NEAR SHORE BATHYMETRIC AND TOPOGRAPHIC SURVEYS IN MARMARA SEA

by

Emine Öner Germen

B.S., Geodesy and Photogrammetry Engineering, İstanbul Technical University, 1994

Submitted to Kandilli Observatory and Earthquake Research Institute in partial fulfillment of the requirements for the degree of Master of Science

> Graduate Program in Geodesy Boğaziçi University 2006

ACKNOWLEDGEMENT

I like to give my special thanks to Assoc. Prof. Dr. Haluk Özener for his guidance, supervision and encouragement throughout my long post graduate study and at last this thesis. I am really grateful to meet such a friendly and helpful instructor.

I thank to Prof. Dr. Onur Gürkan for his guidance and Dr. Ahmet Ünlütepe and Assoc. Prof. Dr. Cem Gazioğlu for their advices and suggestions during thesis study.

I also wish to thank to Dr. Onur Yılmaz, Bülent Turgut, Kerem Halıcıoğlu and Aslı Garagon Doğru from Geodesy Department for their support and friendship.

I wish to express my deepest gratitude to my mother and my husband for their unlimited encouragement and patient during this study.

I dedicate this thesis to my daughters.

ABSTRACT

Hydrographic Survey is the science which deals with the measurement and description of the physical features of bodies of water and scientific mapping of the sea bed for navigation while bathymetric survey is related to topography of seafloor. The difference between land surveying and bathymetric survey is not being able to see the sea surface during observations, so collected data entirely rely on remote measurements.

Early tools used at very beginning were very slow and eventually they replaced by modern techniques such as optical systems, acoustic and satellites. Each method is appropriate for different applications, for instance manual techniques can be preferred at construction applications while aerial photography may be suitable method in extremely shallow water. Thus, different techniques are explained according to surveying type. In addition to depth values, one must define also the point position that is distance measurement. There are several ways of distance measurement for different purposes. On the other hand all vertical and horizontal data have a meaning when they represented in a way that in common use. Coordinate systems are used to display measuring data in an understandable form. Consequently, depth measurement, point positioning and mapping are main stages of bathymetric survey and they thoroughly explained in this thesis with an example study.

Living in country of which three sides are sea, it is inevitable solution to benefit from water resources for transportation. Water resources of the world compared to terrestrial resources are offering economical solution for all types of transportation for comfort and speed. For this reason The Marmaray Project which is a rail line project between the European and Anatolian sides of Istanbul, linking two continents by an under Bosporus tunnel, undertaken to meet the transportation demand of Istanbul City. Application section of this thesis is a part of that significant project. Dörtte üçü sularla kaplı olan yeryüzünde hızla artan dünya nüfusunun temel ihtiyaçlarını sadece karasal kaynaklardan sağlamaya çalışmak artık yeterli olmamaktadır. Denizlerde bulunan rezervlerin önemli miktarlarda oluşu, taşımacılık alanında hız ve konfor gibi avantajlara sahip olması gibi sebepler araştırmaları denizlere doğru yöneltmiş ve hidrografik çalışmaların sayısı dolayısıyla deniz tabanı haritalarının yapımına yönelik projeler hızla artmaya başlamıştır.

Hidrografik ölçmeler suyun dinamik yapısı, deniz dibi yapısının bilimsel haritalaması gibi çalışmaları içerirken batimetrik ölçmeler deniz dibi topografyasının belirlenmesi ve haritalanması çalışmaları için gerçekleştirilmektedir. Karasal ölçmeler ile deniz ölçmeleri arasındaki en önemli farklardan biri gözlemlenen yüzeyin doğrudan görülemiyor olması nedeniyle ölçmeler uzaktan yapılmasıdır. Eskiden kullanılan klasik derinlik ölçme aletleri ile yapılan ölçmelerdeki doğruluklar yeterli olmayınca fotografik, akustik ve uzay sistemleri gibi yeni yöntemler ve modern aletler geliştirilmiştir. Çalışma alanının ve projenin türüne göre farklı aletler kullanılmaktadır. Bu tez çalışmasında yakın kıyı alanlarında yapılan batimetrik ölçme tekniklerinin yanı sıra diğer yöntemlere de kısaca değinilmiştir.

Çalışma alanının batimetrik haritasını yapabilmek için derinlik bilgisinin yanı sıra konum bilgisine de ihtiyaç duyulmaktadır. Konum belirleme yöntemleri açıklanmış, elde edilen üç boyutlu koordinatları anlamlı bir çizim ortamına aktarabilmek için gerekli olan koordinat sistemlerine de değinilmiştir.

Son olarak ülkemizde deniz dibi haritalaması ve inşaatı açısından oldukça önemli bir yere sahip olan Marmaray Tüp Geçit Projesi dahilinde yapılan batimetrik çalışma sunulmuştur. Batırma tüplerinin inşa edildiği Demiryolları, Limanlar ve Hava Meydanları İnşaatı Genel Müdürlüğü (DLH) Tuzla Limanı'nda gerçekleştirilen bu çalışmada batırma tüplerinin inşası bittikten sonra indirileceği denizin derinliğinin belli bir değerin altında olması gerektiğinden su altı kaya kırma ve çıkarma çalışmalarını yönlendirmek için batimetrik ölçmeler tekrarlanmaktadır.

TABLE OF CONTENTS

ACKNOWLEDGEMENT	iii
ABSTRACT	iv
ÖZET	v
LIST OF FIGURES	ix
LIST OF TABLES	xii
LIST OF SYMBOLS	xiv
1. INTRODUCTION	1
2. OVERVIEW OF BATHYMETRIC SURVEY	3
2.1. Bathymetric Surveying Types	4
2.2. Variation Effects in Bathymetric Survey	6
2.2.1. Tidal Variation	6
2.2.2. Water Quality	8
2.2.3. Atmospheric Effects	9
2.2.4. Position Accuracy	9
3. POSITIONING METHODS	11
3.1. Optical Methods	11
3.2. Electro-optic Methods	11
3.3. Acoustic Methods	12
3.4. Inertial Positioning Methods	14
3.5. Satellite Methods	15
3.5.1. Satellite Laser Ranging	16
3.5.2. Lunar Laser Ranging	16
3.5.3. Doppler Orbitography by Radiopositioning Integrated on Satellite .	17
3.5.4. Very Long Baseline Interferometry	19
3.5.5. Global Navigation Satellite System	20
3.5.6. Global Positioning System	22
3.5.6.1. Measurement Techniques for GPS	24
3.5.6.2. Sources of Error	25
3.5.6.3. Kinematic GPS	26
3.5.6.4. Differential GPS	28

4.	DEF	TH MEASUREMENT TECHNIQUES	30
	4.1.	Manual Depth Measurement Techniques	30
	4.2.	Modern Depth Measurement Techniques	32
		4.2.1. Remote Sensing	32
		4.2.2. Aerial Photography	33
		4.2.3. Airborne Laser – Light Detection and Ranging	34
	4.3.	Acoustics	35
		4.3.1. Types of Echosounders	35
		4.3.1.1. Single Beam Echosounder	35
		4.3.1.2. Multi Beam Echosounder	37
		4.3.1.3. Side Scan Sonar	38
		4.3.1.4. Split Beam Echosounder	39
		4.3.2. Instruments of an Echosounder	42
		4.3.2.1. Echosounder	42
		4.3.2.2. Transducer	43
		4.3.3. Sound Velocity Measurement in Sea Water	43
		4.3.3.1. Sound Velocity by Equations	44
		4.3.3.2. Sound Velocity by Bar Check Method	44
		4.3.4. Depth Measurement Sources of Errors and Corrections	45
		4.3.4.1. Transducer Depth Correction	45
		4.3.4.2. Velocity Correction	46
		4.3.4.3. Slope Correction	46
		4.3.4.4. Calibration Correction	46
		4.3.4.5. Heave Correction	46
		4.3.4.6. Pitch and Roll Correction	47
5.	CO	ORDINATE SYSTEMS	48
	5.1.	Basic Coordinate Systems	49
	5.2.	Earth-based Locational Reference System	50
		5.2.1. Reference Ellipsoid	50
		5.2.2. Geodetic Datums	51
	5.3.	Global Coordinate Systems	53
		5.3.1. Latitude, Longitude, Height	53
		5.3.2. Earth Centered Earth Fixed Cartesian Coordinates	54

5.3.3. Universal Transverse Mercator	6
5.3.4. Military Grid Reference System	57
5.3.5. World Geographic Reference System	8
5.4. Regional Systems	59
5.4.1. Turkish National Fundamental GPS Network	9
5.4.2. International Terrestrial Reference Frame	60
5.4.3. World Geodetic System 1984	51
5.4.4. European Datum Coordinate System 1950 6	51
6. APPLICATION	53
6.1. Survey Area	4
6.2. Topographic Surveying Activities	4
6.3. Bathymetric Surveying Activities	0'
6.4. Evaluation of Bathymetric Data	'8
7- CONCLUSION	31
APPENDIX	2
REFERENCES	95
REFERENCES NOT CITED	8

viii

LIST OF FIGURES

Figure 2.1.	Acoustic depth measurement	4
Figure 3.1.	Electromagnetic distance meter	11
Figure 3.2.	Schematic diagram of INS mechanism	14
Figure 3.3.	SLR system operating in Greenbelt	16
Figure 3.4.	The Apollo 11 laser ranging retroreflector	17
Figure 3.5.	Laser beam aimed at Moon by a telescope	17
Figure 3.6.	Jason-1 Satellite instrumentation schematic	18
Figure 3.7.	Jason-1 measurement system	19
Figure 3.8.	76m Lovell radio telescope	20
Figure 3.9.	GLONASS Satellite	21
Figure 3.10.	Stations range accuracy	22
Figure 3.11.	A schematic diagram of the GPS constellation	23
Figure 3.12.	Navstar GPS Satellite	24
Figure 3.13.	Pseudo random codes	25
Figure 4.1.	Lead line depth measurement	31

Figure 4.2.	Sounding pole depth measurement	31
Figure 4.3.	The way of sound	36
Figure 4.4.	Basic echosounder operation	36
Figure 4.5.	Sound way of side scan sonar	39
Figure 4.6.	Acoustic seafloor characterization techniques	40
Figure 4.7.	Sub-bottom Profiler	41
Figure 5.1.	Cartesian coordinates in a plane	49
Figure 5.2.	Three-dimensional cartesian coordinates	49
Figure 5.3.	Ellipsoidal Parameters	50
Figure 5.4.	Earth surfaces	52
Figure 5.5.	Equator and prime meridian	53
Figure 5.6.	Geodetic latitude, longitude and height	54
Figure 5.7.	Earth centered earth fixed X, Y, Z coordinates	55
Figure 5.8.	Universal transverse mercator (UTM) system	56
Figure 5.9.	UTM display	57
Figure 5.10.	Military grid reference system (MGRS)	58
Figure 5.11.	World geographic reference system	59

Figure 6.1.	The Marmaray Project	63
Figure 6.2.	Project area in D.L.H. harbor	64
Figure 6.3.	Primary and secondary control points of D.L.H. harbor	67
Figure 6.4.	D.L.H. harbor map	69
Figure 6.5.	Tide gauge system	70
Figure 6.6.	Bathymetric survey system	71
Figure 6.7.	Dimensions of transducer's parts	72
Figure 6.8.	Bathymetric survey lines	73
Figure 6.9.	Bathymetric survey lines in D.L.H. harbor	74
Figure 6.10.	Survey boat	75
Figure 6.11.	Survey system in survey boat	75
Figure 6.12.	GPS receiver at shore	76
Figure 6.13.	Contour line map of survey area	79
Figure 6.14.	Wireframe drawing of D.L.H. harbor	80
Figure 6.15.	Seafloor topography of D.L.H. harbor	80

LIST OF TABLES

Table 2.1.	Factors changing sea level	7
Table 2.2.	Sound velocity values	9
Table 2.3.	Expected depth accuracy for bathymetric survey	10
Table 2.4.	Expected accuracy for bathymetric positioning	10
Table 3.1.	Acoustic properties of air and water	13
Table 3.2.	GPS sources of error	26
Table 3.3.	GPS survey methods	27
Table 4.1.	Accuracy according to frequency of sound wave for depth	37
Table 5.1.	Selected reference ellipsoids	51
Table 5.2.	Geodetic base for Turkey	62
Table 5.3.	Parameters of reference systems of Turkey	62
Table 6.1.	Coordinates of primary control points	65
Table 6.2.	Trimble 3603 DR total station technical specifications	66
Table 6.3.	Coordinates of secondary control points	66
Table 6.4.	Trimble 5503 DR total station technical specifications	68

Table 6.5.	Trimble 5700 RTK GPS System Technical Specifications	68
Table 6.6.	Raytheon DE719E Fathometer Technical Specifications	71
Table A.1.	Table A.1. Coordinates of Detail Points in DLH Harbor, Tuzla	83

LIST OF SYMBOLS

V	Velocity
d	Distance
t	Time
с	Sound velocity
\mathbf{V}_0	Sound velocity at 0 °C, 3.5 per cent salinity, 750 mmHg
V(t)	Polynomial of temperature
V(p)	Polynomial of pressure
V(s)	Polynomial of salinity
V(stp)	Polynomial of stp
S	Water Salinity
IHO	International Hydrographic Organization
C(T)	Speed of sound in air as a function of temperature in inches/sec
Т	Temperature
L	Latitude
α_{e}	Transducer width
β_e	Slope of seafloor
a	Semi major axis
b	Semi minor axis
f	Flattening the ellipsoid
e	eccentricity
λ .	Geodetic longitude
φ	Geodetic Latitude
h	Geodetic height
Ν	Radius of curvature in the prime vertical
EDM	Electromagnetic Distance Meters
DGPS	Differential Global Positioning System
RTK	Real Time Kinematic
GPS	Global Positioning System
INS	Inertial navigation system

SLR	Satellite Laser Ranging
LLR	Lunar Laser Ranging
DORIS	Doppler Orbitography by Radiopositioning Integrated on Satellite
VLBI	Very long baseline interferometry
GLONASS	Global Navigation Satellite System
NAVSTAR	Navigation Satellite Timing and Ranging
SONAR	Sound Navigation and Ranging
LIDAR	Light detection and ranging
GIS	Geographical information system
UTM	Universal Transverse Mercator
TUTGA	Turkish National Fundamental GPS Network
TUDKA	Turkish National Vertical Control Network
TKGM	General Directorate of Land Registry and Cadastre
WGS	World Geodetic System
ITRF	International Terrestrial Reference Frame
ED	European Datum
GRS	Geodetic Reference System
D.L.H.	General Directorate of Railways, Harbors and Airports Construction

1. INTRODUCTION

Surveying is the method of determining accurately points and lines of direction on the Earth's surface and preparing maps or plans from collected data. Boundaries, areas, elevations, construction lines, and geographical or artificial features are determined by the measurements which are horizontal and vertical distances, angles and by computations based on geometry, trigonometry and geomorphometry.

Hydrographic Survey which is sub-category of Geodetic Survey is the science which deals with the measurement and description of the physical features of bodies of water and scientific mapping of the sea bed for navigation. Hydrographic survey is the process of gathering information about navigable waters for the purposes of safe navigation of vessels. It strictly applies to survey of any navigable waters, including lakes and rivers, but it is most commonly applied to marine navigation. A hydrographic survey may be conducted to support a variety of activities: nautical charting, port and harbor maintenance (dredging), coastal engineering (beach erosion and replenishment studies), coastal zone management, and offshore resource development. The one data type common to all hydrographic surveys is "water depth".

Increasing population and demand for new natural resources such as natural gas, oil, nutrition and need for people to communicate and travel quickly over vast distances make the studying the oceans inevitable in recent years. Almost ³/₄ of the world surface is water and it is known that natural resources capacity can supply the world's energy needs for a couple of decades. On the other hand transportation through water resources compared to terrestrial ones is more comfortable, economical and quick solution. To be able to make use of water resources, the scientists and engineers need to determine and understand geographical features and shape of the seafloor through the created hydrographic maps.

Hydrographic or bathymetric surveys are similar to the classical land surveying methods in terms of positioning process, depth measurement, corrections, mapping steps. The most important differences between land surveying and hydrographic survey are not being able to see the surface and continuous motion of water surface (Carleton and Cook, 2000) [1]. In order to get great accuracy from measurements, scientists and engineers have designed equipments which are used according to survey type.

2. OVERVIEW OF BATHYMETRIC SURVEY

Bathymetry is the measurement of the depths of water bodies from the water surface and charting of the sea floor using these water depth measurements (Ingham, 1975) [2]. It can be seen as marine equivalent to topography. Producing maps of the seafloor has always been a particular challenge to humankind. On land, surveyors can see important surface features and know they are shown accurately on the finished topographic map but underwater surfaces are not visible to the hydrographic surveyor, who must rely entirely on remote measurements.

Oceanographers have discovered the shape of the ocean floor by measuring the depth of the ocean in many places. Early tools included lead weights, lowered on marked ropes or cables to the ocean floor. From such depth readings, scientists gradually built a picture of the ocean floor they could not see. These methods were very slow and eventually were replaced by modern techniques such as acoustic, optical systems and satellites.

Bathymetric surveys use sound navigation and ranging (sonar) systems to collect depth information. These systems are based on the principle that when a sound signal is sent into the water it will be reflected back when it strikes an object. An instrument, called a transducer, sends a sound pulse straight down into the water. The pulse moves down through the water and bounces off the seafloor. The transducer also picks up the reflected sound. Computers precisely measure the time it takes for the sound pulse to reach the bottom and return. The water depth is calculated by knowing how fast sound travels in the water. This method of seafloor mapping is called echo sounding.

$$V = d/t \tag{2.1}$$

Where V: Velocity, d: Distance, t: Time

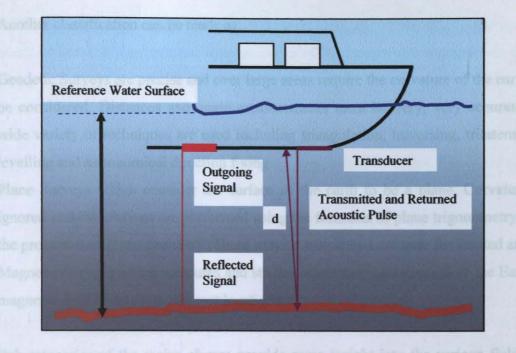


Figure 2.1. Acoustic depth measurement

Bathymetric or hydrographic measurements are conducted similar to land surveys. Positioning process has to be done for establishing control network, determining the coastline and positioning the points on horizontal plane.

2.1. Bathymetric Surveying Types

The techniques used for surveying and land measurement are dependent upon the type of survey being conducted. A simple classification of types of survey is:

- I. Land Surveys, which fix property lines, calculate land areas and assist with the transfer of real property from one owner to another.
- II. Engineering Surveys, which collect the data needed to plan and design engineering projects. The information ensures the necessary position and dimension control on the site so that the structure is built in the proper place and as designed.
- III. Informational Surveys obtain data concerning topography, drainage and man made features of a large area. This data are portrayed as maps and charts.

Another classification can be made as:

- I. Geodetic Surveys are precise and over large areas require the curvature of the earth to be considered. Distances and angle measurements must be very, very accurate. A wide variety of techniques are used including triangulation, traversing, trilateration, levelling and astronomical direction fixing
- II. Plane Surveys which consider the surface of the earth to be a plane. Curvature is ignored and calculations are performed using the formulas of plane trigonometry and the properties of plane geometry. These may be considered accurate for limited areas.
- III. Magnetic Surveys which measures and studies orientation and strength of the Earth's magnetic field in detail at different locations.

Sub-categories of the major classes provide more insight into the various fields of surveying as follows:

- I. Property Surveys, determine boundary lines, property corners, rights-of-way provide data necessary for the preparation of land sub-divisions.
- II. Cadastral Surveys are executed by the Government in connection with the disposal of vast areas of land known as the public domain.
- III. Route Surveys are necessary for the design and construction of various engineering projects such as roads, railways, pipelines, canals and power lines.
- IV. Industrial Surveys or optical metrology, are used in the aircraft and other industries where very accurate dimensional layouts are required.
- V. Topographic Surveys are performed to gather data necessary to prepare topographic maps. These are multicolor contour maps portraying the terrain; and rivers; highways, railways, bridges and other man-made features.
- VI. Hydrographic Surveys map the shorelines of bodies of water; chart the bottom of streams, lakes, harbors and coastal waters; measure the flow of rivers; and assess other factors affecting navigation and water resources. The sounding of depths by radar is involved in this type of survey.
- VII. Mine Surveys determine the position of underground works such as tunnels and shafts, the position of surface structures and the surface boundaries.

- VIII. Aerial Surveys use photogrammetry or remote sensing to produce a mosaic of matched vertical photographs, oblique views of landscape and topographic maps drawn from the photographs.
 - IX. Construction Surveys fix elevations, horizontal positions and dimensions for construction projects.
 - X. Control Surveys provide basic horizontal and vertical position data. These are called datum. For most surveying work the vertical position of points in terms of height above a curved reference surface is mean sea level (Techniques of surveying, Queensland Government Web Site).

2.2. Variation Effects in Bathymetric Survey

Bathymetric measurements are directly relative to sea, weather and land conditions. Meteorological, oceanographic and geographical situations are taken into account while evaluating bathymetric data.

2.2.1. Tidal Variation

All depth measurements are relative to the surface of the water but the surface of the rivers, lakes and oceans is not a constant elevation. Measurements must be adjusted to compensate for tidal and seasonal variations in water depth measurements. In wavy conditions water surface changes influence the data being collected. In all cases surface of the water is adjusted to constant datum. If the water body is not affected by tidal variations, the depth is referenced to another datum.

The effects in sea surface and level can be grouped as (Hekimoğlu and Şanlı, 1993) [3]:

- I. Meteorological Effects: Atmospheric pressure, changes in temperature and wind.
- II. Oceanographic Effects: Streams and density of water.
- III. Land level changes: Bathymetric measurements are adjusted to land datum. Consequently, vertical movements on land level may cause the sea level changes.
- IV. Astronomical Tides: The most important effect which changes sea level up to 10m.

Factors changing sea level are tabled below (Sea Level Rise, 2006, Wikipedia).

Periodic sea level changes				
Short Term (Periodic) Causes Time Scale P=Period Vertical Effect				
Astronomical Tides	6-12 h P	0.2-10+ m		
Long Period Tides				
Rotational Variations 14 month P				

Table 2.1. Factors changing sea level

Meteorological and oceanographic fluctuations				
Short Term (Periodic) Causes Time Scale Vertical Effect				
Winds	1–5 days	Up to 5 m		
Evaporation and precipitation	Days to weeks			
Ocean surface topography	Days to weeks	Up to 1 m		

Seasonal variations				
Short Term (Periodic) Causes	Time Scale	Vertical Effect		
River runoff/floods	2 months	1 m		
Seasonal water density changes (temperature and salinity)	6 months	0.2 m		

Seiches			
Standing Waves	Minutes to hours	Up to 2 m	

Earthquakes			
Tsunamis	Hours	Up to 10 m	
Abrupt change in land level	Minutes	Up to 10 m	

If there is a mareograph station near the survey area, tide variation value is taken from this station, however it is not common used method. Generally sea level surface height is taken from local stations by the cost of the survey area.

2.2.2. Water Quality

Acoustic depth measurement instruments send sound waves through the water, sound pulses to the surface than turns to receiver. Water temperature, salinity, pressure and density are the factors which affect the velocity of sound. Although water is a good condition for sound waves, it is not good for electromagnetic waves. The shortest way to sea floor is found from multiplying velocity by travel time of sound wave, thus, temperature, salinity, pressure and density parameters must be taken in to account.

- Temperature: Changes in temperature influence sound velocity five times more than the other factors. It varies with location, depth and currents. Sound velocity can vary between 1390-1650 m/s but at 15 °C and 3.2 per cent salinity it is 1500 m/s.
- II. Salinity: It is expressed the amount (weight) of all minerals and elements found in 1000 grams water. Salinity change in deep sea is less than nearshore.
- III. Density: Ratio of the mass of water (kg) occupied in a volume of 1 m³. Generally density of sea water accepted 1.026 gr/c m³, but it increase with decreasing temperature, increasing salinity and depth.
- IV. Pressure: Water pressure differs at various depths, that is, pressure increases the deeper the sea becomes.

Sound velocity below the sea has been formulated by Wilson as a function of temperature, depth and salinity (Doğan and Alpar, 1994):

$$c = V_0 + V(t) + V(p) + V(s) + V(stp)$$
 (2.2)

where c: Velocity, V₀: Sound velocity at 0 °C, 3.5 per cent salinity, 750 mmHg, V(t): Polynomial of temperature, V(p): Polynomial of pressure, V(s): Polynomial of salinity, V(stp): Polynomial of stp

For general use, formula has been made easier as;

$$c = 1449.2 + 4.6t - 0.055t^{2} + 0.00029t^{3} + (1.34 - 0.01t)(s - 35) + 0.016d$$
(2.3)

where c: Velocity of sound in the sea, t: Water temperature (0-35 °C), d: Depth from sea surface, s: Water salinity (0-4.5 per cent)

Table 2.2. shows the sound velocity values at different temperature and in different depths (Köprülü, 2006) [4].

Water Temperature °C	Sound Velocity (m/s) at 0 m	Sound Velocity (m/s) at 100 m	Sound Velocity (m/s) at 250 m	Sound Velocity (m/s) at 500 m
0 °C	1475.00	1476.50	1478.90	1482.70
5 °C	1485.10	1486.70	1489.10	1493.00
10 °C	1495.90	1497.50	1499.90	1503.90
15 °C	1506.70	1508.30	1510.70	1514.80
20 °C	1516.90	1518.60	1521.00	1525.20

Table 2.2 Sound velocity values

2.2.3. Atmospheric Effects

Temperature, pressure, wind, humidity, climate changes are the factors that influence all types of positioning and depth measuring techniques. For instance, variations in atmospheric pressure affect sea surface heights via the inverse barometer effect, that is, the static response of the sea to atmospheric pressure. Satellite positioning system measurements affected by atmospheric factors which reduce the signal speed. One of them is Ionospheric Effect which is free electron movement influencing electromagnetic propagation and Tropospheric Effect signal delays affected by temperature, relative humidity and pressure. Thus, temperature and pressure corrections should be taken in to account if electromagnetic instruments are used.

2.2.4. Position Accuracy

Due to the unstable position of vessel, bathymetric measurements can not be repeated. Therefore position accuracy from bathymetric survey is lower than land survey's. Generally nearshore bathymetry accuracy expected better than offshore bathymetries (Aydın *et al.*,2005) [5]. Hydrographic IHO Standards are shown in Table 2.3 (www.hypack.com). In addition IHO's, there are other accuracy standards for different surveying activities which is given in Table 2.4 (Alkan, R. M., 2001) [6].

ORDER	Special	1	2	3
Example of Typical Areas	Harbors, berthing areas, and associated critical channels with minimum underkeel clearances	Harbors, harbor approach channels, recommended tracks and some coastal areas with depths up to 100m	Areas not described in Special Order and Order 1, or areas up to 200m water depth	Offshore areas not described in Special Order, and Orders 1 and 2
Horizontal Accuracy (95 per cent Confidence Level)	2m	5m + 5 per cent of depth	20m + 5 per cent of depth	150m + 5 per cent of depth
Depth Accuracy for Reduced Depths (95 per cent Confidence Level) $= \pm \sqrt{[A^2+(BxD)^2]}$ where D=Depth	A=0,25m B=0.0075	A=0,5m B=0.0013	A=1,0m B=0.0023	A=1,0m B=0.0023

Table 2.3. Expected depth accuracy for bathymetric survey

Table 2.4. Expected accuracy for bathymetric positioning

Possible Application Area	Accuracy
Geodynamic researches for ocean floor motion	<±0.1 m
Deformation studies	<±0.1 m
Large scale hydrographic charting	±1.3-1m
Sea floor control points	±1m
Drilling holes	±3-5m
Marine cadastre	±5m
Pipelines	±1-8m
Continental shelf and territorial boundaries	±1-10m
Marine mining	±10m
Oil and gas	±10-20m
Oceanographic and geophysical studies	±50-100m

3. POSITIONING METHODS

Positioning methods used for bathymetric survey can be grouped in to 5 categories.

3.1. Optical Methods

Optical method has generally used for distance measurements. Disadvantage of optical measuring is that clear line of sight between the instrument and the measured points is essential. That is why optical methods can be used at very nearshore. Additionally, angles are measured by theodolite but they have been replaced by the use of total stations.

3.2. Electro-optic Methods

Electromagnetic Distance Meters (EDM) were developed after the world war II and the first EDM, Geodimeter, using visible light was produced in Sweden in 1953 (Özgen and Algül, 1977) [7]. Microwave radiation EDM, Tellurometer, was produced in South Africa in 1954. Infrared EDMs have been using since 1960s. The first aim of development of EDM was to measure the distance between land points and the points at sea vessel.

Electromagnetic Distance Measurement Equipments measure distance using light and radio waves and the distance is calculated either from the time difference between a transmitted pulse and a return pulse or the phase difference between a transmitted and a reflected beam of radiation.

Figure 3.1. Electromagnetic distance meter

Electromagnetic distance measuring equipments use three different wavelength bands (Plane Surveying Equipments, Department of Geomatics Web Site, The University of Melbourne):

- I. Microwave Systems
 - Range up to 150 km
 - Wavelength 3 cm
 - Not limited to line of sight
 - Unaffected by visibility
- II. Light wave Systems
 - Range up to 5 km
 - Visible light, lasers
 - Distance reduced by visibility
- III. Infrared Systems
 - Range up to 3 km
 - Limited to line of sight
 - Limited by rain, fog, other airborne particles

Accuracy of the measurements are in order of $\pm 0.005m + 1:10000 x$ distance. The combination of EDM and electronic theodolite called as Total Station.

3.3. Acoustic Methods

Acoustic positioning system works by using pulses of sound to measure distance underwater from a transmitter (transducer) to receiver (transponder) (Algül, 1983) [8]. The pulse activates the transponder, which responds immediately to the vessel transducer. The transducer, with corresponding electronics, calculates an accurate position of the transponder relative to the vessel. Comparative acoustic properties of air and water is shown in Table 3.1 (Fundamentals of Electro acoustics, www.massa.com)

	Temperature (°C)	Density (kg/m3)	Velocity (m/sec.)	Acoustic Impedance (MKS Rayls)
Fresh Water	20	1000	1480	1.48 x 10 ⁶
Sea Water 35 ppt salinity	13	1026	1500	1.54 x 10 ⁶
Air	0	1.29	332	428
Air	20	1.21	343	415

Table 3.1. Acoustic properties of air and water

Wave length of changes as a function of both speed of sound and frequency:

$$\lambda = c / f \tag{3.1}$$

where ; λ : Wavelength, c: Speed of sound, f: Frequency Speed of sound in air as a function of temperature:

$$C(T) = 13,044\sqrt{1+T/273}$$
(3.2)

where ; C(T): speed of sound in air as a function of temperature in inches/sec. T: the temperature of air in $^{\circ}$ C

Generally four types of base line acoustic measurement used in hydrographic or bathymetric surveys:

- I. Super Short Base Line Positioning: The calculation of positioning is based on range and on vertical and horizontal angle measurements from a single multi element transducer. The system provides three dimensional transponder positions relative to the vessel.
- II. Short Base Line Positioning: The calculation of positioning is based on range and on vertical and horizontal angle measurements from a minimum of three hull mounted transducers. The system provides three dimensional transponder positions relative to the vessel.

- III. Long Base Line Positioning: The calculation of positioning is based on range measurements only. The vessel is positioned relative to a calibrated array of transponders.
- IV. Multi-User Long Base Line Positioning: Hydro acoustic positioning system.

The systems are in common use in the offshore industry and by the military but are not in common nearshore surveys.

3.4. Inertial Positioning Methods

Inertial positioning system known as Inertial Navigation System originally developed in 1960's for missile guidance by the US Army and after an extensive evolutionary process has been introduced into civil aviation.

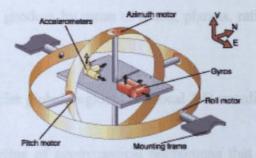


Figure 3.2. Schematic diagram of INS mechanism

Free objects have linear (x, y, z) that means position and rotational (theta, psi, phi) that means attitude degrees of freedom. Inertial navigation system uses these two principles, gravity and momentum. Gyroscope (device which measures rotational velocity) and accelerometer (device which measure acceleration) can measure the change in angle on various axis and hence using electronic circuitry can calculate the position relative to the start, thus they cannot determine their initial location, just the change relative to it. Figure 3.2 shows the schematic diagram of INS mechanism. (Pakistani Aviation, 2005)

To derive accurate sub-sea cartography, reliable attitude and position information is needed (Chapelon and Kammerer, 2005) [9]. Consequently, precise motion sensors and positioning systems have been implemented to meet hydrographic measurement requirements. By using INS the heading accuracy could be better than 0.02 deg and the roll or pitch accuracy could be better than 0.01 deg. Inertial Navigation Systems can be used as an autonomous system or integrated with Differential Global Positioning System (DGPS) or Real Time Kinematic (RTK) GPS or Doppler Velocity Log (DVL) to get very high precision but cost of such configuration is so high, integrated systems are just used in military (Ingham, 1992) [10].

3.5. Satellite Methods

Geodesy is the science of the measurement and mapping of the Earth's surface including gravity field and ocean floor. Satellite geodesy comprises the observational and computational techniques which allow the solution of geodetic problems by the use of precise measurements to, from or between artificial satellites.

Space geodesy is the geodesy by mean of moon, planets, ratio stars and quasars. Its basic problems are:

- I. Determination of precise global, regional and local 3-D coordinates,
- II. Earth's gravity field,
- III. Measuring and modeling of geodynamical phenomena that is, polar motion, earth rotation, crustal deformation.

First artificial satellite Sputnik was launched in 1957, than earth's flattening from satellite data was found in 1958 as f=1/298.3. After developments of basic methods for the satellite computation and observation between the years 1958-1970, scientific projects and new observation techniques SLR, TRANSMIT and satellite altimetry have developed during 1970-1980. Operational use of satellite techniques in geodesy, geodynamics and surveying (first results with GPS) was developed between the years 1980-1993. Exhaustive use of Global Positioning System (GPS) serves to space based precise measurement techniques since 1993. Today space geodesy techniques listed and explained briefly below:

3.5.1. Satellite Laser Ranging

Satellite Laser Ranging (SLR) measures the time intervals required for pulses emitted by laser transmitter to travel to a satellite and return to the transmitting site. The range or distance between the satellite and the observing site is approximately equal to one half of the two-way travel time multiplied by the speed of light. It is the most accurate technique currently available to determine the geosentric position of an earth satellite, allowing for the precise calibration of radar altimeters and separation of long term instrumentation of drift secular changes in ocean topography. In space geodesy, scientific achievements and applications using SLR data have been obtained and developed in many fields: orbitography, Earth's rotation and geocentric reference frame, geodynamics, determination of long wave length of the gravity field, and of the geosentric gravitational constant (GM).

Figure 3.3. SLR system operating in Greenbelt, Maryland

3.5.2. Lunar Laser Ranging

Lunar Laser ranging (LLR) measures the round-trip travel times of light pulses between stations on the earth and four retroreflectors on the surface of the moon. Retroreflectors were planted on the moon on July 21, 1969, by the crew of the Apollo 11. Since then, the distance between the Earth and the moon has been measured repeatedly over a period of more than 35 years. In addition its value for lunar sciences and the theory of gravitation, LLR is a key International Earth Rotation and Reference System Service (IERS) technique for connecting reference frames. (LLR Image courtesy of McDonald Observatory, Texas).

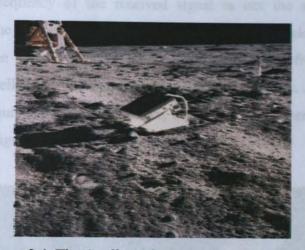


Figure 3.4. The Apollo 11 laser ranging retroreflector

Figure 3.5. Laser beam aimed at Moon by a telescope

3.5.3. Doppler Orbitography by Radiopositioning Integrated on Satellite

Doppler Orbitography by Radiopositioning Integrated on Satellite (DORIS) is a dual frequency Doppler system that can be included as a host experiment on various space missions, Spot-2, -3, -4, -5, Topex/Poseidon, Jason, ENVISAT and CryoSat in the future. On contrary to most navigation systems, DORIS is based on an uplink device: the receiver is on board the satellite while the transmitters are on the ground. The Doris system is based

on the principle of the Doppler Effect. This is the effect that causes the frequency of a wave to shift when a transmitter and receiver are in motion relative to one another. Consequently, the frequency of the received signal is not the same as that of the transmitted signal. The frequency increases as the two objects get closer and decreases as they move apart. The Doris system transmits and receives radiofrequency waves. The receiver is on the satellite and the transmitters are ground beacons. Jason-1 is one of the satellites which is equipped with an altimeter, a radiometer, a laser retroreflector array, DORIS and TRSR (Figures taken from www.oceanworld.tamu.edu)

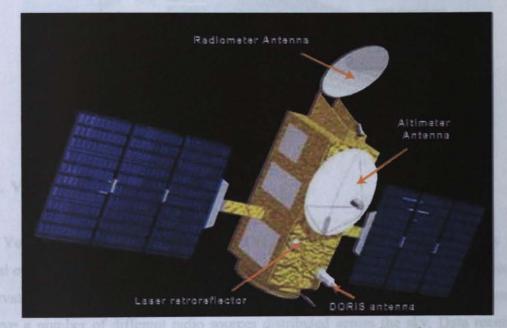


Figure 3.6. Jason-1 Satellite instrumentation schematic

clock, and then stored for later analysis on magnetic tape or hard disk. The resolution achievable using interferometry is proportional to the distance between the antennis furthest apart in the array, VLBI is the only technique capable of measuring all commonents of the earth a microtation accurately and simultaneously.

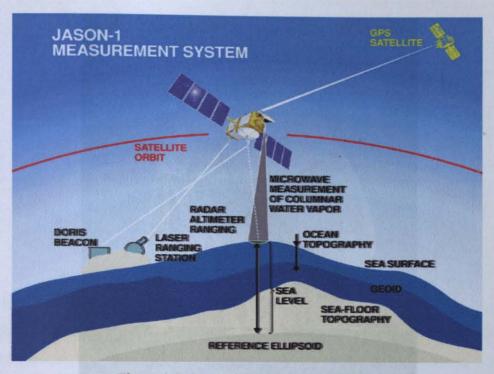


Figure 3.7. Jason-1 measurement system

3.5.4. Very Long Baseline Interferometry

Very Long Baseline Interferometry (VLBI) measures the time differences in the arrival of microwave signals from extragalactic radio sources receives at two or more radio observatories (antennas). Generally geodetic observing sessions run for 24 hours and observe a number of different radio sources distributed across the sky. Data received at each antenna in the array is paired with timing information, usually from a local atomic clock, and then stored for later analysis on magnetic tape or hard disk. The resolution achievable using interferometry is proportional to the distance between the antennas furthest apart in the array. VLBI is the only technique capable of measuring all components of the earth's orientation accurately and simultaneously.

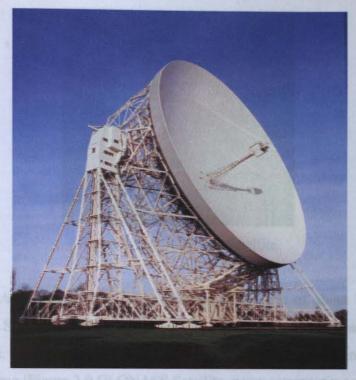


Figure 3.8. 76m Lovell radio telescope - Photo by Ian Morison

3.5.5. Global Navigation Satellite System

The Global Navigation Satellite System (GLONASS) is based on a constellation of active satellites which continuously transmit coded signals in two frequency bands which can be received by any users anywhere on the Earth's surface to identify their position and velocity in real time based on ranging measurements. GLONASS and GPS share the same principles in data transmission and positioning methods. System is managed by Russian Space Forces.

The first operational satellites went into service in December 1983. Russia continued building the GLONASS system after the old Soviet Union dissolved in the early 1990s. The system was in full operation in December 1995. After the fall of the Soviet Union, Russia has only eight satellites in operation in 2002. Economic conditions improved and 11 satellites were in operation in 2004. A total of 14 were in orbit at the end of 2005. Like the U.S. and European GPS networks, the complete GLONASS constellation was, and again in the future will be, 24 satellites (Space Today Online, 2006).

Figure 3.9. GLONASS Satellite

The GLONASS constellation orbits Earth at an altitude of about 19.100 km, a bit lower than the U.S. GPS satellites. Each satellite completes a trip around Earth every 11 hours 15 minutes. They are spaced in orbit so a user on the ground can see at least five satellites at any time (Figure 3.9 GLONASS Satellite, www.astronaytix.com).

The system offers a standard C/A positioning and timing service giving horizontal position accuracy within 55 meters and vertical position within 70 meters based on measurements from four satellite signals.

Figure 3.10 shows the range accuracy of stations (Juan, Pajares, Sanz, 1998) [11].

Depending on the mode of use and the equipment used high precision measurements can be made in geodetic applications. It is therefore utilized in geodetic programmes to supplement and strengthen the databases which are used to build models of the Earth's gravity fields, ocean tides, see surface topography, orientation, global sea level and ocean circulation.

The Navigation Satellite Timing and Ranging (NAVSTAR) Global Positionine System (GPS) is a network of orbiting satellites fant can be used to provide information on the location of a signal receiver on the earth's surface. NAVSTAR GPS was conceived as a ranging system from known positions of satellites in space to unknown positions on land, sea, in air and space. The GPS constellation consists of 24 satellites in 6 orbited planes with 4 satellites in each plane. It provides specially coded satellite signals that can be processes

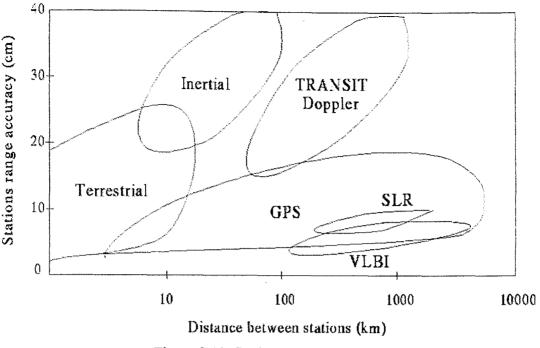


Figure 3.10. Stations range accuracy

3.5.6. Global Positioning System

The Global Positioning System (GPS) program was initiated in 1973 when the United States Air Force, Army, Navy, Marine Corps and Defense Mapping Agency decided to use their combined technical resources to develop a very accurate space based navigation system. GPS provides highly accurate time, velocity, positional data as well as it meets the common radio positioning requirements of broad spectrum of users. Depending on the mode of use and the equipment used high precision measurements can be made in geodetic applications. It is therefore utilized in geodetic programmes to supplement and strengthen the databases which are used to build models of the Earth's gravity fields, ocean tides, sea surface topography, orientation, global sea level and ocean circulation.

The Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning System (GPS) is a network of orbiting satellites that can be used to provide information on the location of a signal receiver on the earth's surface. NAVSTAR GPS was conceived as a ranging system from known positions of satellites in space to unknown positions on land, sea, in air and space. The GPS constellation consists of 24 satellites in 6 orbital planes with 4 satellites in each plane. It provides specially coded satellite signals that can be processes in a GPS receiver, enabling the receiver to compute position, velocity and time. Four GPS satellite signals are used to compute positions in three dimensions (X, Y, Z) and the time offset in the receiver clock.

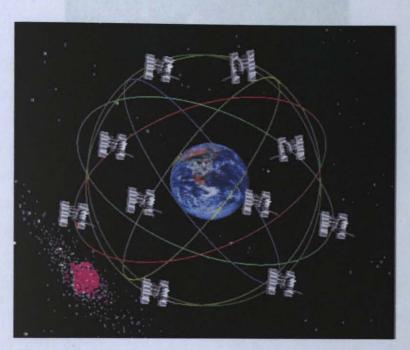


Figure 3.11. A schematic diagram of the GPS constellation

GPS System consists of three segments (Eren and Uzel, 1995) [12]:

- I. Space Segment; consists of the GPS satellites which send radio signals from space.
- II. Control Segment; consists of a system of tracking stations located around the world.
- III. User Segment; consists of the GPS receivers and the user community. GPS receivers convert SV signals into position, velocity and time estimates.

If we know the distance from one satellite to our receiver, we know we are somewhere on the surface of a sphere of this radius distant from the satellite. If we can determine another distance from another satellite, we narrow down our possible location to somewhere on the surface where these two spheres meet. If we can determine a third distance then this gives us only two possible locations for our receiver. One of these locations is usually nonsensical (for example inside the planet) so the other location is our position. If we needed to be certain, we would determine the position from another satellite, so four distance determinations gives our location as well as eliminate clock errors in the receivers.

Carrier Phase Tri that gathers data positions. The ca random code, is pseudo-random s reference even m dab-daeter accurac

Figure 3.12. Navstar GPS Satellite

3.5.6.1. <u>Measurement Techniques for GPS</u>. GPS is based on pseudorange measurements. The pseudorange is the "distance" between the GPS satellite at some transmit time and the receiver at some receive time. GPS receiver determines the travel time of a signal from a satellite by comparing the "pseudo random code" it is generating with an identical code in the signal from the satellite. Pseudo random code is a signal with random noise-like properties. It is a very complicated but repeating pattern of 1's and O's. The receiver slides its code later and later in time until it syncs up with the satellite's code. The amount it has to slide the code is equal to the signals travel time. Two different techniques listed below:

I. Code Phase Tracking (Navigation): Code phase is one processing technique that gathers data via a C/A (coarse acquisition) code receiver, which uses the information contained in the satellite signals (pseudo-random code) to calculate positions. After differential correction, this processing technique results in 1-5 meter accuracy.

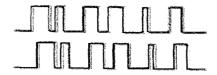


Figure 3.13. Pseudo random codes

II. Carrier Phase Tracking (Surveying): Carrier phase is another processing technique that gathers data via a carrier phase receiver, which uses the radio signal to calculate positions. The carrier signal, which has a much higher frequency than the pseudorandom code, is more accurate than using the pseudo-random code alone. The pseudo-random code narrows the reference then the carrier code narrows the reference even more. After differential correction, this processing technique results in sub-meter accuracy.

The carrier phase receivers are much more accurate than C/A code receivers, but require more involved post-processing and stricter data collection requirements. Carrier phase receivers (survey grade) require a clear view to the satellites in order to maintain a constant lock with at least 4 satellites, while C/A code receivers (mapping grade) do not need to maintain a constant lock with the satellites to calculate positions. This makes a C/A code receiver imperative to gathering data in adverse conditions (for example, under trees). Although it is more difficult to gather carrier code data than solely pseudo-random code, accuracy is increased from 3-5 meter accuracy to sub-meter accuracy.

3.5.6.2. Sources of Error. GPS errors are combination of noise, bias and blunders.

Noise errors are the combined effect of PRN code noise (around 1 m.) and noise within the receiver noise.

Bias errors result from Selective Availability (SA) and other factors but SA is no longer an issue since May 2, 2000 5:05 am it was turned off. SA is an artificial falsification of the time in the L1 signal transmitted by the satellite. For civil GPS receivers that leads to a less accurate position determination (fluctuation of about 50 m during a few minutes). Other bias errors are: SV clock errors, ephemeris data errors, tropospheric delays, unmodeled ionosphere delays, reflected signal (multipath).

Blunders which can result in errors of hundreds of kilometers are: Control segment mistakes, user mistakes, receiver error from software or hardware (Sources of Errors in GPS, 2005, Kowoma GPS System Explained).

Error Source	Standard GPS (m)	Differential GPS (m)
Satellite Clocks	1.5	0.0
Orbit Errors	2.5	0.0
Ionospheric effects	5.0	0.4
Tropospheric Effects	0.5	0.2
Receiver Noise	0.3	0.3
Multipath	0.6	0.6
Calculation-Rounding Errors	1.0	1.0
Selective Availability (not active now)	30.0	0.0
User Equivalent Range Errors	±31.4 (SA on) ±9.4 (SA off)	±0.9

Table 3.2. GPS sources of error

3.5.6.3. <u>Kinematic GPS</u>. Various methods used to collect high precision GPS data. The particular method used depends on several factors, including survey objectives, desired precision, available equipment, and field logistics. Higher precision typically requires a more rigorous field methodology and longer occupation times. The following table shows the features of the most common GPS survey methods (Unavco Consortium, 2005):

Survey Style	Accuracy (cm)	Occupation Time	Typical Applications
Continuous	0.0-0.5	Months or more	Crustal deformation, geophysics, reference stations
Static	0.5-5.0	Hours to Days	Crustal deformation, geodetic control, very long baseline surveys, geophysics
Rapid Static	1.0-5.0	Minutes	Short baseline surveys, glaciology
Kinematic	1.0-5.0	Seconds	Short baselines, closely spaced points, vehicle positioning, feature surveys, GIS and mapping
Code Differential	50-300	Seconds	Coarse GIS, mapping, positioning
Point Positioning	100-500	Minutes to Hours	Rough positioning

Table 3.3. GPS survey methods

Continuous stations are included for comparison. For campaign-style data collection they typically serve as pre-existing base stations.

Static surveys are the standard campaign data collection method for crustal deformation surveys, and typically involve occupying each point for several days to get the highest possible accuracy.

Rapid static surveys are static surveys with just enough survey time at each point to be able to resolve the carrier phase integer ambiguity. A rule of thumb is to collect data for a minimum of 10 minutes per point, and add one minute of occupation time per kilometer of baseline length over 10 km. For example, on an eight-kilometer baseline collect data at least 10 minutes and on a 28 km baseline collect data at least 28 minutes.

Kinematic surveys rely on continuous tracking to resolve the integer ambiguity. The receiver/antenna may be moving during the surveys, but continuous lock on the satellite signals must be maintained. Since the data processing software is able to both resolve the ambiguity and track the antenna motion, fixed-integer solutions are obtained nearly instantaneously.

Kinematic GPS provides the opportunity to capture data with a vertical accuracy of $\pm 2-3$ cm and horizontal positioning double the accuracy. A minimum of two GPS

receivers, linked by radio, are required. One receiver acts as a base station, providing corrections, the other is a mobile station used for collection of data. If carrier phase tracking system is used to determine the coordinates of unknown points, the method is called as Kinematic GPS and if code phase tracking system is used, then it is called as Differential GPS (DGPS).

Code differential surveys rely only on the code data to determine a differential solution. Simultaneous data collection between the base and rover receiver is still required, but there is no requirement to maintain continuous lock on the carrier phase since the phase data are not used. As a result, this method is extremely robust, but relatively coarse. For sub-meter accuracy, a rule of thumb is to collect data for five minutes per point, and add one minute of occupation time per five kilometers of baseline length over 10 kilometers. For example, on an eight-kilometer baseline collect at least five minutes of data and on a 108-kilometer baseline collect at least 25 minutes of data.

Point positioning uses only data from a single receiver to determine its coordinates. The collected data are averaged, and longer occupations significantly increase the accuracy. This method is very coarse, but sometimes it is the only way to determine base station coordinates while in the field. Although these coordinates may be off by about a meter, it is close enough to allow the computation of precise baselines while at a remote field location. When better network accuracy is desired, the base coordinates must be recomputed when back from the field.

3.5.6.4. <u>Differential GPS</u>. Differential GPS works by taking out many of the man-made and natural errors in GPS. These errors come from many sources such as imperfect satellite clocks and orbits, the earth's atmosphere (the charged particles in the ionosphere and the water vapor in the troposphere), multipath error from reflected signals and particularly the Selective Availability error which the U.S. military introduces through the satellite clocks and orbital data

To compensate for these errors we need to first measure them. This is done using one or more (wide area) reference stations. These reference stations are located at points that have been very accurately surveyed. The reference station receives the same GPS signals as the roving receiver, but instead of working like a roving receiver, it calculates backwards. Instead of using the satellite's timing signals to calculate a position, it uses its known position to calculate timing. The base station knows where the satellites are supposed to be and can calculate a theoretical distance between them.

By dividing that theoretical distance to each satellite by the speed of light, a theoretical time (how long the signal should have taken) is generated. The differential solution is the difference between the theoretical time and the measured time. This time difference (from each of the satellites it sees) is then sent to the rover GPS units through a tower or satellite transmission to apply a real time correction or it is stored for a later post processed correction.

4. DEPTH MEASUREMENT TECHNIQUES

People are always been curious about the land beneath the sea. Early sailors wanted to know the depth particularly along coastlines and near harbors so that their ship would not run aground. In time, demands for new resources, transportation and communication needs have shifted humankind to the seas.

Scientists make bathymetry maps of the seas to learn the surface, structure and shape of the planet. Early scientists measured the depths with weight on a rope but it was limited to shallow water by the lengths of line carried on board. Scuba and submersibles are also limited because of pressure and visual effects. Vertical distance must be measured to define the topography of sea surface. Invention of the echosounder to detect the enemy submarines during the World War II was very important step for bathymetry. The echosounder is just sonar and sonar is acronym for "sound navigation and ranging" (Ferrari, 1997) [13].

Depth measurement techniques can be grouped into two as classical (manual) and modern depth measurement techniques.

4.1. Manual Depth Measurement Techniques

Manual methods are generally used where more efficient acoustic methods cannot provide adequate depth data or sufficient detail such as underwater engineering and construction applications (US Army Corps of Engineers, 2002) [14]. Beach and dune profile surveys, power plants, dams, river control structures subject to turbulence, detailed surveys of rock jetties and breakwaters and survey in areas where unconsolidated sediments are present. Manual depth measurement techniques are simply a variation of conventional topographic survey methods. However, unlike land-based topographic surveys, geophysical properties of bottom are not always visible or consistent.

The methods which can be read directly are hand lead lines, topographic level rods and sounding poles.

- I. Topographic Level Rods can measure up to 6 m with \pm (5-10 cm) accuracy,
- II. Sounding Poles can measure up to 30 m with ± 10 cm accuracy.
- III. Hand Lead Lines can measure from 30 m to 2000 m with ±0.01xH accuracy, where H is 1 per cent of depth.

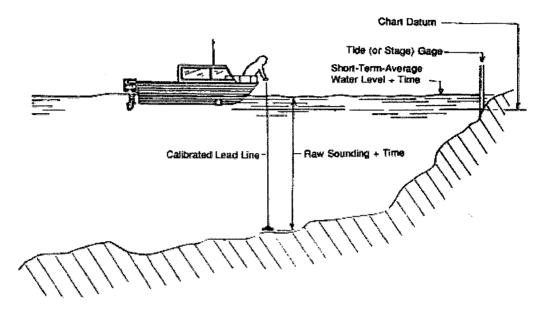


Figure 4.1. Lead line depth measurement

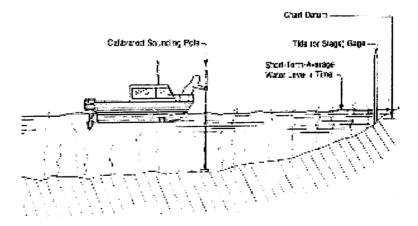


Figure 4.2. Sounding pole depth measurement

4.2. Modern Depth Measurement Techniques

The Global Position System (GPS) and advances in photography, laser, radar and remote sensing technologies have allowed the development of ground, air, and sea topographic and bathymetric surveying systems that can rapidly acquire data with vertical accuracy from 1 to 100 cm. Each surveying technique has its advantages with regard to accuracy, detail, aerial coverage, survey environment, availability, and cost. Modern techniques which are Remote Sensing, Photography, Laser and Acoustic explained below.

4.2.1. Remote Sensing

A simple definition of Remote Sensing is: Gathering data and information about the physical world by detecting and measuring radiation, particles, and fields associated with objects located beyond the immediate vicinity of the sensor devices (Short, 2006) [15]. Other definition can be made as: Remote Sensing is a technology for sampling electromagnetic radiation to acquire and interpret non-immediate geospatial data from which to extract information about features, objects, and classes on the Earth's land surface, oceans, and atmosphere (Örmeci, 1987) [16]. SPOT by France and LANDSAT by United States satellites are serving for remote sensing projects.

LANDSAT refers to a series of satellites put into orbit around the earth to collect environmental data about the earth's surface. The LANDSAT program was initiated by the U.S. Department of Interior and NASA on July 23, 1972, and was the first unmanned satellite designed solely to acquire earth resources data on a systematic, repetitive, multispectral basis. Over time, the sensors carried by the LANDSAT satellites have varied as technologies improved and certain types of data proved more useful than others.

Data collected from satellites are subject to atmospheric, geometric and radiometric distortion, for this reason they must be processed and modeled. Because measuring up to 20 m is possible by Remote Sensing, it is used at shallow seas. Advantages of this method are: Remote sensors detect over a broader area rather than a line that is it provides regional view and they can operate in all seasons, at night, in bad weather and in dangerous areas (Doğan and Alpar, 1994) [17].

4.2.2. Aerial Photography

Aerial photography is the taking of photographs from above with a camera mounted on an aircraft, balloon, rocket, kite or similar vehicle. It was first practiced by the French airman Nadar in 1858. Although aerial photos and maps show "bird eye" view of the earth, aerial photographs are not maps. Contrary to maps, aerial photographs display a high degree of radial distortion. That is, the topography is distorted, and until corrections are made for the distortion, measurements made from a photograph are not accurate. Nevertheless, aerial photographs are a powerful tool for studying the earth's environment.

Aerial photographs are separated from regular photos in at least three important ways (Crum, 1997):

- I. Objects are portrayed from an overhead position
- II. Infrared wavelengths are recorded very often
- III. Photos are taken at scales most people are unfamiliar to see

Types of aerial photography are: Black and white, color and color infrared. Basic specifications which help us to identify objects on aerial photographs are listed below:

- I. Tone (Hue or color): Tone refers to the relative brightness or color of elements on a photograph. It is, perhaps, the most basic of the interpretive elements because without tonal differences none of the other elements could be discerned
- II. Size: The size of objects must be considered in the context of the scale of a photograph. The scale will help you determine if an object is a stock pond or lake.
- III. Shape: Refers to the general outline of objects. Regular geometric shapes are usually indicators of human presence and use. Some objects can be identified almost solely on the basis of their shapes. For example, football fields, colorleaf highway interchanges, some government buildings.
- IV. Texture: The impression of "smoothness" or "roughness" of image features is caused by the frequency of change of tone in photographs. It is produced by a set of features too small to identify individually. Grass, cement, and water generally appear smooth, while a forest canopy may appear rough.

- V. Pattern: The patterns formed by objects in a photo can be diagnostic.
- VI. Shadow: Shadows aid interpreters in determining the height of objects in aerial photographs. However, they also obscure objects lying within them.
- VII. Site: Refers to topographic or geographic location. This characteristic of photographs is especially important in identifying vegetation types and landforms.
- VIII. Association: Some objects are always found in association with other objects. The context of an object can provide insight into what it is. For instance, a nuclear power plant is not (generally) going to be found in the midst of single-family housing.

Although aerial photography has broader spectral sensitivity than the human eye and has better spatial resolution and geometric fidelity than many ground-based sensing methods, it is not favorable in deep water applications. Depth can be measured up to 3 m at unclear water while it is up to 25 m at clear water. Accuracy of method is ± 40 cm. (Dinn) [18].

4.2.3. Airborne Laser - Light Detection and Ranging

Airborne Laser (Light Detection and Ranging - LIDAR) is a swath surveying technology for shallow coastal water which cannot be detected by multibeam acoustic system (Banic, 1999) [19]. The term lidar refers to the optical equivalent of radar and is often used in place of the more specific term, laser altimetry. Light detection and ranging technique accurately determines water depths by measuring the time of light of two laser pulses at different wavelengths: one travels through the air-water interface to the water bottom, while the second pulse is reflected from the water surface. An optical receiver on the aircraft detects the pulse reflections from both the bottom and the water surface. The water depth is determined by the elapsed time between these two reflections, after accounting for the system's operating geometry, propagation-induced biases and wave height and tide effects.

Basic principle is same as Remote Sensing but means of transportation is different plane which flies at almost 300 m. LIDAR systems can provide uniform and dense data in extremely shallow water. It is a good complement to acoustical surveys, which are less effective in depths less than about 5 meters. The biggest limitation of LIDAR, as with other airborne techniques, is its dependency on water clarity. In clear waters it can be used to depths of over 50 meters but in turbid water it is only successful to depths of two to three times the visible depth. Accuracy for this method is ± 20 cm.

4.3. Acoustics

Sound Navigation and Ranging (SONAR) system based on principle that a sound is sent into the water, it strikes an object or ground and reflected back. An instrument, called transducer, sends a sound pulse straight down into the water. The pulse moves down through the water and bounces off the seafloor. The transducer also picks up the reflected sound. Computers precisely measure the time it takes for the sound pulse to reach the bottom and return. The water depth is calculated by knowing how fast sound travels in the water. This method of seafloor mapping is called echosounding.

Sonar systems are classified as either active or passive. Active sonar uses a transducer to produce a constant stream of underwater sound pulses which reflect off of submerged objects and return to the transducer. Analysts then use the speed of sound underwater (a constant value of approximately 1500 meters per second) to calculate the exact distance of the submerged object from the transducer. Passive sonar only receives underwater sound pulses and then uses a computer database to match a specific sound pulse to identify the unknown sound pulse. Military primarily use passive sonar, whereas scientists use active sonar for oceanographic research.

4.3.1. Types of Echosounders

Echosounders transmit a single beam or multiple beams of sound simultaneously. Today several techniques are used to create maps of the seafloor for different purposes. There are many factors when deciding whether using either single-beam or multibeam bathymetry. Types of echosounder are explained below:

4.3.1.1. <u>Single Beam Echosounder</u>. Single-beam echosounders collect discrete data points along survey track lines. Sound pulses are sent from the transducer straight down into the water. The sound reflects off the seafloor and returns to the transducer. The time the sound takes to travel to the bottom and back is used to calculate the distance to the seafloor.

Water depth is estimated by using the speed of sound through the water (approximately 1,500 meters per second) and a simple calculation:

Distance = speed x time/2
$$(4.1)$$

The product is divided by two because the measured time is the round-trip time (from the transducer to the seafloor and back to the transducer).

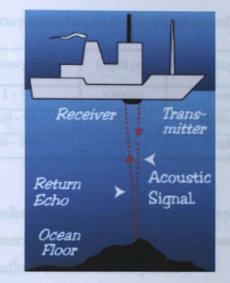
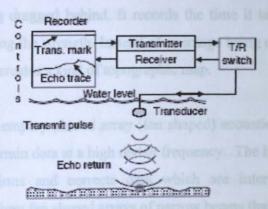
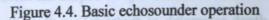




Figure 4.3. The way of sound

The sound pulses are sent out regularly as the ship moves along the surface, which produces a line showing the depth of the ocean beneath the ship. This continuous depth data are used to create bathymetry maps of the survey area.

36

Echosounders can use different frequencies of sound to find out different things about the sea. Water depth is typically measured by echosounders that transmit sound at 12 kHz. Lower frequencies (3.5 kHz) can be used to look at the layers of sediments below the seafloor. Higher frequencies (200 kHz) can be used to identify fish and plankton that are in the water column. Important factor that affect the accuracy of depth measurement value is the frequency, that is, the higher the frequency, the more accurate the depth value.

Frequency (kHz)	Depth (m)	Accuracy (m)
1 - 15	<10000	Low
20 - 50	<5000	Medium
30 - 300	<300	High

Table 4.1. Accuracy according to frequency of sound wave for depth

Single-beam echosounders have several advantages: They are low cost and portable units that broad scale of users can deploy on small boats and ships. Also they can be interfaced with Acoustic Seafloor Classification System.

4.3.1.2. <u>Multibeam Echosounder</u>. Multibeam sonar technology uses multiple sound waves each from different transmitters on the haul of a ship to measure the depth of objects on the seafloor. Since multibeam systems rely on time measurements, the coverage area is dependent on the depth of the water, typically two to four times the water depth. Multibeam sonar also is a form of active sonar, but the sound emitting device is attached to a vessel, instead of being dragged behind. It records the time it takes for the echoes to return, rather than recording the strength. Instead of an image being created, this allows for depths to be measured. It creates a kind of topographic map.

Multibeam systems employ phased array (fan shaped) acoustic detection techniques that can record detailed terrain data at a high revisit frequency. The high revisit, number of times per second, confirms and corrects data which are interpolated by on-board computers. Transducers form fan shaped arrays of narrow beams that measure a swath that can map the sea floor, utilizing time of return to determine depth. Since the multibeam system generates so much data per second, it is capable of mapping 100 per cent of the bottom, providing highly detailed results. Additionally, some systems are advanced enough to locate objects underwater. Multibeam sonar coverage is limited by the depth of the water. The deeper the water, the narrower the fan must be to get higher resolution.

Some multibeam systems can simultaneously measure the strength of the reflected sound, which is known as backscatter. Hard acoustic returns indicate rock or gravel while softer returns indicate mud or silt. Backscatter information also allows for the accurate determination of material composition on the seafloor.

There are many factors to consider when deciding between using either single-beam or multibeam bathymetry. If the survey covers large and complex areas of the seafloor and requires complete bottom coverage, then multibeam systems may be the better option. Multibeam data will provide greater resolution and permit wider spacing of survey track lines. This could decrease the number of survey lines and reduce costly ship time. If lower resolution is acceptable, then single-beam bathymetry in conjunction with other technologies (such as side-scan sonar) may provide a lower cost alternative

4.3.1.3. <u>Side Scan Sonar</u>. Side Scan Sonar operates similar to other active sonar systems but provide a method for obtaining more detailed acoustical pictures of the sea. The scan transmits a fan shaped sound from a tow vehicle which is submerged from and attached to a surface vessel by a cable. The sound sweeps the seafloor from side to side. The width of the area covered by the scan normally covers a width of approximately 200 meters. The returned signal strength is measured, processed and recorded, creating an image where the shape of the seafloor and objects on it are discernable.

The side scan sonar system is used in creating images of the seafloor, such as a sunken ship. The strength of the return echoes is measured to create the image. An image created by using side scan sonar can be very detailed and looks like someone was shining a light on an object complete with shadows. Side scan systems are very accurate for imaging large areas of the seafloor. The higher the frequency of sound used by the system, the higher the resolution. For example, around 100 kHz systems provide wider coverage.

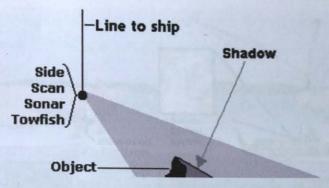


Figure 4.5. Sound way of side scan sonar

Side-scan sonar systems can identify different types of seafloor, such as mud, smooth sand, rippled sand, rock outcrops, and canyons. Dense objects such as rocks, coarse sand, and metal will reflect strong signals. Soft features such as silt, mud, or fine sediments absorb sonar energy and produce lighter acoustic returns.

Side-scan systems are very useful in turbid water conditions, but as with the other acoustic methods, some field verification using physical sampling or imagery is necessary. These systems do not produce any bathymetric information. Additionally, water depth must be at least 2 meters for sampling.

4.3.1.4. <u>Split Beam Echosounder</u>. Split beam echosounder or transducer is used for fish detecting activities. Hydroacoustic method has the capability of directly detecting the targets acoustic size and three dimensional position (Balk and Lindem, 2002). Tracking of individual fish targets using a split-beam echosounder is a common method for investigating fish behavior.

In general a split beam transducer is electrically divided into two orthogonal sets of paired receivers. An acoustic signal is transmitted and reflected from a fish and this echo encounters the two sets of receiving elements allowing the direction of arrival of an echo to be determined.

Sub-bottom profiling systems can be useful for characterizing benchic habitats, since they provide information about sub-surface aediment structure. No other acoustic techniques provide this type of information. Sub-bottom systems are limited by a marrow

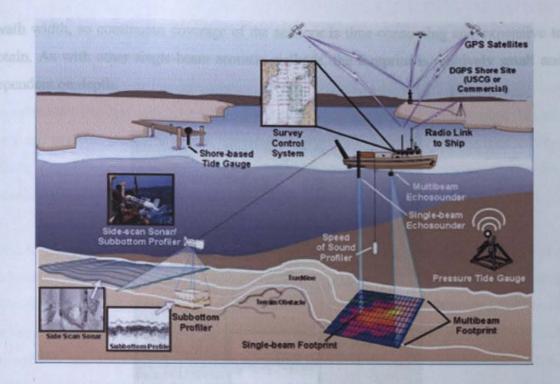


Figure 4.6. Acoustic seafloor characterization techniques

There are also several acoustic methods to characterize the seafloor. These acoustic systems use a technique that is similar to simple echosounders: Sub-bottom Profiling and Seafloor Classification System are two of most common used techniques.

Sub-bottom profiling systems are used to identify and characterize layers of sediment or rock under the seafloor. The technique used is similar to a simple echosounder. A transducer emits a sound pulse vertically downwards towards the seafloor, and a receiver records the return of the pulse once it has been reflected off the seafloor.

A sub-bottom profiler provides an acoustic profile of a narrow section of the subbottom directly beneath the path over which the device is towed. Sub-bottom profilers are impulse-type devices that transmit acoustic energy over a wide range of frequencies. Low frequency energy provides the greatest penetration while the higher frequencies and wide band widths provide higher resolution.

Sub-bottom profiling systems can be useful for characterizing benthic habitats, since they provide information about sub-surface sediment structure. No other acoustic techniques provide this type of information. Sub-bottom systems are limited by a narrow swath width, so continuous coverage of the seafloor is time-consuming and expensive to obtain. As with other single-beam acoustic methods, the footprint is relatively small and dependent on depth.

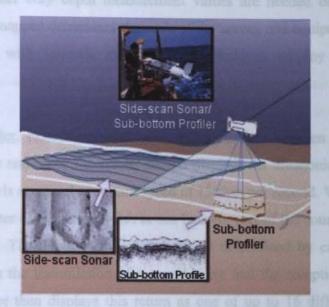


Figure 4.7. Sub-bottom profiler

Seafloor classification systems are used to classify features of the seafloor, such as vegetation or surface type. Some seafloor classification systems analyze the first return of a sound wave, while others analyze the first and second returns of a sound wave. They gather information about sediment properties for many engineering applications. In addition to sediment properties, geotechnical properties as attenuation, density, porosity, shear strength, compression and shear velocity, and mean grain size can be predict from the data recorded.

Advantages of system are: They are at low cost and portable so that can be used on boats with low power requirement. They also collect data quickly. On the other hand these systems are need on field calibration, so the data they produce are very difficult to interpret without physical sampling. Their swath width is narrow and acoustic footprint is relatively small and dependent on depth. Locating pipelines and other buried objects, industrial monitoring processes are some of the application areas.

4.3.2. Instruments of an Echosounder

There are many factors to consider when deciding which type of echosounder must be selected. Whether only depth measurement values are needed or complete bottom coverage must be mapped determines the scale of the survey and equipments. The surveys which conducted with acoustic measurement techniques employ echosounder and transducer.

4.3.2.1. Echosounder. Echosounders determine the distance between its transducer and underwater objects and show the results on the display. An ultrasonic wave transmitted through water travels at a nearly constant speed of 1500 m per second. When a sound wave strikes an underwater object such as fish or sea bottom, part of the sound is reflected back toward the source. The depth to the object can be determined by calculating the time difference between the transmission of a sound wave and the reception of the reflected sound. The sounder then displays this return as one of up to 16 different colors (color sounder) or a different level of gray scaling (monochrome sounder) depending on the strength of the returned signal.

A color echo sounder uses a different color for any one of up to 16 different signal strengths. This makes B returns show up as red and weaker colors as green or blue. Monochrome sounders use different levels of gray to show the different levels of signal strength. B returns such as a hard bottom show up as a very dark color and items such as debris in the water or concentrations of plankton appear as a cloudy gray.

There are two display types to choose from, Cathode Ray Tube (CRT) or Liquid Crystal Display (LCD). Each type has different advantages that need to be considered when choosing an echo sounder. A CRT is similar to a television screen. It has high contrast in normal to low light, allowing for bright and clear targets to be shown on the display. Bright sunlight will tend to make the CRT display fade. CRT echo sounders work best in an environment that is either covered or out of direct sunlight. With echo sounders, color units allow you to discriminate easier between small differences in signal returns. Low and high frequency options, high resolution and accurate recording, time, velocity display other specifications needed. Additionally, they must be interfaced with computers and software solutions. The major difference between different 'ypes of echosounders is in the frequencies they use.

4.3.2.2. <u>Transducer</u>. The major function of the transducer is to convert electrical energy from the transmitter into sound/mechanical energy. The transducer then picks up the sound after it reflects off of the object. The transducer is one of the most important parts of an echosounder system. Transducer is mounted permanently in the bottom of the survey vessel, which then follows the track line generating soundings along the track.

Transducers can be classified according to their beam width, frequency and power rating. The sound radiates from the transducer in a cone, with about 50 per cent actually reaching to sea bottom. Beam width is determined by the frequency of the pulse and the size of the transducer. In general,

- I. Lower frequencies produce a wider beam, and at a given frequency, a smaller transducer will produce a wider beam. Lower frequencies also penetrate deeper into the water, but have less resolution in depth. A typical low frequency transducer operates at 12 kHz.
- II. Higher frequencies have greater resolution in depth, but less range, so the choice is a trade-off. Higher frequencies also require a smaller transducer. A typical high frequency transducer operates at 200 kHz.

4.3.3. Sound Velocity Measurement in Sea Water

Physical parameters must be known to determine the sound velocity in sea water. Density, salinity, pressure and temperature are the factors which affect the velocity of sound in water. Average density of sea water is 1.026 gr/cm^3 , however it is also a function of density, salinity, pressure and temperature and changes. The lowest and the fast values of sound can be given as 1387 m/sn (in hot water)< c < 1529 m/sn (in saline, cold water). Velocity of sound can be found by several ways.

4.3.3.1. <u>Sound Velocity by Equations</u>. There are many formulas to find the velocity of sound in water which are functions of salinity, density, pressure and temperature. One of these formulas is developed by Wilson.

$$c = V_0 + V(t) + V(p) + V(s) + V(stp)$$
 (4.2)

where c: Velocity, V_0 : Sound velocity at 0 °C, 3.5 per cent salinity, 750 mmHg, V(t): Polynomial of temperature °C, V(p): Polynomial of pressure kg/cm², V(s): Polynomial of salinity, V(stp): Polynomial of stp. For general use Wilson formula can be written (Doğan and Alpar, 1994).

$$c = 1449.2 + 4.623t - 0.0546t^2 + 1.391(s-35)$$
(4.3)

In warm seas Wilson formula may result in a few m/s miscalculations, so Kingsley and Frey defined another velocity formula for the oceans (Doğan and Alpar, 1994) [20]. In this formula Latitude L indicates that regional differences can affect the velocity of sound:

 $c = 1449.05 + 45.7t - 5.21t^{2} + 0.23t^{3} + (1.333 - 0.126t + 0.009t^{2})(s-35) + (16.23 + 0.253t)(d(1-0.0026cosL)) + (0.213 - 0.1t)(d(1-0.0026cosL))^{2} + (0.016 + 0.0002(s-35)t(d(1-0.0026cosL)))$ (4.4)

where t: Temperature °C/10, L: Latitude, d: Depth (km), s: Salinity (ppm)

4.3.3.2. <u>Sound Velocity by Bar Check Method</u>. Bar Check is a low cost, high accuracy hand held package designed to enable rapid checks of sound velocity in shallow water. The principle of this method is sound reflecting and comparing. A plate, the depth of which is known, under the transducer reflects the sound back to transducer. Readings from transducer is compared with bar's level. The comparison must be repeated in several depths. If the difference between two readings are greater than precision value, then velocity of sonar is changed or measurements are corrected. The depth measurement by bar check method more than 30 m is not recommended because of the accuracy.

 c^0 : Sound velocity of instrument, c: Real sound velocity, d: Depth value from reflector, d_g : Depth value from instrument, then correction is found by;

$$t = 2d / c = 2d_g / c^0$$
 (4.5)

$$\mathbf{c} = \mathbf{c}^0 \mathbf{d} \ / \mathbf{d}_{\mathrm{g}} \tag{4.6}$$

$$\mathbf{d} = \mathbf{d}_{\mathbf{g}} \mathbf{c} / \mathbf{c}^0 \tag{4.7}$$

4.3.4. Depth Measurement Sources of Errors and Corrections

Acoustic method is the best way of depth measurement, however, some errors are inevitable to face with. Errors mainly can be classified as:

- I. Errors from water (velocity of sound in water, sea surface changes...)
- II. Instrument errors (vessel draft, heave, roll, pitch...)
- III. User errors (installation error, misread, wrong measuring...)

Errors caused by water conditions and instrument errors can be removed from measurement values by applying corrections (Baş, 1998) [21]. Corrected depth value is determined by:

$$H_d = H' + a + dH_V + dH_e + dH_a + dH_H + dH_{PR}$$
 (4.8)

Where H': Measured depth value, a: Transducer depth correction, dH_V : Velocity correction, dH_e : Slope correction, dH_a : Instrument calibration correction, dH_H : Heave correction, dH_{PR} : Pitch and roll correction.

4.3.4.1. <u>Transducer depth correction</u>. Because some part of transducer is below the sea surface, it is added to depth soundings. Also value (a) can be added to the measurements by the computer automatically.

4.3.4.2. <u>Velocity correction</u>. Sound velocity depends on physical parameters of water and depth and if calibrated velocity value is different from real velocity value, then correction must be added to depth measurement values.

$$dH_V = H' (V_{ort} - V_o) / V_o$$
(4.9)

where Vort: Average velocity for working area, Vo: Calibrated velocity value.

To enter the velocity of working area water to echosounder is more practical instead of making correction above, if the velocity value of echosounder could be changed.

4.3.4.3. <u>Slope Correction</u>. Sound pulses travel through the shortest way to seafloor and back. Since beam go out from the transducer in a conical shape, depth values at sloped seafloors is affected.

$$dH_e = H' \sin (\alpha_e/2) (\tan\beta_e - \tan\alpha_e/4)$$
(4.10)

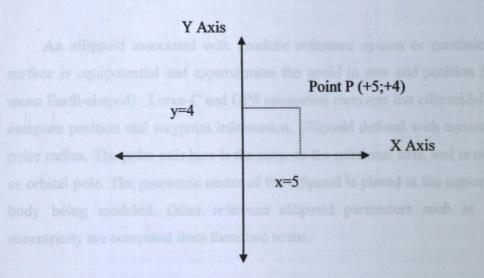
where α_e : Transducer width, β_e : Slope of seafloor. If the slope of seafloor is smaller than $\alpha_e/4$, and transducer angle is smaller than 2°, then slope correction can be neglected.

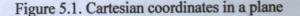
4.3.4.4. <u>Calibration correction</u>. Disorder and inadequate calibration of echosounder cause this error. To identify the error value, measurements have to be made at sea which density and depth are known.

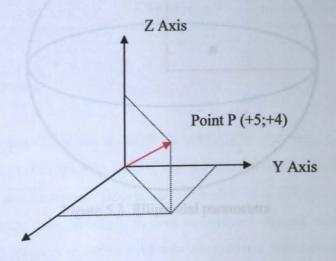
4.3.4.5. <u>Heave Correction</u>. Survey boat vertical boat movement resulting from wave motion can be a major contributor to errors in depth measurements. In the past manual or automatic smoothing the data only the practical way of correcting wave induced errors. New techniques do not give the opportunity to incorporate heave adjustment. The most widely used approach was to measure the survey boat's depth and position and correct the motion induced errors during post survey processing.

4.3.4.6. <u>Pitch and Roll Correction</u>. Pitch is the rotation about Y axes, Roll is the rotation about X axes. So many devices have been developed to remove these errors from measurements.

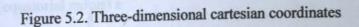
5. COORDINATE SYSTEMS


Coordinates reference some particular set of numbers for the size and shape of the Earth (Dana, 1995) [22]. There are many different coordinate systems, based on a variety of geodetic datums, units, projections, and reference systems in use. A datum is the mathematical model of the Earth we use to calculate the coordinates on any map, chart, or survey system. All the collected data must be carefully referenced by position on the Earth's surface.


GPS coordinates are commonly displayed as latitude and longitude which is an angular coordinate system. To get precise determination of the latitude and the longitude of points over working area, the shape of the Earth must be taken into account as an ellipsoid, not a sphere. The Earth's shape more closely approximates an ellipsoid (oblate spheroid): flattened at the poles and bulging at the Equator. Thus the Earth's shape, when cut through its polar axis, approximates an ellipse. A datum is also a standard representation of shape and offset for coordinates, which includes an ellipsoid and an origin.


Many different coordinate systems are used to coordinate the location. Some systems such as latitude and longitude are global systems that can be used to record position anywhere on the Earth's surface. Other systems are regional or local in coverage and intended to provide accurate positioning over smaller areas. The system of locational reference used in a particular will depend on the purpose of the project and how the positions of the source data have been recorded. It is sometimes the case that the data needed for a particular GIS project will be recorded in two or more of these reference systems. Combining the information of these sources will require that positions be carefully converted, transformed, or projected from one system to another

5.1 Basic Coordinate Systems


Basic coordinate systems represent points in two-dimensional or three-dimensional space. These systems used in analytic geometry are referred to as Cartesian Systems. Similar systems based on angles from baselines are often referred to as polar systems. Two-dimensional coordinate systems are defined with respect to a single plane while three-dimensional systems are defined with respect to two orthogonal planes.

5.1 Basic Coordinate Systems

Basic coordinate systems represent points in two-dimensional or three-dimensional space. These systems used in analytic geometry are referred to as Cartesian Systems. Similar systems based on angles from baselines are often referred to as polar systems. Two-dimensional coordinate systems are defined with respect to a single plane while three-dimensional systems are defined with respect to two orthogonal planes.

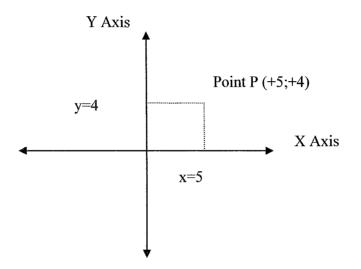
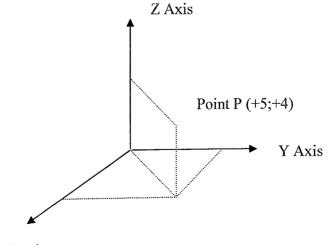



Figure 5.1. Cartesian coordinates in a plane

X Axis

Figure 5.2. Three-dimensional cartesian coordinates

5.2. Earth-Based Locational Reference System

Map projections portray the nearly spherical earth in a two dimensional representation. Earth based reference systems are based on various models for the size and the shape of the earth. Although earth's shape represented in many systems by a sphere, precise positioning reference systems are based on an ellipsoidal earth and gravity models.

5.2.1. Reference Ellipsoid

An ellipsoid associated with geodetic reference system or geodetic datum whose surface is equipotential and approximates the geoid in size and position (literally, geoid mean Earth-shaped). Loran-C and GPS navigation receivers use ellipsoidal earth model to compute position and waypoint information. Ellipsoid defined with equatorial radius and polar radius. The polar axis here is the same as the rotational axis, and is not the magnetic or orbital pole. The geometric center of the ellipsoid is placed at the center of mass of the body being modeled. Other reference ellipsoid parameters such as flattening and eccentricity are computed from these two terms.

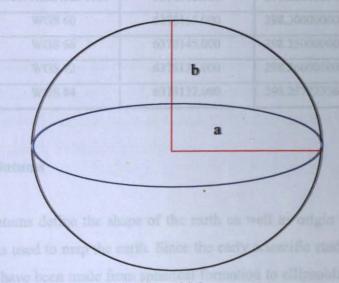


Figure 5.3. Ellipsoidal parameters

Semi minor axis (polar radius) b Semi major axis (equatorial radius) a Flattening f = (a-b)/a

Ellipse	Semi-Major axis (m)	1/Flattening
Airy 1830	6377563.396	299.32496460
Bessel 1841	6377397.155	299.15281280
Clarke 1866	6378206.400	294.97869820
Clarke 1880	6378249.145	293.46500000
ED 50	6378388.000	297.0000000
Everest 1830	6377276.345	300.80170000
Fischer 1960	6378166.000	298.3000000
Fischer 1968	6378150.000	298.30000000
GRS 1967	6378160.000	298.247167427
GRS 1975	6378140.000	298.25700000
GRS 1980	6378137.000	298.257222101
Hough 1956	6378270.000	297.00000000
International	6378388.000	297.000000000
Krassovsky 1940	6378245.000	298.30000000
South American 1969	6378160.000	298.250000000
WGS 60	6378165.000	298.30000000
WGS 66	6378145.000	298.250000000
	6378135.000	298.260000000
WGS 84	6378137.000	298.257223563

Table 5.1. Selected reference ellipsoids

5.2.2. Geodetic Datums

Geodetic Datums define the shape of the earth as well as origin and orientation of coordinate systems used to map the earth. Since the early scientific studies of the earth so many description have been made from spherical formation to ellipsoidal models. Modern geodetic datums range from flat-earth models to complex models used for international applications. These complex models describe the size, shape, orientation, gravity field and angular velocity of the earth.

Datums used as the basis for coordinate systems in geographic information system, precise positioning system and navigation may differ from nation to nation. Linking geodetic coordinates to the wrong datum can result in position errors for hundreds of meters.

The earth has irregular and constantly changing surface which are used in navigation, surveying and mapping.

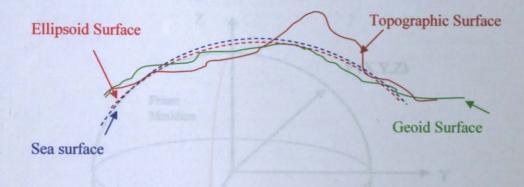


Figure 5.4. Earth surfaces

Topographical surface of the earth is the actual surface of the land and sea at some moment in time and sea level is the average surface of the oceans. Gravity models describe in detail the variations in the gravity field. Geoid models attempt to represent the surface of the entire earth over both land and ocean as though the surface resulted from gravity alone. Reference systems can be divided into two groups

direction of a line normal to the reference ellipsoid. The productic longitude of a point is the angle between a reference plane and a plane passing through the point, both planes being perpendicular to the equatorial plane. The productic height at a point is the distance from the reference ellipsoid to the point in a direction records to the ellipsoid.

GPS coordinates are commonly displayed as initiale, longitude and height, that is angular coordinate system. Degrees of latitude and longitude measure the angle between location and the reference line, deinely the Equator and Greenwich England.

5.3. Global Coordinate Systems

5.3.1. Latitude, Longitude, Height

The most commonly used coordinate system is Latitude, Longitude and Height. The Prime Meridian and the Equator are the reference planes used to define latitude and longitude.

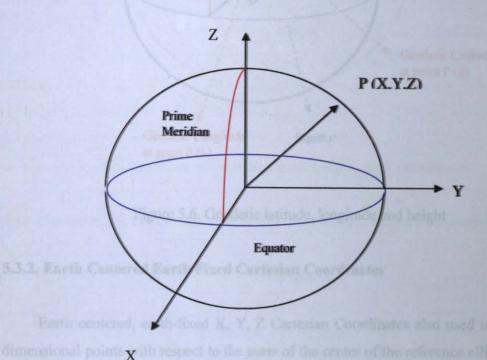


Figure 5.5. Equator and prime meridian

The geodetic latitude of a point is the angle from the equatorial plane to the vertical direction of a line normal to the reference ellipsoid. The geodetic longitude of a point is the angle between a reference plane and a plane passing through the point, both planes being perpendicular to the equatorial plane. The geodetic height at a point is the distance from the reference ellipsoid to the point in a direction normal to the ellipsoid.

GPS coordinates are commonly displayed as latitude, longitude and height, that is angular coordinate system. Degrees of latitude and longitude measure the angle between location and the reference line, namely the Equator and Greenwich England.

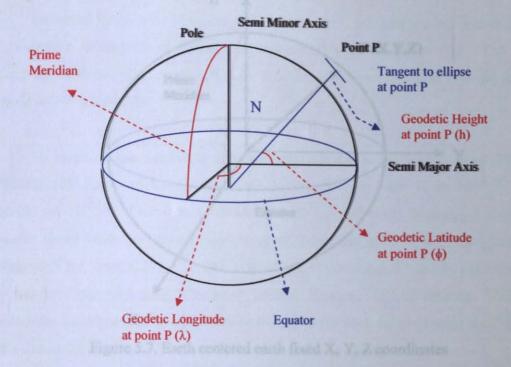


Figure 5.6. Geodetic latitude, longitude and height

5.3.2. Earth Centered Earth Fixed Cartesian Coordinates

Earth centered, earth-fixed X, Y, Z Cartesian Coordinates also used to define three dimensional points with respect to the mass of the center of the reference ellipsoid. The Z-axis points toward the North Pole, the X-axis is defined by the intersection of the plane define by the prime meridian and the equatorial plane and the Y-axis completes a right handed orthogonal system by a plane 90 degrees east of the X-axis and its intersection with the equator.

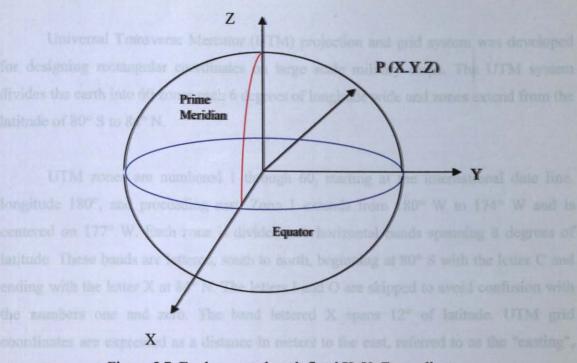


Figure 5.7. Earth centered earth fixed X, Y, Z coordinates

The conversion from ellipsoidal coordinates to cartesian coordinates is given by:

X =	(N+h) cos¢	cosl	(5.1)
n	(11 1) 0050	cosn	(5.1)

$$Y = (N+h) \cos\phi \sin\lambda$$
 (5.2)

$$Z = [(1-e^2) + h] \sin\phi$$
 (5.3)

$$e^2 = (a^2 - b^2)/a^2$$
 (5.4)

$$N = a^2 / \sqrt{a^2 \cos\phi + b^2 \sin\phi}$$
(5.5)

Where h: Altitude, λ : Latitude, ϕ : Longitude, e: First eccentricity, N: Radius of curvature in the prime vertical.

The conversion from cartesian coordinates to ellipsoidal coordinates is given by:

$$\lambda = \arctan\left(Y/X\right) \tag{5.6}$$

$$\phi = \arctan\left[(Z/\sqrt{[(X^2 + Y^2)[1 - e^2 N / (N + h)]]} \right]$$
(5.7)

 $h = \sqrt{(X^2 + Y^2) / \cos \phi} - N$ (5.8)

5.3.3. Universal Transverse Mercator

Universal Transverse Mercator (UTM) projection and grid system was developed for designing rectangular coordinates on large scale military maps. The UTM system divides the earth into 60 zones each 6 degrees of longitude wide and zones extend from the latitude of 80° S to 84° N.

UTM zones are numbered 1 through 60, starting at the international date line, longitude 180°, and proceeding east. Zone 1 extends from 180° W to 174° W and is centered on 177° W. Each zone is divided into horizontal bands spanning 8 degrees of latitude. These bands are lettered, south to north, beginning at 80° S with the letter C and ending with the letter X at 84° N. The letters I and O are skipped to avoid confusion with the numbers one and zero. The band lettered X spans 12° of latitude. UTM grid coordinates are expressed as a distance in meters to the east, referred to as the "easting", and a distance in meters to the north, referred to as the "northing".

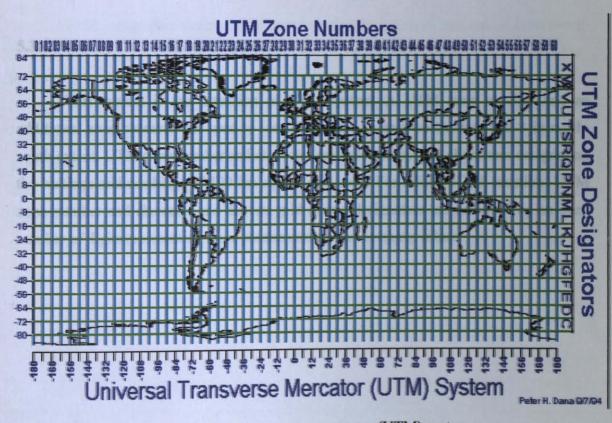


Figure 5.8. Universal transverse mercator (UTM) system

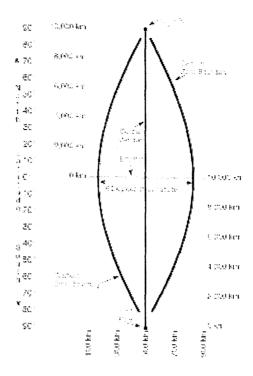


Figure 5.9. UTM display

5.3.4. Military Grid Reference System

This system is the extension of UTM system. A UTM zone number and an additional zone character are used to identify areas 6 in east-west extent and 8 in north-south extent. UTM zone number and character are followed by two characters designating the eastings and northings of 100 km square grid cells. For a full MGRS location, UTM zone number and character and the two grid square designators are followed by an even number of digits representing more precise easting and northing values.

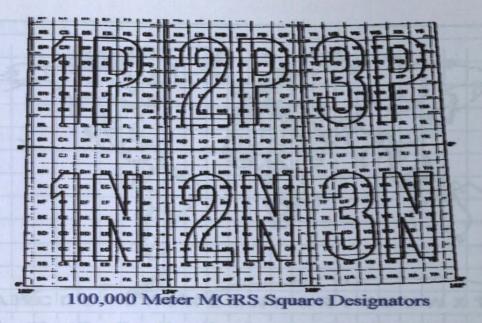


Figure 5.10. Military grid reference system (MGRS)

5.3.5. World Geographic Reference System

World Geographic Reference System is a simple and rapid method of expressing latitude and longitude. The GEOREF system enables any general position in the world to be located and is most valuable for use over large distances (primarily long-range air operations) or at great speeds. For this reason, it is used for aircraft navigation. The GEOREF system divides the Earth's surface into divisions and subdivisions. Its coordinates are read to the right and up. This system divides the world into 15° by 15° quadrangles. Beginning at the 180° meridian and proceeding eastward through 360° of arc, there are 24 15° longitudinal zones. These zones are lettered A through Z, omitting I and O. Beginning at the South Pole and proceeding northward through 180° of arc, there are 12 latitudinal zones of 15° each. These zones are lettered A through M, omitting I.

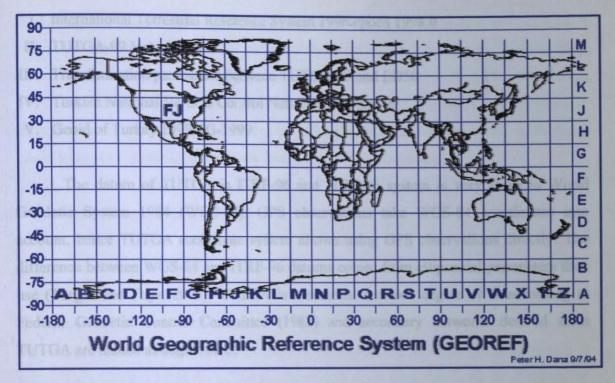


Figure 5.11. World geographic reference system

5.4. Regional Systems

5.4.1. Turkish National Fundamental GPS Network

The use of GPS in large scale map production encountered surveyors a need for a new coordinate system for meeting the expectations that modern national networks are supposed to satisfy. This coordinate system is used as a fundamental geodetic network for mapping.

Turkey General Command of Mapping (GCM) and The General Directorate of Land Registry and Cadastre (TKGM) decided to conduct a study to establish such a network in 1996 and after 3 years, Turkish National Fundamental GPS Network (TUTGA) has been defined. TUTGA is at International Terrestrial Reference Frame, accuracy of \pm (1-3)cm, 3D (X,Y,Z) coordinate system. Coordinate changes according to time are (V_x,V_y,V_z) and height is H, geoid height is N, 594 point network. TUTGA depends on five criterias:

- I. International Terrestrial Reference System 1996 epoch 1998.0
- II. TUTGA-99 Velocity Area
- III. Transformation parameters between TUTGA-99 and ED50
- IV. Turkish National Vertical Control Network TUDKA-99
- V. Geoid of Turkey 1999 TG-1999

The datum of TUTGA is ITRF-96 and ITRF-96 system is very close to World Geodetic System 1984 (WGS-84). GPS observations take WGS-84 coordinates into account, hence TUTGA coordinate system allows using GPS observations directly. The difference between WGS-84 and ITRF-96 datums comes from ellipsoidal parameters they use (Turgut and Tuşat 2005). TUTGA is a national network degree of B according to Federal Geodetic Control Committee (1988) and secondary networks derived from TUTGA are named as degree of C.

In order to determine the heights according to geoid, ortometric height system has to be defined, so in 1991 Gravimetric Geoid of Turkey-1991 (TG-91), in 1999 Geoid of Turkey (TG-99) and in 1999 again Updated Geoid of Turkey 1999 (TG-99A) have been defined (Gürdal and Ceylan, 2005) [23].

In addition to TUTGA, there is one more coordinate system used in Turkey, National Coordinate System, which is defined only by terrestrial survey. Because of not developed and updated for years, National Coordinate System is almost not valid. The datum of National Coordinate System is European Datum 1950 (ED-50).

5.4.2. International Terrestrial Reference Frame

Until 1984 the rotation of the earth was monitored using a rigid earth model from number of observatories undertaking latitude and time observations. In 1984, a new conventional terrestrial system was defined and adopted with the knowledge that a rigid earth model was no longer appropriate. With the advance of increased geodesy activities and extra terrestrial sources, geodetic and astronomic unions recommended that an international earth orientation service. So, monitoring earth rotation and International Terrestrial Reference Frame (ITRF) replaced from 1st January 1988. The origin of ITRF is

at the center of the mass of the earth. The ITRF is based on the combination of sets of station coordinates of points on the surface of the earth and their crustal motion velocities, derived from observations of space-geodetic techniques VLBI, LLR, SLR, GPS (since 1991) and DORIS (since 1994). The strength of the ITRF is that it uses a well distributed, large number of global points to monitor the dynamic earth surface. This dynamic model is based on the best available global data, and it is stable at the centimeter level.

5.4.3. World Geodetic System 1984

The World Geodetic System 1984 is a geodetic reference system used by GPS. WGS-84 system is very closely aligned to ITRF and the origin of WGS-84 is earth's center of mass. All GPS receivers compute and store coordinates in terms of WGS-84, then transform to other datums when information is displayed. Although the local datum is selected for display, WGS-84 values are downloaded via their data cable to a computer. The reference ellipsoid used with WGS-84 is essentially the same as the Geodetic Reference System 1980 (GRS80) ellipsoid used with ITRF.

5.4.4. European Datum Coordinate System 1950

National Coordinate System, coordinates from GPS and TUTKA are at different datum and their reference ellipsoids are also different. National Coordinate System of Turkey accept two dimensional European Datum 1950 (ED50) as a reference. ED-50 composed of Hayford Ellipsoidal coordinates or Easting, Northing UTM coordinates which is calculated from Hayford Ellipsoidal Coordinates. On the other hand by linking GPS observations to TUTGA, (X,Y,Z) coordinates at ITRF and latitude, longitude and height according to GRS-80 ellipsoid can be calculated. ITRF coordinates must be known in order to transform GPS observations to ED-50 that is transformation parameters can be calculated.

Reference System	Datum	Ellipsoid	Coordinate System	Projection
National System	ED-50	Hayford	2B(φ,λ)+H	TM-UTM
TUTGA	ITRF-96	GRS-80	3B(φ,λ,h)+T	TM-UTM
GPS	WGS-84	WGS-84	3B(φ,λ,h)	TM-UTM

Table 5.2. Geodetic base for Turkey

Table 5.3. Parameters of reference systems of Turkey

R.S.	a	b	e ²	1/f
GRS-80	6378137	6 356 752.3141	0.006 694 38002290	298.257222101
WGS-84	6378137	6 356 752.3142	0.006 694 379 99013	298.257223563
ITRF-96	6378137	6 356 752.3141	0.006 694 38002290	298.257222101
ED-50	6378388	6356911.946	0.00672267002	297.00000000

6. APPLICATION

The Bosphorus crossing railway project Marmaray is one of the most complex infrastructure project of the world. The Bosphorus will be crossed by a 1.4 km immersed tube tunnel between Sarayburnu on the European side and Salacak on the Asian side of Istanbul (Ünlütepe, 2006) [24]. The parts of the tunnel dimensions of which are 135m x 8.6m x 15.3m have been constructing in a dry dock in Tuzla area. (www.marmaray.com)

Figure 6.1. The Marmaray Project

The aim of the application is to measure the depths in the construction area in order to flatten the surface of the sea to lower the tubes. The responsible directorate for the implementation of the project D.L.H. has some technical and contractual requirements from each contractor to obey during project (Marmaray BC1 Project Employer' Requirements, Chapter 1). Setting out (1.8.1), topographic (1.8.3) and hydrological surveys (1.8.5) have been performed according to Employer's Requirements.

from Istanbul Metropolitiso Municipality and preliminary designs have been organized on this map. There were three TUPGA actwork control points, one of them is inside the project area and only that point could be seen. Totally 14 control points have been

6.1. Survey Area

at 3 depress of loop stills wide system is given Table 6.1.

Project area is D.L.H. harbor, Tuzla, at Asian side of Istanbul, where immersed tube tunnel elements are constructed. D.L.H. which is General Directorate of Railways, Harbors and Airports Construction under the Ministry of Transportation is the employer of the Marmaray Project. Parts of the immersed tunnel will be lowered sea, which has been dredging and excavating, for the quality control after construction is completed Afterwards they will towed out and immersed into when their trench is prepared through the Bosphorus.

Figure 6.2. Project area in D.L.H. harbor

6.2. Topographic Surveying Activities

Construction activities need some topographical and bathymetric surveying procedures to draw maps for dredging and excavation activities in the harbor during construction of the immersed tunnels. Photogrammetric map of the region was supplied from Istanbul Metropolitan Municipality and preliminary designs have been organized on this map. There were three TUTGA network control points, one of them is inside the project area and only that point could be seen. Totally 14 control points have been installed, 13 of them were secondary control points. Coordinates of primary network point at 3 degrees of longitude wide system is given Table 6.1.

PN	Y	X	Z
43713	438295.974	4522579.729	3.918

Table 6.1. Coordinates of primary control points

Measurements were made by Trimble 3603 DR Total Station and completed in four days. Staff of the both topographic and bathymetric survey is listed below:

- 1 Civil Engineer
- 1 Geodesy an Photogrammetry Engineer
- 2 Topographers
- 1 Vessel Operator

Evaluations made by Eghas, Tgen, EMP software programmes. They were homogenized by Samkub software programme and edited by Microstation software programme. The system was 12.7498 degrees oriented but it was linked to vertical datum TUDKA, Turkish National Vertical Control Network using trigonometric leveling.

Angle Measurement	3'
Distance: prism mode	Standard +/- (2 mm + 2 ppm) - Rapid +/- (3 mm + 2 ppm) -
Distance. prism mode	Tracking +/- (5 mm + 2 ppm)
Distance: reflex mode DR	Standard +/- (3 mm + 2 ppm) - Rapid +/- (5 mm + 2 ppm) -
Distance. Tenex mode DR	Tracking +/- (10 mm + 2 ppm)
Telescope magnification	30x
Field of view	1.2 degrees
Shortest focusing distance	5ft. / 1.5 m
Angle measurement Hz and V circles	Electronic incremental
Measuring Units	360° (DMS), 360° (DEG), 400 gon, 6400 mils
Vertical Reference System	zenith angle, elevation angle, vertical angle, slope in percent
Least display unit	1′
Prism range	prism: 10032 ft. 3 prisms: 16400 f
Long range mode	1 prism: 16400 ft. 3 prisms: 24800 ft
Prism mode measuring time	Standard mode 2' - Rapid mode 1.8' - Tracking 0.5'
Direct reflex measuring time	Standard mode 3' - Rapid mode 2' - Tracking 0.8'

Table 6.2. Trimble 3603 DR total station technical specifications

Table 6.3. Coordinates of secondary control points

PN	Y	X	Z
1001	438367.194	4522579.729	6.148
1002	438460.852	4522653.100	3.270
1003	438446.193	4522763.823	1.766
1004	438383.179	4522704.628	1.720
1005	438331.078	4522664.679	1.435
1006	438226.808	4522587.188	3.644
1007	438155.127	4522658.195	3.686
1008	437998.575	4522846.308	3.802
1009	438303.581	4522749.553	3.615
1010	438390.267	4522848.211	1.530
1011	438263.828	4523011.376	1.415
1012	438058.853	4522994.753	1.462
K.1091	438089.382	4523057.256	1.444

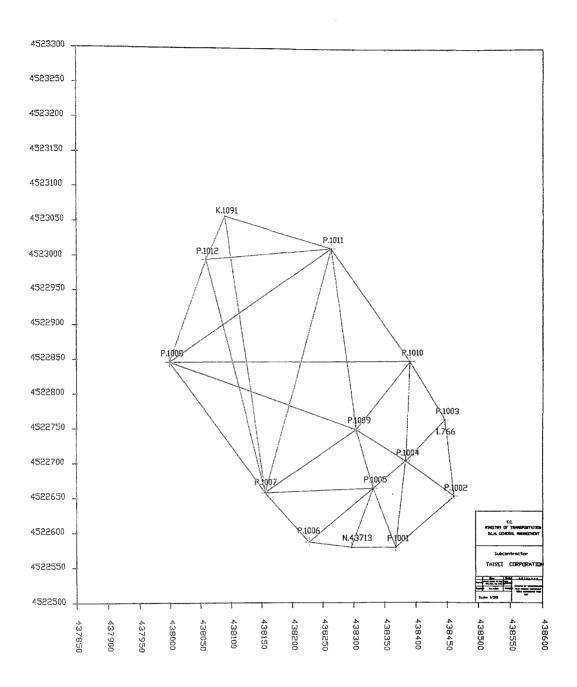
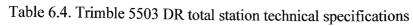



Figure 6.3. Primary and secondary control points of D.L.H. harbor

Detailed measurements in order to define the survey area were performed by Trimble 5503 DR Total Station and measured data of 1109 points evaluated for the map drawings (Table A.1). These map drawings would be a base for the proceeding bathymetric survey data.

Angle Measurement Accuracy	3'
Standard angle reading	1'
Fast standard	1'
Tracking	2'
Arithmetic mean value	1'
Standard distance measurement accuracy	± (3mm+3ppm)
Fast standard	± (8mm+3ppm)
Tracking	± (10mm+3ppm)
Arithmetic mean value	± (3mm+3ppm)
Shortest possible range to prism	2m
Direct reflex	2m
Reflective foil	2m
Standard measuring time	3s
Fast standard	3s
Tracking	0.4s

GPS network measurements performed by Trimble 5700 RTK GPS System.

Frequency	Dual
Channels	24 channels
L1 Channels	Carrier phase, C/A code
L2 Channels	Carrier phase
Initialization time	±10s+0.5 x baseline km (up to 30 km)
Code DGPS horizontal accuracy	± (0.25m+1ppm)
Code DGPS vertical accuracy	± (0.5m+1ppm)
Static GPS horizontal accuracy	± (5mm+0.5ppm)
Static GPS vertical accuracy	± (5mm+1ppm)
RTK GPS horizontal accuracy	± (10mm+1ppm)
RTK GPS vertical accuracy	± (20mm+1ppm)

Table 6.5. Trimble 5700 RTK GPS system technical specifications

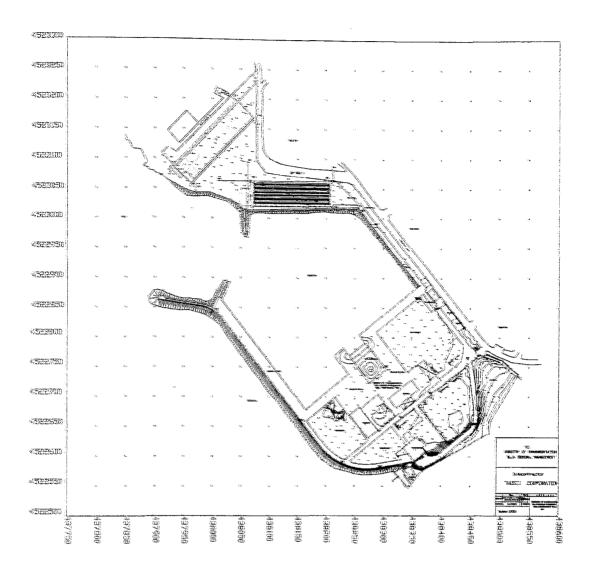


Figure 6.4. D.L.H. harbor map

6.3. Bathymetric Surveying Activities

Completing topographic survey and installation of points and calculation of coordinates proceed by bathymetric survey. Local tide gauge system installation, measuring the depths and positioning are the steps of bathymetric survey.

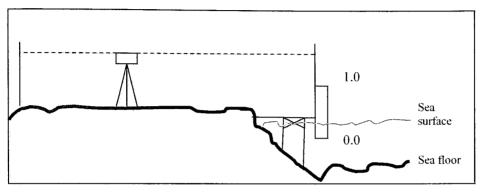


Figure 6.5. Tide gauge system

To link the depth values to a vertical datum, a mareograph station is needed. These stations are highly cost, complicated installation, so local, basic tide gauge system is easier way to measure the tide values. Topographic level rod has been installed to measure the sea level changes at survey area and height of zero point of rod has been found by geometric leveling. ± 30 cm level changes have seen during the survey activities.

Providing accurate information on the water is very difficult because of the water movements. RTK GPS system which allows a very precise survey in real-time without the need for post processing has been used for positioning and bathymetric survey. Bathymetric surveys which executed nine times at the D.L.H. harbor where the immersed tunnel parts are produced. Equipment used for the surveys are listed below:

- I. Trimble 5700 RTK GPS for base station
- II. Trimble 5700 RTK GPS for station on the survey boat
- III. Single Beam Raytheon DE719E Precision Survey Fathometer
- IV. Notebook Computer and Hydropro Hydrographic Survey Software
- V. Bar check
- VI. Survey Boat

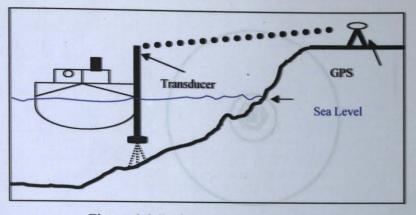


Figure 6.6. Bathymetric survey system

Marine surveys executed by Detek Offshore Technologies Ltd. Co. which supplied the technical equipment.

Depth Range	160m	
Accuracy	0.5 per cent of indicated depth	
Depth Resolution	0.1 unit (0.01m, less than 100m)	
Frequency	200 kHz	
Output Power	500 watt	
Light weight	20 kg	
Dimension	46cm H, 40cm W, 23cm D	
Records	Depth, Navigation Fix Marks, Time	
Displays	Sound Velocity, Tide, Draft	
Transducer beam width	10° (Typical)	
Transmit Sensitivity	170 (Typical)	
Receive Sensitivity	-190 (Typical)	
Pulse Power	500 watt	

Table 6.6. Raytheon DE719E fathometer technical specifications

foure 6.8

overlap between swaths running bot

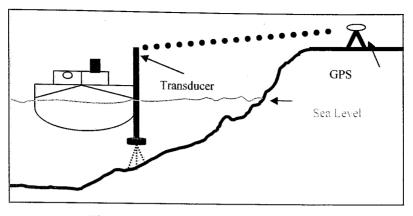


Figure 6.6. Bathymetric survey system

Marine surveys executed by Detek Offshore Technologies Ltd. Co. which supplied the technical equipment.

Depth Range	160m
Accuracy	0.5 per cent of indicated depth
Depth Resolution	0.1 unit (0.01m, less than 100m)
Frequency	200 kHz
Output Power	500 watt
Light weight	20 kg
Dimension	46cm H, 40cm W, 23cm D
Records	Depth, Navigation Fix Marks, Time
Displays	Sound Velocity, Tide, Draft
Transducer beam width	10° (Typical)
Transmit Sensitivity	170 (Typical)
Receive Sensitivity	-190 (Typical)
Pulse Power	500 watt

Table 6.6. Raytheon DE719E fathometer technical specifications

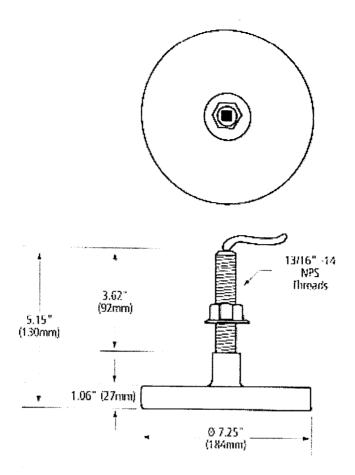


Figure 6.7. Dimensions of transducer's parts

The survey was conducted during the period from February to April 2006, an estimated 35.000m2 area. For this survey Trimble RTK GPS system was used to get navigational information. Tidal corrections were provided by a continuous-logging tide gauge. Sound velocity measurements were made before and during the survey for correction of the sonar data by bar check method. Survey lines were located to give 100% overlap between swaths running both north-south and east-west. The grids were vertical to the coast and distance between the grids was very close, 2m. Survey lines can be seen at figure 6.8.

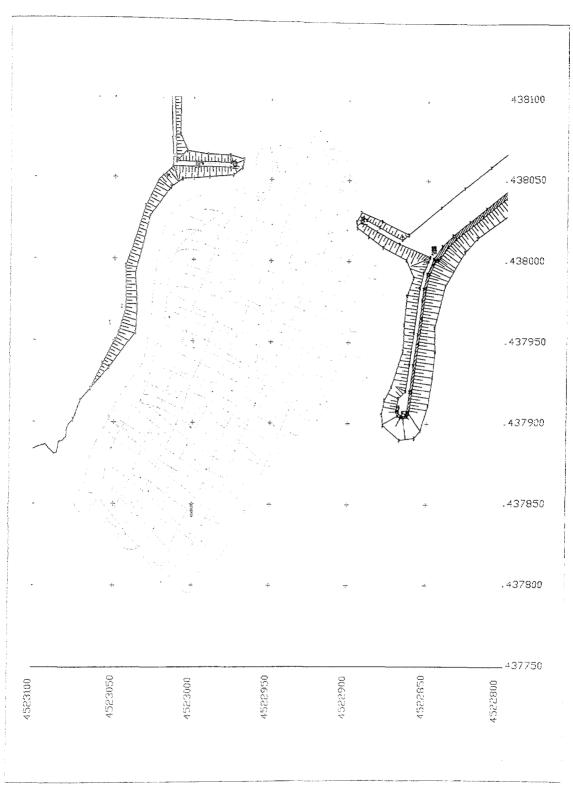


Figure 6.8. Bathymetric survey lines

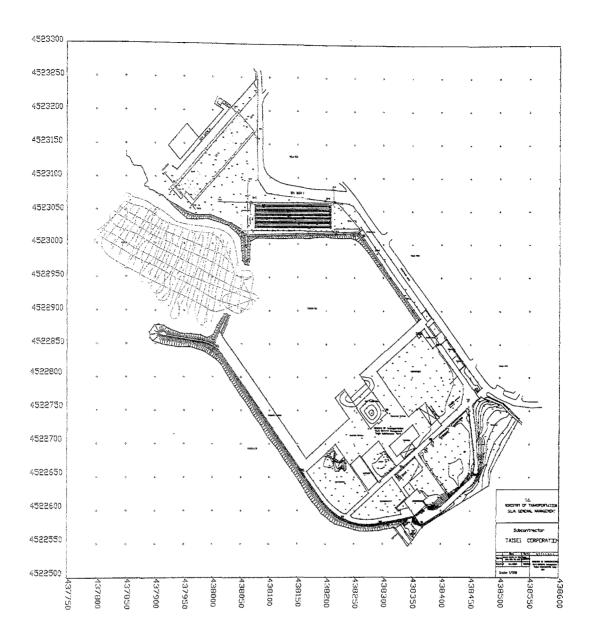


Figure 6.9. Bathymetric survey lines in D.L.H. harbor

Figure 6.10. Survey boat

Figure 6.11. Survey system in survey boat

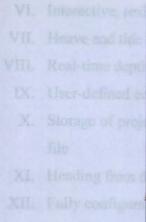


Figure 6.12. GPS receiver at shore

Vessel positioning and data integration were achieved with HYDROpro Navigation Software. This PC based system provides real time navigation, and collection of position, time and depth soundings for subsequent analysis. Preliminary study was made before bathymetric survey, that is, coordinates of study area was defined, and vessel track planning was made. By means of RTK GPS, vessel route and position can be seen and save to the computer. Graphical display can also be drawn by HYDROpro software. The features of HYDROpro Navigation software are listed below (http://www.trimble.com/hydropronav.html):

- I. Configurable geodetic database with many pre-defined ellipsoids and coordinate systems
- II. Coordinate calculator for points and files
- III. Built-in site calibration and adjustment
- IV. Graphical vessel shape editor
- V. Multiple vessels and guidance objects (targets, run lines, routes)

- VI. Interactive, real-time plan view map with rotation including line up
- VII. Heave and tide data from RTK
- VIII. Real-time depth profile and channel cross section display
 - IX. User-defined echosounder annotation
 - X. Storage of project information and survey data in a single Microsoft Access database file
 - XI. Heading from dual positioning devices
- XII. Fully configurable equipment timing (latency, pulse-per-second, timeouts)

Software can collect data from both echosounder and GPS receiver simultaneously and saved to the computer. Tide gauge readings are added. Offset value was zero because transducer and GPS receiver installed to the same point. All the bathymetric surveys were conducted in a good and unwind weather so that motion of the survey boat was at minimum consequently, heave, pitch and roll effects were at minimum.

Another PC-based navigation software is Hypack Survey Software for planning, conducting, editing and publishing hydrographic survey. The features of Hypack Navigation software are listed below (http://www.hypack.com/hypack.asp):

- I. Supports GPS, Range-Azimuth and Range-Range Navigation System,
- II. It provides interfaces for over 150 different sensors, including single beam echosounders, dual frequency echosounders, multiple transducer echosounders, multibeam sonars, gyros, heave-pitch-roll sensors, magnetometers, telemetry tide gauges, side scan sonars, flourimeters, oxygen sensors, etc.,
- III. The information for each sensor is time tagged to within .001 second and logged to file for post processing
- IV. The SURVEY program can be configured to display and track single vessels, multiple vessels, or the main vessel and ROVs or towfish,
- V. Real time water level calculations using RTK GPS and a heave-pitch-roll sensor,
- VI. Besides providing "on line" control, SURVEY also allows users to import or to mark in real time target locations. Target locations can be prepared in advance and then used to navigate to user defined locations for water quality samples or recovery of bottom mounted equipment,

VII. SURVEY allows you to "paint" the bottom with single beam, multiple transducer or multibeam depth information

6.4. Evaluation of Bathymetric Data

All collected data from GPS, echosounder and tide gauge with all corrections processed by EGHAS software. Assuming that the weights of measurements were almost equal and they were not correlated, squared mean errors were calculated, three times greater errors omitted and adjustments were completed. After interpolation of measurements, contour line maps were drawn with respect to 1:2500 Scale Map Production Standards 1974 and 1:5000 Scale Map Production Standards 2005.

The aim of this survey which has been conducted for three months was whether the topography of the seafloor in D.L.H. harbor dredged and excavated enough to achieve the secure limits. After the ninth depth measurement activity it has been seen that excavating activities could be ended.

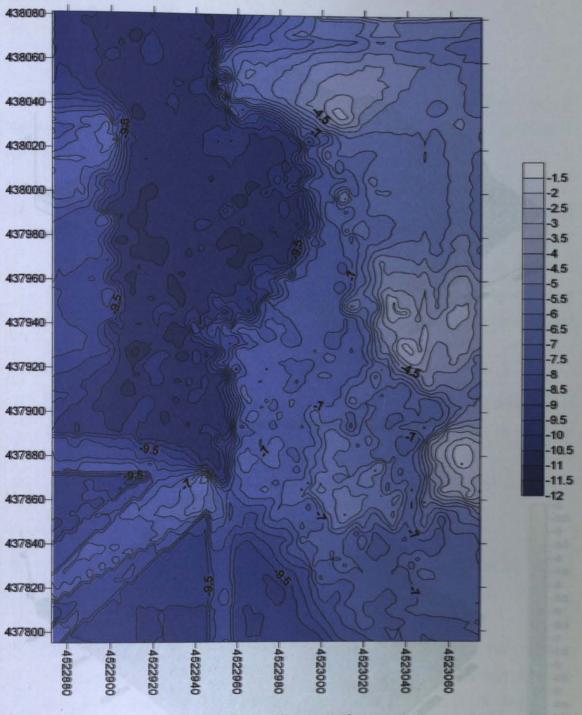


Figure 6.11. Contour line map of survey area

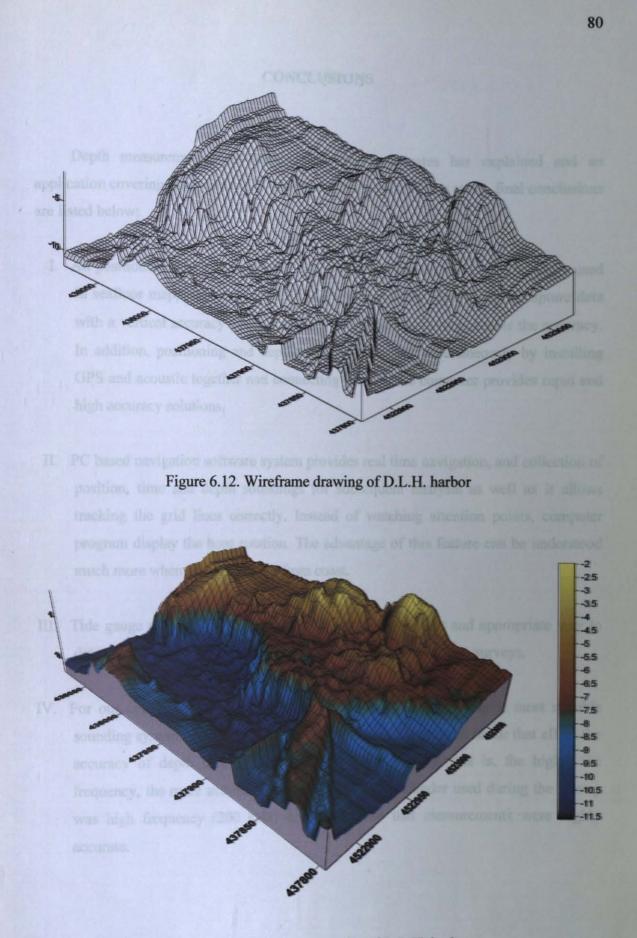


Figure 6.13. Seafloor topography of D.L.H. harbor

CONCLUSIONS

Depth measurements, positioning methods, coordinates has explained and an application covering these topics has been given in chapter 5. As a result, final conclusions are listed below:

- I. All positioning activities conducted by GPS measurements, which can be easily used in seafloor mapping, especially RTK GPS provides the opportunity to capture data with a vertical accuracy of ±2-3 cm and horizontal positioning double the accuracy. In addition, positioning and depths can be measured simultaneously by installing GPS and acoustic together and connecting them to the computer provides rapid and high accuracy solutions.
- II. PC based navigation software system provides real time navigation, and collection of position, time and depth soundings for subsequent analysis as well as it allows tracking the grid lines correctly. Instead of watching attention points, computer program display the bout rotation. The advantage of this feature can be understood much more when survey boat far from coast.
- III. Tide gauge readings for the near shore surveys is low cost and appropriate way to determine sea level changes but it is not suitable way at offshore surveys.
- IV. For our application at near shore area, single beam echosounder is most suitable sounding system which is low cost and portable unit. Important factor that affect the accuracy of depth measurement value is the frequency, that is, the higher the frequency, the more accurate the depth value. Echosounder used during the survey was high frequency (200 kHz) echosounder so that measurements were highly accurate.

APPENDIX

Z 1.383 1.441 1.286 1.281 1.408 1.428 1.388 1.411 1.167 1.339 1.401 1.448 1.343 1.466 1.403 1.473 1.448 1.499 1.451 1.402 1.400 1.423 1.381 1.395 1.549 1.509 1.491 1.434 1.525 1.629 1.651 1.604 1.366 1.437 1.372 1.401 1.413 1.345 1.437 1.347 1.353 1.428 1.296 1.332 1.310 1.311 1.185 1.200 1.314 1.301 1.391 1.380 1.312 1.355 1.416 1.327 1.398 1.284 1.552 1.636 1.768 1.646 1.666 1.767 1.702

Table A.1. Coordinates of Detail Points in DLH Harbor, Tuzla

	POINT	Y	X	Z	POINT	Y	x
ļ	1	438324.100	4522604.167	1.388	66	438247.358	4522589.610
	2	438326.833	4522600.877	1.380		438244.467	4522592.802
	3	438322.039	4522604.371	1.357		438236.178	4522595.099
	4 5	438326.192	4522599.203	1.352		438231.765	4522595.386
	6	438330.120 438331.435	4522600.079	1.379		438243.528	4522583.346
	7	438344.742	4522594.619 4522604.834	1.390		438235.174	4522586.628
	. 8	438354.725	4522592.396	1.464		438234.173	4522586.490
	9	438355.071	4522592.596	1.477 1.547		438225.167	4522590.556
	10	438355.138	4522591.636	2.449		438226.478	4522597.893
	11	438349.762	4522590.922	1.440		438243.386	4522600.714
	12	438349.802	4522590.422	1.711		438250.486 438263.100	4522597.621 4522607.711
	13	438350.082	4522589.198	2.173		438257.747	4522612.267
	14	438342.609	4522587.633	2.197		438279.485	4522620.846
	15	438342.183	4522589.448	1.427		438274.962	4522625.968
	16	438343.267	4522585.547	2.460		438275.392	4522630.291
	17	438340.352	4522583.411	2.460	82	438298.237	4522635.983
	18	438336.034	4522579.753	2.192		438291.252	4522643.123
	19	438338.857	4522576.558	2.269		438294.193	4522641.703
1	20 21	438343.142	4522580.197	2.389		438295.067	4522644.343
	21	438352.645 438348.918	4522568.617 4522565.017	2.265 2.268		438295.991	4522643.109
	22	438352.178	4522561.718	2.268		438315.493	4522650.092
	24	438355.828	4522565.339	2.223		438310.430 438316.123	4522656.530 4522650.340
1	25	438351.730	4522555.381	1.639		438320.571	4522654.044
	26	438345.685	4522548.700	1.294		438321.612	4522652.907
	27	438343.424	4522546.583	0.420		438323.143	4522650.996
	28	438340.413	4522568.240	1.614		438327.835	4522645.198
	29	438334.342	4522560.785	1.052		438331.126	4522647.798
	30	438333.067	4522559.376	0.339	95	438332.681	4522649.095
	31	438331.252	4522578.788	1.303		438334.754	4522652.104
1	32	438322.922	4522573.492	0.995		438340.727	4522657.179
	33	438318.905	4522574.823	0.431		438323.438	4522667.063
	34	438340.059	4522587.061	3.904		438335.893	4522635.124
	35 36	438337.967 438328.775	4522585.516 4522583.350	3.833 3.870	100 101	438340.722 438331.598	4522619.714 4522631.071
	·· 37	438328.773	4522585.550	3.870	101	438337.503	4522622.937
	38	438314.187	4522581.607	3.703	102	438330.532	4522628.557
1	39	438293.032	4522577.947	3.701	104	438329.461	4522616.372
	40	438293.436	4522569.829	0.337	105	438323.637	4522622.324
1	41	438282.457	4522576.620	3.632	106	438320.094	4522608.154
	42	438281.690	4522569.327	0.214	107	438314.677	4522614.168
	43	438273.278	4522576.255	3.645	108	438320.952	4522597.198
	44	438271.983	4522568.856	0.179	109	438308.375	4522605.812
	45	438262.958	4522577.521	3.642	110	438309.613	4522597.912
1	46	438261.613	4522569.160	0.342	111 112	438304.782 438296.339	4522609.472 4522600.335
	47	438252.326	4522578.336	3.636 0.121	112	438296.339	4522592.887
	48 49	438250.524 438242.322	4522571.161 4522580.696	3.655	113	438259.381	4522594,199
	49 50	438242.322 438262.750	4522576.722	3.643	115	438270.199	4522604.746
	50 51	438240.786	4522574.151	0.417	116	438288.848	4522603.870
1	52	438328.483	4522586.942	1.409	117	438282.855	4522614.037
	53	438323.729	4522593.244	1.347	118	438298.068	4522613.224
	54	438309.068	4522583.586	1.311	119	438292.168	4522621.717
1	55	438307.702	4522590.496	1.333	120	438305.283	4522621.105
	56	438292.329	4522580.693	1.348	121	438300.241	4522628.393
	57	438291.334	4522587.650	1.289	122	438317.469	4522630.984
	58	438282.527	4522579.430	1.363	123 124	438312.432 438298.243	4522638.426 4522650.903
1	59	438282.410	4522586.721	1.360	124	438298.243	4522655.434
1	60	438272.674	4522579.028	1.362	125	438307.022	4522657.669
	61	438272.634	4522586.235	1.367 1.358	120	438311.366	4522660.882
1	62	438262.774	4522579.599 4522587.083	1.338	128	438314.168	4522663.925
	63 64	438262.236 438253.173	4522587.085	1.367	129	438319.334	4522670.068
	64 65	438253.175	4522588.146	1.354	130	438310.245	4522675.380
		100200117					······································

DOINT			
POINT	Y	X	Z
131	438309.315	4522677.130	2.044
132 133	438306.138	4522675.753	1.771
133	438306.450 438308.017	4522673.526 4522679.797	1.588
135	438306.995	4522682.007	1.769 1.841
136	438304.055	4522684.528	1.791
137	438302.110	4522688.486	1.576
138 139	438291.184 438296.234	4522684.389	1.434
140	438299.278	4522685.649 4522683.077	1.483
141	438301.867	4522679.906	1.487 1.579
142	438285.628	4522677.251	1.435
143	438304.367	4522675.723	1.636
144 145	438305.207 438304.676	4522672.712	1.595
146	438304.070	4522667.991 4522665.048	1.589 1.653
147	438299.725	4522663.796	1.650
148	438296.776	4522662.905	1.748
149	438292.555	4522663.159	1.531
150 151	438290.883	4522663.995	1.561
151	438350.328 438359.168	4522578.924 4522578.837	2.497
153	438365.523	4522577.058	2.816 2.829
154	438366.073	4522577.630	2.882
155	438368.078	4522575.301	4.517
156	438367.927	4522574.004	4.538
157 158	438369.765	4522575.196	4.560
158	438367.349 438366.429	4522578.859 4522578.258	6.153 6.203
160	438356.834	4522590.340	6.515
161	438364.204	4522599.950	6.772
162	438365.439	4522597.221	6.517
163	438365.942	4522597.806	6.513
164 165	438366.217 438367.331	4522597.903 4522596.500	6.519 6.441
166	438366.465	4522595.873	6.441
167	438370.134	4522598.683	6.462
168	438371.034	4522599.469	6.395
169 170	438369.032 438369.291	4522600.126 4522600.413	6.547
170	438367.554	4522602.646	6.572 6.751
173	438369.932	4522600.913	6.485
174	438375.421	4522605.245	6.480
175	438377.207	4522603.637	6.622
176 177	438373.860 438378.584	4522607.706 4522601.488	6.731 6.353
178	438386.057	4522600.933	6.194
179	438393.277	4522602.690	5.876
180	438399.675	4522606.372	5.629
181	438410.027	4522614.942	5.304
182 183	438414.704 438426.875	4522618.781 4522628.745	5.108 4.654
183	438438.150	4522638.053	4.224
185	438447.498	4522645.640	3.719
186	438452.127	4522638.333	3.784
187	438437.956	4522626.569	4.409
188	438428.358	4522618.542 4522608.936	4.776 5.224
189 190	438416.607 438406.068	4522608.550	5.576
190	438394.469	4522593.578	5.906
192	438383.212	4522587.355	6.006
193	438374.783	4522582.780	6.010
194	438373.995	4522581.345 4522579.217	5.993 3.983
195 196	438374.747 438389.445	4522587.228	4.379
· 190	438399.145	4522592.530	4.111
198	438415.439	4522601.403	4.749
199	438428.352	4522608.396	4.873 4.690
200	438433.922	4522621.053	4.070

POINT	Y	Х	Z
201 202	438442.245 438469.572	4522623.941	4.985
202	438464.890	4522630.976 4522643.408	5.474 5.207
204	438450.659	4522620.570	5.194
205	438482.566	4522638.120	6.018
206	438453.001	4522629.987	4.976
207	438485.432	4522659.138	6.275
208	438462.156	4522643.519	4.832
209 210	438467.491 438499.886	4522654.980 4522683.033	4.864
210	438469.870	4522672.782	6.337 4.223
212	438478.213	4522669.350	5.508
213	438479.197	4522692.641	5.121
214	438472.667	4522652.329	5.574
215	438490.313	4522692.028	5.670
216 217	438466.132	4522682.144	2.765
217	438466.164 438455.740	4522677.948 4522642,155	2.751 3.711
219	438457.825	4522645.029	3.624
220	438452.991	4522650.733	3.498
221	438451.946	4522651.437	3.505
222	438454.047	4522652.640	3.421
223	438452.702	4522653.097	3.433
224 225	438455.521 438454.020	4522657.109	3.197
225	438456.708	4522657.452 4522663.052	3.220 2.895
227	438455.327	4522663.470	2.913
228	438457.239	4522670.193	2.605
229	438455.834	4522670.355	2.584
230	438460.280	4522649.799	3.388
231	438462.125	4522655.424	3.128
232 233	438463.416	4522661.873	2.786
233 234	438463.950 438463.616	4522667.060 4522685.061	2.633 2.194
235	438457.137	4522677.842	2.313
236	438455.696	4522677.930	2.416
237	438456.188	4522691.014	2.120
238	438454.709	4522690.904	2.221
239 240	438461.213 438454.417	4522704.668 4522704.529	1.973
240	438452,962	4522704.329	2.008 2.209
242	438459.043	4522721.236	1.911
243	438463.474	4522712.762	2.638
244	438465.146	4522712.725	4.273
245	438452.259	4522719.900	1.956
246	438450.795	4522719.847	2.058
247 248	438457.278 438450.610	4522732.399 4522731.353	1.877 1.897
248	438449.084	4522731.775	1.999
250	438454.835	4522746.867	1.875
251	438448.823	4522743.533	1.852
252	438447.544	4522743.000	1.968
253	438447.493	4522752.506	1.754
254 255	438453.393 438434.009	4522756.562 4522737.935	1.837 2.690
235 256	438435.643	4522737.933	2.090
257	438422.201	4522728.118	2.583
258	438423.976	4522726.161	1.870
259	438432.075	4522715.592	1.720
260	438411.511	4522719.406	2.541
261	438413.507	4522717.561	1.861
262 263	438421.159 438399.846	4522707.646 4522710.200	1.700 2.633
263	438399.840	4522707.946	1.819
265	438408.744	4522699.165	1.652
266	438385.350	4522698.556	2.515
267	438386.775	4522696.472	1.665
268	438394.232	4522688.369	1.606
269	438374.774	4522690.394	2.525

P	OINT	Y	x	Z
	270	438376.387	4522688.335	
	271	438383.960	4522678.947	1.616 1.549
·.	272	438367.279	4522682.790	2.492
	273 274	438369.378 438375.625	4522681.899	1.523
	275	438373.625	4522674.159 4522670.877	1.533 2.415
	276	438384.939	4522662.957	1.574
	277	438382.365	4522661.165	2.320
	278 279	438392.490 438393.944	4522649.836	2.331
	280	438401.254	4522650.749 4522639.234	1.664 2.394
	281	438403.275	4522640.453	1.539
	282	438396.844	4522672.934	1.598
	283 284	438404.254 438407.710	4522661.785 4522680.741	1.578
	285	438413.866	4522670.746	1.626 1.504
	286	438419.425	4522689.792	1.661
	287	438424.550	4522679.369	1.569
	288 289	438429.491 438433.782	4522696.481 4522684.860	1.561
	290	438441.343	4522703.678	1.524 1.687
	291	438441.700	4522688.524	1.487
	292	438447.621	4522670.789	1.869
	293 294	438447.443 438434.560	4522655.863	1.868
	294	438442.159	4522662.759 4522648.716	1.346 1.691
	296	438421.212	4522653.254	1.431
	297	438445.646	4522644.765	2.793
	298	438408.551	4522645.497	1.561
	299 300	438434.877 438430.138	4522636.142 4522637.855	2.061 1.468
	301	438409.691	4522631.847	1.600
٠,	302	438407.870	4522631.068	2.251
	303	438425.387	4522628.154	2.721
	304 305	438422.451 438413.703	4522631.113 4522625.724	1.905 2.011
	306	438413.426	4522624.215	2.475
	307	438379.077	4522605.183	1.615
	308 309	438375.905 438375.464	4522608.853 4522608.574	2.663 2.666
	310	438370.880	4522608.574	2.000
	311	438369.475	4522613.070	4.166
	312	438368.755	4522613.956	3.905
	313	438375.154 438367.099	4522619.143 4522628.924	2.531 2.520
	314 315	438356.538	4522638.152	2.320
	316	438359.065	4522644.610	2.488
	317	438367.347	4522652.092	2.450
	318	438367.716	4522633.872	2.484 2.493
	319 320	438377.479 438377.255	4522640.972 4522622.303	2.493
	321	438386.668	4522629.526	2.449
	322	438385.708	4522611.771	2.515
	323	438394.768	4522620.022 4522627.653	2.549 2.350
	324 325	438407.511 438398.768	4522627.033	2.330
	326	438391.254	4522647.673	2.413
	327	438385.654	4522654.428	2.385
	328	438374.692	4522667.833	2.378 2.440
	329 330	438367.688 438367.507	4522660.145 4522665.537	2.203
••	331	438361.735	4522683.622	1.712
	332	438361.730	4522685.587	1.734
	333	438355.307	4522680.244 4522681.240	1.710 1.670
	334 335	438354.450 438371.508	4522691.240	1.866
	336	438377.951	4522699.330	1.823
	337	438391.304	4522710.537	1.786
	338	438407.689	4522723.251	1.820

BOINT			
 POINT	Y	X	Z
339 340	438414.935	4522727.150	1.909
340	438420.074 438431.442	4522733.186 4522742.138	1.735 1.748
342	438447.161	4522756.335	1.759
343 344	438446.079 438444.845	4522753.654 4522753.390	1.802 1.788
345	438443.276	4522749.915	2.039
346	438453.822	4522758.993	1.811
347 348	438455.309 438460.491	4522761.259 4522766.232	1.808 1.880
349	438464.850	4522769.628	1.886
350 351	438467.587	4522771.560	2.057
352	438473.164 438479.407	4522768.928 4522771.720	2.242 2.561
353	438481.477	4522772.093	2.671
354 355	438480.537 438478.936	4522766.250 4522764,461	2.218
356	438495.141	4522766.298	3.245 3.009
357	438494.778	4522755.701	4.304
358 359	438497.677 438498.117	4522758.195 4522759.192	3.454 3.237
360	438499.179	4522758.628	3.378
361	438498.699	4522757.544	3.693
362 363	438505.940 438511.070	4522761.826 4522748.552	3.418 4.680
364	438516.483	4522752.991	4.680 4.649
365	438520.120	4522739.872	5.445
367 368	438532.756 438530.452	4522738.503 4522734.609	6.145 6.265
369	438524.417	4522723.949	6.332
370	438514.261	4522728.800	5.460
371 372	438506.397 438515.727	4522716.544 4522709.433	5.564 6.471
372	438492.369	4522709.455	5.582
374	438505.145	4522691.611	6.263
375 376	438483.033 438488.193	4522707.896 4522719.475	5.038 5.065
377	438494.359	4522731.872	5.011
378	438501.160	4522747.603	4.752
379 380	438487.636 438480.126	4522753.094 4522732.826	4.359 4.651
381	438476.144	4522711.891	4.862
382 383	438465.851 438464.201	4522718.732 4522718.963	3.459 2.802
384	438468.192	4522725.925	3.749
385	438463.412	4522733.203	2.924
386 387	438470.547 438464.406	4522736.596 4522749.275	4.000 3.063
388	438472.315	4522744.910	4.026
389	438464.152	4522764.692	2.352
390 391	438473.275 438459.754	4522757.547 4522776.051	3.704 1.782
392	438459.231	4522778.538	1.754
393	438461.544	4522780.396	1.786
394 395	438462.339 438464.276	4522779.493 4522781.158	1.748 1.819
396	438469.334	4522784.510	2.530
397	438461.827	4522793.801	2.424
398 399	438461.599 438459.790	4522784.518 4522783.149	1.444 1.476
400	438459.000	4522783.966	1.441
401 402	438456.479 438455.113	4522781.913 4522801.933	1.798 2.380
402	438452.460	4522785.120	1.694
404	438442.657	4522797.276	1.647
405 406	438447.974 438431.771	4522810.689 4522810.673	2.527 1.719
407	438431.298	4522811.501	1.700
408	438441.633	4522818.553	2.283

	DOINT			
-	POINT	Y	X	Z
	409	438415.793	4522791.094	1.318
	$\frac{410}{411}$	438427.580	4522802.053	1.746
	412	438437.708 438437.824	4522789.465 4522782.887	1.619
	413	438437.507	4522774.288	1.581 1.635
	414	438434.243	4522760.260	1.738
	415 416	438421.952 438416.028	4522760.343	1.724
	417	438413.225	4522755.248 4522758.531	1.700 1.766
	418	438419.173	4522763.681	1.834
	419	438427.112	4522751.307	1.702
	420 421	438425.342 438412.827	4522751.540	1.692
	422	438398.960	4522741.545 4522730.249	1.649 1.662
	423	438400.517	4522728.322	1.663
	424	438396.465	4522739.837	1.522
	425 426	438393.023 438385.912	4522737.051 4522716.367	1.607
	420	438382.795	4522728.756	1.643 1.561
	428	438371.111	4522704.467	1.546
	429	438363.511	4522712.930	1.500
	430 431	438357.033 438355.958	4522693.106	1.512
	431	438349,824	4522694.269 4522701.881	1.386 1.447
	433	438382.136	4522757.380	1.396
	434	438378.803	4522754.583	1.271
	435 436	438372.375 438390,323	4522762.488	1.284
	436	438390.323	4522763.765 4522770.025	1.330 1.257
	438	438401.793	4522771.626	1.350
••	439	438394.297	4522780.662	1.368
	440	438411.286	4522779.166	1.320
	441 442	438403.843 438422.986	4522788.589 4522789.284	1.303 1.578
	443	438414.280	4522797.725	1.306
	444	438431.614	4522779.516	1.823
	445 446	438420.588 438427.987	4522772.295 4522764.203	1.771
	446 447	438408.335	4522764.203	1.915 1.454
	448	438420.614	4522754.198	1.638
	449	438396.331	4522756.616	1.376
	450	438401.733 438363.977	4522748.986 4522626.441	1.381 2.532
	451 452	438359.003	4522632.596	2.332
	453	438355.727	4522630.040	2.464
	454	438345.359	4522642.693	1.512
	455	438347.355	4522644.187 4522645.296	1.501 1.507
	456 457	438346.357 438349.708	4522645.290	2.106
	458	438348.827	4522647.396	1.903
	459	438335.047	4522646.265	1.538
	460	438348.650	4522653.169 4522660.257	1.571 1.699
	461 462	438343.568 438356.288	4522659.340	1.974
	463	438351.919	4522669.331	1.679
	464	438361.895	4522665.492	2.055
	465	438368.216	4522717.473 4522725.583	1.372 1.324
	466 467	438378.550 438356.505	4522730.729	1.303
••	467	438367.388	4522740.014	1.285
	469	438343.851	4522741.339	1.331
	470	438357.952	4522752.543 4522751.796	1.277 1.309
	471 472	438358.551 438361.880	4522751.790	1.418
	472	438350.640	4522728.876	1.448
	474	438336.428	4522678.553	1.397
	475	438337.284	4522677.440 4522686.064	1,367 1,493
	476 477	438330.282 438324.417	4522680.004	1.479
	-+//	1,117		

POINT	Y	x	Z
478	438314.966	4522677.674	1.334
479	438311.838	4522680.484	1.326
480 481	438311.567 438301.569	4522697.264 4522693.258	1.448 1.268
481	438292.778	4522704.208	1.208
483	438278.241	4522722.789	1.263
484	438289.876	4522732.165	1.257
485 486	438291.558 438263.020	4522730.180 4522680.353	1.264 1.440
487	438259.768	4522682.278	1.440
488	438326.373	4522653.531	1.700
489 490	438328.606	4522650.798	1.548
490	438330.255 438333.455	4522652.096 4522653.611	1.622 1.629
492	438339.421	4522658.690	1.623
493	438335.987	4522664.351	1.649
494 495	438335.264 438346.240	4522665.898	1.463
495	438260.460	4522622.208 4522646.128	1.481 1.454
497	438243.831	4522669.424	1.420
498	438231.982	4522681.075	1.305
499 500	438217.026 438207.083	4522699.483 4522685.193	1.276 1.412
500	438207.083	4522685.193	2.783
502	438206.919	4522690.083	1.340
503	438213.446	4522689.913	2.864
504	438213.185 438214.671	4522693.297	1.464
505 506	438214.671 438219.091	4522685.733 4522684.231	3.503 1.167
507	438215.399	4522678.598	0.478
508	438212.562	4522677.461	2.640
509 510	438214.377	4522674.012	2.302
510	438224.734 438224.581	4522673.483 4522671.239	1.300 2.971
512	438231.568	4522680.857	1.342
513	438229.747	4522674.218	2.916
514 515	438235.859 438235.227	4522670.870 4522661.553	1.471 1.840
516	438232.609	4522659.516	1.086
517	438228.424	4522663.401	0.900
518	438225.593	4522662.188	0.960
519 520	438223.001 438229.069	4522659.598 4522667.716	1.420 3.684
521	438222.680	4522663.786	3.181
522	438216.046	4522661.988	1.638
523	438214.619	4522671.471	2.279
524 525	438212.571 438209.345	4522670.561 4522680.681	0.847 2.281
526	438207.842	4522679.081	0.866
527	438204.865	4522680.349	0.738
528	438202.705	4522682.136	2.291
529 530	438199.277 438204.428	4522681.179 4522689.100	1.194 1.222
531	438195.922	4522689.100	1.222
532	438179.387	4522669.032	1.217
533	438166.758	4522658.817	1.244
534 535	438161.382 438172.225	4522654.515 4522641.159	1.285 1.307
536	438177.924	4522645.079	1.260
537	438181.044	4522630.311	1.302
538 530	438187.272	4522633.576	1.271
539 540	438188.328 438194.939	4522621.295 4522624.408	1.278 1.250
541	438194.879	4522613.557	1.310
542	438202.147	4522616.125	1.278
543 544	438201.664 438211.686	4522606.802 4522607.658	1.296 1.264
544 545	438209.165	4522607.658	1.204
546	438221.302	4522601.022	1.276

	POINT	Y	Х	Z
	547	438217.479	4522594.751	1.350
	550	438235.347	4522601.587	1.350
	551	438242.158	4522610.437	1.230
	552	438223.157	4522614.152	1.116
	553 554	438231.329 438210.543	4522621.622	1.164
	555	438217.407	4522622.909 4522632.513	0.993 1.187
	556	438200.145	4522634.019	1.091
	557	438207.710	4522644.658	1.243
	558	438190.849	4522644.914	1.199
	559 560	438199.130 438179.631	4522655.212 4522656.423	1.121
	561	438188.682	4522663.985	1.099 1.236
	562	438203.150	4522676.136	0.777
	563	438206.590	4522667.378	0.644
	564	438212.254	4522662.891	1.246
	565 566	438205.795 438219.712	4522664.265	1.255
	567	438219.712	4522650.199 4522650.814	1.275 1.278
	568	438237.215	4522656.703	1.378
	569	438233.979	4522640.397	1.203
	570	438248.720	4522646.202	1.407
	571 572	438245.353	4522632.521	1.170
	572 573	438259.462 438255.837	4522637.214 4522626.799	1.335 1.377
	574	438268.665	4522628.185	1.368
•	575	438263.521	4522620.998	1.317
	576	438155.654	4522662.102	1.288
	577	438165.939	4522677.850	1.180
	578 579	438150.851 438136.736	4522667.442 4522685.072	1.295 1.226
	580	438151.473	4522695.798	1.062
	581	438125.554	4522698.885	1.268
	582	438138.853	4522711.363	1.085
	584	438114.880	4522712.015	1.223
	585 586	438129.233 438105.291	4522723.406 4522724.019	1.108 1.223
	587	438117.937	4522737.293	1.141
	588	438094.225	4522737.833	1.257
	589	438105.828	4522752.238	1.120
	590	438081.554	4522753.364	1.261
	591 592	438093.860 438069.001	4522767.158 4522768.940	1.095 1.166
	592 593	438081.028	4522782.938	1.116
	594	438056.478	4522784.512	1.280
	595	438070.225		1.119
	596	438045.528	4522797.926	1.324
	597 598	438058.769 438033.281	4522810.584 4522813.152	1.091 1.371
	598 599	438045.740	4522826.721	1.044
	600	438025.079	4522823.532	1.231
	601	438033.881	4522841.374	1.101
	602	438016.655	4522833.907	1.290
	603 604	438010.064 438017.100	4522840.719 4522862.042	1.222 -0.192
	604 605	438017.100	4522866.032	1.013
	606	438011.275	4522867.821	1.347
	607	438001.216	4522842.941	3.085
	608	438003.093	4522841.662	3.648 3.528
	609	438009.621 438014.508	4522837.049 4522832.035	3.328
	610 611	438028.159	4522815.070	3.472
	612	438040.667	4522799.412	3.510
	613	438042.265	4522798.989	3.453
	614	438051.549	4522786.064	3.509 3.511
	615	438062.722	4522772.330 4522756.769	3.546
	616 617	438075.170 438086.122	4522743.204	3.508
	618	438080.122	4522737.039	3.485
	5.0			

POINT	Y	x	z
619	438102.568	4522722.828	3.478
620	438113.753	4522708.821	3.518
621	438124.910	4522695.087	3.564
622 623	438136.034 438142.593	4522681.278 4522674.684	3.629 3.619
624	438147.650	4522667.071	3.658
625	438157.940	4522654.141	3.692
626 627	438169.865 438170.644	4522639.450 4522620.007	3.627 0.060
628	438180.268	4522626.622	3.692
629	438185.713	4522619.956	3.680
630 631	438176.413 438192.616	4522613.412 4522611.733	-0.202
632	438192.016	4522612.579	3.640 3.620
633	438185.060	4522605.029	-0.136
634	438200.006	4522604.506	3.616
635 636	438192.312 438207.742	4522595.359 4522598.125	-0.173 3.683
637	438200.229	4522591.068	-0.171
638	438214.922	4522593.022	3.655
639 640	438209.040 438223.700	4522584.012 4522588.106	-0.109
641	438223.700	4522579.532	3.710 -0.242
642	438164.944	4522627.717	-0.184
643	438155.267	4522641.496	-0.252
644 645	438141.300 438126.360	4522658.996 4522676.783	-0.157 -0.182
646	438114.544	4522692.886	-0.189
647	438097.978	4522709.651	-0.210
648 649	438085.123 438072.781	4522728.099 4522742.475	-0.253 -0.156
650	438072.781	4522763.548	-0.130
651	438048.822	4522772.694	-0.159
652	438037.472	4522787.890	-0.147
653 654	438031.647 438015.257	4522795.632 4522818.849	-0.254 -0.220
655	438006.292	4522826.587	-0.245
656	437985.122	4522838.701	-0.253
657 658	438001.874 438000.829	4522843.919 4522844.833	3.042 3.780
659	437992.205	4522848.673	3.756
660	437983.197	4522850.788	3.762
661	437964.226	4522853.407	3.728
662 663	437959.432 437948.917	4522845.403 4522855.460	-0.229 3.658
664	437944.540	4522844.862	-0.175
665	437932.219	4522857.806	3.628
666 667	437928.535 437919.476	4522846.542 4522859.596	-0.236 3.626
668	437911.192	4522849.334	-0.220
669	437906.193	4522861.492	3.644
670	437904.352	4522862.684	3.618
671 672	437903.308 437903.607	4522865.009 4522866.942	3.618 3.607
673	437905.103	4522868.716	3.654
674	437907.608	4522869.289	3.628
675 676	437910.689 437910.604	4522868.796 4522867.425	3.654 2.138
677	437907.422	4522867.990	2.150
678	437906.276	4522867.718	2.146
679 680	437904.790 437904.836	4522865.987 4522864.600	2.136 2.145
681	437904.830	4522863.401	2.143
682	437906.883	4522862.775	2.153
683	437907.261	4522865.314	2.160
684 685	437915.752 437920.307	4522868.051 4522863.478	2.199 2.190
686	437919.881	4522861.005	2.190
687	437895.878	4522854.027	-0.261

	POINT	Y	x	Z
-	688	437891.202		
	689	437890.009	4522857.823 4522867.192	-0.240 -0.155
	690	437898.922	4522877.613	-0.133
	691	437905.860	4522878.593	-0.183
	692 693	437914.625 437922.898	4522876.820 4522872.394	-0.089
	694	437936.211	4522858.757	0.101 2.146
	695	437936.602	4522861.143	2.140
	696	437955.342	4522856.068	2.183
	, 697 698	437956.362 437976.339	4522858.504 4522853.308	2.209
	699	437976.895	4522855.733	2.242 2.239
	700	437983.455	4522852.314	2.207
	701	437983.908	4522854.747	2.203
	702 703	437992.508 437993.320	4522850.126 4522852.492	2.223
	704	438001.842	4522845.963	2.223 2.318
	705	438002.964	4522848.182	2.316
	706	438001.993	4522846.305	1.250
	707 709	438004.061 438176.473	4522847.445 4522686.411	1.288
	710	438191.054	4522698.214	1.153 1.166
	711	438206.472	4522710.704	1.155
	712	438217.363	4522719.444	1.176
	713 714	438229.074 438240.829	4522728.958 4522738.286	1.174
	715	438253.634	4522746.646	1.144 1.229
	716	438245.650	4522733.326	1.148
	717	438262.326	4522736.088	1.337
	718 719	438250.533 438274.090	4522725.209	1.319
	719	438263.598	4522722.877 4522708.526	1.326 1.322
	721	438286.525	4522710.349	1.302
	722	438272.998	4522699.110	1.288
	723 724	438274.898 438257.482	4522690.261 4522685.983	1.327 1.386
	724	438245.958	4522675.633	1.380
	726	438250.872	4522696.976	1.298
	727	438237.527	4522686.389	1.310
	728 729	438236.209 438222.531	4522713.946 4522702.407	1.278 1.246
	729	438229.045	4522752.885	1.144
	731	438216.089	4522769.106	1.076
	732	438232.080	4522782.027	1.157
	733	438242.874	4522768.786	0.052
	734 735	438254.725 438253.947	4522754.018 4522753.496	1.200 1.209
	736	438269.972	4522790.754	0.015
	737	438281.786	4522776.349	1.209
	738	438282.429	4522776.871	1.227
	739 740	438259.460 438270.450	4522804.026 4522812.936	1.273 1.223
	741	438289.277	4522808.945	1.194
	742	438297.920	4522835.056	1.199
	743	438307.285	4522823.520	1.207 1.212
	744 745	438312.226 438321.227	4522846.619 4522834.775	1.241
	746	438325.346	4522857.286	1.207
	747	438334.497	4522845.663	1.254
	748	438338.579	4522867.917	1.189 1.315
	749 750	438348.225 438350.449	4522856.596 4522877.584	1.160
	750	438357.758	4522883.533	-0.200
	752	438362.114	4522886.890	1.358
	753	438363.904	4522888.264 4522866.696	1.359 1.319
	754 755	438361.003 438357.357	4522866.696	1.375
	755 756	438360.918	4522859.625	1.468
	757	438364.242	4522862.255	1.342

POINT	Y	X	Z
758	438363.938	4522869.336	1.478
759	438362.977	4522868.564	1.232
760	438370.111	4522874.437	1.349
761 762	438379.354 438389.723	4522862.138 4522848.631	1.436 1.482
763	438384.782	4522844.626	1.438
764	438383.823	4522843.814	1.386
765	438397.933	4522849.779	1.653
766 767	438399.338 438402.448	4522850.874 4522833.301	1.589 1.538
768	438411.164	4522822.692	1.550
769	438418.530	4522827.313	1.729
770 771	438419.923 438426.320	4522811.975 4522833.675	1.632 1.644
772	438397.926	4522868.984	1.565
773	438407.312	4522861.052	2.131
774	438390.108	4522862.599	1.452
775 776	438386.706 438378.384	4522863.618 4522876.991	1.419 1.374
777	438386.166	4522883.324	1.523
778	438384.966	4522888.422	1.837
779	438382.148	4522890.012	1.622
780 781	438373.072 438375.545	4522880.338 4522884.742	1.469 1.504
782	438365.505	4522896.987	1.238
783	438414.431	4522809.076	1.341
784 785	438405.302 438402.409	4522821.442 4522795.033	1.407 1.210
785	438392.010	4522810.098	1.301
787	438389.353	4522786.751	1.263
788	438380.634	4522799.361	1.236
789 790	438375.797 438369.880	4522778.896 4522790.947	1.276 1.156
791	438365.850	4522770.160	1.212
792	438356.541	4522784.480	1.123
793 794	438356.381 438348.949	4522759.723 4522771.484	1.282
794	438345.432	4522751.576	1.182 1.371
796	438336.046	4522756.642	1.294
797	438327.425	4522771.755	1.126
798 799	438320.810 438322.991	4522780.991 4522767.477	1.112 1.116
800	438312.477	4522779.687	1.183
801	438336.660	4522784.898	1.108
802	438327.574	4522788.694	1.131
803 804	438348.542 438337.486	4522796.882 4522802.438	1.147 1.118
805	438360.587	4522808.413	1.257
806	438351.051	4522816.930	1.322
807 808	438372.614 438366.084	4522819.155 4522830.108	1.323 1.317
809	438385.108	4522830.134	1.317
810	438377.224	4522843.333	1.258
811	438367.201	4522855.207 4522846.786	1.121
812 813	438353.808 438341.167	4522838.291	1.092 1.240
814	438338.445	4522824.578	1.224
815	438327.612	4522831.533	1.229
816 817	438325.523 438316.568	4522810.568 4522821.785	1.184 1.171
818	438317.765	4522799.477	1.089
819	438305.692	4522811.317	1.103
820	438304.193	4522790.508	1.212
821 822	438295.780 438280.572	4522800.843 4522801.856	1.186 1.254
823	438301.603	4522772.699	1.187
824	438291.422	4522787.041	1.236
825 826	438313.578 438329.344	4522758.219 4522740.166	1.225 1.306
020	750527.544	1022170.100	1.300

POINT	Y	X	7
			Z
827 828	438307.327 438312.933	4522746.364	1.240
829	438297.436	4522726.519 4522734.986	1.340 1.250
830	438295.580	4522737.185	1.260
831	438292.945	4522714.157	1.302
833 834	438279.937 438268.668	4522746.349	2.841
835	438260.217	4522760.026 4522770.550	1.552 0.598
836	438252.657	4522780.460	-0.174
837	438311.482	4522746.007	1.225
838 839	438407.321 438260.594	4522857.161 4523026.217	1.786
840	438267.041	4523020.217	1.294 2.204
841	438257.646	4523045.937	2.265
842	438247.277	4523058.123	2.246
843 844	438239.732 438226.037	4523061.106 4523062.406	2.169
845	438212.487	4523062.408	1.794 1.541
846	438221.682	4523054.585	1.541
847	438225.903	4523051.979	1.485
848 849	438228.643 438240.966	4523054.736	1.588
850	438252.230	4523044.443 4523033.996	1.662 1.585
851	438226.507	4523031.958	1.261
852	438230.006	4523024.924	1.227
853 854	438001.469 437945.326	4522848.863 4522865.198	1.515
855	437961.242	4522864.706	-0.176 -0.161
856	437978.984	4522862.942	-0.094
857	437990.503	4522858.784	-0.354
858 859	438001.465 438009.015	4522863.456 4522878.234	-0.108
839 860	438009.013	4522878.234	-0.044 -0.035
861	438020.924	4522894.631	-0.084
862	438024.603	4522895.020	-0.215
863 864	438030.475	4522892.103	-0.150
864 865	438025.053 438021.312	4522878.639 4522880.462	-0.191 1.344
866	438018.705	4522882.004	1.345
867	438024,430	4522892.184	1.733
868	438025.626	4522892.546	1.698
869 870	438026.869 438027.390	4522891.797 4522890.528	1.661 1.730
870	438025.708	4522888.615	1.804
872	438025.441	4522890.643	1.729
873	438372.272	4522902.108	1.509 2.237
874 875	438372.611 438352.502	4522903.808 4522902.246	1.166
876	438349.918	4522901.939	1.353
877	438344.692	4522900.986	-0.163
878	438357.132 438353.455	4522906.956 4522913.960	1.281 1.474
879 880	438335.433	4522913.644	-0.203
881	438329.597	4522927.060	1.285
882	438330.804	4522928.976	1.171
883	438337.391 438338.406	4522931.161 4522932.980	1.244 1.575
884 885	438338.400	4522932.980	2.320
886	438313.227	4522950.393	1.114
887	438311.631	4522948.971	1.249
888	438307.374	4522947.575 4522954.630	-0.161 1.244
889 890	438318.368 438324.934	4522954.030	2.265
890 891	438296.968	4522970.693	1.145
892	438295.228	4522969.383	1.298
893	438289.622	4522967.601 4522974.767	-0.266 1.248
894 805	438302.058 438302.098	4522974.767 4522977.468	1.468
895 896	438312.254	4522978.406	2.282
0,0			

POINT	Y	X	Z
897	438280.568	4522990.961	1.082
898	438278.125	4522990.552	1.275
899 900	438273.516 438285.110	4522987.837 4522995.870	-0.231 1.267
901	438291.865	4523003.482	2.258
902	438267.827	4523006.751	1.166
903 904	438265.026 438260.703	4523006.774 4523000.765	1.406 -0.214
905	438272.211	4523011.881	1.228
906	438279.818	4523018.406	2.205
907 908	438258.441 438257.000	4523018.594 4523019.045	1.156 1.169
909	438256.330	4523019.043	1.109
910	438256.742	4523017.266	1.393
911	438252.025	4523006.816	-0.158
912 913	438242.454 438231.625	4523009.674 4523018.411	-0.124 1.157
914	438229.647	4523016.172	1.350
915	438228.183	4523009.218	-0.166
916 917	438211.565 438209.047	4523017.818 4523015.587	1.137 1.340
918	438207.550	4523009.945	-0.219
919	438200.111	4523011.396	-0.144
920 921	438184.583 438183.890	4523017.078	1.171 1.354
921	438183.888	4523014.738 4523010.698	-0.184
923	438168.553	4523016.603	1.170
924 925	438167.502	4523014.344	1.375
925 926	438169.783 438146.089	4523008.855 4523015.873	-0.216 1.202
927	438145.735	4523013.711	1.385
928	438145.105	4523008.958	-0.185
929 930	438124.119 438124.083	4523015.297 4523013.077	1.208 1.368
930	438122.641	4523008.056	-0.196
932	438104.143	4523014.726	1.188
933	438103.682	4523012.536	1.456
934 935	438105.230 438074.772	4523008.371 4523013.911	-0.207 1.108
936	438074.585	4523011.687	1.317
937	438077.102	4523008.832	-0.169
938 939	438057.171 438060.226	4523013.401 4523011.295	1.326 1.411
940	438066.709	4523004.281	-0.169
941	438057.077	4522995.669	1.440
942	438060.106	4522995.389	1.460
943 944	438064.840 438057.076	4522990.996 4522976.597	-0.094 1.315
945	438057.074	4522974.083	1.821
946	438058.026	4522973.036	1.822
947 948	438059.522 438060.511	4522973.067 4522974.033	1.817 1.808
949	438060.508	4522975.467	1.814
950	438060.009	4522976.413	1.803
951 952	438058.796 438064.599	4522974.795 4522976.683	1.791 -0.185
953	438062.235	4522968.003	-0.232
954	438057.126	4522968.860	-0.196
955	438052.591	4522974.556	-0.091
956 957	438050.823 438049.547	4522989.631 4523007.239	-0.122 -0.209
958	438048.917	4523022.445	1.447
959	438044.421	4523014.502	-0.228
960 961	438043.555 438041.451	4523036.039 4523054.008	1.354 1.616
961	438026.870	4523034.008	-0.110
963	438056.299	4523054.452	1.541
964 965	438056.445 438032.568	4523044.274 4523030.732	1.530 1.692
903	+J0032.308	-1323030.132	1.092

	POINT	Y	X	Z] [POINT	Y	X	Z
	967	438013.608	4523046.845	1.609		1036	438000.202	4523117.583	1.828
	968	437991.109		-0.217		1037	437993.475	4523132.162	1.735
1	969	437995.777		0.934		1038	437987.219	4523100.455	1.379
	970	437971.254	4523035.920	-0.151		1039	437979.536	4523119.986	1.689
	971 972	437970.174	4523042.816	1.612		1040	437967.156	4523106.991	1.623
	972 973	437955.018 437954.998	4523036.771 4523047.277	-0.162 0.832		1041 1042	437964.040	4523092.660	1.300
:	974	437935.883	4523057.134	0.832		1042	437951.202 437932.354	4523088.590 4523072.003	1.102 1.318
1	975	437933.847	4523052.915	-0.219		1043	437932.334	4523080.571	1.296
1	976	437920.709	4523064.618	-0.146		1045	437956.004	4523060.977	0.975
1	977	437913.391	4523071.185	-0.113		1046	437962.485	4523071.899	0.829
	978	437924,028	4523079.964	1.281		1047	437976.074	4523056.527	1.134
1	979	437901.509	4523075.360	-0.228		1048	437986.353	4523060.239	1.256
	980	437916.334		1.373		1049	438000.409	4523057.320	1.474
	981	437934.680	4523088.647	1.718		1050	437997.796	4523068.496	1.263
	982 983	437928.630 437939.582	4523100.521 4523085.335	1.751	1 1	1051	438019.829	4523056.757	1.598
	983	437937.208	4523110.505	0.707 1.649		1052 1053	438014.389 438034.970	4523068.827	1.607 1.700
	985	437929.553	4523115.067	2.018		1053	438034.970	4523058.276 4523074.045	1.700
	986	437945.426	4523096.832	1.383		1054	438048.942	4523074.475	1.856
	987	437951.709	4523124.741	1.623		1056	438034.347	4523092.382	1.731
	988	437963.082	4523106.861	1.595		1057	438051.785	4523096.073	2.204
1	989	437965.058	4523137.596	1.650	11	1058	438015.655	4523087.303	1.698
	990	437974.756	4523123.798	1.709		1059	438051.423	4523104.208	2.267
	991	437980.045		1.597		1060	438039.619	4523102.460	2.126
1	992 993	437988.362 437995.267	4523140.891	1.726		1061	438002.415	4523084.837	1.028
	993 994	437995.267 438005.076	4523167.741 4523154.119	1.498 1.677		1062 1063	438024.759 438001.179	4523099.438	1.562
	995	438008.908	4523181.068	1.564		1063	438001.179	4523096.934 4523100.601	1.021 1.209
1	996	438018.352	4523167.019	1.443	1 1	1065	437988.642	4523089.275	0.974
	997	438021.794	4523193.813	1.645		1066	437977.806	4523080.930	1.037
	998	438033.913	4523182.214	1.450		1067	437972.512	4523088.338	0.967
	999		4523205.131	1.745	1 1	1068	438055.829	4523094.787	1.410
1	1000	438046.123	4523200.359	1.696		1069	438076.615	4523044.583	1.585
	1001	438045.402		2.415		1070	438084.774	4523060.526	1.447
	1002	438052.807	4523210.007	2.720		1071	438094.483	4523056.369	1.465
	1003 1004	438056.714 438064.147	4523228.066 4523218.963	2.545 2.665		1072	438094.809	4523039.306	1.555
1 I	1004	438071.218	4523242.412	2.003		1073 1074	438092.291 438092.333	4523039.274 4523036.203	1.429 1.369
	1005	438075.429	4523246.668	2.807		1074	438094.841	4523036.156	1.509
	1007	438078.738	4523221.776	3.034		1076	438103.676	4523024.850	1.210
	1008	438078.690	4523183.101	2.191		1077	438085.229	4523026.005	1.319
1	1009	438078.603	4523152.926	2.417		1078	438062.929	4523026.989	1.303
	1010	438078.758		2.767		1079	438122.932	4523025.176	1.241
	1011	438094.914	4523076.566	1.868		1080	438142.171	4523024.924	1.238
	1012	438102.756 438170.281	4523075.325 4523068.416	1.880		1081		4523029.990	1.255
	1013 1014	438170,281	4523068.416	2.138 2.115		1082 1083	438145.422 438167.624	4523037.150 4523030.284	1.410 1.226
1	1014	438198.952	4523065.557	2.113		1083	438107.024	4523030.284	0.923
]	1016	438060,255	4523120.239	2.954		1085	438186.293	4523030.753	1.258
	1017	438059.111	4523124.190	2.889		1086	438173.461	4523044.619	1.043
	1018	438042.590	4523119.231	2.307		1087	438185.715	4523050.722	1.459
	1019	438059.039	4523137.773	2.557		1088	438183.287	4523053.375	1.456
	1020	438038.318	4523133.400	2.125		1089	438177.706	4523057.461	1.556
	1021	438058.238	4523157.113	2.145		1090	438167.306	4523060.578	1.470
	1022 1023	438040.147 438059.778	4523150.783 4523175.283	1.860 2.076		1092 1093	438075.980 438084.233	4523094.923 4523087.987	1.719 1.474
	1023	438061.807	4523190.915	2.353		1093	438092.111	4523073.061	1.643
1	1025	438042.675	4523167.323	1.520		1095	438108.921	4523068.513	1.462
	1025	438055.776	4523183.065	2.201		1096	438116.569	4523073.245	1.443
	1027	438054.290	4523176.561	2.080		1097	438134.556	4523066.399	1.573
1	1028	438033.525	4523165.621	1.666	11	1098	438136.443	4523071.223	1.641
1	1029	438018.219	4523159.262	1.747		1099	438158.688	4523069.327	1.611
1	1030	438020.690	4523140.799	1.815		1100	438150.696	4523062.165	1.551
	1031	438021.942	4523124.348	2.153		1101	438145.132	4523057.299	1.445
1	1032	438032.936 438019.990	4523128.373 4523112.116	2.185 1.953		1102	438127.137	4523061.651	1.472
1	1033 1034	438019.990	4523112.116	2.384		1103 1104	438105.518 438247.031	4523061.111 4523057.919	1,411 1,944
1	1034	438004.340	4523106.874	1.639		1104	438336.904	4522614,600	1.453
			·		IL				

		9	1
	_		

POINT Y X Z 1107 438439.088 4522817.863 1.680 1108 438439.785 4522817.022 1.700	POINT
1100 436439.763 4322817.022 1.700	·
1109 438078.749 4523230.775 3.000	

 POINT	Y	X	Z
			<u></u>
			1
			I

EMPLOYER'S REQUIREMENTS [25]

CHAPTER 1: GENERAL

1.8. Setting Out and Survey

1.8.1. Setting Out

- I. This item supplements Conditions of Contract Sub-Clause 4.7 [Setting Out]. The lines and levels specified in the Contract are those referred to in the triangulation information provided in Site Data.
- II. From these references, the Contractor is to obtain the coordinates of 3 trigonometry points close to the Site and by transference from this primary or secondary triangulation establish, protect, maintain and regularly check a system of setting out points for line and level throughout the Site. At least one trigonometry point shall be on the Asian side of the Bosphorus and one on the European side. Having selected the trigonometry points, the Contractor shall check by surveying that each point chosen is correct relative to the other points chosen. The tolerance on the distance between two fixed points shall be \pm (5mm +1mm/km). The Contractor shall establish as many as are necessary but at least four permanent markers, two on the Asian Side and two on the European Side, for his own use in setting out the Works. Each marker shall have both horizontal and level fixed points determined with the precision described. The Contractor shall provide and maintain bench marks and perform surveys to monitor the settlements and horizontal movements of structures and earthworks throughout the construction period until 12 months after the Taking Over of the whole of the Works.
- III. The intended purpose of this system is to provide convenient, accurate and reliable setting out and survey points for the execution of the Works and the monitoring of the condition of structures influenced by the execution of the Works.
- IV. The system of setting out points shall be checked, both for internal consistency and consistency with the primary/secondary triangulation at such time intervals as to guarantee its accuracy for its intended purpose. Any setting out point that is

suspected of being damaged or moved shall either be checked or taken permanently out of use and replaced.

V. In general, surveys shall be conducted when taking possession of Site and immediately before notice is given with respect to the Taking Over of the Works. In addition, intermediate surveys shall be conducted as necessary during the progress of the Works.

1.8.3. Topographic Survey

1.8.3.1. Land

- Define and implement a topographic survey of the land along the line of the railway to a width sufficient to encompass influences of the topography on design or construction of the railway and associated structures.
- II. The survey shall be presented in the form of a digital terrain model and contour plans. The tolerance on the measurement between any two markers shall be T 3 mm.

1.8.3.2. Seabed

- I. Define and implement a bathymetric survey to illustrate the topography of the seabed along the line of the tunnel, to a width sufficient to encompass influences of the topography on design or construction.
- II. The survey shall be presented in the form of a digital terrain model and contour plans.

1.8.5. Hydrological Survey

I. Define and implement a survey of the water conditions in the Bosphorus. The survey shall identify all aspects of the movement and physical characteristics of the water that affect design or execution of the Works. As a minimum, the survey shall provide a record of the current profile from surface to seabed at three fixed locations for at least the same 10 minute part of every hour. The records at these fixed locations

shall be calibrated with current measurements taken, from surface to seabed, along the line of the tunnel in order to develop a mathematical model. This model shall be developed, calibrated and refined such that it can predict, from measurements at the fixed locations, the current at any point and at any depth along the line of the tunnel.

- II. The survey and the model are required to provide the information needed to enable reliable predictions to be made for the design and execution of the Works and to establish the reference conditions for current.
- III. The survey shall commence within 28 days of the Commencement Date and shall continue until such time as the work on or under water is complete.
- IV. Data from the survey shall be modeled and the predicative capabilities of the model developed, refined and tested to enable adequate periods of suitable working conditions related to current to be predicted. The raw data and model report shall be submitted to the Employer, if so requested.

REFERENCES

- 1. Carleton, C. M. and P. J. Cook, 2000, *Continental Shelf Limits The Scientific and Legal Interface*, Oxford University Press, London.
- 2. Ingham, A. E., 1975, Sea Surveying (Text), John Wiley & Sons, New York.
- Hekimoğlu, Ş., D. U. Şanlı, 1993, "Düşey Datum Belirlemede Sorunlar ve Aşamalı Yaklaşım", *Türkiye Ulusal Jeodezi ve Jeofizik Birliği (TUJJB) Genel Kurul Bildiri Kitabı*, June 08-11, Page 21-46, Ankara
- 4. Köprülü, K., 2006, *Türkiye Denizleri Karşılaştırmalı Sualtı Akustik Modellemesi*, M.S. Thesis, Institute of Marine Science and Management, Istanbul University.
- 5. Aydın, Ö., H. Erkaya, R. G. Hoşbaş and N. O. Aykut, 2005, *Hidrografik Ölçmelerde Standartların Önemi*, Yıldız Technical University.
- 6. Alkan, R. M., 1998, Presizyonlu Hidrografik Ölçmelerde Bat-Çık Etkisinin GPS Yöntemi ile Belirlenmesi, Ph.D. Thesis, İstanbul Technical University.
- 7. Özgen, G. M. and E. Algül, 1977, *Mühendislik Ölçmeleri, 1-Hidrografik Ölçmeler*, İstanbul Technical University Press, İstanbul.
- 8. Algül, E., 1983, *Akustik İskandil Yöntemi ve Ölçülerin Değerlendirilmesi*, İstanbul Technical University Magazine, Vol.41, No.3-4.
- 9. Chapelon, A. and E. Kammerer, 2005, *Benefits of Using Highgrade True INS for Hydrography*, http://www.thsoa.org/hy05/alt_2.pdf
- 10. Ingham, A. E., 1992, *Hydrography for the Surveyor and the Engineer*, Oxford Blackwell Scientific Publications.

- 11. Juan, J. M., M. H. Pajares and J. Sanz, 1998, *GPS Data Processing Lecture notes*, Universitat Politècnica de Catalunya, Barcelona, Spain.
- 12. Eren, K. and T. Uzel, 1995, GPS Ölçmeleri, Yıldız Technical University.
- 13. Ferrari, R. L., P. Weghorst, 1997, *Hydrographic Survey Method and Equipment*, http://www.sci.sdsu.edu/salton/saltcont.htm, Colorado
- 14. US Army Corps of Engineers, 2002, Engineering and Design Hydrographic Surveying Manual, http://www.usace.army.mil/inet/usace-docs/eng-manuals/em1110-2-1003/
- 15. Short, N. M., 2006, *Remote Sensing Tutorial*, Nasa, http://rst.gsfc.nasa.gov/Front/tofc.html
- 16. Örmeci, C., 1987, *Uzaktan Algılama*, İstanbul Technical University, Faculty of Civil Engineering.
- 17. Crum, S., 1997, *Aerial Photography and Remote Sensing*, http://www.colorado.edu/ geography/gcraft/notes/remote/remote_ftoc.html, Department of Geography, University of Texas.
- 18. Dinn, D. F., G. Henderson, R. Courtney and J. Bradford, New Technologies for Near Shore Mapping, http://www.mar.dfo-mpo.gc.ca/science/review/e/pdf/new_ technologies .pdf
- Banic, J.,G. Canningham, 1999, *Airborne Laser Bathymetry*, http:// shoals.sam.usace.army.mil/downloads/Publications/32Banic_Cunningham_98.pdf, Toronto.
- 20. Doğan, E. and B. Alpar, 1994, *Deniz ve Göllerde Derinlik Ölçme Sistem ve Yöntemleri*, İstanbul University Press, İstanbul.

- 21. Baş, D., 1998, Hidrografide presizyonlu derinlik belirlemesi için akustik iskandil ölçülerine getirilecek düzeltme ve indirgemelerin incelenmesi, M.S. Thesis, İstanbul Technical University Press, İstanbul.
- 22. Dana, P. H., 1995, Coordinate Systems Overview, http:// www.colorado.edu/geography/ gcraft/notes/coordsys/coordsys_ftoc.html, Department of Geography, University of Texas.
- 23. Gürdal, M. A., S.Ceylan, 2005, Büyük Ölçekli Çalışmalarda Güncellenmiş Türkiye Jeoidinin (TG-99A) Doğrudan Kullanılabilirliğinin Araştırılması, Jeodezi Daire Başkanlığı, Harita Genel Komutanlığı, Ankara.
- 24. Ünlütepe, A., 2006, *Marmaray BC1 Project and Surveying Activities*, Geodesy Department, Kandilli Observatory and Earthquake Research Institute, Boğaziçi University.
- 25. Marmaray Contract BC1 Employer's Requirements Chapter 1, Gama Nurol Corporation, Istanbul.

REFERENCES

- Algül, E., 1983, Akustik İskandil Yöntemi ve Ölçülerin Değerlendirilmesi, İstanbul Technical University Magazine, Vol.41, No.3-4.
- Alkan, R. M., 1998, Presizyonlu Hidrografik Ölçmelerde Bat-Çık Etkisinin GPS Yöntemi ile Belirlenmesi, Ph.D. Thesis, İstanbul Technical University.
- Aydın, Ö., H. Erkaya, R. G. Hoşbaş and N. O. Aykut, 2005, *Hidrografik Ölçmelerde* Standartların Önemi, Yıldız Technical University.
- Banic, J.,G. Canningham, 1999, Airborne Laser Bathymetry, http:// shoals.sam.usace.army.mil/downloads/Publications/32Banic_Cunningham_98.pdf, Toronto.
- Baş, D., 1998, Hidrografide presizyonlu derinlik belirlemesi için akustik iskandil ölçülerine getirilecek düzeltme ve indirgemelerin incelenmesi, M.S. Thesis, İstanbul Technical University Press, İstanbul.
- Carleton, C. M. and P. J. Cook, 2000, *Continental Shelf Limits The Scientific and Legal Interface*, Oxford University Press, London.
- Chapelon, A. and E. Kammerer, 2005, *Benefits of Using Highgrade True INS for Hydrography*, http://www.thsoa.org/hy05/alt_2.pdf
- Crum, S., 1997, Aerial Photography and Remote Sensing, http://www.colorado.edu/ geography/gcraft/notes/remote/remote_ftoc.html, Department of Geography, University of Texas.
- Dana, P. H., 1995, *Coordinate Systems Overview*, http:// www.colorado.edu/geography/ gcraft/notes/coordsys/coordsys_ftoc.html, Department of Geography, University of Texas.

- Dinn, D. F., G. Henderson, R. Courtney and J. Bradford, New Technologies for Near Shore Mapping, http://www.mar.dfo-mpo.gc.ca/science/review/e/pdf/new_ technologies .pdf
- Doğan, E. and B. Alpar, 1994, *Deniz ve Göllerde Derinlik Ölçme Sistem ve Yöntemleri*, İstanbul University Press, İstanbul.
- Marmaray Contract BC1 Employer's Requirements Chapter 1, Gama Nurol Corporation, Istanbul.
- Eren, K. and T. Uzel, 1995, GPS Ölçmeleri, Yıldız Technical University.
- Ferrari, R. L., P. Weghorst, 1997, *Hydrographic Survey Method and Equipment*, http://www.sci.sdsu.edu/salton/saltcont.htm, Colorado
- Gürdal, M. A., S.Ceylan, 2005, Büyük Ölçekli Çalışmalarda Güncellenmiş Türkiye Jeoidinin (TG-99A) Doğrudan Kullanılabilirliğinin Araştırılması, Jeodezi Daire Başkanlığı, Harita Genel Komutanlığı, Ankara.
- Hekimoğlu, Ş., D. U. Şanlı, 1993, "Düşey Datum Belirlemede Sorunlar ve Aşamalı Yaklaşım", Türkiye Ulusal Jeodezi ve Jeofizik Birliği (TUJJB) Genel Kurul Bildiri Kitabı, June 08-11, Page 21-46, Ankara
- Ingham, A. E., 1975, Sea Surveying (Text), John Wiley & Sons, New York.
- Ingham, A. E., 1992, *Hydrography for the Surveyor and the Engineer*, Oxford Blackwell Scientific Publications.
- Juan, J. M., M. H. Pajares and J. Sanz, 1998, *GPS Data Processing Lecture Notes*, Universitat Politècnica de Catalunya, Barcelona, Spain.
- Köprülü, K., 2006, *Türkiye Denizleri Karşılaştırmalı Sualtı Akustik Modellemesi*, M.S. Thesis, Institute of Marine Science and Management, Istanbul University.

- Örmeci, C., 1987, Uzaktan Algılama, İstanbul Technical University, Faculty of Civil Engineering.
- Özgen, G. M. and E. Algül, 1977, *Mühendislik Ölçmeleri, 1-Hidrografik Ölçmeler*, İstanbul Technical University Press, İstanbul.
- Short, N. M., 2006, Remote Sensing Tutorial, Nasa, http://rst.gsfc.nasa.gov/Front/ tofc.html
- US Army Corps of Engineers, 2002, *Engineering and Design Hydrographic Surveying Manual*, http://www.usace.army.mil/inet/usace-docs/eng-manuals/em1110-2-1003/
- Ünlütepe, A., 2006, *Marmaray BC1 Project and Surveying Activities*, Geodesy Department, Kandilli Observatory and Earthquake Research Institute, Boğaziçi University.

REFERENCES NOT CITED

- Alkan, R. M., *GPS Single Point Positioning Without Selective Availability*, Department of Geodesy and Photogrammetry Engineering, İstanbul Technical University,2001.
- Balk H., and T. Lindem, *Fish Detection in Rivers with Split-beam Sonars*, June 27-30, 25th Scandinavian Symposium, Ustaoset, 2002.
- Crum, S., *Aerial Photography and Remote Sensing*, http:// www.colorado.edu/ geography/gcraft/notes/remote/remote_ftoc.html, Department of Geography, University of Texas, 1997.
- Dana, P. H., Coordinate Systems Overview, http:// www.colorado.edu/geography/ gcraft/notes/coordsys/coordsys_ftoc.html, Department of Geography, University of Texas, 1995.
- *Data Collection Methods*, http://facility.unavco.org/project_support/campaign/training/ collect_meth.html, 2006.

Fundamentals of Electro Acoustics, http://www.massa.com/fundamentals.htm, 2006.

- GPS and GLONASS Overview, Geoscience Australia, Australian Government, http://www.ga.gov.au/geodesy/gps/, 2006.
- Glonass and GPS, Space Today Online, http://www.spacetoday.org/ Satellites/GLONASS.html, 2006.
- GPS Survey Methods, Unavco Consortium, http://facility.unavco.org/ project_support/campaign/training/collect_meth.html, 2005.
- GPS System Overview, http://www.csr.utexas.edu/texas_pwv/midterm/gabor/gps.html, University of Texas.

GPS Tutorial, Trimble Navigation Ltd., http://www.trimble.com/gps/, 2006.

- *Hydrographic IHO Standards*, International Hydrographic Organization http://www.hypack.com/ newsletter/4_04/pat_3.htm
- Juan, J. M., M. H. Pajares and J. Sanz, *GPS Data Processing Lecture Notes* Universitat Politècnica de Catalunya, Barcelona, Spain, 1998.
- Plane Surveying Equipments, Department of Geomatics Web Site, The University of Melbourne, http://www.sli.unimelb.edu.au/planesurvey/prot/equip/equip5-2.html

Sea Level Rise, Wikipedia, http://en.wikipedia.org/wiki/Sea_level_change, 2006.

Single Beam Acoustic Depth Measurement Techniques, US Army Corps and Engineers, Washington, "Single Beam Acoustic Depth Measurement Techniques", US, http://www.usace.army.mil/inet/usace-docs/eng-manuals/em1110-2-1003/c-9.pdf

Sounding Methods, http://mail.vssd.nl/hlf/a033Ch11.pdf

- Sources of Errors in GPS, Kowoma GPS System Explained Web Site, http://www.kowoma.de/en/gps/errors.htm, 2005.
- Techniques of Surveying, Department of Education and the Arts, Queensland Government Web Site, http://education.qld.gov.au/curriculum/area/maths/compass/html/ surveying/sutec.html
- Temperature, Salinity and Density, http://oceanworld.tamu.edu/resources/ocng_textbook/ chapter06/chapter06_01.htm
- Turgut B., and E. Tuşat, *GPS ile Bir Ağ Çalışması*, Jeodezi, Jeoinformasyon ve Arazi Yönetimi Magazine, Vol.93, 2005.