizontal 

components of electric and magnetic fields, respectively, 𝜔 and 𝜇0. 

 

 In other words, apparent resistivity can be thought as the average resistivity of the 

equivalent uniform layered medium (Cagniard, 1953; Simpson and Bahr, 2005).  

 

Another frequently used parameter is the electromagnetic impedance phase. It is 

already stated that there is an interrelation between horizontal components of the electric 

field and the magnetic field. These components are proportional to each other and there is a 
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phase shift between them (Tikhonov, 1950; Kaufmann and Keller, 1981; Vozoff, 1991). It 

can be represented as  

 

                                                       Φij = 𝑎𝑟𝑔(Im(Zij)
Re(Zij)

)                                                     (2.20) 

where Φij is in degrees. Impedance phase is equal to 45° in homogeneous medium because 

conductivity is stationary everywhere in the medium. Hence, components of the electric 

and magnetic fields are equal to each other. As long as conductivity of medium increases 

with depth, the impedance phase increases and becomes larger than 45° and that is also 

valid for vice versa (Kaufman and Keller, 1981; Vozoff, 1991; Simpson and Bahr, 2005). 

 

2.1.5. Skin Depth 

 

In a uniformly conductive medium, electromagnetic field decays by 1/e (≈ 0.37) 

(Chave and Jones, 2012).  That is, electromagnetic waves diffuse as long as % 67 of their 

energy is attenuated. This length scale for electromagnetic induction is termed as skin 

depth (Bedrosian, 2007). Mathematical representation of skin depth is given as  

 

     𝛿(𝜔) = � 2
𝜔𝜇𝜎

                                                     (2.21) 

 

 

In S.I. units, (2.21) can be written as 

 

     𝛿 ≅ 503�𝜌𝑇                                                      (2.22) 

 

where δ is in meters, T (period) is in seconds and ρ is the electrical resistivity in ohm m. 

Skin depth formula indicates that, attenuation of electromagnetic waves in conducting 
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layer is very fast when it is compared with resistive layer. In other words, electromagnetic 

waves attenuate slowly in a resistive layer (Bedrosian, 2007; Chave and Jones, 2012). 

 

2.2. COPING WITH THE GALVANIC DISTORTIONS 

 

2.2.1 Galvanic Distortion 

 

 MT data suffer from galvanic distortions. Distortion of regional electric fields, 

caused by local structures, is one of the common difficulties faced in the application of the 

MT method. Galvanic distortion, which is produced by localized heterogeneity on the 

undistorted (regional) electric field ER, can be written in the mathematical form as 

 

    𝐄(ω) = 𝐄𝐑(ω) + 𝐄𝐒(ω),                                                (2.23) 

 

 

where  E is the observed electric field, ER is the regional electric field, ES is the secondary 

electric field, which produced by the interaction of regional conductivity and 

heterogeneity, and ω is the angular frequency (Caldwell et al., 2004; Bibby et al., 2005). 

 

In theory, inductive effects can be neglected and that the regional electric field ER 

does not change substantially with the lateral extent of the heterogeneity. At this stage, 

writing the scattered field ES as linearly proportional to the regional electric field ER may 

be a good approximation. With these assumptions equation (2.23) may be rewritten in 

terms of a distortion matrix (D), which is a frequency independent linear operator and all 

components are real, that transforms the regional electric field vector into the distorted 

field E observed at the surface (Caldwell et al., 2004). That is: 

 

                                       E(ω) = DER(ω),                                                  (2.24) 
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where D is the two by two matrix  (a second rank, 2-D tensor). The observed electric field 

can be thought as a linear superposition of the regional field (ER) and a scattered electric 

field (ES) according to equation (2.24). As long as D is real, in a case such that the regional 

electric field is linearly polarized the distorted electric field is also linearly polarized 

despite ER and ES are not usually in the same direction (Caldwell et al., 2004). In a 

Cartesian coordinate system (x, y) the distortion operator can be written as the matrix 

 

     𝑫 = �d11 d12
d21 d22

�                                                   (2.25) 

 

where the elements of  D depend on the position of the observation point, the shape of the 

heterogeneity and conductivity of the heterogeneity (Caldwell et al., 2004).  

 

 

 In circumstances where equation (2.24) is valid, the horizontal components of the 

observed magnetic field H are equal to the components of the regional magnetic field HR 

(Caldwell et al., 2004; Bibby et al., 2005). That is:  

 

     𝐇(ω) = 𝐇R(ω).                                                   (2.26) 

 

2.2.2 Swift’s Analysis 

 

 This technique was introduced by Swift (1967). Aim of Swift’s (1967) analysis is to 

determine the geoelectric strike angle of the structure. Swift (1967)’s geoelectric strike can 

be calculated in numerous ways. Minimizing the sum of the diagonal elements of the 

impedance tensor leads to:  

 

      𝜕
𝜕𝜃

(|𝑍𝑋𝑋(𝜃)|2 + |𝑍𝑌𝑌(𝜃)|2) = 0                                    (2.27) 

 

(likewise, similar to 2.27 it can be calculated by maximizing the off - diagonal elements of 

the impedance tensor).  
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                                                      𝜕
𝜕𝜃

(|𝑍𝑋𝑌(𝜃)|2 + |𝑍𝑌𝑋(𝜃)|2) = 0                                              (2.28) 

 

 

 

 

This derivation process gives  

 

                             𝜃 = 1
4

(𝑍𝑥𝑥−𝑍𝑌𝑌)(𝑍𝑋𝑌+𝑍𝑌𝑋)∗+(𝑍𝑋𝑋+𝑍𝑌𝑌)∗(𝑍𝑋𝑌+𝑍𝑌𝑋)
|𝑍𝑋𝑋−𝑍𝑌𝑌|2+|𝑍𝑋𝑌+𝑍𝑌𝑋|2

                                 (2.29) 

 

where Zij
* is the complex conjugate of Zij and 𝜃 is the geoelectric strike. 

 

This computed strike has 90o uncertainty in rotation process. Because of this reason 

electromagnetic strikes of 𝜃 and 𝜃+90o can not be distinguished using a purely 

mathematical 2-D model (Swift, 1967; Simpson and Bahr, 2005). In order to overcome this 

complexity, Swift (1967) suggested skew (conventional skew) parameter and it can be 

represented as 

 

     𝜅 = 𝑍𝑋𝑋+𝑍𝑌𝑌
𝑍𝑋𝑌−𝑍𝑌𝑋

                      (2.30) 

 

 This parameter can be used to determine possibility of the two dimensional 

interpretation. According to Swift (1967), for values of the skew parameter greater than 

0.6, which has the meaning for 3D interpretation, the calculated principal directions are 

meaningless; but for values less than 0.3, which has the meaning for 2D interpretation; the 

calculated principal directions are accurate to within 10o (Swift, 1967).   

 

2.2.3 Induction Arrows  

 

Induction arrows (tipper vectors / transfer functions) are vector representations of 

the complex ratios of vertical to horizontal magnetic field components. Induction arrows 

can be used to infer the presence or absence of lateral variations in conductivity. Theory of 
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this method depends on linear combinations of horizontal and vertical magnetic field 

components (Vozoff, 1991; Simpson and Bahr, 2005). 

 

                               𝐻𝑧(ω) = (𝐓X(ω)  𝐓Y(ω)) �
𝐻𝑋(ω)
𝐻𝑌(ω)�              (2.31) 

 

where Hz is vertical magnetic field, Hx and HY are horizontal components of the magnetic 

field and TX and TY are complex magnetic field transfer functions generally called the 

tipper. This method can be used to show which side of a contact is more conductive. That 

is, near a conductor-resistor boundary, the near surface current density parallel to strike is 

larger on the conductive side (Vozoff, 1991; Simpson and Bahr, 2005). 

  

These transfer functions (i.e., TX and TY) are graphically represented by arrows. In 

the Parkinson convention (Parkinson, 1959), these arrows point toward conductive regions 

(Vozoff, 1991; Caldwell et al., 2004; Simpson and Bahr, 2005). 

 

On the other hand, in the Wiese convention (Wiese, 1962), these arrows point away 

from conductive regions. In essence, by the help of induction arrows, the strike can be 

determined. At the center of the anomaly, the vertical magnetic field decays to zero in the 

absence of lateral conductivity variations (Vozoff, 1991; Simpson and Bahr, 2005). 

 

2.2.4 The MT Phase Tensor 

 

Caldwell et al., (2004) introduced a method based on treating the phase information 

as a tensor. The phase tensor method can be useful for determining the geoelectric strike, 

too. The most striking spot of the phase tensor is that it is not affected by galvanic 

distortion of the electric field and hence dimensionality of the subsurface may be 

calculated from distortion-free data. The phase of a complex number (i.e., for this method 

impedance elements) is defined as the ratio of its imaginary and real parts;   

 

                                                                 𝜑 = 𝐼𝑚(𝑍𝑖𝑗)
𝑅𝑒(𝑍𝑖𝑗)

    (2.32) 
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where 𝒁𝑖𝑗 denotes elements of the measured impedance tensor and 𝜑 is the phase of the 

impedance tensor elements (Caldwell et al., 2004). As long as the measured (and distorted) 

impedance is a complex number, it can be written in the form  

 

                                                                𝒁 = 𝑿 + 𝒊𝒀    (2.33) 

 

And similarly the regional (distortion-free) impedance can be written as: 

  

     𝒁𝑅 = 𝑿𝑅 + 𝒊𝒀𝑅      (2.34) 

 

Also the measured impedance can be written in terms of regional impedance and 

distortion tensors:  

 

                                                               𝒁 = 𝑿 + 𝒊𝒀                   (2.35) 

                                                               𝒁 = 𝑫(𝑿𝑅 + 𝒊𝒀𝑅)    (2.36) 

                                                               𝑿 = 𝑫𝑿𝑅     (2.37) 

                                                               𝒀 = 𝑫𝒀𝑅     (2.38) 

 

Equation of the phase can be written in the tensor form for every elements of the 

impedance tensor: 

 

     𝝋 = 𝑿−1𝒀 = �
𝜑11 𝜑12
𝜑21 𝜑22�   (2.39) 

 

and similarly the regional (distortion-free) phase can be written as: 

 

     𝝋𝑅 = 𝑿𝑹−1𝒀𝑹    (2.40) 

 

Furthermore, phase calculated from observed impedance can be written in terms of 

distortion and regional phase: 

 

     𝝋 = 𝑫(𝑿𝑹−𝟏𝒀𝑹)     (2.41) 
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The relationship between the phase tensor of the observed and regional impedance 

tensors can be derived as 

 

     𝝋 = 𝑫(𝑿𝑹−𝟏𝒀𝑹)               (2.42) 

     𝝋 = (𝑫𝑿𝑹)−1𝑫𝒀𝑹               (2.43) 

     𝝋 = 𝑿𝑹−1𝑫−1𝑫𝒀𝑹               (2.44) 

     𝝋 = 𝑿𝑹−𝟏𝒀𝑹 = 𝝋𝑹               (2.45) 

 

These formulations prove that the observed and regional phase tensors are 

independent of the distortion tensor, consistent with the behavior expected for the phase on 

physical grounds. The phase tensor makes no assumption about the regional dimensionality 

and is applicable even resistivity structure is 3-D (Caldwell et al., 2004; Bibby et al., 

2005).  

 

2.2.4.1 Parameters of phase tensor.

 

    All parameters calculated from phase tensor are 

coordinate invariant but only one of them is coordinate variant (Caldwell et al., 2004). The 

simplest representations of the invariant parameters are the trace (tr),  

     𝑡𝑟(𝜑) = 𝜑11 + 𝜑22                (2.46) 

 

the skew (sk) (note that the skew presented here and the skew mentioned earlier under 

Swift’s analysis are two distinct parameters), 

 

     𝑠𝑘(𝜑) = 𝜑12 − 𝜑21               (2.47) 

 

and the determinant  

 

    𝑑𝑒𝑡(𝜑) = 𝜑11𝜑22 − 𝜑12𝜑21               (2.48) 

 

of the phase tensor. Also, there are some other parameters which are coordinate 

invariant 

 

          𝜑1 =  𝑡𝑟(𝜑)/2                                    (2.49) 



 17 
 

 

 

                                                     𝜑2 = (𝑑𝑒𝑡(𝜑))1/2             (2.50) 

 

                                                      𝜑3 =  𝑠𝑘(𝜑)/2                                                 (2.51) 
 

In terms of these quantities the maximum, minimum are given by the expressions: 

 

                                  𝜑𝑚𝑎𝑥 = (𝜑12 + 𝜑32)1/2 + (𝜑12 + 𝜑32 − 𝜑22)1/2             (2.52) 

 

                                  𝜑𝑚𝑖𝑛 = (𝜑12 + 𝜑32)1/2 − (𝜑12 + 𝜑32 − 𝜑22)1/2              (2.53) 

 

 

There are two parameters, which are very important for graphical representation of 

the phase tensor, α and β the skew angle given by the expressions  

 

                                                     𝛼 = 1
2
𝑡𝑎𝑛−1(𝜑12+𝜑21

𝜑11−𝜑22
)                  (2.54) 

 

 

                                                       𝛽 = 1
2
𝑡𝑎𝑛−1(𝜑12−𝜑21

𝜑11+𝜑22
)                 (2.55) 

 

where 𝛼 defines the tensor’s dependence on the coordinate system, which is the only 

coordinate variant parameter, and β can be thought of as a rotation and is a measure of the 

tensor’s asymmetry. Note that β depends on the tensor’s skew, which is invariant under 

rotation but changes sign if the coordinate system is reflected. Also, β takes values between 

-3 and 3 (Caldwell et al., 2004).   

 

2.2.4.2 Graphical Representation of the Phase Tensor.  The MT phase tensor can be 

graphically represented by an ellipse. In particular, the major and minor axes of the ellipse 

represent the principal axes and values of the tensor with the orientation of the major axis 

specified by the angle α − β. If β = 0 (symmetric tensor), the orientation of the major axis is 

given by α. However, in 3-D case, β is different from zero and shows the rotation of the 

major axis of the phase tensor ellipse away from an identically shaped ellipse represented 
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by a symmetric tensor. Graphical representation of the phase tensor is shown in Figure 2.1. 

The direction of the major axis represents the path of electric currents. In other words, the 

major axis of the phase tensor ellipse shows the geoelectric strike. It is expressed in the 

previous subject that β is a measure of the tensor’s asymmetry. That is, β gives information 

about the dimensionality of the substructure. For instance, in the 1-D case, β=0 and 

ellipses are nearly circle (Caldwell et al., 2004). 
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Figure 2.1: Graphical representation of the phase tensor, modified from Caldwell et al., 

(2004). The major and minor axes of the ellipse are the principal values of the phase 

tensor. The direction of the major axis of the ellipse, given by the angle α − β, describes the 

relationship of the tensor to the observer’s reference frame or coordinate system (x1, x2). If 

the phase tensor is not symmetric, β is non-zero and it is responsible for determination of 

the ellipse orientation (Caldwell et al., 2004). 

 

 Different visualization tools can be used for representing the phase tensor ellipses. 

Firstly, normalization of the ellipse axes (major and minor principal values) is an important 

issue. The most common way of doing so is done by equalizing the major axes of all 

ellipses. The next step may be painting the ellipses with a color that is to be emphasized 

(Booker, 2013). For instance, ellipses can be filled with colors that are based on skew 

angle values and such a figure may be used for determining dimensionality of the media. 

Moreover, ellipses can be plotted together with induction arrows (Caldwell et al., 2004; 

Hill et al., 2009; Booker, 2013).  In this thesis, induction arrows are concentrated with 
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ellipses in figures and ellipses are filled with respect to minor axis values, azimuth values, 

and skew angle. 

 

2.2.4.3 Dimensionality and the Phase Tensor.

 

   If the regional conductivity structure is both 

isotropic and 1-D (i.e. the conductivity varies only with depth), the impedance tensor in a 

Cartesian coordinate system (x1, x2) 

                                                Z1D = � 0 Z12
−Z21 0 �                               (2.56) 

and 

 

    Φ = tan−1 (𝑌1𝐷/𝑋1𝐷)                      (2.57) 

 

then 

 

                        φ1D = �𝑌1𝐷/𝑋1𝐷 0
0 𝑌1𝐷/𝑋1𝐷

� = (𝑌1D/𝑋1D)𝐈 =  tan(𝜑)𝐈       (2.58) 

 

where I is the identity matrix, and Φ is characterized by the tangent of the conventional 

MT phase for a 1-D structure. If the structure is 1-D, the major and minor axis will be the 

same and phase tensor ellipse turns into a circle (Caldwell et al., 2004). 

 

In 2-D regional structure, in a Cartesian coordinate system (x1
ı, x2

ı) aligned with x1
ı 

parallel to the (unknown) strike direction, at say an angle θ with respect to the observation 

coordinate system, the regional impedance tensor ZR 

 

                               Z′R−2D = � 0 Z′12
Z′21 0 � = �

0 𝑍||
𝑍⊥ 0 �                   (2.59) 

 

        φ′2D = �
𝑌⊥/𝑋⊥ 0

0 𝑌||/𝑋||
�  or  φ′2D = �

𝑌||/𝑋|| 0
0 𝑌⊥/𝑋⊥

�                     (2.60) 
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3. DATA 

 

 In this chapter, two different forward models will be represented. In addition, 

details about field data collected around the North Anatolian Fault Zone (NAFZ) near 

tosya will be represented. 

  

  3.1. Homogeneous Half - Space Model 

 

A homogeneous half - space model was constructed with RM3D, a three-

dimensional (3D) numerical modeling algorithm developed by Mackie et al. (1993). In the 

developed model the subsurface of the Earth was taken as 100 Ωm half - space. Figure 3.1a 

and Figure 3.1b show the response of the homogenous model in TM and TE modes in 

three frequencies, respectively.  
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Figure 3.1: a) TE response of the homogeneous forward model. b) TM response of the 

homogeneous forward model. 

 

Following the construction and calculation of the forward model, a 7 x 7 synthetic 

MT sounding array was created, i.e. at these synthetic stations the impedance and tipper 

information were extracted from the model response. The geometry of the sounding 

locations is shown on Figure 3.2. Then, synthetic data were used as input for the 

calculation of the MT phase tensor elements and the phase tensor ellipses for this 

homogeneous model.  
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Figure 3.2: Station Locations of the synthetic sounding array. 7 x 7 sounding array was 

constructed for the homogeneous model. 
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3.2. Caldwell et al. (2004) Model 

 

 Caldwell et al. (2004) have calculated synthetic data with a modeling code 

described in Xiao (1992) and Xiao & Tripp (1995). In this study, Using RM3D a model 

that has similar geometry was constructed. Caldwell et al. (2004) model can be described 

with two conductive features embedded in a 100 Ωm half-space (Figure 3.1). First 

conductive feature is a small conductive cube (10 Ωm) near the surface and the second 

feature is a relatively larger conductive rectangular body (1 Ωm) found deeper. Sides of the 

small cube are 250 m and the distance from surface to its top was 50 m. Deeper conductive 

body has dimensions of 7 x 3 x 3 km3 and it is buried 1.5 km below the surface (Figure 

3.1).  

 

 

Figure 3.3: Map view of the conductivity model used to illustrate the properties of the 

phase tensor in a 3-D situation. Grey area shows the region covered by phase tensor 

ellipses (Caldwell et al., 2004). 
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A similar procedure used in the construction of a homogeneous half – space case 

(3.1) was carried on while creating synthetic stations, but this time a 10 x 10 array was 

formed. This was done for a proper comparison to Caldwell et al. (2004). Synthetic 

impedance tensor elements were calculated for every station at three different frequencies. 

These frequencies were 32 Hz (0.0316 sec.), 3.2 Hz (0.0316 sec.) and 0.32 Hz (3.16 sec.) 

as they appear in Caldwell et al., (2004). The distance between every station is arranged to 

be 125 m, so the array spans a 1.125 km x 1.125 km area. Map of the array is shown on the 

Figure 3.5.  

 

On Figure 3.4, approaching form left to right deeper levels of the model could be 

examined. The upper row demonstrates the TM mode, while the lower row shows TE 

mode results. The surficial little cube (0.250 km3) that was buried to a depth of 50 m 

appeared on both of the modes at 32 Hz. Effects caused by both the small and the deep 

conductors became clearer at the 3.2 Hz figure. Likewise, the large rectangular shaped 

conductor (7 x 3 x 3 km3) that was placed at 1.5 km depth dominated the model response 

on both TM and TE modes.  
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Figure 3.4.: Responses of the 3D forward model. a) TE Mode Response of the calculated 

model. Model response for 32 Hz. As long as higher frequencies include information from 

shallow parts, in this figure the cube with 10 Ωm resistivity occurs. Model response for 3.2 

Hz. Middle frequencies include information from middle depth parts, in this figure the 

cube with 10 Ωm resistivity and the rectangular shaped conductor (1 Ωm) occurs. Model 

response for 32 Hz. Low frequencies include information from shallow parts, in this figure 

the rectangular shaped conductor (1 Ωm) is dominated the model response as it can be 

seen. b) TM Mode Response of the calculated model. 
 



 27 
 

 

 

 

Figure 3.5. Station Locations of the synthetic sounding array. The distance between every 

station is 125 m. Stations have been located between the cube and rectangular shaped 

conductor so as to see the directions and shapes of the ellipses and induction vectors as it 

has done in Caldwell et al., (2004). 
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3.3. Case study 

 

 A third test on the MATLAB® scripts developed in this thesis was performed by 

applying them on field (observed) data and checking the phase tensor values. For this 

purpose phase tensors were calculated and figures were drawn as map-views for different 

frequencies as well as phase tensor pseudo-sections made up of 40 frequencies available at 

every observation point along a two-dimensional profile.  

 

Study area chosen for the phase tensor analysis is located at the south of Black Sea 

within Central Pontides (Okay and Tüysüz et al., 1999, Okay et al., 2013). Central Pontides 

are made up of two major tectonic entities. These are the İstanbul Zone and the Sakarya 

Zone (Okay and Tüysüz et al., 1999, Okay et al., 2013, Aygül et al., 2015). The tectonic 

evolution of the study area can be explained by northward motion of the Anatolid-Tauride 

Block during closure of the Tethys Ocean. The Anatolide-Tauride Block subducted under 

the Sakarya Zone. After this event accretionary units emplaced on the Anatolid-Tauride 

Block (Okay and Tüysüz, 1999; Espurt et al., 2014). 

 

Phase tensor ellipses were plotted by using data collected at 25 wide-band (320 Hz 

– 1800 sec.) MT stations that form a north – south aligned profile crossing the central 

North Anatolian Fault Zone (NAFZ) near Tosya, Kastamonu as well as the İzmir-

Eskişehir-Ankara-Erzincan (IEAE) Suture. The profile went across Domuzdağ and 

Çangaldağ Massifs as part of the Central Pontide Supercomplex (CPS), an east – northeast  

aligned metamorphic belt (Okay et al., 2013; Aygül et al., 2015) positioned at the north of 

NAFZ. At the south, however, the profile went across Orta-Devrez Fault and Kızılırmak 

Fault Zones (Yolsal- Çevikbilen et al., 2012) as well. Along with the massifs found at the 

north of the NAFZ, subduction related accretionary units define the area whereas at the 

south ophiolites are more abundant (Aygül et al., 2015).  
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Black dots on Figure 3.6 represent the MT observation positions where site 

separation along the profile was taken as 3 - 5 km on average, except the vicinity of the 

NAFZ. Near NAFZ site separation was much denser (~ 1 km) for getting higher resolution 

around the fault.  

 

 

Figure 3.6: Map of study region. Black dots show measurement site locations. 
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Figure 3.7: Tectonic map of Central Pontides modified from Aygül et al. (2015) 
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Figure 3.8: Simple fault map of the study area rearranged from Yolsal-Çevikbilen et al., 

(2012). Red rectangle represents location of the MT profile. AFZ: Almus Fault Zone, 

CAFZ: Central Anatolian Fault Zone, ÇKFZ: Çerkeş-Kurşunlu Fault Zone, DFZ: Dodurga 

Fault Zone, EFZ: Eldivan Fault Zone, ESFZ: Ezinepazarı-Sungurlu Fault Zone, ETGFZ: 

Eskişehir- Tuzgölü Fault Zone, KFZ: Kızılırmak Fault Zone, LFZ: Laçin Fault Zone, 

ODFZ: Orta-Devrez Fault Zone (Yolsal- Çevikbilen et al., 2012). 
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4.  RESULTS  

 

4.1.  Homogeneous Half-Space Model Results 

 

 In order to test the validity of the MATLAB® scripts, a comparison was realized by 

using homogeneous half - space model. The phase tensor ellipses should have circular 

shapes if MATLAB® scripts for phase tensor method are functioning correctly. Results of 

this test are shown on Figure 4.1. At every frequency, ellipses appeared circular shaped as 

expected (Figure 4.1). The skew values came out around zero as well (Figure 4.1). This 

homogeneous half - space test implied that the phase tensor MATLAB® scripts were ready 

for comparison with Caldwell et al. (2004) results. 

 



 
 

 

 

 

 

Figure 4.1: Map of phase tensor ellipses at three different frequencies [ a)32hz  b)3.2hz  c)0.32hz ] for the model shown in Figure 3.1. In 1D, 

homogeneous media, ellipses turn into circles.
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4.2 Results of Caldwell et al., (2004) 

 

 Figure 4.2 and Figure 4.3 summarize the map views of the phase tensor ellipses 

drawn originally by Caldwell et al. (2004) at three distinct periods (0.0316 sec., 0.316 sec. 

and 3.16 sec., respectively). These two figures include identical phase tensor ellipses with 

identical structure, but the contours and the grey tone fillings vary between the two figures. 

On Figure 4.2 the ellipses were painted with the azimuth of major axis, whereas the 

ellipses on Figure 4.3 were painted with the skew angle. Induction arrows are graphical 

representation of real parts of tipper vectors (Parkinson, 1959). In addition, Figure 4.2 

involves induction arrows in Parkinson convention (that is, induction arrows are pointing 

to the higher conductivity; see Parkinson (1959) for more details) for comparison. The bold 

black line represents the borders of the surficial cube (half of it) with 10 Ωm that was 

described on Figure 3.3. Likewise dashed line represents the corner of the deep rectangular 

prism with 1 Ωm, again described in the model on Figure 3.3.  

 

Figure 4.2: Maps of the phase tensor ellipses and induction arrows (real part) at three 

different periods for the model shown in Figure 3.1. Contours and grey tone fillings 

correspond to the azimuth of the major axes of ellipses. 

 

It is quite clear that at short periods (namely 0.0316 sec.) on Figure 4.2, deep 

conductor did not have any influence on the MT responses and ellipses have radial 
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alignment around the cube. Alignment would be tangential if the structure was appointed 

as resistive. The change in alignment in that way suggests that the direction of the major 

axes indicates preferred flow direction of the induced current. 

  

At the shortest period (0.0316 sec.), induction arrows and the contour lines of the 

major axes of the phase tensor ellipses are almost parallel. At intermediate period (0.316 

sec.), however the major axes alignments show a mixture of the effects of both the shallow 

(10 Ωm) and deep (1 Ωm) conductors. At the longest period (3.16 sec.), inductive effects 

from cube disappear and the deep conductor dominates the phase tensor response.  The 

major axes alignments show the preferred flow direction of the induced current relevant to 

the deep conductor.  

  

On Figure 4.3 phase tensor ellipses painted with skew angle (β) values are shown. 

At the shortest period (0.0316 sec.), the skew angle is zero around at the axes of symmetry 

and takes highest values around corners of the conductive cube. It takes highest values 

around the corners of the cube because of the asymmetrical conductivity distribution at the 

measurement point. At the intermediate period (0.316 sec.), changes in the skew angle 

values are more complicated because of the effects of two conductive bodies. At the 

longest period (3.16 sec.), the skew angle reflects only the effect of deep conductor.  
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Figure 4.3: Maps of phase tensor ellipses and induction arrows (real part) at three different 

periods for the model shown in Figure 3.1. Contours and grey tone fillings correspond to 

skew angle. 

 

4.3 Results of This Study  

 

 On Figure 4.4 phase tensor ellipses were shown with induction arrows and painted 

in color with azimuth of the major axes values. At the shortest period (0.032 sec.), the 

phase tensor map of Caldwell et al., (2004) (Figure 4.2) and result of this study (Figure 

4.4) are almost identical. That is, the major axis alignments are in the direction of preferred 

induced current flow and ellipses have radial alignment around the conductive cube. 

Likewise, induction arrows point to the surficial conductive cube. At the intermediate 

period (0.316 sec.) on Figure 4.3 and Figure 4.4, the major axes alignments represent 

mixture of the shallow conductive cube and the deep rectangular shaped conductor. 

Induction arrows are also affected from these conductors at the intermediate period figure. 

There are some differences at some of the phase tensor ellipses on Caldwell et al. (2004) 

(Figure 4.3) and this study (Figure 4.4). Presumably, the difference between Caldwell et al. 

(2014) results and this studies result may be due to the use of different modeling algorithm 

and mesh. At the longest period (320 sec.), the ellipses do not show any direction. 

Normally, their major axes must show the direction of preferred flow or the location of the 

deep conductor as it is in Caldwell et al. (2004). Again that difference may be caused 
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because of the forward modeling codes or meshes. A similar problem can be seen on the 

induction arrow plots.  

 

 

 

 

 

 



 
 

 

 

 

 

 

 

Figure 4.4: Map of phase tensor ellipses and induction arrows (real part) at three different frequencies for the model shown in Figure 3.3. 

Fillings correspond to the azimuth of major axes of ellipses. 
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On Figure 4.5 phase tensor ellipses painted in color with skew angle values were 

shown. At the shortest period, the skew angle values are nearly zero at the axes of 

symmetry and takes greater values around corners and outside of the conductive cube. That 

is because of the asymmetrical conductivity distribution. At the intermediate period, on 

Figure 4.5, changes in the skew angle values were more complicated because of the effects 

of two conductive bodies. At the lowest frequency, on Figure 4.5, the skew angle reflects 

only the effect of deep conductor. From the skew angle point of view, all these results were 

similar when compared with the results of Caldwell et al., (2004). 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

                                                                                                                                                                                                                                                                                

 

 

Figure 4.5: Map of phase tensor ellipses and induction arrows (real part) at three different frequencies for the model shown in Figure 3.3. 

Fillings correspond to the skew angle (β) values of ellipses. 
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4.4. Other Field Examples

 

In the original study of Caldwell et al. (2004), the authors analyzed MT data 

collected at the Taupo Volcanic Zone (TVZ) on the north island of New Zealand. They 

claimed that the central part of the TVZ could be identified by an area of low gravity 

where volcano-clastic sediments appeared as conductive compared to the underlying 

basement rocks (Caldwell et al., 2004). According to Caldwell et al., (2004) the major axes 

of the phase tensor ellipses near this margin were oriented parallel and perpendicular to the 

strike of the gravity gradient. They added that in a 2-D conductivity distribution, the 

induction arrows would be perpendicular to the strike of the conductivity distribution. 

They pointed out that the agreement between the directions of the induction arrows and 

ellipse axes near the southeastern margin of the TVZ is good (Caldwell et al., 2004). 

 

 Similarly, as an extension to Caldwell et al., (2004), Heise et al., (2007) used the 

MT phase tensors to represent deep conductor beneath the TVZ.  The orientation of the 

ellipse axes indicated the direction of the conductivity gradient in the deeper range 

determined by the longer periods. According to Heise et al., (2007), phases greater than 45o 

indicated increasing conductivity. At southeastern (SE) margin of the TVZ, the phase-

tensor ellipses changed their orientation by 90o. At the centre of the TVZ, phase values 

reached to a peak at periods of nearly 30 sec. indicating that the lower crust is conductive 

beneath this region (Heise et al., 2007). 

 

 As a third example, Hill et al. (2009) used the phase tensor information to 

investigate distribution of melt beneath Mount St. Helens and Mount Adams. These 

volcanoes belong to Cascade mountain range and located on the margins of a mid-crustal 

zone of high electrical conductivity. With the MT method, Hill et al. (2009) found a 

localized zone of high conductivity beneath Mount St. Helens that extends downward to 

join the mid-crustal conductor. Moreover, they inferred that the conductivity anomaly 

associated with the localized zone is caused by the presence of partial melt (Hill et al., 

2009). 
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4.5. Case Study Results 

 

In this study observed MT data from central part of the North Anatolian Fault Zone 

(NAFZ) were analyzed with phase tensors. The NAFZ is one of the most active fault zones 

on Earth (Barka, 1992). It extends from Karlıova, in eastern of Turkey, to the Gulf of Saros 

in Aegean Sea. It is seismically active right lateral strike slip fault and has a length of 

approximately 1500 km (Barka, 1992; Yolsal-Çevikbilen et al., 2012). Active tectonics of 

the NAFZ can be explained by complex collision of the Arabian, African and Eurasian 

plates and resulting westward extrusion of Anatolian plate between right lateral NAFZ and 

left lateral EAFZ (Yolsal-Çevikbilen et al., 2012). 

 

 Phase tensor ellipses and induction arrows were superimposed on topography map 

of the region for three periods, i.e., T=0.1, 1.33 and 113.6 s, as shown on Figure 4.6. The 

phase tensor ellipses on this figure have parallel alignment on the NAFZ. On Figure 4.7, 

ellipses were painted with skew values to have an idea about dimensionality of the 

subsurface. At every period skew values changed but at short and intermediate periods 

most ellipses took skew values around zero. At the long period (113.6 sec.), however, a 

significant skew value changes could be seen. At intermediate (1.33 sec.) and long (113.6 

sec.) periods, some ellipses were not drawn since their skew values were out of the 

acceptable skew value range (for this survey the acceptable range of skew values is -10o < 

β < 10o).  On such cases, only induction arrows were allowed to represent the observation 

stations. On both figures, the phase tensor ellipses had the highest rotation at the vicinity of 

the fault zones. For instance, the phase tensor ellipses had almost parallel alignment to the 

trend of NAFZ. Getting further away from the fault zones ellipses had different 

alignments.  

 

 On Figure 4.8, we divided the study area into three distinct areas by examining the 

phase tensor ellipses and the induction arrows. At Zone I, the phase tensor ellipses of the 

second station at short period showed nearly east-west alignment. On the other hand, at 

intermediate and long periods, ellipse azimuths change and the major axes of the ellipses 

show nearly northwest-southeast alignment. The second station of the profile is located 

around three different geological formations; Cretaceous –Eocene volcano-sedimentary 

sequence of the Black Sea Margin, Lower Cretaceous siliciclastic turbidites and Küre 
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complex (Okay et al.; 2006). Existence of these formations and boundaries of them may 

urge the ellipses to align in the same direction with one of these geological structures. At 

zone 1, another important geological structure that affects ellipse alignments is Ekinveren 

fault. Ekinveren fault is a boundary between Eocene & more younger rocks and Permo-

Triassic methabasite phyllite (Çangaldağ and Kargı Complexes) (Okay et al., 2006). 

Station 4 is the nearest station to Ekinveren Fault. At all periods of the fourth station, the 

major axes alignments of the phase tensor ellipses show some direction. Especially at long 

period, alignment of the ellipse major axis is nearly north-south. When boundary nature of 

Ekinveren fault is taken into account, alignment of the major axis may be caused by 

Ekinveren fault.  

 

 At Zone II, effects of the NAFZ on the phase tensor ellipses can also be seen. The 

phase tensor ellipses and induction arrows of all stations were in good agreement to show 

the NAFZ. At the fault zone ellipse azimuths are nearly parallel to NAFZ. Induction 

arrows at this zone’s stations tend to point at each other. That gives an idea about a large 

zone between poor and good conductors. These two techniques support each other very 

well. 

    

 At Zone III, southernmost station of the profile was the one nearest to the 

Kızılırmak Fault Zone (KFZ).  Effects of this fault on the phase tensor ellipses are minor.  

That is, the major axes of the ellipses appoint Kızılırmak Fault Zone. Effect of KFZ on 

induction arrows gets visible at some depth. At the longest period (113.6 sec.), phase 

tensor ellipses and induction arrows support each other. Induction arrows of the 

southernmost two stations point at each other, indicating a boundary between them.  



 
 

 

Figure 4.6: Phase tensor ellipses and induction arrows superimposed on topography map at three periods. a) responses at T=0.1 s b) responses 

at T=1.33 s c) responses at T=113.6 s. Red drawings are legends for induction arrows and unit circle for phase tensor ellipses. Bold curves are 

representative fault zones in map (EFZ: Ekinveren fault zone, NAFZ: North Anatolian Fault Zone, KFZ: Kızılırmak Fault Zone)
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Phase tensor ellipses were drawn as (a north-south profile) pseudo-sections for all 

available periods as shown on Figure 4.9. On Figure 4.9 ellipses were painted with the 

minimum phase values. It is pointed out by Heise et al. (2007) and Booker, (2013) that the 

value of the minimum phase indicates a change in the conductivity (with depth). Minimum 

phases greater than 45o indicate increasing conductivity. Figure 4.10 is an interpreted 

version of Figure 4.9. On Figure 4.10, blue rectangles on the pseudo-sections correspond to 

known geological structures. The first blue rectangle area (at the fourth station) may 

coincide with Ekinveren Fault Zone (EFZ). As long as EFZ behaved as a transition 

boundary between Eocene/younger aged rocks at north and Kargı massif at the south, 

shapes and directions of the phase tensor ellipses were satisfactory when taking this 

property of the EFZ. The second window on the figure corresponds to NAFZ. At some 

depth, the major axes of the phase tensor ellipses have nearly east-west alignment. That 

may be an indication of the main and/or some branches of the NAFZ. The southernmost 

blue rectangle corresponds to Kızılırmak Fault Zone. The last station of the profile is the 

nearest station to KFZ. The phase tensor ellipses again showed a boundary. At the 

northernmost and southernmost blue rectangles, ellipses showed faults but at the 

intermediate rectangle ellipses align nearly parallel to NAFZ direction. The reason of that 

situation may be explained in three steps; 

 

• At the northernmost rectangle, the fourth station from the north is near Ekinveren Fault 

Zone and the major axes of the phase tensor ellipses showed flow of the electrical field. 

That is, electrical field travels toward EFZ.  

 

• At the middle rectangle, measurements were performed as close as possible on and around 

the NAFZ. This measurement method caused a high resolution around the study area. 

Because of the fact that NAFZ is the most important fault on the profile, this measurement 

method had been used. Some ellipses (station no.13 to 17) had an alignment nearly parallel 

to the NAFZ and some ellipses (station no. 12 and 18) have the alignment perpendicular to 

the NAFZ. Ellipses that have perpendicular alignment to the NAFZ are the starting and 

ending points of the fault zone. That is, station 12 and 18 are the starting and ending points 

of the fault zone, respectively, and the major axes of the ellipses point towards fault zone. 
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Moreover, stations between station 13 and station 17 are in the fault zone. Ellipse major 

axes of that station range had parallel alignment to the NAFZ.  

 

• At the southernmost rectangle, the southernmost station is near Kızılırmak Fault Zone and 

the major axes of the phase tensor ellipses showed flow of the electrical field. That is, 

electrical field traveled towards to KFZ.  

 



 
 

 

 

 

Figure 4.7: Phase tensor ellipses filled with skew values. That’s the same of the previous figure. Only ellipses filled with skew values. Bold 

curves are representative fault zones in map (EFZ: Ekinveren fault zone, NAFZ: North Anatolian Fault Zone, KFZ: Kızılırmak Fault Zone).



 
 

 

 
 

Figure 4.8: In order to make clear interpretations, study area is divided into 3 zones. That is the zoomed version of the Figure 4.7. Bold curves 

are representative fault zones (EFZ: Ekinveren fault zone, NAFZ: North Anatolian Fault Zone, KFZ: Kızılırmak Fault Zone). 



 
 

 

 
Figure 4.9: Pseudo-section of the phase tensor ellipses. Ellipses are shown in bird’s-eye view. MT Profile Alignment is in the N-S direction 

and the first station is placed  at north (the first one is at right). Ellipses are drawn at all periods (major axis directions are in the same direction 

with geographical N-S-E-W). Some of ellipses were not  drawn because  their minimum phase  colors did not take place in the range shown 

by color legend. Black triangles represent MT sounding locations. 



 
 

 

 

Figure 4.10. Interpreted version of the figure 4.10. Ellipses are shown in bird’s-eye view and major axis directions are in the same direction 

with geographical N-S-E-W. Blue windows correspond the geological structures. From right to left, first window correspond to Ekinveren 

Fault zone (EFZ), second one  correspond to the NAFZ, the the last one corresponds to Kızılırmak Fault zone (KFZ). Black triangles represent 

MT sounding locations.
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5. DISCUSSION  

 

 Interpretation of relatively longer period MT data that often involve distortion 

effects caused by near surface heterogeneities is difficult. Traditional solution for this 

difficulty is to assume a simplified 2D structure for underlying regional conductivity 

distribution. The advantage brought by the phase tensor, reduces the importance of some of 

the assumptions made in the MT method. That is purely because the horizontal 

components of the electric and the magnetic fields can be derived directly, without being 

concerned by the effects of the distortions.  

 

The most prominent advantage of the phase tensor is to get rid of distortions by 

using simple algebraic processes. Whereas the other conventional distortion removal and 

strike determination methods are time consuming and include more complicated processes, 

the phase tensor method can be applied in simple terms.   

 

The major axis of the phase tensor ellipses shows the preferred direction of induced 

current. If the structure under the surface is conductive, ellipses have radial alignment. On 

the other hand, if the structure is resistive, ellipses have tangential alignment to the 

structure. Azimuth (α - β) of the major axis of the ellipse controls the ellipse alignment. In 

other words, azimuth controls the flow direction. Also, the skew angle (β), determines the 

dimensionality of the basement that is investigated. Phase tensor method reflects galvanic 

distortion at near surface and it reflects any change in the conductivity at deeper levels. 

The phase tensor method can be used to detection of the deeper conductivity changes. 

 

  Normally, results of modeling should have more consistency with results of 

Caldwell et al. (2004). Because of the difference between modeling algorithms a certain 

part of results were consistent. Nonetheless, results in this piece of work were satisfactory. 

In the original work of Caldwell et al. (2004) there is no information about the three-

dimensional mesh used, about the forward modeling details or the code itself.  
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Phase tensor method has been applied to observed data set. Responses of the data 

were shown on figures from 4.6 to 4.10. That observed data were modeled by sophisticated 

three-dimensional inversion algorithm to create resistivity model by Tank et al. (2014). 

This resistivity model is presented in Figure 5.1. Results of the phase tensor method and 

the resistivity model are consistent. As can be seen from the figure, a transformation from 

conductor to resistor occurred under the fourth station. Also, the phase tensor ellipses show 

a boundary at the fourth station. That is, ellipses align radially to conductive side. By 

looking resistivity model from Tank et al., (2014), it is very clear that NAFZ behaved as a 

barrier for fluids. At the north side of the NAFZ, a conductor occurred and the NAFZ 

blocked it. That explains the barrier nature of the NAFZ. Similarly, this barrier nature of 

the NAFZ can be seen from the phase tensor ellipse pseudo-section (figures 4.9 and 4.10). 

Color of ellipses showed that the conductivity changed with depth in the pseudo-section 

(Figure 4.10). At the NAFZ, ellipse colors indicate conductivity near the surface and 

indicate resistivity at depth. When taking into consideration of the ellipse colors, again 

results are consistent. At the southernmost station, the ellipses and the resistivity model of 

Tank et al. (2014) supports each other very well. 

 
Figure 5.1: 3-D resistivity model from Tank et al.,(2014). EFZ ; Ekinveren Fault Zone, 

NAFZ; North Anatolian Fault Zone and KFZ; Kızılırmak Fault Zone. Black triangles show 

location of measurement sites. 



53 
 

 

In addition, apparent resistivity models, Figure 5.2, were used for comparison. In 

Figure 5.2, apparent resistivity variation depending on period is represented. Similarly, 

phase tensor pseudo-sections (Figures 4.9 and 4.10) represent the conductivity variation 

with period. Resistive and conductive areas in phase tensor pseudo sections coincide with 

resistive and conductive areas in apparent resistivity models (rhoxy, rhoyx). At most 

periods, consistency of phase tensor results (Figures 4.9 and 4.10) and apparent resistivity 

models (rhoxy, rhoyx) are well.  

 

 
Figure 5.2: Apparent resistivity models for field data. a) Apparent resistivity model for 

RHOXY and b) Apparent resistivity model for RHOYX. Black triangles show MT 

sounding locations. 

 

Yolsal-Çevikbilen et al. (2012) have studied the central NAFZ, too. They have 

investigated the region by using seismic tomography. This study focused in a larger area 

with north-south and east-west cross sections (Yolsal-Çevikbilen et al., 2012). Their 9th 

north-south cross-section matches with the MT profile that used in this study.  

 

On Figure 5.3, Vp tomography cross-section of the 9th cross-section of Yolsal-

Çevikbilen et al. (2012) is represented. According to this cross-section, Vp values were not 

high from the depth of 0 to 5 km. Below 5 km P wave velocity appears higher until 20 km. 

From 20 km to 40 km P wave velocities reach the highest values. According to their result, 
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Vp values increase from the depth of 5 km (especially under the surface trace of the NAFZ 

at depths between 5 and 25 km). Similarly, Vp values increase under the surface trace of 

KFZ at depths between 5 and 15 km. Moreover, in Vp/Vs tomography map, some Vp/Vs 

values changes from south to north near the surface and these reaches at some depth. 

According to Yolsal-Çevikbilen et al., (2012), that may be caused by geologic formation. 

In Vp/Vs tomography maps, high Vp/Vs values correspond to areas including fluid. 

Comparing with the resistivity model developed by Tank et al., (2014) with tomography 

cross-sections of Yolsal-Çevikbilen et al., (2012) are not consistent. At resistivity model, a 

prominent conductor appears at the north of the NAFZ, but on the tomography cross-

sections, high Vp and/or high/low Vp/Vs values appear beneath the NAFZ. Seismic 

tomography information provided by Yolsal-Çevikbilen et al., (2012) fails to represent the 

NAFZ as a boundary for seismic velocities, where as the resistivity model points out that 

the NAFZ zone is a clear boundary for the electrical structure. Phase tensor ellipses and the 

colors filling them indicate variation of conductivity with depth (Figure 4.10). Resistivity 

model of Tank et al., (2014) and the phase tensor figures provided by the current study 

show good consistency.  

 

Results of tomography cross-sections and resistivity model show some consistency 

for under the surface trace of KFZ. For instance, a thin horizontal resistive structure occurs 

under the KFZ at resistivity model from Tank et al., (2014). On the other hand, similar 

structure (such as low Vp/Vs valued area under KFZ) is not clear at Vp/Vs tomography 

from Yolsal- Çevikbilen et al., (2012). The phase tensor ellipse colors support resistivity 

model taken from Tank et al., (2014).  
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Figure 5.3: Vp and Vp/Vs tomography cross-sections for the 9th line from Yolsal-

Çevikbilen et al., (2012). 

 

Using the phase tensor method can be more practical compared to Bahr’s 

parameters and Groom and Bailey’s decomposition in some manners. These two 

conventional methods need some assumptions such as assuming the regional conductivity 

structure as 2D. Direction and shape of ellipses give ideas about strike and dimensionality 

of the subsurface. Even if Groom and Bailey’s method and Bahr’s parameters can be 

represented graphically, visualization of the phase tensor method presents clearer results 

compared to these two approaches.  
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6. CONCLUSION 

 

 In that study, MATLAB® scripts were developed for the interpretation of MT data 

as phase tensor ellipses. The scripts were tested by means of creating three-dimensional 

synthetic models as well as observed models. Synthetic models were constructed with 

RM3D code developed by Mackie et al. (1993). MATLAB® scripts were used plotting 

phase tensor ellipses and pseudo-sections. Observed data collected at the central North 

Anatolian Fault Zone near Tosya, Kastamonu were used and their results were presented. 

Results of this attempt were compared with other geophysical survey results performed at a 

close by area. Clear resemblances were found and pointed out. 
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APPENDIX A- BRIEF INFORMATION ABOUT TENSORS AND 

FORWARD MODELING 

 

A.1. TENSORS 

 

A.1.1. Description of a Tensor 

 

 A tensor can be described by arrays of functions. Each function of such an array is 

called a component and these components are functions of the selected coordinate systems. 

Tensors are independent of the coordinate system. That property makes tensors useful 

objects for representing some laws and applications in science and engineering.  Generally, 

scalars are referred to as tensors with rank zero where vectors are referred to as tensors 

with rank one (Hadsell, 1995; Heinbockel, 2001). 

 

A.1.1. Some Basic Operations of Tensors 

 

 The algebraic operation of addition or subtraction can be applied to systems of the 

same type and rank. For example, suppose that A and B are 2x2 tensors, subtraction and 

addition operations can be applied to them. Such as; 

 

    𝐴 = �
𝑎11 𝑎12
𝑎21 𝑎22�  and 𝐵 = �𝑏11 𝑏12

𝑏21 𝑏22
�   (A.1.) 

    𝐴 + 𝐵 = �𝑎11 + 𝑏11 𝑎12 + 𝑏12
𝑎21 + 𝑏21 𝑎22 + 𝑏22

�   (A.2.) 
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A.1.2. Why Do We Use Tensors? 

 

• Tensors and their analysis may be applied to N-dimensional hyperspaces. 

• Scientific concepts, which require functions to express, can be formulated easily. 

• The classical analysis is embedded in the tensor analysis. 

• Results are translated easily to forms appropriate to any coordinate system. 

• Physical concepts can be expressed without reference to any particular coordinate system 

(Hadsell, 1995). 

 

A.1.3. Relationship to the MT Phase Tensor 

 

 Representation of the MT phase takes the form of a second-rank tensor.  The phase 

tensor components and their associated three coordinate invariants are simple functions of 

the observed impedance tensor components. The MT phase tensor can be visualized as an 

ellipse where the principal values of the tensor correspond to the major and minor axes of 

the MT phase tensor ellipse (Caldwell et al., 2004). 

 

A.2. FORWARD MODELING 

 

 The typical target of modeling operations is to understand the behavior of the 

system that is studied from physical point of view. That is, modeling operations are used 

for describing to a phenomenon that affects the whole system. Mainly, forward modeling is 

construction of a theoretical model, which allows to predict observed effects by means of 

computational techniques. Also it allows to predict the results of any possible 

measurement. The solution of the forward problem provides a relation between the 

parameters used to describe the model (m) and quantities (d) that can be measured 
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      𝑑 = 𝐺(𝑚)    (A.3.) 

which quantifies the model prediction (Tarantola, 2005; Debski, 2010).  
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APPENDIX B – TEST OF THIS STUDY 

 

 In order to test the health of the MATLAB® scripts, a comparison has been 

performed between MATLAB® scripts developed in this study and a script developed by 

Jones (2006) that includes a Fortran executable, “mtphasetensor”, for calculating the phase 

tensors and GMT (Generic Mapping Tools) script for imaging them. This Fortran program 

calculates the parameters of the phase tensor ellipses by reading j-format files and then it 

writes calculation results in files for every station. After combining every result in a single 

file for every different frequency, ellipses were drawn in GMT. GMT shell script, which is 

written by Ryokei Yoshimura in 2005 (personal communication), was used to understand 

how to draw a phase tensor ellipse in GMT, then a GMT shell script was written in order to 

draw ellipses for data from Jones (2006) Fortran executable. Although the difference 

between Jones (2006) Fortran executable and our MATLAB® scripts the consistency of the 

results are satisfactory. Results from GMT were shown in Figure 5.5. At high frequency, in 

Figure 5.5.a, again shapes of ellipses are similar with results of MATLAB®  and Caldwell 

et al. (2004). At middle frequency, in Figure 5.5.b, shapes of ellipses are similar with 

results of MATLAB® scripts. At low frequency, in Figure 5.5.c, shapes of the ellipses are 

similar with results of MATLAB® scripts.  

 

 

 

 



 
 

 

 

 

 

 

 

Figure B.1: Map of phase tensor ellipses at three different frequencies [ a)32hz  b)3.2hz  c)0.32hz ] for the model shown in figure 3.1. 

Calculation of parameters was done in Jones (2006) Fortran executable and drawings were done in GMT. 
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APPENDIX C -  PHASE TENSOR ELLIPSE MAPS FOR OTHER 

PERIODS 

 

In this appendix, phase tensor ellipse results from real data will be shown. These 

results are belong to other 17 periods,which were chosen randomly, from top to bottom.  

 

 

Figure C.1.: Phase tensor maps of real data at a) 0.003 sec. b) 0.004 sec. c) 0.006 sec  

d) 0.008 sec. 
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Figure C.2.: Phase tensor maps of real data at a) 0.06 sec. b) 0.05 sec. c) 0.3 sec d) 0.13 

sec. 
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Figure C.3.: Phase tensor maps of real data at a) 5 sec. b) 21 sec. c) 28 sec d) 42 sec. 
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 Figure C.4.: Phase tensor maps of real data at a) 85 sec. b) 169 sec. c) 227 sec d) 34 sec. 
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Figure C.5.: Phase tensor map of real data at 454 sec. 
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APPENDIX D – MATLAB SCRIPTS 

 

D.1. pt_par_cal.m 

 

 pt_par_cal.m (phase tensor parameter calculation) calculates phase tensor method 

parameters and applies normalization to maximum and minimum phases depending on 

maximum phase value. In order to use this script, one should have a text formatted 

impedance file (impedance file also contains tipper values). Impedances should be 

separated by columns (4 real part columns and 4 imaginary part columns and also 2 tipper 

real parts, 2 tipper imaginary parts). This script uses the function phasetensor1.m and it 

will be represented. After calculating parameters, it writes them to a file as 

“filename_pt_nor.txt”. 

 

clear all; 

close all; 

clc; 

format long 

dosya=load('filename.txt'); 

 [k,l]=size(dosya); 

X11=dosya(:,2); 

X12=dosya(:,4); 

X21=dosya(:,6); 

X22=dosya(:,8); 

Y11=dosya(:,3); 

Y12=dosya(:,5); 

Y21=dosya(:,7); 

Y22=dosya(:,9); 
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for i=1:k; 

 
[pt(:,:,i),a(i),b(i),c(i),d(i),e(i)]=phasetensor1(X11(i),X12(i),X21(i),X22(i),Y11(i),Y12(i),Y2
1(i),Y22(i)); 

end 

s=[]; 

s(:,1)=a; s(:,2)=b; s(:,3)=c; s(:,4)=d; s(:,5)=e; 

s=[s(:,1) s(:,2) s(:,3) s(:,4) s(:,5)]; 

dlmwrite('filename_pt_nor.txt',s,'delimiter','\t','precision','%.8f') 

 

D.2. phasetensor1.m 

 

 This is a function and originally it calculates parameters of the phase tensor 
method.  

 

function[phi,phimax,phimin,alpha,beta,aminb]=phasetensor1(X11,X12,X21,X22,Y11,Y12
,Y21,Y22) 

format long 

X=[X11 X12 ;X21 X22]; 

Y=[Y11 Y12; Y21 Y22]; 

de_X=X(1,1)*X(2,2)-X(2,1)*X(1,2); %determinant of X 

%constructing phase tensor by finding inverse of X dot Y  

phi(1,1)=(1/de_X)*(X(2,2)*Y(1,1)-X(1,2)*Y(2,1));  

phi(1,2)=(1/de_X)*(X(2,2)*Y(1,2)-X(1,2)*Y(2,2));  

phi(2,1)=(1/de_X)*(X(1,1)*Y(2,1)-X(2,1)*Y(1,1));  

phi(2,2)=(1/de_X)*(X(1,1)*Y(2,2)-X(2,1)*Y(1,2)); 

phi=[phi(1,1) phi(1,2); phi(2,1) phi(2,2)]; % phase tensor  
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%calculating determinant, skew and trace 

detr= phi(1,1)*phi(2,2) - phi(1,2)*phi(2,1); %determinant 

tr= phi(1,1)+phi(2,2); %trace 

sk= phi(1,2)-phi(2,1); % skew 

%calculating alpha and beta 

 alp = (0.5 * atan2( (phi(1,2)+phi(2,1)),(phi(1,1)-phi(2,2)))); % alpha 

 bet  = (0.5 * atan2( (phi(1,2)-phi(2,1)),(phi(1,1)+phi(2,2)))); %beta (skew angle) 

alpha=rad2deg(alp);  

beta=rad2deg(bet); 

aminb=alpha-beta; 

phi1 = tr/2; 

phi2=sqrt(detr); 

phi3 = sk/2; 

psi1= (0.5 *sqrt( ((phi(1,2)+phi(2,1))^2) +((phi(1,1)-phi(2,2))^2))); 

psi2= (0.5 *sqrt( ((phi(1,2)-phi(2,1))^2) +((phi(1,1)+phi(2,2))^2))); 

phimax1=psi1+psi2; 

phimin1=psi2-psi1; 

phimax=phimax1/phimax1; 

phimin=phimin1/phimax1; 

 

end 

 

D.3. elps_map.m 

 

 This script uses output of pt_par_cal.m and the impedance-tipper file and plots the 

phase tensor ellipses and induction arrows superimposed on a topography map. In addition, 

it saves the output as a png file. 
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clear all;close all;clc; 

dosya=load('filename_pt_nor.txt') 

dosya2=load ('filename.txt') 

% defining pt ellipse parameters 

pmax=dosya(:,1); 

pmin=dosya(:,2); 

alp=dosya(:,3); 

bet=dosya(:,4); 

aminb=dosya(:,5); 

[m,n]=size(dosya); 

 

% defining induction arrow parameters from tipper values  

tx_real=dosya2(:,10); 

tx_ima=dosya2(:,11); 

ty_real=dosya2(:,12); 

ty_ima=dosya2(:,13); 

% topography map of study area  

etopo=load ('area_topography.asc'); 

dots=load ('coordinates.txt'); 

etopo=flipud(etopo); 

etopo(find(etopo==-32768))=NaN; 

a=max(etopo(:)); 

b=min(etopo(:)); 

[lon,lat]=meshgrid(33:1/60:35,40:1/60:43,0); 

 

surf(lon,lat,etopo); 
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shading interp; 

axesm mercator;  

zlimits=([b a]); 

demcmap(etopo); 

c1=colorbar; 

view(0,90); 

title('Map of Study Region'); 

xlabel('Longitudes in Decimal Degrees'); 

ylabel('Latitudes in Decimal Degrees'); 

ylabel(c1,'Elevation (m)'); 

set(gca,'XTick',[32:1:36]); 

set(gca,'YTick',[40:1:42]); 

% phase tensor ellipses and induction arrows plot part  

hold on; 

aminb(aminb<-90)=aminb(aminb<-90)+180; 

aminb(aminb>90)=aminb(aminb>90)-180; 

 

for i=1:m; 

    %phase tensor construction by svd 

    r1(:,:,i)=[cosd(aminb(i)) sind(aminb(i));-sind(aminb(i)) cosd(aminb(i))]; 

    r2(:,:,i)=[cosd((aminb(i)+2*bet(i))) sind((aminb(i)+2*bet(i)));-sind((aminb(i)+2*bet(i))) 
cosd((aminb(i)+2*bet(i)))]; 

    pt(:,:,i)=r1(:,:,i)'*[pmax(i) 0; 0 pmin(i)]*r2(:,:,i); 

    ptel(:,:,i)=pt(:,:,i)*[cosd(0:1:360); sind(0:1:360)]; 

   % normalizing tipper values for better induction arrows 

 txyrn=sqrt((max(tx_real))^2+(max(ty_real))^2);  
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step=0.1; 

minval=-10; 

maxval=10; 

cmap=jet((maxval-minval)/step); 

 

% plotting pt ellipses on topography map and setting skew angle boundaries 

 if bet(i)>10 && bet(i)<-10 

     i=i+1; 

   elseif bet(i)<=10 && bet(i)>=-10  

 
fill3(((ptel(2,:,i)/20)+dots(i,2)),((ptel(1,:,i)/20)+dots(i,1)),ones(361)*4800,cmap(floor((bet(
i)-minval)/step)+1,:)); 

end 

%plotting induction arrows 

a=quiver3(dots(i,2),dots(i,1),4800,-(ty_real(i)/txyrn)./20,-
(tx_real(i)/txyrn)./20,1,'b','MaxHeadSize',0.1); 

set(a,'LineWidth',1.5); 

end 

%induction arrow legend 

a3=quiver3(33.7,40.2, 4800,(1/1)/20,(0/1)/20,1,'r'); 

set(a3,'LineWidth',1.5); 

%phase tensor legend 

fill3((1*cosd(0:1:360)./20)+34.7,(1*sind(0:1:360)./20)+40.2,ones(361)*4800,cmap(floor((
0-minval)/step)+1,:)); 

text(34.5,40.1,4800,'\phi=45, \beta=0','color','r','Fontsize',8); 

text(33.65,40.1,4800,'|K|=1','color','r','Fontsize',8); 

print('t85s_map','-dpng','-r300'); 
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